WorldWideScience

Sample records for controlled vapor transport

  1. The control of purity and stoichiometry of compound semiconductors by high vapor pressure transport

    Science.gov (United States)

    Bachmann, Klaus J.; Ito, Kazufumi; Scroggs, Jeffery S.; Tran, Hien T.

    1995-01-01

    In this report we summarize the results of a three year research program on high pressure vapor transport (HPVT) of compound semiconductors. Most of our work focused onto pnictides, in particular ZnGeP2, as a model system. Access to single crystals of well controlled composition of this material is desired for advancing the understanding and control of its point defect chemistry in the contest of remote, real-time sensing of trace impurities, e.g., greenhouse gases, in the atmosphere by ZnGeP2 optical parametric oscillators (OPO's).

  2. Optimization of mercuric iodide platelets growth by the polymer controlled vapor transport method

    Directory of Open Access Journals (Sweden)

    Fornaro L.

    1999-01-01

    Full Text Available Mercuric iodide crystals in their platelet habit were grown by the polymer controlled vapor transport method. Mercuric iodide 99% in purity was sublimated at temperatures about 122 - 126 °C and vacuum conditions (10-5 mmHg, after selecting an appropriate polymer. Temperature profiles and experimental heat transfer models were determined for two growth furnaces using different insulator configurations for the cold extreme (air, ceramic wool, grilon, copper and ceramic wool. Growth conditions for few and separate nucleation points and large crystals were determined. Representative samples were characterized by optical microscopy and by measuring the current density and apparent resistivity of the material. Future optimization and comparisons with others mercuric iodide crystal growth methods are included.

  3. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  4. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  5. Vapor-phase heat-transport system

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.

    1983-01-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  6. Prediction of water vapor transport rates across polyvinylchloride packaging systems using a novel radiotracer method

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.W.; Mulski, M.J.; Kuu, W.Y. (Baxter Healthcare Corporation, Round Lake, IL (USA))

    1990-09-01

    A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.

  7. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  8. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  9. 33 CFR 154.808 - Vapor control system, general.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor control system, general... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.808 Vapor control system, general. (a) A vapor control system design and installation must...

  10. Io Volcanism: Modeling Vapor And Heat Transport

    Science.gov (United States)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  11. Vapor-modulated heat pipe for improved temperature control

    Science.gov (United States)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  12. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or...

  13. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or...

  14. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  15. Vapor transport through short hydrophobic nanopores for desalination

    Science.gov (United States)

    Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Rahman, Faizur; Karnik, Rohit

    2011-11-01

    We propose a concept for desalination of water by reverse osmosis (RO) using a vapor-trapping membrane composed of short hydrophobic nanopores and separates the salt water (feed) and the fresh water (permeate) on each side. The feed water is vaporized by applied pressure and the water vapor condenses on the permeate side accompanied by recovery of latent heat. A probabilistic model based on rarified gas conditions predicted 3-5 times larger mass flux by the proposed membrane than conventional RO membranes at temperatures in the range of 30-50C. To realize the short hydrophobic nanopores, gold was deposited at the entrance of alumina pores followed by SAM formation. The fraction of leaking pores was confirmed to be less than 0.2% using a calcium ion indicator (Fluo-4). Finally, a microfluidic flow cell was fabricated for characterizing the transport properties of the membranes. The authors would like to thank the King Fahd University of Petroleum and Minerals in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM.

  16. Projections of Horizontal Water Vapor Transport across Europe

    Science.gov (United States)

    Lavers, D. A.

    2015-12-01

    With a warming Earth's atmosphere, the global water cycle is expected to intensify, a process that is likely to yield changes in the frequency and intensity of hydrological extremes. To quantify such changes over Europe, most previous research has been based upon precipitation scenarios. However, seldom has the horizontal water vapor transport (integrated vapor transport IVT) been investigated, a key variable responsible for heavy precipitation events and one that links water source and sink regions. It is hence the aim of this study to assess the projections of IVT across Europe. The Climate Model Intercomparison Project Phase 5 (CMIP5) is the source of the climate model projections. The historical simulations (1979-2005) and two emissions scenarios (2073-2099), or representative concentration pathways (RCP4.5 and RCP8.5) from 22 global circulation models were retrieved and evaluated. In particular, at model grid points across Europe the mean, standard deviation, and the 95th percentile of IVT were calculated for December, January, and February (Boreal winter); and for June, July, and August (Austral winter). The CMIP5 historical multi-model mean closely resembles the ECMWF ERA-Interim reanalysis. In the future under the two emissions scenarios, the IVT increases in magnitude, with the highest percentage changes occurring in the extreme emissions (RCP8.5) scenario; for example, multi-model mean IVT increases of 30% are found in the domain. An evaluation of the low-altitude moisture and winds indicates that higher atmospheric water vapor content is the primary cause of these projected changes.

  17. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  18. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  19. Nanostructured zinc oxide thin film by simple vapor transport deposition

    Science.gov (United States)

    Athma, P. V.; Martinez, Arturo I.; Johns, N.; Safeera, T. A.; Reshmi, R.; Anila, E. I.

    2015-09-01

    Zinc oxide (ZnO) nanostructures find applications in optoelectronic devices, photo voltaic displays and sensors. In this work zinc oxide nanostructures in different forms like nanorods, tripods and tetrapods have been synthesized by thermal evaporation of zinc metal and subsequent deposition on a glass substrate by vapor transport in the presence of oxygen. It is a comparatively simpler and environment friendly technique for the preparation of thin films. The structure, morphology and optical properties of the synthesized nanostructured thin film were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL). The film exhibited bluish white emission with Commission International d'Eclairage (CIE) coordinates x = 0.22, y = 0.31.

  20. Controlling the vapor pressure of a mercury lamp

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  1. A new productivity function and stability criterion in chemical vapor transport processes

    NARCIS (Netherlands)

    Klosse, K.

    1975-01-01

    The crystal growth rate in a chemical vapor transport process using a closed system is analyzed on the basis of a one-dimensional configuration. A simplified model of vapor transport enables one to obtain a set of equations yielding the rates of reaction without a complete evaluation of the partial

  2. Interannual and Interdecadal Variability of Atmospheric Water Vapor Transport in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    WEI Jie; LIN Zhao-Hui; XIA Jun; TAO Shi-Yan

    2005-01-01

    The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.

  3. Pore scale mechanisms for enhanced vapor transport through partially saturated porous media

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-05-01

    Recent theoretical and experimental studies of vapor transport through porous media question the existence and significance of vapor transport enhancement mechanisms postulated by Philip and de Vries. Several enhancement mechanisms were proposed to rectify shortcomings of continuum models and to reconcile discrepancies between predicted and observed vapor fluxes. The absence of direct experimental and theoretical confirmation of these commonly invoked pore scale mechanisms prompted alternate explanations considering the (often neglected) role of transport via capillary connected pathways. The objective of this work was to quantify the specific roles of liquid bridges and of local thermal and capillary gradients on vapor transport at the pore scale. We considered a mechanistic pore scale model of evaporation and condensation dynamics as a building block for quantifying vapor diffusion through partially saturated porous media. Simulations of vapor diffusion in the presence of isolated liquid phase bridges reveal that the so-called enhanced vapor diffusion under isothermal conditions reflects a reduced gaseous diffusion path length. The presence of a thermal gradient may augment or hinder this effect depending on the direction of thermal relative to capillary gradients. As liquid phase saturation increases, capillary transport becomes significant and pore scale vapor enhancement is limited to low water contents as postulated by Philip and deVries. Calculations show that with assistance of a mild thermal gradient water vapor flux could be doubled relative to diffusion of an inert gas through the same system.

  4. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  5. Vapor transport and sublimation on Mullins Glacier, Antarctica

    Science.gov (United States)

    Lamp, J. L.; Marchant, D. R.

    2017-05-01

    We utilize an environmental chamber capable of recreating the extreme polar conditions of the McMurdo Dry Valleys (MDV) of Antarctica to investigate the sublimation rate of the Mullins Valley debris-covered glacier (hereafter Mullins Glacier), reportedly one of the oldest debris-covered alpine glaciers in the world. We measure ice loss via sublimation beneath sediment thicknesses ranging from 0 to 69 mm; from this, we determine an effective diffusivity for Fickian vapor transport through Mullins till of (5.2 ± 0.3) ×10-6 m2s-1 at -10 °C. We use this value, coupled with micrometeorological data from Mullins Valley (atmospheric temperature, relative humidity, and soil temperature) to model the sublimation rate of buried glacier ice near the terminus of Mullins Glacier, where the overlying till thickness approaches 70 cm. We find that the ice-lowering rate during the modeled year (2011) was 0.066 mm under 70 cm of till, a value which is in line with previous estimates for exceedingly slow rates of ice sublimation. These results provide further evidence supporting the probable antiquity of Mullins Glacier ice and overall landscape stability in upland regions of the MDV.

  6. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074

    NARCIS (Netherlands)

    Potreck, Jens; Nijmeijer, Dorothea C.; Kosinski, Thomas; Wessling, Matthias

    2009-01-01

    This work investigates the transport behavior of a hydrophilic, highly permeable type of poly ethylene oxide (PEO)-based block copolymer (PEBAX® 1074) as membrane material for the removal of water vapor from light gases. Water vapor sorption isotherms in PEBAX® 1074 represent Flory–Huggins type of s

  7. The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1- x Sr x Co y Fe1- y O3- δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Marcano, D.; Mauer, G.; Sohn, Y. J.; Vaßen, R.; Garcia-Fayos, J.; Serra, J. M.

    2016-04-01

    La0.58Sr0.4Co0.2Fe0.8O3 - δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases.

  8. The influence of stoichiometry on electrical properties of silicon carbide grown by physical vapor transport process

    Science.gov (United States)

    Li, Qiang

    The purposes of this thesis were to investigate the influence of the vapor phase stoichiometry in the ambient on electrical properties of silicon carbide grown by physical vapor transport (PVT) process in order to provide a better understanding of the nature of the compensation mechanisms in semi-insulating SiC crystals. Standard PVT and hydrogen-assisted PVT processes have been used to grow SiC single crystals. Chemical elemental analysis, contactless resistivity mapping (COREMA), temperature dependent Hall measurements (TDH), deep level transient spectroscopy (DLTS), and minority diffusion length measurements were performed to characterize the properties of SiC wafers. The nitrogen contamination, the net carrier concentrations, and the concentrations of the major deep traps in the undoped and nitrogen-doped SiC crystals were found to substantially decrease during the standard PVT growth when moving from seed to tail of the crystal. Addition of hydrogen to the growth ambient changed all the properties in the same direction. As a consequence of the doping and deep traps variations, the electrical properties including resistivity, Fermi energy, and minority carrier lifetime continuously changed during the growth. The results of the hydrogen-assisted PVT growth and the virtual reactor growth modeling indicated that the electrical properties change as a function of stoichiometry in the vapor phase, and the carbon transport efficiency can be enhanced by the reactions of hydrogen with the SiC charge material and the graphite parts of the crucible. Thermodynamic calculation of the vapor phase stoichiometry and the studies of the properties of H2-assisted PVT-grown crystals have shown that hydrogen can be used as a key factor controlling the vapor phase stoichiometry in the PVT process; in this manner the purity, electrical uniformities and the yield of the semi-insulating wafers can be improved to a great extent. The electron mobility values were found unusually low in

  9. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Mulder, M.H.V.; Wessling, Matthias

    2005-01-01

    This paper studies the mass transport properties for water vapor and nitrogen for a series of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) multi-block copolymers via: (a) the permeation of a water vapor/N2 mixture (b) the sorption of water vapor, (c) the diffusion of water vapor, (d

  10. Calculation of transport coefficients of air-water vapor mixtures thermal plasmas used in circuit breakers

    Directory of Open Access Journals (Sweden)

    KOHIO Niéssan

    2014-12-01

    Full Text Available In this paper we calculate the transport coefficients of plasmas formed by air and water vapor mixtures. The calculation, which assume local thermodynamic equilibrium (LTE are performed in the temperature range from 500 to 12000 K. We use the Gibbs free energy minimization method to determine the equilibrium composition of the plasmas, which is necessary to calculate the transport coefficients. We use the Chapman-Enskog method to calculate the transport coefficients. The results are presented and discussed according to the rate of water vapor. The results of the total thermal conductivity and electrical conductivity show in particular that the increasing of the rate of water vapor in air can be interesting for power cut. This could be improve the performance of plasma during current breaking in air contaminate by the water vapor.

  11. Control structure selection for vapor compression refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohong; Li, Shaoyuan [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Shandong Jianzhu Univ., Jinan (China). School of Information and Electrical Engineering; Cai, Wenjian; Ding, Xudong [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2013-07-01

    A control structure selection criterion which can be used to evaluate the control performance of different control structures for the vapor compression refrigeration cycle is proposed in this paper. The calculation results of the proposed criterion based on the different reduction models are utilized to determine the optimized control model structure. The effectiveness of the criterion is verified by the control effects of the model predictive control (MPC) controllers which are designed based on different model structures. The response of the different controllers applied on the actual vapor compression refrigeration system indicate that the best model structure is in consistent with the one obtained by the proposed structure selection criterion which is a trade-off between computation complexity and control performance.

  12. A Satellite-Derived Upper-Tropospheric Water Vapor Transport Index for Climate Studies

    Science.gov (United States)

    Jedlovec, Gray J.; Lerner, Jeffrey A.; Atkinson, Robert J.

    1998-01-01

    A new approach is presented to quantify upper-level moisture transport from geostationary satellite data. Daily time sequences of Geostationary Operational Environmental Satellite GOES-7 water vapor imagery were used to produce estimates of winds and water vapor mixing ratio in the cloud-free region of the upper troposphere sensed by the 6.7- microns water vapor channel. The winds and mixing ratio values were gridded and then combined to produce a parameter called the water vapor transport index (WVTI), which represents the magnitude of the two-dimensional transport of water vapor in the upper troposphere. Daily grids of WVTI, meridional moisture transport, mixing ratio, pressure, and other associated parameters were averaged to produce monthly fields for June, July, and August (JJA) of 1987 and 1988 over the Americas and surrounding oceanic regions, The WVTI was used to compare upper-tropospheric moisture transport between the summers of 1987 and 1988, contrasting the latter part of the 1986/87 El Nino event and the La Nina period of 1988. A similar product derived from the National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 40-Year Reanalysis Project was used to help to validate the index. Although the goal of this research was to describe the formulation and utility of the WVTI, considerable insight was obtained into the interannual variability of upper-level water vapor transport. Both datasets showed large upper-level water vapor transport associated with synoptic features over the Americas and with outflow from tropical convective systems. Minimal transport occurred over tropical and subtropical high pressure regions where winds were light. Index values from NCEP-NCAR were 2-3 times larger than that determined from GOES. This difference resulted from large zonal wind differences and an apparent overestimate of upper-tropospheric moisture in the reanalysis model. A comparison of the satellite-derived monthly

  13. Hierarchical Process Control of Chemical Vapor Infiltration.

    Science.gov (United States)

    1995-05-31

    in these variables with reference to Figure 8. Conventional PID controllers are beneficially employed at this level in order to retain industry...to achieve minimum controlled-variable variations. PID controllers are beneficially employed at this level to retain industry standard functions useful

  14. PREVENTION AND CONTROL OF DIMETHYLAMINE VAPORS EMISSION: HERBICIDE PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    Zorana Arsenijević

    2008-11-01

    Full Text Available The widely used herbicide, dimethylamine salt of 2,4-dichlorophenoxy acetic acid (2,4-D-DMA, is usually prepared by mixing a dimethylamine (DMA aqueous solution with a solid 2,4-dichlorophenoxy acetic acid (2,4-D. The vapors of the both, reactants and products, are potentially hazardous for the environment. The contribution of DMA vapors in overall pollution from this process is most significant, concerning vapor pressures data of these pollutants. Therefore, the control of the air pollution in the manufacture and handling of methylamines is very important. Within this paper, the optimal air pollution control system in preparation of 2,4-D-DMA was developed for the pesticides manufacturing industry. This study employed the simple pollution prevention concept to reduce the emission of DMA vapors at the source. The investigations were performed on the pilot plant scale. To reduce the emission of DMA vapors, the effluent gases from the herbicide preparation zone were passed through the packed bed scrubber (water - scrubbing medium, and the catalytic reactor in sequence. The end result is a substantially improved air quality in the working area, as well as in the urbanized areas located near the chemical plant.

  15. Experimental Study of the Low Supersaturation Nucleation in Crystal Growth by Contactless Physical Vapor Transport

    Science.gov (United States)

    Grasza, K.; Palosz, W.; Trivedi, S. B.

    1998-01-01

    The process of the development of the nuclei and of subsequent seeding in 'contactless' physical vapor transport is investigated experimentally. Consecutive stages of the Low Supersaturation Nucleation in 'contactless' geometry for growth of CdTe crystals from the vapor are shown. The effects of the temperature field, geometry of the system, and experimental procedures on the process are presented and discussed. The experimental results are found to be consistent with our earlier numerical modeling results.

  16. Influence of Hydration State on Permeation Testing and Vapor Transport Properties of Protective Clothing Layers

    Directory of Open Access Journals (Sweden)

    Phillip W. Gibson, Ph.D

    2009-12-01

    Full Text Available Protective clothing systems composed ofpermselective polymer film laminates are analternative to standard air-permeable garments basedon activated carbon. These polymer layers aredesigned with high water vapor permeation rates andlow permeation of chemical warfare agents. Polymerfilms that have a significant water vapor flux usuallyalso have an affinity for water, and will hydrate andswell significantly at high humidity levels. Thepolymer film’s increase in water content has thepotential to affect the transport rate of chemicalwarfare agents in vapor and liquid form, and usuallyalso has a large effect on the intrinsic water vaporpermeability of the membrane.

  17. Vapor transport deposition of large-area polycrystalline CdTe for radiation image sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Keedong; Cha, Bokyung; Heo, Duchang; Jeon, Sungchae [Korea Electrotechnology Research Institute, 111 Hanggaul-ro, Ansan-si, Gyeonggi-do 426-170 (Korea, Republic of)

    2014-07-15

    Vapor transport deposition (VTD) process delivers saturated vapor to substrate, resulting in high-throughput and scalable process. In addition, VTD can maintain lower substrate temperature than close-spaced sublimation (CSS). The motivation of this work is to adopt several advantages of VTD for radiation image sensor application. Polycrystalline CdTe films were obtained on 300 mm x 300 mm indium tin oxide (ITO) coated glass. The polycrystalline CdTe film has columnar structure with average grain size of 3 μm ∝ 9 μm, which can be controlled by changing the substrate temperature. In order to analyze electrical and X-ray characteristics, ITO-CdTe-Al sandwich structured device was fabricated. Effective resistivity of the polycrystalline CdTe film was ∝1.4 x 10{sup 9}Ωcm. The device was operated under hole-collection mode. The responsivity and the μτ product estimated to be 6.8 μC/cm{sup 2}R and 5.5 x 10{sup -7} cm{sup 2}/V. The VTD can be a process of choice for monolithic integration of CdTe thick film for radiation image sensor and CMOS/TFT circuitry. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China

    Institute of Scientific and Technical Information of China (English)

    SUN Bo; ZHU Yali; WANG Huijun

    2011-01-01

    The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies.

  19. Growth kinetics and morphology of mercuric iodide crystals grown by physical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Nason, D. [TN Technologies, Round Rock, TX (United States); Mihalik, G. [Siemens Solar Inc., Vancouver, Washington (United States); Monchamp, R. [ROMOCO, Santa Barbara, California (United States)

    1997-06-02

    The growth kinetics of mercuric iodide single crystals grown by physical vapor transport from synthesized material were measured using an instrumented growth ampoule, and in situ crystal size resolution to {+-}0.2{mu}m was achieved. The kinetic coefficients are 2x10{sup -4}mm/s and 1.3x10{sup -4}mm/s for (001) and (110), respectively, as found from extrapolating the measured (apparent) kinetic coefficients to zero crystal size. The kinetic coefficients are nearly independent of growth rate in the practical range, {approx}1-5mm/day, indicating linear growth kinetics, and have substantial temperature coefficients of 0.3x10{sup -6}mm/(sC) and 0.4x10{sup -6}mm/(sC), respectively. The results indicate that the growth process is kinetically controlled at small crystal sizes and undergoes a transition to transport control at {approx}30-40mm crystal size, depending on the particular face. The results are consistent with a layer spreading process of growth in which adsorbed molecules surface-diffuse with activation energies congruent with 4kcal/mol and congruent with 8kcal/mol for (001) and (110), respectively

  20. Impact of freeze-drying, mixing and horizontal transport on water vapor in the upper troposphere and lower stratosphere (UTLS)

    Science.gov (United States)

    Poshyvailo, Liubov; Ploeger, Felix; Müller, Rolf; Tao, Mengchu; Konopka, Paul; Abdoulaye Diallo, Mohamadou; Grooß, Jens-Uwe; Günther, Gebhard; Riese, Martin

    2017-04-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) is a key player in the global radiation budget. Therefore, a realistic representation of the water vapor distribution in this region and the involved control processes is critical for climate models, but largely uncertain hitherto. It is known that the extremely low temperatures around the tropical tropopause cause the dominant factor controlling water vapor in the lower stratosphere. Here, we focus on additional processes, such as horizontal transport between tropics and extratropics, small-scale mixing, and freeze-drying. We assess the sensitivities of simulated water vapor in the UTLS from simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). CLaMS is a Lagrangian transport model, with a parameterization of small-scale mixing (model diffusion) which is coupled to deformations in the large-scale flow. First, to assess the robustness of water vapor with respect to the meteorological datasets we examine CLaMS driven by ECMWF ERA-Interim and the Japanese 55-year reanalysis. Second, to investigate the effects of small-scale mixing we vary the parameterized mixing strength in the CLaMS model between the reference case with the mixing strength optimized to reproduce atmospheric trace gas observations and a purely advective simulation with parameterized mixing turned off. Also calculation of Lagrangian cold points gives further insight of the processes involved. Third, to assess the effects of horizontal transport between the tropics and extratropics we carry out sensitivity simulations with horizontal transport barriers along latitude circles at the equator, 15°N/S and 35°N/S. Finally, the impact of Antarctic dehydration is estimated from additional sensitivity simulations with switched off freeze-drying in the model at high latitudes of 50°N/S. Our results show that the uncertainty in the tropical tropopause temperatures between current reanalysis datasets causes significant

  1. Energy and water vapor transport across a simplified cloud-clear air interface

    CERN Document Server

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  2. Operational Control of Internal Transport

    NARCIS (Netherlands)

    J.R. van der Meer (Robert)

    2000-01-01

    textabstractOperational Control of Internal Transport considers the control of guided vehicles in vehicle-based internal transport systems found in facilities such as warehouses, production plants, distribution centers and transshipment terminals. The author's interest of research having direct use

  3. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps

    Science.gov (United States)

    Mattingly, Kyle S.; Ramseyer, Craig A.; Rosen, Joshua J.; Mote, Thomas L.; Muthyala, Rohi

    2016-09-01

    The Greenland Ice Sheet (GrIS) has been losing mass in recent decades, with an acceleration in mass loss since 2000. In this study, we apply a self-organizing map classification to integrated vapor transport data from the ERA-Interim reanalysis to determine if these GrIS mass loss trends are linked to increases in moisture transport to Greenland. We find that "moist" days (i.e., days featuring anomalously intense water vapor transport to Greenland) were significantly more common during 2000-2015 compared to 1979-1994. Furthermore, the two most intense GrIS melt seasons during the last 36 years were either preceded by a record percentage of moist winter days (2010) or occurred during a summer with a record frequency of moist days (2012). We hypothesize that moisture transport events alter the GrIS energy budget by increasing downwelling longwave radiation and turbulent fluxes of sensible and latent energy.

  4. Water vapor and gas transport through a poly (butylene terephthalate) poly (ethylene oxide) block copolymer

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    In this paper the transport behavior of water vapor and nitrogen in a poly(butylene terephthalate) poly (ethylene oxide) block copolymer is discussed. This polymer has a high solubility for water (300 cm3 (STP)/cm3 polymer at activity 0.9). A new permeation set up has been built to determine the wat

  5. Gravity-driven convection studies in compound semiconductor crystal growth by physical vapor transport

    Science.gov (United States)

    Zoutendyk, J. A.; Akutagawa, W. M.

    1982-01-01

    Experimental results are summarized, and it is pointed out that gravity-driven convection can alter the diffusive-advective mass transport behavior in the growth of crystals by physical vapor transport. Specially designed and constructed transparent furnaces are described which are being used to study the effects of gravity in the crystal growth of the compound semiconductors PbTe and CdTe. The theory underlying vapor transport behavior is reviewed, with attention given to the vapor-solid behavior of compound materials, to one-dimensional mass transport, and to gravity-induced (natural) convection. In the transparent furnaces, the quartz capillary tube mounted along the axis of the main quartz ampoule is used to measure the temperature at the growth surface (vapor-solid crystal interface) and the source, as well as the complete temperature profile along the axis of the tube. The light-pipe works to remove heat from the growth end of the ampoule by radiative heat transfer. The ampoules are sealed after being evacuated to the low 10 to the -8th torr range with a cryogenic vacuum pump.

  6. 46 CFR 39.10-13 - Submission of vapor control system designs-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Submission of vapor control system designs-TB/ALL. 39.10-13 Section 39.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.10-13 Submission of vapor control system designs—TB/ALL. (a) Plans, calculations, and...

  7. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  8. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    Science.gov (United States)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  9. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates.

    Science.gov (United States)

    Yu, Dongshan; Trad, Tarek; McLeskey, James T; Craciun, Valentin; Taylor, Curtis R

    2010-05-28

    Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20-80 nm in diameter, up to 6 μm in length, density oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  10. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  11. HSUPA Transport Network Congestion Control

    Directory of Open Access Journals (Sweden)

    Szilveszter Nádas

    2009-01-01

    Full Text Available The introduction of High Speed Uplink Packet Access (HSUPA greatly improves achievable uplink bitrate but it presents new challenges to be solved in the WCDMA radio access network. In the transport network, bandwidth reservation for HSUPA is not efficient and TCP cannot efficiently resolve congestion because of lower layer retransmissions. This paper proposes an HSUPA transport network flow control algorithm that handles congestion situations efficiently and supports Quality of Service differentiation. In the Radio Network Controller (RNC, transport network congestion is detected. Relying on the standardized control frame, the RNC notifies the Node B about transport network congestion. In case of transport network congestion, the Node B part of the HSUPA flow control instructs the air interface scheduler to reduce the bitrate of the flow to eliminate congestion. The performance analysis concentrates on transport network limited scenarios. It is shown that TCP cannot provide efficient congestion control. The proposed algorithm can achieve high end-user perceived throughput, while maintaining low delay, loss, and good fairness in the transport network.

  12. Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport

    Science.gov (United States)

    Babu, Eadi Sunil; Kim, Sungjin; Song, Jung-Hoon; Hong, Soon-Ku

    2016-08-01

    The effect of growth pressure on the morphology of the ZnO nanostructures in chemical vapor transport by using Zn powder and oxygen as source materials has been investigated. Highly uniform aligned ZnO nanorods or multifaceted tripod structures were grown depending on the growth pressure. The mechanism governing the morphology change was explained by the relative concentration of Zn vapor and supersaturation based on experimental observations. It was concluded that heterogeneous nucleation on the substrate is enhanced at low growth pressure, while homogeneous nucleation from vapor phase is enhanced at high growth pressure. The difference resulted in different morphology of ZnO nanostructures. ZnO nanorods grown at optimized condition were used for the fabrication of gas sensor for the detection of H2 gas.

  13. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  14. Synthesis of AgGaGeS4 polycrystalline materials by vapor transporting and mechanical oscillation method

    Science.gov (United States)

    Huang, Wei; Zhao, Beijun; Zhu, Shifu; He, Zhiyu; Chen, Baojun; Pu, Yunxiao; Lin, Li; Zhao, Zhangrui; Zhong, Yikai

    2017-06-01

    Single-phase AgGaGeS4 polycrystalline materials were synthesized directly from the constituent elements by vapor transporting and mechanical oscillation method. The problem of explosions was solved by careful control of the heating and cooling cycle and adopting the two-zone rocking furnace with specially designed temperature profile. The mechanical and temperature oscillations, as well as gradient cooling, were introduced in the synthesis process. The X-ray diffraction (XRD) analysis and Energy Dispersive Spectrometer (EDS) micro analysis indicated that the synthesized compound is a single-phase AgGaGeS4 polycrystalline material.

  15. Bubble-Facilitated VOC Transport from LNAPL Smear Zones and Its Potential Effect on Vapor Intrusion.

    Science.gov (United States)

    Soucy, Nicole C; Mumford, Kevin G

    2017-02-10

    Most conceptual and mathematical models of soil vapor intrusion assume that the transport of volatile organic compounds (VOCs) from a source toward a building is limited by diffusion through the soil gas. Under conditions where advection occurs, transport rates are higher and can lead to higher indoor air concentrations. Advection-dominated conditions can be created by gas bubble flow in the saturated zone. A series of laboratory column experiments were conducted to measure mass flux due to bubble-facilitated VOC transport from light nonaqueous phase liquid (LNAPL) smear zones. Smear zones that contained both LNAPL residual and trapped gas, as well as those that contained only LNAPL residual, were investigated. Results showed that the VOC mass flux due to bubble-facilitated transport was orders-of-magnitude higher than under diffusion-limited conditions. Results also showed that the mass flux due to bubble-facilitated transport was intermittent, and increased with an increased supply of dissolved gases.

  16. Solar geoengineering, atmospheric water vapor transport, and land plants

    Science.gov (United States)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  17. Final Report: Vapor Transport Deposition for Thin Film III-V Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, Shannon [Univ. of Oregon, Eugene, OR (United States); Greenaway, Ann [Univ. of Oregon, Eugene, OR (United States); Boucher, Jason [Univ. of Oregon, Eugene, OR (United States); Aloni, Shaul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-10

    Silicon, the dominant photovoltaic (PV) technology, is reaching its fundamental performance limits as a single absorber/junction technology. Higher efficiency devices are needed to reduce cost further because the balance of systems account for about two-thirds of the overall cost of the solar electricity. III-V semiconductors such as GaAs are used to make the highest-efficiency photovoltaic devices, but the costs of manufacture are much too high for non-concentrated terrestrial applications. The cost of III-V’s is driven by two factors: (1) metal-organic chemical vapor deposition (MOCVD), the dominant growth technology, employs expensive, toxic and pyrophoric gas-phase precursors, and (2) the growth substrates conventionally required for high-performance devices are monocrystalline III-V wafers. The primary goal of this project was to show that close-spaced vapor transport (CSVT), using water vapor as a transport agent, is a scalable deposition technology for growing low-cost epitaxial III-V photovoltaic devices. The secondary goal was to integrate those devices on Si substrates for high-efficiency tandem applications using interface nanopatterning to address the lattice mismatch. In the first task, we developed a CSVT process that used only safe solid-source powder precursors to grow epitaxial GaAs with controlled n and p doping and mobilities/lifetimes similar to that obtainable via MOCVD. Using photoelectrochemical characterization, we showed that the best material had near unity internal quantum efficiency for carrier collection and minority carrier diffusions lengths in of ~ 8 μm, suitable for PV devices with >25% efficiency. In the second task we developed the first pn junction photovoltaics using CSVT and showed unpassivated structures with open circuit photovoltages > 915 mV and internal quantum efficiencies >0.9. We also characterized morphological and electrical defects and identified routes to reduce those defects. In task three we grew epitaxial

  18. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  19. A novel vapor compression cooling cycle using controlled expansion

    Energy Technology Data Exchange (ETDEWEB)

    Labinov, M.S.; Sgamboti, C.T. [United Technologies Research Center, East Hartford, CT (United States)

    1995-12-31

    The paper presents a novel configuration for the vapor compression cycle. This configuration introduces a controlled expansion process as an alternative to the traditional practice of using an expansion valve. Expansion takes place along the retrograde condensation line in the two-phase zone. The line is temperature dependent and unique for any pure substance. This new cycle change makes it possible to raise the cooling COP of the cycle and to maintain full capacity when ambient conditions change giving an important advantage over conventional cycles that tend to lose capacity significantly with a rise in ambient temperature. Higher COP and steady capacity features lead eventually to lower energy use.

  20. The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers

    CERN Document Server

    Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

    2013-01-01

    Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

  1. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    Science.gov (United States)

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.

  2. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  3. Total Water Vapor Transport Observed in Twelve Atmospheric Rivers over the Northeastern Pacific Ocean Using Dropsondes

    Science.gov (United States)

    Ralph, F. M.; Iacobellis, S.; Neiman, P. J.; Cordeira, J. M.; Spackman, J. R.; Waliser, D. E.; Wick, G. A.; White, A. B.; Fairall, C. W.

    2014-12-01

    Demory et al (2013) recently showed that the global water cycle in climate models, including the magnitude of water vapor transport, is strongly influenced by the model's spatial resolution. The lack of offshore observations is noted as a serious limitation in determining the correct amount of transport. Due to the key role of atmospheric rivers (ARs) in determining the global distribution of water vapor, quantifying transport from ARs is a high priority. This forms a foundation of the CalWater-2 experiment aimed at sampling many ARs during 2014-2018. In February 2014, an "early-start" deployment of the NOAA G-IV research aircraft sampled 10 ARs over the northeast Pacific Ocean. On six of these flights, dropsondes were deployed in a line crossing the AR so as to robustly sample the total water vapor transport (TVT). The TVT is defined here as the sum of the vertically integrated horizontal water vapor transport (IVT) in the AR using a baseline that stretches from its warm southern (or eastern) edge to its cool northern (or western) edge. TVT includes both AR-parallel and AR-perpendicular transport. These data double the overall number of such cross-AR airborne samples suitable for calculating TVT. Analysis of TVT for these six new samples, in combination with the six previous samples from the preceding 16 years (from CalJet, WISPAR, and a Hawaii-based campaign), will be shown. A comparison will be made of the AR width and TVT determined using the well-established integrated water vapor (IWV) threshold of 2 cm, versus an IVT threshold of 250 kg m-1 s-1. Finally, the data from a well sampled case on 13 February 2014 (23 sondes with 75-100 km spacing) will be used to assess the sensitivity of TVT to dropsonde horizontal spacing and vertical resolution. This sensitivity analysis is of practical importance for the upcoming CalWater-2 field campaign where the G-IV will be used to sample many additional AR events, due to the relatively high cost of the dropsondes.

  4. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  5. Effects of Atmospheric Conditions and the Land/Atmospheric Interface on Transport of Chemical Vapors from Subsurface Sources

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Cihan, A.; Howington, S. E.; Illangasekare, T. H.

    2013-12-01

    Understanding the movement of chemical vapors and gas through variably saturated soil subjected to atmospheric thermal and mass flux boundary conditions at the land/atmospheric interface is important to many applications, including landmine detection, methane leakage during natural gas production from shale and CO2 leakage from deep geologic storage. New, advanced technologies exist to sense chemical signatures and gas leakage at the land/atmosphere interface, but interpretation of sensor signals remains a challenge. Chemical vapors are subject to numerous interactions while migrating through the soil environment, masking source conditions. The process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal quantification of other processes, such as convective gas flow and temporal or spatial variation in soil moisture. Vapor migration is affected by atmospheric conditions (e.g. humidity, temperature, wind velocity), soil thermal and hydraulic properties and contaminant properties, all of which are physically and thermodynamically coupled. The complex coupling of two drastically different flow regimes in the subsurface and atmosphere is commonly ignored in modeling efforts, or simplifying assumptions are made to treat the systems as de-coupled. Experimental data under controlled laboratory settings are lacking to refine the theory for proper coupling and complex treatment of vapor migration through porous media in conversation with atmospheric flow and climate variations. Improving fundamental understanding and accurate quantification of these processes is not feasible in field settings due to lack of controlled initial and boundary conditions and inability to fully characterize the subsurface at all relevant scales. The goal of this work is to understand the influence of changes in atmospheric conditions to transport of vapors through variably saturated soil. We have developed a tank apparatus

  6. Bubble-facilitated VOC transport from LNAPL smear zones and its potential effect on vapor intrusion: Laboratory experiments

    Science.gov (United States)

    Soucy, N. C.; Mumford, K. G.

    2016-12-01

    Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through the volatilization of hydrocarbons from the source and the subsequent transport of vapor through the soil. If subjected to the rise and fall of a water table, an LNAPL source can become a smear zone that consists of trapped discontinuous LNAPL blobs (residual) and has a higher aqueous permeability and higher surface area-to-volume ratio than pool sources. The rise and fall of a water table can also trap atmospheric air bubbles alongside the LNAPL. If these bubbles expand and become mobile, either through partitioning of volatile organic compounds (VOCs) or the production of biogenic gases, bubble-facilitated vertical vapor transport can occur. It is important to understand the bubble-facilitated transport of VOCs as it is a mechanism that could lead to faster transport. The transport of VOCs from smear zones was investigated using laboratory column and visualization experiments. In the column experiments, pentane LNAPL was emplaced in a 5 cm sand-packed source zone and the water level was raised and lowered to trap residual LNAPL and air bubbles. Each column also contained a 10 cm-high zone of clean saturated sand, and a 10 cm vadose zone of 4 mm-diameter glass beads. Water was pumped through the source and occlusion zones, and air flowed across the top of the column, where vapor samples were collected and analyzed immediately by gas chromatography. In the visualization experiments, pentane LNAPL was emplaced in a two-dimensional cell designed to allow visualization of mobilized LNAPL and gas through glass walls. Results of the column experiments showed VOC mass fluxes in test columns were 1-2 orders of magnitude greater than in the control columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport. The results from the visualization experiments showed gas fingers growing and mobilizing over time, and supports

  7. Cirrus and water vapor transport in the tropical tropopause layer – Part 1: A specific case modeling study

    Directory of Open Access Journals (Sweden)

    T. Dinh

    2012-10-01

    Full Text Available In a simulation of a tropical-tropopause-layer (TTL cirrus forced by a large-scale equatorial Kelvin wave, the radiatively induced mesoscale dynamics of the cloud actively contributes to the transport of water vapor in the vertical direction.

    In a typical TTL cirrus, the heating that results from absorption of radiation by ice crystals induces a mesoscale circulation. Advection of water vapor by the radiatively induced circulation leads to upward advection of the cloudy air. Upward advection of the cloudy air is equivalent to upward transport of water vapor when the air above the cloud is drier than the cloudy air. On the other hand, ice nucleation and depositional growth, followed by sedimentation and sublimation lead to downward transport of water vapor.

    Under the conditions specific to our simulation, the upward transport of water vapor by the mesoscale circulation dominates the downward transport by microphysical processes. The net result is upward transport of water vapor, which is equivalent to hydration of the lower stratosphere. Sensitivity to model conditions and parameters will be discussed in a follow-up paper.

  8. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  9. Cross-Saharan transport of water vapor via recycled cold pool outflows from moist convection

    Science.gov (United States)

    Trzeciak, Tomasz M.; Garcia-Carreras, Luis; Marsham, John H.

    2017-02-01

    Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day's convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere.

  10. Desalination of water by vapor-phase transport through hydrophobic nanopores

    Science.gov (United States)

    Lee, Jongho; Karnik, Rohit

    2010-08-01

    We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport of water through a nanopore with saline water on one side and pure water on the other side under a pressure difference was theoretically analyzed under the rarefied gas assumption using a probabilistic framework that accounts for diffuse scattering from the pore walls as well as reflection from the menisci. The analysis revealed that in addition to salinity, temperature, and pressure difference, the nanopore aspect ratio and the probability of condensation of a water molecule incident on a meniscus from the vapor phase, known as the condensation coefficient, are key determinants of flux. The effect of condensation coefficient on mass flux becomes critical when the aspect ratio is small. However, the mass flux becomes independent of the condensation coefficient as the pore aspect ratio increases, converging to the Knudsen flux for long nanopores. For design of a nanopore membrane that can trap vapor, a minimum aspect ratio is derived for which coalescence of the two interfaces on either side of the nanopore remains energetically unfavorable. Based on this design criterion, the analysis suggests that mass flux in the range of 20-70 g/m2 s may be feasible if the system is operated at temperatures in the range of 30-50 °C. The proposed approach further decouples transport properties from material properties of the membrane, which opens the possibility of engineering membranes with appropriate materials that may lead to reverse osmosis membranes with improved flux, better selectivity, and high chlorine resistance.

  11. Synthesis of molybdenum oxide microsheets via close-spaced vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Goiz, O., E-mail: ogoiza@gmail.com [Department of Electrical Engineering, CINVESTAV-IPN, 07360 Mexico, D.F. (Mexico); Chavez, F. [Department of Physical-Chemical Materials, ICUAP-BUAP, 72050 Puebla, Pue. (Mexico); Felipe, C. [Department of Biosciences and Engineering, CIIEMAD-IPN, 07340 Mexico, D.F. (Mexico); Morales, N. [Department of Physical-Chemical Materials, ICUAP-BUAP, 72050 Puebla, Pue. (Mexico); Pena-Sierra, R. [Department of Electrical Engineering, CINVESTAV-IPN, 07360 Mexico, D.F. (Mexico)

    2010-10-25

    Growth of molybdenum oxide microsheets on silicon (1 0 0) substrates using the close-spaced vapor transport (CSVT) technique is proposed. Molybdenum oxide powder is employed as source, the synthesis is carried out at atmospheric pressure with a nitrogen ambient by employing short times (a few minutes), water as reactant and moderate temperatures. The growth process is efficient, fast, and without the use of catalysts. Changes in morphology and structure of products when temperature varies are reported. The produced molybdenum oxide microsheets are analyzed with SEM, XRD and micro-Raman techniques.

  12. Thermoelastic stresses in SiC single crystals grown by the physical vapor transport method

    Institute of Scientific and Technical Information of China (English)

    Zibing Zhang; Jing Lu; Qisheng Chen; V.Prasad

    2006-01-01

    A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method.The composite structure of the growing SiC crystal and graphite lid is considered in the model.The thermal expansion match between the crucible lid and SiC crystal is studied for the first time.The influence of thermal stress on the dislocation density and crystal quality iS discussed.

  13. Imaging coherent transport in chemical vapor deposition graphene wide constriction by scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Chiashain; Matsunaga, Masahiro; Ochiai, Yuichi; Aoki, Nobuyuki, E-mail: n-aoki@faculty.chiba-u.jp, E-mail: ctliang@phys.ntu.edu.tw [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Liu, Fan-Hung [Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Woo, Tak-Pong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Lin, Li-Hung [Department of Electrophysics, National Chiayi University, Chiayi 600, Taiwan (China); Oto, Kenichi [Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Liang, Chi-Te, E-mail: n-aoki@faculty.chiba-u.jp, E-mail: ctliang@phys.ntu.edu.tw [Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2016-03-21

    We use a scanning gate microscopy to perturb coherent transport in chemical vapor deposition (CVD) graphene wide constriction. Particularly, we observe conductance oscillations in the wide constriction region (W ∼ 800 nm) characterized by spatial conductance variations, which imply formation of the nanometer-scale ring structure due to the merged domains and intrinsic grain boundaries. Moreover, additional hot charges from high current can suppress the coherent transport, suggesting that the hot carriers with a wide spreading kinetic energy could easily tunnel merged domains and intrinsic grain boundaries in CVD-grown graphene due to the heating effect, a great advantage for applications in graphene-based interference-type nano-electronics.

  14. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    Science.gov (United States)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  15. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    Science.gov (United States)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; Wang, J. C.

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  16. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  17. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  18. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    Science.gov (United States)

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  19. Vapor-transport growth of high optical quality WSe2 monolayers

    Directory of Open Access Journals (Sweden)

    Genevieve Clark

    2014-10-01

    Full Text Available Monolayer transition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe2 sheets of up to 30 μm in edge length on insulating SiO2 substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayers grown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.

  20. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    Science.gov (United States)

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination. PMID:28134288

  1. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    KAUST Repository

    An, Alicia Kyoungjin

    2017-01-30

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  2. Calculation of the transport and relaxation properties of dilute water vapor

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa

    2009-07-01

    Transport properties of dilute water vapor have been calculated in the rigid-rotor approximation using four different potential energy hypersurfaces and the classical-trajectory method. Results are reported for shear viscosity, self-diffusion, thermal conductivity, and volume viscosity in the dilute-gas limit for the temperature range of 250-2500 K. Of these four surfaces the CC-pol surface of Bukowski et al. [J. Chem. Phys. 128, 094314 (2008)] is in best accord with the available measurements. Very good agreement is found with the most accurate results for viscosity in the whole temperature range of the experiments. For thermal conductivity the deviations of the calculated values from the experimental data increase systematically with increasing temperature to around 5% at 1100 K. For both self-diffusion and volume viscosity, the much more limited number of available measurements are generally consistent with the calculated values, apart from the lower temperature isotopically labeled diffusion measurements.

  3. Bifacial solar cell with SnS absorber by vapor transport deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wangperawong, Artit [Stanford University, Stanford, California 94305 (United States); Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F., E-mail: sbent@stanford.edu [Stanford University, Stanford, California 94305 (United States)

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  4. Photoluminescence of CdTe Crystals Grown by Physical-Vapor Transport

    Science.gov (United States)

    Palosz, W.; Grasza, K.; Boyd, P. R.; Cui, Y.; Wright, G.; Roy, U. N.; Burger, A.

    2003-01-01

    High-quality CdTe crystals with resistivities higher than 10(exp 8) omega cm were grown by the physical-vapor transport (PVT) technique. Indium, aluminum, and the transition-metal scandium were introduced at the nominal level of about 6 ppm to the source material. Low-temperature photoluminescence (PL) has been employed to identify the origins of PL emissions of the crystals. The emission peaks at 1.584 eV and 1.581 eV were found only in the In-doped crystal. The result suggests that the luminescence line at 1.584 eV is associated with Cd-vacancy/In complex. The intensity of the broadband centered at 1.43 eV decreases strongly with introduction of Sc.

  5. Photoluminescence of CdTe Crystals Grown by Physical Vapor Transport

    Science.gov (United States)

    Curreri, Peter A. (Technical Monitor); Palosz, W.; Grasza, K.; Boyd, P. R.; Cui, Y.; Wright, G.; Roy, U. N.; Burger, A.

    2002-01-01

    High quality CdTe crystals with resistivities higher than 10(exp 8) omega cm were grown by the physical vapor transport technique. Indium, Aluminum, and the transition metal Scandium were introduced at the nominal level of about 6 ppm to the source material. Low-temperature photoluminescence (PL) has been employed to identify the origins of PL emissions of the crystals. The emission peaks at 1.584 eV and 1.581 eV were found only in the In-doped crystal. The result suggests that the luminescence line at 1.584 eV is associated with Cd-vacancy/indium complex. The intensity of the broadband centered at 1.43 eV decreases strongly with introduction of Sc.

  6. Vapor Transport of a Volatile Solvent for a Multicomponent Aerosol Droplet

    CERN Document Server

    Feng, James Q

    2015-01-01

    This work presents analytical formulas derived for evaluating vapor transport of a volatile solvent for an isolated multicomponent droplet in a quiescent environment, based on quasi-steady-state approximation. Among multiple solvent components, only one component is considered to be much more volatile than the rest such that other components are assumed to be nonvolatile remaining unchanged in the droplet during the process of (single-component) volatile solvent evaporation or condensation. For evaporating droplet, the droplet size often initially decreases following the familiar "d^2 law" at an accelerated rate. But toward the end, the rate of droplet size change diminishes due to the presence of nonvolatile cosolvent. Such an acceleration-deceleration reversal behavior is unique for evaporating multicomponent droplet, while the droplet of pure solvent has an accelerated rate of size change all the way through the end. This reversal behavior is also reflected in the droplet surface temperature evolution as "...

  7. AB-stacked multilayer graphene synthesized via chemical vapor deposition: a characterization by hot carrier transport.

    Science.gov (United States)

    Diaz-Pinto, Carlos; De, Debtanu; Hadjiev, Viktor G; Peng, Haibing

    2012-02-28

    We report the synthesis of AB-stacked multilayer graphene via ambient pressure chemical vapor deposition on Cu foils and demonstrate a method to construct suspended multilayer graphene devices. In four-terminal geometry, such devices were characterized by hot carrier transport at temperatures down to 240 mK and in magnetic fields up to 14 T. The differential conductance (dI/dV) shows a characteristic dip at longitudinal voltage bias V = 0 at low temperatures, indicating the presence of hot electron effect due to a weak electron-phonon coupling. Under magnetic fields, the magnitude of the dI/dV dip diminishes through the enhanced intra-Landau level cyclotron phonon scattering. Our results provide new perspectives in obtaining and understanding AB-stacked multilayer graphene, important for future graphene-based applications.

  8. Modeling of gas phase diffusion transport during chemical vapor infiltration process

    Institute of Scientific and Technical Information of China (English)

    肖鹏; 李娣; 徐永东; 黄伯云

    2002-01-01

    In order to improve the uniformity of both the concentration of gaseous reagent and the deposition of matrix within micro-pores during the chemical vapor infiltration (CVI) process, a calculation modeling of gas phase diffusion transport within micro-pores was established. Taken CH3SiCl3 as precursor for depositing SiC as example, the diffusion coefficient, decomposing reaction rate, concentration within the reactor, and concentration distributing profiling of MTS within micro-pore were accounted, respectively. The results indicate that, increasing the ratio of diffusion coefficient to decomposition rate constant of precursor MTS is propitious to decrease the densification gradient of parts, and decreasing the aspect ratio (L/D) of micro-pore is favorable to make the concentration uniform within pores.

  9. Optical Properties of ZnO Soccer-Ball Structures Grown by Vapor Phase Transport

    Science.gov (United States)

    Nam, Giwoong; Lee, Sang-heon; Kim, Soaram; Kim, Min Su; Kim, Do Yeob; Gug Yim, Kwang; Lee, Dong-Yul; Kim, Jin Soo; Kim, Jong Su; Son, Jeong-Sik; Kim, Sung-O.; Jung, Jae Hak; Leem, Jae-Young

    2012-02-01

    ZnO soccer balls were grown on an Au-catalyzed Si(100) substrate by vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. Temperature-dependent PL was carried out to investigate the mechanism governing the quenching behavior of the PL spectra. From the PL spectra of the ZnO soccer balls at 10 K, several PL peaks were observed at 3.365, 3.318, 3.249, and 3.183 eV corresponding to excitons bound to neutral donors (DoX), a donor-acceptor pair (DAP), first-order longitudinal optical phonon replica of donor-acceptor pair (DAP-1LO), and DAP-2LO, respectively. The mixed system composed of the free exciton (FX) and DoX and the DAP radiative lifetimes were estimated with a theoretical relation between the lifetime and the spectral width. The exciton radiative lifetimes were observed to increase linearly with temperature.

  10. Homojunction GaAs solar cells grown by close space vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Jason W. [University of Oregon; Ritenour, Andrew J. [University of Oregon; Greenaway, Ann L. [University of Oregon; Aloni, Shaul [Lawrence Berkeley National Laboratory; Boettcher, Shannon W. [University of Oregon

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  11. Vapor-Phase Stoichiometry and Heat Treatment of CdTe Starting Material for Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Liu, Hao-Chieh; Fang, Rei; Brebrick, R. F.

    1998-01-01

    Six batches of CdTe, having total amounts of material from 99 to 203 g and gross mole fraction of Te, X(sub Te), 0.499954-0.500138, were synthesized from pure Cd and Te elements. The vapor-phase stoichiometry of the assynthesized CdTe batches was determined from the partial pressure of Te2, P(sub Te2) using an optical absorption technique. The measured vapor compositions at 870 C were Te-rich for all of the batches with partial pressure ratios of Cd to Te2, P(sub Cd)/P(sub Te2), ranging from 0.00742 to 1.92. After the heat treatment of baking under dynamic vacuum at 870 C for 8 min, the vapor-phase compositions moved toward that of the congruent sublimation, i.e. P(sub Cd)/P(sub Te2) = 2.0, with the measured P(sub Cd)/P(sub Te2) varying from 1.84 to 3.47. The partial pressure measurements on one of the heat-treated samples also showed that the sample remained close to the congruent sublimation condition over the temperature range 800-880 C.

  12. Real-time control of HgCdTe growth by organometallic vapor phase epitaxy using spectroscopic ellipsometry

    Science.gov (United States)

    Murthy, Srikanteswara Dakshina; Bhat, Ishwara; Johs, Blaine; Pittal, Shakil; He, Ping

    1995-09-01

    The use of spectroscopic ellipsometry for monitoring the vapor phase epitaxial growth of mercury cadmium telluride (Hg1-xCdxTe) in real-time is demonstrated. The ellipsometer is used to perform system identification of the chemical vapor deposition reactor used for the growth of CdTe and to measure the response of the reactor to different growth conditions. The dynamic behavior of the reactor is also studied by evaluating the gas transport delay. The optical constants of Hg1-xCdxTe are determined at the growth temperature for different compositions. In-situ real-time composition control is performed during the growth of Hg1-xCdxTe. The required target compositions are attained by the ellipsometer and appropriate corrections are also made by the controller when a noise input in the form of a temperature variation is introduced.

  13. Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Alleyne, Andrew

    2015-01-01

    A predictive control scheme is designed to control a transport refrigeration system, such as a delivery truck, that includes a vapor compression cycle configured in parallel with a thermal energy storage (TES) unit. A novel approach to TES utilization is introduced and is based on the current...

  14. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    Science.gov (United States)

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).

  15. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  16. Chemical vapor transport and characterization of MnBi2Se4

    Science.gov (United States)

    Nowka, Christian; Gellesch, Markus; Enrique Hamann Borrero, Jorge; Partzsch, Sven; Wuttke, Christoph; Steckel, Frank; Hess, Christian; Wolter, Anja U. B.; Teresa Corredor Bohorquez, Laura; Büchner, Bernd; Hampel, Silke

    2017-02-01

    Layered metal chalcogenides such as MnBi2Se4 are interesting candidates for a wide field of applications such as for thermo- and photoelectrics. High-quality single crystals are necessary in order to investigate their properties which can be prepared by chemical vapor transport (CVT). The CVT of MnBi2Se4 has not been investigated until this point and is subject of the presented paper. We obtained needle-like MnBi2Se4 single crystals with a length up to 15 mm. The magnetic characterization has shown an antiferromagnetic transition around 14 K. Additionally, electrical transport described MnBi2Se4 as a narrow band-gap semiconductor (EGap=0.15 eV). Thermodynamic data for MnBi2Se4 at room temperature were determined to H ° = - 305 KJ ·mol-1 , S=321 J K-1·mol-1 and Cp = 167.568 + 25.979 ·10-3 · TJ ·K-1 ·mol-1 , respectively. Our results on CVT-grown single crystals confirm reported data from literature and complete the data set for MnBi2Se4.

  17. Generic vapor heat treatments to control Maconellicoccus hirsutus (Homoptera: Pseudococcidae).

    Science.gov (United States)

    Follett, Peter A

    2004-08-01

    Vapor heat treatments were developed against life stages of the mealybug Maconellicoccus hirsutus (Green) (Homoptera: Pseudococcidae). Treatments tested were 47 degrees C for 5-50 min in 5-min increments and 49 degrees C for 3, 5, 8, 10, and 12 min. All tests were conducted with mixed age M. hirsutus on Chinese pea, Pisum sativum L. Treatment at 47 degrees C required 45 min to kill all M. hirsutus, whereas treatment at 49 degrees C required 10 min. The adult female and nymphal stages were the most heat tolerant at 47 degrees C, but the egg stage was the most heat tolerant at 49 degrees C. Use of the vapor heat treatments on other commodities will require achieving or exceeding the proper temperature and duration at all locations on the host where M. hirsutus may reside.

  18. Model analysis of mechanisms controlling pneumatic soil vapor extraction

    DEFF Research Database (Denmark)

    Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh;

    2009-01-01

    The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency of heterogen...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface.......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified...

  19. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  20. The impact of ENSO on water vapor isotopologues in the tropical pacific: Evidence for changes in long-range transport and convective activity

    Science.gov (United States)

    Jonson Sutanto, Samuel; Hoffmann, Georg; Scheepmaker, Remco A.; Röckmann, Thomas

    2014-05-01

    ENSO (El Niño-Southern Oscillation) is characterized by quasi-periodic changes of tropical sea surface temperature (SST), near-global atmospheric circulation and associated changes in precipitation patterns. Due to the profound effects of ENSO on the global water cycle and on the associated fractionation processes of the water isotopologues, many isotope-based studies have been carried out to study the ENSO variability in the tropics. These studies conclude that "the isotope amount effect'' is a key factor controlling the isotopic signature of water vapor and precipitation close to the surface. The goal of this study is to investigate the hydrologic processes governing the changes in isotopic composition of water vapor at the surface and at higher altitudes during ENSO events. We used the isotopic composition of water vapor modeled by an isotope-enabled GCM (ECHAM4), and measured by the TES (Tropospheric Emission Spectrometer) instrument onboard the Aura satellite. The isotopic composition of precipitation was modeled by ECHAM4 and observed by the GNIP network (Global Network of Isotopes in Precipitation). The amount of precipitation was modeled by ECHAM4 and ERA-Interim (ECMWF Re-Analysis), and measured by the TRMM (Tropical Rainfall Measuring Mission) satellite. Our results agree with previous studies focusing on the lower atmosphere: rainout processes, less rain re-evaporation of falling droplets, and increase of convective updrafts and diffusive exchange within the convective systems (all these processes contribute to "the isotope amount effect'') isotopically deplete the water vapor during wet conditions (e.g. El Niño in Central Pacific and La Niña in West Pacific). However, we find that the isotope signal of water vapor at higher altitudes (e.g. 500 hPa) associated with ENSO events diverges from the near surface signature. Analysis suggests that at higher altitudes, transport of enriched water vapor from lower atmospheric layers through convective updrafts

  1. Size control of vapor bubbles on a silver film by a tuned CW laser

    Directory of Open Access Journals (Sweden)

    Y. J. Zheng

    2012-06-01

    Full Text Available A vapor bubble is created by a weakly focused continuous-wave (CW laser beam on the surface of a silver film. The temporal dynamics of the bubble is experimentally investigated with a tuned incident laser. The expansion and contraction rates of the vapor bubble are determined by the laser power. The diameter of the vapor bubble can be well controlled through tuning the laser power. A theory model is given to explain the underlying physics in the process. The method reported will have some interesting applications in micro-fluidics and bio-techniques.

  2. Experimental analysis on adjusting performance of vapor-liquid two-phase flow controller

    Institute of Scientific and Technical Information of China (English)

    LI Hui-jun; TU Shan

    2006-01-01

    The vapor-liquid self-adjusting controller is an innovative automatic regulating valve. In order to ensure adjusted objects run safely and economically, the controller automatically adjusts the liquid flux to keep liquid level at a required level according to physical properties of vapor-liquid two-phase fluid. The adjusting mechanics, the controller' s performance and influencing factors of its stability have been analyzed in this paper. The theoretical analysis and successful applications have demonstrated this controller can keep the liquid level steady with good performance. The actual application in industry has shown that the controller can satisfactorily meet the requirement of industrial production and has wide application areas.

  3. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    Science.gov (United States)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  4. Atmospheric water vapor transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data

    Energy Technology Data Exchange (ETDEWEB)

    Pokam, Wilfried M.; Djiotang, Lucie A.T.; Mkankam, Francois K. [University of Yaounde 1, Laboratory for Environmental Modelling and Atmospheric Physics, Department of Physics, Faculty of Sciences, P.O. Box 812, Yaounde (Cameroon)

    2012-05-15

    The characteristics of the main components of the water cycle over Equatorial Central Africa (ECA) were analysed using the 32-year period, spanning from 1968 to 2000, of the National Centers for Environmental Prediction-National Censearch (NCEP-) reanalysis project database. A special emphasis was given to identifying the causes of annual and interannual variability of water vapor flux and precipitation recycling. The results suggest that the first maximum of moisture convergence, during the rainy season MAM, comes from upper level moisture flux, related to the north component of the African Easterly Jet (AEJ-N). The second, and greatest, maximum in SON is found to be a consequence of low level moisture advection from the Atlantic Ocean. AEJ-N also drive the seasonal spatial pattern of moisture flux. The interannual variability of moisture flux is contributed mainly by the low level moisture advected from the Atlantic Ocean, underlying its crucial role for the regional climate. Studying the recycling ratio in ECA as a whole shows a low annual cycle whereas subregional scale analysis reveals high amplitude of the seasonal variation. Seasonal variability of the spatial gradient of precipitation recycling is regulated by both moisture flux direction and strength. The annual cycles of recycling ratio in the North and the South of ECA are regulated by both moisture transport and evapotranspiration. (orig.)

  5. Numerical investigation of physical vapor and particulate transport under microgravity conditions

    Science.gov (United States)

    Tebbe, Patrick Albert

    A commercial fluid dynamics code, FIDAP, has been modified to model Physical Vapor Transport (PVT) with the inclusion of microgravity and non-continuum effects such as thermal slip (creep). The code has been verified against existing data for transient PVT simulation, thermophoretic deposition, and thermal creep effects. FIDAP adequately captured transient transitions in flow structures and demonstrated the ability to predict dynamical events associated with oscillatory convection. However, there is still some concern toward the prediction of the flow field magnitude for reduced gravity cases. FIDAP's internal version of thermal (Soret) diffusion was corrected to include the mass fraction of solute. While improvements were obtained a fully satisfactory method of including this effect was not found. The effects of thermal slip were included by boundary condition subroutines. The specific case of mercury iodide (HgIsb2) production in space was then analyzed. The main effect of thermal slip was to redistribute mass flux at the crystal interface. However, for certain temperature gradients it was shown that thermal slip can induce recirculation which complicates the flow. For the conditions under study this system was found to be convectively stable; however, buoyancy was seen to interact with thermal slip and the sublimation/condensation mass flux. Solutal effects dominated thermal and tended to lower the overall mass flux at the crystal boundary.

  6. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Shamara [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Vatavu, Sergiu, E-mail: svatavu@usm.md [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Evani, Vamsi; Khan, Md; Bakhshi, Sara; Palekis, Vasilios [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Rotaru, Corneliu [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Ferekides, Chris [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States)

    2015-05-01

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios.

  7. Hydroxylation of phenol over MeAPO molecular sieves synthesized by vapor phase transport

    Science.gov (United States)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2016-07-01

    In this study, MeAPO-25 (Me = Fe, Cu, Mn) molecular sieves were first synthesized by a vapor phase transport method using tetramethyl guanidine as the template and applied to hydroxylation of phenol. The zeolites were characterized by XRD, SEM, FT-IR, and DR UV-Vis. As a result, MeAPO-21 and MeAPO-15 were synthesized by changing the Me/Al ratio. UV-Visible diffuse reflectance study suggested incorporation of heteroatoms into the framework and FT-IR study also supported these data. Effects of heteroatoms, contents of Me in MeAPO-25, reaction temperature, phenol/H2O2 mole ratios, reaction time and concentration of catalyst on the conversion of phenol, as well as on the selectivity were studied. FeAPO-25 exhibited a high catalytic activity at the mole ratio of FeO and Al2O3 equal to 0.1 in the synthesis gel, giving the phenol conversion of 88.75% and diphenols selectivity of 66.23% at 60°C within 3 h [ n(phenol)/ n(H2O2) = 0.75, m(FeAPO-25)/ m(phenol) = 7.5%]. Experimental results indicated that the FeAPO-25 molecular sieve was a fairly promising candidate for the application in hydroxylation of phenol.

  8. Photoluminescence Study of Gallium Nitride Thin Films Obtained by Infrared Close Space Vapor Transport

    Directory of Open Access Journals (Sweden)

    Luis A. Hernández

    2013-03-01

    Full Text Available Photoluminescence (PL studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE and a broad blue and green luminescence (BL, GL, which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case.

  9. Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Directory of Open Access Journals (Sweden)

    Zervos Matthew

    2008-01-01

    Full Text Available Abstract We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation.

  10. Chemical vapor transport and solid-state exchange synthesis of new copper selenite bromides

    Science.gov (United States)

    Charkin, Dmitri O.; Kayukov, Roman A.; Zagidullin, Karim A.; Siidra, Oleg I.

    2017-02-01

    A new dimorphic copper selenite bromide, Cu5(SeO3)4Br2 was obtained via chemical transport reactions. α-Cu5(SeO3)4Br2, monoclinic (1m) and β-Cu5(SeO3)4Br2, triclinic (1a) polymorphs were produced simultaneously upon reaction of amorphous, partially dehydrated copper selenite and copper bromide. 1m is similar to Cu5(SeO3)4Cl2, whereas 1a is distantly related to Ni5(SeO3)4Br2 and Co5(SeO3)4Br2. Attempts to reproduce synthesis of 1a via exchange reaction between Na2SeO3 and CuBr2 resulted in a new Na2[Cu7O2](SeO3)4Br4 (2). Current study demonstrates for the first time, that both chemical vapor and exchange reactions can be employed in preparation of new selenite halides.

  11. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  12. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... of the Fick-Jacobs equation. We thus conclude that for a single, axisymmetric pore, the enhancement factor depends upon relative humidity boundary conditions at the liquid bridge interfaces, distance between liquid bridges, and bridge lengths....

  13. ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation

    Science.gov (United States)

    Lavers, David A.; Pappenberger, Florian; Richardson, David S.; Zsoter, Ervin

    2016-11-01

    In winter, heavy precipitation and floods along the west coasts of midlatitude continents are largely caused by intense water vapor transport (integrated vapor transport (IVT)) within the atmospheric river of extratropical cyclones. This study builds on previous findings that showed that forecasts of IVT have higher predictability than precipitation, by applying and evaluating the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) for IVT in ensemble forecasts during three winters across Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase; conversely, the precipitation EFI is better during the negative NAO phase and at shorter leads. An IVT EFI example for storm Desmond in December 2015 highlights its potential to identify upcoming hydrometeorological extremes, which may prove useful to the user and forecasting communities.

  14. Variations of δ18O in Precipitation along Vapor Transport Paths

    Institute of Scientific and Technical Information of China (English)

    章新平; 刘晶淼; 田立德; 何元庆; 姚檀栋

    2004-01-01

    the process of lifting over the southern slope of the Himalayas. The low level of the δ18O in precipitation is from Nyalam to the Tanggula Mountains during the rainy season,but δ18O increases persistently with increasing latitude from the Tanggula Mountains to the northern Tibetan Plateau because of the replenishment of vapor with relatively heavy stable isotopic compositions originating from the inner plateau. During the dry season, the mean δ18O values in precipitation basically decrease along the path from the south to the north. Generally, the mean δ18O in precipitation during the rainy season is lower than in the dry season for the regions controlled by the monsoons over South Asia or the plateau, and opposite for the regions without a monsoon or with a weak monsoon.

  15. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  16. Changes in water vapor transport during the Meiyu season after 2000 and their relationship with the Indian ocean SST and Pacific-Japan pattern

    Science.gov (United States)

    Gao, Qingjiu; Sun, Yuting

    2016-12-01

    Euler's method of water vapor analysis and the Lagrangian trajectory analysis for 1979-2009 show the water vapor associated with Meiyu rainfall over the Yangtze-Huaihe River Valley (YHRV) mainly comes from the South China Sea (SCS) and the Bay of Bengal (BOB), and the local evaporation from the lower and middle troposphere over the Pacific Ocean and Eurasia are secondary. Compared with that before 2000, the contribution of water vapor from the BOB to Meiyu rainfall doubles in the low level but decreases in the mid-level after 2000, while that from the SCS decreases and mid-level transport path shifts to north of the Indochina Peninsula. The increased water vapor transport from the BOB and north of the Indochina Peninsula is the primary cause for the water vapor budget increase at the southern boundary of the YHRV. It is further noted that the water vapor from the SCS mainly influences precipitation over the region to the south of the mid-lower reaches of the Yangtze River, while water vapor transport from the BOB can cause opposite rainfall variations between north and south of Yangtze River over Meiyu rainfall region. After 2000, the decreased/increased SCS/BOB water vapor transport jointly influences the Meiyu rain belt shift northward. Singular value decomposition is used to study the relationship of changes in the water vapor transport with the Indian Ocean sea surface temperature (SST) and Pacific-Japan (P-J) pattern. Enhancement of the coupling between the Indian Ocean SST basin-wide warming and P-J pattern is an inner mechanism of the changes in water vapor transport and the northward shift of the rain belt.

  17. Growth of Cd0.96Zn0.04Te single crystals by vapor phase gas transport method

    Directory of Open Access Journals (Sweden)

    S. H. Tabatabai Yazdi

    2006-03-01

    Full Text Available   Cd0.96Zn0.04Te crystals were grown using vapor phase gas transport method (VPGT. The results show that dendritic crystals with grain size up to 3.5 mm can be grown with this technique. X-ray diffraction and Laue back-reflection patterns show that dendritic crystals are single-phase, whose single crystal grains are randomly oriented with respect to the gas-transport axis. Electrical measurements, carried out using Van der Pauw method, show that the as-grown crystals have resistivity of about 104 Ω cm and n-type conductivity.

  18. Internal transport control in pot plant production

    NARCIS (Netherlands)

    Annevelink, E.

    1999-01-01

    Drawing up internal transport schedules in pot plant production is a very complex task. Scheduling internal transport at the operational level and providing control on a day-to-day or even hour-to-hour basis in particular requires a new approach. A hierarchical planning approach based on

  19. Retrofit device and method to improve humidity control of vapor compression cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  20. ITER Shape Controller and Transport Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  1. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah

    2013-04-10

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  2. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  3. 24 CFR 3280.504 - Condensation control and installation of vapor retarders.

    Science.gov (United States)

    2010-04-01

    ... SAFETY STANDARDS Thermal Protection § 3280.504 Condensation control and installation of vapor retarders... area of not less than 1/300 of the attic or roof cavity floor area. At least 50 percent of the required... sq. ft. of attic floor area. Intake and exhaust vents shall be located so as to provide air...

  4. Assessment and control of chemical risk from organic vapors for attendants in a gas station

    Directory of Open Access Journals (Sweden)

    Stephanie Ehmig Santillán

    2015-12-01

    Full Text Available This research comprises monitoring, assessment and recommendations for chemical risk originating from organic vapors (benzene, toluene and xylene of fuel (super and extra gasoline to which attendants at a gas station are exposed. Given the concentration measured of organic vapors (benzene, toluene and xylene the chemical risk to which attendants are exposed in the supply area is acceptable. Control measures are recommended to ensure healthy working conditions for gas station attendants and also to avoid occurrence of occupational diseases in the medium or long term

  5. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  6. Delayed feedback control in quantum transport.

    Science.gov (United States)

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  7. Control And Transport Of Intense Electron Beams

    CERN Document Server

    Li, H

    2004-01-01

    The transport of intense beams for advanced accelerator applications with high-intensity beams such as heavy-ion inertial fusion, spallation neutron sources, and intense light sources requires tight control of beam characteristics over long distances. The University of Maryland Electron Ring (UMER), which uses low energy, high current electron beams to model the transport physics of intense space-charge-dominated beams, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe in this dissertation the main beam control techniques used in UMER, which include optimal beam steering by quadrupole scans, beam rotation correction using a skew corrector, rms envelope matching and optimization, empirical envelope matching, beam injection, and phase space reconstruction using a tomographic method. Using these control techniques, we achieved the design goals for UMER. The procedure is not only indispensable for optimum beam transport over l...

  8. Pathways for synthesis of new selenium-containing oxo-compounds: Chemical vapor transport reactions, hydrothermal techniques and evaporation method

    Science.gov (United States)

    Kovrugin, Vadim M.; Colmont, Marie; Siidra, Oleg I.; Gurzhiy, Vladislav V.; Krivovichev, Sergey V.; Mentré, Olivier

    2017-01-01

    Due to the low and close melting and sublimation temperatures (340 and 350 °C, respectively), the crystal growth of selenates and/or selenites is generally achieved using either chemical vapor transport routes, hydrothermal methods due to the good solubility and reactivity of (SeO3)2- anions or isothermal evaporation synthesis. Here we report examples many new crystal structures obtained using these synthesis routes. Particularly, description of each process is given with theoretical and practical information assorted with description of selected structures.

  9. Phase relations and chemical vapor transport of hexagonal indium tungsten bronze In{sub x}WO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Udo, E-mail: steiner@mw.htw-dresden.de

    2014-08-25

    Highlights: • Phase relations of hexagonal bronze In{sub x}WO{sub 3} with neighboring phases. • Chemical vapor transport experiments using NH{sub 4}Cl as transport agent. • Single crystals of In{sub x}WO{sub 3} up to a few mm in size were prepared. • Selective synthesis of crystals of the indium poor and indium rich phase boundary. - Abstract: Phase pure powder samples of hexagonal indium tungsten bronze In{sub x}WO{sub 3} (x = 0.25–0.35) were synthesized by solid state reaction at 1173 K. The phase relations of In{sub x}WO{sub 3} with neighboring binary and ternary phases were determined in the phase diagram In–W–O. Systematic chemical vapor transport experiments were carried out on source materials with compositions corresponding to miscellaneous two-phase and three-phase regions using NH{sub 4}X (X = Cl, Br, I) as transport agent. Crystals of hexagonal indium tungsten bronze were deposited beside In{sub 2}W{sub 3}O{sub 12} with composition corresponding to the indium poor phase boundary and dimensions up to a few mm in a temperature gradient 1173 K → 1073 K starting from ternary mixtures In{sub x}WO{sub 3}/In{sub 2}W{sub 3}O{sub 12}/In{sub 0.02}WO{sub 3}. Sole deposition of In{sub x}WO{sub 3} single crystals with composition x ≈ 0.33 was observed from ternary mixtures In{sub x}WO{sub 3}/W{sub 18}O{sub 49}/WO{sub 2} with a migration rate of about 0.5 mg/h (transport agent NH{sub 4}Cl)

  10. Transport and biodegradation of volatile organic compounds : influence on vapor intrusion into buildings

    NARCIS (Netherlands)

    Picone, S.

    2012-01-01

    Vapor intrusion occurs when volatile subsurface contaminants, migrating from the saturated zone through the unsaturated zone, accumulate in buildings. It is often the most relevant pathway for human health risks at contaminated sites, especially in urban areas; yet its assessment is controversial. F

  11. Hybrid Predictive Control for Dynamic Transport Problems

    CERN Document Server

    Núñez, Alfredo A; Cortés, Cristián E

    2013-01-01

    Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...

  12. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  13. Controlled boiling on Enceladus. 1. Model of the vapor-driven jets

    Science.gov (United States)

    Nakajima, Miki; Ingersoll, Andrew P.

    2016-07-01

    Plumes of water vapor and ice particles have been observed from the so-called tiger stripes at the south polar terrain (SPT) of Saturn's satellite, Enceladus. The observed high salinity (∼0.5-2%) of the ice particles in the plumes may indicate that the plumes originate from a subsurface liquid ocean. Additionally, the SPT is the source of strong infrared radiation (∼4.2 GW), which is especially intense near (within tens of meters) the tiger stripes. This could indicate that the radiation is associated with plume activity, but the connection remains unclear. Here we investigate the constraints that plume observations place on the widths of the cracks, the depth to the liquid-vapor interface, and the mechanisms controlling plume variability. We solve the fluid dynamics of the flow in the crack and the interaction between the flow and ice walls assuming that the flows of water vapor and ice particles originate from a few kilometers deep liquid ocean. For a crack with a uniform width, we find that our model could explain the observed vapor mass flow rate of the plumes when the crack width is 0.05-0.075 m. A wider crack is not favorable because it would produce a higher vapor mass flow rate than the observed value, but it may be allowed if there are some flows that do not reach the surface of Enceladus either due to condensation on the icy walls or the tortuosity of the crack. The observed heat flow can be explained if the total crack length is approximately 1.7 × 500 km. A tapering crack (a crack which is ∼1 m wide at the bottom of the flow and sharply becomes 0.05-0.075 m at shallower depths) can also explain the observed vapor mass flow rate and heat flow. Widths of 1 m or more are necessary to avoid freezing at the liquid-vapor interface, as shown in our paired paper (Ingersoll and Nakajima [2016] Icarus). The observed intense heat flow along the tiger stripes can be explained by the latent heat release due to vapor condensation onto the ice walls near the

  14. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    Science.gov (United States)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  15. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    DEFF Research Database (Denmark)

    Law, B.E.; Falge, E.; Gu, L.;

    2002-01-01

    . FLUXNETs goals are to understand the mechanisms controlling the exchanges of CO2, water vapor and energy across a spectrum of time and space scales, and to provide information for modeling of carbon and water cycling across regions and the globe. At a subset of sites, net carbon uptake (net ecosystem......The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables...... associated with reduced temperature. The slope of the relation between monthly gross ecosystem production and evapotranspiration was similar between biomes. except for tundra vegetation, showing a strong linkage between carbon gain and water loss integrated over the year (slopes = 3.4 g CO2/kg H2O...

  16. Obliquity-Controlled Water Vapor/Trace Gas Feedback in the Martian Greenhouse Cycle

    Science.gov (United States)

    Mischna, M. A.; Baker, V. R.; Milliken, R.; Richardson, M. I.; Lee, C.

    2013-12-01

    We have explored possible mechanisms for the generation of warm, wet climates on early Mars as a result of greenhouse warming by both water vapor and periodic volcanic trace gas emissions, using the Mars Weather Research and Forecasting (MarsWRF) general circulation model. The presence of both water vapor (a strong greenhouse gas) and other trace greenhouse gases (such as SO2) in a predominantly CO2 atmosphere may act, under certain conditions, to elevate surface temperatures above the freezing point of liquid water, at least episodically. The levels of warming obtained in our simulations do not reach the values seen in Johnson et al., (2008, JGR, 113, E08005), nor are they widespread for extended periods. Rather, warming above 273 K is found in more localized environments and for geologically brief periods of time. Such periodic episodes are controlled by two factors. First is the obliquity of the planet, which plays a significant role is ';activating' extant surface water ice reservoirs, allowing levels of atmospheric water vapor to rise when obliquity is high, and fall precipitously when the obliquity is low. During these low-obliquity periods, the atmosphere is all but incapable of supporting warm surface temperatures except for brief episodes localized wholly in the tropics; thus, there is a natural regulator in the obliquity cycle for maintaining periodic warming. Second is the presence of a secondary trace gas 'trigger', like volcanically released SO2, in the atmosphere. In the absence of such a trace gas, water vapor alone appears incapable of raising temperatures above the melting point; however, by temporarily raising the baseline global temperatures (in the absence of warming by water vapor) by 10-15 K, as with SO2, the trigger gas keeps atmospheric temperatures sufficiently warm, especially during nighttime, to maintain levels of water vapor in the atmosphere that provide the needed warming. Furthermore, we find that global warming can be achieved more

  17. SAFETY AND QUALITY CONTROL OF TRANSPORT SERVICES ON RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    I. P. Sadlovska

    2010-10-01

    Full Text Available The article presents the provisions to improve procedure of licensing of passenger and freight transportation, technical specifications for services related to the passenger and freight transportations.

  18. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  19. Experimental Study of the Distribution of Au and Cu in Aqueous Vapor Phase at High Temperatures and Its Role on Ore-forming Transportation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ronghua; HU Shumin; ZHANG Xuetong

    2008-01-01

    This study focuses on experiments of Au and Cu dissolved in vapor phase in hydrothernmlfluids. Experiments prove that Au and Cu can re-distribute in vapor phase and liquid phase duringseparation of Au- and Cu-bearing supercriticai fluids to vapor and liquid phases. These experimentalresults can illustrate some ore geneses, where boiling phenomena of ore fluids were found. Au- and Cu-bearing NaHCO3-HCl solutions were heated up to more than 350℃ in the main vessel, and then passedthrough a phase separator in a temperature range from 250oC to 300℃, separated into vapor andliquid phases. We collected and analyzed the liquid and vapor samples separately, and found that Auand Cu dissolved and distributed in vapor phase. In some cases, the concentrations of Au and Cu invapor are higher than those in liquid phase. Those experiments are used to interpret field observationsof fluid inclusion data of some Au and Cu deposits, and demonstrate that some Au and Cu ore depositsare derived from metals transportation in vapor phase.

  20. Growth of ZnO Single Crystal by Chemical Vapor Transport Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.

  1. Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport.

    Science.gov (United States)

    Lu, Yu-Fen; Lo, Shun-Tsung; Lin, Jheng-Cyuan; Zhang, Wenjing; Lu, Jing-Yu; Liu, Fan-Hung; Tseng, Chuan-Ming; Lee, Yi-Hsien; Liang, Chi-Te; Li, Lain-Jong

    2013-08-27

    A significant advance toward achieving practical applications of graphene as a two-dimensional material in nanoelectronics would be provided by successful synthesis of both n-type and p-type doped graphene. However, reliable doping and a thorough understanding of carrier transport in the presence of charged impurities governed by ionized donors or acceptors in the graphene lattice are still lacking. Here we report experimental realization of few-layer nitrogen-doped (N-doped) graphene sheets by chemical vapor deposition of organic molecule 1,3,5-triazine on Cu metal catalyst. When reducing the growth temperature, the atomic percentage of nitrogen doping is raised from 2.1% to 5.6%. With increasing doping concentration, N-doped graphene sheet exhibits a crossover from p-type to n-type behavior accompanied by a strong enhancement of electron-hole transport asymmetry, manifesting the influence of incorporated nitrogen impurities. In addition, by analyzing the data of X-ray photoelectron spectroscopy, Raman spectroscopy, and electrical measurements, we show that pyridinic and pyrrolic N impurities play an important role in determining the transport behavior of carriers in our N-doped graphene sheets.

  2. Multiphase Reactive Transport modeling of Stable Isotope Fractionation of Infiltrating Unsaturated Zone Pore Water and Vapor Using TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Michael J.; Sonnenthal, Eric L.; Conrad, Mark E.; DePaolo, Donald J.

    2003-08-28

    Numerical simulations of transport and isotope fractionation provide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic conditions, and infiltration. We incorporate the temperature-dependent equilibration of stable isotopic species between water and water vapor, and their differing diffusive transport properties into the thermodynamic database of the reactive transport code TOUGHREACT. These simulations are used to illustrate the evolution of stable isotope profiles in semiarid regions where recharge during wet seasons disturbs the drying profile traditionally associated with vadose zone pore waters. Alternating wet and dry seasons lead to annual fluctuations in moisture content, capillary pressure, and stable isotope compositions in the vadose zone. Periodic infiltration models capture the effects of seasonal increases in precipitation and predict stable isotope profiles that are distinct from those observed under drying (zero infiltration) conditions. After infiltration, evaporation causes a shift to higher 18O and D values, which are preserved in the deeper pore waters. The magnitude of the isotopic composition shift preserved in deep vadose zone pore waters varies inversely with the rate of infiltration.

  3. Low-Cost Growth of III-V Layers on Si Using Close-Spaced Vapor Transport

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Jason W.; Greenaway, Ann L.; Ritenour, Andrew J.; Davis, Allison L.; Bachman, Benjamin F.; Aloni, Shaul; Boettcher, Shannon W.

    2015-06-14

    Close-spaced vapor transport (CSVT) uses solid precursors to deposit material at high rates and with high precursor utilization. The use of solid precursors could significantly reduce the costs associated with III-V photovoltaics, particularly if growth on Si substrates can be demonstrated. We present preliminary results of the growth of GaAs1-xPx with x ≈ 0.3 and 0.6, showing that CSVT can be used to produce III-V-V’ alloys with band gaps suitable for tandem devices. Additionally, we have grown GaAs on Si by first thermally depositing films of Ge and subsequently depositing GaAs by CSVT. Patterning the Ge into islands prevents cracking due to thermal mismatch and is useful for potential tandem structures.

  4. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    Science.gov (United States)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  5. Evaluation of Five Phase Digitally Controlled Rotating Field Plasma Source for Photochemical Mercury Vapor Generation Optical Emission Spectrometry.

    Science.gov (United States)

    Matusiewicz, Henryk; Ślachciński, Mariusz; Pawłowski, Paweł; Portalski, Marek

    2015-01-01

    A new sensitive method for total mercury determination in reference materials using a 5-phase digitally controlled rotating field plasma source (RFP) for optical emission spectrometry (OES) was developed. A novel synergic effect of ultrasonic nebulization (USN) and ultraviolet-visible light (UV-Vis) irradiation when used in combination was exploited for efficient Hg vapor generation. UV- and Vis-based irradiation systems were studied. It was found that the most advantageous design was an ultrasonic nebulizer fitted with a 6 W mercury lamp supplying a microliter sample to a quartz oscillator, converting liquid into aerosol at the entrance of the UV spray chamber. Optimal conditions involved using a 20% v/v solution of acetic acid as the generation medium. The mercury cold vapor, favorably generated from Hg(2+) solutions by UV irradiation, was rapidly transported into a plasma source with rotating field generated within the five electrodes and detected by digitally controlled rotating field plasma optical emission spectrometry (RFP-OES). Under optimal conditions, the experimental concentration detection limit for the determination, calculated as the concentration giving a signal equal to three times the standard deviation of the blank (LOD, 3σblank criterion, peak height), was 4.1 ng mL(-1). The relative standard deviation for samples was equal to or better than 5% for liquid analysis and microsampling capability. The methodology was validated through determination of mercury in three certified reference materials (corresponding to biological and environmental samples) (NRCC DOLT-2, NRCC PACS-1, NIST 2710) using the external aqueous standard calibration techniques in acetic acid media, with satisfactory recoveries. Mercury serves as an example element to validate the capability of this approach. This is a simple, reagent-saving, cost-effective and green analytical method for mercury determination.

  6. In situ measurement and dynamic control of the evaporation rate in vapor diffusion crystallization of proteins

    Science.gov (United States)

    Shu, Zhan-Yong; Gong, Hai-Yun; Bi, Ru-Chang

    1998-08-01

    A special device with a weight-sensitive facility was designed for monitoring and controlling the water evaporation in vapor diffusion protein crystallization. The device made it possible to measure the weight of the drop in real time while the crystallization experiment was going on normally. The precise water equilibration curves under different crystallization conditions could be obtained automatically. By monitoring and controlling the evaporation rate, the crystallization of hen egg-white lysozyme and trichosanthin, a plant protein from Chinese herb, was optimized by regulating the reservoir solution dynamically. The experimental results of these two proteins indicate both the feasibility of the device and the usefulness of dynamic control technique. Compared with traditional crystallization experiments, dynamically controlled crystallization can reduce the number of nuclei, increase the crystal size and save experimental time effectively.

  7. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    designing and operating remediation systems. Simple and accurate models for estimating soil properties from soil parameters that are easy to measure are useful in connection with preliminary remedial investigations and evaluation of remedial technologies. In this work simple models for predicting transport...

  8. Water vapor transport in the Pearl River basin and its influence on NDVI

    Directory of Open Access Journals (Sweden)

    Wang Yin-Xia

    2016-01-01

    Full Text Available Using NECP/NCAR monthly average data and 216 months average monthly precipitation data of the University of Delaware during 1982-1999. Analyzed the precipitation vapour transport process affects precipitation in the Pearl River Basin in different seasons. On this basis, the seasonal differences NDVI changes in climate-driven factors in the Pearl River Basin.

  9. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  10. Programmable Control of the Pulse Repetition Rate in the Multiwave Strontium Vapor Laser System

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The aim of the present work was the development of laser systems for ablation of biological tissues with a programmable control over the lasing pulse repetition rate in a wide range. A two-stage laser system consisting of a master oscillator and a power amplifier based on strontium vapor laser has been developed. The operation of the laser system in a single-pulse mode operation, multipulse mode operation, and with a pulse repetition rate up to 20 kHz has been technically implemented. The possibility of a bone tissue ablation with no visible thermal damage is shown.

  11. Growth and optical properties of ZnO nanostructures by vapor transport process

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Y.H. [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of Chinese Academy of Science, Beijing 100039 (China); Center for Advanced Opto-Electronic Functional Material Research, Northeast Normal University, Changchun 130024 (China); Liu, Y.C. [Center for Advanced Opto-Electronic Functional Material Research, Northeast Normal University, Changchun 130024 (China)]. E-mail: ycliu@nenu.edu.cn; Dong, L. [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Lu, L.X. [School of Science, Hebei University of Technology, Tianjin 300130 (China); Zhao, D.X. [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, J.Y. [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Lu, Y.M. [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Shen, D.Z. [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Fan, X.W. [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2007-05-15

    ZnO nanorods and ZnO nanotubes have been fabricated by thermally evaporating the metal Zn powder. The ZnO nanorod obtained on the ITO substrate located above the Zn source has the uneven diameter with the abrupt change in its middle, which may originate from the decrease of the Zn vapor in the system. The ZnO nanotubes with the rough surfaces were obtained in the upstream region. The negative thermal quenching of the photoluminescence can be observed in the ZnO nanotubes. This is related with the abundant surface/interface defects which can introduce a large number of middle states in the band gap. According to Shibata's model, the activation energy of the electrons from the middle states to the initial states can be obtained by fitting the experimental data of the temperature dependence of the ultraviolet photoluminescence intensity. The fitting energy values are as high as {approx}100 meV, which may be responsible for the negative thermal quenching in a high-temperature range from 163.5 to 205.6 K.

  12. Flight Controller Design of Transport Airdrop

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; SHIZhongke

    2011-01-01

    During airdrop of heavy load,the flight paramctcrs vary continuously as the load moves in the hold,and change suddenly when the load drops out.This process deteriorates the flight quality and control characteristic as the load becomes heavier.Based on the simplified airdrop flight equations,the backstepping and switch control methods are developed to tackle the flight state holding and disturbance/uncertainty(such as large scale flight condition,pilot manipulation error,system measure delay,etc.)attenuation problem in this paper.Moreover,these methods can be used as a reference for pilot manipulating during airdrop.With the backstepping theory,an adaptive controller is synthesized for the purpose of stabilizing the transport when the load moves in the hold,and then a coordinated switch control method is used to control the aircraft when the condition jumps from the existence of load at the rear of fuselage to no load in the fuselage.Simulation results show that the proposed controllers not only provide effective state holding during airdrop,but also achieve robust performance within wide flight conditions.

  13. Multifaceted and route-controlled "click" reactions based on vapor-deposited coatings.

    Science.gov (United States)

    Sun, Ting-Pi; Tai, Ching-Heng; Wu, Jyun-Ting; Wu, Chih-Yu; Liang, Wei-Chieh; Chen, Hsien-Yeh

    2016-02-01

    "Click" reactions provide precise and reliable chemical transformations for the preparation of functional architectures for biomaterials and biointerfaces. The emergence of a multiple-click reaction strategy has paved the way for a multifunctional microenvironment with orthogonality and precise multitasking that mimics nature. We demonstrate a multifaceted and route-controlled click interface using vapor-deposited functionalized poly-para-xylylenes. Distinctly clickable moieties of ethynyl and maleimide were introduced into poly-para-xylylenes in one step via a chemical vapor deposition (CVD) copolymerization process. The advanced interface coating allows for a double-click route with concurrent copper(i)-catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) and the thiol-maleimide click reaction. Additionally, double-click reactions can also be performed in a cascade manner by controlling the initiation route to enable the CuAAC and/or thiol-yne reaction using a mono-functional alkyne-functionalized poly-para-xylylene. The use of multifaceted coatings to create straightforward and orthogonal interface properties with respect to protein adsorption and cell attachment is demonstrated and characterized.

  14. Transport phenomena during vapor growth of optoelectronic material - A mercurous chloride system

    Science.gov (United States)

    Singh, N. B.

    1990-01-01

    Crystal growth velocity was measured in a mercurous chloride system in a two-zone transparent furnace as a function of the Rayleigh number by varying a/L, where a is the radius of the growth tube and L is the transport length. Growth velocity data showed different trends at low and high aspect ratio, a result that does not support the velocity-aspect ratio trend predicted by theories. The system cannot be scaled on the basis of measurements done at a low aspect ratio. Some change in fluid flow behavior occurs in the growth tube as the aspect ratio increases.

  15. Characterization of single crystalline ZnTe and ZnSe grown by vapor phase transport

    Energy Technology Data Exchange (ETDEWEB)

    Trigubo, A B; Di Stefano, M C [FRBA-UTN, (1179) Buenos Aires (Argentina); Aguirre, M H [Dpto de Quim Inorg, Fac de Cs Quim, Univ Complutense, (28040) Madrid (Spain); Martinez, A M; D' Elia, R; Canepa, H; Heredia, E, E-mail: atrigubo@citefa.gov.a [CINSO-CITEFA: (1603) Villa Martelli, Pcia de Buenos Aires (Argentina)

    2009-05-01

    Tubular furnaces were designed and built to obtain single crystalline ZnTe and ZnSe ingots using respectively physical and chemical transport methods. Different temperature profiles and growth rates were analyzed in order to optimize the necessary crystalline quality for device development. Optical and scanning electron micrographs of the corrosion figures produced by chemical etching were used to obtain the dislocation density and the misorientation between adjacent subgrains in ZnTe and ZnSe wafers. Structural quality of the single crystalline material was determined by transmission electronic microscopy. Optical transmittance was measured by infrared transmission spectrometry and the resulting values were compared to commercial samples.

  16. Application of the Stefan-Maxwell Equations to determine limitations of Fick's law when modeling organic vapor transport in sand columns

    Science.gov (United States)

    Baehr, Arthur L.; Bruell, Clifford J.

    1990-01-01

    The organic component of the vapor phase of a porous medium contaminated by an immiscible organic liquid can be significant enough to violate the condition of a dilute species diffusing in a bulk phase assumed by Fick's law. The Stefan-Maxwell equations provide a more comprehensive model for quantifying steady state transport for a vapor phase composed of arbitrary proportions of its constituents. The application of both types of models to the analysis of column experiments demonstrates that use of a Fickian-based transport model can lead to significant overestimates of soil tortuosity constants. Further, the physical displacement of naturally occurring gases (e.g., O2), predicted by the Stefan-Maxwell model but not by application of Fick's Law, can be attributed improperly to a sink term such as microbial degradation in a Fickian-based transport model.

  17. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  18. Atmospheric control on isotopic composition and d-excess in water vapor over ocean surface

    Science.gov (United States)

    Fan, Naixin

    For decades, stable isotopes of water have been used as proxies to infer the variation of the hydrological cycle. However, it is still not clear how various atmospheric processes quantitatively control kinetic fractionation during evaporation over the ocean. Understanding kinetic fractionation is important in that the interpretation of the isotopic composition record preserved in ice cores and precipitation relies in part on the isotopic information at the moisture source. In addition, the isotopic composition of vapor contains information about variation of atmospheric processes such as turbulence and change in moisture source region which is useful for studying meteorological processes and climate change. In this study the isotopic composition of water vapor in the marine boundary layer (MBL) over the ocean was investigated using a combination of a newly developed marine boundary layer (MBL) model and observational data. The new model has a more realistic MBL structure than previous models and includes new features such as vertical advection of air and diffusion coefficients that vary continuously in the vertical direction. A robust linear relationship between deltaD and delta18O was found in observational oceanic water vapor data and the model can well capture the characteristics of this relationship. The individual role of atmospheric processes or variables on deltaD, delta18O and d-excess was quantitatively investigated and an overview of the combined effect of all the meteorological processes is provided. In particular, we emphasize that the properties of subsiding air (such as its mixing ratio and isotopic values) are crucial to the isotopic composition of surface water vapor. Relative humidity has been used to represent the moisture deficit that drives evaporative isotopic fluxes, however, we argue that it has serious limitations in explaining d-excess variation as latitude varies. We introduce a new quantity Gd=SST-Td, the difference between the sea

  19. Forced convection and transport effects during hyperbaric laser chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, James L [Los Alamos National Laboratory; Chavez, Craig A [Los Alamos National Laboratory; Espinoza, Miguel [Los Alamos National Laboratory; Black, Marcie [Los Alamos National Laboratory; Maskaly, Karlene [Los Alamos National Laboratory; Boman, Mats [UPPSALA UNIV

    2009-01-01

    This work explores mass transport processes during HP-LCYD, including the transverse forced-flow of precursor gases through a nozzle to enhance fiber growth rates. The use of laser trapping and suspension of nano-scale particles in the precursor flow is also described, providing insights into the nature of the gas flow, including jetting from the fiber tip and thermodiffusion processes near the reaction zone. The effects of differing molecular-weight buffer gases is also explored in conjunction with the Soret effect, and it is found that nucleation at the deposit surface (and homogeneous nucleation in the gas phase) can be enhanced/ retarded, depending on the buffer gas molecular weight. To demonstrate that extensive microstructures can be grown simultaneously, three-dimensional fiber arrays are also grown in-parallel using diffractive optics--without delatory effects from neighboring reaction sites.

  20. Single-beam water vapor detection system with automatic photoelectric conversion gain control

    Science.gov (United States)

    Zhu, C. G.; Chang, J.; Wang, P. P.; Wang, Q.; Wei, W.; Liu, Z.; Zhang, S. S.

    2014-11-01

    A single-beam optical sensor system with automatic photoelectric conversion gain control is proposed for doing high reliability water vapor detection under relatively rough environmental conditions. Comparing to a dual-beam system, it can distinguish the finer photocurrent variations caused by the optical power drift and provide timely compensation by automatically adjusting the photoelectric conversion gain. This system can be rarely affected by the optical power drift caused by fluctuating ambient temperature or variation of fiber bending loss. The deviation of the single-beam system is below 1.11% when photocurrent decays due to fiber bending loss for bending radius of 5 mm, which is obviously lower than the dual-beam system (8.82%). We also demonstrate the long-term stability of the single-beam system by monitoring a 660 ppm by volume (ppmv) water vapor sample continuously for 24 h. The maximum deviation of the measured concentration during the whole testing period does not exceed 10 ppmv. Experiments have shown that the new system features better reliability and is more apt for remote sensing application which is often subject to light transmission loss.

  1. Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release.

    Science.gov (United States)

    Zhu, Guanchen; Zhang, Yifan; Wang, Kaikai; Zhao, Xiaozhi; Lian, Huibo; Wang, Wei; Wang, Haoran; Wu, Jinhui; Hu, Yiqiao; Guo, Hongqian

    2016-10-01

    Intravesical drug delivery is the main strategy for the treatment of bladder disorders. To reduce the relief arising from frequent intravesical instillation, mucoadhesive hydrogel was used for the controlled release of the drug. However, the viscosity of mucoadhesive gel might cause severe urinary obstruction and bladder irritation. To solve all these problems, a floating hydrogel delivery system was developed using perfluoropentane (PFP) as the floating agent. After intravesical instillation of the floating hydrogel, the increased temperature in bladder vaporized PFP, resulting in the generation of microbubbles in the hydrogel. Then, it can float in urine to avoid the urinary obstruction and bladder irritation. In this study, systematic experiments were conducted to investigate the influences of PFP vaporization on the morphology and floating ability of hydrogels. The floating process is much milder and safer than other floating methods published before. In addition, PFP had been used as contrast agent, which affiliated the monitoring of gels during the operation. Therefore, this new drug delivery system addresses the problems of conventional intravesical instillation and is promising for clinic use.

  2. A decadal time series of water vapor and D / H isotope ratios above Zugspitze: transport patterns to central Europe

    Science.gov (United States)

    Hausmann, Petra; Sussmann, Ralf; Trickl, Thomas; Schneider, Matthias

    2017-06-01

    We present vertical soundings (2005-2015) of tropospheric water vapor (H2O) and its D / H isotope ratio (δD) derived from ground-based solar Fourier transform infrared (FTIR) measurements at Zugspitze (47° N, 11° E, 2964 m a.s.l.). Beside water vapor profiles with optimized vertical resolution (degrees of freedom for signal, DOFS, = 2.8), {H2O, δD} pairs with consistent vertical resolution (DOFS = 1.6 for H2O and δD) applied in this study. The integrated water vapor (IWV) trend of 2.4 [-5.8, 10.6] % decade-1 is statistically insignificant (95 % confidence interval). Under this caveat, the IWV trend estimate is conditionally consistent with the 2005-2015 temperature increase at Zugspitze (1.3 [0.5, 2.1] K decade-1), assuming constant relative humidity. Seasonal variations in free-tropospheric H2O and δD exhibit amplitudes of 140 and 50 % of the respective overall means. The minima (maxima) in January (July) are in agreement with changing sea surface temperature of the Atlantic Ocean. Using extensive backward-trajectory analysis, distinct moisture pathways are identified depending on observed δD levels: low column-based δD values (δDcol 95th percentile: 46° N, 4.6 km). Backward-trajectory classification indicates that {H2O, δD} observations are influenced by three long-range-transport patterns towards Zugspitze assessed in previous studies: (i) intercontinental transport from North America (TUS; source region: 25-45° N, 70-110° W, 0-2 km altitude), (ii) intercontinental transport from northern Africa (TNA; source region: 15-30° N, 15° W-35° E, 0-2 km altitude), and (iii) stratospheric air intrusions (STIs; source region: > 20° N, above zonal mean tropopause). The FTIR data exhibit significantly differing signatures in free-tropospheric {H2O, δD} pairs (5 km a.s.l.) - given as the mean with uncertainty of ±2 standard error (SE) - for TUS (VMRH2O = 2.4 [2.3, 2.6] × 103 ppmv, δD = -315 [-326, -303] ‰), TNA (2.8 [2.6, 2.9] × 103 ppmv, -251 [-257

  3. Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications

    Science.gov (United States)

    Amarasinghe, Priyanthi M.; Kim, Joo-Soo; Chen, Henry; Trivedi, Sudhir; Qadri, Syed B.; Soos, Jolanta; Diestler, Mark; Zhang, Dajie; Gupta, Neelam; Jensen, Janet L.; Jensen, James

    2016-09-01

    Single crystals of mercurous halide were grown by physical vapor transport method (PVT). The orientation and the crystalline quality of the grown crystals were determined using high resolution x-ray diffraction (HRXRD) technique. The full width at half maximum (FWHM) of the grown mercurous bromide crystals was measured to be 0.13 degrees for (004) reflection, which is the best that has been achieved so far for PVT grown mercurous halide single crystals. The extended defects of the crystals were also analyzed using high resolution x-ray diffraction topography. Preliminary studies were carried out to evaluate the performance of the crystals on acousto-optic modulator (AOM) and gamma-ray detector applications. The results indicate the grown mercurous halide crystals are excellent materials for acousto-optic modulator device fabrication. The diffraction efficiencies of the fabricated AOM device with 1152 and 1523 nm wavelength lasers polarizing parallel to the acoustic wave were found to be 35% and 28%, respectively. The results also indicate the grown crystals are a promising material for gamma-ray detector application with a very high energy resolution of 1.86% FWHM.

  4. Heat transport in cold-wall single-wafer low pressure chemical-vapor-deposition reactors

    NARCIS (Netherlands)

    Hasper, A.; Schmitz, J.E.J.; Holleman, J.; Verweij, J.F.

    1992-01-01

    A model is formulated to understand and predict wafer temperatures in a tungsten low pressure chemical‐vapor‐deposition (LPCVD) single‐wafer cold‐wall reactor equipped with hot plate heating. The temperature control is usually carried out on the hot plate temperature. Large differences can occur

  5. Source process of long-period seismic events at Taal volcano, Philippines: Vapor transportation and condensation in a shallow hydrothermal fissure

    Science.gov (United States)

    Maeda, Yuta; Kumagai, Hiroyuki; Lacson, Rudy; Figueroa, Melquiades S.; Yamashina, Tadashi

    2013-06-01

    We analyzed observations of a swarm of more than 40,000 long-period (LP) seismic events at Taal volcano, Philippines, in 2010-2011. The event waveforms are strongly correlated to each other, consistent with a fixed source location, and begin with a dilatational first motion. They have a peak frequency around 0.8 Hz and a quality factor Q of 6. Waveform inversion of the events pointed to a tensile crack source dipping 30°-60° at a shallow (100-200 m) depth. A simulation using a fluid-filled crack model indicated that the complex frequencies of the waveforms are explained by the fundamental longitudinal mode resonance of a vapor-filled crack 188 m long. A satellite thermal infrared image acquired during the swarm period suggests that the LP events were not accompanied by surface gas releases. We considered a vapor transportation model in which vapor exsolved from magma and rose in a fissure extending to the LP source. This model yielded estimates that 105-107 m3 of magma was involved in the LP swarm and that the temperature of vapor in the LP source crack was around 600 K. We modeled a triggering mechanism of the crack resonance based on sudden condensation of vapor at the crack tip in a cold aquifer. This model explained observed characteristics of the events including the dilatational first motion, the total volumetric change, and the fixed source location.

  6. Transcriptional control of hepatocanalicular transporter gene expression

    NARCIS (Netherlands)

    Muller, M

    2000-01-01

    Transport processes for larger organic solutes at the canalicular membrane are mainly driven by members of the superfamily of ATP-binding cassette (ABC) transporters. The funct ions of these transporters range from bile component secretion to xenobiotica and phase II-conjugate export. The transcript

  7. Event-by-event Monte Carlo simulation of radiation transport in vapor and liquid water

    Science.gov (United States)

    Papamichael, Georgios Ioannis

    A Monte-Carlo Simulation is presented for Radiation Transport in water. This process is of utmost importance, having applications in oncology and therapy of cancer, in protecting people and the environment, waste management, radiation chemistry and on some solid-state detectors. It's also a phenomenon of interest in microelectronics on satellites in orbit that are subject to the solar radiation and in space-craft design for deep-space missions receiving background radiation. The interaction of charged particles with the medium is primarily due to their electromagnetic field. Three types of interaction events are considered: Elastic scattering, impact excitation and impact ionization. Secondary particles (electrons) can be generated by ionization. At each stage, along with the primary particle we explicitly follow all secondary electrons (and subsequent generations). Theoretical, semi-empirical and experimental formulae with suitable corrections have been used in each case to model the cross sections governing the quantum mechanical process of interactions, thus determining stochastically the energy and direction of outgoing particles following an event. Monte-Carlo sampling techniques have been applied to accurate probability distribution functions describing the primary particle track and all secondary particle-medium interaction. A simple account of the simulation code and a critical exposition of its underlying assumptions (often missing in the relevant literature) are also presented with reference to the model cross sections. Model predictions are in good agreement with existing computational data and experimental results. By relying heavily on a theoretical formulation, instead of merely fitting data, it is hoped that the model will be of value in a wider range of applications. Possible future directions that are the object of further research are pointed out.

  8. Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Eichfeld, Sarah M.; Oliveros Colon, Víctor; Nie, Yifan; Cho, Kyeongjae; Robinson, Joshua A.

    2016-06-01

    Tungsten diselenide (WSe2) is a semiconducting, two-dimensional (2D) material that has gained interest in the device community recently due to its electronic properties. The synthesis of atomically thin WSe2, however, is still in its infancy. In this work we elucidate the requirements for large selenium/tungsten precursor ratios and explain the effect of nucleation temperature on the synthesis of WSe2 via metal-organic chemical vapor deposition (MOCVD). The introduction of a nucleation-step prior to growth demonstrates that increasing nucleation temperature leads to a transition from a Volmer-Weber to Frank-van der Merwe growth mode. Additionally, the nucleation step prior to growth leads to an improvement of WSe2 layer coverage on the substrate. Finally, we note that the development of this two-step technique may allow for improved control and quality of 2D layers grown via CVD and MOCVD processes.

  9. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  10. Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding

    Science.gov (United States)

    Lavers, David A.; Waliser, Duane E.; Ralph, F. Martin; Dettinger, Michael

    2016-01-01

    The western United States is vulnerable to socioeconomic disruption due to extreme winter precipitation and floods. Traditionally, forecasts of precipitation and river discharge provide the basis for preparations. Herein we show that earlier event awareness may be possible through use of horizontal water vapor transport (integrated vapor transport (IVT)) forecasts. Applying the potential predictability concept to the National Centers for Environmental Prediction global ensemble reforecasts, across 31 winters, IVT is found to be more predictable than precipitation. IVT ensemble forecasts with the smallest spreads (least forecast uncertainty) are associated with initiation states with anomalously high geopotential heights south of Alaska, a setup conducive for anticyclonic conditions and weak IVT into the western United States. IVT ensemble forecasts with the greatest spreads (most forecast uncertainty) have initiation states with anomalously low geopotential heights south of Alaska and correspond to atmospheric rivers. The greater IVT predictability could provide warnings of impending storminess with additional lead times for hydrometeorological applications.

  11. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  12. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  13. Polar auxin transport: controlling where and how much

    Science.gov (United States)

    Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.

  14. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  15. Vertical transport through AlGaN barriers in heterostructures grown by ammonia molecular beam epitaxy and metalorganic chemical vapor deposition

    Science.gov (United States)

    Browne, David A.; Fireman, Micha N.; Mazumder, Baishakhi; Kuritzky, Leah Y.; Wu, Yuh-Renn; Speck, James S.

    2017-02-01

    The results of vertical transport through AlGaN heterobarriers are presented for ammonia molecular beam epitaxy (NH3-MBE) on c-plane GaN on sapphire templates and on m-plane bulk GaN substrates, as well as by metalorganic chemical vapor deposition (MOCVD) on m-plane bulk GaN substrates. Experiments were performed to determine the role of the AlGaN alloy as an effective barrier to vertical transport, which is an essential component of both optoelectronic and power electronic devices. The alloy composition, thickness, and doping levels of the AlGaN layers, as well as substrate orientation, were systematically varied to examine their influence on electron transport. Atom probe tomography (APT) was used to directly determine the alloy composition at the atomic scale to reveal the presence of random alloy fluctuations which provides insight into the nature of the observed transport.

  16. Stochastic Controls on Nitrate Transport and Cycling

    Science.gov (United States)

    Botter, G.; Settin, T.; Alessi Celegon, E.; Marani, M.; Rinaldo, A.

    2005-12-01

    In this paper, the impact of nutrient inputs on basin-scale nitrates losses is investigated in a probabilistic framework by means of a continuous, geomorphologically based, Montecarlo approach, which explicitly tackles the random character of the processes controlling nitrates generation, transformation and transport in river basins. This is obtained by coupling the stochastic generation of climatic and rainfall series with simplified hydrologic and biogeochemical models operating at the hillslope scale. Special attention is devoted to the spatial and temporal variability of nitrogen sources of agricultural origin and to the effect of temporally distributed rainfall fields on the ensuing nitrates leaching. The influence of random climatic variables on bio-geochemical processes affecting the nitrogen cycle in the soil-water system (e.g. plant uptake, nitrification and denitrification, mineralization), is also considered. The approach developed has been applied to a catchment located in North-Eastern Italy and is used to provide probabilistic estimates of the NO_3 load transferred downstream, which is received and accumulated in the Venice lagoon. We found that the nitrogen load introduced by fertilizations significantly affects the pdf of the nitrates content in the soil moisture, leading to prolonged risks of increased nitrates leaching from soil. The model allowed the estimation of the impact of different practices on the probabilistic structure of the basin-scale hydrologic and chemical response. As a result, the return period of the water volumes and of the nitrates loads released into the Venice lagoon has been linked directly to the ongoing climatic, pluviometric and agricultural regimes, with relevant implications for environmental planning activities aimed at achieving sustainable management practices.

  17. Steam generation process control and automation; Automacao e controle no processo de geracao de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, Jose Cleodon de; Silva, Walmy Andre C.M. da [PETROBRAS S.A., Natal, RN (Brazil)

    2004-07-01

    This paper describes the implementation of the Supervisory Control and Data Acquisition System (SCADA) in the steam generation process for injection in heavy oil fields of the Alto do Rodrigues Production Asset, developed by PETROBRAS/E and P/UN-RNCE. This Asset is located in the northeastern region of Brazil, in Rio Grande do Norte State. It addresses to the steam generators for injection in oil wells and the upgrade project that installed remote terminal units and a new panel controlled by PLC, changed all the pneumatic transmitters by electronic and incorporated the steam quality and oxygen control, providing the remote supervision of the process. It also discusses the improvements obtained in the steam generation after the changes in the conception of the control and safety systems. (author)

  18. Isotopic Controls of Rainwater and Water Vapor on Mangrove Leaf Water and Lipid Biomarkers

    Science.gov (United States)

    Ladd, N.; Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Hydrogen isotope ratios (2H/1H or δ2H) of sedimentary mangrove lipid biomarkers can be used as a proxy of past salinity and water isotopes. This approach is based on the observation that apparent 2H/1H fractionation between surface water and mangrove lipids increases with surface water salinity in six species of mangroves with different salt management strategies growing at sites spanning a range of relative humidities throughout Australia and Micronesia. In order to more robustly apply mangrove lipid δ2H as a paleoclimate proxy, we investigated the cause of the correlation between apparent 2H fractionation and salinity. We present results from two related experiments that assessed controls on isotopes of mangrove leaf water, the direct source of hydrogen in lipids: (1) Measurements of natural δ2H in precipitation, surface water, and mangrove tissue water from a series of lakes with varying salinity and water isotope composition in Palau, and (2) measurements of mangrove tissue water and treatment water from a controlled simulation in which mangroves were treated with artificial rain of varying isotopic composition. Rainwater 2H/1H fluctuations of 30‰ over a one-month period explain up to 65% of the variance in leaf water δ2H for Bruguiera gymnorhiza mangroves from Palau despite lake water isotope differences among sites of up to 35‰. This indicates that in humid tropical settings, leaf water isotopes are more closely related to those of precipitation and water vapor than to those of lake surface water, explaining the observed change in apparent fractionation in B. gymnorhiza lipids with salinity. The relationship between leaf water and rainwater isotopes may be due to either equilibration of leaf water with water vapor in the nearly saturated air or direct foliar uptake of rain and/or dew. Foliar uptake is an important water source for many plants, but has not been documented in mangroves. We tested the capacity for mangroves to perform this function by

  19. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    Science.gov (United States)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  20. Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Jason [University of Oregon; Ritenour, Andrew [University of Oregon; Boettcher, Shannon W. [University of Oregon

    2013-04-29

    Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source GaAs is an attractive material for thin-film photovoltaic applications, but is not widely used for terrestrial power generation due to the high cost of metal-organic chemical vapor deposition (MOCVD) techniques typically used for growth. Close space vapor transport is an alternative that allows for rapid growth rates of III-V materials, and does not rely on the toxic and pyrophoric precursors used in MOCVD. We characterize CSVT films of GaAs using photoelectrochemical current-voltage and quantum efficiency measurements. Hole diffusion lengths which exceed 1.5 um are extracted from internal quantum efficiency measurements using the Gartner model. Device physics simulations suggest that solar cells based on these films could reach efficiencies exceeding 24 %. To reach this goal, a more complete understanding of the electrical properties and characterization of defects will be necessary, including measurements on complete solid-state devices. Doping of films is achieved by using source material containing the desired impurity (e.g., Te or Zn). We discuss strategies for growing III-V materials on inexpensive substrates that are not lattice-matched to GaAs.

  1. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    Science.gov (United States)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science

  2. Improved Assessment Strategies for Vapor Intrusion Passive Samplers and Building Pressure Control

    Science.gov (United States)

    2013-09-01

    Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive- Adsorptive Sampling Techniques,” Mr. Todd McAlary is...on Henry’s Law Constant as >1 × 10-5 atm-m3 mol-1 and a vapor pressure >1 mm Hg Pathway Screening Criteria: For sites with volatile chemicals in...Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive- Adsorptive Sampling Techniques.” The focus of the

  3. Perceptions of transport corridors and intermodal transport - as ways to control the space of freight transport flows

    DEFF Research Database (Denmark)

    Hansen, Leif Gjesing

    2009-01-01

    ). The traditional role of forwarding firms as freight integrators is being challenged by other actors within the transport system, e.g. ferry and shipping lines, ports and train operators. The rationale for this development has been the increased focus by the transport sectors stakeholders on the control of guiding...... transport flows through specific transport networks of own interest. Most transport firms are mobile in their activities by nature, but are in reality confined in their day-to-day operations to different forms of relative fixed network structure - e.g. railway lines, ferry routes and ports, cost....... In this study stakeholders from Danish and Norwegian ports, ferry operators, train operators, forwarding and road haulage firms has been interviewed in order to analyse how logistical decision-making affect the organisational and physical configuration of intermodal transport solutions in the transport corridor...

  4. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Science.gov (United States)

    Djenadic, Ruzica; Winterer, Markus

    2017-02-01

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  5. Volume controlled fixation of the lung by formalin vapor. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Rau, W.S.; Mittermayer, C.

    1980-09-01

    A new method of lung fixation by formalin vapor is presented. A simple Engstrom type respirator modified for postmortem formalin insufflation of the lung was developed. Rapid fixation requires use of hot formalin vapor which would destroy available equipment. The main advantage compared to other described methods beside the constant volume is sufficient stirring of formalin and formalin vapor. In order to prevent condensation of water within the lung parenchyma any cooling of the vapor should be avoided. If the lungs are fixed by this method the tissue will stiffen in a position between in- and exspiration. Slices of 1 cm are cut. Radiographs in soft tissue technique guarantee unusual high resolution. Positive findings are identified easily and furthermore studied by microscopy: the direct correlation between X-ray finding and microscopy becomes possible.

  6. Controlling fast transport of cold trapped ions

    CERN Document Server

    Walther, Andreas; Ruster, Thomas; Dawkins, Sam T; Ott, Konstantin; Hettrich, Max; Singer, Kilian; Schmidt-Kaler, Ferdinand; Poschinger, Ulrich

    2012-01-01

    We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $\\pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

  7. Control of machine functions or transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, M.D.; Lee, M.J.; Jaeger, J.; King, A.S.

    1983-01-01

    A computer code, COMFORT, has been developed at SLAC for on-line calculation of the strengths of magnetic elements in an electron storage ring or transport beam line, subject to first order fitting constraints on the ring or beam line parameters. This code can also be used off-line as an interactive lattice or beam line design tool.

  8. A Review of Vapor Intrusion Models

    OpenAIRE

    Yao, Yijun; Suuberg, Eric M.

    2013-01-01

    A complete vapor intrusion (VI) model, describing vapor entry of volatile organic chemicals (VOCs) into buildings located on contaminated sites, generally consists of two main parts-one describing vapor transport in the soil and the other its entry into the building. Modeling the soil vapor transport part involves either analytically or numerically solving the equations of vapor advection and diffusion in the subsurface. Contaminant biodegradation must often also be included in this simulatio...

  9. Brownian Ratchets: Transport Controlled by Thermal Noise

    Science.gov (United States)

    Kula, J.; Czernik, T.; Łuczka, J.

    1998-02-01

    We analyze directed transport of overdamped Brownian particles in a 1D spatially periodic potential that are subjected to both zero-mean thermal equilibrium Nyquist noise and zero-mean exponentially correlated dichotomous fluctuations. We show that particles can reverse the direction of average motion upon a variation of noise parameters if two fundamental symmetries, namely, the reflection symmetry of the spatial periodic structure, and the statistical symmetry of dichotomous fluctuations, are broken. There is a critical thermal noise intensity Dc, or equivalently a critical temperature Tc, at which the mean velocity of particles is zero. Below Tc and above Tc particles move in opposite directions. At fixed temperature, there is a region of noise parameters in which particles of different linear size are transported in opposite directions.

  10. Controlled Electronic Transport through Branched Molecular Conductors

    OpenAIRE

    2008-01-01

    Abstract The conductance through a branched conductor placed between two electrodes is analyzed using the Landauer transport formulation within the framework of the single electron, and the tight binding approximations. Terminal side chains are expressed as self energy terms which map the branched conductor onto an effective linear chain Hamiltonian. The effect of uniform side branches on resonant zero-bias conductance is shown to be analytically solvable and particularly simple, w...

  11. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  12. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source.

    Science.gov (United States)

    Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T

    2012-02-01

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  13. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  14. Band-selective ballistic energy transport in alkane oligomers: toward controlling the transport speed.

    Science.gov (United States)

    Yue, Yuankai; Qasim, Layla N; Kurnosov, Arkady A; Rubtsova, Natalia I; Mackin, Robert T; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L; Rubtsov, Igor V

    2015-05-28

    Intramolecular transport of vibrational energy in two series of oligomers featuring alkane chains of various length was studied by relaxation-assisted two-dimensional infrared spectroscopy. The transport was initiated by exciting various end-group modes (tags) such as different modes of the azido (ν(N≡N) and ν(N═N)), carboxylic acid (ν(C═O)), and succinimide ester (νas(C═O)) with short mid-IR laser pulses. It is shown that the transport via alkane chains is ballistic and the transport speed is dependent on the type of the tag mode that initiates the transport. The transport speed of 8.0 Å/ps was observed when initiated by either ν(C═O) or νas(C═O). When initiated by ν(N≡N) and ν(N═N), the transport speed of 14.4 ± 2 and 11 ± 4 Å/ps was observed. Analysis of the vibrational relaxation channels of different tags, combined with the results for the group velocity evaluation, permits identification of the chain bands predominantly contributing to the transport for different cases of the transport initiation. For the transport initiated by ν(N≡N) the CH2 twisting and wagging chain bands were identified as the major energy transport channels. For the transport initiated by ν(C═O), the C-C stretching and CH2 rocking chain bands served as major energy transporters. The transport initiated by ν(N═N) results in direct formation of the wave packet within the CH2 twisting and wagging chain bands. These developments can aid in designing molecular systems featuring faster and more controllable energy transport in molecules.

  15. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit...

  16. Factors controlling large-wood transport in a mountain river

    Science.gov (United States)

    Ruiz-Villanueva, Virginia; Wyżga, Bartłomiej; Zawiejska, Joanna; Hajdukiewicz, Maciej; Stoffel, Markus

    2016-11-01

    As with bedload transport, wood transport in rivers is governed by several factors such as flow regime, geomorphic configuration of the channel and floodplain, or wood size and shape. Because large-wood tends to be transported during floods, safety and logistical constraints make field measurements difficult. As a result, direct observation and measurements of the conditions of wood transport are scarce. This lack of direct observations and the complexity of the processes involved in wood transport may result in an incomplete understanding of wood transport processes. Numerical modelling provides an alternative approach to addressing some of the unknowns in the dynamics of large-wood in rivers. The aim of this study is to improve the understanding of controls governing wood transport in mountain rivers, combining numerical modelling and direct field observations. By defining different scenarios, we illustrate relationships between the rate of wood transport and discharge, wood size, and river morphology. We test these relationships for a wide, multithread reach and a narrower, partially channelized single-thread reach of the Czarny Dunajec River in the Polish Carpathians. Results indicate that a wide range of quantitative information about wood transport can be obtained from a combination of numerical modelling and field observations and from document contrasting patterns of wood transport in single- and multithread river reaches. On the one hand, log diameter seems to have a greater importance for wood transport in the multithread channel because of shallower flow, lower flow velocity, and lower stream power. Hydrodynamic conditions in the single-thread channel allow transport of large-wood pieces, whereas in the multithread reach, logs with diameters similar to water depth are not being moved. On the other hand, log length also exerts strong control on wood transport, more so in the single-thread than in the multithread reach. In any case, wood transport strongly

  17. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    Science.gov (United States)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  18. 一次特大暴雨水汽输送与中尺度分析%Vapor transport and mesoanalysis of an excessively heavy rain

    Institute of Scientific and Technical Information of China (English)

    蒋翠花; 吴新胜; 傅云燕; 丘文先; 王文清

    2011-01-01

    In this paper we analysed the circulation background, vapor transport and mesoscale con-vective system of an excessively heavy rain during 7-8 September 2010 at Suqian. The result showed that vapor convergence in Huaibei of Jiangsu due to the shear of east wind and southwest wind was beneficial to the heavy rain. The coupling of lower and upper jet, unstable stratification and cold air intrusion all were able to intensify the upward movement and vertical transportation of the water vapor. Mesoscale vortex , combined with low and airflow convergence, can be used to forecast where and when heavy rain may possibly happen. Also, they have great predictive significance for intensity and duration of heavy rain.%从天气背景、水汽输送、中尺度对流系统等几个方面对宿迁2010年9月7-8日出现的特大暴雨过程进行分析.结果表明,偏东风与西南风的切变风场使得水汽在淮北汇合,对特大暴雨的产生非常有利;高低空急流及其耦合作用、不稳定大气层结和冷空气的锲入,能产生深厚的上升运动和快速的水汽垂直输送;中尺度涡旋、低压、流场辐合线或辐合中心对特大暴雨的落区、强度和维持时间有很好的预报意义.

  19. Density-controlled growth of well-aligned ZnO nanowires using chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Well-aligned ZnO nanowires were grown on Si substrate by chemical vapor deposition.The experimental results showed that the density of nanowires was related to the heating process and growth temperature.High-density ZnO nanowires were obtained under optimal conditions.The growth mechanism of the ZnO nanowires was presented as well.

  20. Optogenetic control of organelle transport and positioning

    NARCIS (Netherlands)

    van Bergeijk, Petra; Adrian, Max; Hoogenraad, Casper C; Kapitein, Lukas C

    2015-01-01

    Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle

  1. Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition

    Science.gov (United States)

    Liu, Jinyang; Huang, Zhigao; Lai, Fachun; Lin, Limei; Xu, Yangyang; Zuo, Chuandong; Zheng, Weifeng; Qu, Yan

    2015-11-01

    As is well established, mastery to precise control of the layer number, stacking order of graphene, and the size of single-crystal monolayer graphene is very important for both fundamental interest and practical applications. In this report, millimeter-sized single-crystal monolayer graphene has been synthesized to multilayer graphene on Cu by chemical vapor deposition. The relationship of the growth process between monolayer graphene and multilayer graphene is investigated carefully. Besides the general multilayer graphene with Bernal stacking order, parts of multilayer graphene with non-Bernal stacking order were modulated under optimized growth conditions. The oxide nanoparticle on the Cu surface derived from annealing has been found to play the key role in nucleation. In addition, the hydrogen concentration impacts significantly on the layer number and shape of the graphene. Moreover, a possible mechanism was proposed to understand the growth process discussed above, which may provide an instruction to graphene growth on Cu by chemical vapor deposition.

  2. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning

    2014-06-01

    This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

  3. Characteristics of Water Vapor Transportation and Budget over the Heihe Drainage Basin%黑河流域水汽输送及收支特征

    Institute of Scientific and Technical Information of China (English)

    陆桂华; 徐栋; 何海

    2012-01-01

    Based on the NCEP/NCAR reanalysis daily mean data from 1948 to 2008, the char acteristics of water vapor transportation and budget over the Heihe Drainage Basin were analyzed in this passage. The results showed that, influenced by westerly circulation, Atlantic and Arctic oceans were the main water vapor source over the Heihe Drainage Basin. Water vapor was mainly latitudinally transported from west to east, and the intensity of water vapor exported from east boundary of the Heihe Drainage Basin was greater than that imported from west boundary, the in tensity of water vapor imported from north boundary was also greater than that exported from south boundary. In the layer of 700 hPa, convergence and divergence of the southern Heihe Drainage Basin changed seasonally, it is a water vapor divergence area in winter, hut a convergence area in summer. The northern Heihe Drainage Basin had no such obvious characteristics all the year round. The annual influent water vapor amount is about 997.3 km3 , effluent water vapor amount is about 1046. 1 km3, and the net water vapor amount is about 48.8 km3. The net water vapor a mount tended to increase since the 1960s. Water vapor in the northern desert area of the Heihe Drainage Basin exported whole year, and it mainly exported from middle and lower atmosphere (surface to 500 hPa). June to September was the water vapor net influent period in the southern mountain area of the Heihe Drainage Basin, and lower atmosphere (surface to 700 hPa) was the main influent layer, middle and upper atmosphere (700 to 300 hPa) was the main enffuent layer. Annual evaporation amount is about 84 km3 according to the atmospheric water balance.%利用NCEP/NCAR逐日再分析资料对黑河流域的水汽输送和收支特征进行了计算分析,结果表明:西风环流使得源于大西洋和北冰洋的水汽成为黑河流域空中水汽的主要来源,流域内水汽输送以自西向东的纬向输送为主,东边界输出

  4. Stomatal control of gas-exchange is related to assimilate transport from leaves

    Science.gov (United States)

    Nikinmaa, E.; Holtta, T.; Sevanto, S.; Makela, A.; Hari, P.; Vesala, T.

    2009-04-01

    response to main environmental drivers and it reproduced the measured variation in leaf gas exchange both during daily variation of light, temperature and vapor pressure deficit and also during gradually developing drought. During the normal soil water availability the modeled results were identical to those that the optimal stomatal control of gas exchange would give. However, this new approach could also predict directly how soil drying is influencing the gas-exchange and also feed-forward response of stomatal conductance that has not been possible previously. Although maximising sugar transport from leaves to sink tissues as such is not mechansitic explanation to the actual control of stomata, the approach gives new possibilities to evaluate the impact of number of plant processes and environmental variables on tree production.

  5. Digital-mode organic vapor-jet printing (D-OVJP): advanced jet-on-demand control of organic thin-film deposition.

    Science.gov (United States)

    Yun, Changhun; Choi, Jungmin; Kang, Hyun Wook; Kim, Mincheol; Moon, Hanul; Sung, Hyung Jin; Yoo, Seunghyup

    2012-06-05

    Digital-mode organic vapor-jet printing (D-OVJP) is demonstrated by producing a series of organic vapor jets. D-OVJP not only inherits all the benefits of a conventional OVJP but also provides an advanced, straightforward control over organic deposition with a pixel-to-pixel precision. Digitally-controlled film thickness and high-performance thin-film transistors are demonstrated with D-OVJP, proving its potential applicability to organic electronics and related areas.

  6. An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements.

    Science.gov (United States)

    Majsztrik, P W; Bocarsly, A B; Benziger, J B

    2007-10-01

    An instrument for measuring the creep response of a material maintained under a controlled environment of temperature and vapor pressure is described. The temperature range of the instrument is 20-250 degrees C while the range of vapor pressure is 0-1 atm. Data are presented for tests conducted on this instrument with Nafion, a perfluorinated ionomer developed by DuPont and used as a membrane in polymer exchange membrane fuel cells, over a range of temperature and water vapor pressure. The data are useful for predicting long-term creep behavior of the material in the fuel cell environment as well as providing insight to molecular level interactions in the material as a function of temperature and hydration. Measurements including dynamic and equilibrium strain due to water uptake as well as elastic modulus are described. The main features of the instrument are presented along with experimental methodology and analysis of results. The adaptation of the instrument to other mechanical tests is briefly described.

  7. Integrated transportation and energy sector CO2 emission control strategies

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    due to the high share of fluctuating renewable energy produced in the country. In the future, such issue will apply to other countries who plan to use a high share of renewable energy. In short, the energy sector can help the transport sector to replace oil by renewable energy and combined heat......This paper analyses the mutual benefits of integrating strategies for future energy and transport CO2 emissions control. The paper illustrates and quantifies the mutual benefits of integrating the transport and the energy sector in the case of Denmark. Today this issue is very relevant in Denmark...... and power production (CHP), while the transport sector can assist the energy system in integrating a higher degree of intermittent energy and CHP. Two scenarios for partial conversion of the transport fleet have been considered. One is battery cars combined with hydrogen fuel cell cars, while the other...

  8. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    Science.gov (United States)

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  9. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.; Kolb, Thomas E.; Cook, David R.; Brunsell, Nathaniel; Baldocchi, Dennis D.; Basara, Jeffrey; Matamala, Roser; Zhou, Yuting; Bajgain, Rajen

    2015-12-01

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associated with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.

  10. Review of modeling and control during transport airdrop process

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-12-01

    Full Text Available This article presents the review of modeling and control during the airdrop process of transport aircraft. According to the airdrop height, technology can be classified into high and low altitude airdrop and in this article, the research is reviewed based on the two scenarios. While high altitude airdrop is mainly focusing on the precise landing control of cargo, the low altitude flight airdrop is on the control of transport aircraft dynamics to ensure flight safety. The history of high precision airdrop system is introduced first, and then the modeling and control problem of the ultra low altitude airdrop in transport aircraft is presented. Finally, the potential problems and future direction of low altitude airdrop are discussed.

  11. Adiabatic control of atomic dressed states for transport and sensing

    Science.gov (United States)

    Cooper, N. R.; Rey, A. M.

    2015-08-01

    We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.

  12. Terahertz field control of interlayer transport modes in cuprate superconductors

    Science.gov (United States)

    Schlawin, Frank; Dietrich, Anastasia S. D.; Kiffner, Martin; Cavalleri, Andrea; Jaksch, Dieter

    2017-08-01

    We theoretically show that terahertz pulses with controlled amplitude and frequency can be used to switch between stable transport modes in layered superconductors, modeled as stacks of Josephson junctions. We find pulse shapes that deterministically switch the transport mode between superconducting, resistive, and solitonic states. We develop a simple model that explains the switching mechanism as a destabilization of the center-of-mass excitation of the Josephson phase, made possible by the highly nonlinear nature of the light-matter coupling.

  13. RF kicker cavity to increase control in common transport lines

    Science.gov (United States)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.

  14. 山西春季典型干湿年份水汽输送特征差异%Different Characteristics of Water Vapor Transport Between the Typical Drought and Wet Years of Spring in Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    周晋红; 李丽平; 武捷

    2011-01-01

    应用山两62个气象站1961—2008年春季降水资料,同期NCEP/NCAR月平均再分析资料,用合成分析等方法探讨了山西春季典型干湿年份水汽输送特征差异。研究发现:春季典型干旱年,青藏高原南侧副热带偏西风及其在进入我国东部长江以南地区转向的西南风水汽输送减弱,高原北侧西风带水汽输送亦减弱,而西太平洋副高北侧西风水汽输送显著加强,西侧偏南风水汽输送减弱,使江南西南风向华北的水汽输送显著减少,山西偏北风水汽输送加大出现春旱;同时我国东部长江流域及向北到黄河流域、我国东部沿海水汽通量辐散加强,而华南及沿海水汽通量辐合加强;春季典型湿润年则相反。春季典型干旱年山西西风水汽通量减少和北风水汽通量增加量级相当,典型湿润年山西南风水汽通量增加明显大于西风水汽通量的增加。%Based on the 62 meteorological stations' precipitation data of spring in Shanxi Province from 1961 to 2008,and the contemporaneous NCEP/NCAR monthly mean reanalysis data,the different characteristics of water vapor transport between the typical drought and wet years of spring in Shanxi are analyzed by using composite analysis methods.The research shows that in the typical drought years of spring, the water vapor transport of the subtropical west wind over the south side of the Tibetan Plateau(TP) and that of SW wind in the south areas of the Yangtze River which comes from the turning of west wind vapor over the south side of TP are weakened,and so does the westerly vapor transport over the north side of TP,while the west wind vapor transport over the north side of the subtropical high in the West Pacific is strengthened remarkably,and the south wind vapor transport over the west side of the subtropical high is weakened,thus the southwest wind vapor transport from the south areas of the Yangtze River to North China is weakened,the north wind

  15. Structural controls on anomalous transport in fractured porous rock

    Science.gov (United States)

    Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian

    2016-07-01

    Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.

  16. Direct product quality control for energy efficient climate controlled transport of agro-material

    NARCIS (Netherlands)

    Verdijck, G.J.C.; Preisig, H.A.; Straten, van G.

    2005-01-01

    A (model-based) Product Quality Controller is presented for climate controlled operations involving agro-material, such as storage and transport. This controller belongs to the class of Model Predictive Controllers and fits in a previously developed hierarchical control structure. The new Product

  17. Oxocentered Cu(II) lead selenite honeycomb lattices hosting Cu(I)Cl2 groups obtained by chemical vapor transport reactions.

    Science.gov (United States)

    Kovrugin, Vadim M; Colmont, Marie; Siidra, Oleg I; Mentré, Olivier; Al-Shuray, Alexander; Gurzhiy, Vladislav V; Krivovichev, Sergey V

    2015-06-11

    Chemical vapor transport (CVT) reactions were used to prepare three modular mixed-valent Cu(I)-Cu(II) compounds, (Pb2Cu(2+)9O4)(SeO3)4(Cu(+)Cl(2))Cl5 (1), (PbCu(2+)5O2)(SeO3)2(Cu(+)Cl2)Cl3 (2), and (Pb(x)Cu(2+)(6-x)O2)(SeO3)2(Cu(+)Cl2)K(1-x)Cl(4-x) (x = 0.20) (3). In their crystal structures chains of anion-centered (OCu(2+)4) and (OCu(2+)3Pb) tetrahedra form honeycomb-like double layers with cavities occupied by linear [Cu(+)Cl2](-) groups.

  18. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn Assisted by Vapor Phase Transport of Methanol

    Directory of Open Access Journals (Sweden)

    Tamil Many K. Thandavan

    2014-01-01

    Full Text Available Zinc oxide (ZnO nanowires (NWs were synthesized using vapor phase transport (VPT and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM images as well as from the X-ray diffraction (XRD profile. The photoluminescence (PL profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defects in the ZnO NWs. Raman scattering results show a significant peak at 143 cm−1 and possible functionalization on the wall of ZnO NWs. Growth of ZnO NWs in (0002 with an estimated distance between adjacent lattice planes 0.26 nm was determined from transmission electron microscopy (TEM analysis.

  19. Space Transportation Systems Life Cycle Cost Assessment and Control

    Science.gov (United States)

    Robinson, John W.; Rhodes, Russell E.; Zapata, Edgar; Levack, Daniel J. H.; Donahue, Benjaamin B.; Knuth, William

    2008-01-01

    Civil and military applications of space transportation have been pursued for just over 50 years and there has been, and still is, a need for safe, dependable, affordable, and sustainable space transportation systems. Fully expendable and partially reusable space transportation systems have been developed and put in operation that have not adequately achieved this need. Access to space is technically achievable, but presently very expensive and will remain so until there is a breakthrough in the way we do business. Since 1991 the national Space Propulsion Synergy Team (SPST) has reviewed and assessed the lessons learned from the major U.S. space programs of the past decades focusing on what has been learned from the assessment and control of Life Cycle Cost (LCC) from these systems. This paper presents the results of a selected number of studies and analyses that have been conducted by the SPST addressing the need, as well as the solutions, for improvement in LCC. The major emphasis of the SPST processes is on developing the space transportation system requirements first (up front). These requirements must include both the usual system flight performance requirements and also the system functional requirements, including the infrastructure on Earth's surface, in-space and on the Moon and Mars surfaces to determine LCC. This paper describes the development of specific innovative engineering and management approaches and processes. This includes a focus on flight hardware maturity for reliability, ground operations approaches, and business processes between contractor and government organizations. A major change in program/project cost control is being proposed by the SPST to achieve a sustainable space transportation system LCC - controlling cost as a program metric in addition to the existing practice of controlling performance and weight. Without a firm requirement and methodically structured cost control, it is unlikely that an affordable and sustainable space

  20. Nanostructured Silica-Gel Doped with TiO2 for Mercury Vapor Control

    Science.gov (United States)

    Pitoniak, Erik; Wu, Chang-Yu; Londeree, Danielle; Mazyck, David; Bonzongo, Jean-Claude; Powers, Kevin; Sigmund, Wolfgang

    2003-08-01

    A novel high surface area SiO2-TiO2 composite has been developed for elemental mercury vapor removal from combustion sources. The composite exhibits synergistic adsorption and photocatalytic oxidation. Mercury vapor in the gas stream is adsorbed, oxidized and stays on the composite. The composite has demonstrated a high mercury capacity (1512ug/g) although in its current 3-mm pellet form only the outer layer is effectively utilized. The loading of 13% TiO2 shows the best removal, both with and without UV irradiation. Increasing TiO2 loading beyond this level does not enhance the removal further. It has also been observed that the composite after being 'activated' by photocatalytic oxidation has better performance, probably due to the change of surface functional groups. The examination of the effects of flow velocity reveals that mass transfer is the rate limiting step. Relative humidity has been found to impede adsorption therefore decreasing the overall removal efficiency. By rinsing with acid, both the deposited mercury and composite can be regenerated.

  1. A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.

    2016-04-26

    Sulfonated block ionomers possess advantageous properties for a wide range of diverse applications such as desalination membranes, fuel cells, electroactive media, and photovoltaic devices. Unfortunately, their inherently high incompatibilities and glass transition temperatures e ff ectively prevent the use of thermal annealing, routinely employed to re fi ne the morphologies of nonionic block copolymers. An alternative approach is therefore required to promote morphological equilibration in block ionomers. The present study explores the morphological characteristics of midblock- sulfonated pentablock ionomers (SBIs) di ff ering in their degree of sulfonation (DOS) and cast from solution followed by solvent-vapor annealing (SVA). Transmission electron microscopy con fi rms that fi lms deposited from di ff erent solvent systems form nonequilibrium morphologies due to solvent-regulated self-assembly and drying. A series of SVA tests performed with solvents varying in polarity reveals that exposing cast fi lms to tetrahydrofuran (THF) vapor for at least 2 h constitutes the most e ff ective SVA protocol, yielding the anticipated equilibrium morphology. That is, three SBI grades subjected to THF-SVA self-assemble into well-ordered lamellae wherein the increase in DOS is accompanied by an increase in lamellar periodicity, as measured by small-angle X-ray scattering.

  2. Controlled Spin Transport in Planar Systems Through Topological Exciton

    CERN Document Server

    Abhinav, Kumar

    2015-01-01

    It is shown that a charge-neutral spin-1 exciton, possibly realizable only in planar systems like graphene and topological insulators, can be effectively used for controlled spin transport in such media. The effect of quantum and thermal fluctuations yield a parametric excitation threshold for its realization. This planar exciton differs from the conventional ones, as it owes its existence to the topological Chern-Simons (CS) term. The parity and time-reversal violating CS term can arise from quantum effects in systems with parity-breaking mass-gap. The spinning exciton naturally couples to magnetic field, leading to the possibility of controlled spin transport. Being neutral, it is immune to a host of effect, which afflicts spin transport through charged fermions.

  3. Adaptive fuzzy-neural-network control for maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  4. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  5. Adjustable control in the steam zone of a steam power plant; Control ajustable de la zona de vapor de una unidad termoelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Gallegos, Joaquin; Bourguet Diaz, Rafael Ernesto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    A general description is presented of self adjustable control systems, as well as of the design and its application for steam temperature regulation of a steam power plant unit model. The algorithm employed is a controller of minimum variance that ponders the output deviation as well as the control effort. The results are compared with the ones obtained in a conventional control scheme, showing in general a better performance in the conducted experiments. [Espanol] Se presenta una descripcion general de los sistemas de control autoajustable, asi como del diseno y su aplicacion para regular las temperaturas de vapor de un modelo de unidad termoelectrica. El algoritmo utilizado es un controlador de variancia minima que pondera tanto la desviacion de salida como el esfuerzo de control. Los resultados se comparan con los obtenidos en un esquema de control convencional, mostrando en general un mejor desempeno en los experimentos realizados.

  6. Dynamic one-way traffic control in automated transportation systems

    NARCIS (Netherlands)

    Ebben, M; van der Zee, DJ

    2004-01-01

    In a project on underground freight transportation using Automated Guided Vehicles, single lanes for traffic in two directions are constructed to reduce infrastructure investment. Intelligent control rules are required to manage vehicle flows such, that collision is avoided and waiting times are min

  7. The new control system of HLS linac and transport line

    Institute of Scientific and Technical Information of China (English)

    LIU Gong-Fa; LI Wei-Min; LI Jing-Yi; LI Chuan; CHEN Li-Ping; BAO Xun; WANG Ji-Gang; XUAN Ke

    2005-01-01

    The new linac and transport line control system of Hefei Light Source (HLS) is a distributed control system based on EPICS (Experimental Physics and Industrial Control System). Industrial PC (IPC) is widely used as not only Input/Output Controller (IOC) but also device controller. Besides industrial PC, PLC and microcontroller are also used as device controllers. The software for industrial PC based device controller is developed based on VxWorks real-time operating system. The software for PLC and microcontroller are written with ladder software package and assemble language, respectively. PC with Linux and SUN workstation with Solaris are used as operator interfaces (OPI). High level control is made up of some EPICS tools and Tcl/Tk scripts.

  8. Is air transport of stroke patients faster than ground transport? A prospective controlled observational study.

    Science.gov (United States)

    Hesselfeldt, Rasmus; Gyllenborg, Jesper; Steinmetz, Jacob; Do, Hien Quoc; Hejselbæk, Julie; Rasmussen, Lars S

    2014-04-01

    Helicopters are widely used for interhospital transfers of stroke patients, but the benefit is sparsely documented. We hypothesised that helicopter transport would reduce system delay to thrombolytic treatment at the regional stroke centre. In this prospective controlled observational study, we included patients referred to a stroke centre if their ground transport time exceeded 30 min, or they were transported by a secondarily dispatched, physician-staffed helicopter. The primary endpoint was time from telephone contact to triaging neurologist to arrival in the stroke centre. Secondary endpoints included modified Rankin Scale at 3 months, 30-day and 1-year mortality. A total of 330 patients were included; 265 with ground transport and 65 with helicopter, of which 87 (33%) and 22 (34%), received thrombolysis, respectively (p=0.88). Time from contact to triaging neurologist to arrival in the regional stroke centre was significantly shorter in the ground group (55 (34-85) vs 68 (40-85) min, pground group (67 (42-136) km) than in the helicopter group (83 (46-143) km) (pground and helicopter transport. We found significantly shorter time from contact to triaging neurologist to arrival in the regional stroke centre if stroke patients were transported by primarily dispatched ground ambulance compared with a secondarily dispatched helicopter.

  9. Decentralized control of multi-agent aerial transportation system

    KAUST Repository

    Toumi, Noureddine

    2017-04-01

    Autonomous aerial transportation has multiple potential applications including emergency cases and rescue missions where ground intervention may be difficult. In this context, the following work will address the control of multi-agent Vertical Take-off and Landing aircraft (VTOL) transportation system. We develop a decentralized method. The advantage of such a solution is that it can provide better maneuverability and lifting capabilities compared to existing systems. First, we consider a cooperative group of VTOLs transporting one payload. The main idea is that each agent perceive the interaction with other agents as a disturbance while assuming a negotiated motion model and imposing certain magnitude bounds on each agent. The theoretical model will be then validated using a numerical simulation illustrating the interesting features of the presented control method. Results show that under specified disturbances, the algorithm is able to guarantee the tracking with a minimal error. We describe a toolbox that has been developed for this purpose. Then, a system of multiple VTOLs lifting payloads will be studied. The algorithm assures that the VTOLs are coordinated with minimal communication. Additionally, a novel gripper design for ferrous objects is presented that enables the transportation of ferrous objects without a cable. Finally, we discuss potential connections to human in the loop transportation systems.

  10. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    Science.gov (United States)

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-05

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  11. The aggressiveness of the geothermal steam controlled; La agresividad del vapor geotermico controlada

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, Sergio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    The first two units of Cerro Prieto have generated electric energy since 1973; in 1988 completed 15 years of continuous operation, without corrosion problems in the turbines in spite of the utilization of geothermal steam. The experience and the good results obtained during the first years of operation of these two units of 37.5 MW each, were of great help for the Cerro Prieto extension, having as of this date an installed capacity of 620 MW. [Espanol] Las dos primeras unidades de Cerro Prieto han generado energia electrica desde 1973; cumplieron 15 anos de operacion continua en 1988, sin problemas de corrosion en las turbinas a pesar del uso de vapor geotermico. La experiencia y los buenos resultados obtenidos durante los primeros anos de operacion de estas dos unidades de 37.5 MW cada una fueron de gran apoyo para la aplicacion de Cerro Prieto, teniendose a la fecha 620 MW de capacidad instalada.

  12. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  13. Preface: cardiac control pathways: signaling and transport phenomena.

    Science.gov (United States)

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  14. High mobility, large linear magnetoresistance, and quantum transport phenomena in Bi2Te3 films grown by metallo-organic chemical vapor deposition (MOCVD).

    Science.gov (United States)

    Jin, Hyunwoo; Kim, Kwang-Chon; Seo, Juhee; Kim, Seong Keun; Cheong, Byung-Ki; Kim, Jin-Sang; Lee, Suyoun

    2015-11-07

    We investigated the magnetotransport properties of Bi2Te3 films grown on GaAs (001) substrate by a cost-effective metallo-organic chemical vapor deposition (MOCVD). We observed the remarkably high carrier mobility and the giant linear magnetoresistance (carrier mobility ∼ 22 000 cm(2) V(-1) s(-1), magnetoresistance ∼ 750% at 1.8 K and 9 T for a 100 nm thick film) that depends on the film thickness. In addition, the Shubnikov-de Haas oscillation was observed, from which the effective mass was calculated to be consistent with the known value. From the thickness dependence of the Shubnikov-de Haas oscillation, it was found that a two dimensional electron gas with the conventional electron nature coexists with the topological Dirac fermion states and dominates the carrier transport in the Bi2Te3 film with thickness higher than 300 nm. These results are attributed to the intrinsic nature of Bi2Te3 in the high-mobility transport regime obtained by a deliberate choice of the substrate and the growth conditions.

  15. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations.

    Science.gov (United States)

    Guo, Yuanming; Holton, Chase; Luo, Hong; Dahlen, Paul; Gorder, Kyle; Dettenmaier, Erik; Johnson, Paul C

    2015-11-17

    Vapor intrusion (VI) pathway assessment and data interpretation have been guided by an historical conceptual model in which vapors originating from contaminated soil or groundwater diffuse upward through soil and are swept into a building by soil gas flow induced by building underpressurization. Recent studies reveal that alternative VI pathways involving neighborhood sewers, land drains, and other major underground piping can also be significant VI contributors, even to buildings beyond the delineated footprint of soil and groundwater contamination. This work illustrates how controlled-pressure-method testing (CPM), soil gas sampling, and screening-level emissions calculations can be used to identify significant alternative VI pathways that might go undetected by conventional sampling under natural conditions at some sites. The combined utility of these tools is shown through data collected at a long-term study house, where a significant alternative VI pathway was discovered and altered so that it could be manipulated to be on or off. Data collected during periods of natural and CPM conditions show that the alternative pathway was significant, but its presence was not identifiable under natural conditions; it was identified under CPM conditions when measured emission rates were 2 orders of magnitude greater than screening-model estimates and subfoundation vertical soil gas profiles changed and were no longer consistent with the conventional VI conceptual model.

  16. Traffic improvement and transportation pollution control in Xiamen

    Energy Technology Data Exchange (ETDEWEB)

    Dongxing Yuan; Zilin, Wu

    1996-12-31

    in this paper, the urban traffic improvement and transportation control in Xiamen are highlighted. Xiamen is a port city and an economical special zone of China. As the economy grows, the transportation is developing dramatically and becoming the key for further economic development. The air quality is threatened by the rapid growth of the vehicles in the city. The most urgent task in improving urban traffic is to establish a sound traffic system. The municipal government takes great effort to improve the traffic condition, as well as to reduce green house gases and protect air environment. Some management and technical measures are carried out. Those management measures are mainly as follows: (1) systematic planning of the city arrangement and city functional division, and integrated planning of the urban roads system, (2) putting great emphasis on tail gas monitoring and management, and (3) establishing optimized utilization of motor vehicles. Those included in the main technical measures are (1) making the roads clear, (2) enlarging traffic capacity, and (3) developing the public transport. The most urgent task in improving urban traffic is to establish a sound traffic system. The city municipal government and Transportation Management Bureau plan to make a series of reforms to improve the urban traffic condition, such as building high quality road around the city, reducing the number of one way roads and replacing gasoline buses with electric buses. An optimized traffic system of Xiamen, taking public transport as the main means, is the key to meet the needs of both traffic improvement and urban transportation pollution control.

  17. Water Vapor Transport and Cross-Equatorial Flow over the Asian-Australia Monsoon Region Simulated by CMIP5 Climate Models

    Institute of Scientific and Technical Information of China (English)

    SONG Yajuan; QIAO Fangli; SONG Zhenya; JIANG Chunfei

    2013-01-01

    The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the AsianAustralian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs)from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5)were evaluated.Based on climatology of the twentieth-century simulations,most of models have a reasonably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian.The correlation coefficients between NCEP reanalysis and simulations of BCC-CSM1-1,BNU-ESM,CanESM2,FGOALS-s2,MIROC4h and MPI-ESM-LR are up to 0.8.The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere,which were generally consistent with NCEP reanalysis.Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF.Ten models with more reasonable WVT simulations were selected for future projection studies,including BCCCSM1-1,BNU-ESM,CanESM2,CCSM4,FGOALS-s2,FIO-ESM,GFDL-ESM2G,MRIOC5,MPI-ESM-LR and NorESM-1M.Analysis based on the future projection experiments in RCP (Representative Concentration Pathway) 2.6,RCP4.5,RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean.

  18. Sec16 alternative splicing dynamically controls COPII transport efficiency.

    Science.gov (United States)

    Wilhelmi, Ilka; Kanski, Regina; Neumann, Alexander; Herdt, Olga; Hoff, Florian; Jacob, Ralf; Preußner, Marco; Heyd, Florian

    2016-08-05

    The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments.

  19. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  20. Steep dispersion and coherent control of Faraday rotation in a potassium vapor cell

    CERN Document Server

    Lampis, Andreas; Megyeri, Balázs; Goldwin, Jon

    2015-01-01

    Electromagnetically induced transparency (EIT) was studied in a heated vapor cell of potassium without buffer gas or anti-relaxation coating. Transparency windows 60 times narrower than the natural line width and group indices exceeding 6000 were generated using a simple optical setup with a single free-running laser and an acousto-optic modulator. A longitudinal magnetic field was used to split the EIT feature into three components for either lin-perp-lin or lin-par-lin polarizations of probe and coupling beams. Measurements of polarization rotation revealed that only the lin-par-lin configuration leads to circular birefringence, an effect which we attribute to quantum interference between the multiple \\Lambda-type subsystems contributing to the signal. The Verdet constant of the EIT medium was measured to be (2.33+/-0.10)x10^5 rad/T/m, and a novel measurement of group index based on birefringence was demonstrated. For larger fields, where the individual peaks were well resolved, resonant polarization rotati...

  1. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  2. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    Science.gov (United States)

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  3. Low temperature carrier transport properties in isotopically controlled germanium

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled {sup 75}Ge and {sup 70}Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [{sup 74}Ge]/[{sup 70}Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  4. Control of corrosion product transport in PWR secondary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sawochka, S.G.; Pearl, W.L. [NWT Corp., San Josa, CA (United States); Passell, T.O.; Welty, C.S. [Electric Power Research Institute, Palo Alto, CA (United States)

    1992-12-31

    Transport of corrosion products to PWR steam generators by the feedwater leads to sludge buildup on the tubesheets and fouling of tube-to-tube support crevices. In these regions, chemical impurities concentrate and accelerate tubing corrosion. Deposit buildup on the tubes also can lead to power generation limitations and necessitate chemical cleaning. Extensive corrosion product transport data for PWR secondary cycles has been developed employing integrating sampling techniques which facilitate identification of major corrosion product sources and assessments of the effectiveness of various control options. Plant data currently are available for assessing the impact of factors such as pH, pH control additive, materials of construction, blowdown, condensate treatment, and high temperature drains and feedwater filtration.

  5. Low-temperature growth and orientational control in RuO{sub 2} thin films by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G.R.; Wang, A.; Foster, C.M.; Vetrone, J. [Argonne National Lab., IL (United States). Materials Science Div.; Patel, J.; Wu, X. [Northern Illinois Univ., DeKalb, IL (United States). Physics Dept.

    1996-08-01

    For growth temperatures in the range of 275 C to 425 C, highly conductive RuO{sub 2} thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO{sub 2}/Si(001) and Pt/Ti/SiO{sub 2}/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO{sub 2} films. In the upper part of this growth temperature range ({approximately} 350 C) and at a low growth rate (< 30 {angstrom}/min.), the RuO{sub 2} films favored a (110)-textured. In contrast, at the lower part of this growth temperature range ({approximately} 300 C) and at a high growth rate (> 30 {angstrom}/min.), the RuO{sub 2} films favored a (101)-textured. In contrast, a higher growth temperatures (> 425 C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50--80 nm and a rms. surface roughness of {approximately} 3--10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34--40 {micro}{Omega}-cm ({at} 25 C).

  6. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    Science.gov (United States)

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications.

  7. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  8. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong [School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191 (China); Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Liu, WeiDong [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around the number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.

  9. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated

  10. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    Beld, van den Wesley T.E.; Berg, van den Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated usin

  11. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.

    Science.gov (United States)

    Kang, Shih-Tsung; Huang, Yi-Luan; Yeh, Chih-Kuang

    2014-03-01

    This study investigated the manipulation of bubbles generated by acoustic droplet vaporization (ADV) under clinically relevant flow conditions. Optical microscopy and high-frequency ultrasound imaging were used to observe bubbles generated by 2-MHz ultrasound pulses at different time points after the onset of ADV. The dependence of the bubble population on droplet concentration, flow velocity, fluid viscosity and acoustic parameters, including acoustic pressure, pulse duration and pulse repetition frequency, was investigated. The results indicated that post-ADV bubble growth spontaneously driven by air permeation markedly affected the bubble population after insonation. The bubbles can grow to a stable equilibrium diameter as great as twice the original diameter in 0.5-1 s, as predicted by the theoretical calculation. The growth trend is independent of flow velocity, but dependent on fluid viscosity and droplet concentration, which directly influence the rate of gas uptake by bubbles and the rate of gas exchange across the wall of the semipermeable tube containing the bubbles and, hence, the gas content of the host medium. Varying the acoustic pressure does not markedly change the formation of bubbles as long as the ADV thresholds of most droplets are reached. Varying pulse duration and pulse repetition frequency markedly reduces the number of bubbles. Lengthening pulse duration favors the production of large bubbles, but reduces the total number of bubbles. Increasing the PRF interestingly provides superior performance in bubble disruption. These results also suggest that an ADV bubble population cannot be assessed simply on the basis of initial droplet size or enhancement of imaging contrast by the bubbles. Determining the optimal acoustic parameters requires careful consideration of their impact on the bubble population produced for different application scenarios.

  12. An ab initio study of the structure and atomic transport in bulk liquid Ag and its liquid-vapor interface

    Science.gov (United States)

    del Rio, Beatriz G.; González, David J.; González, Luis E.

    2016-10-01

    Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals propagating excitations whose dispersion at long wavelengths is compatible with the experimental sound velocity. Results are also reported for other transport coefficients. Additional simulations have also been performed so as to study the structure of the free liquid surface. The calculated longitudinal ionic density profile shows an oscillatory behaviour, whose properties are analyzed through macroscopic and microscopic methods. The intrinsic X-ray reflectivity of the surface is predicted to show a layering peak associated to the interlayer distance.

  13. A decadal time series of water vapor and D / H isotope ratios above Zugspitze: transport patterns to central Europe

    Directory of Open Access Journals (Sweden)

    P. Hausmann

    2017-06-01

    Full Text Available We present vertical soundings (2005–2015 of tropospheric water vapor (H2O and its D ∕ H isotope ratio (δD derived from ground-based solar Fourier transform infrared (FTIR measurements at Zugspitze (47° N, 11° E, 2964 m a.s.l.. Beside water vapor profiles with optimized vertical resolution (degrees of freedom for signal, DOFS,  =  2.8, {H2O, δD} pairs with consistent vertical resolution (DOFS  =  1.6 for H2O and δD applied in this study. The integrated water vapor (IWV trend of 2.4 [−5.8, 10.6] % decade−1 is statistically insignificant (95 % confidence interval. Under this caveat, the IWV trend estimate is conditionally consistent with the 2005–2015 temperature increase at Zugspitze (1.3 [0.5, 2.1] K decade−1, assuming constant relative humidity. Seasonal variations in free-tropospheric H2O and δD exhibit amplitudes of 140 and 50 % of the respective overall means. The minima (maxima in January (July are in agreement with changing sea surface temperature of the Atlantic Ocean. Using extensive backward-trajectory analysis, distinct moisture pathways are identified depending on observed δD levels: low column-based δD values (δDcol < 5th percentile are associated with air masses originating at higher latitudes (62° N on average and altitudes (6.5 kmthan high δD values (δDcol > 95th percentile: 46° N, 4.6 km. Backward-trajectory classification indicates that {H2O, δD} observations are influenced by three long-range-transport patterns towards Zugspitze assessed in previous studies: (i intercontinental transport from North America (TUS; source region: 25–45° N, 70–110° W, 0–2 km altitude, (ii intercontinental transport from northern Africa (TNA; source region: 15–30° N, 15° W–35° E, 0–2 km altitude, and (iii stratospheric air intrusions (STIs; source region: > 20° N, above zonal mean tropopause. The FTIR data exhibit significantly differing

  14. Structural, compositional and photoluminescence characteristics of CuInSe{sub 2} thin films prepared by close-spaced vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Zouaoui, A.; Chaffa, A.; Kesri, N. [U.S.T.H.B., Alger (Algeria). Inst. de Phys.; Lachab, M.; Hidalgo, M.L.; Llinares, C. [Montpellier-2 Univ. 34 (France). Centre d`Electronique et de Micro-Optoelectronique

    1999-02-08

    The present work deals with the investigation of the growth temperature effects on the properties of polycrystalline Cu-In-Se thin films, prepared by the close-spaced vapor technique (CSVT) using iodine as a transport agent. The deposition was performed onto glass substrates heated at temperatures ranging from 300 to 550 C. Characterizations by means of compositional analysis. X-ray diffraction, scanning electron microscopy, spectrophotometry and photoluminescence (PL) measurements were carried out. Cu-rich, near stoichiometric and In-rich layers with varying morphology and thickness (up to 10 {mu}m) were obtained. They were homogeneous and well-adherent to the substrate. Results also show that the physical properties are strongly dependent on the Cu/In ratio. Following vacuum annealing, the iodine generally present in the as-deposited Cu-rich samples disappeared while only the layers heat treated under a selenium atmosphere exhibit PL signals. These signals were used to locate, then to identify the energy levels associated with various intrinsic defects responsible for the electrical and optical properties. (orig.) 43 refs.

  15. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  16. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    Science.gov (United States)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  17. In-Situ Partial Pressure Measurements and Visual Observation during Crystal Growth of ZnSe by Seeded Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Feth, Shari; Lehoczky, Sandor L.

    1999-01-01

    An in-situ monitoring furnace was constructed with side windows to perform partial pressure measurements by optical absorption and visual observation of the growing crystal. A fused silica -rowth ampoule with a 4.5 cm long square tube between the source and the seed was prepared for the optical absorption measurements. A ZnSe crystal was grown by the seeded physical vapor transport (PVT) technique in the horizontal configuration. The growth temperature was 1120 C and the furnace translation rate was 3nmVday. Partial pressures of Se2, P(sub Se2), at three locations along the length of the growth ampoule were measured at 90 min intervals during the growth process. The measured P (sub Se2) were in the range of 2.0 to 6.5 x 10(exp -3) atm. The P(sub Se2) results indicated that the partial pressure profile was inconsistent with the results of the one-dimensional diffusion mass transport model and that the source composition shifted toward Se-rich during the run, i.e. the grown crystal was more Zn-rich than the source. The visual observation showed that the seed crystal first etched back, with greater thermal etching occurring along the edges of the seed crystal. Once the growth started, the crystal crew in a predominately contactless mode and facets were evident during growth. The crystal did not grow symmetrically which is believed to be due to the unintentional asymmetry of the radial thermal profile in the furnace.

  18. Efficient control variates for uncertainty quantification of radiation transport

    Science.gov (United States)

    Frankel, A.; Iaccarino, G.

    2017-03-01

    Numerical simulations of problems involving radiation transport are challenging because of the associated computational cost; moreover, it is typically difficult to describe the optical properties of the system very precisely, and therefore uncertainties abound. We aim to represent the uncertainties explicitly and to characterize their impact on the output of interest. While stochastic collocation and polynomial chaos methods have been applied previously, these methods can suffer from the curse of dimensionality and fail in cases where the system response is discontinuous or highly non-linear. Monte Carlo methods are more robust, but they converge slowly. To that end, we apply the control variate method to uncertainty propagation via Monte Carlo. We leverage the modeling hierarchy of radiation transport to use low fidelity models such as the diffusion approximation and coarse angular discretizations to reduce the confidence interval on the quantity of interest. The efficiency of the control variate method is demonstrated in several problems involving stochastic media, thermal emission, and radiation properties with different quantities of interest. The control variates are able to provide significant variance reduction and efficiency increase in all problems considered. We conclude our study with a discussion of choosing optimal control variates and other extensions of Monte Carlo methods.

  19. Fault tolerant computer control for a Maglev transportation system

    Science.gov (United States)

    Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George

    1994-01-01

    Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.

  20. A study of 2014 record drought in India with CFSv2 model: role of water vapor transport

    KAUST Repository

    Ramakrishna, S. S. V. S.

    2016-09-16

    The Indian summer monsoon season of 2014 was erratic and ended up with a seasonal rainfall deficit of 12 % and a record drought in June. In this study we analyze the moisture transport characteristics for the monsoon season of 2014 using both NCEP FNL reanalysis (FNL) and CFSv2 (CFS) model data. In FNL, in June 2014 there was a large area of divergence of moisture flux. In other months also there was lesser flux. This probably is the cause of 2014 drought. The CFS model overestimated the drought and it reproduces poorly the observed rainfall over central India (65E–95E; 5N–35N). The correlation coefficient (CC) between the IMD observed rainfall and CFS model rainfall is only 0.1 while the CC between rainfall and moisture flux convergence in CFS model is only 0.20 and with FNL data −0.78. This clearly shows that the CFS model has serious difficulty in reproducing the moisture flux convergence and rainfall. We found that the rainfall variations are strongly related to the moisture convergence or divergence. The hypothesis of Krishnamurti et al. (J Atmos Sci 67:3423–3441, 2010) namely the intrusion of west African desert air and the associated low convective available potential energy inhibiting convection and rainfall shows some promise to explain dry spells in Indian summer monsoon. However, the rainfall or lack of it is mainly explained by convergence or divergence of moisture flux. © 2016 Springer-Verlag Berlin Heidelberg

  1. A study of 2014 record drought in India with CFSv2 model: role of water vapor transport

    Science.gov (United States)

    Ramakrishna, S. S. V. S.; Brahmananda Rao, V.; Srinivasa Rao, B. R.; Hari Prasad, D.; Nanaji Rao, N.; Panda, Roshmitha

    2016-09-01

    The Indian summer monsoon season of 2014 was erratic and ended up with a seasonal rainfall deficit of 12 % and a record drought in June. In this study we analyze the moisture transport characteristics for the monsoon season of 2014 using both NCEP FNL reanalysis (FNL) and CFSv2 (CFS) model data. In FNL, in June 2014 there was a large area of divergence of moisture flux. In other months also there was lesser flux. This probably is the cause of 2014 drought. The CFS model overestimated the drought and it reproduces poorly the observed rainfall over central India (65E-95E; 5N-35N). The correlation coefficient (CC) between the IMD observed rainfall and CFS model rainfall is only 0.1 while the CC between rainfall and moisture flux convergence in CFS model is only 0.20 and with FNL data -0.78. This clearly shows that the CFS model has serious difficulty in reproducing the moisture flux convergence and rainfall. We found that the rainfall variations are strongly related to the moisture convergence or divergence. The hypothesis of Krishnamurti et al. (J Atmos Sci 67:3423-3441, 2010) namely the intrusion of west African desert air and the associated low convective available potential energy inhibiting convection and rainfall shows some promise to explain dry spells in Indian summer monsoon. However, the rainfall or lack of it is mainly explained by convergence or divergence of moisture flux.

  2. Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse.

    Science.gov (United States)

    Li, Xufan; Lin, Ming-Wei; Puretzky, Alexander A; Idrobo, Juan C; Ma, Cheng; Chi, Miaofang; Yoon, Mina; Rouleau, Christopher M; Kravchenko, Ivan I; Geohegan, David B; Xiao, Kai

    2014-06-30

    Compared with their bulk counterparts, atomically thin two-dimensional (2D) crystals exhibit new physical properties, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled synthesis of large uniform monolayer and multi-layer 2D crystals is still challenging. Here, we report the controlled synthesis of 2D GaSe crystals on SiO2/Si substrates using a vapor phase deposition method. For the first time, uniform, large (up to ~60 μm in lateral size), single-crystalline, triangular monolayer GaSe crystals were obtained and their structure and orientation were characterized from atomic scale to micrometer scale. The size, density, shape, thickness, and uniformity of the 2D GaSe crystals were shown to be controllable by growth duration, growth region, growth temperature, and argon carrier gas flow rate. The theoretical modeling of the electronic structure and Raman spectroscopy demonstrate a direct-to-indirect bandgap transition and progressive confinement-induced bandgap shifts for 2D GaSe crystals. The 2D GaSe crystals show p-type semiconductor characteristics and high photoresponsivity (~1.7 A/W under white light illumination) comparable to exfoliated GaSe nanosheets. These 2D GaSe crystals are potentially useful for next-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors.

  3. Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Yao; JIANG Yang; XU Pei-Qiang; MA Zi-Guang; WANG Xiao-Li; WANG Lu; JIA Hai-Qiang; CHEN Hong

    2011-01-01

    The strain in GaN epitaxial layers grown on 6H-SiC substrates with an AIN buffer by metalorganic chemical wpor deposition is investigated.It is found that the insertion of a graded AlGaN layer between the GaN layer and the AIN buffer can change the signs of strain.A compressive strain in an overgrown thick (2 μm) GaN layer is obtained.High-resolution x-ray diffraction, Raman spectroscopy and photoluminescence measurements are used to determine the strain state in the GaN layers.The mechanism of stress control by inserting graded AlGaN in subsequent GaN layers is discussed briefly.%@@ The strain in GaN epitaxial layers grown on 611-SiC substrates with an AIN buffer by metalorganic chemical vapor deposition is investigated.It is found that the insertion of a graded AlGaN layer between the GaN layer and the AIN buffer can change the signs of strain.A compressive strain in an overgrown thick(2μm)GaN layer is obtained.High-resolution x-ray diffraction, Raman spectroscopy and photoluminescence measurements are used to determine the strain state in the GaN layers.The mechanism of stress control by inserting graded AlGaN in subsequent GaN layers is discussed briefly.

  4. Perceptions of transport corridors and intermodal transport - as ways to control the space of freight transport flows

    DEFF Research Database (Denmark)

    Hansen, Leif Gjesing

    2009-01-01

    -efficient choice of road routes, etc. This represents potentials and barriers for promotion of intermodal transport solutions, since it points to the importance of governance of transport networks by different transport stakeholders as "gate-keepers" for what kind of transport modes and routes are selected...

  5. Refrigerant Charge Management and Control for Next-Generation Aircraft Vapor Compression Systems (Postprint)

    Science.gov (United States)

    2013-09-01

    Compressor Oil Separator Condenser Receiver VCSRF System (R134a) Liquid Injection Cooling Glycol Load Oil Filter / Driers T TT T P, T P, T...Advanced electronic packages are challenging aircraft thermal management systems (TMS) in terms of higher cooling loads. This trend is forecast to...includes a variable speed screw compressor from Fairchild Controls Corporation, a Danfoss 70kW condenser (B3-095-72-H), two Emerson expansion valves

  6. Environmental control of microtubule-based bidirectional cargo-transport

    CERN Document Server

    Klein, Sarah; Santen, Ludger

    2014-01-01

    Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the cell can control this bias. Here we develop a model which takes explicitly into account the elastic coupling of the cargo with each motor. We show that bias can be simply controlled or even reversed in a counterintuitive manner via a change in the external force exerted on the cargo or a variation of the ATP binding rate to motors. Furthermore, the superdiffusive behavior found at short time scales indicates the emergence of motor cooperation induced by cargo-mediated coupling.

  7. Environmental control of microtubule-based bidirectional cargo transport

    Science.gov (United States)

    Klein, Sarah; Appert-Rolland, Cécile; Santen, Ludger

    2014-07-01

    Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the cell can control this bias. Here we develop a model which takes explicitly into account the elastic coupling of the cargo with each motor. We show that bias can be simply controlled or even reversed in a counterintuitive manner via a change in the external force exerted on the cargo or a variation of the environmental properties. Furthermore, the superdiffusive behavior found at short time scales indicates the emergence of motor cooperation induced by cargo-mediated coupling.

  8. Measurements of fluid transport by controllable vertical migrations of plankton

    Science.gov (United States)

    Houghton, Isabel A.; Dabiri, John O.

    2016-11-01

    Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.

  9. Fluorescence lifetime imaging microscopy analysis of defects in multi-tube physical vapor transport grown Cd{sub 1-x}Zn{sub x}Te

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Andreas; Veale, Matthew C.; Wilson, Matthew D.; Seller, Paul; Botchway, Stanley W. [Science and Technology Facility Council, Rutherford Appleton Laboratory, Detector Development Group and Central Laser Facility, Harwell Oxford, Didcot, OX11 0QX (United Kingdom); Bell, Steven J. [Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Duarte, Diana D. [Science and Technology Facility Council, Rutherford Appleton Laboratory, Detector Development Group and Central Laser Facility, Harwell Oxford, Didcot, OX11 0QX (United Kingdom); Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Choubey, Ashutosh; Halliday, Douglas [Department of Physics, Durham University, Rochester Building, South Road, Durham, DH1 3LE (United Kingdom)

    2014-09-15

    Cadmium zinc telluride (CZT) is the material of choice for high-energy room-temperature X-ray and γ-ray detectors. However, the performance of pixelated detectors is greatly influenced by the quality of CZT. Crystal defects and impurities are one source of shallow and deep level traps for charge carriers. Fluorescence lifetime of the recombination of optically excited charges may indicate the presence and type of defects and impurities in CZT. Fluorescence lifetime imaging microscopy (FLIM) is used to examine the excited-state lifetime in CZT fabricated by different growth methods and conditions. The FLIM set-up analyzes luminescence emitted from the sample following photo excitation. Samples were optically excited above band gap with a pulsed laser (590 nm) for raster scanning a 220 x 165 μm{sup 2} sample area. In-situ room-temperature photoluminescence (PL) and FLIM were recorded simultaneously. In order to analyze the FLIM data, two dominant charge carrier decay processes (τ{sub 1}, τ{sub 2}) were identified. The luminescence signal decays with a rapid lifetime of τ{sub 1} ∼ 50-200 ps, and a large variety of long-lifetime components τ{sub 2} were found in the range of 225-900 ps. CZT grown by multi-tube physical vapor transport (MTPVT) showed extremely long-lived recombination decay times up to 3.5 ns in the vicinity of the interface at growth start. Further away from this interface, the recombination lifetime was in the typical range of fast transitions similar to those found in detector-grade CZT fabricated by travelling heater method. Crystalline material quality strongly influences FLIM lifetime. Time-resolved transients of MTPVT-grown CZT compared with industry-leading detector grade CZT (dots: measured data; lines: fitted exponential decay curves). (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. 49 CFR 176.89 - Control of transport vehicles.

    Science.gov (United States)

    2010-10-01

    ... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Special Requirements for Transport Vehicles Loaded With Hazardous Materials and Transported on Board Ferry... be transported on board a ferry vessel, subject to the following conditions: (1) The operator or...

  11. 78 FR 41993 - Transport Handling Specialists, Inc.-Continuance in Control Exemption-RSL Railroad, LLC

    Science.gov (United States)

    2013-07-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Transport Handling Specialists, Inc.--Continuance in Control Exemption--RSL Railroad, LLC Transport Handling Specialists, Inc. (THS), has filed a verified notice of exemption...

  12. 76 FR 77888 - Student Transportation of America, Inc.-Control-Dairyland Buses, Inc.

    Science.gov (United States)

    2011-12-14

    ... Surface Transportation Board Student Transportation of America, Inc.--Control--Dairyland Buses, Inc... Transaction. SUMMARY: Student Transportation of America, Inc., a motor carrier of passengers (Student... 1182.8. DATES: Comments must be filed by January 27, 2012. Student Transportation may file a reply...

  13. Controlling signal transport in a carbon nanotube opto-transistor

    Science.gov (United States)

    Li, Jinjin; Chu, Yanhui; Zhu, Ka-Di

    2016-11-01

    With the highly competitive development of communication technologies, modern information manufactures place high importance on the ability to control the transmitted signal using easy miniaturization materials. A controlled and miniaturized optical information device is, therefore, vital for researchers in information and communication fields. Here we propose a controlled signal transport in a doubly clamped carbon nanotube system, where the transmitted signal can be controlled by another pump beam. Pump off results in the transmitted signal off, while pump on results in the transmitted signal on. The more pump, the more amplified output signal transmission. Analogous with traditional cavity optomechanical system, the role of optical cavity is played by a localized exciton in carbon nanotube while the role of the mechanical element is played by the nanotube vibrations, which enables the realization of an opto-transistor based on carbon nanotube. Since the signal amplification and attenuation have been observed in traditional optomechanical system, and the nanotube optomechanical system has been realized in laboratory, the proposed carbon nanotube opto-transistor could be implemented in current experiments and open the door to potential applications in modern optical networks and future quantum networks.

  14. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  15. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  16. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  17. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    Science.gov (United States)

    Berger, B.R.; Henley, R.W.

    2011-01-01

    High-sulfidation copper-gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500. m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica-alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide-sulfosalt mineral assemblages and gold-silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting. At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold-silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source. ?? 2010.

  18. 78 FR 721 - California State Nonroad Engine Pollution Control Standards; Transport Refrigeration Units...

    Science.gov (United States)

    2013-01-04

    ... AGENCY California State Nonroad Engine Pollution Control Standards; Transport Refrigeration Units... Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate.'' CARB has...''), regarding its ``Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units...

  19. A novel method for controlled synthesis of nanosized hematite ({alpha}-Fe{sub 2}O{sub 3}) thin film on liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pawan [Jaypee University of Information Technology (India); Singh, Raj Kumar [CSIR-Indian Institute of Petroleum (India); Rawat, Nitin [Gwangju Institute of Science and Technology (Korea, Republic of); Barman, Partha Bir [Jaypee University of Information Technology (India); Katyal, Subhash Chander [Jaypee Institute of Information Technology (India); Jang, Hwanchol; Lee, Heung-No, E-mail: heungno@gist.ac.kr [Gwangju Institute of Science and Technology (Korea, Republic of); Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in [Jaypee University of Information Technology (India)

    2013-04-15

    Hematite ({alpha}-Fe{sub 2}O{sub 3}) films with a high quality surface morphology have been formed at the liquid-vapor interface using a novel approach. The surface morphology/size of the nanoparticles constituting the film is tuned in a controlled manner. It is observed that the concentration of polyvinyl alcohol in the precursor Fe{sup 3+}/Fe{sup 2+} solution, the concentration of ammonia (NH{sub 3}) vapor, and the annealing temperature are factors influencing the surface morphology/size of nanoparticles. The diameter of the {alpha}-Fe{sub 2}O{sub 3} nanoparticles inside the film is controlled to be 2-15 nm by varying the synthesis conditions, and accordingly the films have roughness in the 1.34-6.8 nm range. The prepared {alpha}-Fe{sub 2}O{sub 3} films are crystalline in nature and exhibit superparamagnetic behavior at room temperature.

  20. Controlling factors of rainwater and water vapor isotopes at Bangalore, India: Constraints from observations in 2013 Indian monsoon

    Science.gov (United States)

    Rahul, P.; Ghosh, Prosenjit; Bhattacharya, S. K.; Yoshimura, Kei

    2016-12-01

    Isotopic ratios of rainwaters are believed to decrease with the amount of rainfall. However, analyses of the isotopic composition of rainwater and water vapor samples collected from Bangalore during the monsoon period of 2013 fail to show any simple relationship with the local meteorological parameters whereas show good correlation with the regional integrated convective activity. The correlation is particularly high when the averaging is done over the preceding 8 to 15 days, showing the influence of mixing or residence time scale of atmospheric moisture. This observation emphasizes the role of regional atmospheric circulation driving the isotopic values. A comparison between observed isotope ratios in water vapor and rainwater with Isotope-enabled Global Spectral Model shows discrepancies between the two. The observed values are relatively enriched, indicating a systematic bias in the model values. The higher observed values suggest underestimation of the evaporation in the model, which we estimate to be about 28 ± 15% on average. Simultaneous analyses of rainwater and water vapor isotopic composition again show definitive presence of raindrop evaporation (31 ± 14%). We also documented a distinct pattern of isotopic variation in six samples collected at Bangalore due to mixing of vapor from a cyclonic system in close proximity that originated from the Bay of Bengal. It seems that large-scale isotopic depletion occurs during cyclones caused by Rayleigh fractionation due to massive rainout. These results demonstrate the power of rainwater and water vapor isotope monitoring to elucidate the genesis and dynamics of water recycling within synoptic-scale monsoon systems.

  1. Computer Control of the Spectral Composition of the Powerful Laser System Irradiation with a Wide Range of Laser Transitions on Metal Vapors

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The results of the experimental study cycle of the multiwave metal vapor laser system on the basis of the original configuration of the multimedia laser emitter. The spectral parameters of the setup have been controlled using a personal computer (PC. This allows carrying out their independent optimization according to excitation conditions, and, therefore, promptly allocating the output set of oscillating wavelengths and their relative distribution in power, which makes the system attractive for scientific and technological application.

  2. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Fukui, Takashi; Yoshimura, Masatoshi; Nakai, Eiji; Tomioka, Katsuhiro

    2012-01-01

    We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

  3. CO oxidation activity of Cu-CeO2 nano-composite catalysts prepared by laser vaporization and controlled condensation

    Science.gov (United States)

    Sundar, Rangaraj S.; Deevi, Sarojini

    2006-08-01

    Ceria supported copper catalysts were synthesized by laser vaporization and controlled condensation method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and temperature programmed reduction (TPR). The catalytic activity of the nanopowders for CO oxidation reaction was tested in a fixed bed flow tube reactor in Ar-20%O2-4%CO mixture. Irrespective of the copper content, the catalytic activity of the nanopowders is similar in the initial CO test, and the catalytic activity improves (i.e. the light-off temperature decreases) during a subsequent run. The lowest light-off temperature during the second run is recorded in the material with 20% copper. TEM studies on 20%Cu-CeO2 sample in the as-prepared condition and after CO test exhibit two types of ceria particles namely, polygonal particles 3-5 nm in size and spherical particles of 15-20 nm in size. Rapid cooling of the nanoparticles formed during the laser ablation results in incorporation of a large amount of copper within the ceria as solid solution. Presence of solid solution of copper is confirmed by EDAX and electron diffraction analyses. In addition, copper-rich surface layer of Cu2O is found over the spherical particles. The cerium oxide components are essentially identical before and after CO test, except that the polygonal CeO2 particles contain newly formed fine crystals of CuO. TPR results reveal two reduction peaks, which further supports, the presence of two different copper species in the material. The shift in light-off temperature during the second run is attributed to the synergistic interaction between newly formed CuO crystals with the CeO2 matrix.

  4. Control of the thin film properties of Cu(In ,Ga)Se2 using water vapor introduction during growth

    Science.gov (United States)

    Ishizuka, Shogo; Shibata, Hajime; Yamada, Akimasa; Fons, Paul; Sakurai, Keiichiro; Matsubara, Koji; Niki, Shigeru; Yonemura, Minoru; Nakanishi, Hisayuki

    2006-11-01

    The effects of water vapor introduction during growth on Cu(In ,Ga)Se2 (CIGSe) thin film properties, specifically the electrical and photoluminescence (PL) properties have been studied. Increases in the hole carrier density and conductivity with water vapor introduction were observed for all [Ga]/[In+Ga] composition ratios. The PL spectra observed from CuGaSe2 (CGSe) showed an annihilation of deep donor-acceptor pair emissions related to Se vacancies with water vapor introduction. In addition, the Na content in the CIGSe layers as well as the O content was found to increase. These results suggest that the mechanism behind the variation observed in the electrical and PL properties and consequent cell improvement is largely attributable to a decrease in the Se-vacancies-induced donor defect density and an enhancement of Na effects.

  5. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  6. Controls on radium transport by adsorption to iron minerals

    Science.gov (United States)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface waters, and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a dominant pathway of radium retention in subsurface environments. For SGD studies, adsorption processes impact estimates of GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids mediates wastewater radium activities. Analysis of past sorption studies revealed large variability in partition coefficients [4], while examination of radium adsorption kinetics and surface complexation have only recently started [5]. Accordingly, we present the results of sorption and column experiments of radium with a suite of iron minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through artificial waters. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the transport and retention of radium. These results will provide critical information on the mineralogical controls on radium retention in subsurface environments, and will therefore improve predictions of radium groundwater transport in natural and contaminated systems. [1] Charette, M.A., Buesseler, K.O. & Andrews, J.E., Limnol. Oceanogr. (2001). [2] Moore, W.S., Ann. Rev. Mar. Sci. (2010). [3] Vengosh, A

  7. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    Science.gov (United States)

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  8. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    Science.gov (United States)

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  9. Control system of HLS transport line and Linac focusing power supplies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The control system of transport line and Linac focusing power supplies of Hefei Light Source was built upon Experimental Physics and Industrial Control System. The hardware construction, software design and performance test of the control system are described.

  10. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    Science.gov (United States)

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health.

  11. Controllable spin transport in dual-gated silicene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu, E-mail: ywang@semi.ac.cn [Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming, 650500 Yunnan (China); Lou, Yiyi [Center of Student Community Education and Management, Kunming University of Science and Technology, Kunming, 650500 Yunnan (China)

    2014-07-11

    Based on the dual-gated silicene, we have evaluated theoretically the spin-dependent transport in lateral resonant tunneling structure. By aligning the completely valley-polarized beam with spin-resolved well state in concerned structure, large spin polarization can be expected owing to spin-dependent resonant tunneling mechanism. Under the gate electric field modulation, the forming quantum well state can be externally manipulated, triggering further the emergence of externally-controllable spin polarization. Importantly, integrating the considered structure with a proper valley-filter, which might be constructed from valley-contrasting physics as that in graphene valleytronics, completely-polarized spin beam can also be attained without the assistance of ferromagnetic component, providing thus some profitable strategies to develop nonmagnetic spintronic devices residing on silicene. - Highlights: • Dual-gated silicene forms a lateral spin-resonant tunneling diode. • Resonant spin polarization can be electrically modulated in the concerned spin-RTD. • Dual-gated silicene can be used as beam-dependent spin/valley filter.

  12. Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants

    OpenAIRE

    Barberon, Marie; Zelazny, Enric; Robert, Stéphanie; Conejero, Geneviève; Curie, Catherine; Friml, Jìrí; Vert, Grégory

    2011-01-01

    Plants take up iron from the soil using the IRON-REGULATED TRANSPORTER 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosom...

  13. 48 CFR 247.370 - DD Form 1384, Transportation Control and Movement Document.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false DD Form 1384... Transportation in Supply Contracts 247.370 DD Form 1384, Transportation Control and Movement Document. The transportation office of the shipping activity prepares the DD Form 1384 to accompany all shipments made...

  14. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.

    2016-01-01

    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor tra

  15. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    Science.gov (United States)

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI3)0.85(MAPbBr3)0.15. The mixed perovskite was crystallized on a low-temperature prepared brookite TiO2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm(2) device and 15.2% for a 1.0 × 1.0 cm(2) device.

  16. Spectrographic determination of impurities in ammonium bifluoride. III. Study of the processes of vaporization, transport and excitation of the elements Al, B, Cu and Cr; Determinacion espectrografico de impurezas en bifluoruro amonico. III. Estudio de los procesos de volatilizacion, transporte y excitacion de los elementos Al, B, Cu, Cr

    Energy Technology Data Exchange (ETDEWEB)

    Alduan, F. A.; Roca, M.; Capdevila, C.

    1979-07-01

    The influences of the processes of vaporization, transport and excitation on the shape of the volatilization-excitation curves and on the values of the spectral-line intensities have been investigated in a method for the spectrographic determination of Al, B, Cu and Cr In ammonium bifluoride samples by direct current are excitation in Scribner type electrodes, with addition of different matrices (graphite, 63203, GeO{sub 2}, MgO and Zn0). The reaction products in the electrode cavity have been identified by X-ray powder diffraction analysis and the percentages of vaporized and diffused element evaluated through analysis by total-burning spectrographic methods. In addition, the values of both the number of particles entering the discharge column and the transport efficiencies have been calculated. Thus, the origin of most observed differences has been explained. (Author) 11 refs.

  17. Proof in climatology for circulation effect of stalagmite δ18O in East Asia: analysis on the ratios among water vapor transport passageway intensities in East Asia

    Science.gov (United States)

    Nan, S.; Tan, M.; Zhao, P.

    2013-07-01

    Further verification about the circulation effect of stalagmite δ18O in East Asian monsoon region needs the quantitative description for the proportion of water vapor transport (WVT) from different source regions. WVT passageway intensities are defined as regionally averaged WVT flux modes in this paper. The ratio between two WVT passageways' intensities represents relative intensity of the two WVT passageways. Using the NCEP-NCAR reanalysis data for 1948-2011, the ratios of the intensities of three WVT passageways from low latitudes (the intensity of WVT from Bay of Bengal (IBOB), the intensity of WVT from South China Sea (ISCS) and the intensity of WVT from western North Pacific (IWNP) in summer are calculated. SB is for the ISCS-IBOB ratio, WB for the IWNP-IBOB ratio, and WS for the IWNP-ISCS ratio. The decadal increase occurs in the time series of WB and WS, with higher values in 1976-1995 and lower values in 1950-1975, probably resulting from the strengthening of WVT from WNP in the midterm of 1970s. East Asian atmospheric circulations, WVTs and previous SST characters corresponding to the ratios are analyzed. The result indicates that SB, WB and WS may properly reflect the relative intensities between ISCS and IBOB, between IWNP and IBOB, and between IWNP and ISCS, respectively. For high SB years, the Asian Low and the western Pacific subtropical high (WPSH) weaken. The southwesterly winds from BOB to the Yangtze River valley by the southeast of the Tibetan Plateau weaken and the WVT from BOB to East Asia weakens. The southwesterly winds from SCS to East Asia strengthen and the WVT from SCS to East Asia strengthens. In high WB years, the Asian Low weakens and the WPSH shifts westwards, enhances and enlarges. The WVT from WNP to East Asia increases because of the strengthening of the easterly winds on the south of the WPSH. The westerly winds from BOB to East Asia by Indo-China Peninsula decrease and the WVT from BOB to East Asia weakens. The atmospheric

  18. Proof in climatology for circulation effect of stalagmite δ18O in East Asia: analysis on the ratios among water vapor transport passageway intensities in East Asia

    Directory of Open Access Journals (Sweden)

    S. Nan

    2013-07-01

    Full Text Available Further verification about the circulation effect of stalagmite δ18O in East Asian monsoon region needs the quantitative description for the proportion of water vapor transport (WVT from different source regions. WVT passageway intensities are defined as regionally averaged WVT flux modes in this paper. The ratio between two WVT passageways' intensities represents relative intensity of the two WVT passageways. Using the NCEP-NCAR reanalysis data for 1948–2011, the ratios of the intensities of three WVT passageways from low latitudes (the intensity of WVT from Bay of Bengal (IBOB, the intensity of WVT from South China Sea (ISCS and the intensity of WVT from western North Pacific (IWNP in summer are calculated. SB is for the ISCS-IBOB ratio, WB for the IWNP-IBOB ratio, and WS for the IWNP-ISCS ratio. The decadal increase occurs in the time series of WB and WS, with higher values in 1976–1995 and lower values in 1950–1975, probably resulting from the strengthening of WVT from WNP in the midterm of 1970s. East Asian atmospheric circulations, WVTs and previous SST characters corresponding to the ratios are analyzed. The result indicates that SB, WB and WS may properly reflect the relative intensities between ISCS and IBOB, between IWNP and IBOB, and between IWNP and ISCS, respectively. For high SB years, the Asian Low and the western Pacific subtropical high (WPSH weaken. The southwesterly winds from BOB to the Yangtze River valley by the southeast of the Tibetan Plateau weaken and the WVT from BOB to East Asia weakens. The southwesterly winds from SCS to East Asia strengthen and the WVT from SCS to East Asia strengthens. In high WB years, the Asian Low weakens and the WPSH shifts westwards, enhances and enlarges. The WVT from WNP to East Asia increases because of the strengthening of the easterly winds on the south of the WPSH. The westerly winds from BOB to East Asia by Indo-China Peninsula decrease and the WVT from BOB to East Asia weakens

  19. Contribution of Glucose Transport to the Control of the Glycolytic Flux in Trypanosoma brucei

    Science.gov (United States)

    Bakker, Barbara M.; Walsh, Michael C.; Ter Kuile, Benno H.; Mensonides, Femke I. C.; Michels, Paul A. M.; Opperdoes, Fred R.; Westerhoff, Hans V.

    1999-08-01

    The rate of glucose transport across the plasma membrane of the bloodstream form of Trypanosoma brucei was modulated by titration of the hexose transporter with the inhibitor phloretin, and the effect on the glycolytic flux was measured. A rapid glucose uptake assay was developed to measure the transport activity independently of the glycolytic flux. Phloretin proved a competitive inhibitor. When the effect of the intracellular glucose concentration on the inhibition was taken into account, the flux control coefficient of the glucose transporter was between 0.3 and 0.5 at 5 mM glucose. Because the flux control coefficients of all steps in a metabolic pathway sum to 1, this result proves that glucose transport is not the rate-limiting step of trypanosome glycolysis. Under physiological conditions, transport shares the control with other steps. At glucose concentrations much lower than physiological, the glucose carrier assumed all control, in close agreement with model predictions.

  20. Transmission Control of Transport and Technological Cars in Acceleration Mode

    Directory of Open Access Journals (Sweden)

    B. I. Plujnikov

    2015-01-01

    Full Text Available In most structures a transmission of the transport-technological machine (TTM is controlled by automatic systems. In their creating it is necessary to specify the appropriate parameters and algorithms. In the total balance of the machine run time the acceleration mode is the most important. Therefore, an algorithm of the transmission gear ratio change during acceleration largely provides desirable rating of machines.It is known that the process of acceleration is estimated by its dynamic quality and fuel economy. To reach the best rating of both simultaneously is impossible. Therefore, as the criteria of estimate, were chosen the time and fuel consumption during acceleration to a fixed speed value.From a mathematical point of view, these criteria represent the sum of integrals, each of which defines the time or the fuel consumption during acceleration with a certain transmission gear ratio. The problem is formulated as follows: to determine the speed values of the TTM at the moments when the transmission gear ratio is changed providing the minimum values during fixed fuel supply for the estimate criteria. The latter condition in a certain way limits the task, but in explicit form there is no this control action in the dependence data.Given the variety of possible design options for the TTM, the solution is given by a specific example that simplifies the mathematics and makes it easier to understand the results obtained. As a TTM, is considered a passenger car with petrol engine and automatic transmission, which includes a hydrodynamic transformer and three-speed gearbox.A chosen way of solving the problem involves using the theory of ordinary maxima and minima, which allows finding the unknown values of independent variables. The expressions of sub-integral functions are in explicit form obtained and studied for meeting the necessary and sufficient conditions for existence of the extreme point. The result was a proof that in the case of

  1. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    Directory of Open Access Journals (Sweden)

    Q. Bian

    2015-06-01

    Full Text Available Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III. We use the TwO-Moment Aerosol Sectional (TOMAS microphysics algorithm coupled with the organic volatility basis set (VBS and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36% was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss. We perform a series of sensitivity tests to

  2. An automated dynamic water vapor permeation test method

    Science.gov (United States)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  3. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  4. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  5. Spin-polarized transport in Rashba controlled rings

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F. [Dipartimento di Fisica ' E. R. Caianiello' and Unita C.N.I.S.M., Universita di Salerno, I-84081 Baronissi (Italy); Citro, R. [Dipartimento di Fisica ' E. R. Caianiello' and Unita C.N.I.S.M., Universita di Salerno, I-84081 Baronissi (Italy)]. E-mail: citro@sa.infn.it

    2007-09-15

    We study spin-polarized transport in a Rashba one-dimensional ring interrupted by a tunnel barrier placed in one arm and symmetrically coupled to two external leads. By means of the scattering matrix approach, we investigate the effects on the transport properties of both an applied magnetic flux (Aharonov-Bohm flux) and an effective Aharonov-Casher flux induced by the spin-orbit (SO) Rashba interaction. By varying the model parameters we show a spin-filtering effect relevant for the experimental detection of SO interaction in mesoscopic structures.

  6. Bedload transport controls bedrock erosion under sediment-starved conditions

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.

    2015-07-01

    Fluvial bedrock incision constrains the pace of mountainous landscape evolution. Bedrock erosion processes have been described with incision models that are widely applied in river-reach and catchment-scale studies. However, so far no linked field data set at the process scale had been published that permits the assessment of model plausibility and accuracy. Here, we evaluate the predictive power of various incision models using independent data on hydraulics, bedload transport and erosion recorded on an artificial bedrock slab installed in a steep bedrock stream section for a single bedload transport event. The influence of transported bedload on the erosion rate (the "tools effect") is shown to be dominant, while other sediment effects are of minor importance. Hence, a simple temporally distributed incision model, in which erosion rate is proportional to bedload transport rate, is proposed for transient local studies under detachment-limited conditions. This model can be site-calibrated with temporally lumped bedload and erosion data and its applicability can be assessed by visual inspection of the study site. For the event at hand, basic discharge-based models, such as derivatives of the stream power model family, are adequate to reproduce the overall trend of the observed erosion rate. This may be relevant for long-term studies of landscape evolution without specific interest in transient local behavior. However, it remains to be seen whether the same model calibration can reliably predict erosion in future events.

  7. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  8. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  9. Controlling Urban Sprawl with Integrated Approach of Space-Transport Development Strategies

    OpenAIRE

    Ambarwati, L.; Verhaeghe, R.; Pel, A.J.; van Arem, B.

    2014-01-01

    Urban sprawl phenomenon has been a huge issue since 20th century characterized by a rapid and unbalanced settlement development with transportation network particularly in a suburban area. The improvement of public transport system is a major requirement to minimize urban sprawl. Academic researchers have explained the linkage strategy between transportation network and urban planning. However, insufficient empirical verification has been made to control this phenomenon by using the integrate...

  10. Arrangement of a nanostructure array to control equilibrium and nonequilibrium transports of macromolecules.

    Science.gov (United States)

    Yasui, Takao; Kaji, Noritada; Ogawa, Ryo; Hashioka, Shingi; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2015-05-13

    Exploiting the nonequilibrium transport of macromolecules makes it possible to increase the separation speed without any loss of separation resolution. Here we report the arrangement of a nanostructure array in microchannels to control equilibrium and nonequilibrium transports of macromolecules. The direct observation and separation of macromolecules in the nanopillar array reported here are the first to reveal the nonequilibrium transport, which has a potential to overcome the intrinsic trade-off between the separation speed and resolution.

  11. System and method for temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  12. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  13. Sumoylation of Human Translationally Controlled Tumor Protein Is Important for Its Nuclear Transport

    OpenAIRE

    Gnanasekar Munirathinam; Kalyanasundaram Ramaswamy

    2012-01-01

    Translationally controlled tumor protein (TCTP) lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO) motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into th...

  14. Brownian transport controlled by dichotomic and thermal fluctuations

    Science.gov (United States)

    Kula, J.; Kostur, M.; Łuczka, J.

    1998-09-01

    We study transport of Brownian particles in spatially periodic structures, driven by both thermal equilibrium fluctuations and dichotomic noise of zero mean values. Introducing specific scaling, we show that the dimensionless Newton-Langevin type equation governing the motion of Brownian particles is very well approximated by the overdamped dynamics; inertial effects can be neglected because for generic systems dimensionless mass is many orders less than a dimensionless friction coefficient. An exact probability current, proportional to the mean drift velocity of particles, is obtained for a piecewise linear spatially periodic potential. We analyze in detail properties of the macroscopic averaged motion of particles. In dependence on statistics of both sources of fluctuations, the directed transport of particles exhibits such distinctive non-monotonic behavior as: bell-shaped dependence (there exists optimal statistics of fluctuations maximizing velocity) and reversal in the direction of macroscopic motion (there exists critical statistics at which the drift velocity is zero).

  15. Control of Transport-barrier relaxations by Resonant Magnetic Perturbations

    CERN Document Server

    Leconte, M; Garbet, X; Benkadda, S

    2009-01-01

    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual residual magnetic island chains and a stochastic layer.

  16. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.; Blum, R. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K. [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  17. Efficiency of sediment transport by flood and its control in the Lower Yellow River

    Institute of Scientific and Technical Information of China (English)

    NI; Jinren; LIU; Xiaoyong; LI; Tianhong; ZHAO; Yean; JIN; L

    2004-01-01

    This paper presents the characteristics of sediment transport by flood in the Lower Yellow River with the reach from Huayuankou to Gaocun, which is regarded as a typical braided pattern. The Artificial Neural Network Model on Water Use for Sediment Transport (WUST) by flood was established based on the measured data from 1980 to 1998. Consequently, simulations of controlling process of sediment transport by flood were made in terms of the control theory under different scenarios. According to the situation of sediment transport by flood in the Lower Yellow River, Open-Loop control system and feedback control system were adopted in system design. In the Open-Loop control system, numerical simulations were made to reveal the relationship between average discharge of flood and the WUST with varying sediment concentrations. The results demonstrate that sediment concentration has significant influence on the controlling process of flood flow to WUST. It is practical and efficient to control WUST if sediment concentration is less than 20 kg/m3. In the feedback control system, controlling processes of sediment concentration and flood discharge for sediment transport were simulated respectively under given conditions, and it was found that sediment transport process could be controlled completely by sediment concentration and discharge at the inlet of the reach from Huayuankou to Gaocun. Using the same method, controlling processes of sediment transport by flood in other reaches in the Lower Yellow River were also simulated. For the case of sediment concentration being 20 kg/m3, the optimized controlling discharge ranges from 2390 to 2900 m3/s in the lower reach of Huayuankou.This study is also of significance to flood control and flushing sediment in the Lower Yellow River with proper operation modes of Xiaolangdi Reservoir.

  18. Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation.

    Science.gov (United States)

    Chen, Yiming; Hou, Deyi; Lu, Chunhui; Spain, Jim C; Luo, Jian

    2016-09-06

    Most of the models for simulating vapor intrusion accept the local equilibrium assumption for multiphase concentration distributions, that is, concentrations in solid, liquid and vapor phases are in equilibrium. For simulating vapor transport with aerobic biodegradation controlled by counter-diffusion processes, the local equilibrium assumption combined with dual-Monod kinetics and biomass decay may yield near-instantaneous behavior at steady state. The present research investigates how predicted concentration profiles and fluxes change as interphase mass transfer resistances are increased for vapor intrusion with aerobic biodegradation. Our modeling results indicate that the attenuation coefficients for cases with and without mass transfer limitations can be significantly different by orders of magnitude. Rate-limited mass transfer may lead to larger overlaps of contaminant vapor and oxygen concentrations, which cannot be simulated by instantaneous reaction models with local equilibrium mass transfer. In addition, the contaminant flux with rate-limited mass transfer is much smaller than that with local equilibrium mass transfer, indicating that local equilibrium mass transfer assumption may significantly overestimate the biodegradation rate and capacity for mitigating vapor intrusion through the unsaturated zone. Our results indicate a strong research need for field tests to examine the validity of local equilibrium mass transfer, a widely accepted assumption in modeling vapor intrusion.

  19. Si Nanopores Development for External Control of Transport of Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Ileri, N; Tringe, J; Letant, S; Palozoglu, A; Stroeve, P; Faller, R

    2008-06-13

    Nazar Ileri has been involved in an independent, multidisciplinary effort to create a new class of molecular sieves for proteins and viruses. Her experimental work has been performed concurrently at two campuses, LLNL and UC Davis, while theoretical components have been largely accomplished at UC Davis. As will be described, the devices she is creating have great potential to improve very significantly the efficiency and selectivity of molecular transport over what is presently available from state-of-the-art membranes. Our biotechnology training program is based on an integrated study of the transport of biomolecules through conically-shaped, nanoporous silicon membranes. The overall objective of this effort is to demonstrate an efficient, highly selective membrane technology that is manufacturable for macroscopic areas and can be employed in sensing, diagnostic and biomedical applications. Our specific aims are to (1) fabricate and characterize the physical characteristics of the membranes, (2) to demonstrate their utility for molecular transport and separation, and (3) to develop models that will facilitate understanding of these devices as well as improved performance of the next generation of devices. We have proposed that the conical pores have superior performance characteristics compared to other porous filters. To study this hypothesis, complementary approaches from different disciplines, such as membrane synthesis, experiment, and molecular simulation need to be combined. This provides an ideal training environment for a future leader in biotechnology. Hence, for this study, Nazar Ileri has started to carry out a full range of experimental and theoretical investigations under our guidance. First, she has begun fabrication of filters with conical/pyramidal pores. She characterized the pores by AFM and SEM, and analyzed the images using wavelets and other mathematical tools. She has also started to conduct biomolecule transport experiments to compare the

  20. Temperature-enhanced solvent vapor annealing of a C3 symmetric hexa-peri-hexabenzocoronene: controlling the self-assembly from nano- to macroscale.

    Science.gov (United States)

    Treossi, Emanuele; Liscio, Andrea; Feng, Xinliang; Palermo, Vincenzo; Müllen, Klaus; Samorì, Paolo

    2009-01-01

    Temperature-enhanced solvent vapor annealing (TESVA) is used to self-assemble functionalized polycyclic aromatic hydrocarbon molecules into ordered macroscopic layers and crystals on solid surfaces. A novel C3 symmetric hexa-peri-hexabenzocoronene functionalized with alternating hydrophilic and hydrophobic side chains is used as a model system since its multivalent character can be expected to offer unique self-assembly properties and behavior in different solvents. TESVA promotes the molecule's long-range mobility, as proven by their diffusion on a Si/SiO(x) surface on a scale of hundreds of micrometers. This leads to self-assembly into large, ordered crystals featuring an edge-on columnar type of arrangement, which differs from the morphologies obtained using conventional solution-processing methods such as spin-coating or drop-casting. The temperature modulation in the TESVA makes it possible to achieve an additional control over the role of hydrodynamic forces in the self-assembly at surfaces, leading to a macroscopic self-healing within the adsorbed film notably improved as compared to conventional solvent vapor annealing. This surface re-organization can be monitored in real time by optical and atomic force microscopy.

  1. ANÁLISIS DE PÉRDIDAS ENERGÉTICAS Y ECONÓMICAS POR TRANSPORTE DE VAPOR EN TUBERÍAS SIN UN ADECUADO AISLAMIENTO TÉRMICO

    OpenAIRE

    Carlos Aristizábal; German Schäfer; Rolando Barrera Zapata

    2014-01-01

    Se presenta el cálculo de las pérdidas de recursos energéticos y económicos por el deterioro o ausencia de aislante térmico en las tuberías de transporte de vapor al interior de una empresa dedicada a la  producción de licores, así como la predicción de ahorros alcanzados al aplicar aislantes en zonas detectadas como críticas. Se utilizan  modelos de  transferencia de calor para sistemas radiales y cálculos económicos a partir de costos de aislantes térmicos, recursos másicos y energéticos, y...

  2. Review of criteria for nuclear criticality safety control in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. T.; Smith, D. R.

    1978-01-01

    Basic elements in the review of criteria for nuclear criticality safety in transportation are the magnitudes of reactivity changes that may occur to a shipment of packages and those inherent in the regulatory procedure of assessment. The generic representation of criticality of reflected arrays of uncontained fissionable materials is used as a basis for comparison of packaged fissionable materials. The reactivities associated with array changes and perturbations representative of credible conditions that may occur in storage or transportation are summarized for air-spaced units of fissionable materials. Calculations of packaged fissionable material determined reactivities associated with similar changes to arrays of packages. Typical thermal insulating materials being studied are Celotex, wood, Foamglas, and a bonded vermiculite. The effect on the array neutron multiplication of these, with and without steel as an inner and outer container material, is examined. The present stage of the study has produced results illustrating the variable margin of subcriticality manifested by the criteria. Depending upon the packaging, mass loading and array reflector condition, the margin of subcriticality can be of the order of 1% in k/sub eff/.

  3. Simulation-Based Planning and Control of Transport Flows in Port Logistic Systems

    Directory of Open Access Journals (Sweden)

    Antonio Diogo Passos Lima

    2015-01-01

    Full Text Available In highly dynamic and uncertain transport conditions, transport transit time has to be continuously monitored so that the service level is ensured at a proper cost. The aim of this research is to propose and to test a procedure which allows an agile planning and control of transport flows in port logistic systems. The procedure couples an agent-based simulation and a queueing theory model. In this paper, the transport scheduling performed by an agent at the intermodal terminal was taken into consideration. The decision-making agent takes into account data which is acquired in remote points of the system. The obtained results indicate the relevance of continuously considering, for the transport planning and control, the expected transit time and further waiting times along port logistic systems.

  4. FTIR instrumentation to monitor vapors from Shuttle tile waterproofing materials

    Science.gov (United States)

    Mattson, C. B.; Schwindt, C. J.

    1995-11-01

    conditions in controlled laboratory tests. The combination of laboratory and field tests with the FTIR instrument demonstrated superior sensitivity, ability to reject interference from water and ethanol vapors, ruggedness to be transported from the lab to the OPF and set up without special procedures or degradation of performance. The multiple component vapor analysis algorithm was developed at KSC and incorporates automatic baseline correction and shape fitting of the spectra. The analysis for DMES, TetraMethylDiSiloxane (TMDS), ethanol, methanol, isopropanol, and baseline parameters uses 161 points per sample at 4 cm(exp -1) resolution, and processes an eight scan sample every ten seconds. The standard deviation of the measurements is 0.013 ppm and the upper linear limit is 125 ppm DMES. Fiscal year 1995.

  5. CVD钨沉积层组织控制%Control the Microstructure of Tungsten Layer Fabricated by Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    马捷; 张永志; 魏建忠; 蒙丽娟

    2011-01-01

    The microstructure of tungsten layer fabricated by chemical vapor deposition was changed by supplying the reactive gas WF6 and H2 discontinuously. The effect of the technics principle of chemical vapor deposition on the tungsten layer's microstructure and properties had been analyzed. And the condition of stress on the surface and crack on the fracture surface had been discussed. The results show that the microstructure of Tungsten layer is changed from layered columnar grains to equiaxed grains with the decreasing of cyclical deposition time. And the surface appearances are spherical grains, which are no longer tending to grow in a single direction, meanwhile the deposits are of high purity and high density. The stress on the surface is reduced and the direction of the propagating cracks has been changed. The expansion of the crack can be effectively blocked.%以WF6和H2为反应气体,采用间断供应反应气体方法改变CVD钨沉积层显微组织形貌.研究了间断沉积工艺参数对沉积层显微组织及性能的影响,讨论了间断沉积层的表面应力状态及断口裂纹扩展情况.结果表明:采用间断化学气相沉积法钨层的显微组织随周期沉积时间的缩短,柱状晶晶粒长度尺寸变小,形态逐渐接近等轴晶;沉积层表面形貌呈圆球状,沉积层生长界面不再趋向于单一方向;钨层保持了连续CVD钨的高纯度、高密度特性.且采用间断供应反应气体沉积方法显著降低了钨制品表面的残余应力,使裂纹扩展方向发生改变,有效阻碍了裂纹的深入扩展.

  6. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all...... the elements necessary for agonist-mediated intercellular communication. ATP is released from epithelial cells, which activates P2 receptors in the apical and basolateral membrane and thereby modulates tubular transport. Termination of the signal is conducted via the breakdown of ATP to adenosine. Recent far......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  7. Mass-transport-controlled, large-area, uniform deposition of carbon nanofibers and their application in gas diffusion layers of fuel cells.

    Science.gov (United States)

    Tang, Xian; Xie, Zhiyong; Huang, Qizhong; Chen, Guofen; Hou, Ming; Yi, Baolian

    2015-05-07

    The effect of mass transport on the growth characteristics of large-area vapor-grown carbon nanofibers (CNFs) was investigated by adjusting the substrate deposition angle (α). The catalyst precursor solution was coated onto one side of a 2D porous carbon paper substrate via a decal printing method. The results showed that the CNFs were grown on only one side of the substrate and α was found to significantly affect the growth uniformity. At α = 0°, the growth thickness, the density, the microstructure and the yield of the CNF film were uniform across the substrate surface, whereas the growth uniformity decreased with increasing α, suggesting that the large-area CNF deposition processes were mass-transport-controlled. Computational fluid dynamics simulations of the gas diffusion processes revealed the homogeneous distributions of the carbon-source-gas concentration, pressure, and velocity near the substrate surface at α = 0°, which were the important factors in achieving the mass-transport-limited uniform CNF growth. The homogeneity of the field distributions decreased with increasing α, in accordance with the variation in the growth uniformity with α. When used as a micro-porous layer, the uniform CNF film enabled higher proton exchange membrane fuel cell performance in comparison with commercial carbon black by virtue of its improved electronic and mass-transport properties confirmed by the electrochemical impedance spectroscopy results.

  8. Simulation study of burning control with transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Gonta [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masayoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-07-01

    Dynamics of burning plasmas are studied by use of one dimensional simulation code with current diffusive ballooning mode model. Focusing on the effects of current profile control, burning performance is evaluated. The ohmic plasma is heated by additional heating and ignited state of the plasma is reached. Due to the formation of negative shear, improved confinement is obtained with the L-mode boundary condition. Controlling the external current drive, burning state is sustained longer than 1000 sec. (author)

  9. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement

    Science.gov (United States)

    Xu, Rui; Xia, Hesheng; He, Weifeng; Li, Zhichao; Zhao, Jian; Liu, Bo; Wang, Yuzhen; Lei, Qiang; Kong, Yi; Bai, Yang; Yao, Zhihui; Yan, Rongshuai; Li, Haisheng; Zhan, Rixing; Yang, Sisi; Luo, Gaoxing; Wu, Jun

    2016-04-01

    A desirable microenvironment is essential for wound healing, in which an ideal moisture content is one of the most important factors. The fundamental function and requirement for wound dressings is to keep the wound at an optimal moisture. Here, we prepared serial polyurethane (PU) membrane dressings with graded water vapor transmission rates (WVTRs), and the optimal WVTR of the dressing for wound healing was identified by both in vitro and in vivo studies. It was found that the dressing with a WVTR of 2028.3 ± 237.8 g/m2·24 h was able to maintain an optimal moisture content for the proliferation and regular function of epidermal cells and fibroblasts in a three-dimensional culture model. Moreover, the dressing with this optimal WTVR was found to be able to promote wound healing in a mouse skin wound model. Our finds may be helpful in the design of wound dressing for wound regeneration in the future.

  10. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue.

    Science.gov (United States)

    Suk, Ji Won; Lee, Wi Hyoung; Lee, Jongho; Chou, Harry; Piner, Richard D; Hao, Yufeng; Akinwande, Deji; Ruoff, Rodney S

    2013-04-10

    Residual polymer (here, poly(methyl methacrylate), PMMA) left on graphene from transfer from metals or device fabrication processes affects its electrical and thermal properties. We have found that the amount of polymer residue left after the transfer of chemical vapor deposited (CVD) graphene varies depending on the initial concentration of the polymer solution, and this residue influences the electrical performance of graphene field-effect transistors fabricated on SiO2/Si. A PMMA solution with lower concentration gave less residue after exposure to acetone, resulting in less p-type doping in graphene and higher charge carrier mobility. The electrical properties of the weakly p-doped graphene could be further enhanced by exposure to formamide with the Dirac point at nearly zero gate voltage and a more than 50% increase of the room-temperature charge carrier mobility in air. This can be attributed to electron donation to graphene by the -NH2 functional group in formamide that is absorbed in the polymer residue. This work provides a route to enhancing the electrical properties of CVD-grown graphene even when it has a thin polymer coating.

  11. Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

    Science.gov (United States)

    Viciani, Silvia; Gherardini, Stefano; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2016-11-01

    Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies.

  12. Physical processes that control droplet transport in rock fracture systems

    Science.gov (United States)

    Hay, Katrina Moran

    Aquifer recharge is generally driven by fluids that move from the Earths surface to groundwater through the unsaturated zone, also known as the vadose zone. When the vadose zone is fractured, fluids, which may include contaminants, can move through the fracture network as well as the porous matrix. Such a network of fractures can provide a more rapid path, thereby reducing contact time between the fluid and the matrix. Contact time allows for exchange of solutes between the fluid and the porous matrix, thus being able to quantify contact time is important. In addition, the behavior of fluids within a fracture network has been found to be very complex; large-scale models are yet not able to predict transport paths or flux rates. Because, small-scale flow phenomena can strongly influence the large-scale behavior of fluid movement through systems of fractures, it is important that small-scale dynamics be properly understood in order to improve our predictive capabilities in these complex systems. Relevant flow dynamics includes the impact of boundary conditions, fluid modes that evolve in time and space and transitions between modes. This thesis presents three investigations aimed at understanding the physical processes governing fluid movement in unsaturated fractures, with the ultimate goal of improving predictive relationships for fluid transport in rock fracture systems. These investigations include a theoretical analysis of the wetting of a rough surface, an experimental study of the dynamics of fluid droplets (or liquid bridges) moving in a single fracture and a theoretical analysis of the movement of a fluid droplet encountering a fracture intersection. Each investigation is motivated by environmental applications. Development of an analytical equation for the wetting of a rough surface is based on a balance between capillary forces and frictional resistive forces. The resulting equation predicts movement of the liquid invasion front driven solely by the

  13. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  14. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  15. Microbial growth with vapor-phase substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany); Wick, Lukas Y., E-mail: lukas.wick@ufz.de [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany)

    2011-04-15

    Limited information exists on influences of the diffusive transport of volatile organic contaminants (VOC) on bacterial activity in the unsaturated zone of the terrestrial subsurface. Diffusion of VOC in the vapor-phase is much more efficient than in water and results in effective VOC transport and high bioavailability despite restricted mobility of bacteria in the vadose zone. Since many bacteria tend to accumulate at solid-water, solid-air and air-water interfaces, such phase boundaries are of a special interest for VOC-biodegradation. In an attempt to evaluate microbial activity toward air-borne substrates, this study investigated the spatio-temporal interplay between growth of Pseudomonas putida (NAH7) on vapor-phase naphthalene (NAPH) and its repercussion on vapor-phase NAPH concentrations. Our data demonstrate that growth rates of strain PpG7 were inversely correlated to the distance from the source of vapor-phase NAPH. Despite the high gas phase diffusivity of NAPH, microbial growth was absent at distances above 5 cm from the source when sufficient biomass was located in between. This indicates a high efficiency of suspended bacteria to acquire vapor-phase compounds and influence headspace concentration gradients at the centimeter-scale. It further suggests a crucial role of microorganisms as biofilters for gas-phase VOC emanating from contaminated groundwater or soil. - Research highlights: > Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene. > Bacteria influence NAPH vapor-phase concentration gradients at centimeter-scale. > Microbial growth on vapor-phase naphthalene is inversely correlated to its source. > Bacteria are good biofilters for gas-phase NAPH emanating from contaminated sites. - Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene and effectively influence vapor-phase naphthalene concentration gradients at the centimeter scale.

  16. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2009-01-01

    Full Text Available Abstract Well-aligned and suspended polyvinyl pyrrolidone (PVP nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD process. The inner diameter (20–200 nm and wall thickness (12–90 nm of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiOx nanotubes shows a strong blue–green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue–green emission is caused by the defects in the nanotubes.

  17. Liquid phase growth of GaSe1-xTex mixed crystals by temperature difference method under controlled vapor pressure

    Science.gov (United States)

    Zhao, S.; Sato, Y.; Maeda, K.; Tanabe, T.; Ohtani, H.; Oyama, Y.

    2017-06-01

    GaSe crystal is one of a group of nonlinear optical (NLO) crystals expected to be utilized as a highly efficient generators of terahertz waves. However, GaSe has some drawbacks that limit it from further application. Firstly, it has poor crystallinity and, secondly, the layers are prone to exfoliation. In this work, crystal growth was carried out at a constant low temperature under a controlled Se vapor pressure to improve the crystallinity. In addition, Te was added in order to grow mixed crystals to improve the bonding forces between the layers. X-ray fluorescence was used to measure the Te composition in the grown crystals. Red shifts of the excitation peaks were found from photoluminescence with increasing Te composition, indicating that mixed crystals were successfully grown. The lattice constant, c, was calculated from the results of X-ray diffraction and was shown to have an almost linear dependence on Te composition.

  18. Thermal behavior of 1,2-dipalmitoyl-sn-3-phosphoglycerocholine bi- and multi-layers, deposited with physical vapor deposition under ellipsometric growth control.

    Science.gov (United States)

    González H, Carmen; Volkmann, Ulrich G; Retamal, Maria J; Cisternas, Marcelo; Sarabia, Mauricio A; López, Karina A

    2012-04-01

    1,2-dipalmitoyl-sn-3-phosphoglycerocholine membranes were deposited onto a silicon substrate (Si/SiO(2)) using physical vapor deposition with in situ ellipsometric thickness control. Along several heating cycles it was possible to identify well-defined boundaries for gel, ripple, liquid crystalline, and fluid-disordered phases. Particularly, the second order transition between gel and ripple phase was clearly identified in the range of ~28-34 °C using Raman spectroscopy. Atomic force microscopy and imaging ellipsometry (IE) were used to observe and characterize the ripple phase undulations of period λ = 20.8 nm and average height h = 19.95 nm along the temperature interval of ~34 to 40 °C. Clusters/agglomerations heights of more than twice the membrane thickness were observed with IE, induced by heating cycles.

  19. In situ metalorganic vapor phase epitaxy control of GaAs/AlAs Bragg reflectors by laser reflectometry at 514 nm

    Science.gov (United States)

    Raffle, Y.; Kuszelewicz, R.; Azoulay, R.; Le Roux, G.; Michel, J. C.; Dugrand, L.; Toussaere, E.

    1993-12-01

    In situ reflectometry with a 514-nm laser beam was used to monitor AlAs and GaAs layer thicknesses grown by metalorganic vapor phase epitaxy. The effective optical indices of these materials have been calibrated at the growth temperature by using an original method based on ex situ double crystal x-ray diffraction measurement. According to these measured indices, the in situ laser reflectometry at 514 nm appears to be well suited for a real-time thickness control of the GaAs/AlAs based Bragg reflectors. Finally, Bragg reflectors centered at 980 nm have been grown using the reflectometry at 514 nm. X-ray diffraction and reflectivity measurements performed on these reflectors confirm a 1% reproducibility and accuracy of the wavelength stop band center.

  20. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  1. Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes

    Science.gov (United States)

    Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.

    2017-07-01

    A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.

  2. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng, E-mail: youmou@rift.mech.tohoku.ac.jp [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasaki, Shinichirou [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Suzuki, Ken; Miura, Hideo [Fracture and Reliability Research Institute, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  3. Temperature control of a steam generator by means of an hybrid system PID-RLC; Control de las temperaturas de un generador de vapor mediante un sistema hibrido PID-RLC

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.

  4. High-quality graphene grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition and its electrical transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, He; Shen, Chengmin, E-mail: cmshen@iphy.ac.cn; Tian, Yuan; Bao, Lihong; Chen, Peng; Yang, Rong; Yang, Tianzhong; Li, Junjie; Gu, Changzhi; Gao, Hong-Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-08

    High-quality continuous uniform monolayer graphene was grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition. The morphology of graphene was investigated by Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. Analysis results confirm that high quality single-layer graphene was fabricated on PtRh{sub 20} foil at 1050 °C using a lower flux of methane under low pressure. Graphene films were transferred onto the SiO{sub 2}/Si substrate by the bubbling transfer method. The mobility of a test field effect transistor made of the graphene grown on PtRh{sub 20} was measured and reckoned at room temperature, showing that the carrier mobility was about 4000 cm{sup 2} V{sup −1} s{sup −1}. The results indicate that desired quality of single-layer graphene grown on PtRh{sub 20} foils can be obtained by tuning reaction conditions.

  5. Controlled Microdroplet Transport in an Atmospheric Pressure Microplasma

    CERN Document Server

    Maguire, P D; Kelsey, C P; Bingham, A; Montgomery, E P; Bennet, E D; Potts, H E; Rutherford, D; McDowell, D A; Diver, D A; Mariotti, D

    2015-01-01

    We report the controlled injection of near-isolated micron-sized liquid droplets into a low temperature He-Ne steady-state rf plasma at atmospheric pressure. The H2O droplet stream is constrained within a 2 mm diameter quartz tube. Imaging at the tube exit indicates a log-normal droplet size distribution with an initial count mean diameter of 15 micrometers falling to 13 micrometers with plasma exposure. The radial velocity profile is approximately parabolic indicating near laminar flow conditions with the majority of droplets travelling at >75% of the local gas speed and having a plasma transit time of < 100 microseconds. The maximum gas temperature, determined from nitrogen spectral lines, was below 400 K and the observed droplet size reduction implies additional factors beyond standard evaporation, including charge and surface chemistry effects. The successful demonstration of controlled microdroplet streams opens up possibilities for gas-phase microreactors and remote delivery of active species for pla...

  6. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  7. Structural practices for controlling sediment transport from erosion

    Science.gov (United States)

    Gabriels, Donald; Verbist, Koen; Van de Linden, Bruno

    2013-04-01

    Erosion on agricultural fields in the hilly regions of Flanders, Belgium has been recognized as an important economical and ecological problem that requires effective control measures. This has led to the implementation of on-site and off-site measures such as reduced tillage and the installation of grass buffers trips, and dams made of vegetative materials. Dams made out of coir (coconut) and wood chips were evaluated on three different levels of complexity. Under laboratory conditions, one meter long dams were submitted to two different discharges and three sediment concentrations under two different slopes, to assess the sediment delivery ratios under variable conditions. At the field scale, discharge and sediment concentrations were monitored under natural rainfall conditions on six 3 m wide plots, of which three were equipped with coir dams, while the other three served as control plots. The same plots were also used for rainfall simulations, which allowed controlling sediment delivery boundary conditions more precisely. Results show a clear advantage of these dams to reduce discharge by minimum 49% under both field and laboratory conditions. Sediment delivery ratios (SDR) were very small under laboratory and field rainfall simulations (4-9% and 2% respectively), while larger SDRs were observed under natural conditions (43%), probably due to the small sediment concentrations (1-5 g l-1) observed and as such a larger influence of boundary effects. Also a clear enrichment of larger sand particles (+167%) could be observed behind the dams, showing a significant selective filtering effect.

  8. Morphologically controlled fuel cell transport layers enabled via electrospun carbon nonwovens

    Science.gov (United States)

    Todd, Devin; Mérida, Walter

    2015-01-01

    We report on the synthesis and performance of carbon nanofibre substrates for PEM fuel cell transport layer applications. Electrospinning is used for fabrication; by manipulation of spinning properties, morphological control is demonstrated in the product. Our application of the technology and it's manipulability to PEMFC transport layers constitutes a novel approach to the manufacture of such layers. Ex-situ morphology, electrical resistance and water contact angles are reported in additional to in-situ hydrogen/air fuel cell performance. Electrospun transport layers are compared directly to established commercial products in a cathode PTL role. The electrospun transport layers demonstrate approximately 85% of the commercial limiting current density, swifter water transport characteristics, and markedly more stable operating points.

  9. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    Science.gov (United States)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  10. O Impacto do Sistema de Transporte sobre o Espaço Urbano e seu Controle

    Directory of Open Access Journals (Sweden)

    Andreina Nigriello

    1992-12-01

    Full Text Available The control of the impact caused by improvements made in the transportation system on urban areas presumes the recognition of the interaction between soil utilization and occupation and access thereto. Said interaction and its effects can be found in statistical studies concerned with the impact caused by São Paulo subway North-South line on urban areas, and the purpose thereof is to: develop a greater sense of social equity in the distribution of indirect benefits associated with public investments in the transportation sector; create new financing sources for said sector; and reduce the withdrawal of poor people from areas directly served by improved transportation system

  11. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  12. Fuel efficiency and fouling control coatings in maritime transport

    DEFF Research Database (Denmark)

    Lindholdt, Asger

    First, this thesis concerns the drag performance of fouling control coatings (FCCs) used to protect hulls on ships against biofouling and, therefore, minimize any drag therefrom. A systematic overview of the literature and description of the experimental methods used to quantify the drag of FCCs...... currently used consists of measuring drag when coatings are newly applied and after static exposure. It was found that the main limitation of this method primarily arises due to incorrect exposure conditions, when compared to larger commercial ships that mainly are moving with few and shorter idle periods...... with a radius of 11.45 cm. The drag performances in the newly applied coating condition and after one month of static immersion in natural seawater were measured using a friction disk machine (FDM). The four best performing coatings were re-examined for their drag performance after an additional 2.5 months...

  13. The Control of Auxin Transport in Parasitic and Symbiotic Root–Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Jason Liang Pin Ng

    2015-08-01

    Full Text Available Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root–microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root–nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.

  14. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    Science.gov (United States)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  15. Stage 2 vapor recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Koch, W.H.; Strock, D.J.; Butkovich, M.S.; Hartman, H.B.

    1993-05-25

    A vapor recovery system is described, comprising: a set of elongated underground storage tanks, each storage tank containing a different grade of gasoline; vent pipes; a series of dispensing units; fuel flow lines; vapor return lines; an array of fuel pumps for pumping gasoline from said storage tanks to said dispenser units; an elongated condensate liquid pickup tube; an elongated inner spout providing a fuel conduit and having an outer tip defining a fuel outlet for discharging gasoline into a filler pipe of a motor vehicle tank during fueling; an outer spout assembly; extending into and engaging said spout-receiving socket, said outer spout assembly comprising an outer spout providing a vapor return conduit and defining apertures providing a vapor inlet spaced from said fuel outlet for withdrawing, removing, and returning a substantial amount of gasoline vapors emitted during said fueling; an elongated liquid sensing tube; a manually operable level; a flow control valve assembly; an automatic shutoff valve assembly; and a venturi sleeve assembly positioned in said venturi sleeve receiving chamber.

  16. Robust velocity and load control of a steam turbine in a combined cycle thermoelectric power station; Control robusto de velocidad y carga de una turbina de vapor en una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Archundia, Enrique

    1998-12-31

    of the computation, the programming languages and the numerical methods allow to develop mathematical models that simulate in an approximate manner the processes to control, as it is the case of the combined cycle thermoelectric power station and in this way making the evaluation of algorithms of modern control possible. In chapter I a functional description of the steam turbine process is given. Since this belongs to a combined cycle thermoelectric power station, it is begun with the description of this power station, later to emphasize the subsystem of the steam turbine and emphasize each one of the elements that comprise this last one. [Espanol] Este trabajo de investigacion esta orientado a disenar, desarrollar y validar un algoritmo de control moderno, que permita la obtencion de mejores desempenos en el control de velocidad de una turbina de vapor perteneciente a una central termoelectrica de ciclo combinado, en todo el intervalo de operacion, asi como la obtencion de mejores desempenos en el control de la cantidad de megawatts generados por la misma cuando esta acoplada a un generador electrico, comparando el desempeno con el obtenido mediante el controlador convencional existente. Los cambios en la referencia de velocidad o carga, son a solicitud del operador y se dan siempre en forma de rampa, indicando la rapidez con la que se desea efectuar el cambio de valor en la referencia. Esta es la razon por la cual el objetivo principal del control a disenar es realizar un buen seguimiento a referencias del tipo rampa. En el subsistema de la turbina de vapor existente el inconveniente de que las valvulas que regulan el flujo de vapor hacia la turbina, presentan un acoplamiento con la valvula del bypass que permite derivar el flujo de vapor hacia el condensador principal sin tener que pasar por la turbina. Es por esto que se propone un control multivariable que contemple la interaccion que se presenta entre las valvulas antes mencionadas, partiendo de un diseno

  17. Conceptual study of electron ripple injection for tokamak transport control

    Energy Technology Data Exchange (ETDEWEB)

    Choe, W.; Ono, M. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Chang, C.S. [New York Univ., NY (United States). Courant Inst. of Mathematical Sciences

    1995-08-01

    A non-intrusive method for inducing radial electric field based on electron ripple injection is under development by the Princeton CDX-U group. The radial electric field is known to play an important role in the L-H and H-VH mode transition according to the recent theoretical and experimental research. It is therefore important to develop a non-intrusive tool to control the radial electric field profile in tokamak plasmas. The present technique utilizes externally-applied local magnetic ripple fields to trap electrons at the edge, allowing them to penetrate towards the plasma center via {gradient}B and curvature drifts, causing the flux surfaces to charge up negatively. Electron cyclotron resonance heating is utilized to increase the trapped population and the electron drift velocity by raising the perpendicular energy of trapped electrons. In order to quantify the effects of cyclotron resonance heating on electrons, the temperature anisotropy of resonant electrons in a tokamak plasma is calculated. For the calculation of anisotropic temperatures, energy moments of the bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function for heated electrons are solved, assuming a moderate wave power and a constant quasilinear diffusion coefficient. Simulation using a guiding-center orbit model have been performed to understand the behavior of suprathermal electrons in the presence of ripple fields. Examples for CDX-U and ITER parameters are given.

  18. Electron ripple injection concept for tokamak transport control

    Science.gov (United States)

    Choe, W.; Ono, M.; Chang, C. S.

    1996-02-01

    A non-intrusive method for inducing a radial electric field (Er) based on electron ripple injection (ERI) is under development by the Princeton CDX-U group. Since Er is known to play an important role in the L-H and H-VH mode transition, it is therefore important to develop a non-intrusive tool to control the Er profile in tokamak plasmas. The present technique utilizes externally-applied local magnetic ripple fields to trap electrons at the edge, allowing them to penetrate towards the plasma center via ∇B and curvature drifts, causing the flux surfaces to charge up negatively. Electron cyclotron resonance heating (ECRH) is utilized to increase the trapped population and the electron drift velocity by raising the perpendicular energy of trapped electrons. The temperature anisotropy of resonant electrons in a tokamak plasma is calculated in order to investigate effects of ECRH on electrons. Simulations using a guiding-center orbit model have been performed to understand the behavior of suprathermal electrons in the presence of ripple fields. Examples for CDX-U and ITER are given.

  19. Vapor Chamber with Phase Change Material-based Wick Structure for Thermal Control of Manned Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR solicitation H3.01 "Thermal Control for Future Human Exploration", Advanced Cooling Technologies, Inc. (ACT) is proposing a novel Phase...

  20. Regulación de la temperatura del vapor sobrecalentado en un generador de vapor BKZ-340-140-29M de 100 MW mediante un control PID 2-GdL y filtraje de la medida

    Directory of Open Access Journals (Sweden)

    Tania García Martínez

    2012-12-01

    Full Text Available En este artículo se presenta una mejora del lazo de regulación de la temperatura del vapor sobrecalentado en un generador de vapor BKZ-340-140-29M de 100 MW. El estudio se realiza en la Central Termoeléctrica Máximo Gómez. La propuesta consiste en un controlador PID con una estructura de dos grados de libertad y filtraje de la medida. El diseño, que incluye un criterio de robustez, tiene como objetivo fundamental la atenuación de las perturbaciones de carga producidas por la variación del flujo de vapor. El ruido de medida se resuelve filtrando la salida con un filtro de segundo orden. La ponderación del punto de consigna se utiliza para mejorar los cambios en la referencia. La propuesta se compara con el desempeño del controlador implementado actualmente en el lazo. Los resultados confirman los beneficios del diseño, garantizando así una mejor eficiencia del lazo.

  1. Effect of band offset on carrier transport and infrared detection in InP quantum dots/Si nano-heterojunction grown by metalorganic chemical vapor deposition technique

    Science.gov (United States)

    Halder, Nripendra N.; Biswas, Pranab; Nagabhushan, B.; Kundu, Souvik; Biswas, D.; Banerji, P.

    2014-05-01

    Epitaxy of III-V semiconductors on Si gets recent interest for next generation system on heterogeneous chip on wafer. The understanding of band offset is thus necessary for describing the charge transport phenomenon in these heterojunctions. In this work, x-ray photoemission spectroscopy has been used to determine the band offsets in a heterojunction made of InP quantum dots on Si. The valence and conduction band offset was found to be 0.12 eV and 0.35 eV, respectively, with a type-II band lineup. Deviation from theoretical prediction and previously published reports on quasi similar systems have been found and analyzed on the basis of the effect of strain, surface energy, shift in the electrostatic dipole and charge transfer at the interface. The carrier transport mechanisms along with different device parameters in the heterojunction have been studied for a temperature range of 180-300 K. This heterojunction is found to behave as an efficient infrared photodetector with an ON/OFF ratio of 21 at a reverse bias of 2 V. The corresponding rise and decay time was found to be 132 ms and 147 ms, respectively.

  2. Controlling Single-Photon Transport along an Optical Waveguide by using a Three-Level Atom

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; CHEN Bin; XU Wei-Dong

    2012-01-01

    We theoretically investigate the single-photon transport properties in an optical waveguide embedded with a V-type three-level atom (VTLA) based on symmetric and asymmetric couplings between the photon and the VTLA.Our numerical results show that the transmission spectrum of the incident photon can be well controlled by virtue of both symmetric and asymmetric coupling interactions.A multifrequency photon attenuator is realized by controlling the asymmetric coupling interactions.Furthermore,the influences of dissipation of the VTLA for the realistic physical system on single-photon transport properties are also analyzed.

  3. Synthesis and characterization of a liquid Eu precursor (EuCp{sup pm}{sub 2}) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Brandon, E-mail: bmitchell@wcupa.edu [Department of Physics, West Chester University, West Chester, PA, 19383 (United States); Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru [Kojundo Chemical Laboratory Co., Ltd., 5-1-28 Chiyoda, Sakado, Saitama, 350-0284 (Japan); Ofuchi, Hironori; Honma, Tetsuo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (Japan); Fujiwara, Yasufumi, E-mail: fujiwara@mat.eng.osaka-u.ac.jp [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2017-06-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu{sup 2+} to Eu{sup 3+} could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  4. Starting of the steam generator of a fossil fuel power plant, using predictive control based in a neuronal model; Arranque del generador de vapor de una central termoelectrica, usando control predictivo basado en un modelo neuronal

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo Dominguez, Tonatiuh

    2004-09-15

    In this thesis work it is presented the design and implementation of a simulator of total scope of a predictive controller based in the neuronal model of the temperature in two stages of the heating of the steam generator of a fossil fuel power plant. An implemented control scheme is detailed, as well as the methodology for the identification of a neuronal model utilized for the control. Finally the results of the implementation in the simulator located at the Instituto de Investigaciones Electricas (IIE) are shown to be satisfactory. This control structure is not applied directly in closed circuit, but provides the value of the control actions to a human operator. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion, en un simulador de alcance total, de un controlador predictivo basado en un modelo neuronal para el control de la temperatura en dos etapas del calentamiento del generador de vapor de una central termoelectrica. Se detalla el esquema de control implementado, asi como la metodologia de identificacion de un modelo neuronal utilizado para la sintesis del control. Finalmente se muestran los resultados de la implementacion en el simulador que se encuentra en el Instituto de Investigaciones Electricas (IIE); dichos resultados fueron satisfactorios. Esta estructura de control no se aplica directamente en lazo cerrado, sino que provee el valor de las acciones de control a un operador humano.

  5. Fast Responsive and Controllable Liquid Transport on a Magnetic Fluid/Nanoarray Composite Interface.

    Science.gov (United States)

    Tian, Dongliang; Zhang, Na; Zheng, Xi; Hou, Guanglei; Tian, Ye; Du, Yi; Jiang, Lei; Dou, Shi Xue

    2016-06-28

    Controllable liquid transport on surface is expected to occur by manipulating the gradient of surface tension/Laplace pressure and external stimuli, which has been intensively studied on solid or liquid interface. However, it still faces challenges of slow response rate, and uncontrollable transport speed and direction. Here, we demonstrate fast responsive and controllable liquid transport on a smart magnetic fluid/nanoarray interface, i.e., a composite interface, via modulation of an external magnetic field. The wettability of the composite interface to water instantaneously responds to gradient magnetic field due to the magnetically driven composite interface gradient roughness transition that takes place within a millisecond, which is at least 1 order of magnitude faster than that of other responsive surfaces. A water droplet can follow the motion of the gradient composite interface structure as it responds to the gradient magnetic field motion. Moreover, the water droplet transport direction can be controlled by modulating the motion direction of the gradient magnetic field. The composite interface can be used as a pump for the transport of immiscible liquids and other objects in the microchannel, which suggests a way to design smart interface materials and microfluidic devices.

  6. Stream Control Transmission Protocol as a Transport for SIP: a case study

    Directory of Open Access Journals (Sweden)

    Giuseppe De Marco

    2004-06-01

    Full Text Available The dominant signalling protocol both in future wireless and wired networks will be the Session Initiation Protocol (SIP, as pointed out in the 3G IP-based mobile networks specifications, entailing a fully Internet integrated network. The use of SIP in the IP Multimedia Subsytem (IMS of Release 5 involves the development of servers capable to handle a large number of call requests. The signaling traffic associated to such requests could explode, if an intelligent congestion control were not introduced. Stream Control Transmission Protocol (SCTP was born to support transport of SS7 signaling messages. However, many of the SCTP features are also useful for transport of SIP messages, as: congestion control mechanism, good separation among independent messages, multihoming. Indeed, adoption of SCTP as transport of SIP signaling might prove useful in some situations where usual transport protocols, like TCP and UDP, suffer performance degradation. In this paper, we analyse the general framework wherein SIP operates and we discuss the benefits of using SCTP as a transport for SIP, toward fair sharing of network resources. This study is carried on in the context of the implementation of an high-performance SIP Proxy Server. We also present some preliminar results of an implementation of SIP over SCTP/UDP in a real LAN environment.

  7. Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants.

    Science.gov (United States)

    Barberon, Marie; Zelazny, Enric; Robert, Stéphanie; Conéjéro, Geneviève; Curie, Cathy; Friml, Jìrí; Vert, Grégory

    2011-08-09

    Plants take up iron from the soil using the iron-regulated transporter 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins.

  8. Effect of the continuous addition of ozone on biomass clogging control in a biofilter treating ethyl acetate vapors.

    Science.gov (United States)

    Covarrubias-García, Itzel; Aizpuru, Aitor; Arriaga, Sonia

    2017-04-15

    Biofiltration systems have been recognized as a cost-effective and environmentally friendly control technique for volatile organic compounds (VOC) removal. However, the long-term operation of biofilters causes biomass accumulation, and thus the occurrence of bed clogging, leading to a major decrease in biofilter performance. Control methods have been carried out in order to solve clogging problems, including backwashing, bed stirring, modification of flow patterns, predation, starvation and others. Ozone (O3) has been used in biofiltration systems at low concentrations to control the excess of biomass. It is worth mentioning that all these biofiltration studies involving O3 treated recalcitrant pollutants such as chlorobenzene, formaldehyde and toluene, which do not produce enough biomass to effectively prove clogging prevention. Thus, this study evaluated the effect of the continuous addition of O3 as a chemical oxidant at a very low concentration (90ppbv) as a practical solution to overcoming clogging in a process of biofiltration of ethyl acetate (EA), a readily degradable molecule. The maximum elimination capacities achieved ranged from 200 to 120gm(-3)h(-1), with and without O3, respectively. The biomass concentrations in these systems ranged from 23.3-180.1 to 43.31-288.46mgbiomassgperlite(-1) with and without O3 addition, respectively. Based on the results, it was concluded that the continuous addition of O3 could be an attractive solution to improving biofilter performance and extending the lifetime of the filter bed. Copyright © 2017. Published by Elsevier B.V.

  9. Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires.

    Science.gov (United States)

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Yang, Tao

    2016-12-14

    We report the first selective-area growth of high quality InAs(Sb)/GaSb core-shell nanowires on Si substrates using metal-organic chemical vapor deposition (MOCVD) without foreign catalysts. Transmission electron microscopy (TEM) analysis reveals that the overgrowth of the GaSb shell is highly uniform and coherent with the InAs(Sb) core without any misfit dislocations. To control the structural properties and reduce the planar defect density in the self-catalyzed InAs core nanowires, a trace amount of Sb was introduced during their growth. As the Sb content increases from 0 to 9.4%, the crystal structure of the nanowires changes from a mixed wurtzite (WZ)/zinc-blende (ZB) structure to a perfect ZB phase. Electrical measurements reveal that both the n-type InAsSb core and p-type GaSb shell can work as active carrier transport channels, and the transport type of core-shell nanowires can be tuned by the GaSb shell thickness and back-gate voltage. This study furthers our understanding of the Sb-induced crystal-phase control of nanowires. Furthermore, the high quality InAs(Sb)/GaSb core-shell nanowire arrays obtained here pave the foundation for the fabrication of the vertical nanowire-based devices on a large scale and for the study of fundamental quantum physics.

  10. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    Science.gov (United States)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  11. Explosive vapor detection payload for small robots

    Science.gov (United States)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  12. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber

    Science.gov (United States)

    Lei, Hongxiang; Xu, Chong; Zhang, Yao; Li, Baojun

    2012-10-01

    This work provides a technique allowing bidirectional optical transportation and controllable positioning of nanoparticles using two counter-propagating laser beams at a wavelength of 980 nm in an optical nanofiber. With the assistance of an evanescent wave at the fiber surface, particles suspended in water were trapped onto the fiber by a gradient force and then transported along the fiber by a scattering force. By changing the difference between the input laser powers coupled into two ends of the fiber with ΔP = -10 to 10 mW, the magnitude and direction of the scattering force that acted on the particles were changed, and thus the transportation direction and velocity of the particles were controlled. According to these properties, the bidirectional optical transportation of the particles along the fiber can be realized by coupling different laser powers into the two ends of the fiber (ΔP ≠ 0 mW). At the same time, the transported particles can be controllably positioned on the fiber by coupling the same laser powers into the two ends of the fiber (ΔP = 0 mW). The relationship between the transportation velocity of the particles and the input optical power difference was investigated. Experiments were conducted with a 910 nm diameter fiber and 713 nm diameter polystyrene (PS) particle suspensions to demonstrate the effectiveness of this method. The experimental results were interpreted by numerical simulation and theoretical analysis.This work provides a technique allowing bidirectional optical transportation and controllable positioning of nanoparticles using two counter-propagating laser beams at a wavelength of 980 nm in an optical nanofiber. With the assistance of an evanescent wave at the fiber surface, particles suspended in water were trapped onto the fiber by a gradient force and then transported along the fiber by a scattering force. By changing the difference between the input laser powers coupled into two ends of the fiber with ΔP = -10 to 10 m

  13. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    Science.gov (United States)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  14. ANÁLISIS DE PÉRDIDAS ENERGÉTICAS Y ECONÓMICAS POR TRANSPORTE DE VAPOR EN TUBERÍAS SIN UN ADECUADO AISLAMIENTO TÉRMICO

    Directory of Open Access Journals (Sweden)

    Carlos Aristizábal

    2014-05-01

    Full Text Available Se presenta el cálculo de las pérdidas de recursos energéticos y económicos por el deterioro o ausencia de aislante térmico en las tuberías de transporte de vapor al interior de una empresa dedicada a la  producción de licores, así como la predicción de ahorros alcanzados al aplicar aislantes en zonas detectadas como críticas. Se utilizan  modelos de  transferencia de calor para sistemas radiales y cálculos económicos a partir de costos de aislantes térmicos, recursos másicos y energéticos, y eventuales ahorros alcanzados por la implementación de aislantes. Se encontró que las pérdidas energéticas pueden reducirse hasta en un 99%, con rápida recuperación de los costos de inversión según la selección del aislante. Los modelos presentados pueden ser adaptados por otras empresas que deseen evaluar de manera rápida y efectiva los eventuales ahorros en costos de producción derivados de la minimización de pérdidas energéticas a través de sus tuberías.

  15. Large-scale vapor transport of remotely evaporated seawater by a Rossby wave response to typhoon forcing during the Baiu/Meiyu season as revealed by the JRA-55 reanalysis

    Science.gov (United States)

    Kudo, Tadasuke; Kawamura, Ryuichi; Hirata, Hidetaka; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei

    2014-07-01

    The modulation of large-scale moisture transport from the tropics into East Asia in response to typhoon-induced heating during the mature stage of the Baiu/Meiyu season is investigated using the Japanese 55-year reanalysis (JRA-55), aided by a Rayleigh-type global isotope circulation model (ICM). We highlighted the typhoons that migrate northward along the western periphery of the North Pacific subtropical high and approach the vicinity of Japan. Anomalous anticyclonic circulations to the northeast and southeast of typhoons and cyclonic circulation to their west become evident as they migrate toward Japan, which could be interpreted as a Rossby wave response to typhoon heating. These resultant anomalous circulation patterns form moisture conveyor belt (MCB) stretching from the South Asian monsoon region to East Asia via the confluence region between the monsoon westerlies and central Pacific easterlies. The ICM results confirm that the well-defined nature of the MCB leads to penetration of the Indian Ocean, South China Sea, Philippine Sea, and Pacific Ocean water vapors into western Japan. The typhoons have the potential to accumulate large amounts of moisture from distant tropical oceans through the interaction of their Rossby wave response with the background flow. In the case of a typical typhoon, the total precipitable water around the typhoon center as it approaches Japan is maintained by the moisture supply from distant oceans rather than from the underlying ocean, which indirectly leads to the occurrence of heavy rainfall over western Japan.

  16. Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation

    CERN Document Server

    Bal, Guillaume; Schotland, John C

    2015-01-01

    We propose a method to reconstruct the density of an optical source in a highly scattering medium from ultrasound-modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the radiative transport equation (RTE). A controllability result for the RTE plays an essential role in the analysis.

  17. Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach

    Science.gov (United States)

    Liu, Hui; Sun, Dihua; Liu, Weining

    2016-11-01

    Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.

  18. A source-based congestion control strategy for real-time video transport on IP network

    Science.gov (United States)

    Chen, Xia; Cai, Canhui

    2005-07-01

    The goal of this paper is to design a TCP friendly real-time video transport protocol that will not only utilize network resource efficiently, but also prevent network congestion from the real-time video transmitting effectively. To this end, we proposed a source based congestion control scheme to adapt video coding rate to the channel capacity of the IP network, including three stages: rate control, rate-adaptive video encoding, and rate shaping.

  19. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  20. Sumoylation of Human Translationally Controlled Tumor Protein Is Important for Its Nuclear Transport

    Directory of Open Access Journals (Sweden)

    Gnanasekar Munirathinam

    2012-01-01

    Full Text Available Translationally controlled tumor protein (TCTP lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into the nucleus. We show that TCTP exists in sumoylated form in cytoplasm and nucleus of mammalian cells. Point mutation of lysine residue in the SUMO motif compromised the ability of TCTP to get sumoylated in vitro. When cells were transfected with FLAG-tagged mutated TCTP, nuclear transport of TCTP was inhibited confirming that sumoylation is critical for the nuclear transport of TCTP. Our previous studies demonstrated that TCTP can function as an antioxidant protein in the nucleus. When we mutated TCTP at the SUMO motif the antioxidant function of TCTP was compromised. Results presented in this study thus show that sumoylation plays an important role in the transport of TCTP into the nucleus where they function as antioxidant protein.

  1. Processes and controls of ditch erosion and suspended sediment transport in drained peatland forests

    Science.gov (United States)

    Tuukkanen, Tapio; Stenberg, Leena; Marttila, Hannu; Finér, Leena; Piirainen, Sirpa; Koivusalo, Harri; Kløve, Bjørn

    2016-04-01

    Drainage and periodic ditch cleaning are needed in peatland forests to allow adequate tree growth. The downside is that these practices usually increase erosion and transport of organic and inorganic matter to downstream waterbodies. In this study, our aim was to assess the role of hydrological factors and ditch-level bed and bank erosion processes in controlling suspended sediment (SS) transport in peatland forests after ditch cleaning. To do this, a 113 ha catchment and a nested sub-catchment (5.2 ha) in eastern Finland were instrumented for continuous hydrological and SS concentration (turbidity) measurements and for the detection of ditch bed and bank erosion with erosion pins. The impacts of ditch cleaning on instantaneous unit hydrographs were also assessed against two reference catchments. The results suggested that, in small intensively drained catchments, SS transport is likely to be limited by the availability of easily erodible sediment in the ditch network, and that ditch cleaning operations as well as preparatory bank erosion processes such as peat desiccation and frost action can be important in producing erodible sediment for transport. Detachment of soil particle from ditch banks by raindrop impact can also be an important factor explaining variations in SS concentrations in small catchments. In larger drainage areas, peak runoff characteristics may play a more dominant role in SS transport. The results give new insights into the dynamics of sediment transport in drained peatland catchments, which can be useful, for example, for planning and implementation of water conservation measures.

  2. Control of colloid transport via solute gradients in dead-end channels

    Science.gov (United States)

    Shin, Sangwoo; Um, Eujin; Warren, Patrick; Stone, Howard

    2015-11-01

    Transport of colloids in dead-end channels is involved in widespread applications ranging from drug delivery to geophysical flows. In such geometries, Brownian motion may be considered as the sole mechanism that enables transport of colloidal particles into or out of the channels, which is, unfortunately, an extremely inefficient transport mechanism for microscale particles. Here, we explore the possibility of diffusiophoresis as a means to control the colloid transport by introducing a solute gradient along the dead-end channels. We demonstrate that the transport of colloidal particles into the dead-end channels can be either enhanced or completely prevented via diffusiophoresis. We also observe a size-dependent focusing of the particles where, as the particle size increases, the particles tend to concentrate more, and they tend to reside deeper in the channel. Our findings have implications for all manners of controlled release processes, especially for site-specific drug delivery systems where localized targeting of drugs with minimal dispersion to the non-target is essential.

  3. Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications

    Science.gov (United States)

    Xie, Yong; Wang, Zhan; Zhan, Yongjie; Zhang, Peng; Wu, Ruixue; Jiang, Teng; Wu, Shiwei; Wang, Hong; Zhao, Ying; Nan, Tang; Ma, Xiaohua

    2017-02-01

    MoO2 is used as a new source material for the growth of large area and high optical quality monolayer MoS2. However, a systematic study of the growth parameters is still missing and large-area growth of discreet single crystals is still challenging. Hereby, we report the shape evolution of monolayer growth of MoS2 and develop a methodology to achieve centimeter-scaled discrete MoS2 by adopting MoO2 as Mo source material in an atmospheric-pressure chemical vapor deposition process. Our results indicate the growth of monolayer MoS2 could benefit from the precise control of the introduction time of sulfur and the S/MoO2 ratio in experiments. Micro-Raman and photoluminescence spectra confirm the properties of the material. E-beam lithography was utilized to make contact with the as-grown MoS2 located at the selective area. The electrical properties of MoS2 with different morphologies were compared. In the end, the persistent photoconductivity properties of monolayer MoS2 were emphasized and the underlying mechanism was proposed. These studies demonstrate a better understanding of the growth and application of MoS2-based 2D materials.

  4. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Woo-Byoung; Lee, Jai-Sung

    2013-07-01

    To investigate the microstructural effects of the synthesized TiO2 nanopowders such as particle size, specific surface area, pore size and pore distributions for the application of an anode material of dye-sensitized solar cells (DSSC), size-controlled and well-dispersed TiO2 nanopowders were synthesized by chemical vapor condensation (CVC) process in the range of 800-1000 degreesC under a pressure of 50 mbar. The average particle size of synthesized TiO2 nanopowders was increased with increasing temperature from 13 nm for 800 degreesC, 15 nm for 900 degreesC and 26 nm. The specific surface area of synthesized nanoparticles were measured as 119.1 m2/g for 800 degreesC, 104.7 m2/g for 900 degreesC and 59.5 m2/g for 1000 degreesC, respectively. The conversion efficiency values (eta%) of DSSC with the synthesized TiO2 nanopowders at 800 degreesC, 900 degreesC, and 1000 degreesC were 2.59%, 5.96% and 3.66%, respectively. The highest conversion efficiency obtained in the 900 degreesC (5.96%) sample is thought to be attributable to homogeneous particle size and pore distributions, large specific surface area, and high transmittance in regions of dye absorption wavelength.

  5. Impact of Hydrocarbon Control in Ultraviolet-Assisted Restoration Process for Extremely Porous Plasma Enhanced Chemical Vapor Deposition SiOCH Films with k = 2.0

    Science.gov (United States)

    Kimura, Yosuke; Ishikawa, Dai; Nakano, Akinori; Kobayashi, Akiko; Matsushita, Kiyohiro; de Roest, David; Kobayashi, Nobuyoshi

    2012-05-01

    We investigated the effects of UV-assisted restoration on porous plasma-enhanced chemical vapor deposition (PECVD) SiOCH films with k = 2.0 and 2.3 having high porosities. By applying the UV-assisted restoration to O2-plasma-damaged films with k = 2.0 and 2.3, the recovery of the k-value was observed on the k = 2.3 film in proportion to -OH group reduction. However, the k = 2.0 film did not show recovery in spite of -OH group reduction. We found that hydrocarbon content in the k = 2.0 film was significantly increased by the UV-assisted restoration compared with the k = 2.3 film. According to these findings, we optimized the UV-assisted restoration to achieve improved controllability of the hydrocarbon uptake in the k = 2.0 film and confirmed the recovery of the k-value for O2-plasma-damaged film. Thus, adjusting the hydrocarbon uptake was crucial for restoring extremely porous SiOCH film.

  6. Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties

    Directory of Open Access Journals (Sweden)

    T. Rakshit

    2013-11-01

    Full Text Available Pure and Sn doped ZnO nanostructures have been grown on SiO2/Si substrates by vapor-solid technique without using any catalysts. It has been found that the morphology of the nanostructures depend strongly on the growth temperature and doping concentration. By proper tuning of the growth temperature, morphology of pure ZnO can be changed from tetrapods to multipods. On the other hand, by varying the doping concentration of Sn in ZnO, the morphology can be tuned from tetrapods to flower-like multipods to nanowires. X-ray diffraction pattern reveals that the nanostructures have a preferred (0002 growth orientation, and they are tensile strained with the increase of Sn doping in ZnO. Temperature-dependent photoluminescence characteristics of these nanostructures have been investigated in the range from 10 to 300 K. Pure ZnO tetrapods exhibited less defect state emissions than that of pure ZnO multipods. The defect emission is reduced with low concentration of Sn doping, but again increases at higher concentration of doping because of increased defects. Transport properties of pure and Sn doped ZnO tetrapods have been studied using complex-plane impedance spectroscopy. The contribution from the arms and junctions of a tetrapod could be distinguished. Sn doped ZnO samples showed lower conductivity but higher relaxation time than that of pure ZnO tetrapods.

  7. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    Science.gov (United States)

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-01

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm2, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  8. Who is in control of road safety? A STAMP control structure analysis of the road transport system in Queensland, Australia.

    Science.gov (United States)

    Salmon, Paul M; Read, Gemma J M; Stevens, Nicholas J

    2016-11-01

    Despite significant progress, road trauma continues to represent a global safety issue. In Queensland (Qld), Australia, there is currently a focus on preventing the 'fatal five' behaviours underpinning road trauma (drug and drink driving, distraction, seat belt wearing, speeding, and fatigue), along with an emphasis on a shared responsibility for road safety that spans road users, vehicle manufacturers, designers, policy makers etc. The aim of this article is to clarify who shares the responsibility for road safety in Qld and to determine what control measures are enacted to prevent the fatal five behaviours. This is achieved through the presentation of a control structure model that depicts the actors and organisations within the Qld road transport system along with the control and feedback relationships that exist between them. Validated through a Delphi study, the model shows a diverse set of actors and organisations who share the responsibility for road safety that goes beyond those discussed in road safety policies and strategies. The analysis also shows that, compared to other safety critical domains, there are less formal control structures in road transport and that opportunities exist to add new controls and strengthen existing ones. Relationships that influence rather than control are also prominent. Finally, when compared to other safety critical domains, the strength of road safety controls is brought into question.

  9. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    Science.gov (United States)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.

  10. Impact of Transport Control Protocol on Full Duplex Performance in 5G Networks

    DEFF Research Database (Denmark)

    Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    Full duplex (FD) communication has attracted the attention of the industry and the academia as an important feature in the design of the future 5th generation (5G) wireless communication system. Such technology allows a device to simultaneously transmit and receive in the same frequency band......, with the potential of providing higher throughput and lower latency compared to traditional half duplex (HD) systems. In this paper, the interaction between Transport Control Protocol (TCP) and FD in 5G ultra-dense small cell networks is studied. TCP is a well-known transport layer protocol for providing reliability...

  11. Magnetically Controlled Electronic Transport Properties of a Ferromagnetic Junction on the Surface of a Topological Insulator

    Science.gov (United States)

    Liu, Zheng-Qin; Wang, Rui-Qiang; Deng, Ming-Xun; Hu, Liang-Bin

    2015-06-01

    We have investigated the transport properties of the Dirac fermions through a ferromagnetic barrier junction on the surface of a strong topological insulator. The current-voltage characteristic curve and the tunneling conductance are calculated theoretically. Two interesting transport features are predicted: observable negative differential conductances and linear conductances tunable from unit to nearly zero. These features can be magnetically manipulated simply by changing the spacial orientation of the magnetization. Our results may contribute to the development of high-speed switching and functional applications or electrically controlled magnetization switching. Supported by National Natural Science Foundation of China under Grant Nos. 11174088, 11175067, 11274124

  12. A Labview based FPGA data acquisition with integrated stage and beam transport control

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S., E-mail: csirojamie@gmail.com [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia); Szymanski, R. [School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia); Ryan, C.G. [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia); Gonzalez-Alvarez, I. [CSIRO, Earth Science and Resource Engineering, Kensington, Western Australia (Australia)

    2013-07-01

    We report on a new FPGA based data acquisition system developed for the CSIRO Nuclear Microprobe (NMP) which is tightly integrated with both target positioning and beam transport. The data acquisition system called MicrodaQ is based on National Instruments Labview FPGA and numerous instrumentation modules spread over several PC’s. Beam transport uses a feedback control loop to optimise current on target for long unmanned experiments. These upgrades are discussed in detail and an example of the systems use for μ-Particle Induced X-ray Emission (PIXE) analysis on a Doriri apatite is briefly described.

  13. Vibrational mechanics in an optical lattice: controlling transport via potential renormalization.

    Science.gov (United States)

    Wickenbrock, A; Holz, P C; Wahab, N A Abdul; Phoonthong, P; Cubero, D; Renzoni, F

    2012-01-13

    We demonstrate theoretically and experimentally the phenomenon of vibrational resonance in a periodic potential, using cold atoms in an optical lattice as a model system. A high-frequency (HF) drive, with a frequency much larger than any characteristic frequency of the system, is applied by phase modulating one of the lattice beams. We show that the HF drive leads to the renormalization of the potential. We used transport measurements as a probe of the potential renormalization. The very same experiments also demonstrate that transport can be controlled by the HF drive via potential renormalization.

  14. The theoretical basis of state control mechanisms by national oil and gas transport systems

    Directory of Open Access Journals (Sweden)

    Ірина Миколаївна Ісаєва

    2014-12-01

    Full Text Available The information materials and state control experience in oil and gas pipeline transport systems were analyzed in the context of globalization and European integration. The theoretical basis for organization the effective functioning of national oil and gas transport systems were developed. Elementary business process was interpreted as a typical section of cross-functional coherence. Dimensional model the pareto-optimal point searching of the economically efficient market interaction between participants of the business process was constructed. The scheme of multilateral international private partnership was developed.

  15. A controlled field pilot for testing near surface CO2 detection techniques and transport models

    Science.gov (United States)

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.; Nehrir, A.; Humphries, S.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, Thomas; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2009-01-01

    A field facility has been developed to allow controlled studies of near surface CO2 transport and detection technologies. The key component of the facility is a shallow, slotted horizontal well divided into six zones. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects. A wide variety of detection techniques were deployed by collaborators from 6 national labs, 2 universities, EPRI, and the USGS. Additionally, modeling of CO2 transport and concentrations in the saturated soil and in the vadose zone was conducted. An overview of these results will be presented. ?? 2009 Elsevier Ltd. All rights reserved.

  16. Optimal Control of Scalar Conservation Laws Using Linear/Quadratic Programming: Application to Transportation Networks

    KAUST Repository

    Li, Yanning

    2014-03-01

    This article presents a new optimal control framework for transportation networks in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi (H-J) equation and the commonly used triangular fundamental diagram, we pose the problem of controlling the state of the system on a network link, in a finite horizon, as a Linear Program (LP). We then show that this framework can be extended to an arbitrary transportation network, resulting in an LP or a Quadratic Program. Unlike many previously investigated transportation network control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e., discontinuities in the state of the system). As it leverages the intrinsic properties of the H-J equation used to model the state of the system, it does not require any approximation, unlike classical methods that are based on discretizations of the model. The computational efficiency of the method is illustrated on a transportation network. © 2014 IEEE.

  17. Experimental Study on the Euglena gracilis for Micro-Transportation using a Phototatic Control

    Science.gov (United States)

    Kim, Jihoon; Nguyen, Vu Dat; Byun, Doyoung

    2012-11-01

    Recently, there has been growing interests in micro or nano-scale biological organisms for the micro-robotics to develop actively controlled micro or nano-level machines. The Euglena gracilis is a genus of unicellular protists, whose body size ranges from 30 to 70 μm. The Euglena gracilis contains an eyespot, a primitive organelle that filters sunlight into the light-detecting, photo-sensitive structures. It actively swims at the base of the flagellum. In this study, we investigated the controllability of Euglena gracilis for transporting a structure attaching itself. When a LED light is detected, the Euglena gracilis accordingly adjust its position to enhance photosynthesis. Using the phototactic control, we achieved the efficient transportation of a micro-structure. Partially funded by the Basic Science Research Program through the National Research Foundation of Korea(NRF, 2011-0016461) and the Industrial Core Technology Development Project through the Ministry of Knowledge and Commerce.

  18. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  19. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    Science.gov (United States)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  20. Using Massive Vehicle Positioning Data to Improve Control and Planning of Public Road Transport

    Science.gov (United States)

    Padrón, Gabino; García, Carmelo R.; Quesada-Arencibia, A.; Alayón, Francisco; Pérez, Ricardo

    2014-01-01

    This study describes a system for the automatic recording of positioning data for public transport vehicles used on roads. With the data provided by this system, transportation-regulatory authorities can control, verify and improve the routes that vehicles use, while also providing new data to improve the representation of the transportation network and providing new services in the context of intelligent metropolitan areas. The system is executed autonomously in the vehicles, by recording their massive positioning data and transferring them to remote data banks for subsequent processing. To illustrate the utility of the system, we present a case of application that consists of identifying the points at which vehicles stop systematically, which may be points of scheduled stops or points at which traffic signals or road topology force the vehicle to stop. This identification is performed using pattern recognition techniques. The system has been applied under real operating conditions, providing the results discussed in the present study. PMID:24763212

  1. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport.

    Science.gov (United States)

    Lee, Jennifer; Koehler, Jacqueline; Yusta, Bernardo; Bahrami, Jasmine; Matthews, Dianne; Rafii, Mahroukh; Pencharz, Paul B; Drucker, Daniel J

    2017-03-01

    Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2r(+/+) and Glp2r(-/-) mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2r(+/+) and Glp2r(-/-) mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo. GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo. Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r(-/-) mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein gavage

  2. Control of a five motors web transport system based on the Energetic Macroscopic Representation

    Directory of Open Access Journals (Sweden)

    Hachemi Glaoui,

    2011-02-01

    Full Text Available The objective is to control a web transport system with winder and unwinder for elastic material. A physical mod-eling of this plant is made based on the general laws of physics. For this type of controlproblem, it is extremely important to prevent the occurrence of web break or fold by decoupling the web tension and the web velocity. Due to the wide-range variation of the radius and inertia of the rollers the system dynamics change considerably during the winding/unwinding process The system is composed of five paper rollers and a tensioning roller. A control structure is suggested for this system. This control is deduced from an Energetic Macroscopic Representation of the system. Neither robust control strategy nor mechanical emulation is required, but this control needs a large number of controllers.

  3. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity.

    Science.gov (United States)

    Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-04-01

    Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.

  4. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  5. Control of local ion transport to create unique functional nanodevices based on ionic conductors

    Directory of Open Access Journals (Sweden)

    Kazuya Terabe, Tsuyoshi Hasegawa, Changhao Liang and Masakazu Aono

    2007-01-01

    Full Text Available The development of nanometer-scale devices operating under a new principle that could overcome the limitations of current semiconductor devices has attracted interest in recent years. We propose that nanoionic devices that operate by controlling the local transport of ions are promising in this regard. It is possible to control the local transport of ions using the solid electrochemical properties of ionic and electronic mixed conductors. As an example of this concept, here, we report a method of controlling the transport of silver ions of the mixed-conductor silver sulfide (Ag2S crystal and basic research on nanoionic devices based on this mixed conductor. These devices show unique functions such as atom deposition, resistance switching, and quantum point contact switching. The switches operate through the formation and dissolution of an atomic bridge between the electrodes, and the behavior is realized by control of the local solid-state electrochemical reaction. Potential nanoionic devices utilizing the unique functions and characters that do not exist in conventional semiconductor devices are discussed.

  6. Human-factors engineering for smart transport: design support for car drivers and train traffic controllers.

    Science.gov (United States)

    Lenior, Dick; Janssen, Wiel; Neerincx, Mark; Schreibers, Kirsten

    2006-07-01

    The theme Smart Transport can be described as adequate human-system symbiosis to realize effective, efficient and human-friendly transport of goods and information. This paper addresses how to attune automation to human (cognitive) capacities (e.g. to take care of information uncertainty, operator trust and mutual man-machine adaptations). An introduction to smart transport is presented, including examples of best practice for engineering human factors in the vehicle ergonomics and train traffic control domain. The examples are representative of an ongoing trend in automation and they show how the human role changes from controller to supervisor. Section 2 focuses on the car driver and systems that support, or sometimes even take over, critical parts of the driving task. Due to the diversity of driver ability, driving context and dependence between driver and context factors, there is a need for personalised, adaptive and integrated support. Systematic research is needed to establish sound systems. Section 3 focuses on the train dispatcher support systems that predict train movements, detect potential conflicts and show the dispatcher the possibilities available to solve the detected problems. Via thorough analysis of both the process to be controlled and the dispatcher's tasks and cognitive needs, support functions were developed as part of an already very complex supervision and control system. The two examples, although from a different field, both show the need for further development in cognitive modelling as well as for the value of sound ergonomics task analysis in design practice.

  7. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  8. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Flammable vapor-gas dispersion protection. 193... Flammable vapor-gas dispersion protection. Each LNG container and LNG transfer system must have a dispersion... § 193.2013) with the following exceptions: (a) Flammable vapor-gas dispersion distances must be...

  9. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2013-11-01

    Full Text Available The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT and organic photovoltaic cell (OPV, etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecular arrangement of such functional polymer architectures by controlling the polymer chain rigidity, polymer solution aggregation, suitable processing procedures, etc. These basic elements in intrinsic properties and processing strategy described here would be helpful to understand the correlation between morphology and charge transport properties and guide the preparation of efficient functional conjugated polymer films correspondingly.

  10. Properties of heavily impurity-doped PbSnTe liquid-phase epitaxial layers grown by the temperature difference method under controlled Te vapor pressure

    Science.gov (United States)

    Yasuda, Arata; Takahashi, Yatsuhiro; Suto, Ken; Nishizawa, Jun-ichi

    2017-07-01

    We propose the use of heavily impurity-doped Pb1-xSnxTe/PbTe epitaxial layers grown via the temperature difference method under controlled vapor pressure (TDM-CVP) liquid-phase epitaxy (LPE) for the preparation of IV-VI compounds for mid- to far-infrared optical device applications. A flat surface morphology and the distribution of a constant Sn concentration for 0.05 ≤ x ≤ 0.33 were observed in the epitaxial layers using electron-probe microanalysis. The segregation coefficient of Sn in Pb1-xSnxTe grown via TDM-CVP LPE (Tg = 640 °C) was xSSn?xLSn = 0.28. The appearance of the Fermi level pinning and persistent photoconductivity effects in In-doped PbSnTe were also proposed; we estimated that the activation energies of these processes were 2.8 and 39.7 meV, respectively, based on the In-doped Pb1-xSnxTe carrier profile as a function of ambient temperature. In Hall mobility measurements, Sn was assumed to be a main scattering center in the Pb1-xSnxTe epitaxial crystals. The impurity effect was also observed in Pb1-xSnxTe epitaxial growth, similar to the effects observed for Tl-doped PbTe bulk crystals. We concluded that the heavily doped Pb1-xSnxTe crystals grown via TDM-CVP LPE can be used to fabricate high-performance mid- to far-infrared optical devices.

  11. Epidemic Propagation of Control Plane Failures in GMPLS Controlled Optical Transport Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    In this paper, we investigate the behaviour of a dataplane-decoupled GMPLS control plane, when it is affected by failures that spread in the network in an epidemic manner. In particular, we consider network nodes to be either fully functional, or having a failed control plane, or having both...... a failed control and data plane. Through large-scale network simulation, we evaluate the effect of epidemically spreading control plane failures in terms of blocked connections requests and the amount of stranded capacity due to a dysfunctional control plane. Furthermore, we investigate the effect...... of the epidemic and the epidemic spreading intensity. In particular, networks with long epidemic durations do not necessarily result in worst performance in terms of blocked requests and capacity. Also epidemic scenarios, resulting in worst impact on the network availability does not necessarily result in worst...

  12. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  13. Beam transport experiment with a new kicker control system on the HIRFL-CSR

    CERN Document Server

    Wang, Yan-Yu; Luo, Jin-Fu; Zhang, Jian-Chuan; Zhou, Wen-Xiong; Ni, Fa-Fu; Yin, Jun; Yin, Jia; Yuan, You-Jin; Shang-Guan, Jin-Bin

    2015-01-01

    The kicker control system was used for beam extraction and injection between two cooling storage rings (CSRs) at the Heavy Ion Research Facility in Lanzhou (HIRFL). To meet the requirements of special physics experiments, the kicker controller was upgraded. The new controller was designed based on ARM+DSP+FPGA technology and monolithic circuit architecture, which can achieve a precision time delay of 2.5 ns. In September 2014, the new kicker control system was installed in the kicker field, and the test experiment using the system was completed. In addition, a pre-trigger signal was provided by the controller, which was designed to synchronize the beam diagnostic system and physics experiments. Experimental results indicate that the phenomena of "missed kick" and "inefficient kick" were not observed, and the multichannel trigger signals' delay could be adjusted individually for kick power supplies in digitization; thus, the beam transport efficiency was improved compared with that of the original system. The ...

  14. Insights into organic carbon oxidation potential during fluvial transport from controlled laboratory and natural field experiments

    Science.gov (United States)

    Scheingross, Joel S.; Dellinger, Mathieu; Golombek, Nina; Hilton, Robert G.; Hovius, Niels; Sachse, Dirk; Turowski, Jens M.; Vieth-Hillebrand, Andrea; Wittmann, Hella

    2017-04-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, biosphere and geosphere is thought to be a major control on atmospheric carbon dioxide (CO2) concentrations, and hence global climate. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion and transport of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering (France-Lanord and Derry, 1997; Bouchez et al., 2010). Despite field data showing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in both controlled laboratory experiments and a simplified field setting. We consider both rock-derived and biospheric OC. Our experiments simulated fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km in annular flumes while making time-series measurements of OC concentration in both the solid (POC) and dissolved (DOC) loads, as well as measurements of rhenium concentration, which serves as a proxy for the oxidation of rock-derived OC. These transport experiments were compared to static, control experiments where water and sediment in the same proportion were placed in still water. Initial results for transport of OC-rich soil show similar behavior between the transport and static

  15. Control and optimization for intelligent transportation systems in vicinity of intersections

    OpenAIRE

    Liu, Bing

    2016-01-01

    This thesis is devoted to study the potential applications of autonomous vehicles and V2X communications to construct the intelligent transportation systems. Firstly, the behavior of platoon in connected vehicle environment is studied. A platoon control algorithm is designed to obtain safe spacing as well as accordance of velocity and acceleration for vehicles in the same lane. Secondly, in larger scale, the platoons around an intersection are considered. The throughput in a traffic signal pe...

  16. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    OpenAIRE

    Haiyang Wang; Yaozhuo Xu; Xinhong Yu; Rubo Xing; Jiangang Liu; Yanchun Han

    2013-01-01

    The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT) and organic photovoltaic cell (OPV), etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecula...

  17. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    OpenAIRE

    Haiyang Wang; Yaozhuo Xu; Xinhong Yu; Rubo Xing; Jiangang Liu; Yanchun Han

    2013-01-01

    The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT) and organic photovoltaic cell (OPV), etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecula...

  18. Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.J.G.

    1998-09-01

    Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control efforts need to address both the core resonant magnetic modes and those resonant at the reversal surface. The core resonant modes are not significantly altered in these experiments; however, the distribution and/or amplitude of the injected current is probably not optimal for affecting these modes. Plasma biasing generates strong edge flows with shear and particle confinement likely improves in these discharges. These experiments resemble biased H modes in other magnetic configurations in many ways. The similarities are likely due to the common role of electrostatic fluctuations in edge transport.

  19. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  20. Concepts for Life Cycle Cost Control Required to Achieve Space Transportation Affordability and Sustainability

    Science.gov (United States)

    Rhodes, Russel E.; Zapata, Edgar; Levack, Daniel J. H.; Robinson, John W.; Donahue, Benjamin B.

    2009-01-01

    Cost control must be implemented through the establishment of requirements and controlled continually by managing to these requirements. Cost control of the non-recurring side of life cycle cost has traditionally been implemented in both commercial and government programs. The government uses the budget process to implement this control. The commercial approach is to use a similar process of allocating the non-recurring cost to major elements of the program. This type of control generally manages through a work breakdown structure (WBS) by defining the major elements of the program. If the cost control is to be applied across the entire program life cycle cost (LCC), the approach must be addressed very differently. A functional breakdown structure (FBS) is defined and recommended. Use of a FBS provides the visibifity to allow the choice of an integrated solution reducing the cost of providing many different elements of like function. The different functional solutions that drive the hardware logistics, quantity of documentation, operational labor, reliability and maintainability balance, and total integration of the entire system from DDT&E through the life of the program must be fully defined, compared, and final decisions made among these competing solutions. The major drivers of recurring cost have been identified and are presented and discussed. The LCC requirements must be established and flowed down to provide control of LCC. This LCC control will require a structured rigid process similar to the one traditionally used to control weight/performance for space transportation systems throughout the entire program. It has been demonstrated over the last 30 years that without a firm requirement and methodically structured cost control, it is unlikely that affordable and sustainable space transportation system LCC will be achieved.

  1. Macropore system characteristics controls on non-reactive solute transport at different flow rates

    Science.gov (United States)

    Larsbo, Mats; Koestel, John

    2014-05-01

    Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.

  2. Gas transport in porous media

    CERN Document Server

    Ho, Clifford K

    2006-01-01

    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.

  3. Dynamics modeling and control of large transport aircraft in heavy cargo extraction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,a novel version of six-degree-of-freedom nonlinear model for transport aircraft motion in cargo extraction is developed and validated by the theoretical mechanics and flight mechanics.In this model constraint force and moment reflecting the flight dynamic effects of inner moving cargo are formulated.A methodology for a control law design in this phase is presented,which linearizes the aircraft dynamics making use of piecewise linearization and utilizes robust control technique for interval sys...

  4. CrN-Ag nanocomposite coatings: Control of lubricant transport by diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-12-01

    1-{mu}m-thick self-lubricating CrN-Ag composite coatings containing 16 at.% Ag were deposited on Si substrates by reactive co-sputtering at T{sub s} = 400 Degree-Sign C, and were covered with CrN cap layers with a columnar microstructure and a thickness d = 0-1000 nm. Vacuum annealing at T{sub a} = 500 and 600 Degree-Sign C for 1 h causes Ag transport to the sample surface and the formation of Ag surface grains. Quantitative scanning electron microscopy and energy dispersive spectroscopy analyses show that increasing d from 0 to 10 to 100 nm for T{sub a} = 500 Degree-Sign C leads to a decrease in the areal density of Ag surface grains from 0.86 to 0.45 to 0.04 {mu}m{sup -2}, while their lateral size remains constant at 360 {+-} 60 nm. However, increasing T{sub a} to 600 Degree-Sign C causes a doubling of the Ag grain size, and a 4-30 times larger overall Ag transport. These results are explained by kinetic barriers for Ag diffusion through the porous cap layer with a porosity that decreases with increasing d, resulting in an effective activation barrier for Ag transport that increases from 0.78 eV in the absence of a cap layer to 0.89 eV for d = 10 nm and 1.07 eV for d = 30 nm. Auger electron spectroscopy depth profile analyses of annealed layers reveal no detectable Ag within the CrN cap layer and a uniform depletion of the Ag reservoir throughout the composite coating thickness, indicating unhindered Ag transport within the composite. The overall results show that a CrN diffusion barrier cap layer is an effective approach to control Ag lubricant transport to the surface of CrN-Ag composite coatings. - Highlights: Black-Right-Pointing-Pointer CrN-Ag composite coatings are capped with CrN diffusion barriers. Black-Right-Pointing-Pointer Ag diffuses to the surface during annealing at 500 or 600 Degree-Sign C. Black-Right-Pointing-Pointer The Ag transport is controlled by the cap thickness d = 0-1000 nm. Black-Right-Pointing-Pointer The activation energy for Ag

  5. Estimating the Impact of Vadose Zone Sources on Groundwater to Support Performance Assessment of Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rice, Amy K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carroll, Kenneth C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Becker, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simon, Michelle A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-13

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. To support selection of an appropriate endpoint for the SVE remedy, an evaluation is needed to determine whether vadose zone contamination has been diminished sufficiently to protect groundwater. When vapor-phase transport is an important component of the overall contaminant fate and transport from a vadose zone source, the contaminant concentration expected in groundwater is controlled by a limited set of parameters, including specific site dimensions, vadose zone properties, and source characteristics. An approach was developed for estimating the contaminant concentration in groundwater resulting from a contaminant source in the vadose zone based on pre-modeling contaminant transport for a matrix of parameter value combinations covering a range of potential site conditions. An interpolation and scaling process are then applied to estimate groundwater impact for site-specific conditions.

  6. Needle Thoracostomy for Patients with Prolonged Transport Times: A Case-control Study.

    Science.gov (United States)

    Weichenthal, Lori; Crane, Desiree Hansen; Rond, Luke; Roche, Conal

    2015-08-01

    Introduction The use of prehospital needle thoracostomy (NT) is controversial. Some studies support its use; however, concerns exist regarding misplacement, inappropriate patient selection, and iatrogenic injury. Even less is known about its efficacy in situations where there is a delay to definitive care. Hypothesis/Aim To determine any differences in survival of patients who underwent NT in the setting of prolonged versus short transport times, and to describe differences in mechanisms and complications between the two groups. This was a retrospective, matched, case-control study of trauma patients in a four county Emergency Medical Service (EMS) system from April 1, 2007 through April 1, 2013. This system serves an urban, rural, and wilderness catchment area. A prehospital database was queried for all patients in whom NT was performed, identifying 182 patients. When these calls were limited to those with prolonged transport times, the search was narrowed to 32 cases. A matched control group, based on age and gender, with short transport times was then created as a comparison. Data collected from prehospital and hospital records included: demographics; mechanism of injury; call status; response to NT; and final outcome. Univariate and multivariate analyses were conducted, as appropriate, to assess the primary outcome of survival and to further elucidate the descriptive data. There was no difference in survival between the case and control groups, either when evaluated with univariate (34% vs 25%; P=.41) or multivariate (odds ratio=0.99; 95% CI, 0.96-1.02; P=.57) analyses. Blunt trauma was the most common mechanism in both groups, but penetrating trauma was more common in the control group (30% vs 9%; P=.003). Patients in the control group were also more likely to have no vital signs on initial assessment (62% vs 31%; P=.003). More patients in the case group were described as having clinical improvement after NT (34% vs 19%; P=.03). No complications of NT were

  7. Quantifying the Benefits of Transportation Controls in the Mexico City Metropolitan Area

    Science.gov (United States)

    Rojas-Bracho, L.; Fernández-Bremauntz, A.; Zuk, M.; Garibay, V.; Iniestra, R.; Franco, P.

    2004-12-01

    Similar to most large cities, the transportation sector in the Mexico City Metropolitan Area (MCMA) constitutes the largest source of air pollution emissions, which result in significant impacts on human health. Although the majority of MCMA residents use public transportation, the share of trips in private vehicles is rising and these vehicles have become the largest contributor to mobile emissions. To reduce these emissions, there is an urgent need to improve the current fleet, improve the quality of fuels, and modify the paradigm of private car use, by providing clean, safe, efficient and comfortable public transportation options. Here we present the potential human health benefits of a set of five mobile source control measures that span public and private transportation options: Taxi fleet renovation, Hybrid buses, Metro Expansion, and the introduction of low sulfur gasoline and Tier II vehicles. We also discuss the methodology and preliminary results of the analysis of the implementation of the project for a Bus Rapid Transit system in Mexico City, in terms of its impacts on personal exposures, emissions, and public health.

  8. Transport, anoxia and energy control on anaerobic respiration and methanogenesis in anoxic peat soils

    Science.gov (United States)

    Bonaiuti, Simona; Blodau, Christian; Knorr, Klaus-Holger

    2017-04-01

    In deep and permanently water saturated peat deposits, extremely low diffusive transport and concomitant build-up of metabolic end-products, i.e of dissolved inorganic carbon (DIC) and methane (CH4), have been found to slow-down anaerobic respiration and methanogenesis. Such accumulation of DIC and CH4 lowers the Gibbs free energy yield of terminal respiration and methanogenesis, which can inhibit the course of anaerobic metabolic processes. In particular, this affects terminal steps of the breakdown of organic carbon (C), such as methanogenesis, acetogenesis and fermentation processes, which occur near thermodynamic minimum energy thresholds. This effect is thus of critical importance for the long-term C sequestration, as the slow-down of decomposition ultimately regulates the long-term fate of C in deep peat deposits. The exact controls of this observed slow-down of organic matter mineralization are not yet fully understood. Moreover, altered patterns of water or gas transport due to predicted changes in climate may affect these controls in peat soils. Therefore, the aim of this study was to investigate how burial of peat leads to an inactivation of anaerobic decomposition and to investigate the effects of advective water transport and persistently anoxic conditions on anaerobic decomposition, temporal evolution of thermodynamic energy yields to methanogenesis and methanogenic pathways. To this end, we conducted a column experiment with homogenized, ombrotrophic peat over a period of 300 days at 20˚ C. We tested i) a control treatment under diffusive transport only, ii) an advective flow treatment with a flow of 10 mm d-1, and iv) an anoxic treatment to evaluate changes in decomposition in absence of oxygen in the unsaturated zone of the cores. A slow-down of anaerobic respiration and methanogenesis generally set in at larger depths after 150 days at CH4 concentrations of 0.6-0.9 mmol L-1 and DIC concentrations of 6-12 mmol L-1. This effect occurred at higher

  9. Dispersive Mixing? Mass Transfer? Microbial Dynamics? Potential Controls of Bioreactive Transport

    Science.gov (United States)

    Cirpka, O. A.; Loschko, M.; Eckert, D.; Mellage, A.

    2016-12-01

    Mixing-controlled reactive transport, in which compounds A and B must come together to react, has gained significant attention in the past years. The goal is to formulate upscaled, effective equations of reactive transport in physically and chemically heterogeneous media without fully resolving the heterogeneity. Towards this end, it is important to analyze which processes control the overall reactive behavior. The presentation classifies potential controls of (bio)reactive transport into several categories, for which different effective transport equations may be derived. The replacement scenario (solution of B replaces the solution of A) has become a popular target to study fundamental aspects of dispersive mixing. In most cases, it s assumed that neither A nor B sorb. Under such conditions, the reaction is controlled by macroscopic longitudinal dispersive mixing, which is controlled by variability of velocity and micro-scale transverse mixing. However, in most practical applications, at least one of the two compounds sorbs. If A sorbs more strongly than B, chromatographic mixing will always dominate over dispersive mixing at late times. A second popular scenario is a continuously released plume of A, reacting with B provided by ambient flow. This system is controlled by macroscopic transverse dispersion, which increases much less than longitudinal mixing in heterogeneous domains. Transient flow leads to some additional enhancement, but not very much. If the compounds sorb differently, transient flow causes alternating chromatographic mixing and separation. Many contaminants react with the aquifer matrix. In these cases, dispersive mixing is merely a nuisance, and the controling factor is the release of the reaction partner from the matrix. Here, travel-time based approaches work if chemical heterogeneity can be excluded. To account for the latter, one can integrate the time of exposure to reactive materials, eventually scaled by the intensity of the reaction, to

  10. On a multi-channel transportation loss system with controlled input and controlled service

    Directory of Open Access Journals (Sweden)

    Jewgeni Dshalalow

    1987-01-01

    Full Text Available A multi-channel loss queueing system is investigated. The input stream is a controlled point process. The service in each of m parallel channels depends on the state of the system at certain moments of time when input and service may be controlled. To obtain explicitly the limiting distribution of the main process (Zt (the number of busy channels in equilibrium, an auxiliary three dimensional process with two additional components (one of them is a semi-Markov process is treated as semi-regenerative process. An optimization problem is discussed. Simple expressions for an objective function are derived.

  11. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in

  12. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in

  13. Control factors and scale analysis of annual river water, sediments and carbon transport in China

    Science.gov (United States)

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-01

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m‑2·a‑1) to medium spatial scale basins (258 g·m‑2·a‑1), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  14. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    Science.gov (United States)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  15. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  16. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  17. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  18. Synthesis Study on Transitions in Signal Infrastructure and Control Algorithms for Connected and Automated Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, H. M. Abdul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Young, Stan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sperling, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beck, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Documenting existing state of practice is an initial step in developing future control infrastructure to be co-deployed for heterogeneous mix of connected and automated vehicles with human drivers while leveraging benefits to safety, congestion, and energy. With advances in information technology and extensive deployment of connected and automated vehicle technology anticipated over the coming decades, cities globally are making efforts to plan and prepare for these transitions. CAVs not only offer opportunities to improve transportation systems through enhanced safety and efficient operations of vehicles. There are also significant needs in terms of exploring how best to leverage vehicle-to-vehicle (V2V) technology, vehicle-to-infrastructure (V2I) technology and vehicle-to-everything (V2X) technology. Both Connected Vehicle (CV) and Connected and Automated Vehicle (CAV) paradigms feature bi-directional connectivity and share similar applications in terms of signal control algorithm and infrastructure implementation. The discussion in our synthesis study assumes the CAV/CV context where connectivity exists with or without automated vehicles. Our synthesis study explores the current state of signal control algorithms and infrastructure, reports the completed and newly proposed CV/CAV deployment studies regarding signal control schemes, reviews the deployment costs for CAV/AV signal infrastructure, and concludes with a discussion on the opportunities such as detector free signal control schemes and dynamic performance management for intersections, and challenges such as dependency on market adaptation and the need to build a fault-tolerant signal system deployment in a CAV/CV environment. The study will serve as an initial critical assessment of existing signal control infrastructure (devices, control instruments, and firmware) and control schemes (actuated, adaptive, and coordinated-green wave). Also, the report will help to identify the future needs for the signal

  19. Control of mesoscopic transport by modifying transmission channels in opaque media

    CERN Document Server

    Sarma, Raktim; Liew, Seng Fatt; Guy, Mikhael; Cao, Hui

    2015-01-01

    While controlling particle diffusion in a confined geometry is a popular approach taken by both natural and artificial systems, it has not been widely adopted for controlling light transport in random media, where wave interference effects play a critical role. The transmission eigenchannels determine not only light propagation through the disordered system but also the energy concentrated inside. Here we propose and demonstrate an effective approach to modify these channels, whose structures are considered to be universal in conventional diffusive waveguides. By adjusting the waveguide geometry, we are able to alter the spatial profiles of the transmission eigenchannels significantly and deterministically from the universal ones. In addition, propagating channels may be converted to evanescent channels or vice versa by tapering the waveguide cross-section. Our approach allows to control not only the transmitted and reflected light, but also the depth profile of energy density inside the scattering system. In...

  20. Vapor scavenging by atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  1. Vibration Control of Flexible Mode for a Beam-Type Substrate Transport Robot

    Directory of Open Access Journals (Sweden)

    Cheol Hoon Park

    2013-07-01

    Full Text Available Beam‐type substrate transport robots are widely used to handle substrates, especially in the solar cell manufacturing process. To reduce the takt time and increase productivity, accurate position control becomes increasingly important as the size of the substrate increases. However, the vibration caused by the flexible forks in beam‐type robots interferes with accurate positioning, which results in long takt times in the manufacturing process. To minimize the vibration and transport substrates on the fork as fast as possible, the trajectories should be prevented from exciting the flexible modes of the forks. For this purpose, a fifth‐order polynomial trajectory generator and input shaping were incorporated into the controller of the beam‐type robot in this study. The flexible modes of the forks were identified by measuring the frequency response function (FRF, and the input shaping was designed so as not to excite the flexible modes. The controller was implemented by using MATLAB/xPC Target. In this paper, the design procedure of input shaping and its effectiveness for vibration attenuation in both “no load” and “load” cases is presented.

  2. Vibration Control of Flexible Mode for a Beam-Type Substrate Transport Robot

    Directory of Open Access Journals (Sweden)

    Cheol Hoon Park

    2013-07-01

    Full Text Available Beam-type substrate transport robots are widely used to handle substrates, especially in the solar cell manufacturing process. To reduce the takt time and increase productivity, accurate position control becomes increasingly important as the size of the substrate increases. However, the vibration caused by the flexible forks in beam-type robots interferes with accurate positioning, which results in long takt times in the manufacturing process. To minimize the vibration and transport substrates on the fork as fast as possible, the trajectories should be prevented from exciting the flexible modes of the forks. For this purpose, a fifth-order polynomial trajectory generator and input shaping were incorporated into the controller of the beam-type robot in this study. The flexible modes of the forks were identified by measuring the frequency response function (FRF, and the input shaping was designed so as not to excite the flexible modes. The controller was implemented by using MATLAB/xPC Target. In this paper, the design procedure of input shaping and its effectiveness for vibration attenuation in both “no load” and “load” cases is presented.

  3. Formation-based Control Scheme for Cooperative Transportation by Multiple Mobile Robots

    Directory of Open Access Journals (Sweden)

    Alpaslan Yufka

    2015-09-01

    Full Text Available This paper presents a motion-planning and control scheme for a cooperative transportation system comprising a single rigid object and multiple autonomous non-holonomic mobile robots. A leader-follower formation control strategy is used for the transportation system in which the object is assumed to be the virtual leader; the robots carrying the object are considered to be followers. A smooth trajectory between the current and desired locations of the object is generated considering the constraints of the virtual leader. In the leader follower approach, the origin of the coordinate system attached to the centre of gravity of the object, which is known as the virtual leader, moves along the generated trajectory while the real robots, which are known as followers, maintain a desired distance and orientation in relation to the leader. An asymptotically stable tracking controller is used for trajectory tracking. The proposed approach is verified by simulations and real applications using Pioneer P3-DX mobile robots.

  4. Determination of heat losses in the Cerro Prieto, Baja California, geothermal field steam transportation network based on the thermal insulation condition of the steam pipelines; Determinacion de perdidas de calor en la red de transporte de vapor del campo geotermico de Cerro Prieto, Baja California, con base en el estado fisico del aislamiento termico de vaporductos

    Energy Technology Data Exchange (ETDEWEB)

    Ovando Castelar, Rosember; Garcia Gutierrez, Alfonso; Martinez Estrella, Juan Ignacio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rovando@iie.org.mx; Canchola Felix, Ismael; Jacobo Galvan, Paul; Miranda Herrera, Carlos; Mora Perez, Othon [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, B.C. (Mexico)

    2011-07-15

    In Cerro Prieto Geothermal Field (CPGF), the steam from producing wells is transported to power plants through a large and complex system of pipes thermally insulated with a 2 inches thick mineral wool or a fiber glass layer and an external aluminum or iron cover. The insulation material has been exposed to weather conditions during the field operation and has suffered density and thickness changes. In some cases the insulation has been lost completely, increasing heat transfer from the pipes to the environment. This paper analyzes the impact of the conditions of thermal insulation on heat losses in the CPGF steam-pipeline network. The heat losses are calculated by applying an iterative method to determine the surface temperature based on a heat balance calculated from the three basic mechanisms of heat transfer: conduction, convection, and radiation. Finally, using length and diameter data corresponding to the condition of the thermal insulation of each pipeline-and field operation data, the overall heat losses are quantified for steam lines throughout the pipeline network in the field. The results allow us to evaluate the magnitude of the heat losses in comparison with the overall energy losses occurring during steam transport from wells to the power plants. [Spanish] En el Campo Geotermico de Cerro Prieto (CGCP), BC, el transporte de vapor desde los pozos hasta las plantas generadoras de electricidad se lleva a cabo mediante un extenso y complejo sistema de tuberias que tipicamente se encuentran aisladas termicamente con una capa de 2 pulgadas de material aislante a base de lana mineral o fibra de vidrio, y una proteccion mecanica de aluminio o hierro galvanizado. Debido a la exposicion a las condiciones meteorologicas a traves del tiempo de operacion del campo, el aislamiento ha experimentado cambios en su densidad y espesor y en ocasiones se ha perdido por completo, lo cual repercute en una mayor transferencia de calor de las tuberias hacia el medio ambiente

  5. Control of Halo-Chaos in Beam Transport Network via Neural Network Adaptation with Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; LUO Xiao-Shu; HUANG Guo-Xian

    2006-01-01

    Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neuralnetwork with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.

  6. GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties.

    Science.gov (United States)

    Han, Ning; Hou, Jared J; Wang, Fengyun; Yip, SenPo; Yen, Yu-Ting; Yang, Zai-Xing; Dong, Guofa; Hung, TakFu; Chueh, Yu-Lun; Ho, Johnny C

    2013-10-22

    Reliable control in the crystal quality of synthesized III-V nanowires (NWs) is particularly important to manipulate their corresponding electronic transport properties for technological applications. In this report, a "two-step" growth process is adopted to achieve single-crystalline GaAs NWs, where an initial high-temperature nucleation process is employed to ensure the formation of high Ga supersaturated Au7Ga3 and Au2Ga alloy seeds, instead of the low Ga supersaturated Au7Ga2 seeds observed in the conventional "single-step" growth. These two-step NWs are long (>60 μm) and thick (>80 nm) with the minimal defect concentrations and uniform growth orientations. Importantly, these NWs exhibit p-type conductivity as compared to the single-step grown n-type NWs for the same diameter range. This NW conductivity difference (p- versus n-channel) is shown to originate from the donor-like crystal defects, such as As precipitates, induced by the low Ga supersaturated multicrystalline Au7Ga2 alloy seeds. Then the well-controlled crystal quality for desired electronic properties is further explored in the application of large-scale p-type GaAs NW parallel array FETs as well as the integration of both p- and n-type GaAs NWs into CMOS inverters. All these illustrate the successful control of NW crystal defects and corresponding electronic transport properties via the manipulation of Ga supersaturation in the catalytic alloy tips with different preparation methods. The understanding of this relationship between NW crystal quality and electronic transport properties is critical and preferential to the future development of nanoelectronic materials, circuit design, and fabrication.

  7. Viscous Coalescence of Two Drops in a Saturated Vapor Phase

    Science.gov (United States)

    Baroudi, Lina; Nagel, Sidney R.; Morris, Jeffrey F.; Lee, Taehun

    2016-11-01

    When two liquid drops come into contact, a microscopic liquid bridge forms between them and rapidly expands until the two drops merge into a single bigger drop. Numerous studies have been devoted to the investigation of the coalescence singularity in the case where the drops coalesce in a medium of negligible vapor pressure such as vacuum or air. However, coalescence of liquid drops may also take place in a medium of relatively high vapor pressure (condensable vapor phase), where the effect of the surrounding vapor phase should not be neglected, such as the merging of drops in clouds. In this study, we carry out Lattice Boltzmann numerical simulations to investigate the dynamics of viscous coalescence in a saturated vapor phase. Attention is paid to the effect of the vapor phase on the formation and growth dynamics of the liquid bridge in the viscous regime. We observe that the onset of the coalescence occurs earlier and the expansion of the bridge initially proceeds faster when the coalescence takes place in a saturated vapor compared to the coalescence in a non-condensable gas. The initially faster evolution of the coalescence process in the saturated vapor is caused by the vapor transport through condensation during the early stages of the coalescence.

  8. Betatron Application in Mobile and Relocatable Inspection Systems for Freight Transport Control

    Science.gov (United States)

    Chakhlov, S. V.; Kasyanov, S. V.; Kasyanov, V. A.; Osipov, S. P.; Stein, M. M.; Stein, A. M.; Xiaoming, Sun

    2016-01-01

    Accelerators with energy level up to 4 MeV having high level of penetration ability by steel equivalent are the popular to control oversize cargo transported by road, by railway and by river. Betatron's usage as cyclic induction accelerator has some advantages in comparison with linear accelerators and other sources. Tomsk Polytechnic University has developed many types of betatrons, most of them are being produced by separate affiliated company " Foton ". Article is shown the results of application of the betatrons in inspection custom systems.

  9. Hydro-climatic control of composition and transport of dissolved organic matter in an agricultural catchment

    OpenAIRE

    Humbert, Guillaume

    2015-01-01

    The role of dissolved organic matter (DOM) as carbon storage in mineral soil horizons and the impacts of DOM on aquatic ecosystems, either as a source of nutrients, or a vector of pollutants, raise the need to understand its origin, and the mechanisms linked to its transport from soils to stream. This work aims to characterize the temporal and spatial dynamics of the amount and the quality of DOM in soil and stream water, and to identify the controlling factors. It is based on the Kervidy-Nai...

  10. Hydrologic Controls on Dissolved Organic Matter Mobilization and Transport within Undisturbed Soils

    Science.gov (United States)

    Xu, N.; Saiers, J.

    2007-12-01

    Dissolved organic matter (DOM) in soils plays an important role in the transport of nutrients and contaminants through the terrestrial environment. Subsurface pathways deliver a significant portion of carbon to streams that drain forested and agricultural watersheds. Although the importance of rainfall events to the DOM soil-water flux is well known, the hydrologic factors that govern this flux have not been fully examined. The primary purpose of this study is to investigate the soil and rainfall characteristics controlling the mobilization and transport of DOM in undisturbed soils. Intact soil columns including topsoil and subsoil layers were taken from the Harvard forest in Petersham, MA. Unsaturated flow conditions were maintained by applying suction to the bottom of the soil columns. The columns were irrigated by series of interrupted rainfall events using the same total volume of artificial rain water. Preliminary experiments showed continuous leaching of DOM (measured by dissolved organic carbon) with an initial peak in concentration that coincided with the passage of the wetting front. The leached DOM was also characterized by UV absorbance, fluorescence spectroscopy in the emission mode, and additional spectroscopic derived indexes such as the humification index. Ongoing column experiments are focusing on the effects of rainfall intensity, frequency, and rainfall history on DOM mobilization and transport through natural, structured soils. These investigations can elucidate the influence of factors that are associated with climate change on DOC dynamics. Results of our analyses should also provide insight into the mechanisms that govern DOM mobilization in soils.

  11. Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping

    Science.gov (United States)

    Ralston, David K.; Geyer, W. Rockwell; Warner, John C.

    2012-01-01

    Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.

  12. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals

    Science.gov (United States)

    Ong, Wee-Liat; O'Brien, Evan S.; Dougherty, Patrick S. M.; Paley, Daniel W.; Fred Higgs, C., III; McGaughey, Alan J. H.; Malen, Jonathan A.; Roy, Xavier

    2017-01-01

    In the search for rationally assembled functional materials, superatomic crystals (SACs) have recently emerged as a unique class of compounds that combine programmable nanoscale building blocks and atomic precision. As such, they bridge traditional semiconductors, molecular solids, and nanocrystal arrays by combining their most attractive features. Here, we report the first study of thermal transport in SACs, a critical step towards their deployment as electronic, thermoelectric, and phononic materials. Using frequency domain thermoreflectance (FDTR), we measure thermal conductivity in two series of SACs: the unary compounds Co6E8(PEt3)6 (E = S, Se, Te) and the binary compounds [Co6E8(PEt3)6][C60]2. We find that phonons that emerge from the periodicity of the superstructures contribute to thermal transport. We also demonstrate a transformation from amorphous to crystalline thermal transport behaviour through manipulation of the vibrational landscape and orientational order of the superatoms. The structural control of orientational order enabled by the atomic precision of SACs expands the conceptual design space for thermal science.

  13. Aerial and Tidal Transport of Mosquito Control Pesticides into the Florida Keys National Marine Sanctuary

    Directory of Open Access Journals (Sweden)

    R.H Pierce

    2005-05-01

    Full Text Available This project was undertaken as the initial monitoring program to determine if mosquito adulticides applied along the Florida Keys cause adverse ecological effects in the Florida Keys National Marine Sanctuary (FKNMS.The study monitored the distribution and persistence of two mosquito adulticides,permethrin and dibrom (naled,during three separate routine applications by the Florida Keys Mosquito Control District.The approach was to determine if toxic concentrations of the pesticides entered the FKNMS by aerial drift or tidal transport.The amount of pesticide entering the FKNMS by way of aerial drift was monitored by collection on glass fiber filter pads,set on floats in a grid pattern on either side of the FKNMS.Permethrin was recovered from filter pads on the leeward side for each of the three applications,ranging from 0.5 to 50.1 µg/m² throughout the study.Tidal current transport was monitored by collection of surface and subsurface water samples at each grid site.Tidal transport of naled and dichlorvos (naled degradation productwas apparent in the adjacent waters of the FKNMS.These compounds were detected in subsurface,offshore water at 0.1 to 0.6 µg/l,14 hr after application.Permethrin was not detected in offshore water samples; however, concentrations ranging from 5.1 to 9.4 µg/l were found in surface water from the canal system adjacent to the application route.Comparison of the observed environmental concentrations with toxicity data (permethrin LC-50,96 hr for Mysidopsis bahia =0.02 µg/lindicated a potential hazard to marine invertebrates in the canals with possible tidal transport to other areas.Para determinar si los adulticidas de mosquitos,aplicados en los Cayos de la Florida,causan efectos ecológicos adversos en el Santuario Marino Nacional de los Cayos de la Florida,se monitoreó la distribución y persistencia de dos adulticidas de mosquitos.Estos fueron permetrina y dibrom (naled.Se trabajó durante tres aplicaciones

  14. Beam transport experiment with a new kicker control system on the HIRFL

    Science.gov (United States)

    Wang, Yan-Yu; Zhou, De-Tai; Luo, Jin-Fu; Zhang, Jian-Chuan; Zhou, Wen-Xiong; Ni, Fa-Fu; Yin, Jun; Yin, Jia; Yuan, You-Jin; Shang-Guan, Jing-Bin

    2016-04-01

    A kicker control system is used for beam extraction and injection between two cooling storage rings (CSRs) at the Heavy Ion Research Facility in Lanzhou (HIRFL). To meet the requirements of special physics experiments, the kicker controller has been upgraded, with a new controller designed based on ARM+DSP+FPGA technology and monolithic circuit architecture, which can achieve a precision time delay of 2.5 ns. In September 2014, the new kicker control system was installed in the kicker field, and the test experiment using the system was completed. In addition, a pre-trigger signal was provided by the controller, which was designed to synchronize the beam diagnostic system and physics experiments. Experimental results indicate that the phenomena of “missed kick” and “inefficient kick” were not observed, and the multichannel trigger signal delay could be adjusted individually for kick power supplies in digitization; thus, the beam transport efficiency was improved compared with that of the original system. The fast extraction and injection experiment was successfully completed based on the new kicker control systems for HIRFL. Supported by National Natural Science Foundation of China (U1232123)

  15. Dynamics Modeling and L1 Adaptive Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available The longitudinal nonlinear aircraft model with cargo extraction is derived using theoretical mechanics and flight mechanics. Furthermore, the nonlinear model is approximated by a semilinear time-varying system with the cargo disturbances viewed as unknown nonlinearities, both matched and unmatched types. On this basis, a novel autopilot inner-loop based on the LQR and L1 adaptive theory is developed to reject the unknown nonlinear disturbances caused by the cargo and also to accommodate uncertainties. Analysis shows that the controller can guarantee robustness in the presence of fast adaptation, without exciting control signal oscillations and gain scheduling. The overall control system is completed with the outer-loop altitude-hold control based on a PID controller. Simulations are conducted under the condition that one transport aircraft performs maximum load airdrop mission at the height of 82 ft, using single row single platform mode. The results show the good performance of the control scheme, which can meet the airdrop mission performance indexes well, even in the presence of ±20% aerodynamic uncertainties.

  16. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  17. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  18. Supercritical droplet combustion and related transport phenomena

    Science.gov (United States)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  19. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  20. Copper Transporter 2 Regulates Endocytosis and Controls Tumor Growth and Sensitivity to Cisplatin In Vivo

    Science.gov (United States)

    Blair, Brian G.; Larson, Christopher A.; Adams, Preston L.; Abada, Paolo B.; Pesce, Catherine E.; Safaei, Roohangiz

    2011-01-01

    Copper transporter 2 (CTR2) is one of the four copper transporters in mammalian cells that influence the cellular pharmacology of cisplatin and carboplatin. CTR2 was knocked down using a short hairpin RNA interference. Robust expression of CTR2 was observed in parental tumors grown in vivo, whereas no staining was found in the tumors formed from cells in which CTR2 had been knocked down. Knockdown of CTR2 reduced growth rate by 5.8-fold, increased the frequency of apoptotic cells, and decreased the vascular density, but it did not change copper content. Knockdown of CTR2 increased the tumor accumulation of cis-diamminedichloroplatinum(II) [cisplatin (cDDP)] by 9.1-fold and greatly increased its therapeutic efficacy. Because altered endocytosis has been implicated in cDDP resistance, uptake of dextran was used to quantify the rate of macropinocytosis. Knockdown of CTR2 increased dextran uptake 2.5-fold without reducing exocytosis. Inhibition of macropinocytosis with either amiloride or wortmannin blocked the increase in macropinocytosis mediated by CTR2 knockdown. Stimulation of macropinocytosis by platelet-derived growth factor coordinately increased dextran and cDDP uptake. Knockdown of CTR2 was associated with activation of the Rac1 and cdc42 GTPases that control macropinocytosis but not activation of the phosphoinositide-3 kinase pathway. We conclude that CTR2 is required for optimal tumor growth and that it is an unusually strong regulator of cisplatin accumulation and cytotoxicity. CTR2 regulates the transport of cDDP in part through control of the rate of macropinocytosis via activation of Rac1 and cdc42. Selective knockdown of CTR2 in tumors offers a strategy for enhancing the efficacy of cDDP. PMID:20930109

  1. Suppression of population transport and control of exciton distributions by entangled photons.

    Science.gov (United States)

    Schlawin, Frank; Dorfman, Konstantin E; Fingerhut, Benjamin P; Mukamel, Shaul

    2013-01-01

    Entangled photons provide an important tool for secure quantum communication, computing and lithography. Low intensity requirements for multi-photon processes make them idealy suited for minimizing damage in imaging applications. Here we show how their unique temporal and spectral features may be used in nonlinear spectroscopy to reveal properties of multiexcitons in chromophore aggregates. Simulations demostrate that they provide unique control tools for two-exciton states in the bacterial reaction centre of Blastochloris viridis. Population transport in the intermediate single-exciton manifold may be suppressed by the absorption of photon pairs with short entanglement time, thus allowing the manipulation of the distribution of two-exciton states. The quantum nature of the light is essential for achieving this degree of control, which cannot be reproduced by stochastic or chirped light. Classical light is fundamentally limited by the frequency-time uncertainty, whereas entangled photons have independent temporal and spectral characteristics not subjected to this uncertainty.

  2. Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport

    Science.gov (United States)

    Long, Gen; Xu, Shuigang; Shen, Junying; Hou, Jianqiang; Wu, Zefei; Han, Tianyi; Lin, Jiangxiazi; Wong, Wing Ki; Cai, Yuan; Lortz, Rolf; Wang, Ning

    2016-09-01

    We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V-1 s-1 and 8400 cm2 V-1 s-1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.

  3. A Controlled Field Pilot for Testing Near Surface CO2 Detection Techniques and Transport Models

    Science.gov (United States)

    Spangler, L. H.; Dobeck, L.

    2007-12-01

    A field facility has been developed to allow controlled studies of near surface CO2transport and detection technologies. The key component of the facility is a shallow horizontal, well slotted over 70m of its length and divided into seven zones via packers with mass flow control in each individual zone. The scale and fluxes were designed to address large scale CO2 storage projects and desired retention rates for those projects and those design parameters will be discussed. A wide variety of detection techniques were deployed by collaborators from Los Alamos National Lab, Lawrence Berkeley National Lab, the National Energy Technology Lab, Pacific Northwest National Lab, Lawrence Livermore National Lab and West Virginia University. Techniques included eddy covariance, soil gas measurements, hyperspectral imaging for plant stress detection, differential absorption LIDAR (both free space atmospheric and below surface soil gas), tracer studies, water sampling, stable isotope studies, and soil flux chambers. An overview of these results will be presented.

  4. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available . Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on measurements of static technology. The article includes the description of the existing applications of the automatic dynamic weighing technology, known as systems WIM (Weigh in Motion. Additionally, the weighing technology and construction of weighing stands in road and rail are characterized. The article ends with authors' conclusions indicating the direction and ways of improving the weighing control systems for vehicles.

  5. Photovoltaic driven vapor compression cycles

    Science.gov (United States)

    Anand, D. K.

    Since the vast majority of heat pumps, air conditioning and refrigeration equipment employs the vapor compression cycle (VCC), the use of renewable energy represents a significant opportunity. As discussed in this report, it is clear that the use of photovoltaics (PV) to drive the VCC has more potential than any other active solar cooling approach. This potential exists due to improvements in not only the PV cells but VCC machinery and control algorithms. It is estimated that the combined improvements will result in reducing the PV cell requirements by as much as one half.

  6. Water Vapor-Mediated Volatilization of High-Temperature Materials

    Science.gov (United States)

    Meschter, Peter J.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2013-07-01

    Volatilization in water vapor-containing atmospheres is an important and often unexpected mechanism of degradation of high-temperature materials during processing and in service. Thermodynamic properties data sets for key (oxy)hydroxide vapor product species that are responsible for material transport and damage are often uncertain or unavailable. Estimation, quantum chemistry calculation, and measurement methods for thermodynamic properties of these species are reviewed, and data judged to be reliable are tabulated and referenced. Applications of water vapor-mediated volatilization include component and coating recession in turbine engines, oxidation/volatilization of ferritic steels in steam boilers, chromium poisoning in solid-oxide fuel cells, vanadium transport in hot corrosion and degradation of hydrocracking catalysts, Na loss from Na β"-Al2O3 tubes, and environmental release of radioactive isotopes in a nuclear reactor accident or waste incineration. The significance of water vapor-mediated volatilization in these applications is described.

  7. From myth to science in urban and transport planning: from uncontrolled to controlled and responsible urban development in transport planning.

    Science.gov (United States)

    Knoflacher, Hermann

    2009-03-01

    Fossil energy use for mechanical transport modes enhanced travel speed far above human evolutionary experience, which is walking speed. Transport became faster and more convenient for people and industry. But planning had to be done without knowing the effects of these new modes. Individual experiences were extrapolated to the system and myths were created, like 'growth of mobility', 'time saving by speed' and 'freedom of modal choice'. Scientific based analysis show that these are real myths. These effects do not exist in the system. The number of trips is constant, travel time can not be saved in the system; speed lengthens distances and freedom of choice is limited by human evolution. Benefits from time saving can not be calculated any more and car traffic flow is only the effect of mistakes in parking organisation.

  8. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  9. Non-stationarity of solute travel time distribution observed in a controlled hydrologic transport volume

    Science.gov (United States)

    Queloz, P.; Bertuzzo, E.; Carraro, L.; Botter, G.; Miglietta, F.; Rao, P. S.; Rinaldo, A.

    2014-12-01

    Experimental data were collected over a year-long period in a transport experiment carried out within a controlled transport volume (represented by a 2m-deep, 1m-diameter lysimeter fitted with bottom drainage). The soil surface was shielded from natural rainfall, replaced by an artificial injection (Poisson process) at the daily timescale. Bottom drainage out-flows were continuously monitored with leakage tipping bucket and evapotranspiration (prompted by a willow tree growing within the system) was measured trough precision load cells, which also allow an accurate and continuous reading of the total water storage. Five artificial soluble tracers (species of fluorobenzoic acid, FBAs, mutually passive) were selected based on low-reactivity and low-retardation in our specific soil and used to individually mark five rainfall inputs of different amplitudes and occurring at various initial soil moisture conditions. Tracer discharge concentration and hydrologic fluxes measurements provide a direct method for the assessment of the bulk effects of transport on the (backward and forward) travel time distributions in the hydrological setting. The large discrepancies observed in terms of mass recovery in the discharge (supported by ex post FBAs quantification in the soil and in the vegetation) and tracer out-fluxes dynamics emphasized the dependence of the forward travel time on the various injection times and the stages experienced by the system during the migration of the pulse. Rescaling the measured travel time distribution by using the cumulative drainage volume as an independent variable instead of the time elapsed since the injection also fails to yield to stationary distributions, as it was argued by Niemi (1997). Our experimental results support earlier theoretical speculations centered on the key role of non-stationarity on the characterization of the properties of hydrologic flow and transport phenomena. A travel time based model, with all in- and out- hydrological

  10. 基于玻璃态膜组件的油气污染排放控制技术研究%Experimental research of oil vapor pollution control with galssy membrane separation technology

    Institute of Scientific and Technical Information of China (English)

    朱玲; 陈家庆; 张宝生; 王建宏; 赵岩

    2011-01-01

    针对加油站收油和发油过程中产生的油气污染,采用新型的玻璃态油气截留型PEEK中空纤维膜组件,在自行设计建造的膜分离设备上,分别考察了膜组件和整个膜系统对油气污染治理和回收的效果,提出了一种研究膜法油气回收过程的新思路。对于膜组件的分离实验结果发现,处理流量在2.5~7.5 m3/h、系统压力在525~825 Pa之间的中试规模运行条件下,膜组件对油气-氮气混合气有很好的净化能力,尾气能够达标排放;在渗余的富油气返回油罐的模拟加油站实际运行情况的循环实验条件下,尾气也低于25g/m3的国标。%A new type of vapor retained galssy membrance, which was based on PEEK hollow fiber membranes , was used to control the oil vapor pollution during the course of receieving and transfering gasoline in oil stations. The efficiencies of the membrance module and the membrance system were evaluated respectively in the facalities which were designed and set up by ourselves, and the results of these experiments may provide a new method for membrance seperation on oil vapor recovery. It was found that the membrance module had high efficiency for the seperation of VOCs-N2 mixed gases, with the operational capacity from 2. 5 mVh to 7. 5 mVh and the systemic pressure from 525 Pa to 825 Pa. The outlet vapor after treatment can meet the national standard. When the residue vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g/m3.

  11. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    Science.gov (United States)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    2017-02-01

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1 m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20 years, even for vapor source concentrations up to 10 g/m3. A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application.

  12. Waste storage in the vadose zone affected by water vapor condensation and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab.

  13. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    Science.gov (United States)

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks.

  14. Robust active noise control in the loadmaster area of a military transport aircraft.

    Science.gov (United States)

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  15. Projection-Based Adaptive Backstepping Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate disturbance, and 20% actuators faults.

  16. Controlling In–Ga–Zn–O thin films transport properties through density changes

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarski, Jakub, E-mail: kaczmarski@ite.waw.pl [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Boll, Torben [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Borysiewicz, Michał A. [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Taube, Andrzej [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics & Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland); Thuvander, Mattias; Law, Jia Yan [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Kamińska, Eliana [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Stiller, Krystyna [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden)

    2016-06-01

    In the following study we investigate the effect of the magnetron cathode current (I{sub c}) during reactive sputtering of In–Ga–Zn–O (a-IGZO) on thin-films nanostructure and transport properties. All fabricated films are amorphous, according to X-ray diffraction measurements. However, High Resolution Transmission Electron Microscopy revealed the a-IGZO fabricated at I{sub C} = 70 mA to contain randomly-oriented nanocrystals dispersed in amorphous matrix, which disappear in films deposited at higher cathode current. These nanocrystals have the same composition as the amorphous matrix. One can observe that, while I{sub C} is increased from 70 to 150 mA, the carrier mobility improves from μ{sub Hall} = 6.9 cm{sup 2}/Vs to μ{sub Hall} = 9.1 cm{sup 2}/Vs. Additionally, the increase of I{sub C} caused a reduction of the depletion region trap states density of the Ru–Si–O/In–Ga–Zn–O Schottky barrier. This enhancement in transport properties is attributed to the greater overlapping of s-orbitals of the film-forming cations caused by increased density, evidenced by X-ray reflectivity, at a fixed chemical composition, regardless nanostructure of thin films. - Highlights: • Magnetron cathode current (I{sub C}) controls the transport properties of In–Ga–Zn–O (IGZO). • Low I{sub C} results in IGZO films with nanocrystalline inclusions in amorphous matrix. • High I{sub C} reduces the number of trap states in depletion region of Schottky contacts.

  17. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    Science.gov (United States)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  18. Examination of the U.S. EPA's vapor intrusion database based on models.

    Science.gov (United States)

    Yao, Yijun; Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2013-02-05

    In the United States Environmental Protection Agency (U.S. EPA)'s vapor intrusion (VI) database, there appears to be a trend showing an inverse relationship between the indoor air concentration attenuation factor and the subsurface source vapor concentration. This is inconsistent with the physical understanding in current vapor intrusion models. This article explores possible reasons for this apparent discrepancy. Soil vapor transport processes occur independently of the actual building entry process and are consistent with the trends in the database results. A recent EPA technical report provided a list of factors affecting vapor intrusion, and the influence of some of these are explored in the context of the database results.

  19. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  20. A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin Type 1A Receptor

    Directory of Open Access Journals (Sweden)

    Ruyun Zhou

    2013-02-01

    Full Text Available Molecular motors are fundamental to neuronal morphogenesis and function. However, the extent to which molecular motors are involved in higher brain functions remains largely unknown. In this study, we show that mice deficient in the kinesin family motor protein KIF13A (Kif13a−/− mice exhibit elevated anxiety-related behavioral phenotypes, probably because of a reduction in 5HT1A receptor (5HT1AR transport. The cell-surface expression level of the 5HT1AR was reduced in KIF13A-knockdown neuroblastoma cells and Kif13a−/− hippocampal neurons. Biochemical analysis showed that the forkhead-associated (FHA domain of KIF13A and an intracellular loop of the 5HT1AR are the interface between the motor and cargo vesicles. A minimotor consisting of the motor and FHA domains is able to transport 5HT1AR-carrying organelles in in vitro reconstitution assays. Collectively, our results suggest a role for this molecular motor in anxiety control.

  1. Control and optimization of solute transport in a thin porous tube

    KAUST Repository

    Griffiths, I. M.

    2013-03-01

    Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of devices that rely on cross-flow filtration, such as those used in water purification, irrigation devices, field-flow fractionation, and hollow-fibre bioreactors for tissue-engineering applications. Motivated by these applications, a radially averaged model for fluid and solute transport in a tube with thin porous walls is derived by developing the classical ideas of Taylor dispersion. The model includes solute diffusion and advection via both radial and axial flow components, and the advection, diffusion, and uptake coefficients in the averaged equation are explicitly derived. The effect of wall permeability, slip, and pressure differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a given solute distribution is derived. The theory is applied to the specific example of a hollow-fibre membrane bioreactor, where a uniform delivery of nutrient across the membrane walls to the extra-capillary space is required to promote spatially uniform cell growth. © 2013 American Institute of Physics.

  2. Vibration Control of High-speed Cannonball Transport Mechanism Driven by Impact

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-qing; LIU Hong-zhao; HE Chang-an; YANG Song-feng

    2005-01-01

    A method is presented to control the vibration of high-speed cannonball transport mechanism due to the reduction of its weight, which adhere a nonlinear Zn-27Al-1Cu damping alloy layer and a constraint layer partly to the part of mechanism driven by impact. Based on the equivalent viscous damping theory and using curve fitting to describe the rule of the dissipation factor of damping alloy changing with stress, the nonlinear constitutive relation of Zn-27Al-1Cu damping alloy is given. The nonlinear spring damping contact model is adopted to describe the contact force of the clearance joint.Based on the nonlinear finite element contact theory, the outer impact contact force between the mechanism and its working environment is analyzed, and a coupled dynamic model of structural impact and mechanism motion with clearance joint is put forward. A dynamic model is established for the cannonball transport mechanism partly adhering Zn-27Al-1Cu damping alloy layer and constraint layer under complex impact conditions. At last, the feasibility of the method presented is proved by numerical simulation.

  3. The North Atlantic Oscillation controls air pollution transport to the Arctic

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2003-01-01

    Full Text Available This paper studies the interannual variability of pollution pathways from northern hemisphere (NH continents into the Arctic. Using a 15-year model simulation of the dispersion of passive tracers representative of anthropogenic emissions from NH continents, we show that the North Atlantic Oscillation (NAO exerts a strong control on the pollution transport into the Arctic, particularly in winter and spring. For tracer lifetimes of 5 (30 days, surface concentrations in the Arctic winter are enhanced by about 70% (30% during high phases of the NAO (in the following referred to as NAO+ compared to its low phases (NAO-. This is mainly due to great differences in the pathways of European pollution during NAO+ and NAO- phases, respectively, but reinforced by North American pollution, which is also enhanced in the Arctic during NAO+ phases. In contrast, Asian pollution in the Arctic does not significantly depend on the NAO phase. The model results are confirmed using remotely-sensed NO2 vertical atmospheric columns obtained from seven years of satellite measurements, which show enhanced northward NO2 transport and reduced NO2 outflow into the North Atlantic from Central Europe during NAO+ phases. Surface measurements of carbon monoxide (CO and black carbon at high-latitude stations further corroborate the overall picture of enhanced Arctic pollution levels during NAO+ phases

  4. Modeling an integrated photoelectrolysis system sustained by water vapor

    OpenAIRE

    Xiang, Chengxiang; Chen, Yikai; Lewis, Nathan S.

    2013-01-01

    Two designs for an integrated photoelectrolysis system sustained by water vapor have been investigated using a multi-physics numerical model that accounts for charge and species conservation, electron and ion transport, and electrochemical processes. Both designs leverage the use of a proton-exchange membrane that provides conductive pathways for reactant/product transport and prevents product crossover. The resistive losses, product gas transport, and gas crossovers as a function of the geom...

  5. METHODS OF IMPROVING THE RELIABILITY OF THE CONTROL SYSTEM TRACTION POWER SUPPLY OF ELECTRIC TRANSPORT BASED ON AN EXPERT INFORMATION

    Directory of Open Access Journals (Sweden)

    O. O. Matusevych

    2009-03-01

    Full Text Available The author proposed the numerous methods of solving the multi-criterion task – increasing of reliability of control system on the basis of expert information. The information, which allows choosing thoughtfully the method of reliability increasing for a control system of electric transport, is considered.

  6. Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Tessarek, C.; Bashouti, M.; Heilmann, M.; Dieker, C.; Knoke, I.; Spiecker, E.; Christiansen, S.

    2013-10-01

    A simple self-catalyzed and mask-free approach will be presented to grow GaN rods and nanorods based on the metal-organic vapor phase epitaxy technique. The growth parameter dependent adjustment of the morphology of the structures will be discussed. Rods and nanorods with diameters reaching from a few μm down to 100 nm, heights up to 48 μm, and densities up to 8ṡ107 cm-2 are all vertically aligned with respect to the sample surface and exhibiting a hexagonal shape with smooth sidewall facets. Optical properties of GaN nanorods were determined using cathodoluminescence. It will be shown that the optical properties can be improved just by reducing the Ga precursor flow. Furthermore, for regular hexagonal shaped rods and nanorods, whispering gallery modes with quality factors up to 500 were observed by cathodoluminescence pointing out high morphological quality of the structures. Structural investigations using transmission electron microscopy show that larger GaN nanorods (diameter > 500 nm) contain threading dislocations in the bottom part and vertical inversion domain boundaries, which separate a Ga-polar core from a N-polar shell. In contrast, small GaN nanorods (˜200 nm) are largely free of such extended defects. Finally, evidence for a self-catalyzed, Ga-induced vapor-liquid-solid growth will be discussed.

  7. Vapor-phase fabrication and properties of continuous-filament ceramic composites.

    Science.gov (United States)

    Besmann, T M; Sheldon, B W; Lowden, R A; Stinton, D P

    1991-09-06

    The continuous-filament ceramic composite is becoming recognized as necessary for new, high-temperature structural applications. Yet because of the susceptibility of the filaments to damage from traditional methods for the preparation of ceramics, vapor-phase infiltration has become the fabrication method of choice. The chemical vapor infiltration methods for producing these composites are now being studied in earnest, with the complexity of filament weaves and deposition chemistry being merged with standard heat and mass-transport relationships. Two of the most influential effects on the mechanical properties of these materials are the adhesion and frictional force between the fibers and the matrix, which can be controlled by a tailored interface coating. A variety of materials are available for producing these composites including carbide, nitride, boride, and oxide filaments and matrices. Silicon carbide-based materials are by far the most advanced and are already being used in aerospace applications.

  8. Geochemical Processes Controlling Chromium Transport in the Vadose Zone and Regional Aquifer, Los Alamos, New Mexico

    Science.gov (United States)

    Longmire, P.; Ding, M.; Rearick, M.; Vaniman, D.; Katzman, D.

    2008-12-01

    The environmental aqueous geochemistry of Cr is of considerable interest to physical scientists and toxicologists in quantifying the fate and transport of this metal in surface and subsurface environments. Chromium(VI) solutions were released from cooling towers to a stream channel within Sandia Canyon at Los Alamos National Laboratory, NM from 1956 to 1971. These solutions have migrated 293 m depth through the vadose zone, containing several saturated zones, to the regional water table. Concentrations of total dissolved Cr, mainly as Cr(VI), in the regional aquifer range between 0.17 to 8.46 mM. The regional aquifer is characterized by calcium-sodium-bicarbonate solution, contains dissolved oxygen (0.09 to 0.22 mM), and has a circumneutral pH (6.8 to 8.3). Geochemical processes controlling the fate and transport of Cr in groundwater at Los Alamos include a combination of adsorption and precipitation reactions within aquifer systems. Vadose zone material containing hydrous ferric oxide, smectite, silica glass, and calcite widely range in their ability to adsorb Cr(VI) under basic pH conditions. Overall, the vadose zone at Los Alamos is relatively oxidizing, however, basalt flows are locally reducing with respect to Fe. Ferrous iron concentrated within the Cerros del Rio basalt has been shown through batch experiments to reduce Cr(VI) to Cr(III) resulting in precipitation of chromium(III) hydroxide. Regional aquifer material, consisting of silicates, oxides, and calcite, vary in the amount of Fe(II) available in reactive minerals to effectively reduce Cr(VI) to Cr(III). The results of our studies (1) directly assess the relationship between mineralogical characterization and transport behavior of Cr using site-specific hydrogeologic material and (2) provide site-specific adsorption and precipitation parameters obtained through the experiments to refine the fate and transport modeling of Cr within the vadose zone and regional aquifer. Natural attenuation of Cr at Los

  9. Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis

    DEFF Research Database (Denmark)

    Fetzer, Thomas; Vanderborght, Jan; Mosthaf, Klaus

    2017-01-01

    on how vapor transport in the air phase and the interaction at the interface between the free flow and porous medium were represented or parameterized. However, simulated cumulative evaporation losses from initially wet soil profiles were very similar between model concepts and mainly controlled...

  10. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [University of New Mexico

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  11. Control strategies of a tilt-rotor UAV for load transportation

    OpenAIRE

    Marcelino Mendes de Almeida Neto

    2014-01-01

    Nessa dissertação são apresentadas estratégias de controle para solucionar o problema de transporte de carga suspensa ao longo de uma trajetória desejada por um Veículo Aéreo Não Tripulado (VANT) na configuração Tilt-rotor. Para o presente estudo, é importante que a aeronave seja capaz de manter tanto a si mesma quanto a carga transportada estável mesmo na presença de perturbações externas, incertezas paramétricas e erros de medição. Em geral, é importante que se tenha um modelo dinâmico prec...

  12. Synchronization and Control of Halo-Chaos in Beam Transport Network with Small World Topology

    Institute of Scientific and Technical Information of China (English)

    LIU Qiang; FANG Jin-Qing; LI Yong

    2007-01-01

    The synchronous conditions of two kinds of the small-world (SW) network are studied.The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely,if the BTN is constructed with the SWtopology,the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology,respectively.This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems,and may have potential use in prospective applications for halo-chaos secure communication.

  13. Controlling and measuring quantum transport of heat in trapped-ion crystals.

    Science.gov (United States)

    Bermudez, A; Bruderer, M; Plenio, M B

    2013-07-26

    Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.

  14. Evaluation of Transport and Dispersion Models: A Controlled Comparison of HPAC and NARAC Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Warner, S; Heagy, J F; Platt, N; Larson, D; Sugiyama, G; Nasstrom, J S; Foster, K T; Bradley, S; Bieberbach, G

    2001-05-01

    During fiscal year 2000, a series of studies in support of the Defense Threat Reduction Agency (DTRA) was begun. The goal of these studies is to improve the verification, validation, and accreditation (VV&A) of hazard prediction and assessment models and capabilities. These studies are part of a larger joint VV&A collaborative effort that DTRA and the Department of Energy (DOE), via the Lawrence Livermore National Laboratory (LLNL), are conducting. This joint effort includes comparisons of the LLNL and DTRA transport and dispersion (T&D) modeling systems, NARAC and HPAC, respectively. The purpose of this work is to compare, in a systematic way, HPAC and NARAC model predictions for a set of controlled hypothetical release scenarios. Only ''model-versus-model'' comparisons are addressed in this work. Model-to-field trial comparisons for HPAC and NARAC have been addressed in a recent companion study, in support of the same joint VV&A effort.

  15. Transport control of dust particles via the Electrical Asymmetry Effect: experiment, simulation, and modeling

    CERN Document Server

    Iwashita, Shinya; Schulze, Julian; Hartmann, Peter; Donkó, Zoltán; Uchida, Giichiro; Koga, Kazunori; Shiratani, Masaharu; Czarnetzki, Uwe

    2013-01-01

    The control of the spatial distribution of micrometer-sized dust particles in capacitively coupled radio frequency discharges is relevant for research and applications. Typically, dust particles in plasmas form a layer located at the sheath edge adjacent to the bottom electrode. Here, a method of manipulating this distribution by the application of a specific excitation waveform, i.e. two consecutive harmonics, is discussed. Tuning the phase angle \\theta between the two harmonics allows to adjust the discharge symmetry via the Electrical Asymmetry Effect (EAE). An adiabatic (continuous) phase shift leaves the dust particles at an equilibrium position close to the lower sheath edge. Their levitation can be correlated with the electric field profile. By applying an abrupt phase shift the dust particles are transported between both sheaths through the plasma bulk and partially reside at an equilibium position close to the upper sheath edge. Hence, the potential profile in the bulk region is probed by the dust pa...

  16. Tungsten transport and sources control in JET ITER-like wall H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N., E-mail: nicolas.fedorczak@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pütterich, T. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Brezinsek, S. [Institute of Energy and Climate Research, Forschungszentrum Jlich, Assoc EURATOM-FZJ, Jlich (Germany); Devynck, P.; Dumont, R.; Goniche, M.; Joffrin, E. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Lerche, E. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lipschultz, B. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Luna, E. de la [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Maggi, C. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Matthews, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Nunes, I. [Istituto de plasmas e fusao nuclear, Lisboa (Portugal); Rimini, F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Solano, E.R. [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Tsalas, M. [Association EURATOM-Hellenic Republic, NCSR Demokritos 153 10, Attica (Greece); Vries, P. de [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-08-15

    A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.

  17. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh

    2017-05-31

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  18. Quantitative evaluation of a thrust vector controlled transport at the conceptual design phase

    Science.gov (United States)

    Ricketts, Vincent Patrick

    The impetus to innovate, to push the bounds and break the molds of evolutionary design trends, often comes from competition but sometimes requires catalytic political legislature. For this research endeavor, the 'catalyzing legislation' comes in response to the rise in cost of fossil fuels and the request put forth by NASA on aircraft manufacturers to show reduced aircraft fuel consumption of +60% within 30 years. This necessitates that novel technologies be considered to achieve these values of improved performance. One such technology is thrust vector control (TVC). The beneficial characteristic of thrust vector control technology applied to the traditional tail-aft configuration (TAC) commercial transport is its ability to retain the operational advantage of this highly evolved aircraft type like cabin evacuation, ground operation, safety, and certification. This study explores if the TVC transport concept offers improved flight performance due to synergistically reducing the traditional empennage size, overall resulting in reduced weight and drag, and therefore reduced aircraft fuel consumption. In particular, this study explores if the TVC technology in combination with the reduced empennage methodology enables the TAC aircraft to synergistically evolve while complying with current safety and certification regulation. This research utilizes the multi-disciplinary parametric sizing software, AVD Sizing, developed by the Aerospace Vehicle Design (AVD) Laboratory. The sizing software is responsible for visualizing the total system solution space via parametric trades and is capable of determining if the TVC technology can enable the TAC aircraft to synergistically evolve, showing marked improvements in performance and cost. This study indicates that the TVC plus reduced empennage methodology shows marked improvements in performance and cost.

  19. Geomorphic and substrate controls on spatial variability in river solute transport and biogeochemical cycling

    Science.gov (United States)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jen; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Nutrient concentrations in surface waters and groundwaters are increasing in many agricultural catchments worldwide as a result of anthropogenic activities. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical transformation rates (e.g. denitrification) can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are not well understood. Here, we aimed to assess: 1) how differences in geomorphological heterogeneity control river solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive 'smart' tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small-scale targeted management interventions to alter geomorphic heterogeneity may be

  20. Controlling Extra- and Intramacrophagic Mycobacterium abscessus by Targeting Mycolic Acid Transport

    Directory of Open Access Journals (Sweden)

    Albertus Viljoen

    2017-09-01

    Full Text Available Mycobacterium abscessus is a rapidly growing mycobacterium (RGM causing serious infections especially among cystic fibrosis patients. Extremely limited therapeutic options against M. abscessus and a rise in infections with this mycobacterium require novel chemotherapies and a better understanding of how the bacterium causes infection. Different from most RGM, M. abscessus can survive inside macrophages and persist for long durations in infected tissues. We recently delineated differences in the infective programs followed by smooth (S and rough (R variants of M. abscessus. Unexpectedly, we found that the S variant behaves like pathogenic slow growing mycobacteria, through maintaining a block on the phagosome maturation process and by inducing phagosome-cytosol communications. On the other hand, R variant infection triggers autophagy and apoptosis, reminiscent of the way that macrophages control RGM. However, the R variant has an exquisite capacity to form extracellular cords, allowing these bacteria to rapidly divide and evade phagocytosis. Therefore, new chemotherapeutic interventions against M. abscessus need to efficiently deal with both the reservoir of intracellular bacilli and the extracellular cords. In this context, we recently identified two chemical entities that were very effective against both M. abscessus populations. Although being structurally unrelated these two chemotypes inhibit the activity of the essential mycolic acid transporter, MmpL3. In this Perspective, we aimed to highlight recent insights into how M. abscessus interacts with phagocytic cells and how the inhibition of mycolic acid transport in this pathogenic RGM could be an efficient means to control both intracellular and extracellular populations of the bacterium.