WorldWideScience

Sample records for controlling aircraft ground

  1. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    Science.gov (United States)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  2. Numerical simulation and experimental validation of aircraft ground deicing model

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2016-05-01

    Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.

  3. Airline Operational Control (AOC)/UAS Ground Control Station (GCS) Collaboration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to form a network and a set of tools that will create a shared situation awareness with Unmanned Aircraft Systems (UAS) Ground Control Stations (GCSs) and...

  4. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  5. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  6. Aircraft monitoring by the fusion of satellite and ground ADS-B data

    Science.gov (United States)

    Zhang, Xuan; Zhang, Jingjing; Wu, Shufan; Cheng, Qian; Zhu, Rui

    2018-02-01

    The Automatic Dependent Surveillance- Broadcast (ADS-B) system is today a standard equipment on civil aircraft, transmitting periodically data packages containing information of key data such as aircraft ID, position, altitude and intention. It is designed for terrestrial based ground station to monitor air traffic flow in certain regions. Space based ADS-B is the idea to place sensitive receivers on board satellites in orbit, which can receive ADS-B packages and relay them the relevant ground stations. The terrestrial ADS-B receiver has been widely applied for airport information system, help monitor and control traffic flow, etc. However, its coverage is strongly limited by sea or mountain conditions. This paper first introduces the CubeSat mission, then discusses the integrated application of ADS-B data received from ground stations and from satellites, analyze their characteristics with statistical results of comparison, and explore the technologies to fuse these two different data resources for an integrated application. The satellite data is based on a Chinese CubeSat, STU-2C, being launched into space on Sept 25th 2015. The ADS-B data received from two different resources have shown a good complementary each other, such as to increase the coverage of space for air traffic, and to monitor the whole space in a better and complete way.

  7. Quantifying ground impact fatality rate for small unmanned aircraft

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders

    2018-01-01

    is based on a standard stochastic model, and employs a parameterized high fidelity ground impact distribution model that accounts for both aircraft specifications, parameter uncertainties, and wind. The method also samples the flight path to create an almost continuous quantification of the risk......One of the major challenges of conducting operation of unmanned aircraft, especially operations beyond visual line-of-sight (BVLOS), is to make a realistic and sufficiently detailed risk assessment. An important part of such an assessment is to identify the risk of fatalities, preferably...... in a quantitative way since this allows for comparison with manned aviation to determine whether an equivalent level of safety is achievable. This work presents a method for quantifying the probability of fatalities resulting from an uncontrolled descent of an unmanned aircraft conducting a BVLOS flight. The method...

  8. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    Science.gov (United States)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  9. INFORMATION USE ABOUT THE LEVEL OF AIRCRAFT FLIGHTS GROUND PROVISION TO PLAN AIR TRAFFIC

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The given article considers the task of building up the best aircraft route on the basis of information about the level of flight ground provision. Disadvantages of traditional radar surveillance facilities are given. Four types of Russian Feder- ation aerospace depending on the level of ground radio flight provision are considered. Relevance of selecting an aircraft route from the view of necessity to plan aerospace is substantiated. The formula to calculate probabilities of obtaining not correct aircraft navigation data is given. The analysis of errors arising while building up the aircraft route linked with both operational navigation and communication equipment faults as well as with a human factor is carried out. Formulas of wrong route selecting probability when an aircraft track changes or is maintained are suggested. A generalized weighted index of losses on the basis of various factors affecting an aircraft track change is introduced. Importance of these factors are considered. A rule of aircraft transition to the next route point is formulated. The conclusion is made which route is the most rational in case of following the rule of route selecting at every flight stage. Practical recommendations which can be used to solve conflict between aircraft cruising under the given rule are suggested.

  10. NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft

    Science.gov (United States)

    Butler, G. F.; Corbin, M. J.; Mepham, S.; Stewart, J. F.; Larson, R. R.

    1983-01-01

    Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described.

  11. Aircraft Landing and Attitude Control Using Dynamic Matrix Control

    Directory of Open Access Journals (Sweden)

    George Cristian Calugaru

    2017-06-01

    Full Text Available This paper proposes a method for an efficient control of the aircraft landing and attitude through Dynamic Matrix Control. The idea of MPC structures used in aircraft control has been well established during the last few years, but some aspects require further investigation. With this in mind, the paper proposes structures for aircraft landing and aircraft attitude control by using single DMC controllers for landing and respectively one DMC controller for each of the attitude axis (pitch attitude hold, bank angle hold and heading hold. The model used for analysis of the aircraft landing structure is based on the last phase of landing. Also, the model used to illustrate the attitude control is that of a pitch attitude hold system of a N250-100 aircraft. Simulations are performed for a variety of control and prediction horizons, taking into account the possibility of adding a weighting factor for the control actions. Apart from separate studies on step reference variations, for some use cases, a generic reference trajectory is provided as a control purpose of the system. Results show a better performance of the proposed method in terms of control surface transition and protection of the actuators involved and a better time response in stabilizing the aircraft attitude. Overall, the aspects shown ensure an improved aircraft attitude control and landing stabilization.

  12. Integration of Predictive Display and Aircraft Flight Control System

    Directory of Open Access Journals (Sweden)

    Efremov A.V.

    2017-01-01

    Full Text Available The synthesis of predictive display information and direct lift control system are considered for the path control tracking tasks (in particular landing task. The both solutions are based on pilot-vehicle system analysis and requirements to provide the highest accuracy and lowest pilot workload. The investigation was carried out for cases with and without time delay in aircraft dynamics. The efficiency of the both ways for the flying qualities improvement and their integration is tested by ground based simulation.

  13. Utilization of sonar technology and microcontroller towards reducing aviation hazards during ground handling of aircraft

    Science.gov (United States)

    Khanam, Mosammat Samia; Biswas, Debasish; Rashid, Mohsina; Salam, Md Abdus

    2017-12-01

    Safety is one of the most important factors in the field of aviation. Though, modern aircraft are equipped with many instruments/devices to enhance the flight safety but it is seen that accidents/incidents are never reduced to zero. Analysis of the statistical summary of Commercial Jet Airplane accidents highlights that fatal accidents that occurred worldwide from 2006 through 2015 is 11% during taxing, loading/unloading, parking and towing. Human, handling the aircrafts is one of the most important links in aircraft maintenance and hence play a significant role in aviation safety. Effort has been made in this paper to obviate human error in aviation and outline an affordable system that monitors the uneven surface &obstacles for safe "towing in" and "towing out" of an aircraft by the ground crew. The system revolves around implementation of sonar technology by microcontroller. Ultrasonic sensors can be installed on aircraft wings and tail section to identify the uneven surface &obstacles ahead and provide early warning to the maintenance ground crews.

  14. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    Science.gov (United States)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  15. Application of a pilot control strategy identification technique to a joint FAA/NASA ground-based simulation of head-up displays for CTOL aircraft

    Science.gov (United States)

    Jewell, W. F.

    1982-01-01

    A technique for measuring a pilot's control strategy was developed, evaluated, and applied to a joint FAA-NASA ground-based simulation of two competing concepts of head-up displays for use in conventional takeoff and landing aircraft. The technique, called the Non-Intrusive Pilot Identification Program (NIPIP), estimates the pilot's input-output describing function and combined pilot-vehicle performance parameters such as crossover frequency and phase margin by using a time domain model of the pilot and a least-squares identification algorithm. NIPIP functions in realtime and uses a sliding time window to maintain freshness in the data; thus time-varying characteristics in the pilot's control strategy can be measured.

  16. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  17. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  18. An overview of the joint FAA/NASA aircraft/ground runway friction program

    Science.gov (United States)

    Yager, Thomas J.

    1989-01-01

    There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.

  19. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  20. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  1. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  2. Aircraft ground damage and the use of predictive models to estimate costs

    Science.gov (United States)

    Kromphardt, Benjamin D.

    Aircraft are frequently involved in ground damage incidents, and repair costs are often accepted as part of doing business. The Flight Safety Foundation (FSF) estimates ground damage to cost operators $5-10 billion annually. Incident reports, documents from manufacturers or regulatory agencies, and other resources were examined to better understand the problem of ground damage in aviation. Major contributing factors were explained, and two versions of a computer-based model were developed to project costs and show what is possible. One objective was to determine if the models could match the FSF's estimate. Another objective was to better understand cost savings that could be realized by efforts to further mitigate the occurrence of ground incidents. Model effectiveness was limited by access to official data, and assumptions were used if data was not available. However, the models were determined to sufficiently estimate the costs of ground incidents.

  3. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-01-01

    Full Text Available Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays. To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground operations as major driver for airline punctuality. Aircraft ground trajectories primarily consists of handling processes at the stand (deboarding, catering, fueling, cleaning, boarding, unloading, loading, which are defined as the aircraft turnaround. Turnaround processes are mainly controlled by ground handling, airport, or airline staff, except the aircraft boarding, which is driven by passengers’ experience and willingness/ability to follow the proposed boarding procedures. This paper provides an overview of the research done in the field of aircraft boarding and introduces a reliable, calibrated, and stochastic aircraft boarding model. The stochastic boarding model is implemented in a simulation environment to evaluate specific boarding scenarios using different boarding strategies and innovative technologies. Furthermore, the potential of a connected aircraft cabin as sensor network is emphasized, which could provide information on the current and future status of the boarding process.

  4. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    Science.gov (United States)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  5. New generation detector for monitoring using remote-controlled ground-based and airborne systems

    International Nuclear Information System (INIS)

    Cespirova, Irena; Gryc, Lubomir; Helebrant, Jan; Sladek, Petr

    2015-01-01

    A new generation detector for monitoring with the use of remote-controlled ground (UAG, robotic rovers) or aircraft (UAV, drones) means was developed and tested within a security project. The main characteristics of the detector and the results of field tests with the detector placed on unmanned aerial means (drones) are described. (orig.)

  6. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    Science.gov (United States)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  7. Aircraft parameter estimation

    Indian Academy of Sciences (India)

    With the evolution of high performance modern aircraft and spiraling developmental and experimental costs, the importance of flight validated databases for flight control design applications and for flight simulators has increased significantly in the recent past. Ground-based and in-flight simulators are increasingly used not ...

  8. Integrated controls pay-off. [for flight/propulsion aircraft systems

    Science.gov (United States)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  9. Robust Control of an Ill-Conditioned Aircraft

    DEFF Research Database (Denmark)

    Breslin, S.G.; Tøffner-Clausen, S.; Grimble, M.J.

    1996-01-01

    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  10. FAULT DIAGNOSIS OF AN AIRCRAFT CONTROL SURFACES WITH AN AUTOMATED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Blessing D. Ogunvoul

    2017-01-01

    Full Text Available This article is devoted to studying of fault diagnosis of an aircraft control surfaces using fault models to identify specific causes. Such failures as jamming, vibration, extreme run out and performance decrease are covered.It is proved that in case of an actuator failure or flight control structural damage, the aircraft performance decreases significantly. Commercial aircraft frequently appear in the areas of military conflicts and terrorist activity, where the risk of shooting attack is high, for example in Syria, Iraq, South Sudan etc. Accordingly, it is necessary to create and assess the fault model to identify the flight control failures.The research results demonstrate that the adequate fault model is the first step towards the managing the challenges of loss of aircraft controllability. This model is also an element of adaptive failure-resistant management model.The research considers the relationship between the parameters of an i th state of a control surface and its angular rate, also parameters classification associated with specific control surfaces in order to avoid conflict/inconsistency in the determination of a faulty control surface and its condition.The results of the method obtained in this article can be used in the design of an aircraft automated control system for timely identification of fault/failure of a specific control surface, that would contribute to an effective role aimed at increasing the survivability of an aircraft and increasing the acceptable level of safety due to loss of control.

  11. Multidisciplinary Techniques and Novel Aircraft Control Systems

    Science.gov (United States)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  12. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  13. F-15 PCA (Propulsion Controlled Aircraft) Simulation Cockpit

    Science.gov (United States)

    1990-01-01

    The F-15 PCA (Propulsion Controlled Aircraft) simulation was used from 1990 to 1993. It was used for the development of propulsion algorithms and piloting techniques (using throttles only) to be used for emergency flight control in the advent of a major flight control system failure on a multi-engine aircraft. Following this program with the Dryden F-15, similiar capabilities were developed for other aircraft, such as the B-720, Lear 24, B-727, C-402, and B-747.

  14. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  15. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  16. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  17. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  18. Autonomous search and surveillance with small fixed wing aircraft

    Science.gov (United States)

    McGee, Timothy Garland

    Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding

  19. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    Science.gov (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  20. Control Design for a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  1. Automatic control design procedures for restructurable aircraft control

    Science.gov (United States)

    Looze, D. P.; Krolewski, S.; Weiss, J.; Barrett, N.; Eterno, J.

    1985-01-01

    A simple, reliable automatic redesign procedure for restructurable control is discussed. This procedure is based on Linear Quadratic (LQ) design methodologies. It employs a robust control system design for the unfailed aircraft to minimize the effects of failed surfaces and to extend the time available for restructuring the Flight Control System. The procedure uses the LQ design parameters for the unfailed system as a basis for choosing the design parameters of the failed system. This philosophy alloys the engineering trade-offs that were present in the nominal design to the inherited by the restructurable design. In particular, it alloys bandwidth limitations and performance trade-offs to be incorporated in the redesigned system. The procedure also has several other desirable features. It effectively redistributes authority among the available control effectors to maximize the system performance subject to actuator limitations and constraints. It provides a graceful performance degradation as the amount of control authority lessens. When given the parameters of the unfailed aircraft, the automatic redesign procedure reproduces the nominal control system design.

  2. Flow Control Enabled Aircraft Design

    National Research Council Canada - National Science Library

    Nangia, Rajendar

    2004-01-01

    ...: Many future advanced aircraft concepts being considered by the Air Force fall outside the current aerodynamic design practice and will rely heavily on the use of flow control technology to optimize flight performance...

  3. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    Science.gov (United States)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  4. A Simple Two Aircraft Conflict Resolution Algorithm

    Science.gov (United States)

    Chatterji, Gano B.

    2006-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.

  5. Research and Application on Civil Aircraft Ground Flotation%民用飞机地面漂浮性分析研究及应用

    Institute of Scientific and Technical Information of China (English)

    房务官; 魏小辉; 宋晓晨; 吴卜圣

    2012-01-01

    民用飞机地面漂浮性是评估飞机-机场相容性的一个重要指标,其直接影响到飞机设计参数选择以及地面适应性的优劣.在总体概念设计阶段就必须对飞机的漂浮性能进行分析评估,从而选择恰当的飞机参数.对民用飞机在刚性道面和柔性道面上漂浮性分析方法做了简要说明,并针对国际民用航空组织所推广使用的ACN/PCN(飞机分类号/机场分类号)方法进行了详细分析研究,在此基础上,开发出了飞机地面漂浮性分析软件.通过直接输入飞机相关参数可以快速准确地计算出飞机分类号ACN值.可以有效地对飞机地面漂浮性进行评估和优化,从而解决了用手工方式评估飞机地面漂浮性时的繁琐及不准确,并降低了对从事飞机地面漂浮性计算的人员要求.%Civil aircraft ground flotation is an important evaluation indicator of aircraft- airport compatibility , which affects the aircraft design parameters selection and the pros and cons of the ground adaptability directly. In the general conceptual design stage, the analysis and evaluation of the aircraft flotation must be done to select the appropriate parameters of the aircraft. This paper briefly describes the analysis methods of civil aircraft floating in the rigid pavement and flexible pavement, and carried out a detailed analysis and research for the ACN / PCN,the aircraft and airport's class number method,that is promoted by International Civil Aviation Organization and developed a aircraft ground flotation analysis software on that base. Inputting the relevant aircraft parameters directly, it can calculate the value the class number of aircraft, ACN, quickly and accurately. The software can effectively evaluate and optimize aircraft ground flotation , thus solve the problem of the complication and inaccuracy caused by evaluating the aircraft ground flotation by hand. In addition,it also reduces the demand for the personnel engaged in it.

  6. Time-varying linear control for tiltrotor aircraft

    Directory of Open Access Journals (Sweden)

    Jing ZHANG

    2018-04-01

    Full Text Available Tiltrotor aircraft have three flight modes: helicopter mode, airplane mode, and transition mode. A tiltrotor has characteristics of highly nonlinear, time-varying flight dynamics and inertial/control couplings in its transition mode. It can transit from the helicopter mode to the airplane mode by tilting its nacelles, and an effective controller is crucial to accomplish tilting transition missions. Longitudinal dynamic characteristics of the tiltrotor are described by a nonlinear Lagrange-form model, which takes into account inertial/control couplings and aerodynamic interferences. Reference commands for airspeed velocity and attitude in the transition mode are calculated dynamically by visiting a command library which is founded in advance by analyzing the flight envelope of the tiltrotor. A Time-Varying Linear (TVL model is obtained using a Taylor-expansion based online linearization technique from the nonlinear model. Subsequently, based on an optimal control concept, an online optimization based control method with input constraints considered is proposed. To validate the proposed control method, three typical tilting transition missions are simulated using the nonlinear model of XV-15 tiltrotor aircraft. Simulation results show that the controller can be used to control the tiltrotor throughout its operating envelop which includes a transition flight, and can also deal with vertical gust disturbances. Keywords: Constrained optimal control, Inertia/control couplings, Tiltrotor aircraft, Time-varying control, Transition mode

  7. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    Science.gov (United States)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  8. Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management

    Science.gov (United States)

    Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi; style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20130014930'); toggleEditAbsImage('author_20130014930_show'); toggleEditAbsImage('author_20130014930_hide'); "> style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20130014930_show"> style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20130014930_hide">

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and

  9. Global Tracking Control of Quadrotor VTOL Aircraft in Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Duc Khac Do

    2014-07-01

    Full Text Available This paper presents a method to design controllers that force a quadrotor vertical take-off and landing (VTOL aircraft to globally asymptotically track a reference trajectory in three-dimensional space. Motivated by the vehicle's steering practice, the roll and pitch angles are considered as immediate controls plus the total thrust force  provided by the aircraft's four rotors to control the position and yaw angle of the aircraft. The control design is based on the newly introduced one-step ahead backstepping, the standard backstepping and Lyapunov's direct methods. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to obtain global tracking control results. The paper also includes a design of observers that exponentially estimate the aircraft's linear velocity vector and disturbances. Simulations illustrate the results.

  10. Total aircraft flight-control system - Balanced open- and closed-loop control with dynamic trim maps

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1979-01-01

    The availability of the airborne digital computer has made possible a Total Aircraft Flight Control System (TAFCOS) that uses virtually the complete nonlinear propulsive and aerodynamic data for the aircraft to construct dynamic trim maps that represent an inversion of the aircraft model. The trim maps, in series with the aircraft, provide essentially a linear feed-forward path. Basically, open-loop trajectory control is employed with only a small perturbation feedback signal required to compensate for inaccuracy in the aircraft model and for external disturbances. Simulation results for application to an automatic carrier-landing system are presented. Flight-test results for a STOL aircraft operating automatically over a major portion of its flight regime are presented. The concept promises a more rapid and straightforward design from aerodynamic principles, particularly for highly nonlinear configurations, and requires substantially less digital computer capacity than conventional automatic flight-control system designs.

  11. Aircraft digital flight control technical review

    Science.gov (United States)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  12. Noise Reduction Efforts for Special Operations C-130 Aircraft Using Active Synchrophaser Control

    National Research Council Canada - National Science Library

    Hammond, Daryl; McKinley, Richard; Hale, Bill

    1998-01-01

    Aircraft noise often inhibits mission effectiveness. As a result, flight crews, ground maintenance personnel, and passengers suffer degraded voice communication, impaired performance, increased fatigue, and hearing loss...

  13. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    Science.gov (United States)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  14. Safety assurance of non-deterministic flight controllers in aircraft applications

    Science.gov (United States)

    Noriega, Alfonso

    Loss of control is a serious problem in aviation that primarily affects General Aviation. Technological advancements can help mitigate the problem, but the FAA certification process makes certain solutions economically unfeasible. This investigation presents the design of a generic adaptive autopilot that could potentially lead to a single certification for use in several makes and models of aircraft. The autopilot consists of a conventional controller connected in series with a robust direct adaptive model reference controller. In this architecture, the conventional controller is tuned once to provide outer-loop guidance and navigation to a reference model. The adaptive controller makes unknown aircraft behave like the reference model, allowing the conventional controller to successfully provide navigation without the need for retuning. A strong theoretical foundation is presented as an argument for the safety and stability of the controller. The stability proof of direct adaptive controllers require that the plant being controlled has no unstable transmission zeros and has a nonzero high frequency gain. Because most conventional aircraft do not readily meet these requirements, a process known as sensor blending was used. Sensor blending consists of using a linear combination of the plant's outputs that has no unstable transmission zeros and has a nonzero high frequency gain to drive the adaptive controller. Although this method does not present a problem for regulators, it can lead to a steady state error in tracking applications. The sensor blending theory was expanded to take advantage of the system's dynamics to allow for zero steady state error tracking. This method does not need knowledge of the specific system's dynamics, but instead uses the structure of the A and B matrices to perform the blending for the general case. The generic adaptive autopilot was tested in two high-fidelity nonlinear simulators of two typical General Aviation aircraft. The results

  15. Mapping automotive like controls to a general aviation aircraft

    Science.gov (United States)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  16. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  17. Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)

    Science.gov (United States)

    Suplisson, Angela W.

    The US Air Force recently fielded the F-16 Automatic Ground Collision Avoidance System (Auto GCAS). This system meets the operational requirements of being both aggressive and timely, meaning that extremely agile avoidance maneuvers will be executed at the last second to avoid the ground. This small window of automatic operation maneuvering in close proximity to the ground makes the problem challenging. There currently exists no similar Auto GCAS for manned military 'heavy' aircraft with lower climb performance such as transport, tanker, or bomber aircraft. The F-16 Auto GCAS recovery is a single pre-planned roll to wings-level and 5-g pull-up which is very effective for fighters due to their high g and climb performance, but it is not suitable for military heavy aircraft. This research proposes a new optimal control approach to the ground collision avoidance problem for heavy aircraft by mapping the aggressive and timely requirements of the automatic recovery to the optimal control formulation which includes lateral maneuvers around terrain. This novel mapping creates two ways to pose the optimal control problem for Auto GCAS; one as a Max Distance with a Timely Trigger formulation and the other as a Min Control with an Aggressive Trigger formulation. Further, the optimal path and optimal control admitted by these two formulations are demonstrated to be equivalent at the point the automatic recovery is initiated for the simplified 2-D case. The Min Control formulation was demonstrated to have faster computational speed and was chosen for the 3-D case. Results are presented for representative heavy aircraft scenarios against 3-D digital terrain. The Min Control formulation was then compared to a Multi-Trajectory Auto GCAS with five pre-planned maneuvers. Metrics were developed to quantify the improvement from using an optimal approach versus the pre-planned maneuvers. The proposed optimal Min Control method was demonstrated to require less control or trigger later

  18. Selected Aircraft Throttle Controller With Support Of Fuzzy Expert Inference System

    Directory of Open Access Journals (Sweden)

    Żurek Józef

    2014-12-01

    Full Text Available The paper describes Zlin 143Lsi aircraft engine work parameters control support method – hourly fuel flow as a main factor under consideration. The method concerns project of aircraft throttle control support system with use of fuzzy logic (fuzzy inference. The primary purpose of the system is aircraft performance optimization, reducing flight cost at the same time and support proper aircraft engine maintenance. Matlab Software and Fuzzy Logic Toolbox were used in the project. Work of the system is presented with use of twenty test samples, five of them are presented graphically. In addition, system control surface, included in the paper, supports system all work range analysis.

  19. Knowledge-based processing for aircraft flight control

    Science.gov (United States)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

    1994-01-01

    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  20. Imaged-Based Visual Servo Control for a VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Liying Zou

    2017-01-01

    Full Text Available This paper presents a novel control strategy to force a vertical take-off and landing (VTOL aircraft to accomplish the pinpoint landing task. The control development is based on the image-based visual servoing method and the back-stepping technique; its design differs from the existing methods because the controller maps the image errors onto the actuator space via a visual model which does not contain the depth information of the feature point. The novelty of the proposed method is to extend the image-based visual servoing technique to the VTOL aircraft control. In addition, the Lyapunov theory is used to prove the asymptotic stability of the VTOL aircraft visual servoing system, while the image error can converge to zero. Furthermore, simulations have been also conducted to demonstrate the performances of the proposed method.

  1. A method to solve the aircraft magnetic field model basing on geomagnetic environment simulation

    International Nuclear Information System (INIS)

    Lin, Chunsheng; Zhou, Jian-jun; Yang, Zhen-yu

    2015-01-01

    In aeromagnetic survey, it is difficult to solve the aircraft magnetic field model by flying for some unman controlled or disposable aircrafts. So a model solving method on the ground is proposed. The method simulates the geomagnetic environment where the aircraft is flying and creates the background magnetic field samples which is the same as the magnetic field arose by aircraft’s maneuvering. Then the aircraft magnetic field model can be solved by collecting the magnetic field samples. The method to simulate the magnetic environment and the method to control the errors are presented as well. Finally, an experiment is done for verification. The result shows that the model solving precision and stability by the method is well. The calculated model parameters by the method in one district can be used in worldwide districts as well. - Highlights: • A method to solve the aircraft magnetic field model on the ground is proposed. • The method solves the model by simulating dynamic geomagnetic environment as in the real flying. • The way to control the error of the method was analyzed. • An experiment is done for verification

  2. Ground Control System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  3. Development of Novel, Optically-Based Instrumentation for Aircraft System Testing and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact, robust, optically-based sensor for making temperature and multi-species concentration measurements in aircraft system ground and...

  4. Neutron radiography of aircraft composite flight control surfaces

    International Nuclear Information System (INIS)

    Lewis, W.J.; Bennett, L.G.I.; Chalovich, T.R.; Francescone, O.

    2001-01-01

    A small (20 kWth), safe, pool-type nuclear research reactor called the SLOWPOKE-2 is located at the Royal Military College of Canada (RMC). The reactor was originally installed for teaching, training, research and semi-routine analysis, specifically, neutron activation analysis. It was envisioned that the neutrons from the SLOWPOKE-2 could also be used for neutron radiography, and so a research program was initiated to develop this technology. Over a period of approximately 15 years, and through a series of successive modifications, a neutron radiography system (NRS) was developed. Once completed, several applications of the technology have been demonstrated, including the nondestructive examination of the composite flight control surfaces from the Canadian Air Force's primary jet fighter, the CF18 Hornet aircraft. An initial trial was setup to investigate the flight control surfaces of 3 aircraft, to determine the parameters for a final licensed system, and to compare the results to other nondestructive methods. Over 500 neutron radiographs were made for these first 3 aircraft, and moisture and corrosion were discovered in the honeycomb structure and hydration was found in the composite and adhesive layers. In comparison with other NDT methods, neutron radiography was the only method that could detect the small areas of corrosion and moisture entrapment. However, before examining an additional 7 aircraft, the recommended modifications to the NRS were undertaken. These modifications were necessary to accommodate the larger flight control surfaces safely by incorporating flexible conformable shielding. As well, to expedite inspections so that all flight control surfaces from one aircraft could be completed in less than two weeks, there was a need to decrease the exposure time by both faster film/conversion screen combinations and by incorporating the capability of near realtime, digital radioscopy. Finally, as there are no inspection specific image quality

  5. Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type

    Science.gov (United States)

    Evans, Joni K.

    2015-01-01

    Civilian aircraft are available in a variety of sizes, engine types, construction materials and instrumentation complexity. For the analysis reported here, eleven aircraft categories were developed based mostly on aircraft size and engine type, and these categories were applied to twenty consecutive years of civil aviation accidents. Differences in various factors were examined among these aircraft types, including accident severity, pilot characteristics and accident occurrence categories. In general, regional jets and very light sport aircraft had the lowest rates of adverse outcomes (injuries, fatal accidents, aircraft destruction, major accidents), while aircraft with twin (piston) engines or with a single (piston) engine and retractable landing gear carried the highest incidence of adverse outcomes. The accident categories of abnormal runway contact, runway excursions and non-powerplant system/component failures occur frequently within all but two or three aircraft types. In contrast, ground collisions, loss of control - on ground/water and powerplant system/component failure occur frequently within only one or two aircraft types. Although accidents in larger aircraft tend to have less severe outcomes, adverse outcome rates also differ among accident categories. It may be that the type of accident has as much or more influence on the outcome as the type of aircraft.

  6. U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014

    Science.gov (United States)

    Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.

    2015-01-01

    The U.S. Department of the Interior (DOI) is responsible for protecting the natural resources and heritage contained on almost 20 percent of the land in the United States. This responsibility requires acquisition of remotely sensed data throughout vast lands, including areas that are remote and potentially dangerous to access. One promising new technology for data collection is unmanned aircraft systems (UAS), which may be better suited (achieving superior science, safety, and savings) than traditional methods. UAS, regardless of their size, have the same operational components: aircraft, payloads, communications unit, and operator control unit. The aircraft is the platform that flies and carries any required payloads. For Department of the Interior missions these payloads will be either a sensor or set of sensors that can acquire the specific type of remotely sensed data that is needed. The aircraft will also carry the payload that is responsible for transmitting live airborne video images, compass headings, and location information to the operator control unit. The communications unit, which transfers information between the aircraft and the operator control unit, consists of the hardware and software required to establish both uplink and downlink communications. Finally, the operator control unit both controls and monitors the aircraft and can be operated either by a pilot on the ground or autonomously.

  7. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    Science.gov (United States)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  8. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions.

  9. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  10. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  11. Application of AI methods to aircraft guidance and control

    Science.gov (United States)

    Hueschen, Richard M.; Mcmanus, John W.

    1988-01-01

    A research program for integrating artificial intelligence (AI) techniques with tools and methods used for aircraft flight control system design, development, and implementation is discussed. The application of the AI methods for the development and implementation of the logic software which operates with the control mode panel (CMP) of an aircraft is presented. The CMP is the pilot control panel for the automatic flight control system of a commercial-type research aircraft of Langley Research Center's Advanced Transport Operating Systems (ATOPS) program. A mouse-driven color-display emulation of the CMP, which was developed with AI methods and used to test the AI software logic implementation, is discussed. The operation of the CMP was enhanced with the addition of a display which was quickly developed with AI methods. The display advises the pilot of conditions not satisfied when a mode does not arm or engage. The implementation of the CMP software logic has shown that the time required to develop, implement, and modify software systems can be significantly reduced with the use of the AI methods.

  12. CONCEPT AND 3D MODELING OF GROUND DE-ICING SYSTEM WITH APPLICATION IN LIGHT AIRCRAFT

    Directory of Open Access Journals (Sweden)

    SOARE Liviu

    2014-11-01

    Full Text Available This paper presents the concept of a de-icing system on the ground, semi-automatic, intended to replace existing traditional solutions. A specific classification of ice protection systems based on action mode criterion is proposed. A characterization of functional aspects characteristic for this classification is given and discussed. This work contains full details of the appearance and the functionality of chemical deicing system, designed for applications in light aircraft. The software used for modeling is 3D Studio Max.

  13. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  14. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  15. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-10-31

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 [EPA-HQ-OAR-2010-0687; FRL-9678-1] RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages 36341-36386 in the issue of Monday, June 18, 2012, make the following corrections: Sec. 87.2...

  16. Adaptive Backstepping Flight Control for Modern Fighter Aircraft

    NARCIS (Netherlands)

    Sonneveldt, L.

    2010-01-01

    The main goal of this thesis is to investigate the potential of the nonlinear adaptive backstepping control technique in combination with online model identification for the design of a reconfigurable flight control system for a modern fighter aircraft. Adaptive backstepping is a recursive,

  17. The Future of the Brigade Combat Team: Air-Ground Integration and the Operating Environment

    Science.gov (United States)

    2017-06-09

    coordinate, and control joint and multinational aircraft during CAS situations in combat and training. The current system which the CAS mission falls...current system , experiences from Vietnam, Operation Desert Storm, Afghanistan and Iraq help to identify future challenges to the operating environment ...multinational partners. 15. SUBJECT TERMS Air Ground Integration, Theater Air Ground System , Theater Air Control System , Army Air Ground System , Joint

  18. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    Science.gov (United States)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  19. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    Science.gov (United States)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  20. Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps

    Science.gov (United States)

    Belliere, P.

    1978-01-01

    An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.

  1. Software-in-the-loop simulation of a quadcopter portion for hybrid aircraft control

    Science.gov (United States)

    Mansoor, Shoaib; Saedan, Mana

    2018-01-01

    In this paper, we present the design of the software-in-the-loop simulation framework for a quadcopter that is incorporated in our hybrid aircraft. The hybrid aircraft comprises a quad-copter and a fixed wing with one forward thrust rotor. We need to develop a split control system that utilizes a typical quadcopter controller to control four motors/propellers and a supervisor controller to control a forward thrust rotor. The supervisor controller shall take feedback signals from the quadcopter and will command the fifth rotor for stabilizing the hybrid aircraft and resolves problems like thrust saturation. The simulation simulates the control algorithm and verifies the quadcopter’s behavior using MATLAB and Simulink together. Achieving these results, we come to know how our hybrid controller will be implemented, what results to expect once the forward thrust rotor is attached to the quadcopter. The software-in-the-loop simulation of a quadcopter is one of the most effective methods for verifying overall control performance and safety of the hybrid aircraft before actual hardware implementation and flight test.

  2. Aircraft and ground-based measurements of hydroperoxides during the 2006 MILAGRO field campaign

    Directory of Open Access Journals (Sweden)

    L. J. Nunnermacker

    2008-12-01

    Full Text Available Mixing ratios of hydrogen peroxide and hydroxymethyl hydroperoxide were determined aboard the US Department of Energy G-1 Research Aircraft during the March, 2006 MILAGRO field campaign in Mexico. Ground measurements of total hydroperoxide were made at Tecámac University, about 35 km NW of Mexico City. In the air and on the ground, peroxide mixing ratios near the source region were generally near 1 ppbv. Strong southerly flow resulted in transport of pollutants from Mexico City to two downwind surface sites on several flight days. On these days, it was observed that peroxide concentrations slightly decreased as the G-1 flew progressively downwind. This observation is consistent with low or negative net peroxide production rates calculated for the source region and is due to the very high NOx concentrations in the Mexico City plateau. However, relatively high values of peroxide were observed at takeoff and landing near Veracruz, a site with much higher humidity and lower NOx concentrations.

  3. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    Science.gov (United States)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  4. A comparison of ground-based and aircraft-based methane emission flux estimates in a western oil and natural gas production basin

    Science.gov (United States)

    Snare, Dustin A.

    Recent increases in oil and gas production from unconventional reservoirs has brought with it an increase of methane emissions. Estimating methane emissions from oil and gas production is complex due to differences in equipment designs, maintenance, and variable product composition. Site access to oil and gas production equipment can be difficult and time consuming, making remote assessment of emissions vital to understanding local point source emissions. This work presents measurements of methane leakage made from a new ground-based mobile laboratory and a research aircraft around oil and gas fields in the Upper Green River Basin (UGRB) of Wyoming in 2014. It was recently shown that the application of the Point Source Gaussian (PSG) method, utilizing atmospheric dispersion tables developed by US EPA (Appendix B), is an effective way to accurately measure methane flux from a ground-based location downwind of a source without the use of a tracer (Brantley et al., 2014). Aircraft measurements of methane enhancement regions downwind of oil and natural gas production and Planetary Boundary Layer observations are utilized to obtain a flux for the entire UGRB. Methane emissions are compared to volumes of natural gas produced to derive a leakage rate from production operations for individual production sites and basin-wide production. Ground-based flux estimates derive a leakage rate of 0.14 - 0.78 % (95 % confidence interval) per site with a mass-weighted average (MWA) of 0.20 % for all sites. Aircraft-based flux estimates derive a MWA leakage rate of 0.54 - 0.91 % for the UGRB.

  5. Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system

    Science.gov (United States)

    Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.

  6. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    Science.gov (United States)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna

  7. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    Science.gov (United States)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  8. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  9. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  10. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  11. Enhancing the stabilization of aircraft pitch motion control via intelligent and classical method

    Science.gov (United States)

    Lukman, H.; Munawwarah, S.; Azizan, A.; Yakub, F.; Zaki, S. A.; Rasid, Z. A.

    2017-12-01

    The pitching movement of an aircraft is very important to ensure passengers are intrinsically safe and the aircraft achieve its maximum stability. The equations governing the motion of an aircraft are a complex set of six nonlinear coupled differential equations. Under certain assumptions, it can be decoupled and linearized into longitudinal and lateral equations. Pitch control is a longitudinal problem and thus, only the longitudinal dynamics equations are involved in this system. It is a third order nonlinear system, which is linearized about the operating point. The system is also inherently unstable due to the presence of a free integrator. Because of this, a feedback controller is added in order to solve this problem and enhance the system performance. This study uses two approaches in designing controller: a conventional controller and an intelligent controller. The pitch control scheme consists of proportional, integral and derivatives (PID) for conventional controller and fuzzy logic control (FLC) for intelligent controller. Throughout the paper, the performance of the presented controllers are investigated and compared based on the common criteria of step response. Simulation results have been obtained and analysed by using Matlab and Simulink software. The study shows that FLC controller has higher ability to control and stabilize the aircraft's pitch angle as compared to PID controller.

  12. Nonparametric method for failures detection and localization in the actuating subsystem of aircraft control system

    Science.gov (United States)

    Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.

  13. Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    Science.gov (United States)

    Williams, David H.; Green, Steven M.

    1993-01-01

    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept.

  14. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Directory of Open Access Journals (Sweden)

    Wang Xingjian

    2015-12-01

    Full Text Available Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trimmable horizontal stabilizer (THS is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  15. Analysis of Control Strategies for Aircraft Flight Upset Recovery

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Cox, David E.; Muri, Daniel G.

    2012-01-01

    This paper proposes a framework for studying the ability of a control strategy, consisting of a control law and a command law, to recover an aircraft from ight conditions that may extend beyond the normal ight envelope. This study was carried out (i) by evaluating time responses of particular ight upsets, (ii) by evaluating local stability over an equilibrium manifold that included stall, and (iii) by bounding the set in the state space from where the vehicle can be safely own to wings-level ight. These states comprise what will be called the safely recoverable ight envelope (SRFE), which is a set containing the aircraft states from where a control strategy can safely stabilize the aircraft. By safe recovery it is implied that the tran- sient response stays between prescribed limits before converging to a steady horizontal ight. The calculation of the SRFE bounds yields the worst-case initial state corresponding to each control strategy. This information is used to compare alternative recovery strategies, determine their strengths and limitations, and identify the most e ective strategy. In regard to the control law, the authors developed feedback feedforward laws based on the gain scheduling of multivariable controllers. In regard to the command law, which is the mechanism governing the exogenous signals driving the feed- forward component of the controller, we developed laws with a feedback structure that combines local stability and transient response considera- tions. The upset recovery of the Generic Transport Model, a sub-scale twin-engine jet vehicle developed by NASA Langley Research Center, is used as a case study.

  16. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    Science.gov (United States)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  17. Application of the concept of dynamic trim control to automatic landing of carrier aircraft. [utilizing digital feedforeward control

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1980-01-01

    The results of a simulation study of an alternative design concept for an automatic landing control system are presented. The alternative design concept for an automatic landing control system is described. The design concept is the total aircraft flight control system (TAFCOS). TAFCOS is an open loop, feed forward system that commands the proper instantaneous thrust, angle of attack, and roll angle to achieve the forces required to follow the desired trajector. These dynamic trim conditions are determined by an inversion of the aircraft nonlinear force characteristics. The concept was applied to an A-7E aircraft approaching an aircraft carrier. The implementation details with an airborne digital computer are discussed. The automatic carrier landing situation is described. The simulation results are presented for a carrier approach with atmospheric disturbances, an approach with no disturbances, and for tailwind and headwind gusts.

  18. Human factors implications of unmanned aircraft accidents : flight-control problems

    Science.gov (United States)

    2006-04-01

    This research focuses on three types of flight control problems associated with unmanned aircraft systems. The : three flight control problems are: 1) external pilot difficulties with inconsistent mapping of the controls to the : movement of the airc...

  19. Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines

    Science.gov (United States)

    Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin

    2018-03-01

    In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.

  20. Aircraft Vortex Wake Decay Near the Ground

    Science.gov (United States)

    1977-05-01

    A multi-faceted experimental and analytical research program was carried out to explore the details of aircraft wake vortex breakdown under conditions representative of those which prevail at low altitudes in the vicinity of airports. Three separate ...

  1. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    Science.gov (United States)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  2. LMI–based robust controller design approach in aircraft multidisciplinary design optimization problem

    Directory of Open Access Journals (Sweden)

    Qinghua Zeng

    2015-07-01

    Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.

  3. Configuration management and automatic control of an augmentor wing aircraft with vectored thrust

    Science.gov (United States)

    Cicolani, L. S.; Sridhar, B.; Meyer, G.

    1979-01-01

    An advanced structure for automatic flight control logic for powered-lift aircraft operating in terminal areas is under investigation at Ames Research Center. This structure is based on acceleration control; acceleration commands are constructed as the sum of acceleration on the reference trajectory and a corrective feedback acceleration to regulate path tracking errors. The central element of the structure, termed a Trimmap, uses a model of the aircraft aerodynamic and engine forces to calculate the control settings required to generate the acceleration commands. This report describes the design criteria for the Trimmap and derives a Trimmap for Ames experimental augmentor wing jet STOL research aircraft.

  4. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    Science.gov (United States)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  5. Evaluating remotely sensed plant count accuracy with differing unmanned aircraft system altitudes, physical canopy separations, and ground covers

    Science.gov (United States)

    Leiva, Josue Nahun; Robbins, James; Saraswat, Dharmendra; She, Ying; Ehsani, Reza

    2017-07-01

    This study evaluated the effect of flight altitude and canopy separation of container-grown Fire Chief™ arborvitae (Thuja occidentalis L.) on counting accuracy. Images were taken at 6, 12, and 22 m above the ground using unmanned aircraft systems. Plants were spaced to achieve three canopy separation treatments: 5 cm between canopy edges, canopy edges touching, and 5 cm of canopy edge overlap. Plants were placed on two different ground covers: black fabric and gravel. A counting algorithm was trained using Feature Analyst®. Total counting error, false positives, and unidentified plants were reported for images analyzed. In general, total counting error was smaller when plants were fully separated. The effect of ground cover on counting accuracy varied with the counting algorithm. Total counting error for plants placed on gravel (-8) was larger than for those on a black fabric (-2), however, false positive counts were similar for black fabric (6) and gravel (6). Nevertheless, output images of plants placed on gravel did not show a negative effect due to the ground cover but was impacted by differences in image spatial resolution.

  6. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    Science.gov (United States)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  7. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  8. Wind Information Uplink to Aircraft Performing Interval Management Operations

    Science.gov (United States)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    Interval Management (IM) is an ADS-B-enabled suite of applications that use ground and flight deck capabilities and procedures designed to support the relative spacing of aircraft (Barmore et al., 2004, Murdoch et al. 2009, Barmore 2009, Swieringa et al. 2011; Weitz et al. 2012). Relative spacing refers to managing the position of one aircraft to a time or distance relative to another aircraft, as opposed to a static reference point such as a point over the ground or clock time. This results in improved inter-aircraft spacing precision and is expected to allow aircraft to be spaced closer to the applicable separation standard than current operations. Consequently, if the reduced spacing is used in scheduling, IM can reduce the time interval between the first and last aircraft in an overall arrival flow, resulting in increased throughput. Because IM relies on speed changes to achieve precise spacing, it can reduce costly, low-altitude, vectoring, which increases both efficiency and throughput in capacity-constrained airspace without negatively impacting controller workload and task complexity. This is expected to increase overall system efficiency. The Flight Deck Interval Management (FIM) equipment provides speeds to the flight crew that will deliver them to the achieve-by point at the controller-specified time, i.e., assigned spacing goal, after the target aircraft crosses the achieve-by point (Figure 1.1). Since the IM and target aircraft may not be on the same arrival procedure, the FIM equipment predicts the estimated times of arrival (ETA) for both the IM and target aircraft to the achieve-by point. This involves generating an approximate four-dimensional trajectory for each aircraft. The accuracy of the wind data used to generate those trajectories is critical to the success of the IM operation. There are two main forms of uncertainty in the wind information used by the FIM equipment. The first is the accuracy of the forecast modeling done by the weather

  9. The Application of mu Analysis and Synthesis to the Control of an ASTOVL Aircraft

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.; Andersen, Palle; Breslin, S.G.

    1995-01-01

    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  10. Design of a Symmetrical Quad-rotor Biplane Tail-Sitter Aircraft without Control Surfaces and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Wang Hongyu

    2018-01-01

    Full Text Available This paper presents the design of a symmetrical quad-rotor biplane tail-sitter VTOL UAV (Vertical Take-off and Landing Unmanned Aerial Vehicle which is composed of four rotors and two symmetrically mounted fixed wings. This aircraft achieves high accuracy in the attitude control and smooth flight mode transition with four rotors rather than the conventional VTOL UAVs using control surfaces. The proposal of angled rotor mounting is adopted to address the issue of insufficient yaw control authority. The layout of symmetrically mounted fixed wings makes the aircraft have capability of rapid bidirectional flight mode transition to improve maneuverability. To validate the performance of the aircraft, simulation and flight experiments are both implemented. These results show that the aircraft has a rapid yaw response under condition of the stable attitude control. In comparative experiment, it is shown that the aircraft is more flexible than other similar configuration of aircrafts. This symmetrical quad-rotor biplane tail-sitter VTOL UAV will have a wide range of potential applications in the military and civilian areas due to its superior performance..

  11. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  12. Individual and collective climate control in aircraft cabins

    NARCIS (Netherlands)

    Jacobs, P.; Gids, W.F. de

    2006-01-01

    A new concept for aircraft cabin climatisation has been developed in which the seat is the main Indoor Air Quality (IAQ) and temperature control system for the passengers containing provisions for local supply and local exhaust of air. Direct supply of clean outside air in the breathing zone,

  13. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    Science.gov (United States)

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  14. Terminal Control Area Aircraft Scheduling and Trajectory Optimization Approaches

    Directory of Open Access Journals (Sweden)

    Samà Marcella

    2017-01-01

    Full Text Available Aviation authorities are seeking optimization methods to better use the available infrastructure and better manage aircraft movements. This paper deals with the realtime scheduling of take-off and landing aircraft at a busy terminal control area and with the optimization of aircraft trajectories during the landing procedures. The first problem aims to reduce the propagation of delays, while the second problem aims to either minimize the travel time or reduce the fuel consumption. Both problems are particularly complex, since the first one is NP-hard while the second one is nonlinear and a combined solution needs to be computed in a short-time during operations. This paper proposes a framework for the lexicographic optimization of the two problems. Computational experiments are performed for the Milano Malpensa airport and show the existing gaps between the performance indicators of the two problems when different lexicographic optimization approaches are considered.

  15. Commercial Aircraft Trajectory Planning based on Multiphase Mixed-Integer Optimal Control

    OpenAIRE

    Soler Arnedo, Manuel Fernando

    2017-01-01

    The main goal of this dissertation is to develop optimal control techniques for aircraft trajectory planning looking at reduction of fuel consumption, emissions and overfly charges in flight plans. The calculation of a flight plan involves the consideration of multiple factors. They can be classified as either continuous or discrete, and include nonlinear aircraft performance, atmospheric conditions, wind conditions, airspace structure, amount of departure fuel, and operational...

  16. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  17. More electric aircraft starter-generator system with utilization of hybrid modulated model predictive control

    OpenAIRE

    Yoeh, Seang Shen; Yang, Tao; Tarisciotti, Luca; Hill, Christopher Ian; Bozhko, Serhiy

    2016-01-01

    The current trend for future aircraft is the adoption of the More Electric Aircraft (MEA) concept. The electrical based starter-generator (S/G) system is one of the core ideas from the MEA concept. The PI based control scheme has been investigated in various papers for the permanent magnet based S/G system. Different control schemes are to be considered to improve the control performance of the S/G system. A type of non-linear control called Model Predictive Control (MPC) is considered for it...

  18. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  19. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  20. Feasibility study for a microwave-powered ozone sniffer aircraft. B.S. Thesis

    Science.gov (United States)

    Botros, David F.; Cody, Charlotte K.; Forden, Noah P.; Helsing, Martin A.; Jutras, Thomas H.; Kim, Dohoon; Labarre, Christopher; Odin, Ethan M.; Sandler, Scott B.

    1990-01-01

    The preliminary design of a high-altitude, remotely-piloted, atmospheric-sampling aircraft powered by microwave energy beamed from ground-based antenna was completed. The vehicle has a gross weight of 6720 pounds and is sized to carry a 1000 pound payload at an altitude of 100,000 feet. The underside of the wing serves as the surface of a rectenna designed to receive microwave energy at a power density of 700 watts per square meter and the wing has a planform area of 3634 square feet to absorb the required power at an optimum Mach number M = 0.44. The aircraft utilizes a horizontal tail and a canard for longitudinal control and to enhance the structural rigidity of the twin fuselage configuration. The wing structure is designed to withstand a gust-induced load factor n = 3 at cruise altitude but the low-wing loading of the aircraft makes it very sensitive to gusts at low altitudes, which may induce load factors in excess of 20. A structural load alleviation system is therefore proposed to limit actual loads to the designed structural limit. Losses will require transmitted power on the order of megawatts to be radiated to the aircraft from the ground station, presenting environmental problems. Since the transmitting antenna would have a diameter of several hundred feet, it would not be readily transportable, so we propose that a single antenna be constructed at a site from which the aircraft is flown. The aircraft would be towed aloft to an initial altitude at which the microwave power would be utilized. The aircraft would climb to cruise altitude in a spiral flight path and orbit the transmitter in a gentle turn.

  1. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Science.gov (United States)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  2. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    Science.gov (United States)

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.

    2014-01-01

    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  3. Ground impact probability distribution for small unmanned aircraft in ballistic descent

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders

    2018-01-01

    Safety is a key factor in all aviation, and while years of development has made manned aviation relatively safe, the same has yet to happen for unmanned aircraft. However, the rapid development of unmanned aircraft technology means that the range of commercial and scientific applications is growing...

  4. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    Science.gov (United States)

    Cox, Timothy H.; Cotting, M. Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  5. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    Science.gov (United States)

    Commo, Sean A. (Inventor); Lynn, Keith C. (Inventor); Landman, Drew (Inventor); Acheson, Michael J. (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  6. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  7. X-36 on Ground after Radio and Telemetry Tests

    Science.gov (United States)

    1996-01-01

    A UH-1 helicopter lowers the X-36 Tailless Fighter Agility Research Aircraft to the ground after radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and

  8. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    Science.gov (United States)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  9. An aircraft noise pollution model for trajectory optimization

    Science.gov (United States)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  10. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-06-01

    Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.

  11. Investigation of Practical Flight Control Systems for Small Aircraft

    NARCIS (Netherlands)

    Falkena, W.

    2012-01-01

    Personal air transportation utilizing small aircraft is a market that is expected to grow significantly in the near future. However, seventy times more accidents occur in this segment as compared with the commercial aviation sector. The majority of these accidents is related to handling and control

  12. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    Science.gov (United States)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  13. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    Science.gov (United States)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  14. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  15. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    OpenAIRE

    Michael Schultz

    2018-01-01

    Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays). To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground opera...

  16. Modeling and control for a blended wing body aircraft a case study

    CERN Document Server

    Schirrer, Alexander

    2015-01-01

    This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft’s structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relev...

  17. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  18. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    Science.gov (United States)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  19. Arctic Atmospheric Measurements Using Manned and Unmanned Aircraft, Tethered Balloons, and Ground-Based Systems at U.S. DOE ARM Facilities on the North Slope Of Alaska

    Science.gov (United States)

    Ivey, M.; Dexheimer, D.; Roesler, E. L.; Hillman, B. R.; Hardesty, J. O.

    2016-12-01

    The U.S. Department of Energy (DOE) provides scientific infrastructure and data to the international Arctic research community via research sites located on the North Slope of Alaska and an open data archive maintained by the ARM program. In 2016, DOE continued investments in improvements to facilities and infrastructure at Oliktok Point Alaska to support operations of ground-based facilities and unmanned aerial systems for science missions in the Arctic. The Third ARM Mobile Facility, AMF3, now deployed at Oliktok Point, was further expanded in 2016. Tethered instrumented balloons were used at Oliktok to make measurements of clouds in the boundary layer including mixed-phase clouds and to compare measurements with those from the ground and from unmanned aircraft operating in the airspace above AMF3. The ARM facility at Oliktok Point includes Special Use Airspace. A Restricted Area, R-2204, is located at Oliktok Point. Roughly 4 miles in diameter, it facilitates operations of tethered balloons and unmanned aircraft. R-2204 and a new Warning Area north of Oliktok, W-220, are managed by Sandia National Laboratories for DOE Office of Science/BER. These Special Use Airspaces have been successfully used to launch and operate unmanned aircraft over the Arctic Ocean and in international airspace north of Oliktok Point.A steady progression towards routine operations of unmanned aircraft and tethered balloon systems continues at Oliktok. Small unmanned aircraft (DataHawks) and tethered balloons were successfully flown at Oliktok starting in June of 2016. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska.

  20. Trust Control of VTOL Aircraft Part Deux

    Science.gov (United States)

    Dugan, Daniel C.

    2014-01-01

    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  1. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  2. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    Science.gov (United States)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  3. Investigation of an automatic trim algorithm for restructurable aircraft control

    Science.gov (United States)

    Weiss, J.; Eterno, J.; Grunberg, D.; Looze, D.; Ostroff, A.

    1986-01-01

    This paper develops and solves an automatic trim problem for restructurable aircraft control. The trim solution is applied as a feed-forward control to reject measurable disturbances following control element failures. Disturbance rejection and command following performances are recovered through the automatic feedback control redesign procedure described by Looze et al. (1985). For this project the existence of a failure detection mechanism is assumed, and methods to cope with potential detection and identification inaccuracies are addressed.

  4. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  5. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  6. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Directory of Open Access Journals (Sweden)

    Xiang Jinwu

    2014-02-01

    Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  7. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    Science.gov (United States)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  8. Preliminary Validation of the Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Concept

    Science.gov (United States)

    Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine

    2004-01-01

    This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.

  9. Aircraft Loss-of-Control: Analysis and Requirements for Future Safety-Critical Systems and Their Validation

    Science.gov (United States)

    Belcastro, Christine M.

    2011-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex, resulting from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper summarizes recent analysis results in identifying worst-case combinations of loss-of-control accident precursors and their time sequences, a holistic approach to preventing loss-of-control accidents in the future, and key requirements for validating the associated technologies.

  10. 26 x 6.6 radial-belted aircraft tire performance

    Science.gov (United States)

    Davis, Pamela A.; Martinson, Veloria J.; Yager, Thomas J.; Stubbs, Sandy M.

    1991-01-01

    Preliminary results from testing of 26 x 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. The 26 x 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 x 6.6 tire vertical stiffness properties are also presented and discussed.

  11. Lyapunov-based control of limit cycle oscillations in uncertain aircraft systems

    Science.gov (United States)

    Bialy, Brendan

    Store-induced limit cycle oscillations (LCO) affect several fighter aircraft and is expected to remain an issue for next generation fighters. LCO arises from the interaction of aerodynamic and structural forces, however the primary contributor to the phenomenon is still unclear. The practical concerns regarding this phenomenon include whether or not ordnance can be safely released and the ability of the aircrew to perform mission-related tasks while in an LCO condition. The focus of this dissertation is the development of control strategies to suppress LCO in aircraft systems. The first contribution of this work (Chapter 2) is the development of a controller consisting of a continuous Robust Integral of the Sign of the Error (RISE) feedback term with a neural network (NN) feedforward term to suppress LCO behavior in an uncertain airfoil system. The second contribution of this work (Chapter 3) is the extension of the development in Chapter 2 to include actuator saturation. Suppression of LCO behavior is achieved through the implementation of an auxiliary error system that features hyperbolic functions and a saturated RISE feedback control structure. Due to the lack of clarity regarding the driving mechanism behind LCO, common practice in literature and in Chapters 2 and 3 is to replicate the symptoms of LCO by including nonlinearities in the wing structure, typically a nonlinear torsional stiffness. To improve the accuracy of the system model a partial differential equation (PDE) model of a flexible wing is derived (see Appendix F) using Hamilton's principle. Chapters 4 and 5 are focused on developing boundary control strategies for regulating the bending and twisting deformations of the derived model. The contribution of Chapter 4 is the construction of a backstepping-based boundary control strategy for a linear PDE model of an aircraft wing. The backstepping-based strategy transforms the original system to a exponentially stable system. A Lyapunov-based stability

  12. Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft

    OpenAIRE

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.; Chu, Q.P.

    2014-01-01

    High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require highly accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree the system nonlinearities can be canceled; the more accurate the model, the better the cancellation, and with that, the higher the performance of the controller. In this paper a new control system is presented that combines NDI with multivariate simplex spline based con...

  13. Non-fragile switched H∞ control for morphing aircraft with asynchronous switching

    Directory of Open Access Journals (Sweden)

    Haoyu CHENG

    2017-06-01

    Full Text Available This paper deals with the problem of non-fragile linear parameter-varying (LPV H∞ control for morphing aircraft with asynchronous switching. The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model. The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators, which satisfies Bernoulli distribution. The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon. The parameter-dependent Lyapunov functional method and mode-dependent average dwell time (MDADT method are combined to guarantee the stability and prescribed performance of the system. The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities (LMI. In order to achieve higher efficiency of the designing process, an algorithm is applied to divide the whole set into subsets automatically. Simulation results are provided to verify the effectiveness and superiority of the method in the paper.

  14. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  15. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    Science.gov (United States)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  16. Enabling alternate fuels for commercial aircraft

    OpenAIRE

    Daggett, D.

    2010-01-01

    The following reports on the past four years of work to examine the feasibility, sustainability and economic viability of developing a renewable, greenhouse-gas-neutral, liquid biofuel for commercial aircraft. The sharp increase in environmental concerns, such as global warming, as well as the volatile price fluctuations of fossil fuels, has ignited a search for alternative transportation fuels. However, commercial aircraft can not use present alternative fuels that are designed for ground...

  17. Aircraft gas turbine engine vibration diagnostics

    OpenAIRE

    Stanislav Fábry; Marek Češkovič

    2017-01-01

    In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections...

  18. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    Science.gov (United States)

    Estkowski, Regina I. (Inventor)

    2016-01-01

    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  19. Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.; Chu, Q.P.

    2014-01-01

    High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require highly accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree the system nonlinearities can be canceled; the more accurate the model,

  20. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    Science.gov (United States)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  1. Aeroelastic Modeling of Elastically Shaped Aircraft Concept via Wing Shaping Control for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; James Urnes, Sr.

    2012-01-01

    Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be

  2. Automatic Flight Control System Design of Level Change Mode for a Large Aircraft

    Directory of Open Access Journals (Sweden)

    Huajun Gong

    2013-02-01

    Full Text Available The level change mode is an essential part of large civil aircraft automatic flight control systems. In cruise, with the decrease of the plane's weight caused by fuel consumption and the influence of bad weather, such as thunderstorms, the level change mode is required to solve this problem. This work establishes a nonlinear model of large aircraft, takes level changed from 9500m to 10100m as an example to design control laws for the level change mode in cruise. The classical engineering method is used to design longitudinal and lateral control laws synthetically. The flight qualities are considered in the design process. Simulation results indicate the control laws can meet design requirements and have a good anti-gust performance.

  3. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    Science.gov (United States)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  4. The Guardian: Preliminary design of a close air support aircraft

    Science.gov (United States)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  5. Interactions of Aircraft Design and Control: Actuators Sizing and Optimization for an Unstable Blended Wing-Body

    OpenAIRE

    Denieul , Yann; Alazard , Daniel; Bordeneuve-Guibé , Joël; Toussaint , Clément; Taquin , Gilles

    2015-01-01

    International audience; In this paper the problem of integrated design and control for a civil blended wing-body aircraft is addressed. Indeed this configuration faces remarkable challenges relatedto handling qualities: namely the aircraft configuration in this study features a strong longitudinal instability for some specific flight points. Moreover it may lack control efficiency despite large and redundant movables. Stabilizing such a configuration may then lead to high control surfaces rat...

  6. Optimal control approaches for aircraft conflict avoidance using speed regulation : a numerical study

    OpenAIRE

    Cellier , Loïc; Cafieri , Sonia; Messine , Frederic

    2013-01-01

    International audience; In this paper a numerical study is provided to solve the aircraft conflict avoidance problem through velocity regulation maneuvers. Starting from optimal controlbased model and approaches in which aircraft accelerations are the controls, and by applying the direct shooting technique, we propose to study two different largescale nonlinear optimization problems. In order to compare different possibilities of implementation, two environments (AMPL and MATLAB) and determin...

  7. Aircraft Control Using Engine Thrust: A History of Learning TOC Real-Time

    Science.gov (United States)

    Cole, Jennifer H.; Batteas, Frank; Fullerton, Gordon

    2006-01-01

    A history of learning the operation of Throttles Only Control (TOC) to control an aircraft in real time using engine thrust is shown. The topics include: 1) Past TOC Accidents/Incidents; 2) 1972: DC-10 American Airlines; 3) May 1974: USAF B-52H; 4) April 1975: USAF C-5A; 5) April 1975: USAF C-5A; 6) 1981: USAF B-52G; 7) August 1985: JAL 123 B-747; 8) JAL 123 Survivor Story; 9) JAL 123 Investigation Findings; 10) July 1989: UAL 232 DC-10; 11) UAL 232 DC-10; 12) Eastwind 517 B-737; 13) November 2003: DHL A-300; 14) Historically, TOC has saved lives; 15) Automated Throttles-Only Control; 16) PCA Project; 17) Propulsion-Controlled Aircraft; 18) MD-11 PCA System and Flight Test Envelope; 19) MD-11 Simulation, PCA ILS-Soupled Landing Dispersion; 20) Throttles-Only Pitch and Roll Control Power; 21) PCA in Commercial Fleet; 22) Fall 2005: PCAR Project; 23) PCAR Background - TOC; and 24) PCAR Background - TOC.

  8. X-36 Tailless Fighter Agility Research Aircraft in flight

    Science.gov (United States)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  9. Study on parameter identification and control of ground temperature

    International Nuclear Information System (INIS)

    Kojima, Keiichi; Suzuki, Seiichi; Kawahara, Mutsuto.

    1995-01-01

    A numerical thermal management system for ground structure is presented. The system consists of two parts, i.e. the identification analysis of the thermal conductivity and the thermal control analysis for the ground. The former is carried out by using the nonlinear least squares method and the latter is based on the optimal control theory. The formulations of these methods are presented and they are applied to an laboratory test. A reasonable thermal conductivity of the ground is identified by parameter estimation method and the ground temperature is actually controled as illustrated by numerical and experimental study. (author)

  10. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    Science.gov (United States)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  11. Tracking Control Based on Control Allocation with an Innovative Control Effector Aircraft Application

    Directory of Open Access Journals (Sweden)

    Chaoyang Dong

    2016-01-01

    Full Text Available This paper proposes a control allocation method for the tracking control problem of a class of morphing aircraft with special actuators which are different from the conventional actuation surfaces. This design of actuators can bring about some potential advantages to the flight vehicles; however, due to the integral constraints, the desired control cannot be performed accurately; therefore, it leads to undesirable tracking errors, so influencing the performance of the system. Because the system could be control allocated, based on the designed cost function that describes the tracking errors, the cuckoo search algorithm (CSA is introduced to search for the optimum solution within the calculated actuator execution commands that are equivalent to the desired commands. Several improvement measures are proposed for boosting the efficiency of the CSA and ensuring reasonable solutions. Simulation results show that the proposed control allocation method is necessary and effective, and the improvement measures are helpful in obtaining the optimum solution.

  12. Projection-Based Adaptive Backstepping Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate disturbance, and 20% actuators faults.

  13. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    Science.gov (United States)

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  14. Comparison and assessment of aerial and ground estimates of waterbird colonies

    Science.gov (United States)

    Green, M.C.; Luent, M.C.; Michot, T.C.; Jeske, C.W.; Leberg, P.L.

    2008-01-01

    Aerial surveys are often used to quantify sizes of waterbird colonies; however, these surveys would benefit from a better understanding of associated biases. We compared estimates of breeding pairs of waterbirds, in colonies across southern Louisiana, USA, made from the ground, fixed-wing aircraft, and a helicopter. We used a marked-subsample method for ground-counting colonies to obtain estimates of error and visibility bias. We made comparisons over 2 sampling periods: 1) surveys conducted on the same colonies using all 3 methods during 3-11 May 2005 and 2) an expanded fixed-wing and ground-survey comparison conducted over 4 periods (May and Jun, 2004-2005). Estimates from fixed-wing aircraft were approximately 65% higher than those from ground counts for overall estimated number of breeding pairs and for both dark and white-plumaged species. The coefficient of determination between estimates based on ground and fixed-wing aircraft was ???0.40 for most species, and based on the assumption that estimates from the ground were closer to the true count, fixed-wing aerial surveys appeared to overestimate numbers of nesting birds of some species; this bias often increased with the size of the colony. Unlike estimates from fixed-wing aircraft, numbers of nesting pairs made from ground and helicopter surveys were very similar for all species we observed. Ground counts by one observer resulted in underestimated number of breeding pairs by 20% on average. The marked-subsample method provided an estimate of the number of missed nests as well as an estimate of precision. These estimates represent a major advantage of marked-subsample ground counts over aerial methods; however, ground counts are difficult in large or remote colonies. Helicopter surveys and ground counts provide less biased, more precise estimates of breeding pairs than do surveys made from fixed-wing aircraft. We recommend managers employ ground counts using double observers for surveying waterbird colonies

  15. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    Science.gov (United States)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  16. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    Science.gov (United States)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft in it's hangar at NASA Dryden Flight Research Center, Edwards, California, following its arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  17. Development of Cursor-on-Target Control for Semi-Autonomous Unmanned Aircraft Systems

    National Research Council Canada - National Science Library

    Crouse, Joshua D

    2007-01-01

    .... The goal of this research is to develop a preliminary Cursor-on-Target control system to enable the operator to guide the unmanned aircraft with minimal workload during high task phases of flight...

  18. Engineering of Fast and Robust Adaptive Control for Fixed-Wing Unmanned Aircraft

    Science.gov (United States)

    2017-06-01

    evaluate the use of adaptive control on fixed-wing unmanned aircraft . The growing demand for unmanned systems will inherit the costs associated with...aerospace environment . 2.2 Classical Feedback vs Adaptive Control Control of a system can be categorized into two required elements; the requirement to...stabilize the system in the presence of: 1. disturbances that affect the controlled states and outputs (pitch rate perturbation caused by environmental

  19. A systematic method of smooth switching LPV controllers design for a morphing aircraft

    Directory of Open Access Journals (Sweden)

    Jiang Weilai

    2015-12-01

    Full Text Available This paper is concerned with a systematic method of smooth switching linear parameter-varying (LPV controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in overlapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.

  20. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    Science.gov (United States)

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    safety and operational challenges of national airspace access by unmanned aircraft systems, or UAS. In the process, the project will work with other key stakeholders to define necessary deliverables and products to help enable such access. Within the project, NASA is focusing on five sub-projects. These five focus areas include assurance of safe separation of unmanned aircraft from manned aircraft when flying in the national airspace; safety-critical command and control systems and radio frequencies to enable safe operation of UAS; human factors issues for ground control stations; airworthiness certification standards for UAS avionics and integrated tests and evaluation designed to determine the viability of emerging UAS technology. Five Focus Areas of the UAS Integration in the NAS Project Separation Assurance Provide an assessment of how planned Next Generation Air Transportation System (NextGen) separation assurance systems, with different functional allocations, perform for UAS in mixed operations with manned aircraft Assess the applicability to UAS and the performance of NASA NextGen separation assurance systems in flight tests with realistic latencies and uncertain trajectories Assess functional allocations ranging from today's ground-based, controller-provided aircraft separation to fully autonomous airborne self-separation Communications Develop data and rationale to obtain appropriate frequency spectrum allocations to enable safe and efficient operation of UAS in the NAS Develop and validate candidate secure safety-critical command and control system/subsystem test equipment for UAS that complies with UAS international/national frequency regulations, standards and recommended practices and minimum operational and aviation system performance standards for UAS Perform analysis to support recommendations for integration of safety-critical command and control systems and air traffic control communications to ensure safe and efficient operation of UAS in the NAS

  1. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    Science.gov (United States)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  2. Aircraft Interior Noise Control Using Distributed Piezoelectric Actuators

    Science.gov (United States)

    Sun, Jian Q.

    1996-01-01

    Developing a control system that can reduce the noise and structural vibration at the same time is an important task. This talk presents one possible technical approach for accomplishing this task. The target application of the research is for aircraft interior noise control. The emphasis of the present approach is not on control strategies, but rather on the design of actuators for the control system. In the talk, a theory of distributed piezoelectric actuators is introduced. A uniform cylindrical shell is taken as a simplified model of fuselage structures to illustrate the effectiveness of the design theory. The actuators developed are such that they can reduce the tonal structural vibration and interior noise in a wide range of frequencies. Extensive computer simulations have been done to study various aspects of the design theory. Experiments have also been conducted and the test results strongly support the theoretical development.

  3. Live Aircraft Encounter Visualization at FutureFlight Central

    Science.gov (United States)

    Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John

    2018-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.

  4. In-flight observation of long duration gamma-ray glows by aircraft

    Science.gov (United States)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  5. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  6. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  7. Modeling Programs Increase Aircraft Design Safety

    Science.gov (United States)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  8. Ground Control for Emplacement Drifts for SR

    International Nuclear Information System (INIS)

    Y. Sun

    2000-01-01

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k 0 =0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the

  9. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  10. Extraction of Lateral-Directional Stability and Control Derivatives for the Basic F-18 Aircraft at High Angles of Attack

    Science.gov (United States)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The results of parameter identification to determine the lateral-directional stability and control derivatives of an F-18 research aircraft in its basic hardware and software configuration are presented. The derivatives are estimated from dynamic flight data using a specialized identification program developed at NASA Dryden Flight Research Center. The formulation uses the linearized aircraft equations of motions in their continuous/discrete form and a maximum likelihood estimator that accounts for both state and measurement noise. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics, such as separated and vortical flows, over the aircraft. The derivatives are plotted as functions of angle of attack between 3 deg and 47 deg and compared with wind-tunnel predictions. The quality of the derivative estimates obtained by parameter identification is somewhat degraded because the maneuvers were flown with the aircraft's control augmentation system engaged, which introduced relatively high correlations between the control variables and response variables as a result of control motions from the feedback control system.

  11. Ice nucleating particles over the Eastern Mediterranean measured at ground and by unmanned aircraft systems

    Science.gov (United States)

    Weber, Daniel; Schrod, Jann; Drücke, Jaqueline; Keleshis, Christos; Pikridas, Michael; Ebert, Martin; Cvetkovic, Bojan; Nickovic, Slobodan; Baars, Holger; Marinou, Eleni; Vrekoussis, Mihalis; Sciare, Jean; Mihalopoulos, Nikos; Curtius, Joachim; Bingemer, Heinz G.

    2017-04-01

    During the intensive INUIT-BACCHUS-ACTRIS field campaign focusing on aerosols, clouds and ice nucleation in the Eastern Mediterranean in April 2016, we have measured the abundance of ice nucleating particles (INP) in the lower troposphere both with unmanned aircraft systems (UAS) as well as from the ground. Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UAS and were analyzed immediately after collection on site in the ice nucleus counter FRIDGE for INP active at -20˚ C to -30˚ C in the deposition/condensation mode (INPD). Immersion freezing INP (INPI) were sampled on membrane filters and were analysed in aqueous extracts by the drop freezing method on the cold stage of FRIDGE. Ground samples were collected at the Cyprus Atmospheric Observatory (CAO) in Agia Marina Xyliatou (Latitude; 35˚ 2' 8" N; Longitude: 33˚ 3' 26" E; Altitude: 532 m a.s.l.). During the one-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers altitude. Here we present INP data from 42 individual flights, together with OPC aerosol number concentrations, backscatter and depolarization retrievals from the Polly-XT Raman Lidar, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INP with the particulate mass (PM), the Lidar retrievals and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INP std.l-1 were measured at -30˚ C. The INPD concentration in elevated plumes was on average a factor of 10 higher than at ground level. The INPI concentration at ground also agreed with PM levels and exceeded the ground-based INPD concentration by more than one order of magnitude. Since desert dust is transported

  12. Numerical analysis of propeller induced ground vortices by actuator disk model

    NARCIS (Netherlands)

    Yang, Y.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the

  13. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    Science.gov (United States)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  14. Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  15. The application of the detection filter to aircraft control surface and actuator failure detection and isolation

    Science.gov (United States)

    Bonnice, W. F.; Wagner, E.; Motyka, P.; Hall, S. R.

    1985-01-01

    The performance of the detection filter in detecting and isolating aircraft control surface and actuator failures is evaluated. The basic detection filter theory assumption of no direct input-output coupling is violated in this application due to the use of acceleration measurements for detecting and isolating failures. With this coupling, residuals produced by control surface failures may only be constrained to a known plane rather than to a single direction. A detection filter design with such planar failure signatures is presented, with the design issues briefly addressed. In addition, a modification to constrain the residual to a single known direction even with direct input-output coupling is also presented. Both the detection filter and the modification are tested using a nonlinear aircraft simulation. While no thresholds were selected, both filters demonstrated an ability to detect control surface and actuator failures. Failure isolation may be a problem if there are several control surfaces which produce similar effects on the aircraft. In addition, the detection filter was sensitive to wind turbulence and modeling errors.

  16. Linear Parameter Varying Versus Linear Time Invariant Reduced Order Controller Design of Turboprop Aircraft Dynamics

    Directory of Open Access Journals (Sweden)

    Widowati

    2012-07-01

    Full Text Available The applicability of parameter varying reduced order controllers to aircraft model is proposed. The generalization of the balanced singular perturbation method of linear time invariant (LTI system is used to reduce the order of linear parameter varying (LPV system. Based on the reduced order model the low-order LPV controller is designed by using synthesis technique. The performance of the reduced order controller is examined by applying it to lateral-directional control of aircraft model having 20th order. Furthermore, the time responses of the closed loop system with reduced order LPV controllers and reduced order LTI controller is compared. From the simulation results, the 8th order LPV controller can maintain stability and to provide the same level of closed-loop systems performance as the full-order LPV controller. It is different with the reduced-order LTI controller that cannot maintain stability and performance for all allowable parameter trajectories.

  17. Wing Shaping and Gust Load Controls of Flexible Aircraft: An LPV Approach

    Science.gov (United States)

    Hammerton, Jared R.; Su, Weihua; Zhu, Guoming; Swei, Sean Shan-Min

    2018-01-01

    In the proposed paper, the optimum wing shape of a highly flexible aircraft under varying flight conditions will be controlled by a linear parameter-varying approach. The optimum shape determined under multiple objectives, including flight performance, ride quality, and control effort, will be determined as well. This work is an extension of work done previously by the authors, and updates the existing optimization and utilizes the results to generate a robust flight controller.

  18. Aircraft gas turbine engine vibration diagnostics

    Directory of Open Access Journals (Sweden)

    Stanislav Fábry

    2017-11-01

    Full Text Available In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections, if needed. Vibration sensors distribution, signal recording and processing are introduced in a paper. Recorded and re-calculated vibration parameters are used in role of health indicators.

  19. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    Science.gov (United States)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  20. Investigation of incidents of terrorism involving commercial aircraft.

    Science.gov (United States)

    Clark, M A; Wagner, G N; Wright, D G; Ruehle, C J; McDonnell, E W

    1989-07-01

    Deaths resulting from terrorism involving aircraft have occurred incident to hijackings as well as bombings. Passengers or groups of passengers have been chosen by terrorists as the recipients of violence based on citizenship, religion, and political beliefs. They have usually been segregated from other passengers and subsequently mistreated and/or murdered. Thorough documentation of the injuries of victims is essential to the investigation of such atrocities; a medicolegal autopsy correlated with a scene investigation is of paramount importance. Aircraft bombings can create extremely sensitive political situations and public demands for quick resolution. The autopsy of victims in such circumstances, if properly conducted, can yield invaluable trace evidence leading to the identification of the explosive device. The examination of any surviving victims as well as the aircraft is also critical in reconstructing the event. Deaths occurring as the result of in-flight aircraft bombings can produce injuries by five different mechanisms, viz. blast, shrapnel, decompression, impact with the aircraft, and ground impact.

  1. Alternate aircraft fuels: Prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  2. Introduction of ramp-LOSA at KLM Ground Services

    NARCIS (Netherlands)

    de Boer, R.J.; Koncak, B.; Habekotté, R.; van Hilten, G.J.

    2011-01-01

    Airline ground operations are subject to the conflicting demands of short turn-around times and safety requirements. They involve multiple parties, but are less regulated than airborne processes. Not surprisingly, more than a quarter of all aircraft incidents occur on the ground. These incidents

  3. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    Science.gov (United States)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  4. Remotely Piloted Aircraft Systems and a Wireless Sensors Network for Radiological Accidents

    Directory of Open Access Journals (Sweden)

    A. Reyes-Muñoz

    2016-01-01

    Full Text Available In critical radiological situations, the real time information that we could get from the disaster area becomes of great importance. However, communication systems could be affected after a radiological accident. The proposed network in this research consists of distributed sensors in charge of collecting radiological data and ground vehicles that are sent to the nuclear plant at the moment of the accident to sense environmental and radiological information. Afterwards, data would be analyzed in the control center. Collected data by sensors and ground vehicles would be delivered to a control center using Remotely Piloted Aircraft Systems (RPAS as a message carrier. We analyze the pairwise contacts, as well as visiting times, data collection, capacity of the links, size of the transmission window of the sensors, and so forth. All this calculus was made analytically and compared via network simulations.

  5. Integral Transportation Systems in Military Transport Aircraft Supply

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Supply of goods, equipment and soldiers by militwy transportaircraft can serve as a support to airborne landing operation,support to encircled forces, and support to forces leadinga gue1rilla war. Transport aircraft are designed in such a wayas to be able to cany containers, pallets, most of land vehiclesand helicopters. Militwy transport aircraft can be grouped intothose that were originally designed for military transp01t andthose that are modified civilian aircraft and helicopters. Supplypallets can be wooden, metal, can be airdropped in "taxiing","low-flight", and can also be fitted with a parachute or"retrorocket" for reducing the ground impact. Pallets canamong other things carry liquids, heavy combat and ca1rier vehicles,artillery and rocket weapons and valious containers.Pallets are usually pe1manently deformed at ground impact.Nowadays, high precision of airdrop has been achieved. Containersare used to carry various equipment, food, fue~ weapons,ammunition etc. It is to be expected that the containers,wmoured combat and other vehicles will be redesigned so asto provide more efficient transport and fast a!Tangement ofhigh-mobility units, whereas the form of the future militarytransport aircraft will not undergo substantial changes. By adjustingand standardising the transporlation vehicles, integraltransportation means and cwgo, the overall combat efficiencywill be increased, the a~rangement time especially shortenedand the air supply safety increased.

  6. 48 CFR 252.228-7001 - Ground and flight risk.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Ground and flight risk... of Provisions And Clauses 252.228-7001 Ground and flight risk. As prescribed in 228.370(b), use the following clause: Ground and Flight Risk (JUN 2010) (a) Definitions. As used in this clause— (1) Aircraft...

  7. Application of Output Predictive Algorithmic Control to a Terrain Following Aircraft System.

    Science.gov (United States)

    1982-03-01

    non-linear regime the results from an optimal control solution may be questionable. 15 -**—• - •*- "•—"".’" CHAPTER 3 Output Prpdirl- ivf ...strongly influenced by two other factors as well - the sample time T and the least-squares cost function Q. unlike the deadbeat control law of Ref...design of aircraft control systems since these methods offer tremendous insight into the dynamic behavior of the system at relatively low cost . However

  8. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  9. Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop

    Directory of Open Access Journals (Sweden)

    Liu Ri

    2015-04-01

    Full Text Available The nonlinear aircraft model with heavy cargo moving inside is derived by using the separation body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input–output feedback linearization method. On this basis, an iterative quasi-sliding mode (SM flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of “smaller errors correspond to bigger gains and bigger errors correspond to saturated gains” is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov-based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.

  10. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    Science.gov (United States)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  11. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  12. Instrument Failure, Stress, and Spatial Disorientation Leading to a Fatal Crash With a Large Aircraft.

    Science.gov (United States)

    Tribukait, Arne; Eiken, Ola

    2017-11-01

    An aircraft's orientation relative to the ground cannot be perceived via the sense of balance or the somatosensory system. When devoid of external visual references, the pilot must rely on instruments. A sudden unexpected instrument indication is a challenge to the pilot, who might have to question the instrument instead of responding with the controls. In this case report we analyze, from a human-factors perspective, how a limited instrument failure led to a fatal accident. During straight-ahead level flight in darkness, at 33,000 ft, the commander of a civil cargo airplane was suddenly confronted by an erroneous pitch-up indication on his primary flight display. He responded by pushing the control column forward, making a bunt maneuver with reduced/negative Gz during approximately 15 s. The pilots did not communicate rationally or cross-check instruments. Recordings of elevator and aileron positions suggest that the commander made intense efforts to correct for several extreme and erroneous roll and pitch indications. Gz displayed an increasing trend with rapid fluctuations and peaks of approximately 3 G. After 50 s the aircraft entered a turn with decreasing radius and finally hit the ground in an inverted attitude. A precipitate maneuvring response can, even if occurring in a large aircraft at high altitude, result in a seemingly inexorable course of events, ending with a crash. In the present case both pilots were probably incapacitated by acute psychological stress and spatial disorientation. Intense variations in Gz may have impaired the copilot's reading of the functioning primary flight display.Tribukait A, Eiken O. Instrument failure, stress, and spatial disorientation leading to a fatal crash with a large aircraft. Aerosp Med Hum Perform. 2017; 88(11):1043-1048.

  13. Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    OpenAIRE

    Wu, Zhonghua; Lu, Jingchao; Shi, Jingping; Liu, Yang; Zhou, Qing

    2017-01-01

    This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs) be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP) tech...

  14. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  15. Ground Control for Emplacement Drifts for LA

    International Nuclear Information System (INIS)

    Y. Sun

    2004-01-01

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c)

  16. Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  17. Comparative study of flare control laws. [optimal control of b-737 aircraft approach and landing

    Science.gov (United States)

    Nadkarni, A. A.; Breedlove, W. J., Jr.

    1979-01-01

    A digital 3-D automatic control law was developed to achieve an optimal transition of a B-737 aircraft between various initial glid slope conditions and the desired final touchdown condition. A discrete, time-invariant, optimal, closed-loop control law presented for a linear regulator problem, was extended to include a system being acted upon by a constant disturbance. Two forms of control laws were derived to solve this problem. One method utilized the feedback of integral states defined appropriately and augmented with the original system equations. The second method formulated the problem as a control variable constraint, and the control variables were augmented with the original system. The control variable constraint control law yielded a better performance compared to feedback control law for the integral states chosen.

  18. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  19. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    Science.gov (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  20. Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)

    Science.gov (United States)

    2015-03-01

    Harmon) Weilhouwer, Judson Brohmer, Aaron ‘Cdot’ George, Dave ‘Cools’ Cooley, and all the brave men and women who have lost their lives to ground... inequality constraints µ aircraft bank angle µmax upper bounds on aircraft bank angle µmin lower bounds on aircraft bank angle ω aircraft turn rate τ...interested in implementing a safety campaign to re- duce workplace injury rate just as then Treasury Secretary Paul O’Neill had done while President and Chief

  1. AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing

    Science.gov (United States)

    Jordan, Thomas L.; Foster, John V.; Bailey, Roger M.; Belcastro, Christine M.

    2006-01-01

    As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.

  2. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  3. Offsite radiological consequence analysis for the bounding aircraft crash accident

    International Nuclear Information System (INIS)

    OBERG, B.D.

    2003-01-01

    The purpose of this calculation note is to quantitatively analyze a bounding aircraft crash accident for comparison to the DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', Appendix A, Evaluation Guideline of 25 rem. The potential of aircraft impacting a facility was evaluated using the approach given in DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities''. The following aircraft crash FR-equencies were determined for the Tank Farms in RPP-11736, ''Assessment Of Aircraft Crash FR-equency For The Hanford Site 200 Area Tank Farms'': (1) The total aircraft crash FR-equency is ''extremely unlikely.'' (2) The general aviation crash FR-equency is ''extremely unlikely.'' (3) The helicopter crash FR-equency is ''beyond extremely unlikely.'' (4) For the Hanford Site 200 Areas, other aircraft type, commercial or military, each above ground facility, and any other type of underground facility is ''beyond extremely unlikely.'' As the potential of aircraft crash into the 200 Area tank farms is more FR-equent than ''beyond extremely unlikely,'' consequence analysis of the aircraft crash is required

  4. A multiobjective approach towards weapon assignment in a ground ...

    African Journals Online (AJOL)

    A typical ground-based air defence (GBAD) environment comprises defended assets on the ground which require protection from enemy aircraft entering the defended airspace. ... of computerised threat evaluation and weapon assignment (TEWA) decision support systems (DSSs) within the context of a GBAD system.

  5. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  6. Principle and Control Design of Active Ground-Fault Arc Suppression Device for Full Compensation of Ground Current

    DEFF Research Database (Denmark)

    Wang, Wen; Zeng, Xiangjun; Yan, Lingjie

    2017-01-01

    current into the neutral without any large-capacity reactors, and thus avoids the aforementioned overvoltage. It compensates all the active, reactive and harmonic components of the ground current to reliably extinguish the ground-fault arcs. A dual-loop voltage control method is proposed to realize arc...... suppression without capacitive current detection. Its time-based feature also brings the benefit of fast response on ground-fault arc suppression. The principle of full current compensation is analyzed, together with the controller design method of the proposed device. Experiment on a prototype was carried...

  7. Final Rule for Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    EPA adopted emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  8. Neural adaptive control for vibration suppression in composite fin-tip of aircraft.

    Science.gov (United States)

    Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P

    2008-06-01

    In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.

  9. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  10. Intelligent Materials Used in Hydraulic, Fuel, and Rudder Control Systems of Aircrafts

    Directory of Open Access Journals (Sweden)

    D. B. Chernov

    2017-01-01

    Full Text Available The device is really intelligent, only if it is capable to respond to changing external conditions. The devices, which "feel" the external environment and can change their characteristics, have many advantages compared to the conventional devices: they are more efficient, wear out more slowly, and have lower operating costs.The scope of smart products is truly infinite. Alloys with memory effect also apply to intellectual content. Natural piezoelectric crystals such as silicon dioxide (intellectual material have been known for over a hundred years. They have greater stiffness and can be used at high operating frequencies. Due to the direct piezoelectric effect, they have been successfully used as a strain gage. Later came artificial ceramic piezoelectric materials; they are used as mechanical transducers. Thus, an inverse piezoelectric effect is usually used. It consists in the change of dimensions when an electric field is applied. Control of intellectual structure can be provided by heat fluxes, electromagnetic, hydraulic or piezoelectric forces and through application of electro-rheological, and magneto-rheological fluids. The article examines the intellectual materials and technologies that are already in place or will find its application in aviation hydraulic and fuel systems and control systems of rudders (CSR of aircrafts in the near future.The paper considers in detail the shape memory effect alloys (SMEA as "intelligent" materials. Actuators made from SMEA have a number of advantages: high working power; large recoverable deformation; different types of strain (tensile, compressive, bending and torsional; most specific value of the work per unit mass. All the SMEA advantages may be well used for the so-called thermo-mechanical connections (TMС of pipelines where SMEA drawbacks in this application, practically, do not affect the quality of TMC. In aircraft engineering the TMC were first used in hydraulic systems of the aircraft TU204

  11. 76 FR 55293 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-09-07

    ... with an electronic engine control (EEC), also known as a Full Authority Digital Engine Control (FADEC... engine design certification, and the certification requirements for engine control systems are driven by... aircraft supplied power and data failures on the engine control system, and the resulting effects on engine...

  12. CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2007-12-01

    Full Text Available The Global Navigation Satellite System (GNSS becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

  13. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  14. 24 CFR 3285.204 - Ground moisture control.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Ground moisture control. 3285.204 Section 3285.204 Housing and Urban Development Regulations Relating to Housing and Urban Development... moisture control. (a) Vapor retarder. If the space under the home is to be enclosed with skirting or other...

  15. Determination of tricresyl phosphate air contamination in aircraft.

    Science.gov (United States)

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  16. A manpower scheduling heuristic for aircraft maintenance application

    Science.gov (United States)

    Sze, San-Nah; Sze, Jeeu-Fong; Chiew, Kang-Leng

    2012-09-01

    This research studies a manpower scheduling for aircraft maintenance, focusing on in-flight food loading operation. A group of loading teams with flexible shifts is required to deliver and upload packaged meals from the ground kitchen to aircrafts in multiple trips. All aircrafts must be served within predefined time windows. The scheduling process takes into account of various constraints such as meal break allocation, multi-trip traveling and food exposure time limit. Considering the aircrafts movement and predefined maximum working hours for each loading team, the main objective of this study is to form an efficient roster by assigning a minimum number of loading teams to the aircrafts. We proposed an insertion based heuristic to generate the solutions in a short period of time for large instances. This proposed algorithm is implemented in various stages for constructing trips due to the presence of numerous constraints. The robustness and efficiency of the algorithm is demonstrated in computational results. The results show that the insertion heuristic more efficiently outperforms the company's current practice.

  17. Diagnostic throughput factor analysis for en-route airspace and optimal aircraft trajectory generation based on capacity prediction and controller workload

    Science.gov (United States)

    Shin, Sanghyun

    Today's National Airspace System (NAS) is approaching its limit to efficiently cope with the increasing air traffic demand. Next Generation Air Transportation System (NextGen) with its ambitious goals aims to make the air travel more predictable with fewer delays, less time sitting on the ground and holding in the air to improve the performance of the NAS. However, currently the performance of the NAS is mostly measured using delay-based metrics which do not capture a whole range of important factors that determine the quality and level of utilization of the NAS. The factors affecting the performance of the NAS are themselves not well defined to begin with. To address these issues, motivated by the use of throughput-based metrics in many areas such as ground transportation, wireless communication and manufacturing, this thesis identifies the different factors which majorly affect the performance of the NAS as demand (split into flight cancellation and flight rerouting), safe separation (split into conflict and metering) and weather (studied as convective weather) through careful comparison with other applications and performing empirical sensitivity analysis. Additionally, the effects of different factors on the NAS's performance are quantitatively studied using real traffic data with the Future ATM Concepts Evaluation Tool (FACET) for various sectors and centers of the NAS on different days. In this thesis we propose a diagnostic tool which can analyze the factors that have greater responsibility for regions of poor and better performances of the NAS. Based on the throughput factor analysis for en-route airspace, it was found that weather and controller workload are the major factors that decrease the efficiency of the airspace. Also, since resources such as air traffic controllers, infrastructure and airspace are limited, it is becoming increasingly important to use the available resources efficiently. To alleviate the impact of the weather and controller

  18. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  19. MD-11 PCA - View of aircraft on ramp

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 is taxiing to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.

  20. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  1. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study.

    Science.gov (United States)

    Abrahamsen, Håkon B

    2015-06-10

    Major incidents are complex, dynamic and bewildering task environments characterised by simultaneous, rapidly changing events, uncertainty and ill-structured problems. Efficient management, communication, decision-making and allocation of scarce medical resources at the chaotic scene of a major incident is challenging and often relies on sparse information and data. Communication and information sharing is primarily voice-to-voice through phone or radio on specified radio frequencies. Visual cues are abundant and difficult to communicate between teams and team members that are not co-located. The aim was to assess the concept and feasibility of using a remotely piloted aircraft (RPA) system to support remote sensing in simulated major incident exercises. We carried out an experimental, pilot feasibility study. A custom-made, remotely controlled, multirotor unmanned aerial vehicle with vertical take-off and landing was equipped with digital colour- and thermal imaging cameras, a laser beam, a mechanical gripper arm and an avalanche transceiver. We collected data in five simulated exercises: 1) mass casualty traffic accident, 2) mountain rescue, 3) avalanche with buried victims, 4) fisherman through thin ice and 5) search for casualties in the dark. The unmanned aerial vehicle was remotely controlled, with high precision, in close proximity to air space obstacles at very low levels without compromising work on the ground. Payload capacity and tolerance to wind and turbulence were limited. Aerial video, shot from different altitudes, and remote aerial avalanche beacon search were streamed wirelessly in real time to a monitor at a ground base. Electromagnetic interference disturbed signal reception in the ground monitor. A small remotely piloted aircraft can be used as an effective tool carrier, although limited by its payload capacity, wind speed and flight endurance. Remote sensing using already existing remotely piloted aircraft technology in pre

  2. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Science.gov (United States)

    2010-10-01

    ... board aircraft. Air-ground systems operating in these frequency bands are referred to in this part as... systems. 22.857 Section 22.857 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground...

  3. Flight test results for the Daedalus and Light Eagle human powered aircraft

    Science.gov (United States)

    Sullivan, R. Bryan; Zerweckh, Siegfried H.

    1988-01-01

    The results of the flight test program of the Daedalus and Light Eagle human powered aircraft in the winter of 1987/88 are given. The results from experiments exploring the Light Eagle's rigid body and structural dynamics are presented. The interactions of these dynamics with the autopilot design are investigated. Estimates of the power required to fly the Daedalus aircraft are detailed. The system of sensors, signal conditioning boards, and data acquisition equipment used to record the flight data is also described. In order to investigate the dynamics of the aircraft, flight test maneuvers were developed to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. From this data, structural flexibility and unsteady aerodynamics have been modeled in an ad hoc manner and are used to augment the equations of motion with flexibility effects. Results of maneuvers that were flown are compared with the predictions from the flexibility model. To extend the ad hoc flexibility model, a fully flexible aeroelastic model has been developed. The model is unusual in the approximate equality of many structural natural frequencies and the importance of unsteady aerodynamic effects. the Gossamer Albatross. It is hypothesized that this inverse ground effect is caused by turbulence in the Earth's boundary layer. The diameters of the largest boundary layer eddies (which represent most of the turbulent kinetic energy) are proportional to altitude; thus, closer to the ground, the energy in the boundary layer becomes concentrated in eddies of smaller and smaller diameter. Eventually the eddies become sufficiently small (approximately 0.5 cm) that they trip the laminar boundary layer on the wing. As a result, a greater percentage of the wing area is covered with turbulent flow. Consequently the aircraft's drag and the pow er required both increase as the aircraft flies closer to the ground. The results of the flight test program are

  4. Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site

    Energy Technology Data Exchange (ETDEWEB)

    Knobelspiesse, Kirk D.; Cairns, Brian; Schmid, Beat; Roman, Miguel O.; Schaaf, Crystal B.

    2008-10-21

    The surface spectral albedo is an important component of climate models since it determines the amount of incident solar radiation that is absorbed by the ground. The albedo can be highly heterogeneous, both in space and time, and thus adequate measurement and modeling is challenging. One source of measurements that constrain the surface albedo are satellite instruments that observe the Earth, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellites estimate the surface bidirectional reflectance distribution function (BRDF) by correcting top of the atmosphere (TOA) radiances for atmospheric effects and accumulating observations at a variety of viewing geometries. The BRDF can then be used to determine the albedo that is required in climate modeling. Other measurements that provide a more direct constraint on surface albedo are those made by upward and downward looking radiometers at the ground. One product in particular, the Best Estimate Radiation Flux (BEFLUX) value added product of the Department of Energy’s Atmospheric Radiation Measurement (ARM) Program at the Southern Great Plains Central Facility (SGP CF) in central Oklahoma, has been used to evaluate the quality of the albedo products derived from MODIS BRDF estimates. These comparisons have highlighted discrepancies between the energy absorbed at the surface that is calculated from the BEFLUX products and that is predicted from the MODIS BRDF product. This paper attempts to investigate these discrepancies by using data from an airborne scanning radiometer, the Research Scanning Polarimeter (RSP) that was flown at low altitude in the vicinity of the SGP CF site during the Aerosol Lidar Validation Experiment (ALIVE) in September of 2005. The RSP is a polarimeter that scans in the direction of the aircraft ground track, and can thus estimate the BRDF in a period of seconds, rather than the days required by MODIS to accumulate enough viewing angles. Atmospheric correction is aided by the

  5. Aircraft LTO emissions regulations and implementations at European airports

    Science.gov (United States)

    Yunos, Siti Nur Mariani Mohd; Ghafir, Mohammad Fahmi Abdul; Wahab, Abas Ab

    2017-04-01

    Aviation affects the environment via the emission of pollutants from aircraft, impacting human health and ecosystem. Impacts of aircraft operations at lower ground towards local air quality have been recognized. Consequently, various standards and regulations have been introduced to address the related emissions. This paper discussed both environmental regulations by focusing more on the implementations of LTO emissions charges, an incentive-based regulation introduced in Europe as an effort to fill the gap in addressing the environmental issues related to aviation.

  6. Data development technical support document for the aircraft crash risk analysis methodology (ACRAM) standard

    International Nuclear Information System (INIS)

    Kimura, C.Y.; Glaser, R.E.; Mensing, R.W.; Lin, T.; Haley, T.A.; Barto, A.B.; Stutzke, M.A.

    1996-01-01

    The Aircraft Crash Risk Analysis Methodology (ACRAM) Panel has been formed by the US Department of Energy Office of Defense Programs (DOE/DP) for the purpose of developing a standard methodology for determining the risk from aircraft crashes onto DOE ground facilities. In order to accomplish this goal, the ACRAM panel has been divided into four teams, the data development team, the model evaluation team, the structural analysis team, and the consequence team. Each team, consisting of at least one member of the ACRAM plus additional DOE and DOE contractor personnel, specializes in the development of the methodology assigned to that team. This report documents the work performed by the data development team and provides the technical basis for the data used by the ACRAM Standard for determining the aircraft crash frequency. This report should be used to provide the generic data needed to calculate the aircraft crash frequency into the facility under consideration as part of the process for determining the aircraft crash risk to ground facilities as given by the DOE Standard Aircraft Crash Risk Assessment Methodology (ACRAM). Some broad guidance is presented on how to obtain the needed site-specific and facility specific data but this data is not provided by this document

  7. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  8. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  9. Systematic review on tuberculosis transmission on aircraft and update of the European Centre for Disease Prevention and Control risk assessment guidelines for tuberculosis transmitted on aircraft (RAGIDA-TB).

    Science.gov (United States)

    Kotila, Saara M; Payne Hallström, Lara; Jansen, Niesje; Helbling, Peter; Abubakar, Ibrahim

    2016-01-01

    As a setting for potential tuberculosis (TB) transmission and contact tracing, aircraft pose specific challenges. Evidence-based guidelines are needed to support the related-risk assessment and contact-tracing efforts. In this study evidence of TB transmission on aircraft was identified to update the Risk Assessment Guidelines for TB Transmitted on Aircraft (RAGIDA-TB) of the European Centre for Disease Prevention and Control (ECDC). Electronic searches were undertaken from Medline (Pubmed), Embase and Cochrane Library until 19 July 2013. Eligible records were identified by a two-stage screening process and data on flight and index case characteristics as well as contact tracing strategies extracted. The systematic literature review retrieved 21 records. Ten of these records were available only after the previous version of the RAGIDA guidelines (2009) and World Health Organization guidelines on TB and air travel (2008) were published. Seven of the 21 records presented some evidence of possible in-flight transmission, but only one record provided substantial evidence of TB transmission on an aircraft. The data indicate that overall risk of TB transmission on aircraft is very low. The updated ECDC guidelines for TB transmission on aircraft have global implications due to inevitable need for international collaboration in contract tracing and risk assessment.

  10. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    Science.gov (United States)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  11. Systematic analysis of aircraft separation requirements

    Science.gov (United States)

    Ennis, Rachelle Lea

    2005-12-01

    Minimum separation standards are necessary for safety in the air traffic control system. At the same time, minimum separation standards constrain the flow of air traffic and cause delays that translate to millions of dollars in fuel costs. Two necessary separation standards are defined. Then, practical methods for calculating the minimum required size of these separation standards are presented. First, the protected zone is considered. The protected zone represents a region around a given aircraft that no other aircraft should penetrate for the safety of both aircraft. It defines minimum separation requirements. Three major components of the protected zone and their interplays are identified: a vortex region, a safety buffer region, and a state-uncertainty region. A systematic procedure is devised for the analysis of the state-uncertainty region. In particular, models of trajectory controls are developed that can be used to represent different modes of pilot and/or autopilot controls, such as path feedback and non-path feedback. Composite protected zones under various conditions are estimated, and effective ways to reduce sizes of protected zones for advanced air traffic management are examined. In order to maintain minimum separation standards between two aircraft, proper avoidance maneuvers must be initiated before their relative separation reaches the minimum separation due to aircraft dynamics, controller and pilot response delays, etc. The concept of the required action threshold is presented. It is defined as the advanced time for which the conflict resolution process must begin in order to maintain minimum separation requirements. Five main segments in the process of conflict resolution are identified, discussed, and modeled: state information acquisition, comprehension and decision, communication, pilot response, and aircraft maneuver. Each of the five segments is modeled via a time constant. Time estimates for the first four segments are obtained from

  12. Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-01-01

    Full Text Available This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller.

  13. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate

  14. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    Science.gov (United States)

    1996-01-01

    for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844

  15. Spatial-temporal and modal analysis of propeller induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these

  16. An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm

    OpenAIRE

    Cho, Vincent; Wu, Gene Pak Kit; Ip, W.H.

    2009-01-01

    The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP) for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constrain...

  17. Coordinated Optimization of Aircraft Routes and Locations of Ground Sensors

    Science.gov (United States)

    2014-09-17

    2007), although solution methods are sub- stantially distinct in these two areas. Khardi and Abdallah (2012) applied the variational calculus ...aircraft may face a problem encircling both the outer and inner corner space. To make the problem geometrically feasible, the requirement of having an...problem can be easily determined analytically : it should be a single route with the widest possible coverage. The latter can be inferred from Figure 11(d

  18. 1997 annual ground control operating plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1997-02-01

    This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated

  19. Knowledge-based scheduling of arrival aircraft

    Science.gov (United States)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  20. Aircraft Command Control Communications and Navigation Systems, AFSC 2A4X3, OSSN: 2308

    National Research Council Canada - National Science Library

    1998-01-01

    1. Survey Coverage: The Aircraft Command Control Communications and Navigation Systems career ladder was surveyed to provide current job and task data for use in updating career ladder documents and training programs...

  1. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  2. Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands

    Science.gov (United States)

    Irick, S. C. (Inventor)

    1981-01-01

    An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.

  3. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    Science.gov (United States)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X

  4. MD-11 PCA - Closeup view of aircraft on ramp

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 has taxied to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.

  5. Quasi-ADS-B Based UAV Conflict Detection and Resolution to Manned Aircraft

    Directory of Open Access Journals (Sweden)

    Chin E. Lin

    2015-01-01

    Full Text Available A Conflict Detection and Resolution (CD&R system for manned/unmanned aerial vehicle (UAV based on Automatic Dependent Surveillance-Broadcast (ADS-B concept is designed and verified in this paper. The 900 MHz XBee-Pro is selected as data transponder to broadcast flight information among participating aircraft in omnirange. Standard Compact Position Report (CPR format packet data are automatically broadcasted by ID sequencing under Quasi-ADS-B mechanism. Time Division Multiple Access (TDMA monitoring checks the designated time slot and reallocates the conflict ID. This mechanism allows the transponder to effectively share data with multiple aircraft in near airspace. The STM32f103 microprocessor is designed to handle RF, GPS, and flight data with Windows application on manned aircraft and ground control station simultaneously. Different conflict detection and collision avoidance algorithms can be implemented into the system to ensure flight safety. The proposed UAV/CD&R using Quasi-ADS-B transceiver is tested using ultralight aircraft flying at 100–120 km/hr speed in small airspace for mission simulation. The proposed hardware is also useful to additional applications to mountain hikers for emergency search and rescue. The fundamental function by the proposed UAV/CD&R using Quasi-ADS-B is verified with effective signal broadcasting for surveillance and efficient collision alert and avoidance performance to low altitude flights.

  6. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    Science.gov (United States)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  7. Methodology for designing aircraft having optimal sound signatures

    NARCIS (Netherlands)

    Sahai, A.K.; Simons, D.G.

    2017-01-01

    This paper presents a methodology with which aircraft designs can be modified such that they produce optimal sound signatures on the ground. With optimal sound it is implied in this case sounds that are perceived as less annoying by residents living near airport vicinities. A novel design and

  8. Set-membership fault detection under noisy environment with application to the detection of abnormal aircraft control surface positions

    Science.gov (United States)

    El Houda Thabet, Rihab; Combastel, Christophe; Raïssi, Tarek; Zolghadri, Ali

    2015-09-01

    The paper develops a set membership detection methodology which is applied to the detection of abnormal positions of aircraft control surfaces. Robust and early detection of such abnormal positions is an important issue for early system reconfiguration and overall optimisation of aircraft design. In order to improve fault sensitivity while ensuring a high level of robustness, the method combines a data-driven characterisation of noise and a model-driven approach based on interval prediction. The efficiency of the proposed methodology is illustrated through simulation results obtained based on data recorded in several flight scenarios of a highly representative aircraft benchmark.

  9. Thermal comfort assessment in civil aircraft cabins

    OpenAIRE

    Pang Liping; Qin Yue; Liu Dong; Liu Meng

    2014-01-01

    Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft ...

  10. AutoGNI, the Robot Under the Aircraft Floor: An Automated System for Sampling Giant Aerosol Particles by Impaction in the Free Airstream Outside a Research Aircraft

    Science.gov (United States)

    Jensen, J. B.; Schwenz, K.; Aquino, J.; Carnes, J.; Webster, C.; Munnerlyn, J.; Wissman, T.; Lugger, T.

    2017-12-01

    Giant sea-salt aerosol particles, also called Giant Cloud Condensation Nuclei (GCCN), have been proposed as a means of rapidly forming precipitation sized drizzle drops in warm marine clouds (e.g., Jensen and Nugent, 2017). Such rare particles are best sampled from aircraft in air below cloud base, where normal laser optical instruments have too low sample volume to give statistically significant samples of the large particle tail. An automated sampling system (the AutoGNI) has been built to operate from inside a pressurized aircraft. Under the aircraft floor, a pressurized vessel contains 32 custom-built polycarbonate microscope slides. Using robotics with 5 motor drives and 18 positioning switches, the AutoGNI can take slides from their holding cassettes, pass them onto a caddy in an airfoil that extends 200 mm outside the aircraft, where they are exposed in the free airstream, thus avoiding the usual problems with large particle losses in air intakes. Slides are typically exposed for 10-30 s in the marine boundary layer, giving sample volumes of about 100-300 L or more. Subsequently the slides are retracted into the pressure vessel, stored and transported for laboratory microscope image analysis, in order to derive size-distribution histograms. While the aircraft is flying, the AutoGNI system is remotely controlled from a laptop on the ground, using an encrypted commercial satellite connection to the NSF/NCAR GV research aircraft's main server, and onto the AutoGNI microprocessor. The sampling of such GCCN is becoming increasingly important in order to provide complete input data for model calculations of aerosol-cloud interactions and their feedbacks in climate prediction. The AutoGNI has so far been sampling sea-salt GCCN in the Magellan Straight during the 2016 ORCAS project and over the NW Pacific during the 2017 ARISTO project, both from the NSF/NCAR GV research aircraft. Sea-salt particle sizes of 1.4 - 32 μm dry diameter have been observed.

  11. Analysis of Ground-Wind Vortex Sensing System Data from O'Hare International Airport

    Science.gov (United States)

    1980-09-01

    From July 1976 through September 1977, aircraft wake vortex data were collected on the approach to runways 14R, 27R, and 32L at O'Hare International Airport. The vortices from over 21,000 aircraft were tracked using the propeller anemometer Ground-Wi...

  12. The microburst - Hazard to aircraft

    Science.gov (United States)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  13. A novel control technique for active shunt power filters for aircraft applications

    OpenAIRE

    Lavopa, Elisabetta

    2011-01-01

    The More Electric Aircraft is a technological trend in modern aerospace industry to increasingly use electrical power on board the aircraft in place of mechanical, hydraulic and pneumatic power to drive aircraft subsystems. This brings major changes to the aircraft electrical system, increasing the complexity of the network topology together with stability and power quality issues. Shunt active power filters are a viable solution for power quality enhancement, in order to comply with the stan...

  14. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  15. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  16. Ground Operations Autonomous Control and Integrated Health Management

    Science.gov (United States)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  17. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    Science.gov (United States)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  18. Investigation of controlled flight into terrain : descriptions of flight paths for selected controlled flight into terrain (CFIT) aircraft accidents, 1985-1997

    Science.gov (United States)

    1999-03-01

    This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...

  19. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  20. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    Science.gov (United States)

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  1. Design of LPV-Based Sliding Mode Controller with Finite Time Convergence for a Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Nuan Wen

    2017-01-01

    Full Text Available This paper proposes a finite time convergence sliding mode control (FSMC strategy based on linear parameter-varying (LPV methodology for the stability control of a morphing aircraft subject to parameter uncertainties and external disturbances. Based on the Kane method, a longitudinal dynamic model of the morphing aircraft is built. Furthermore, the linearized LPV model of the aircraft in the wing transition process is obtained, whose scheduling parameters are wing sweep angle and wingspan. The FSMC scheme is developed into LPV systems by applying the previous results for linear time-invariant (LTI systems. The sufficient condition in form of linear matrix inequality (LMI constraints is derived for the existence of a reduced-order sliding mode, in which the dynamics can be ensured to keep robust stability and L2 gain performance. The tensor-product (TP model transformation approach can be directly applied to solve infinite LMIs belonging to the polynomial parameter-dependent LPV system. Then, by the parameter-dependent Lyapunov function stability analysis, the synthesized FSMC is proved to drive the LPV system trajectories toward the predefined switching surface with a finite time arrival. Comparative simulation results in the nonlinear model demonstrate the robustness and effectiveness of this approach.

  2. Distributed, Passivity-Based, Aeroservoelastic Control (DPASC) of Structurally Efficient Aircraft in the Presence of Gusts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of extremely lightweight, long endurance aircraft poses a challenging aeroservoelastic (ASE) problem due to significantly increased flexibility, and...

  3. Distributed, Passivity-Based, Aeroservoelastic Control (DPASC) of Structurally Efficient Aircraft in the Presence of Gusts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of extremely lightweight, long endurance aircraft poses a challenging aeroservoelastic (ASE) problem due to significantly increased flexibility, and...

  4. Bacteria that Travel: The Quality of Aircraft Water

    Directory of Open Access Journals (Sweden)

    Harald Handschuh

    2015-10-01

    Full Text Available The travelling population is increasing globally year on year. International tourist arrival figures reached 1087 million in 2013 and 1133 million in 2014; of which 53% and 54% respectively accounted for air transport. The water on board aircraft is sourced from surface or ground water; piped to a central filling point and distributed to each aircraft by water service vehicles at the home base or at the destination airport. The purpose of this study was to ascertain the microbial, chemical (pH; Total and Free chlorine and physical (temperature quality of water from two aircraft, long- and short-haul, as well as from the original water source and the water service vehicle. A total of 154 water samples were collected and analysed. Long-haul flights were found to be significantly poorer in terms of microbial quality than short haul flights (p = 0.015. Furthermore, correlation and regression analysis showed that the water service vehicle was a significant source of increased microbial load in aircraft. Microbial diversity was also demonstrated, with 37 bacterial species identified belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga; using phenotypic and 16S rDNA sequence-based analysis. We present a novel quantified study of aircraft-related potable water supplies.

  5. Robust Longitudinal Aircraft- Control Based on an Adaptive Fuzzy-Logic Algorithm

    Directory of Open Access Journals (Sweden)

    Abdel- Latif Elshafei

    2002-06-01

    Full Text Available To study the aircraft response to a fast pull-up manoeuvre, a short period approximation of the longitudinal model is considered. The model is highly nonlinear and includes parametric uncertainties. To cope with a wide range of command signals, a robust adaptive fuzzy logic controller is proposed. The proposed controller adopts a dynamic inversion approach. Since feedback linearization is practically imperfect, robustifying and adaptive components are included in the control law to compensate for modeling errors and achieve acceptable tracking errors. Two fuzzy systems are implemented. The first system models the nominal values of the system’s nonlinearity. The second system is an adaptive one that compensates for modeling errors. The derivation of the control law based on a dynamic game approach is given in detail. Stability of the closed-loop control system is also verified. Simulation results based on an F16-model illustrate a successful tracking performance of the proposed controller.

  6. Aircraft Icing Weather Data Reporting and Dissemination System

    Science.gov (United States)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  7. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  8. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    Science.gov (United States)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  9. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  10. A preliminary evaluation of the generalized likelihood ratio for detecting and identifying control element failures in a transport aircraft

    Science.gov (United States)

    Bundick, W. T.

    1985-01-01

    The application of the Generalized Likelihood Ratio technique to the detection and identification of aircraft control element failures has been evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 aircraft. Simulation results show that the technique has potential but that the effects of wind turbulence and Kalman filter model errors are problems which must be overcome.

  11. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  12. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  13. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    International Nuclear Information System (INIS)

    Koehne, C; Sachau, D; Renger, K

    2016-01-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller. (paper)

  14. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    Science.gov (United States)

    Koehne, C.; Sachau, D.; Renger, K.

    2016-09-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  15. Effects of maneuver dynamics on drag polars of the X-29A forward-swept-wing aircraft with automatic wing camber control

    Science.gov (United States)

    Hicks, John W.; Moulton, Bryan J.

    1988-01-01

    The camber control loop of the X-29A FSW aircraft was designed to furnish the optimum L/D for trimmed, stabilized flight. A marked difference was noted between automatic wing camber control loop behavior in dynamic maneuvers and in stabilized flight conditions, which in turn affected subsonic aerodynamic performance. The degree of drag level increase was a direct function of maneuver rate. Attention is given to the aircraft flight drag polar effects of maneuver dynamics in light of wing camber control loop schedule. The effect of changing camber scheduling to better track the optimum automatic camber control L/D schedule is discussed.

  16. 14 CFR 61.317 - Is my sport pilot certificate issued with aircraft category and class ratings?

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Is my sport pilot certificate issued with... GROUND INSTRUCTORS Sport Pilots § 61.317 Is my sport pilot certificate issued with aircraft category and class ratings? Your sport pilot certificate does not list aircraft category and class ratings. When you...

  17. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Science.gov (United States)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  18. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  19. Application and Simulation of Fuzzy Neural Network PID Controller in the Aircraft Cabin Temperature

    Directory of Open Access Journals (Sweden)

    Ding Fang

    2013-06-01

    Full Text Available Considering complex factors of affecting ambient temperature in Aircraft cabin, and some shortages of traditional PID control like the parameters difficult to be tuned and control ineffective, this paper puts forward the intelligent PID algorithm that makes fuzzy logic method and neural network together, scheming out the fuzzy neural net PID controller. After the correction of the fuzzy inference and dynamic learning of neural network, PID parameters of the controller get the optimal parameters. MATLAB simulation results of the cabin temperature control model show that the performance of the fuzzy neural network PID controller has been greatly improved, with faster response, smaller overshoot and better adaptability.

  20. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  1. Application of modern control design methodology to oblique wing research aircraft

    Science.gov (United States)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  2. Cost, Capability, and the Hunt for a Lightweight Ground Attack Aircraft

    Science.gov (United States)

    2009-06-12

    or Foe IFR Instrument Flight Rules ISR Intelligence Surveillance and Reconnaissance JP Joint Publication JTAC Joint Terminal Attack...capable, combat range, loiter time, weapons payloads, ejection seats, NVG compatible cockpits, IFR avionics, etc.8 One of the primary enablers for cost...to-air threats. In cases where radar guided air defense systems are present, the lack of an RWR puts the aircraft at a definite disadvantage and is

  3. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  4. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  5. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  6. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  7. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  8. Application of robust control to a rotary-wing aircraft

    Science.gov (United States)

    Turkoglu, Ercument

    The thesis is concerned with the application of robust controller synthesis and analysis tools to a rotary-wing aircraft: the Bell 205 teetering-rotor helicopter. The Tioo loop-shaping approach is central to the work and two main issues concerned with its application will be considered. Firstly, the construction of diagonal (structured) and non- diagonal (unstructured) weighting functions will be considered. Secondly, the analysis of the implications of different weighting function structures in the controller implementation. A two stage cross-comparative analysis of a series of 1 Dof (Degree of Freedom) and 2 Dof controllers synthesized with both diagonal and non-diagonal weights using the Hqo loop- shaping technique will be presented for square and non-square multi input multi output, unstable, non-minimum phase and ill-conditioned models of the helicopter. Handling qualities of each control law augmented system will be assessed quantitatively and qualitatively. A quantitative analysis, in view of the specifications in ADS-33E, will be given based on a combination of flight data from in-flight tested controllers and, desk-top simula tions run on a fully augmented 12 Dof nonlinear helicopter model provided by QinetiQ, UK. A qualitative analysis will be given based on the pilot comments compiled (in view of the Cooper-Harper handling qualities rating scale) from the evaluated in-flight control laws.

  9. Rapid evaluation of buildings and infrastructure to accidental and deliberate aircraft impact

    International Nuclear Information System (INIS)

    Tennant, D.; Levine, H.; Mould, J.; Vaughan, D.

    2014-01-01

    Recent events involving the impact of large transport aircraft such as the Boeing 767 and 757 into the World Trade Center Towers and the Pentagon have revealed the vulnerability of such structures to terrorist attack. Incidents involving smaller general aviation aircraft have shown the damage that this class of plane can do beyond a protected perimeter. These incidents have elicited inquiries with regard to the effects of impacts of these aircraft types into other critical facilities including aboveground and below ground storage facilities, nuclear power plants, damns and other military and civilian installations. A significant capability to evaluate these threats has been developed during the past 10 years. Small medium and large aircraft have been impacted into buried and aboveground reinforced concrete and light steel frame storage facilities. Both explicit aircraft models and Riera functions (a simplified aircraft impact loading function) have been used to generate an extensive data base. The effects of engines impacting have been studied separately as penetrators. Illustrated in this paper is validation of computational tools for impacts into structures and the initial development of a generalized evaluation tool for rapid evaluation of threats and consequence of aircraft impact into protected facilities

  10. Rapid evaluation of buildings and infrastructure to accidental and deliberate aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Tennant, D., E-mail: tennant@wai.com [Weidlinger Associates, Inc., 6301 Indian School Road NE, Suite 501, Albuquerque, NM 87122 (United States); Levine, H., E-mail: levine@ca.wai.com [Weidlinger Associates, Inc., 399 W. El Camino Real, Suite 200, Mountain View, CA 94040 (United States); Mould, J.; Vaughan, D. [Weidlinger Associates, Inc., 399 W. El Camino Real, Suite 200, Mountain View, CA 94040 (United States)

    2014-04-01

    Recent events involving the impact of large transport aircraft such as the Boeing 767 and 757 into the World Trade Center Towers and the Pentagon have revealed the vulnerability of such structures to terrorist attack. Incidents involving smaller general aviation aircraft have shown the damage that this class of plane can do beyond a protected perimeter. These incidents have elicited inquiries with regard to the effects of impacts of these aircraft types into other critical facilities including aboveground and below ground storage facilities, nuclear power plants, damns and other military and civilian installations. A significant capability to evaluate these threats has been developed during the past 10 years. Small medium and large aircraft have been impacted into buried and aboveground reinforced concrete and light steel frame storage facilities. Both explicit aircraft models and Riera functions (a simplified aircraft impact loading function) have been used to generate an extensive data base. The effects of engines impacting have been studied separately as penetrators. Illustrated in this paper is validation of computational tools for impacts into structures and the initial development of a generalized evaluation tool for rapid evaluation of threats and consequence of aircraft impact into protected facilities.

  11. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    Science.gov (United States)

    Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.

    2012-04-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.

  12. Scheduling Aircraft Landings under Constrained Position Shifting

    Science.gov (United States)

    Balakrishnan, Hamsa; Chandran, Bala

    2006-01-01

    Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence. We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships among aircraft that arise either from airline preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on realistic data for Denver International Airport.

  13. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    Directory of Open Access Journals (Sweden)

    Yanchao Yin

    2017-01-01

    Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.

  14. An Optimal Augmented Monotonic Tracking Controller for Aircraft Engines with Output Constraints

    Directory of Open Access Journals (Sweden)

    Jiakun Qin

    2017-01-01

    Full Text Available This paper proposes a novel min-max control scheme for aircraft engines, with the aim of transferring a set of regulated outputs between two set-points, while ensuring a set of auxiliary outputs remain within prescribed constraints. In view of this, an optimal augmented monotonic tracking controller (OAMTC is proposed, by considering a linear plant with input integration, to enhance the ability of the control system to reject uncertainty in system parameters and ensure no crossing limits. The key idea is to use the eigenvalue and eigenvector placement method and genetic algorithms to shape the output responses. The approach is validated by numerical simulation. The results show that the designed OAMTC controller can achieve a satisfactory dynamic and steady performance and keep the auxiliary outputs within constraints in the transient regime.

  15. AUTOMATIC CONTROL SYSTEM FOR REGULATED HIGH TEMPERATURE MAIN COMBUSTION CHAMBER OF MANEUVERABLE AIRCRAFT MULTIMODE GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    T. V. Gras’Ko

    2014-01-01

    Full Text Available The paper describes choosing and substantiating the control laws, forming the appearance the automatic control system for regulated high temperature main combustion chamber of maneuverable aircraft multimode gas turbine engine aimed at sustainable and effective functioning of main combustion chamber within a broad operation range.

  16. Monte Carlo Calculation of the Radiation Field at Aircraft Altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Roesler, Stefan

    2001-08-24

    Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cutoff values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on ground and aboard of aircrafts and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographic location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard of aircrafts.

  17. A piloted simulation investigation of several command concepts for transport aircraft in the approach and landing

    OpenAIRE

    Field, Edmund

    1994-01-01

    With the introduction of modern fly-by-wire aircraft, the response of an aircraft to a pilot’s input can be augmented to something other than that for a conventional aircraft, with the resultant benefits and problems. The issue of what commanded response a pilot desires has received considerable attention, however no clear conclusions have yet emerged. The requirements for up and away flight and for the flare and landing seem to be different. Away from the ground rate command systems such...

  18. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  19. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  20. Ground noise measurements during static and flyby operations of the Cessna 02-T turbine powered airplane

    Science.gov (United States)

    Hilton, D. A.; Henderson, H. R.; Lawton, B. W.

    1975-01-01

    The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.

  1. Aircraft Loss of Control: Problem Analysis for the Development and Validation of Technology Solutions

    Science.gov (United States)

    Belcastro, Christine M.; Newman, Richard L.; Crider, Dennis A.; Klyde, David H.; Foster, John V.; Groff, Loren

    2016-01-01

    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes. LOC can result from a wide spectrum of precursors (or hazards), often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and the validation process must provide a means of assessing system effectiveness and coverage of these hazards. This paper provides a detailed description of a methodology for analyzing LOC as a dynamics and control problem for the purpose of developing effective technology solutions. The paper includes a definition of LOC based on several recent publications, a detailed description of a refined LOC accident analysis process that is illustrated via selected example cases, and a description of planned follow-on activities for identifying future potential LOC risks and the development of LOC test scenarios. Some preliminary considerations for LOC of Unmanned Aircraft Systems (UAS) and for their safe integration into the National Airspace System (NAS) are also discussed.

  2. Redundant actuator development study. [flight control systems for supersonic transport aircraft

    Science.gov (United States)

    Ryder, D. R.

    1973-01-01

    Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

  3. Ground control station software design for micro aerial vehicles

    Science.gov (United States)

    Walendziuk, Wojciech; Oldziej, Daniel; Binczyk, Dawid Przemyslaw; Slowik, Maciej

    2017-08-01

    This article describes the process of designing the equipment part and the software of a ground control station used for configuring and operating micro unmanned aerial vehicles (UAV). All the works were conducted on a quadrocopter model being a commonly accessible commercial construction. This article contains a characteristics of the research object, the basics of operating the micro aerial vehicles (MAV) and presents components of the ground control station model. It also describes the communication standards for the purpose of building a model of the station. Further part of the work concerns the software of the product - the GIMSO application (Generally Interactive Station for Mobile Objects), which enables the user to manage the actions and communication and control processes from the UAV. The process of creating the software and the field tests of a station model are also presented in the article.

  4. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    Science.gov (United States)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  5. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  6. Optimization of actuator arrays for aircraft interior noise control

    Science.gov (United States)

    Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.

    1993-01-01

    A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.

  7. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  8. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  9. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  10. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  11. A low cost maritime control aircraft-ship-weapons system. [antiship missile defense

    Science.gov (United States)

    Fluk, H.

    1981-01-01

    It is pointed out that the long-range antiship standoff missile is emerging as the foremost threat on the seas. Delivered by high speed bombers, surface ships, and submarines, a missile attack can be mounted against selected targets from any point on the compass. An investigation is conducted regarding the configuration of a system which could most efficiently identify and destroy standoff threats before they launch their weapons. It is found that by using ships for carrying and launching missiles, and employing aircraft with a powerful radar only for search and missile directing operations, aircraft cost and weight can be greatly reduced. The employment of V/STOL aircraft in preference to other types of aircraft makes it possible to use ships of smaller size for carrying the aircraft. However, in order to obtain an all-weather operational capability for the system, ships are selected which are still big enough to display the required stability in heavy seas.

  12. GPM Ground Validation Navigation Data ER-2 OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA ER-2 Navigation Data OLYMPEX dataset supplies navigation data collected by the NASA ER-2 aircraft for flights that occurred during...

  13. Simulation and Optimization of Control of Selected Phases of Gyroplane Flight

    Directory of Open Access Journals (Sweden)

    Wienczyslaw Stalewski

    2018-02-01

    Full Text Available Optimization methods are increasingly used to solve problems in aeronautical engineering. Typically, optimization methods are utilized in the design of an aircraft airframe or its structure. The presented study is focused on improvement of aircraft flight control procedures through numerical optimization. The optimization problems concern selected phases of flight of a light gyroplane—a rotorcraft using an unpowered rotor in autorotation to develop lift and an engine-powered propeller to provide thrust. An original methodology of computational simulation of rotorcraft flight was developed and implemented. In this approach the aircraft motion equations are solved step-by-step, simultaneously with the solution of the Unsteady Reynolds-Averaged Navier–Stokes equations, which is conducted to assess aerodynamic forces acting on the aircraft. As a numerical optimization method, the BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm was adapted. The developed methodology was applied to optimize the flight control procedures in selected stages of gyroplane flight in direct proximity to the ground, where proper control of the aircraft is critical to ensure flight safety and performance. The results of conducted computational optimizations proved the qualitative correctness of the developed methodology. The research results can be helpful in the design of easy-to-control gyroplanes and also in the training of pilots for this type of rotorcraft.

  14. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    Science.gov (United States)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  15. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  16. Learning Mobility: Adaptive Control Algorithms for the Novel Unmanned Ground Vehicle (NUGV)

    National Research Council Canada - National Science Library

    Blackburn, Mike

    2003-01-01

    Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles, This paper contains a description of our approach to develop control algorithms for the Novel Unmanned Ground Vehicle (NUGV...

  17. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators : Modeling, simulations, experiments

    NARCIS (Netherlands)

    Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.

    2007-01-01

    This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as

  18. Control strategy of an electrically actuated morphing flap for the next generation green regional aircraft

    Science.gov (United States)

    Arena, Maurizio; Noviello, Maria Chiara; Rea, Francesco; Amoroso, Francesco; Pecora, Rosario

    2018-03-01

    The design and application of adaptive devices are currently ambitious targets in the field of aviation research addressed at new generation aircraft. The development of intelligent structures involves aspects of multidisciplinary nature: the combination of compact architectures, embedded electrical systems and smart materials, allows for developing a highly innovative device. The paper aims to present the control system design of an innovative morphing flap tailored for the next generation regional aircraft, within Clean Sky 2 - Airgreen 2 European Research Scenario. A distributed system of electromechanical actuators (EMAs) has been sized to enable up to three operating modes of a structure arranged in four blocks along the chord-wise direction: •overall camber-morphing; •upwards/downwards deflection and twisting of the final tip segment. A state-of-art feedback logic based on a decentralized control strategy for shape control is outlined, including the results of dynamic stability analysis based on the blocks rational schematization within Matlab/Simulink® environment. Such study has been performed implementing a state-space model, considering also design parameters as the torsional stiffness and damping of the actuation chain. The design process is flowing towards an increasingly "robotized" system, which can be externally controlled to perform certain operations. Future developments will be the control laws implementation as well as the functionality test on a real flap prototype.

  19. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  20. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    Science.gov (United States)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  1. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  2. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  3. Design, Simulation, Software Development, and Testing of a Compact Aircraft Tracking Payload for the CanX-7 Nanosatellite Mission

    Science.gov (United States)

    Bennett, Ian Graham

    Automatic Dependent Surveillance-Broadcast (ADS-B) is quickly becoming the new standard for more efficient air traffic control, but as a satellite/ground-based hybrid system it faces limitations on its usefulness over oceans and remote areas. Tracking of aircraft from space presents many challenges that if overcome will greatly increase the safety and efficiency of commercial air travel in these areas. This thesis presents work performed to develop a flight-ready ADS-B receiver payload for the CanX-7 technology demonstration satellite. Work presented includes a simulation of payload performance and coverage area, the design and testing of a single-feed circularly polarized L-band antenna, the design of software to control the payload and manage its data, and verification of the performance of the hardware prior to integration with the satellite and launch. Also included is a short overview of results from the seven-month aircraft tracking campaign conducted with the spacecraft.

  4. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.

    2005-01-01

    Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.

  5. Piecewise affine control for fast unmanned ground vehicles

    OpenAIRE

    Benine Neto , André; Grand , Christophe

    2012-01-01

    International audience; Unmanned ground vehicles (UGV) may experience skidding when moving at high speeds, and therefore have its safety jeopardized. For this reason the nonlinear dynamics of lateral tire forces must be taken into account into the design of steering controllers for autonomous vehicles. This paper presents the design of a state feedback piecewise affine controller applied to an UGV to coordinate the steering and torque distribution inputs in order to reduce vehicle skidding on...

  6. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  7. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  8. Human systems integration in remotely piloted aircraft operations.

    Science.gov (United States)

    Tvaryanas, Anthony P

    2006-12-01

    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  9. A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication

    Science.gov (United States)

    McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe

    2010-01-01

    An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route

  10. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    Science.gov (United States)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  11. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    Science.gov (United States)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  12. Optimizing an Actuator Array for the Control of Multi-Frequency Noise in Aircraft Interiors

    Science.gov (United States)

    Palumbo, D. L.; Padula, S. L.

    1997-01-01

    Techniques developed for selecting an optimized actuator array for interior noise reduction at a single frequency are extended to the multi-frequency case. Transfer functions for 64 actuators were obtained at 5 frequencies from ground testing the rear section of a fully trimmed DC-9 fuselage. A single loudspeaker facing the left side of the aircraft was the primary source. A combinatorial search procedure (tabu search) was employed to find optimum actuator subsets of from 2 to 16 actuators. Noise reduction predictions derived from the transfer functions were used as a basis for evaluating actuator subsets during optimization. Results indicate that it is necessary to constrain actuator forces during optimization. Unconstrained optimizations selected actuators which require unrealistically large forces. Two methods of constraint are evaluated. It is shown that a fast, but approximate, method yields results equivalent to an accurate, but computationally expensive, method.

  13. Optimization Based Clearance of Flight Control Laws A Civil Aircraft Application

    CERN Document Server

    Hansson, Anders; Puyou, Guilhem

    2012-01-01

    This book summarizes the main achievements of the EC funded 6th Framework Program project COFCLUO – Clearance of Flight Control Laws Using Optimization. This project successfully contributed to the achievement of a top-level objective to meet society’s needs for a more efficient, safer and environmentally friendly air transport by providing new techniques and tools for the clearance of flight control laws. This is an important part of the certification and qualification process of an aircraft – a costly and time-consuming process for the aeronautical industry.   The overall objective of the COFCLUO project was to develop and apply optimization techniques to the clearance of flight control laws in order to improve efficiency and reliability. In the book, the new techniques are explained and benchmarked against traditional techniques currently used by the industry. The new techniques build on mathematical criteria derived from the certification and qualification requirements together with suitable models...

  14. CONTROL OF AIRCRAFT TRAJECTORIES IN THE CONDITIONS OF THE NAVIGATION SESSION OPTIMIZATION AT AUTOMATIC DEPENDENT SURVEILLANCE

    Directory of Open Access Journals (Sweden)

    V. V. Erokhin

    2015-01-01

    Full Text Available Algorithms of determination of coordinates of the aircraft in the integrated system of navigation and optimum control of a trajectory are considered. Results of researches of parameters of a navigation session and precision characteristics of an assessment of location showed that application of optimum control of a trajectory allowув to increase the accuracy of navigation definitions in case of incomplete constellation of navigation satellites.

  15. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    Science.gov (United States)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  16. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  17. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    Science.gov (United States)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  18. NASA evaluation of Type 2 chemical depositions. [effects of deicer deposition on aircraft tire friction performance

    Science.gov (United States)

    Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.

    1993-01-01

    Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.

  19. Small Aircraft Transportation System Higher Volume Operations Concept

    Science.gov (United States)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  20. Real-Time Risk Assessment Framework for Unmanned Aircraft System (UAS) Traffic Management (UTM)

    Science.gov (United States)

    Ancel, Ersin; Capristan, Francisco M.; Foster, John V.; Condotta, Ryan

    2017-01-01

    The new Federal Aviation Administration (FAA) Small Unmanned Aircraft rule (Part 107) marks the first national regulations for commercial operation of small unmanned aircraft systems (sUAS) under 55 pounds within the National Airspace System (NAS). Although sUAS flights may not be performed beyond visual line-of-sight or over non- participant structures and people, safety of sUAS operations must still be maintained and tracked at all times. Moreover, future safety-critical operation of sUAS (e.g., for package delivery) are already being conceived and tested. NASA's Unmanned Aircraft System Trac Management (UTM) concept aims to facilitate the safe use of low-altitude airspace for sUAS operations. This paper introduces the UTM Risk Assessment Framework (URAF) which was developed to provide real-time safety evaluation and tracking capability within the UTM concept. The URAF uses Bayesian Belief Networks (BBNs) to propagate off -nominal condition probabilities based on real-time component failure indicators. This information is then used to assess the risk to people on the ground by calculating the potential impact area and the effects of the impact. The visual representation of the expected area of impact and the nominal risk level can assist operators and controllers with dynamic trajectory planning and execution. The URAF was applied to a case study to illustrate the concept.

  1. SILHIL Replication of Electric Aircraft Powertrain Dynamics and Inner-Loop Control for V&V of System Health Management Routines

    Science.gov (United States)

    Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos

    2013-01-01

    Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.

  2. Maneuver Planning for Conjunction Risk Mitigation with Ground-track Control Requirements

    Science.gov (United States)

    McKinley, David

    2008-01-01

    The planning of conjunction Risk Mitigation Maneuvers (RMM) in the presence of ground-track control requirements is analyzed. Past RMM planning efforts on the Aqua, Aura, and Terra spacecraft have demonstrated that only small maneuvers are available when ground-track control requirements are maintained. Assuming small maneuvers, analytical expressions for the effect of a given maneuver on conjunction geometry are derived. The analytical expressions are used to generate a large trade space for initial RMM design. This trade space represents a significant improvement in initial maneuver planning over existing methods that employ high fidelity maneuver models and propagation.

  3. OPTIMAL TRAFFIC MANAGEMENT FOR AIRCRAFT APPROACHING THE AERODROME LANDING AREA

    Directory of Open Access Journals (Sweden)

    Igor B. Ivenin

    2018-01-01

    Full Text Available The research proposes a mathematical optimization approach of arriving aircraft traffic at the aerodrome zone. The airfield having two parallel runways, capable of operating independently of each other, is modeled. The incoming traffic of aircraft is described by a Poisson flow of random events. The arriving aircraft are distributed by the air traffic controller between two runways. There is one approach flight path for each runway. Both approach paths have a common starting point. Each approach path has a different length. The approach trajectories do not overlap. For each of the two approach procedures, the air traffic controller sets the average speed of the aircraft. The given model of airfield and airfield zone is considered as the two-channel system of mass service with refusals in service. Each of the two servicing units includes an approach trajectory, a glide path and a runway. The servicing unit can be in one of two states – free and busy. The probabilities of the states of the servicing units are described by the Kolmogorov system of differential equations. The number of refusals in service on the simulated time interval is used as criterion for assessment of mass service system quality of functioning. This quality of functioning criterion is described by an integral functional. The functions describing the distribution of aircraft flows between the runways, as well as the functions describing the average speed of the aircraft, are control parameters. The optimization problem consists in finding such values of the control parameters for which the value of the criterion functional is minimal. To solve the formulated optimization problem, the L.S. Pontryagin maximum principle is applied. The form of the Hamiltonian function and the conjugate system of differential equations is given. The structure of optimal control has been studied for two different cases of restrictions on the control of the distribution of incoming aircraft

  4. Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system

    International Nuclear Information System (INIS)

    Bottolier-Depois, J.F.; Clairand, I.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2005-01-01

    Full text: The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milliSieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - PaulEmile Victor (IPEV). This professional service is available since more than two years on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented: experimental validation, in particular for the ground level event model (large solar eruption), and statistics on routes and personal doses. (author)

  5. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  6. Integrating the Base of Aircraft Data (BADA) in CTAS Trajectory Synthesizer

    Science.gov (United States)

    Abramson, Michael; Ali, Kareem

    2012-01-01

    The Center-Terminal Radar Approach Control (TRACON) Automation System (CTAS), developed at NASA Ames Research Center for assisting controllers in the management and control of air traffic in the extended terminal area, supports the modeling of more than four hundred aircraft types. However, 90% of them are supported indirectly by mapping them to one of a relatively few aircraft types for which CTAS has detailed drag and engine thrust models. On the other hand, the Base of Aircraft Data (BADA), developed and maintained by Eurocontrol, supports more than 300 aircraft types, about one third of which are directly supported, i.e. they have validated performance data. All these data were made available for CTAS by integrating BADA version 3.8 into CTAS Trajectory Synthesizer (TS). Several validation tools were developed and used to validate the integrated code and to evaluate the accuracy of trajectory predictions generated using CTAS "native" and BADA Aircraft Performance Models (APM) comparing them with radar track data. Results of these comparisons indicate that the two models have different strengths and weaknesses. The BADA APM can improve the accuracy of CTAS predictions at least for some aircraft types, especially small aircraft, and for some flight phases, especially climb.

  7. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  8. 78 FR 67799 - Qualification, Service, and Use of Crewmembers and Aircraft Dispatchers

    Science.gov (United States)

    2013-11-12

    ... and aircraft dispatcher training reflects that integrated operating environment. Since the publication... control systems, and unusual attitudes that result from flight control malfunctions and uncommanded flight... manipulate the aircraft controls and flight navigators are no longer used in part 121 operations, the FAA...

  9. Performance Evaluation of Individual Aircraft Based Advisory Concept for Surface Management

    Science.gov (United States)

    Gupta, Gautam; Malik, Waqar; Tobias, Leonard; Jung, Yoon; Hong, Ty; Hayashi, Miwa

    2013-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASA's Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas/Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45% in medium scenarios and 60% in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23% in medium traffic and 33% in heavy. TMI compliance appeared unaffected by the advisory

  10. 14 CFR 61.321 - How do I obtain privileges to operate an additional category or class of light-sport aircraft?

    Science.gov (United States)

    2010-01-01

    ... additional category or class of light-sport aircraft? 61.321 Section 61.321 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft? If you hold a sport pilot certificate and seek to operate an...

  11. Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft

    Science.gov (United States)

    Bahri, S.; Sasongko, R. A.

    2018-04-01

    The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.

  12. NDE of Damage in Aircraft Flight Control Surfaces

    International Nuclear Information System (INIS)

    Hsu, David K.; Barnard, Daniel J.; Dayal, Vinay

    2007-01-01

    Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb core may or may not be accompanied by a disbond. This paper reports a study of the damage morphology in such structures and the NDE methods for detecting and characterizing them. Impact damages or overload failures in composite sandwiches with Nomex or fiberglass core tend to be a fracture or crinkle or the honeycomb cell wall located a distance below the facesheet-to-core bondline. The damage in aluminum honeycomb is usually a buckling failure, propagating from the top skin downward. The NDE methods used in this work for mapping out these damages were: air-coupled ultrasonic scan, and imaging by computer aided tap tester. Representative results obtained from the field will be shown

  13. Assessment of engine noise shielding by the wings of current turbofan aircraft

    NARCIS (Netherlands)

    Alves Vieira, A.E.; Snellen, M.; Simons, D.G.; Gibbs, B.

    2017-01-01

    The shielding of engine noise by the aircraft wings and fuselage can lead to a significant reduction on perceived noise on ground. Most research on noise shielding is focused on BlendedWing Body (BWB) configurations because of the large dimension of the fuselage. However, noise shielding is also

  14. In-Flight Fault Diagnosis for Autonomous Aircraft Via Low-Rate Telemetry Channel

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren

    2012-01-01

    An in-flight diagnosis system that is able to detect faults on an unmanned aircraft using real-time telemetry data could provide operator assistance to warn about imminent risks due to faults. However, limited bandwidth of the air-ground radio-link makes diagnosis difficult. Loss of information a...

  15. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    Science.gov (United States)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  16. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  17. Auditory skills of figure-ground and closure in air traffic controllers.

    Science.gov (United States)

    Villar, Anna Carolina Nascimento Waack Braga; Pereira, Liliane Desgualdo

    2017-12-04

    To investigate the auditory skills of closure and figure-ground and factors associated with health, communication, and attention in air traffic controllers, and compare these variables with those of other civil and military servants. Study participants were sixty adults with normal audiometric thresholds divided into two groups matched for age and gender: study group (SG), comprising 30 air traffic controllers and control group (CG), composed of 30 other military and civil servants. All participants were asked a number of questions regarding their health, communication, and attention, and underwent the Speech-in-Noise Test (SIN) to assess their closure skills and the Synthetic Sentence Identification Test - Ipsilateral Competitive Message (SSI-ICM) in monotic listening to evaluate their figure-ground abilities. Data were compared using nonparametric statistical tests and logistic regression analysis. More individuals in the SG reported fatigue and/or burnout and work-related stress and showed better performance than that of individuals in the CG for the figure-ground ability. Both groups performed similarly and satisfactorily in the other hearing tests. The odds ratio for participants belonging in the SG was 5.59 and 1.24 times regarding work-related stress and SSI-ICM (right ear), respectively. Results for the variables auditory closure, self-reported health, attention, and communication were similar in both groups. The SG presented significantly better performance in auditory figure-ground compared with that of the CG. Self-reported stress and right-ear SSI-ICM were significant predictors of individuals belonging to the SG.

  18. FY 1998 Report on technical results. Part 2 of 2. Research and development of supersonic transportation aircraft propulsion systems (Development of methane-fueled aircraft engines); 1998 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 2/2. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The research and development project is conducted for (1) ramjet systems, (2) high-performance turbojet systems, (3) instrumentation/control systems and (4) total systems, in order to develop methane-fueled supersonic transportation aircraft engines, and the intended targets are achieved. This project has ended with preparation of the overall plans of the target engine. Described herein is the R and D of the combined cycle engine, following the results described in Part 1 of 2. This program includes designs and development of (1) the turbojet engine, and (2) combined cycle engine. The item (1) includes studies on cycles, preparation of the overall plans and studies on the systems, and the item (2) includes the designs, ground and altitudes function tests, and ground noise tests. (NEDO)

  19. Intelligent Aircraft Damage Assessment, Trajectory Planning, and Decision-Making under Uncertainty

    Science.gov (United States)

    Lopez, Israel; Sarigul-Klijn, Nesrin

    Situational awareness and learning are necessary to identify and select the optimal set of mutually non-exclusive hypothesis in order to maximize mission performance and adapt system behavior accordingly. This paper presents a hierarchical and decentralized approach for integrated damage assessment and trajectory planning in aircraft with uncertain navigational decision-making. Aircraft navigation can be safely accomplished by properly addressing the following: decision-making, obstacle perception, aircraft state estimation, and aircraft control. When in-flight failures or damage occur, rapid and precise decision-making under imprecise information is required in order to regain and maintain control of the aircraft. To achieve planned aircraft trajectory and complete safe landing, the uncertainties in system dynamics of the damaged aircraft need to be learned and incorporated at the level of motion planning. The damaged aircraft is simulated via a simplified kinematic model. The different sources and perspectives of uncertainties in the damage assessment process and post-failure trajectory planning are presented and classified. The decision-making process for an emergency motion planning and landing is developed via the Dempster-Shafer evidence theory. The objective of the trajectory planning is to arrive at a target position while maximizing the safety of the aircraft given uncertain conditions. Simulations are presented for an emergency motion planning and landing that takes into account aircraft dynamics, path complexity, distance to landing site, runway characteristics, and subjective human decision.

  20. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    Science.gov (United States)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.

  1. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  2. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  3. Quantum ground state and single-phonon control of a mechanical resonator.

    Science.gov (United States)

    O'Connell, A D; Hofheinz, M; Ansmann, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; Neeley, M; Sank, D; Wang, H; Weides, M; Wenner, J; Martinis, John M; Cleland, A N

    2010-04-01

    Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator-a 'quantum drum'-coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system.

  4. Weed detection using unmanned aircraft vehicles

    Directory of Open Access Journals (Sweden)

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  5. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    Science.gov (United States)

    EPA is proposing to adopt emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  6. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  7. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  8. Evaluation of optimal control type models for the human gunner in an Anti-Aircraft Artillery (AAA) system

    Science.gov (United States)

    Phatak, A. V.; Kessler, K. M.

    1975-01-01

    The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.

  9. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  10. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  11. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  12. 14 CFR 61.323 - How do I obtain privileges to operate a make and model of light-sport aircraft in the same...

    Science.gov (United States)

    2010-01-01

    ... make and model of light-sport aircraft in the same category and class within a different set of... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.323 How do I obtain privileges to operate a make and model of light-sport aircraft in the same...

  13. Regional analysis of ground and above-ground climate

    Science.gov (United States)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  14. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  15. Optimal Geometric Deployment of a Ground Based Pseudolite Navigation System to Track a Landing Aircraft

    National Research Council Canada - National Science Library

    Crawford, Matthew P

    2006-01-01

    .... This testing is especially necessary for precise tasks such as landing an aircraft. Currently, research is being conducted into using a pseudolite-based reference system to use as a truth model for the GPS jamming test...

  16. HUD Guidance for the ASKA Experimental STOL Aircraft using Radar Position Information

    Science.gov (United States)

    Yazawa, Kenji; Terui, Yushi; Hardy, Gordon H.

    1992-01-01

    The paper describes a high performance HUD guidance system installed on the experimental powered-lift STOL aircraft Aska. Since the maiden flight in October 1985, the HUD system has been used in all the flight tests. The HUD has an accurate flight path symbol generated by inertial velocity from the IRS which is updated by up-linked precision radar position data. The flight path symbol is very useful for precise approach and flare control for Aska which has large ground effects. A synthetic runway is also presented, which is conformal with the real runway, using the position data from the ground tracking radar system. Under instrument meteorological conditions, the pilot can approach and land using the HUD synthetic runway as well as in visual meteorological conditions. The HUD system proved to be a valuable aid to the pilot for all the Aska flight tests. A NASA Ames Research Center test pilot demonstrated touch down accuracy of less than 8 meters (peak to peak) for a series of three landings.

  17. A Collection of Nonlinear Aircraft Simulations in MATLAB

    Science.gov (United States)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  18. An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm

    Directory of Open Access Journals (Sweden)

    W.H. Ip

    2009-10-01

    Full Text Available The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constraints. The proposed algorithm iteratively constructs a set of solutions by GRASP. Furthermore, with multi-agent techniques, we efficiently identify an optimal roster with minimal constraint violations and fair to employees. Experimental results are included to demonstrate the effectiveness of the proposed algorithm.

  19. Electronic Warfare: Towed Decoys Could Improve Survivability of Current Navy Aircraft

    National Research Council Canada - National Science Library

    Aiken, Michael

    1997-01-01

    Traditionally, DOD'S combat aircraft have used on-board electronic warfare devices called jammers for self-protection against radar-controlled weapons, including missiles and anti-aircraft artillery...

  20. Vulnerability Analysis of the MAVLink Protocol for Command and Control of Unmanned Aircraft

    Science.gov (United States)

    2013-03-27

    Patton, Nikos Karapanos, Lorenz Meier, Peter Schwabe, Andrew Tridgell, Michael Oborne, Dr. Gareth Owen, and Capt Matthew Vincie, all of whom greatly...Frew and T. Brown . Networking Issues For Small Unmanned Aircraft Systems. In Unmanned Aircraft Systems : International Symposium on Unmanned Aerial

  1. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    Science.gov (United States)

    Myhre, R. W.

    1979-01-01

    The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.

  2. A Cybernetic Approach to Assess the Longitudinal Handling Qualities of Aeroelastic Aircraft

    NARCIS (Netherlands)

    Damveld, H.J.

    2009-01-01

    The future demand for larger and lighter civil transport aircraft leads to more flexible aircraft, which bring their own controlling and handling problems. A review of established handling qualities methods showed that they were either unsuitable for aeroelastic aircraft, or had significant

  3. Control and Non-Payload Communications (CNPC) Prototype Radio Validation Flight Test Report

    Science.gov (United States)

    Shalkhauser, Kurt A.; Ishac, Joseph A.; Iannicca, Dennis C.; Bretmersky, Steven C.; Smith, Albert E.

    2017-01-01

    This report provides an overview and results from the unmanned aircraft (UA) Control and Non-Payload Communications (CNPC) Generation 5 prototype radio validation flight test campaign. The radios used in the test campaign were developed under cooperative agreement NNC11AA01A between the NASA Glenn Research Center and Rockwell Collins, Inc., of Cedar Rapids, Iowa. Measurement results are presented for flight tests over hilly terrain, open water, and urban landscape, utilizing radio sets installed into a NASA aircraft and ground stations. Signal strength and frame loss measurement data are analyzed relative to time and aircraft position, specifically addressing the impact of line-of-sight terrain obstructions on CNPC data flow. Both the radio and flight test system are described.

  4. Comparison Virtual Landing Gear Drop Test for Commuter Aircraft Utilize MSC ADAMS And Solidworks Motion Analysis

    Science.gov (United States)

    Hidayat, Dony; Istiyanto, Jos; Agus Sumarsono, Danardono

    2018-04-01

    Loads at main landing gear while touchdown impact is function of aircraft weight and ground reaction load factor. In regulation states ground reaction load factor at Vsink = 3.05 m/s is below 3. Contact/impact force from simulation using MSC ADAMS is 94680 N, while using Solidworks Motion Analysis is 97691 N. The difference between MSC ADAMS and Solidworks Motion Analysis is 3.08%. The ground reaction load factor in MSC ADAMS is 2.78 while in Solidworks Motion Analysis is 2.87.

  5. Flight mechanics of a tailless articulated wing aircraft

    International Nuclear Information System (INIS)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-01-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  6. Flight mechanics of a tailless articulated wing aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S, E-mail: sjchung@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  7. Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels

    Science.gov (United States)

    Kobayashi, Hiroshi; Nishizawa, Akira

    A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.

  8. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport

    Science.gov (United States)

    Moore, Richard H.; Shook, Michael A.; Ziemba, Luke D.; Digangi, Joshua P.; Winstead, Edward L.; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L.; Crosbie, Ewan C.; Robinson, Claire; Shingler, Taylor J.; Anderson, Bruce E.

    2017-12-01

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016-1017 kg-1 and 1014-1016 kg-1, respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg-1 (except for the GE GEnx engines at 46 mg kg-1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  9. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport.

    Science.gov (United States)

    Moore, Richard H; Shook, Michael A; Ziemba, Luke D; DiGangi, Joshua P; Winstead, Edward L; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L; Crosbie, Ewan C; Robinson, Claire; Shingler, Taylor J; Anderson, Bruce E

    2017-12-19

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO 2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 10 16 -10 17 kg -1 and 10 14 -10 16 kg -1 , respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg -1 (except for the GE GEnx engines at 46 mg kg -1 ). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  10. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  11. Final Rule for Control of Air Pollution from Aircraft and Aircraft Engines: Emission Standards and Test Procedures

    Science.gov (United States)

    EPA is amending the existing emission standards for oxides of nitrogen (NOx) for new commercial aircraft engines. These standards are equivalent to the NOx emission standards of the United Nations International Civil Aviation Organization (ICAO).

  12. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    Science.gov (United States)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  13. Low-resolution Airborne Radar Air/ground Moving Target Classification and Recognition

    Directory of Open Access Journals (Sweden)

    Wang Fu-you

    2014-10-01

    Full Text Available Radar Target Recognition (RTR is one of the most important needs of modern and future airborne surveillance radars, and it is still one of the key technologies of radar. The majority of present algorithms are based on wide-band radar signal, which not only needs high performance radar system and high target Signal-to-Noise Ratio (SNR, but also is sensitive to angle between radar and target. Low-Resolution Airborne Surveillance Radar (LRASR in downward-looking mode, slow flying aircraft and ground moving truck have similar Doppler velocity and Radar Cross Section (RCS, leading to the problem that LRASR air/ground moving targets can not be distinguished, which also disturbs detection, tracking, and classification of low altitude slow flying aircraft to solve these issues, an algorithm based on narrowband fractal feature and phase modulation feature is presented for LRASR air/ground moving targets classification. Real measured data is applied to verify the algorithm, the classification results validate the proposed method, helicopters and truck can be well classified, the average discrimination rate is more than 89% when SNR ≥ 15 dB.

  14. Flight Dynamics Simulation Modeling and Control of a Large Flexible Tiltrotor Aircraft

    Science.gov (United States)

    2014-09-01

    analyses as it retains a momentum theory type rotor system. Later, CAMRAD, a comprehensive aeromechanics and dynamics model capa- ble of multi-rotor and...isotropic, linearly elastic material. 8. All blades are identical. 9. Euler- Bernoulli beam theory is used, implying plane cross sections remain plane and...aircraft could be improved to achieve a higher fidelity structural response. Currently, flexible wings are modeled as Bernoulli beams. Actual aircraft

  15. Design Of Vertical Take-Off And Landing VTOL Aircraft System

    Directory of Open Access Journals (Sweden)

    Win Ko Ko Oo

    2017-04-01

    Full Text Available Vertical Take Off and Landing Vehicles VTOL are the ones which can take off and land from the same place without need of long runway. This paper presents the design and implementation of tricopter mode and aircraft mode for VTOL aircraft system. Firstly the aircraft design is considered for VTOL mode. And then the mathematical model of the VTOL aircraft is applied to test stability. In this research the KK 2.1 flight controller is used for VTOL mode and aircraft mode. The first part is to develop the VTOL mode and the next part is the transition of VTOL mode to aircraft mode. This paper gives brief idea about numerous types of VTOLs and their advantages over traditional aircraftsand insight to various types of tricopter and evaluates their configurations.

  16. Assimilation of Aircraft Observations in High-Resolution Mesoscale Modeling

    Directory of Open Access Journals (Sweden)

    Brian P. Reen

    2018-01-01

    Full Text Available Aircraft-based observations are a promising source of above-surface observations for assimilation into mesoscale model simulations. The Tropospheric Airborne Meteorological Data Reporting (TAMDAR observations have potential advantages over some other aircraft observations including the presence of water vapor observations. The impact of assimilating TAMDAR observations via observation nudging in 1 km horizontal grid spacing Weather Research and Forecasting model simulations is evaluated using five cases centered over California. Overall, the impact of assimilating the observations is mixed, with the layer with the greatest benefit being above the surface in the lowest 1000 m above ground level and the variable showing the most consistent benefit being temperature. Varying the nudging configuration demonstrates the sensitivity of the results to details of the assimilation, but does not clearly demonstrate the superiority of a specific configuration.

  17. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  18. Learning from nuclear waste repository design: the ground-control plan

    International Nuclear Information System (INIS)

    Schmidt, B.

    1988-01-01

    At present, under a U.S. Department of Energy program, three repositories for commercial spent fuel-in salt, tuff and basalt-are in the phase of site characterization and conceptual design, and one pilot project for defense waste in salt is under development. Because of strict quality assurance requirements throughout design and construction, and the need to predict and ascertain in advance the satisfactory performance of the underground openings, underground openings in the unusual circumstances of the repository environment have been analysed. This will lead to an improved understanding of rock behavior and improved methods of underground analysis and design. A formalized ground control plan was developed, the principles of which may be applied to other types of projects. This paper summarizes the status of underground design and construction for nuclear waste repositories and presents some details of the ground control plan and its individual elements. (author)

  19. CFD analysis of aircraft fuel tanks thermal behaviour

    Science.gov (United States)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  20. Data Mining for Understanding and Improving Decision-making Affecting Ground Delay Programs

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao; Sridhar, Banavar

    2013-01-01

    The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions.

  1. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    Science.gov (United States)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  2. A Versatile Simulation Environment of FTC Architectures for Large Transport Aircraft

    OpenAIRE

    Ossmann, Daniel; Varga, Andreas; Simon, Hecker

    2010-01-01

    We present a simulation environment with 3-D stereo visualization facilities destined for an easy setup and versatile assessment of fault detection and diagnosis based fault tolerant control systems. This environment has been primarily developed as a technology demonstrator of advanced reconfigurable flight control systems and is based on a realistic six degree of freedom flexible aircraft model. The aircraft control system architecture includes a flexible fault detection and diagnosis syste...

  3. Subjective evaluation with FAA criteria: A multidimensional scaling approach. [ground track control management

    Science.gov (United States)

    Kreifeldt, J. G.; Parkin, L.; Wempe, T. E.; Huff, E. F.

    1975-01-01

    Perceived orderliness in the ground tracks of five A/C during their simulated flights was studied. Dynamically developing ground tracks for five A/C from 21 separate runs were reproduced from computer storage and displayed on CRTS to professional pilots and controllers for their evaluations and preferences under several criteria. The ground tracks were developed in 20 seconds as opposed to the 5 minutes of simulated flight using speedup techniques for display. Metric and nonmetric multidimensional scaling techniques are being used to analyze the subjective responses in an effort to: (1) determine the meaningfulness of basing decisions on such complex subjective criteria; (2) compare pilot/controller perceptual spaces; (3) determine the dimensionality of the subjects' perceptual spaces; and thereby (4) determine objective measures suitable for comparing alternative traffic management simulations.

  4. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  5. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    Science.gov (United States)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  6. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje

    2002-01-01

    A medium fidelity and low cost training device for pilots, called the Multi Aircraft Training Environment (MATE), is developed to replace other low fidelity stand-alone training devices and integrate them into a flexible environment, primarily aimed attraining pilots in checklist procedures....../models to be simulated) and with possibilities for including various forms of intelligent computer assistance. This training concept and the technology are not specific toaviation, but can be used to simulate various types of control panels in different domains. The training effectiveness of pilots' procedure training...... in the MATE prototype was compared with the effects of traditional training that included the use of realaircraft. The experimental group (EXP) trained the pre-start checklist and the engine start checklist for the Saab 340 commuter aircraft in a MATE prototype. The control group (CTR) trained the same...

  7. Thermal comfort assessment in civil aircraft cabins

    Directory of Open Access Journals (Sweden)

    Pang Liping

    2014-04-01

    Full Text Available Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to control ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET∗ of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80–90% of the thermal acceptability levels of passengers.

  8. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  9. Unmanned Vanguard: Leveraging The Operational Effectiveness Of The Israeli Unmanned Aircraft System Program

    Science.gov (United States)

    2012-04-01

    The ACGS is capable of controlling multiple aircraft simultaneously similar to the USAF multiple aircraft control ( MAC ) GCS used with the MQ-1...technology offers a big improvement on workload for the pilots and allows them to focus on their mission and payloads versus flying the aircraft. Its...July 2010). 19 “Attack of the Drones,” The Economist , 3 September 2009, http://www.economist.com/node/14299496 (accessed 8 Apr 2012). 20 Owen

  10. A learning flight control system for the F8-DFBW aircraft. [Digital Fly-By-Wire

    Science.gov (United States)

    Montgomery, R. C.; Mekel, R.; Nachmias, S.

    1978-01-01

    This report contains a complete description of a learning control system designed for the F8-DFBW aircraft. The system is parameter-adaptive with the additional feature that it 'learns' the variation of the control system gains needed over the flight envelope. It, thus, generates and modifies its gain schedule when suitable data are available. The report emphasizes the novel learning features of the system: the forms of representation of the flight envelope and the process by which identified parameters are used to modify the gain schedule. It contains data taken during piloted real-time 6 degree-of-freedom simulations that were used to develop and evaluate the system.

  11. Use of REMPI-TOFMS for real-time measurement of trace aromatics during operation of aircraft ground equipment

    Science.gov (United States)

    Gullett, Brian; Touati, Abderrahmane; Oudejans, Lukas

    Emissions of aromatic air toxics from aircraft ground equipment (AGE) were measured with a resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. This instrument was capable of characterizing turbine emissions and the effect of varying load operations on pollutant production. REMPI-TOFMS is capable of high selectivity and low detection limits (part per trillion to part per billion) in real time (1 s resolution). Hazardous air pollutants and criteria pollutants were measured during startups and idle and full load operations. Measurements of compounds such as benzene, toluene, ethylbenzene, xylenes, styrene, and polycyclic aromatic hydrocarbons compared well with standard methods. Startup emissions from the AGE data showed persistent concentrations of pollutants, unlike those from a diesel generator, where a sharp spike in emissions rapidly declined to steady state levels. The time-resolved responses of air toxics concentrations varied significantly by source, complicating efforts to minimize these emissions with common operating prescriptions. The time-resolved measurements showed that pollutant concentrations decline (up to 5×) in a species-specific manner over the course of multiple hours of operation, complicating determination of accurate and precise emission factors via standard extractive sampling. Correlations of air toxic concentrations with more commonly measured pollutants such as CO or PM were poor due to the relatively greater changes in the measured toxics' concentrations.

  12. Performance Evaluation of SARDA: An Individual Aircraft-Based Advisory Concept for Surface Management

    Science.gov (United States)

    Jung, Yoon; Malik, Waqar; Tobias, Leonard; Gupta, Gautam; Hoang, Ty; Hayashi, Miwa

    2015-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASAs Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas-Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45 in medium scenarios and 60 in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23 in medium traffic and 33 in heavy. TMI compliance appeared unaffected by the advisory.

  13. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    Science.gov (United States)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  14. Direct Final Rule for Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    This rule will adopt the current voluntary NOx and CO emissions standards of the United Nations International Civil Aviation Organization (ICAO), bringing the United States aircraft standards into alignment with the international standards.

  15. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    Science.gov (United States)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  16. Localization Framework for Real-Time UAV Autonomous Landing: An On-Ground Deployed Visual Approach.

    Science.gov (United States)

    Kong, Weiwei; Hu, Tianjiang; Zhang, Daibing; Shen, Lincheng; Zhang, Jianwei

    2017-06-19

    [-5]One of the greatest challenges for fixed-wing unmanned aircraft vehicles (UAVs) is safe landing. Hereafter, an on-ground deployed visual approach is developed in this paper. This approach is definitely suitable for landing within the global navigation satellite system (GNSS)-denied environments. As for applications, the deployed guidance system makes full use of the ground computing resource and feedbacks the aircraft's real-time localization to its on-board autopilot. Under such circumstances, a separate long baseline stereo architecture is proposed to possess an extendable baseline and wide-angle field of view (FOV) against the traditional fixed baseline schemes. Furthermore, accuracy evaluation of the new type of architecture is conducted by theoretical modeling and computational analysis. Dataset-driven experimental results demonstrate the feasibility and effectiveness of the developed approach.

  17. Development of an ultrasonic nondestructive inspection method for impact damage detection in composite aircraft structures

    Science.gov (United States)

    Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.

    2017-04-01

    High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.

  18. Study on load temperature control system of ground laser communication

    Science.gov (United States)

    Zhai, Xunhua; Zhang, Hongtao; Liu, Wangsheng; Zhang, Chijun; Zhou, Xun

    2007-12-01

    The ground laser communication terminal as the termination of a communication system, works at the temperature which varies from -40°C to 50°C. We design a temperature control system to keep optical and electronic components working properly in the load. The load is divided into two sections to control temperature respectively. Because the space is limited, we use heater film and thermoelectric cooler to clearify and refrigerate the load. We design a hardware and a software for the temperature control system, establish mathematic model, and emulate it with Matlab.

  19. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    Science.gov (United States)

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  20. Population census of a large common tern colony with a small unmanned aircraft.

    Directory of Open Access Journals (Sweden)

    Dominique Chabot

    Full Text Available Small unmanned aircraft systems (UAS may be useful for conducting high-precision, low-disturbance waterbird surveys, but limited data exist on their effectiveness. We evaluated the capacity of a small UAS to census a large (>6,000 nests coastal Common tern (Sterna hirundo colony of which ground surveys are particularly disruptive and time-consuming. We compared aerial photographic tern counts to ground nest counts in 45 plots (5-m radius throughout the colony at three intervals over a nine-day period in order to identify sources of variation and establish a coefficient to estimate nest numbers from UAS surveys. We also compared a full colony ground count to full counts from two UAS surveys conducted the following day. Finally, we compared colony disturbance levels over the course of UAS flights to matched control periods. Linear regressions between aerial and ground counts in plots had very strong correlations in all three comparison periods (R2 = 0.972-0.989, P < 0.001 and regression coefficients ranged from 0.928-0.977 terns/nest. Full colony aerial counts were 93.6% and 94.0%, respectively, of the ground count. Varying visibility of terns with ground cover, weather conditions and image quality, and changing nest attendance rates throughout incubation were likely sources of variation in aerial detection rates. Optimally timed UAS surveys of Common tern colonies following our method should yield population estimates in the 93-96% range of ground counts. Although the terns were initially disturbed by the UAS flying overhead, they rapidly habituated to it. Overall, we found no evidence of sustained disturbance to the colony by the UAS. We encourage colonial waterbird researchers and managers to consider taking advantage of this burgeoning technology.

  1. Combining tracer flux ratio methodology with low-flying aircraft measurements to estimate dairy farm CH4 emissions

    Science.gov (United States)

    Daube, C.; Conley, S.; Faloona, I. C.; Yacovitch, T. I.; Roscioli, J. R.; Morris, M.; Curry, J.; Arndt, C.; Herndon, S. C.

    2017-12-01

    Livestock activity, enteric fermentation of feed and anaerobic digestion of waste, contributes significantly to the methane budget of the United States (EPA, 2016). Studies question the reported magnitude of these methane sources (Miller et. al., 2013), calling for more detailed research of agricultural animals (Hristov, 2014). Tracer flux ratio is an attractive experimental method to bring to this problem because it does not rely on estimates of atmospheric dispersion. Collection of data occurred during one week at two dairy farms in central California (June, 2016). Each farm varied in size, layout, head count, and general operation. The tracer flux ratio method involves releasing ethane on-site with a known flow rate to serve as a tracer gas. Downwind mixed enhancements in ethane (from the tracer) and methane (from the dairy) were measured, and their ratio used to infer the unknown methane emission rate from the farm. An instrumented van drove transects downwind of each farm on public roads while tracer gases were released on-site, employing the tracer flux ratio methodology to assess simultaneous methane and tracer gas plumes. Flying circles around each farm, a small instrumented aircraft made measurements to perform a mass balance evaluation of methane gas. In the course of these two different methane quantification techniques, we were able to validate yet a third method: tracer flux ratio measured via aircraft. Ground-based tracer release rates were applied to the aircraft-observed methane-to-ethane ratios, yielding whole-site methane emission rates. Never before has the tracer flux ratio method been executed with aircraft measurements. Estimates from this new application closely resemble results from the standard ground-based technique to within their respective uncertainties. Incorporating this new dimension to the tracer flux ratio methodology provides additional context for local plume dynamics and validation of both ground and flight-based data.

  2. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary

    Science.gov (United States)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1983-01-01

    The full scale ground test, ground vibration test, and flight tests conducted to demonstrate a composite structure stabilizer for the Boeing 737 aircraft and obtain FAA certification are described. Detail tools, assembly tools, and overall production are discussed. Cost analyses aspects covered include production costs, composite material usage factors, and cost comparisons.

  3. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    Science.gov (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear

  4. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  5. Unified Medical Command and Control in the Department of Defense

    Science.gov (United States)

    2012-03-22

    This is the Joint Task Force – Capital Medical (JTF CAPMED ) model, in which organizations, resources, and personnel are aligned under a single...This was demonstrated in the formation of the JTF- CAPMED , designed as a 3-star level command controlling military medical activities in the National...used ground vehicles, helicopters and fixed wing aircraft for strategic casualty evacuation (CASEVAC). Enroute care is standard and critical in

  6. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  7. Anticipated Effectiveness of Active Noise Control in Propeller Aircraft Interiors as Determined by Sound Quality Tests

    Science.gov (United States)

    Powell, Clemans A.; Sullivan, Brenda M.

    2004-01-01

    Two experiments were conducted, using sound quality engineering practices, to determine the subjective effectiveness of hypothetical active noise control systems in a range of propeller aircraft. The two tests differed by the type of judgments made by the subjects: pair comparisons in the first test and numerical category scaling in the second. Although the results of the two tests were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference.

  8. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    Science.gov (United States)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  9. 78 FR 67437 - Bureau of Political-Military Affairs, Directorate of Defense Trade Controls: Notifications to the...

    Science.gov (United States)

    2013-11-12

    ... improved Air Defense Ground Environment (ADGE) System for end-use by NATO. The United States government is... the Weapons Bay Door Drive System for all variants of the F-35 Lightning II aircraft. The United... support of the manufacture, assembly and installation of the Environmental Control System (ECS) used on...

  10. Tactical Dispersal of Fighter Aircraft: Risk, Uncertainty, and Policy Recommendations.

    Science.gov (United States)

    1987-02-01

    against armour and soft skinned vehicles, parked aircraft, and personnel, and are distributed evenly within the pattern... 147 bomblets are carried...initiated using such techniques as tone down paint schemes and camouflage netting. Active defenses have been enhanced. Patriot is replacing Nike , and...such as this. A0 vS I P l Il - 41 - V. ANALYSIS But we must ourselves take care not to acquire a Maginot dependence upon ground based static systems

  11. Ground reaction force comparison of controlled resistance methods to isoinertial loading of the squat exercise - biomed 2010.

    Science.gov (United States)

    Paulus, David C; Reynolds, Michael C; Schilling, Brian K

    2010-01-01

    The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.

  12. Application of image based measurement techniques for the investigation of aeroengine performance on a commercial aircraft in ground operation

    OpenAIRE

    Schröder, Andreas; Geisler, Reinhard; Schanz, Daniel; Agocs, Janos; Pallek, Dieter; Schroll, Michael; Klinner, Joachim; Beversdorff, Manfred; Voges, Melanie; Willert, Christian

    2014-01-01

    The investigation of the flow and sound field upstream and downstream of a full scale aeroengine is aimed at providing important reference data required for reliable modeling and prediction. In this regard a wide variety of contactless and non-invasive laser optical and acoustic measurement techniques have matured in recent years to allow their application on full scale aircraft. Within a measurement campaign involving an Airbus A320 DLR research aircraft inside a sound-attenuating hangar at ...

  13. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  14. Remote sensing and implications for variable-rate application using agricultural aircraft

    Science.gov (United States)

    Thomson, Steven J.; Smith, Lowrey A.; Ray, Jeffrey D.; Zimba, Paul V.

    2004-01-01

    Aircraft routinely used for agricultural spray application are finding utility for remote sensing. Data obtained from remote sensing can be used for prescription application of pesticides, fertilizers, cotton growth regulators, and water (the latter with the assistance of hyperspectral indices and thermal imaging). Digital video was used to detect weeds in early cotton, and preliminary data were obtained to see if nitrogen status could be detected in early soybeans. Weeds were differentiable from early cotton at very low altitudes (65-m), with the aid of supervised classification algorithms in the ENVI image analysis software. The camera was flown at very low altitude for acceptable pixel resolution. Nitrogen status was not detectable by statistical analysis of digital numbers (DNs) obtained from images, but soybean cultivar differences were statistically discernable (F=26, p=0.01). Spectroradiometer data are being analyzed to identify narrow spectral bands that might aid in selecting camera filters for determination of plant nitrogen status. Multiple camera configurations are proposed to allow vegetative indices to be developed more readily. Both remotely sensed field images and ground data are to be used for decision-making in a proposed variable-rate application system for agricultural aircraft. For this system, prescriptions generated from digital imagery and data will be coupled with GPS-based swath guidance and programmable flow control.

  15. Simulation model for the Boeing 720B aircraft-flight control system in continuous flight.

    Science.gov (United States)

    1971-08-01

    A mathematical model of the Boeing 720B aircraft and autopilot has been derived. The model is representative of the 720B aircraft for continuous flight within a flight envelope defined by a Mach number of .4 at 20,000 feet altitude in a cruise config...

  16. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  17. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    Science.gov (United States)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  18. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    Science.gov (United States)

    Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.

    2015-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.

  19. METHODOLOGICAL PROBLEMS AND WAYS OF CREATION OF THE AIRCRAFT EQUIPMENT TEST AUTOMATED MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Vladimir Michailovich Vetoshkin

    2017-01-01

    Full Text Available The development of new and modernization of existing aviation equipment specimens of different classes are ac- companied and completed by the complex process of ground and flight tests. This phase of aviation equipment life cycle is implemented by means of organizational and technical systems - running centers. The latter include various proving grounds, measuring complex and systems, aircraft, ships, security and flight control offices, information processing laborato- ries and many other elements. The system analysis results of development challenges of the automated control systems of aviation equipment tests operations are presented. The automated control systems are in essence an automated data bank. The key role of development of flight tests automated control system in the process of creation of the automated control sys- tems of aviation equipment tests operations is substantiated. The way of the mobile modular measuring complexes integra- tion and the need for national methodologies and technological standards for database systems design concepts are grounded. Database system, as a central element in this scheme, provides collection, storing and updating of values of the elements described above in pace and the required frequency of the controlled object state monitoring. It is database system that pro- vides the supervisory unit with actual data corresponding to specific moments of time, which concern the state processes, assessments of the progress and results of flight experiments, creating the necessary environment for aviation equipment managing and testing as a whole. The basis for development of subsystems of automated control systems of aviation equip- ment tests operations are conceptual design processes of the respective database system, the implementation effectiveness of which largely determines the level of success and ability to develop the systems being created. Introduced conclusions and suggestions can be used in the

  20. De-tabooing dying control - a grounded theory study

    Science.gov (United States)

    2013-01-01

    Background Dying is inescapable yet remains a neglected issue in modern health care. The research question in this study was “what is going on in the field of dying today?” What emerged was to eventually present a grounded theory of control of dying focusing specifically on how people react in relation to issues about euthanasia and physician-assisted suicide (PAS). Methods Classic grounded theory was used to analyze interviews with 55 laypersons and health care professionals in North America and Europe, surveys on attitudes to PAS among physicians and the Swedish general public, and scientific literature, North American discussion forum websites, and news sites. Results Open awareness of the nature and timing of a patient’s death became common in health care during the 1960s in the Western world. Open dying awareness contexts can be seen as the start of a weakening of a taboo towards controlled dying called de-tabooing. The growth of the hospice movement and palliative care, but also the legalization of euthanasia and PAS in the Benelux countries, and PAS in Montana, Oregon and Washington further represents de-tabooing dying control. An attitude positioning between the taboo of dying control and a growing taboo against questioning patient autonomy and self-determination called de-paternalizing is another aspect of de-tabooing. When confronted with a taboo, people first react emotionally based on “gut feelings” - emotional positioning. This is followed by reasoning and label wrestling using euphemisms and dysphemisms - reflective positioning. Rarely is de-tabooing unconditional but enabled by stipulated positioning as in soft laws (palliative care guidelines) and hard laws (euthanasia/PAS legislation). From a global perspective three shapes of dying control emerge. First, suboptimal palliative care in closed awareness contexts seen in Asian, Islamic and Latin cultures, called closed dying. Second, palliative care and sedation therapy, but not euthanasia

  1. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    Science.gov (United States)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  2. Evaluation of Forest Health Conditions using Unmanned Aircraft Systems (UAS)

    Science.gov (United States)

    Hatfield, M. C.; Heutte, T. M.

    2016-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks, Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating capability of Unmanned Aerial Systems (UAS) to monitor forest health conditions in Alaska's Interior Region. In July 2016, the team deployed UAS at locations in the Tanana Valley near Fairbanks in order to familiarize FHP staff with capabilities of UAS for evaluating insect and disease damage. While many potential uses of UAS to evaluate and monitor forest health can be envisioned, this project focused on use of a small UAS for rapid assessment of insect and disease damage. Traditional ground-based methods are limited by distance from ground to canopy and inaccessibility of forest stands due to terrain conditions. Observation from fixed-wing aircraft provide a broad overview of conditions but are limited by minimum safe flying altitude (500' AGL) and aircraft speed ( 100 mph). UAS may provide a crucial bridge to fill in gaps between ground and airborne methods, and offer significant cost savings and greater flexibility over helicopter-based observations. Previous uses of UAS for forest health monitoring are limited - this project focuses on optimizing choice of vehicle, sensors, resolution and area scanned from different altitudes, and use of visual spectrum vs NIR image collection. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. Sites were chosen for conditions favorable to UAS operation and presence of forest insect and disease agents including spruce broom rust, aspen leaf miner, birch leaf roller, and willow leafblotch miner. A total of 29 flights were conducted with 9000+ images collected. Mission variables included camera height, UAS speed, and medium- (Sony NEX-7) vs low-resolution (GoPro Hero) cameras. Invaluable

  3. Analysis of Loss of Control Parameters for Aircraft Maneuvering in General Aviation

    Directory of Open Access Journals (Sweden)

    Sameer Ud-Din

    2018-01-01

    Full Text Available A rapid increase in the occurrence of loss of control in general aviation has raised concern in recent years. Loss of control (LOC pertains to unique characteristics in which external and internal events act in conjunction. The Federal Aviation Administration (FAA has approved an Integrated Safety Assessment Model (ISAM for evaluating safety in the National Airspace System (NAS. ISAM consists of an event sequence diagram (ESD with fault trees containing numerous parameters, which is recognized as casual risk model. In this paper, we outline an integrated risk assessment framework to model maneuvering through cross-examining external and internal events. The maneuvering is in the critical flight phase with a high number of LOC occurrences in general aviation, where highly trained and qualified pilots failed to maintain aircraft control irrespective of the preventive nature of the events. Various metrics have been presented for evaluating the significance of these parameters to identify the most important ones. The proposed sensitivity analysis considers the accident, fatality, and risk reduction frequencies that assist in the decision-making process and foresees future risks from a general aviation perspective.

  4. Birds and Aircraft on Midway Islands, 1956-57 Investigations

    Science.gov (United States)

    Kenyon, K.W.; Rice, D.W.; Robbins, C.S.; Aldrich, J.W.

    1958-01-01

    The purpose of this study is to determine the extent to which certain species of birds contribute to the hazard to aircraft at Midway; to learn more about the population dynamics and habits of these species to determine what type of control measures might be possible without endangering the species; and to test methods of control which are suggested. Most of the study has been devoted to the two species of albatrosses and the sooty terns nesting at Midway because of the current belief that these species offered the greatest danger to aircraft safety.

  5. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  6. 78 FR 37701 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes

    Science.gov (United States)

    2013-06-24

    ... Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for Pilatus Aircraft Ltd. Models PC-6, PC-6-H1, PC-6-H2, PC-6/350, PC- 6/350-H1, PC-6/350-H2... components and the flap actuator could result in loss of control. We are issuing this proposed AD to require...

  7. Suppression of Adverse Effects of GIC Using Controlled Variable Grounding Resistor

    Science.gov (United States)

    Abuhussein, A.; Ali, M. H.

    2016-12-01

    Geomagnetically induced current (GIC) has a harmful impact on power systems, with a large footprint. Mitigation strategies for the GIC are required to protect the integrity of the power system. To date, the adverse effects of GIC are being mitigated by either operational procedures or grounding fixed capacitors (GFCs). The operational procedures are uncertain, reduce systems' reliability, and increase energy losses. On the other hand, GFCs, incur voltage spikes, increase the transformer cost substantially, and require protection circuitry. This study investigates new possible approaches to cope with GIC, by using a controlled variable grounding resistor (CVGR), without interfering with the system's normal operation. In addition, the new techniques help suppress unsymmetrical faults in the power network. The controllability of the grounding resistor is applied using three different techniques: (1) a Parallel switch that is controlled by PI regulated duty cycle, (2) a Parallel switch that is triggered by a preset values in a look-up-table (LUT), and (3) a Mechanical resistor varied by a Fuzzy logic controller (FLC). The experimental results were obtained and validated using the MATLAB/SIMULINK software. A hypothetical power system that consists of a generator, a 765kv, 500 km long transmission lines connecting between a step-up, Δ-Yn, transformer, and a step-down, Yn-Δ, transformer, is considered. The performance of the CVGR is compared with that of the GFC under the cases of GIC event and unsymmetrical faults. From the simulation results, the following points are concluded: The CVGR effectively suppresses the GIC flowing in the system. Consequently, it protects the transformers from saturation and the rest of the system from collapsing. The CVGR also reduces the voltage and power swings associated with unsymmetrical faults and blocks the zero sequence current flowing through the neutral of the transformer. The performance of the CVGR surpasses that of the GFC in

  8. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  9. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  10. Congestion Pricing for Aircraft Pushback Slot Allocation

    Science.gov (United States)

    Zhang, Yaping

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the “external cost of surface congestion” is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm. PMID:28114429

  11. Congestion Pricing for Aircraft Pushback Slot Allocation.

    Science.gov (United States)

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  12. Congestion Pricing for Aircraft Pushback Slot Allocation.

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    Full Text Available In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  13. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    Science.gov (United States)

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  14. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    International Nuclear Information System (INIS)

    Lico, M.S.; Welch, A.H.

    1998-01-01

    100 μg/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 μg/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge.Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination.Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert.Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and southern San Joaquin Valley of California

  15. Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    Science.gov (United States)

    Yen, J. G.; Viswanathan, S.; Matthys, C. G.

    1976-01-01

    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.

  16. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  17. Predictive Flow Control to Minimize Convective Time Delays

    Science.gov (United States)

    2013-08-19

    external flows around air vehicles or ground based systems such as bridges and buildings, internal flows in pipes and propulsion systems, acoustical...3437, 1977. [4] Bridges , D. H., "The Asymmetric Vortex Wake Problem - Asking the Right Question," A/AA Paper 2006-3553, 2006. [5) Deng, X. Y., Tian, W...Aircraft, Vol. 42, No. 2, 2003, pp. 42~23. [8] Darden, L. and Komerath, N., "Forebody Vortex Control at High Incidence using a Moveable Nose Stagnation

  18. Combat Aircraft Maneuverability.

    Science.gov (United States)

    1981-12-01

    rodynamique, propulsion, rdsistance den structures, etc ... - lea m~thodes d’essaia an soufflerie, aur banca au aol, sur simulateurs. A un niveau de synthbse...Dunstan Graham, "Aircraft Dynamics and Automatic Control," Princeton University Press , Princeton, N.J., 1973. 9. Hoh, Roger H., Thomas T. Myers...discussion of the roll coupling problem" Progress in Aerospace Sciences, Vol 15, Pergamon Press , Oxford 1974 17-8 (6] R.W. KLOPPENSTEIN "Zeroes of

  19. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  20. Aircraft route forecasting under adverse weather conditions

    Directory of Open Access Journals (Sweden)

    Thomas Hauf

    2017-04-01

    Full Text Available In this paper storm nowcasts in the terminal manoeuvring area (TMA of Hong Kong International Airport are used to forecast deviation routes through a field of storms for arriving and departing aircraft. Storms were observed and nowcast by the nowcast system SWIRLS from the Hong Kong Observatory. Storms were considered as no-go zones for aircraft and deviation routes were determined with the DIVSIM software package. Two days (21 and 22 May 2011 with 22 actual flown routes were investigated. Flights were simulated with a nowcast issued at the time an aircraft entered the TMA or departed from the airport. These flights were compared with a posteriori simulations, in which all storm fields were known and circumnavigated. Both types of simulated routes were then compared with the actual flown routes. The qualitative comparison of the various routes revealed generally good agreement. Larger differences were found in more complex situations with many active storms in the TMA. Route differences resulted primarily from air traffic control measures imposed such as holdings, slow-downs and shortcuts, causing the largest differences between the estimated and actual landing time. Route differences could be enhanced as aircraft might be forced to circumnavigate a storm ahead in a different sense. The use of route forecasts to assist controllers coordinating flights in a complex moving storm field is discussed. The study emphasises the important application of storm nowcasts in aviation meteorology.

  1. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    Science.gov (United States)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  2. Broadband Internet Based Service to Passengers and Crew On-board Aircraft

    Science.gov (United States)

    Azzarelli, Tony

    2003-07-01

    The Connexion by BoeingSM (CbB) global network will provide broadband information services to aircraft passengers and crews. Through this Ku-band (14 GHz (uplink) and 11/12 GHz (downlink)) satellite-based system, aircraft passengers and crew will no longer be limited to pre-packaged services, but instead will be able to access the full range of broadband services from their seats using their laptop, PDA or the on-board IFE console.The kind of services offered to passengers are based on the internet/intranet access via their own laptops and PDA (using Ethernet wired cable, or wireless 802.11b access), while those offered to the crew can range between various crew application (such as weather updates and travel information) and aircraft health monitoring.The CbB system is divided into four basic layers of infrastructure:(1) an airborne segment, i.e. the Aircraft Earth Station (AES) consisting of proprietary high gain antenna, transceivers and other on-board subsystems providing a nominal return link data rate of 1 Mbps and a forward link data rates up to 20 Mbps;(2) a space segment consisting of leased satellite transponders on existing in-orbit Geostationary satellites;(3) a ground segment consisting of one or more leased satellite land earth stations (LESs) and redundant interconnection facilities; and;(4) a network operations centre (NOC) segment.During 2003, trials with Lufthansa (DLH) and British Airways (BA) have proved very successful. This has resulted in the recent signing of an agreement with Lufthansa which calls for the Connexion by BoeingSM service to be installed on Lufthansa's fleet of approximately 80 long-haul aircraft, including Boeing 747-400 and Airbus A330 and A340 aircraft, beginning in early 2004. BA is expected to follow soon. In addition to the successful recent service demonstrations, both Japan Airlines (JAL) and Scandinavian Airlines System (SAS) have announced their intent to install the revolutionary service on their long-range aircraft.

  3. Safety and Convergence Analysis of Intersecting Aircraft Flows Under Decentralized Collision Avoidance

    Science.gov (United States)

    Dallal, Ahmed H.

    Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.

  4. Take-off and Landing Using Ground Based Power - Landing Simulations Using Multibody Dynamics

    NARCIS (Netherlands)

    Wu, P.; Voskuijl, M.; Van Tooren, M.J.L.

    2014-01-01

    A novel take-off and landing system using ground based power is proposed in the EUFP7 project GABRIEL. The proposed system has the potential benefit to reduce aircraft weight, emissions and noise. A preliminary investigation of the feasibility of the structural design of the connection mechanism

  5. Service-oriented architecture for the ARGOS instrument control software

    Science.gov (United States)

    Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian

    2012-09-01

    The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.

  6. Analysis of Radar and ADS-B Influences on Aircraft Detect and Avoid (DAA Systems

    Directory of Open Access Journals (Sweden)

    William Semke

    2017-09-01

    Full Text Available Detect and Avoid (DAA systems are complex communication and locational technologies comprising multiple independent components. DAA technologies support communications between ground-based and space-based operations with aircraft. Both manned and unmanned aircraft systems (UAS rely on DAA communication and location technologies for safe flight operations. We examined the occurrence and duration of communication losses between radar and automatic dependent surveillance–broadcast (ADS-B systems with aircraft operating in proximate airspace using data collected during actual flight operations. Our objectives were to identify the number and duration of communication losses for both radar and ADS-B systems that occurred within a discrete time period. We also investigated whether other unique communication behavior and anomalies were occurring, such as reported elevation deviations. We found that loss of communication with both radar and ADS-B systems does occur, with variation in the length of communication losses. We also discovered that other unexpected behaviors were occurring with communications. Although our data were gathered from manned aircraft, there are also implications for UAS that are operating within active airspaces. We are unaware of any previously published work on occurrence and duration of communication losses between radar and ADS-B systems.

  7. Practices to identify and preclude adverse Aircraft-and-Rotorcraft-Pilot Couplings - A design perspective

    Science.gov (United States)

    Pavel, Marilena D.; Masarati, Pierangelo; Gennaretti, Massimo; Jump, Michael; Zaichik, Larisa; Dang-Vu, Binh; Lu, Linghai; Yilmaz, Deniz; Quaranta, Giuseppe; Ionita, Achim; Serafini, Jacopo

    2015-07-01

    Understanding, predicting and supressing the inadvertent aircraft oscillations caused by Aircraft/Rotorcraft Pilot Couplings (A/RPC) is a challenging problem for designers. These are potential instabilities that arise from the effort of controlling aircraft with high response actuation systems. The present paper reviews, updates and discusses desirable practices to be used during the design process for unmasking A/RPC phenomena. These practices are stemming from the European Commission project ARISTOTEL Aircraft and Rotorcraft Pilot Couplings - Tools and Techniques for Alleviation and Detection (2010-2013) and are mainly related to aerodynamic and structural modelling of the aircraft/rotorcraft, pilot modelling and A/RPC prediction criteria. The paper proposes new methodologies for precluding adverse A/RPCs events taking into account the aeroelasticity of the structure and pilot biodynamic interaction. It is demonstrated that high-frequency accelerations due to structural elasticity cause negative effects on pilot control, since they lead to involuntary body and limb-manipulator system displacements and interfere with pilot's deliberate control activity (biodynamic interaction) and, finally, worsen handling quality ratings.

  8. Frequency Analysis of Aircraft hazards for License Application

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards

  9. Frequency Analysis of Aircraft hazards for License Application

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  10. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  11. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J; Schaefer, K [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1998-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  12. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    Science.gov (United States)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  13. Large eddy simulation of air pollution produced by aircraft engine emissions inside the airport

    Energy Technology Data Exchange (ETDEWEB)

    Synylo, Kateryna [National Aviation University (Ukraine)], email: synylo@nau.edu.ua

    2011-07-01

    With the increase of air traffic movement, air pollution from airport emissions has become an important concern. In the past, various research has been undertaken on the impact of aircraft engines on the upper troposphere and lower stratosphere, however the impact that emissions have on airports themselves is not taken into account by the most frequently used monitoring software programs. The aim of this paper is to present the use of a CFD simulation to determine the dynamic and fluid mechanics characteristics of aircraft emissions near the ground. The CFD simulation was carried out using Fluent 6.3 software and the effects of counter-rotating vortices and wind conditions on fulfilled gases jet. It was found that numerical simulation is able to resolve difficult equations and provide realistic results. This study demonstrated that the use of CFD computation could be used to improve local air quality modeling and assessment of the impact of aircraft emissions at airports.

  14. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the

  15. DETERMINE THE PROBABILITY OF PASSENGER SURVIVAL IN AN AVIATION INCIDENT WITH FIRE ON THE GROUND

    Directory of Open Access Journals (Sweden)

    Vladislav Pavlovich Turko

    2017-05-01

    Full Text Available Conducting the risk level of aviation incident with fire and the impacts of contingence affecting factors on people. Base on statistical data of aviation incident, the model of aircraft fire situation on the ground was offer.

  16. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  17. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  18. Aircraft Segmentation in SAR Images Based on Improved Active Shape Model

    Science.gov (United States)

    Zhang, X.; Xiong, B.; Kuang, G.

    2018-04-01

    In SAR image interpretation, aircrafts are the important targets arousing much attention. However, it is far from easy to segment an aircraft from the background completely and precisely in SAR images. Because of the complex structure, different kinds of electromagnetic scattering take place on the aircraft surfaces. As a result, aircraft targets usually appear to be inhomogeneous and disconnected. It is a good idea to extract an aircraft target by the active shape model (ASM), since combination of the geometric information controls variations of the shape during the contour evolution. However, linear dimensionality reduction, used in classic ACM, makes the model rigid. It brings much trouble to segment different types of aircrafts. Aiming at this problem, an improved ACM based on ISOMAP is proposed in this paper. ISOMAP algorithm is used to extract the shape information of the training set and make the model flexible enough to deal with different aircrafts. The experiments based on real SAR data shows that the proposed method achieves obvious improvement in accuracy.

  19. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    Science.gov (United States)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  20. Lessons learned on the Ground Test Accelerator control system

    International Nuclear Information System (INIS)

    Kozubal, A.J.; Weiss, R.E.

    1994-01-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers' toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ''Experimental Physics and Industrial Control System'' (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects