WorldWideScience

Sample records for controlled tumor protein

  1. Sumoylation of Human Translationally Controlled Tumor Protein Is Important for Its Nuclear Transport

    OpenAIRE

    Gnanasekar Munirathinam; Kalyanasundaram Ramaswamy

    2012-01-01

    Translationally controlled tumor protein (TCTP) lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO) motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into th...

  2. Sumoylation of Human Translationally Controlled Tumor Protein Is Important for Its Nuclear Transport

    Directory of Open Access Journals (Sweden)

    Gnanasekar Munirathinam

    2012-01-01

    Full Text Available Translationally controlled tumor protein (TCTP lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into the nucleus. We show that TCTP exists in sumoylated form in cytoplasm and nucleus of mammalian cells. Point mutation of lysine residue in the SUMO motif compromised the ability of TCTP to get sumoylated in vitro. When cells were transfected with FLAG-tagged mutated TCTP, nuclear transport of TCTP was inhibited confirming that sumoylation is critical for the nuclear transport of TCTP. Our previous studies demonstrated that TCTP can function as an antioxidant protein in the nucleus. When we mutated TCTP at the SUMO motif the antioxidant function of TCTP was compromised. Results presented in this study thus show that sumoylation plays an important role in the transport of TCTP into the nucleus where they function as antioxidant protein.

  3. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B.

    Science.gov (United States)

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-04-03

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Cloning, expression and characterization of translationally controlled tumor protein (TCTP) gene from flatfish turbot ( Scophthalmus maximus)

    Science.gov (United States)

    Wang, Jian; Guo, Huarong; Zhang, Shicui; Yin, Licheng; Guo, Bin; Wang, Shaojie

    2008-05-01

    A full-length cDNA encoding translationally controlled tumor protein of marine flatfish turbot ( Scophthalmus maximus), SmTCTP, was isolated with rapid amplification of cDNA Ends (RACE). SmTCTP consisted of a 5' untranslated region (UTR) of 84 bp, a 3' UTR of 451 bp and an open reading frame (ORF) of 513 bp, encoding a protein of 170 amino acid residues, which contained two signature sequences of TCTP family. The 5'UTR of SmTCTP started with a 5'-terminal oligopyrimidine tract (5'-TOP), a typical feature for translationally controlled mRNAs. The deduced amino acid sequence of SmTCTP was similar to the other known vertebrate TCTPs in a range of 58.8% to 64.1%. The length of fish TCTPs was diverse among species, e.g., TCP of turbot and sea perch ( Lateolabrax japonicus) is 170 aa in length, while that of zebrafish ( Danio rerio) and rohu ( Labeo rohita) is 171 aa in length. Northern blot analysis revealed that SmTCTP has only one type of mRNA. Its expression level in albino skin was slightly higher than that in normal skin. We constructed the pET30a- SmTCTP expression plasmid. The recombinant protein of His-tag SmTCTP was over-expressed in E. coli, purified and identified with peptide mass fingerprinting. These results may pave the way of further investigation of the biological function of TCTP in fish.

  5. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells

    Science.gov (United States)

    Corsaro, Alessandro; Bajetto, Adriana; Thellung, Stefano; Begani, Giulia; Villa, Valentina; Nizzari, Mario; Pattarozzi, Alessandra; Solari, Agnese; Gatti, Monica; Pagano, Aldo; Würth, Roberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2016-01-01

    Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype. PMID:27229535

  6. Cloning, Expression and Characterization of Translationally Controlled Tumor Protein (TCTP) Gene from Flatfish Turbot (Scophthalmus maximus)

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; GUO Huarong; ZHANG Shicui; YIN Licheng; GUO Bin; WANG Shaojie

    2008-01-01

    A full-length cDNA encoding translationally controlled tumor protein of marine flatfish turbot (Scophthalmus maximus), SmTCTP, was isolated with rapid amplification of cDNA Ends (RACE). SmTCTP consisted of a 5' untranslated region (UTR) of 84 bp, a 3' UTR of 451 bp and an open reading flame (ORF) of 513 bp, encoding a protein of 170 amino acid residues, which contained two signature sequences of TCTP family. The 5'UTR of SmTCTP started with a 5'-terminal oligopyrimidine tract (5'-TOP), a typical feature for translationaily controlled mRNAs. The deduced amino acid sequence of SmTCTP was similar to the other known verte-brate TCTPs in a range of 58.8% to 64.1%. The length offish TCTPs was diverse among species, e.g., TCTP of turbot and sea perch (Lateolabrax japonicus) is 170 aa in length, while that of zebrafish (Danio rer/o) and rohu (Labeo rohita) is 171 aa in length. North-ern blot analysis revealed that SmTCTP has only one type of mRNA. Its expression level in albino skin was slightly higher than that in normal skin. We constructed the pET3Oa-SmTCTP expression plasmid. The recombinant protein of His-tag SmTCTP was over-expressed in E. coli, purified and identified with peptide mass fingerprinting. These results may pave the way of further inves-tigation of the biological function of TCTP in fish.

  7. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    Science.gov (United States)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.

  8. Insulin Induces Phosphorylation of Serine Residues of Translationally Controlled Tumor Protein in 293T Cells

    Directory of Open Access Journals (Sweden)

    Jeehye Maeng

    2015-04-01

    Full Text Available Insulin induces the activation of Na,K-ATPase while translationally controlled tumor protein (TCTP inhibits this enzyme and the associated pump activity. Because binding of insulin with its membrane receptor is known to mediate the phosphorylation of multiple intracellular proteins, phosphorylation of TCTP by insulin might be related to the sodium pump regulation. We therefore examined whether insulin induces TCTP phosphorylation in embryonic kidney 293T cells. Using immunoprecipitation and Western blotting, we found that insulin phosphorylates serine (Ser residues of TCTP. Following fractionation of the insulin-treated cells into cytosol and membrane fractions, phosphorylated TCTP at its Ser residue (p-Ser-TCTP was detected exclusively in the cytosolic part and not in the membrane fraction. Phosphorylation of TCTP reached maximum in about 10 min after insulin treatment in 293T cells. In studies of cell-type specificity of insulin-mediated phosphorylation of TCTP, insulin did not phosphorylate TCTP in HeLa cells. Computational prediction and immunoprecipitation using several constructs having Ser to Ala mutation at potential p-Ser sites of TCTP revealed that insulin phosphorylated the serine-9 and -15 residues of TCTP. Elucidations of how insulin-mediated TCTP phosphorylation promotes Na,K-ATPase activation, may offer potential therapeutic approaches to diseases associated with vascular activity and sodium pump dysregulation.

  9. Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity.

    Directory of Open Access Journals (Sweden)

    Miyoung Kim

    Full Text Available BACKGROUND: Translationally Controlled Tumor Protein (TCTP found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF. Human recombinant HRF (HrHRF has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn. METHODS AND FINDINGS: We found that only NH(2-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP. Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS: Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development.

  10. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  11. A translationally controlled tumor protein gene Rpf41 is required for the nodulation of Robinia pseudoacacia.

    Science.gov (United States)

    Chou, Minxia; Xia, Congcong; Feng, Zhao; Sun, Yali; Zhang, Dehui; Zhang, Mingzhe; Wang, Li; Wei, Gehong

    2016-03-01

    Translationally controlled tumor protein (TCTP) is fundamental for the regulation of development and general growth in eukaryotes. Its multiple functions have been deduced from its involvement in several cell pathways, but its potential involvement in symbiotic nodulation of legumes cannot be suggested a priori. In the present work, we identified and characterized from the woody leguminous tree Robinia pseudoacacia a homolog of TCTP, Rpf41, which was up-regulated in the infected roots at 15 days post-inoculation but decreased in the matured nodules. Subcellular location assay showed that Rpf41 protein was located in the plasma membrane, cytoplasm, nucleus, and also maybe in cytoskeleton. Knockdown of Rpf41 via RNA interference (RNAi) resulted in the impaired development of both nodule and root hair. Compared with wild plants, the root and stem length, fresh weight and nodule number per plant was decreased dramatically in Rpf41 RNAi plants. The number of ITs or nodule primordia was also significantly reduced in the Rpf41 RNAi roots. The analyses of nodule ultrastructure showed that the infected cell development in Rpf41 RNAi nodules remained in zone II, which had fewer infected cells. Furthermore, the symbiosomes displayed noticeable shrinkage of bacteroid and peribacteroid space enlargement in the infected cells of Rpf41 RNAi nodules. In the deeper cell layers, a more remarkable aberration of the infected cell ultrastructure was observed, and electron-transparent lesions in the bacteroid cytoplasm were detected. These results identify TCTP as an important regulator of symbiotic nodulation in legume for the first time, and it may be involved in symbiotic cell differentiation and preventing premature aging of the young nodules in R. pseudoacacia.

  12. Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    Xing-Hai Jin

    2017-01-01

    Full Text Available Our previous study showed that dimerized translationally controlled tumor protein (dTCTP plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2, binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC, thymus and activation-regulated chemokine (TARC and thymic stromal lymphopoietin (TSLP. These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.

  13. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration

    OpenAIRE

    Roberto eToscano-Morales; Beatriz eXoconostle-Cázares; José Luis eCabrera-Ponce; Jesús eHinojosa-Moya; Jorge Luis eRuiz-Salas; Valentin eGalván-Gordillo; Ramon Gerardo eGuevara-González; Roberto eRuiz-Medrano

    2015-01-01

    The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage...

  14. Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under Hg2+ stress

    Institute of Scientific and Technical Information of China (English)

    Feijuan Wang; Yongshen Shang; Ling Yang; Cheng Zhu

    2012-01-01

    So far,very little is known about mercury stress-induced intercellular metabolic changes in rice roots at the proteome level.To investigate the response of rice roots to mercury stress,changes in protein expression in rice roots were analyzed using a comparative proteomics approach.Six-leaf stage rice seedlings were treated with 50 μmol/L HgCl2 for 3 hr; 29 protein spots showed a significant changes in abundance under stress when compared with the Hg2+-tolerant rice mutant and wild type (Zhonghua 11).Furthermore,all these protein spots were identified by mass spectrometry to match 27 diverse protein species.The identified proteins were involved in several processes,including stress response,redox homeostasis,signal transduction,regulation and metabolism; some were found to be cellular structure proteins and a few were unknown.Among the up-regulated proteins,OsTCTP (translationally controlled tumor protein) was chosen to perform hetereologous expression in yeast which was presumed to participate in the Hg2+ tolerance of rice,providing evidence for its role in alleviating Hg2+ damage.Among the many tests,we found that OsTCTP-overexpressed yeast strains were more resistant to Hg2+ than wild-type yeast.Thus,we propose that OsTCTP contributes to Hg2+ resistance.Here we present,for the first time,the functional characterization of OsTCTP in connection with Hg2+ stress in plants.

  15. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca(2+)-Independent Phospholipase A₂ Pathways.

    Science.gov (United States)

    Seo, Jihui; Maeng, Jeehye; Kim, Hwa-Jung

    2016-10-24

    The translationally controlled tumor protein (TCTP), initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF). TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12) cells. Treatment with recombinant TCTP (rTCTP) enhanced both basal and depolarization (50 mM KCl)-evoked [³H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca(2+)]i), the rTCTP-driven effect on dopamine release was mediated by a Ca(2+)-independent pathway, as evidenced by the fact that Ca(2+)-modulating agents such as Ca(2+) chelators and a voltage-gated L-type Ca(2+)-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A₂ (PLA₂) in rTCTP-induced dopamine release, the inhibitor for Ca(2+)-independent PLA₂ (iPLA₂) produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca(2+)-dependent cytosolic PLA₂ (cPLA₂) and secretory PLA₂ (sPLA₂) inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca(2+)-independent mechanism that involved PLA₂ in the process, suggesting the regulatory role of TCTP in the neuronal functions.

  16. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca2+-Independent Phospholipase A2 Pathways

    Directory of Open Access Journals (Sweden)

    Jihui Seo

    2016-10-01

    Full Text Available The translationally controlled tumor protein (TCTP, initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF. TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12 cells. Treatment with recombinant TCTP (rTCTP enhanced both basal and depolarization (50 mM KCl-evoked [3H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca2+]i, the rTCTP-driven effect on dopamine release was mediated by a Ca2+-independent pathway, as evidenced by the fact that Ca2+-modulating agents such as Ca2+ chelators and a voltage-gated L-type Ca2+-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A2 (PLA2 in rTCTP-induced dopamine release, the inhibitor for Ca2+-independent PLA2 (iPLA2 produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca2+-dependent cytosolic PLA2 (cPLA2 and secretory PLA2 (sPLA2 inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca2+-independent mechanism that involved PLA2 in the process, suggesting the regulatory role of TCTP in the neuronal functions.

  17. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells.

    Science.gov (United States)

    Wanachottrakul, Nattaporn; Chotigeat, Wilaiwan; Kedjarune-Leggat, Ureporn

    2014-04-01

    Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP.

  18. Translationally-controlled tumor protein activates the transcription of Oct-4 in kidney-derived stem cells.

    Science.gov (United States)

    Jing, Ying; He, Liang-Liang; Mei, Chang-Lin

    2017-01-01

    The molecular mechanisms underlying translationally-controlled tumor protein (TCTP) in the activation of octamer-binding transcription factor 4 (Oct-4) in kidney-derived stem cells have not been characterized. The aim of the present study was to identify the transcriptional activation of Oct-4 by TCTP in kidney-derived stem cells. Homology-directed repair cDNA inserted into Fisher 344 transgenic (Tg) rats and the mouse strain 129/Svj were used for the experiments. Diphtheria toxin (DT; 10 ng/kg) injected into the Tg rats created the kidney injury, which was rapidly restored by the activation of kidney-derived stem cells. Kidney-derived stem cells were isolated from the DT-injured Tg rats using cell culture techniques. The co-expression of Oct-4 and TCTP were observed in the isolated kidney-derived stem cells. Immunoblotting and reverse transcription-polymerase chain reaction analysis of TCTP null mutant (TCTP(-)/(-)) embryos at day 9.5 (E9.5) demonstrated the absence of co-expression of Oct-4 and TCTP, but expression of paired box-2 was detected. This was in contrast with the E9.5 control embryos, which expressed all three proteins. In conclusion, the results of the present study demonstrated that TCTP activates the transcription of Oct-4 in kidney-derived stem cells, as TCTP(-)/(-) embryos exhibited knock down of TCTP and Oct-4 without disturbing the expression of Pax-2 The characteristics and functional nature of TCTP in association with Oct-4 in kidney-derived stem cells was identified.

  19. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration

    Directory of Open Access Journals (Sweden)

    Roberto eToscano-Morales

    2015-07-01

    Full Text Available The Translationally Controlled Tumor Protein (TCTP is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640, which is an important mitotic regulator, and AtTCTP2 (At3g05540, which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCP2 demonstrates that this suppresses the capacity for plant regeneration; also, this phenomenon requires the presence of TCTP (AtTCTP1 or 2 in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species.

  20. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration

    Science.gov (United States)

    Toscano-Morales, Roberto; Xoconostle-Cázares, Beatriz; Cabrera-Ponce, José L.; Hinojosa-Moya, Jesús; Ruiz-Salas, Jorge L.; Galván-Gordillo, Santiago V.; Guevara-González, Ramón G.; Ruiz-Medrano, Roberto

    2015-01-01

    The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCTP2 demonstrates that it suppresses the capacity for plant regeneration; also, this phenomenon is enhanced by the presence of TCTP (AtTCTP1 or 2) in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species. PMID:26191065

  1. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response.

    Science.gov (United States)

    Santa Brígida, Ailton Borges; dos Reis, Sávio Pinho; Costa, Carinne de Nazaré Monteirou; Cardoso, Cristina Michiko Yokoyama; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2014-03-01

    Cassava (Manihot esculenta Crantz) is one of the most important tropical crops showing tolerance to abiotic stress and adaptations to a wide range of environmental conditions. Here, we aimed to isolate and characterize the full-length cDNA and genomic sequences of a cassava translationally controlled tumor protein gene (MeTCTP), and evaluate its potential role in response to salt stress. The MeTCTP full-length cDNA sequence encodes for a deduced protein with 168 amino acid residues, with theoretical isoelectric point and molecular weight of 4.53 and 19 kDa, respectively, containing two putative signatures of TCTP family and one site for myristoylation. The MeTCTP genomic sequence includes four introns and five exons within a 1,643 bp coding region, and a 264 bp partial promoter sequence containing several putative cis-acting regulatory elements, among them, two putative GT-1 motifs, which may be related to response to sodium chloride (NaCl) and pathogen infection. Semi-quantitative RT-PCR assays showed that MeTCTP transcripts were higher in roots than leaves, and were significantly increased in detached leaves treated with NaCl. Furthermore, the recombinant MeTCTP conferred a protective function against salt stress in bacterial cells. We report for the first time the molecular cloning and characterization of a cassava TCTP with potential role in salt-stress response. Since salinity is one the most important abiotic factors affecting the production of crops worldwide, the MeTCTP gene could be a candidate gene for generation of salt tolerant crops.

  2. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis.

    Science.gov (United States)

    Doyle, Colleen E; Kitty Cheung, H Y; Spence, Kelsey L; Saville, Barry J

    2016-09-01

    In this study, Ustilago maydis Ndt80 homolog one, unh1, of the obligate sexual pathogen U. maydis,is described. Unh1 is the sole Ndt80-like DNA-binding protein inU. maydis. In this model basidiomycete, Unh1 plays a role in sexual development, influencing tumor maturation, teliospore development and subsequent meiotic completion. Teliospore formation was reduced in deletion mutants, and those that did form had unpigmented, hyaline cell walls, and germinated without completing meiosis. Constitutively expressing unh1 in haploid cells resulted in abnormal pigmentation, when grown in both potato dextrose broth and minimal medium, suggesting that pigmentation may be triggered by unh1 in U. maydis. The function of Unh1 in sexual development and pigment production depends on the presence of the Ndt80-like DNA-binding domain, identified within Unh1. In the absence of this domain, or when the binding domain was altered with targeted amino acid changes, ectopic expression of Unh1 failed to complement the unh1 deletion with regards to pigment production and sexual development. An investigation of U. maydis genes with upstream motifs similar to Ndt80 recognition sequences revealed that some have altered transcript levels in Δunh1 strains. We propose that the first characterized Ndt80-like DNA-binding protein in a basidiomycete, Unh1, acts as a transcription factor that is required for teliospore maturation and the completion of meiosis in U. maydis.

  3. Molecular cloning, heterologous expression and functional characterization of a novel translationally-controlled tumor protein (TCTP) family member from Loxosceles intermedia (brown spider) venom.

    Science.gov (United States)

    Sade, Youssef B; Bóia-Ferreira, Marianna; Gremski, Luiza H; da Silveira, Rafael B; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Chaim, Olga M; Veiga, Silvio S

    2012-01-01

    Envenoming with brown spiders (Loxosceles genus) is common throughout the world. Cutaneous symptoms following spider bite accidents include dermonecrosis, erythema, itching and pain. In some cases, accidents can cause hypersensibility or even allergic reactions. These responses could be associated with histaminergic events, such as an increase in vascular permeability and vasodilatation. A protein that may be related to the effects of spider venom was identified from a previously obtained cDNA library of the L. intermedia venom gland. The amino acid sequence of this protein is homologous to proteins from the TCTP (translationally-controlled tumor protein) family, which are extracellular histamine-releasing factors (HRF) that are associated with the allergic reactions to parasites. Herein, we described the cloning, heterologous expression, purification and functional characterization of a novel member of the TCTP family from the Loxosceles intermedia venom gland. This recombinant protein, named LiRecTCTP, causes edema, enhances vascular permeability and is likely related to the inflammatory activity of the venom. Moreover, LiRecTCTP presents an immunological relationship with mammalian TCTPs.

  4. Targeting BET bromodomain proteins in solid tumors.

    Science.gov (United States)

    Sahai, Vaibhav; Redig, Amanda J; Collier, Katharine A; Eckerdt, Frank D; Munshi, Hidayatullah G

    2016-08-16

    There is increasing interest in inhibitors targeting BET (bromodomain and extra-terminal) proteins because of the association between this family of proteins and cancer progression. BET inhibitors were initially shown to have efficacy in hematologic malignancies; however, a number of studies have now shown that BET inhibitors can also block progression of non-hematologic malignancies. In this Review, we summarize the efficacy of BET inhibitors in select solid tumors; evaluate the role of BET proteins in mediating resistance to current targeted therapies; and consider potential toxicities of BET inhibitors. We also evaluate recently characterized mechanisms of resistance to BET inhibitors; summarize ongoing clinical trials with these inhibitors; and discuss potential future roles of BET inhibitors in patients with solid tumors.

  5. The tumor suppressor CDKN3 controls mitosis.

    Science.gov (United States)

    Nalepa, Grzegorz; Barnholtz-Sloan, Jill; Enzor, Rikki; Dey, Dilip; He, Ying; Gehlhausen, Jeff R; Lehmann, Amalia S; Park, Su-Jung; Yang, Yanzhu; Yang, Xianlin; Chen, Shi; Guan, Xiaowei; Chen, Yanwen; Renbarger, Jamie; Yang, Feng-Chun; Parada, Luis F; Clapp, Wade

    2013-06-24

    Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2(pThr-161) at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.

  6. The Inhibitory Effects of Arresten Protein on Tumor Formation

    Institute of Scientific and Technical Information of China (English)

    Yi Lv; Jin-ping Zheng

    2012-01-01

    To examine the inhibitory effects of recombinant purified arresten on tumor formation.Methods Purified arresten protein was incubated with human umbilical vein endothelial cells (HUVECs) and HeLa cells in vitro.The effect on proliferation of HUVECs and HeLa cells was examined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay,and apoptosis of these cells monitored by flow cytometry.The effect on migration of HUVECs and HeLa cells was examined by Boyden chamber.Twenty colon carcinoma-bearing C67BL/6 mice were used to investigate the antitumor effects of arresten protein.The mice were randomly divided into arresten treatment group (n=10) and control group (n=10).The microvessel densities of the tumors were measured by immunohistochemical staining with anti-CD31 monoclonal antibody.Results Arresten inhibited the proliferation and migration of HUVECs in a dose-dependent manner while promoting apoptosis.However,arresten had no significant effects on the proliferation and apoptosis of HeLa cells.The migration of HeLa cells was modestly inhibited by arresten.The arresten treatment group of mice showed no weight loss or unusual behavior during the course of treatment,and the tumor growth was significantly decreased; in contrast,the control group of mice exhibited rapidly growing tumors and cachexia.A dramatically decreased microvessel density in tumor tissues was found in arresten-treated mice compared with that in the control mice.Conclusion Arresten can inhibit tumor growth through inhibition of tumor angiogenesis.

  7. Circulating Fibronectin Controls Tumor Growth

    Directory of Open Access Journals (Sweden)

    Anja von Au

    2013-08-01

    Full Text Available Fibronectin is ubiquitously expressed in the extracellular matrix, and experimental evidence has shown that it modulates blood vessel formation. The relative contribution of local and circulating fibronectin to blood vessel formation in vivo remains unknown despite evidence for unexpected roles of circulating fibronectin in various diseases. Using transgenic mouse models, we established that circulating fibronectin facilitates the growth of bone metastases by enhancing blood vessel formation and maturation. This effect is more relevant than that of fibronectin produced by endothelial cells and pericytes, which only exert a small additive effect on vessel maturation. Circulating fibronectin enhances its local production in tumors through a positive feedback loop and increases the amount of vascular endothelial growth factor (VEGF retained in the matrix. Both fibronectin and VEGF then cooperate to stimulate blood vessel formation. Fibronectin content in the tumor correlates with the number of blood vessels and tumor growth in the mouse models. Consistent with these results, examination of three separate arrays from patients with breast and prostate cancers revealed that a high staining intensity for fibronectin in tumors is associated with increased mortality. These results establish that circulating fibronectin modulates blood vessel formation and tumor growth by modifying the amount of and the response to VEGF. Furthermore, determination of the fibronectin content can serve as a prognostic biomarker for breast and prostate cancers and possibly other cancers.

  8. Anti-tumor Effect and Mechanism of SEA-Fab' Coupled Protein on Gastric Tumor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The anti-tumor effect and mechanism of SEA-Fab' coupled protein on gastric tumor was studied. The target cell Walker-256 was treated with SEA-Fab' synthesized chemically or SEA respectively for 24 h, 36 h or 72 h. PBMC+Walke-256 cells served as controls. The apoptotic index of SEA-Fab' against effector cells was detected. In the mouse gastric cancer models (n=60), SEAFab', SEA and normal saline was injected in experimental group, SEA group and control group respectively. The occurrence and weight of tumor was observed. The results showed that the apoptotic index was significantly higher in the SEA-Fab' (34.6 %-68.9 %) and SEA group (15.5 %-31.9 %) than in PBMC+Walker-256 group (5.5 %-12.8 %) with the difference being significant (P<0.01). And there was significant difference between SEA-Fab' group and SEA group (P <0. 01). The tumor weight in SEA-Fab', SEA and control groups was 3. 64±0. 53 g, 0. 78±0.26 g and 0.49 ±0.17 g respectively with the difference being statistically significant between the SEAFab' group, SEA group and the control group (P<0.01). In the SEA-Fab's and SEA groups,there were CD4+ T and CD8+ T cell infiltrates, but in the cotnrol group, no or few T lymphocytes were seen in the mouse tumor tissue. It was concluded that SEA-Fab' was more effective to activate T lymphocytes to kill the tumor cells than SEA used alone. It was feasibility by using the monoclonal antibody as carrier to perform the targeted immunotherapy of gatric tumor.

  9. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  10. STUDY ON THE ANTI-TUMOR EFFICACY INDUCED BY HEAT SHOCK PROTEIN 70-PEPTIDE COMPLEXES DERIVED FROM TUMOR CELLS

    Institute of Scientific and Technical Information of China (English)

    傅庆国; 张玮; 孟凡东; 郭仁宣; 姚振宇

    2002-01-01

    Objective. To study the efficacy and explore the mechanism of the anti-tumor immunity elicited by heat shock protein 70-peptide complexes (HSP70-PC) derived from tumor cells. Methods. Cells culture, flow cytometric analysis, affinity chromatography for protein purification, SDS-PAGE, Western-blotting and animal experiment were used. Results. HSP70-PC immunization rendered protective effect to both naive and tumorl-bearing mice. All of the naive mice obtained complete resistance to Hcaf cell attack; 40% of the tumor-bearing mice survived for over 90 days, whereas the mice of control group died within 2 weeks (P<0.01). CD8+ subset of T lymphocytes in the peripheral blood of immunized mice increased by 12% . Conclusion. HSP70-PC induces anti-tumor immunity via activation of cytotoxic T lymphocytes (CTLs), and it possesses strong tumor vaccine effect. Our research adds more evidence to support the clinical use of HSP70-PC to fight human cancers.

  11. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Myb-binding protein 1A (MYBBP1A is essential for early embryonic development, controls cell cycle and mitosis, and acts as a tumor suppressor.

    Directory of Open Access Journals (Sweden)

    Silvia Mori

    Full Text Available MYBBP1A is a predominantly nucleolar transcriptional regulator involved in rDNA synthesis and p53 activation via acetylation. However little further information is available as to its function. Here we report that MYBBP1A is developmentally essential in the mouse prior to blastocyst formation. In cell culture, down-regulation of MYBBP1A decreases the growth rate of wild type mouse embryonic stem cells, mouse embryo fibroblasts (MEFs and of human HeLa cells, where it also promotes apoptosis. HeLa cells either arrest at G2/M or undergo delayed and anomalous mitosis. At mitosis, MYBBP1A is localized to a parachromosomal region and gene-expression profiling shows that its down-regulation affects genes controlling chromosomal segregation and cell cycle. However, MYBBP1A down-regulation increases the growth rate of the immortalized NIH3T3 cells. Such Mybbp1a down-regulated NIH3T3 cells are more susceptible to Ras-induced transformation and cause more potent Ras-driven tumors. We conclude that MYBBP1A is an essential gene with novel roles at the pre-mitotic level and potential tumor suppressor activity.

  13. Engineered protein nanoparticles for in vivo tumor detection.

    Science.gov (United States)

    Ahn, Keum-Young; Ko, Ho Kyung; Lee, Bo-Ram; Lee, Eun Jung; Lee, Jong-Hwan; Byun, Youngro; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Jeewon

    2014-08-01

    Two different protein nanoparticles that are totally different in shape and surface structure, i.e. Escherichia coli DNA-binding protein (eDPS) (spherical, 10 nm) and Thermoplasma acidophilum proteasome (tPTS) (cylindrical, 12 × 15 nm) were engineered for in vivo optical tumor detection: arginine-glycine-aspartic acid (RGD) peptide (CDCRGDCFC) was genetically inserted to the surface of each protein nanoparticle, and also near-infrared fluorescence dye was chemically linked to the surface lysine residues. The specific affinity of RGD for integrin (αvβ3) facilitated the uptake of RGD-presenting protein nanoparticles by integrin-expressing tumor cells, and also the protein nanoparticles neither adversely affected cell viability nor induced cell damage. After intravenously injected to tumor-bearing mice, all the protein nanoparticles successfully reached tumor with negligible renal clearance, and then the surface RGD peptides caused more prolonged retention of protein nanoparticles in tumor and accordingly higher fluorescence intensity of tumor image. In particular, the fluorescence of tumor image was more intensive with tPTS than eDPS, which is due presumably to longer in vivo half-life and circulation of tPTS that originates from thermophilic and acidophilic bacterium. Although eDPS and tPTS were used as proof-of-concept in this study, it seems that other protein nanoparticles with different size, shape, and surface structure can be applied to effective in vivo tumor detection.

  14. Constitutive phosphorylation of Shc proteins in human tumors

    DEFF Research Database (Denmark)

    Pelicci, G; Lanfrancone, L; Salcini, A E

    1995-01-01

    cells. In tumor cells with known TK gene alterations Shc proteins were constitutively phosphorylated and complexed with the activated TK. No constitutive Shc phosphorylation was found in primary cell cultures and normal tissues. In 14 of 27 tumor cell lines with no reported TK alterations, Shc proteins...... activated TKs and that the analysis of Shc phosphorylation allow the identification of tumors with constitutive TK activation....

  15. YKL-40 protein in osteosarcoma tumor tissue

    DEFF Research Database (Denmark)

    Thorn, Andrea Pohly; Daugaard, Søren; Christensen, Lise Hanne

    2016-01-01

    YKL-40, a cellular glycoprotein isolated from the human osteosarcoma (OS) cell line MG63, is increased in the blood of patients with various types of cancer, and is found as an independent prognostic variable for survival. YKL-40 is also present with variable intensity in the tumor cells of some......; YKL-staining scores as well as CD14 and CD163 scores were determined, and survival data were determined statistically. A universal intense immunostaining for YKL-40 was found in all tumor cells, but tumor cell/stroma ratio varied, and this ratio (%) served as staining score. Using 24% as mean score...... to divide the material, patients with tumors of high YKL-40 score had a better survival than patients with low score (p = 0.05). YKL-positive macrophages had no influence on the result. Unexpectedly and contrary to some other findings in cancer tissues, this study has shown a correlation between high YKL-40...

  16. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Nayak Anupma

    2004-04-01

    Full Text Available BACKGROUND: p53 is a tumor suppressor gene implicated in the genesis of a variety of malignancies including brain tumors. Overexpression of the p53 protein is often used as a surrogate indicator of alterations in the p53 gene. AIMS: In this study, data is presented on p53 protein expression in adult cases (>15 years of age of astrocytic (n=152 and oligodendroglial (n=28 tumors of all grades. Of the astrocytic tumors, 86% were supratentorial in location while remaining 14% were located infratentorially - 8 in the the cerebellum and 13 in the brainstem. All the oligodendrogliomas were supratentorial. MATERIALS AND METHODS: p53 protein expression was evaluated on formalin-fixed paraffin-embedded sections using streptavidin biotin immunoperoxidase technique after high temperature antigen retrieval. RESULTS: Overall 52% of supratentorial astrocytic tumors showed p53 immunopositivity with no correlation to the histological grade. Thus, 58.8% of diffuse astrocytomas (WHO Grade II, 53.8% of anaplastic astrocytomas (WHO Grade III and 50% of glioblastomas (WHO Grade IV were p53 protein positive. In contrast, all the infratentorial tumors were p53 negative except for one brainstem glioblastoma. Similarly, pilocytic astrocytomas were uniformly p53 negative irrespective of the location. Among oligodendroglial tumors, the overall frequency of p53 immunopositivity was lower (only 28%, though a trend of positive correlation with the tumor grade was noted - 25% in Grade II and 31.5% in grade III (anaplastic oligodendroglioma. Interestingly, p53 labeling index (p53 LI did not correlate with the histopathological grade in both astrocytic and oligodendroglial tumors. CONCLUSIONS: Thus, this study gives an insight into the genetic and hence biological heterogeneity of gliomas, not only between astrocytic tumors vs. oligodendrogliomas but also within astrocytic tumors with regard to their grade and location. With p53 gene therapy trials in progress, this will

  17. Investigation of change of serum immunosuppressive acidic protein levels in gynecological tumors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: To study the clinical significance for measuring serum immunosuppressive acidic protein(IAP) levels to diagnose and follow up survey patients with the gynecological tumor.Methods: Serum IAP levels were determined by IAP-single radial immunodiffusion test in 235 patients with the gynecological tumor,including 38 cases of benign tumor of ovary,41 cases of malignant tumor of ovary,66 cases of hysteromyoma,34 carcinomas of uterine cervix, 16 endometrial carcinomas,27 cases of chemotherapy,13 cases of recurrence, and the control group was 50 cases health women.Results: Serum IAP level was 889.4±207.8mg/L in malignant ovary tumors,which was significantly higher than that of health women and benign tumors of ovary (P<0.01).In patients with carcinoma of uterine cervix and endometrial carcinoma, their IAP levels were 741.4±212.6mg/L and 763.3±209.4mg/L,which were higher than those of the health women and benign tumor of ovary(P<0.01).After chemotherapy, serum IAP levels of malignant tumor of ovary were decreased;in patients with recurrence of tumor of ovary,IAP levels increased compared with the health women(P<0.01).Incidence of the abnormal value was 100%.Conclusion:Measuring IAP level of the gynecological tumor may be an auxiliary index for monitoring gynecological tumor and identifying benign and malignant tumor.

  18. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity.

    Science.gov (United States)

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  19. VAMP-associated protein B (VAPB promotes breast tumor growth by modulation of Akt activity.

    Directory of Open Access Journals (Sweden)

    Meghana Rao

    Full Text Available VAPB (VAMP- associated protein B is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  20. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv

    2014-01-01

    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  1. Controllability in protein interaction networks.

    Science.gov (United States)

    Wuchty, Stefan

    2014-05-13

    Recently, the focus of network research shifted to network controllability, prompting us to determine proteins that are important for the control of the underlying interaction webs. In particular, we determined minimum dominating sets of proteins (MDSets) in human and yeast protein interaction networks. Such groups of proteins were defined as optimized subsets where each non-MDSet protein can be reached by an interaction from an MDSet protein. Notably, we found that MDSet proteins were enriched with essential, cancer-related, and virus-targeted genes. Their central position allowed MDSet proteins to connect protein complexes and to have a higher impact on network resilience than hub proteins. As for their involvement in regulatory functions, MDSet proteins were enriched with transcription factors and protein kinases and were significantly involved in bottleneck interactions, regulatory links, phosphorylation events, and genetic interactions.

  2. Tumor tissue protein signatures reflect histological grade of breast cancer.

    Science.gov (United States)

    Skoog, Petter; Ohlsson, Mattias; Fernö, Mårten; Rydén, Lisa; Borrebaeck, Carl A K; Wingren, Christer

    2017-01-01

    Histological grade is one of the most commonly used prognostic factors for patients diagnosed with breast cancer. However, conventional grading has proven technically challenging, and up to 60% of the tumors are classified as histological grade 2, which represents a heterogeneous cohort less informative for clinical decision making. In an attempt to study and extend the molecular puzzle of histologically graded breast cancer, we have in this pilot project searched for additional protein biomarkers in a new space of the proteome. To this end, we have for the first time performed protein expression profiling of breast cancer tumor tissue, using recombinant antibody microarrays, targeting mainly immunoregulatory proteins. Thus, we have explored the immune system as a disease-specific sensor (clinical immunoproteomics). Uniquely, the results showed that several biologically relevant proteins reflecting histological grade could be delineated. In more detail, the tentative biomarker panels could be used to i) build a candidate model classifying grade 1 vs. grade 3 tumors, ii) demonstrate the molecular heterogeneity among grade 2 tumors, and iii) potentially re-classify several of the grade 2 tumors to more like grade 1 or grade 3 tumors. This could, in the long-term run, lead to improved prognosis, by which the patients could benefit from improved tailored care.

  3. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects.

    Directory of Open Access Journals (Sweden)

    Wen-Fang Cheng

    Full Text Available INTRODUCTION: Human papillomavirus (HPV has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII/E6 and PE(ΔIII/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. MATERIALS AND METHODS: In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. RESULTS: PE(ΔIII/E6+PE(ΔIII/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII/E6 group compared to 100% in the PE(ΔIII/E7 and PE(ΔIII/E6+PE(ΔIII/E7 groups. Mice vaccinated with the PE(ΔIII/E6+PE(ΔIII/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII/E6 or PE(ΔIII/E7 fusion proteins alone. CONCLUSION: Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies.

  4. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    Science.gov (United States)

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  5. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  6. Controlling proteins through molecular springs.

    Science.gov (United States)

    Zocchi, Giovanni

    2009-01-01

    We argue that the mechanical control of proteins-the notion of controlling chemical reactions and processes by mechanics-is conceptually interesting. We give a brief review of the main accomplishments so far, leading to our present approach of using DNA molecular springs to exert controlled stresses on proteins. Our focus is on the physical principles that underlie both artificial mechanochemical devices and natural mechanisms of allostery.

  7. [The importance of ADAM family proteins in malignant tumors].

    Science.gov (United States)

    Walkiewicz, Katarzyna; Gętek, Monika; Muc-Wierzgoń, Małgorzata; Kokot, Teresa; Nowakowska-Zajdel, Ewa

    2016-02-11

    Increasing numbers of reports about the role of adamalysins (ADAM) in malignant tumors are being published. To date, more than 30 representatives of this group, out of which about 20 occur in humans, have been described. The ADAM family is a homogeneous group of proteins which regulate, from the stage of embryogenesis, a series of processes such as cell migration, adhesion, and cell fusion. Half of them have proteolytic activity and are involved in the degradation of the extracellular matrix and the disintegration of certain protein complexes, thereby regulating the bioavailability of various growth factors. Many of these functions have a direct role in the processes of carcinogenesis and promoting the growth of tumor, which affect some signaling pathways, including those related to insulin-like growth factors (IGF1, IGF2), vascular growth factor (VEGF), tumor necrosis factor α (TNFα) and the EGFR/HER pathway. Another branch of studies is the evaluation of the possibility of using members of ADAM family proteins in the diagnosis, especially in breast, colon and non- small cell lung cancer. The detection of concentrations of adamalysin in serum, urine and pleural aspirates might contribute to the development of methods of early diagnosis of cancer and monitoring the therapy. However, both the role of adamalysins in the development and progression of tumors and their importance as a diagnostic and predictive further research still need to be checked on large groups of patients.

  8. Controlling allosteric networks in proteins

    Science.gov (United States)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  9. Responses of serum inflammatory factor high-sensitivity C-reactive protein, interleukin-6, and tumor necrosis factor-alpha in elderly males with cerebral infarction Non-randomized concurrent control

    Institute of Scientific and Technical Information of China (English)

    Guiping Jiao; Xinjie Tan; Zhiliu Yuan; Chunling Li; Jing Wang; Wen Mo

    2008-01-01

    BACKGROUND: Cerebral infarction is poorly treated due to neuronal necrosis and secondary pathophysiological changes; for example, free radical production and inflammatory reactions.OBJECTIVE: To detect the levels of high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and tumor nccrosis factor-α (TNF-α) in elderly males with cerebral infarction.DESIGN: Non-randomized current control study.SETTING: Cadre Medical Department, Guizhou Provincial People's Hospital.PARTICIPANTS: Forty elderly males (65-89 years old) with cerebral infarction were selected from Cadre Medical Department, Guizhou Provincial People's Hospital from February 2004 to December 2006. All patients met the diagnostic criteria of cerebral infarction modified at the 4th National Cerebrovascular Disease Academic Meeting, and were diagnosed on the basis of CT or MRI tests. Furthermore, 35 elderly male inpatients (65-87 years old) without cerebral infarction were selected as the control group. Included subjects provided confirmed consent and did not have heart disease, diabetes mellitus, lipid disorder, acute trauma, infection, rheumatism, or other inflammatory diseases. The study was approved by the local ethics committee. There were no significant differences in age, blood pressure, and lipid levels between the cerebral infarction group and the control group (P>0.05), and this suggested that the baseline data of both groups were comparable.METHODS: Fasting venous blood was drawn from cerebral infarction patients 24 hours after cerebral infarction attack and from control subjects 24 hours after hospitalization. A latex-enhanced immunoturbidimetric assay and an enzyme-linked immunosorbent assay were used to detect the levels of hs-CRP, IL-6, and TNF-α in the serum.MAIN OUTCOME MEASURES: The levels of hs-CRP, IL-6, and TNF-α in the serum in both groups.RESULTS: Forty cerebral infarction patients and thirty-five control subjects were included in the final analysis without any loss

  10. Expression of P16 protein and Bcl-2 protein in malignant eyelid tumors

    Institute of Scientific and Technical Information of China (English)

    牛膺筠; 周占宇; 刘夫玲; 王红云

    2002-01-01

    Objective To investigate the relationship between P16 gene (the tumor suppressor gene) and the bcl-2 gene (the apoptosis inhibitor gene) and the incidence and development of malignant eyelid tumors. Methods The streptavidin-biotin-peroxidase complex immunohistochemistry method was used to study the expression of P16 gene and the bcl-2 gene in 96 cases of malignant eyelid tumors. Results Among the 96 cases, there were 40 basal cell carcinomas (BCCs), 33 squamous carcinomas and 23 sebaceous carcinoma, with P16 protein positive (nuclear staining) rates 70%, 54.6% and 56.5%, respectively. The P16 positive rate was negatively correlated with the degree of tumor histological differentiation, and the rate difference between the high differentiated carcinomas was significant (P<0.05). Positive Bcl-2 protein expression was detected in the cytoplasm. All 40 BCC cases were Bcl-2 positive, and nearly all of the tumor cells showed positive cytoplasmic expression, while in the 33 squamous cell carcinoma cases only one showed positive focal reaction, and the staining in the other 32 cases was relatively faint. None of the 23 sebaceous carcinomas expressed Bcl-2. Conclusions The expression of the P16 protein was related to the occurrence and degree of differentiation of malignant eyelid tumors. The overexpression of the Bcl-2 protein suggests that suppression of apoptosis might play a role in the tumorigenesis of BCC.

  11. Anti-Tumor Effect of Heat Shock Protein 70-Peptide Complexes on A-549 Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the anti-tumor immunity in vitro of heat shock protein 70-peptide complexes (HSP70-PC) from human lung cancer tissue. Methods: HSP70-PC was purified from lung tumor tissues and corresponding non-tumor lung samples with the methods of ADP-affinity chromatography, DEAE ion-exchange chromatography and Western-blot. The activation and proliferation of PBMC induced by different HSP70-PC and tumor cytotoxic reactivity to A549 cells in vitro were measured by the MTT cell proliferation assay. Results: The purified HSP70-PC had a very high purity found by SDS-PAGE and Western-blot. Human lymphocytes were sensitized efficiently by HSP70 preparation purified from lung cancer tissues and a definite cytotoxicity to A-549 cells was observed. There was significant difference with HSP70-PC purified from lung cancer, compared with the control group (P<0.001). Conclusion: High purity of HSP70-PC could be achieved from tumor tissues in this study. HSP70-PC purified from human tumor tissues can induce anti-tumor immunity in vitro mainly implemented by eliciting CTL immunity.

  12. Macrophage inflammatory protein-2 contributes to liver resection-induced acceleration of hepatic metastatic tumor growth

    Institute of Scientific and Technical Information of China (English)

    Otto Kollmar; Michael D Menger; Martin K Schilling

    2006-01-01

    AIM: To study the role of macrophage inflammatory protein (MIP)-2 in liver resection-induced acceleration of tumor growth in a mouse model of hepatic metastasis.METHODS: After a 50% hepatectomy, 1×105 CT26.WT cells were implanted into the left liver lobe of syngeneic balb/c mice (PHx). Additional animals were treated with a monoclonal antibody (MAB452) neutralizing MIP-2(PHx+mAB). Non-resected and non-mAB-treated mice (Con) served as controls. After 7 d, tumor angiogenesis and microcirculation as well as cell proliferation, tumor growth, and CXCR-2 expression were analyzed using intravital fluorescence microscopy, histology, immunohistochemistry, and flow cytometry.RESULTS: Partial hepatectomy increased (P<0.05) the expression of the MIP-2 receptor CXCR-2 on tumor cells when compared with non-resected controls, and markedly accelerated (P<0.05) angiogenesis and metastatic tumor growth. Neutralization of MIP-2 by MAB452 treatment significantly (P<0.05) depressed CXCR-2 expression. Further, the blockade of MIP-2 reduced the angiogenic response (P<0.05) and inhibited tumor growth (P< 0.05). Of interest, liver resection-induced hepatocyte proliferation was not effected by anti-MIP-2 treatment.CONCLUSION: MIP-2 significantly contributes to liver resection-induced acceleration of colorectal CT26.WT hepatic metastasis growth.

  13. Natural killer lytic-associated molecule plays a role in controlling tumor dissemination and metastasis

    Directory of Open Access Journals (Sweden)

    Richard Glenn Hoover

    2012-12-01

    Full Text Available Natural killer lytic-associated molecule (NKLAM is an E3 ubiquitin ligase that plays a major role in the cytolytic activity of NK cells. NKLAM is rapidly synthesized and then targeted to the granule membranes of NK cells upon NK activation. Previous studies have shown an essential role for NKLAM in NK killing activity in vitro. These findings were extended to an in vivo model of NK-mediated tumor killing in which NKLAM-deficient knockout (KO mice injected with B16 melanoma cells were found to have significantly higher numbers of pulmonary tumor nodules than wild type (WT mice. To further investigate the role of NKLAM and NK function in tumor immunity in vivo, we utilized additional tumor models to compare tumor development and progression in NKLAM KO and WT mice. Primary tumor growth, dissemination, and metastasis of RMA-S lymphoma cells and E0771 breast cancer cells were evaluated. Both tumor cell lines were stably transfected with constructs that allow expression of green fluorescent protein (GFP, which serves as a tumor-specific marker. Intravenous injection of NK-sensitive RMA-S lymphoma cells resulted in greater dissemination of lymphoma cells in NKLAM KO mice than in WT mice. Lymphoma cells were found in the lymph nodes and bone marrow of NKLAM KO mice two weeks after injection; few detectable tumor cells remained in WT mice. E0771 syngeneic breast cancer cells were injected into the mammary pads of NKLAM KO and WT mice. Primary tumor growth was greater in NKLAM KO than in WT mice. More significantly, there were four to five fold more tumor cells in the blood and lungs of NKLAM KO than in WT mice two weeks after injection of tumor cells into the mammary pad. These results indicate that NKLAM plays a role in tumor development in vivo, especially in controlling tumor dissemination and metastasis to distant sites.

  14. Molecular Structure Analysis and Function Prediction on Sporothrix schenckii Translationally Controlled Tumor Protein%申克孢子丝菌翻译控制肿瘤蛋白的结构分析与功能预测

    Institute of Scientific and Technical Information of China (English)

    黄怀球; 钟毅; 赵静; 张静; 孙九峰; 张晓辉; 袁立燕

    2012-01-01

    [Objective]The structure and properties about encoding protein of the translationally controlled tumor protein (TCTP) from Sporothrix schenckii were analyzed and predicted by bioinfonnatics. [ Methods] A full-length cDNA sequence encoding TCTP from cDNA plasid library of Sporothrix schenckii was identified by using tools of bioinformatics at webs sites of NCBI, ExPASy and software DNAstar, VectorNTIsuite. The characteristics of the deduced protein were predicted by employing bioinformatics software package supplied by the website of ExPaSy. [Results] A complete open reading frame of 621 bp was included in the full cDNA sequence encoding SS.TCTP. The sequence of TCTP analysis showed that it had high homology in the amino acids sequence from other species in GenBank. The molecular weight of SS.TCTP was predicated to be 64581.4 ku and the coding protein was demonstrated to contain one transmembrane region, three main hydrophilic regions and 5 main B cell epitopes. The relationship of phylogenesis between SS.TCTP and TCTP of other fungus is close. [Conclusions] The full-length cDNA sequence encoding TCTP was screened from cDNA library of Sporothrix schenckii bioinfonnatics and the structure and characteristics of the gene and protein of SS.TCTP as well as the immunological properties were predicted.%[目的]从cDNA文库中识别申克孢子丝菌翻译控制肿瘤蛋白(TCTP)的基因并分析预测其结构功能和应用前景.[方法]利用NCBI和ExPASy网站中的各种基因和蛋白的序列结构信息分析工具,结合DNAstar和VectorNTI suite生物信息学分析软件包,从申克孢子丝菌全长cDNA质粒文库中识别TCTP的基因及其编码区,分析、预测该基因编码的蛋白结构特征和功能.[结果]TCTP基因全长621 bp,编码区具有207个氨基酸.在GenBank同源序列中,其与蓝菌属真菌(Grosmannia clavigera)TCTP氨基酸序列一致性达到78%.理论预测分子质量为64581.4 ku.无质体和线粒体定位序列.预测

  15. Evidence that selenium binding protein 1 is a tumor suppressor in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Emmanuel Ansong

    Full Text Available Selenium-Binding Protein 1 (SBP1, SELENBP1, hSP56 is a selenium-associated protein shown to be at lower levels in tumors, and its lower levels are frequently predictive of a poor clinical outcome. Distinguishing indolent from aggressive prostate cancer is a major challenge in disease management. Associations between SBP1 levels, tumor grade, and disease recurrence following prostatectomy were investigated by duplex immunofluorescence imaging using a tissue microarray containing tissue from 202 prostate cancer patients who experienced biochemical (PSA recurrence after prostatectomy and 202 matched control patients whose cancer did not recur. Samples were matched by age, ethnicity, pathological stage and Gleason grade, and images were quantified using the Vectra multispectral imaging system. Fluorescent labels were targeted for SBP1 and cytokeratins 8/18 to restrict scoring to tumor cells, and cell-by-cell quantification of SBP1 in the nucleus and cytoplasm was performed. Nuclear SBP1 levels and the nuclear to cytoplasm ratio were inversely associated with tumor grade using linear regression analysis. Following classification of samples into quartiles based on the SBP1 levels among controls, tumors in the lowest quartile were more than twice as likely to recur compared to those in any other quartile. Inducible ectopic SBP1 expression reduced the ability of HCT-116 human tumor cells to grow in soft agar, a measure of transformation, without affecting proliferation. Cells expressing SBP1 also demonstrated a robust induction in the phosphorylation of the p53 tumor suppressor at serine 15. These data indicate that loss of SBP1 may play an independent contributing role in prostate cancer progression and its levels might be useful in distinguishing indolent from aggressive disease.

  16. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  17. Control of autophagy by oncogenes and tumor suppressor genes.

    Science.gov (United States)

    Maiuri, M C; Tasdemir, E; Criollo, A; Morselli, E; Vicencio, J M; Carnuccio, R; Kroemer, G

    2009-01-01

    Multiple oncogenes (in particular phosphatidylinositol 3-kinase, PI3K; activated Akt1; antiapoptotic proteins from the Bcl-2 family) inhibit autophagy. Similarly, several tumor suppressor proteins (such as BH3-only proteins; death-associated protein kinase-1, DAPK1; the phosphatase that antagonizes PI3K, PTEN; tuberous sclerosic complex 1 and 2, TSC1 and TSC2; as well as LKB1/STK11) induce autophagy, meaning that their loss reduces autophagy. Beclin-1, which is required for autophagy induction acts as a haploinsufficient tumor suppressor protein, and other essential autophagy mediators (such as Atg4c, UVRAG and Bif-1) are bona fide oncosuppressors. One of the central tumor suppressor proteins, p53 exerts an ambiguous function in the regulation of autophagy. Within the nucleus, p53 can act as an autophagy-inducing transcription factor. Within the cytoplasm, p53 exerts a tonic autophagy-inhibitory function, and its degradation is actually required for the induction of autophagy. The role of autophagy in oncogenesis and anticancer therapy is contradictory. Chronic suppression of autophagy may stimulate oncogenesis. However, once a tumor is formed, autophagy inhibition may be a therapeutic goal for radiosensitization and chemosensitization. Altogether, the current state-of-the art suggests a complex relationship between cancer and deregulated autophagy that must be disentangled by further in-depth investigation.

  18. Expression of Beta-Catenin and APC Protein in Ovarian Epithelial Tumor and Its Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2007-01-01

    Objective: To investigate the expression of beta-catenin, APC protein and its implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to determine the expression of beta-catenin and APC protein in 48 cases of ovarian epithelial tumor. Results: The abnormal expression rates of beta-catenin in ovarian malignant and borderline epithelial tumors were higher than that in benign epithelial tumors. The expression of APC protein in benign epithelial tumors was significantly greater than that in malignant epithelial tumors. A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors. Conclusion: Beta-catenin and APC protein have important effect on pathogenesis and development of ovarian epithelial tumors.

  19. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  20. Tumor-infiltrating Cytotoxic T Lymphocytes as Independent Prognostic Factor in Epithelial Ovarian Cancer With Wilms Tumor Protein 1 Overexpression

    NARCIS (Netherlands)

    Vermeij, Renee; de Bock, Geertruida H.; Leffers, Ninke; ten Hoor, Klaske A.; Schulze, Ute; Hollema, Harry; van der Burg, Sjoerd H.; van der Zee, Ate G. J.; Daemen, Toos; Nijman, Hans W.

    2011-01-01

    Immune response characterization at the primary tumor site enables the design of therapeutic vaccination strategies with higher efficacy in epithelial ovarian cancer (EOC). In this study, we related Wilms tumor protein 1 (WT1) overexpression, a well-established immunotherapeutic target, to clinicopa

  1. Quantitative protein profiling of tumor angiogenesis and metastasis biomarkers in mouse and human models

    Science.gov (United States)

    Tumor and stromal cells secrete a variety of proteins acting as extracellular signals and creating a supportive microenvironment for tumor development, angiogenesis, and metastasis. We used the Luminex immunoassay platform (including MILLIPLEX® MAP cytokine/chemokine, bone metabolism, adipocyte, M...

  2. 麻疯树Jc-Tctp1基因的同源性分析及时空表达模式鉴定%Sequencing and Expression of Translationally Controlled Tumor Protein (TCTP) of Jatropha curcas L.

    Institute of Scientific and Technical Information of China (English)

    林莎; 高帆; 罗洪; 牛蓓; 林颖; 秦小波; 徐莺; 陈放

    2008-01-01

    从麻疯树胚乳cDNA文库中获得了翻译调节肿瘤蛋白(translationally controlled tumor protein,TCTP)cDNA 序列,命名为 Jc-Tctp 1 (GenBank 登录号为EF091818).该序列全长1410 bp,开放阅读框由507个碱基组成.Jc-Tctp 1 编码的推测蛋白产物含有168个氨基酸残基,该蛋白具有典型的TCTP蛋白特点:由3个α螺旋组成α螺旋核心、4个β片层结构构成β片层核心,及微管结合结构域(MTB)和钙结合结构域(CaB).其推测氨基酸序列与巴西橡胶树(Hevea brasiliensis)、油棕(Elaeis guineensis)、大豆(Glycine max)、水稻(Oryza sativa,japonica cultivar-group)、黑杨(Populus trichocarpa)、番茄(Lycopersicon esculentum)、西加云杉(Picea sitchensis)、拟南芥(Arabidopsis thaliana)以及玉米(Zea may)的TCTP同源性依次为93%、90%、85%、84%、85%、84%、77%、80%和77%.经构建含Jc-TCTP1在内的植物TCTP蛋白分子进化树分析,发现单子叶植物并未按照其生物学分类的地位出现聚合.用半定量RT-PCR研究Jc-Tctp1 基因的表达模式,结果显示,其表达在转录水平上具有一定的组织和时间特异性,茎、I期胚乳、胚中最为丰富,而在Ⅱ期胚乳和花中表达最弱.

  3. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein.

    Directory of Open Access Journals (Sweden)

    Guangzhi Zhang

    Full Text Available The Gag protein of the mouse mammary tumor virus (MMTV is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV, assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.

  4. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein.

    Science.gov (United States)

    Kamphorst, Jurre J; Nofal, Michel; Commisso, Cosimo; Hackett, Sean R; Lu, Wenyun; Grabocka, Elda; Vander Heiden, Matthew G; Miller, George; Drebin, Jeffrey A; Bar-Sagi, Dafna; Thompson, Craig B; Rabinowitz, Joshua D

    2015-02-01

    Glucose and amino acids are key nutrients supporting cell growth. Amino acids are imported as monomers, but an alternative route induced by oncogenic KRAS involves uptake of extracellular proteins via macropinocytosis and subsequent lysosomal degradation of these proteins as a source of amino acids. In this study, we examined the metabolism of pancreatic ductal adenocarcinoma (PDAC), a poorly vascularized lethal KRAS-driven malignancy. Metabolomic comparisons of human PDAC and benign adjacent tissue revealed that tumor tissue was low in glucose, upper glycolytic intermediates, creatine phosphate, and the amino acids glutamine and serine, two major metabolic substrates. Surprisingly, PDAC accumulated essential amino acids. Such accumulation could arise from extracellular proteins being degraded through macropinocytosis in quantities necessary to meet glutamine requirements, which in turn produces excess of most other amino acids. Consistent with this hypothesis, active macropinocytosis is observed in primary human PDAC specimens. Moreover, in the presence of physiologic albumin, we found that cultured murine PDAC cells grow indefinitely in media lacking single essential amino acids and replicate once in the absence of free amino acids. Growth under these conditions was characterized by simultaneous glutamine depletion and essential amino acid accumulation. Overall, our findings argue that the scavenging of extracellular proteins is an important mode of nutrient uptake in PDAC.

  5. PML tumor suppressor protein is required for HCV production

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Misao [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Ariumi, Yasuo, E-mail: ariumi@kumamoto-u.ac.jp [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Hijikata, Makoto [Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Ikeda, Masanori; Dansako, Hiromichi [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640 (Japan); Shimotohno, Kunitada [Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516 (Japan); Kato, Nobuyuki [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  6. G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker.

    Science.gov (United States)

    Zheng, Xiaoyi; Chang, Frank; Zhang, Xinmin; Rothman, Vicki L; Tuszynski, George P

    2012-08-01

    Using an innovative "2-D high performance liquid electrophoresis" (2-D HPLE) technology we identified that a specific fragment of G-protein coupled receptor-associated sorting protein 1 (GASP-1) was present in the sera of breast cancer patients and was over-expressed in early and late stage breast tumors (Tuszynski, G.P. et al., 2011). In this study we further investigated the significance of GASP-1 as a tumor marker by investigating the expression GASP-1 in different kinds of tumors as well as in the sera of patients with various cancers. Over expression of GASP-1 was detected in brain, pancreatic, and breast cancers as compared to their respective normal tissues as assessed by immunohistochemical staining of tissue arrays using a "peptide specific" GASP-1 antibody. We found that across these cancers, GASP-1 was expressed approximately 10 fold more in the cancer as compared to normal tissue. The increase in GASP-1 expression was also seen in hyperplastic and inflammatory lesions of breast and pancreatic cancers as compared to normal tissue. GASP-1 was primarily expressed in the tumor epithelium of the epithelial-derived cancers and in the transformed glial cells of the brain tumors. Using a sensitive "competitive ELISA" for GASP-1, we found that sera from patients with brain, liver, breast and lung cancers expressed 4-7 fold more GASP-1 peptide than sera from normal healthy individuals. These studies identify GASP-1 as a potential new serum and tumor biomarker for several cancers and suggest that GASP-1 may be a novel target for development of cancer therapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  8. Papel del factor tumoral en el control de las reservas grasas y la obesidad.

    OpenAIRE

    M Bullo Bonet; P Garcia-Lorda; JM Argilés; J Salas Salvado

    2000-01-01

    Papel del factor tumoral en el control de las reservas grasas y la obesidad. The role of tumor necrosis factor in the control of fat reserve and obesity. Papel del factor tumoral en el control de las reservas grasas y la obesidad. The role of tumor necrosis factor in the control of fat reserve and obesity.

  9. Transient exposure to proteins SOX2, Oct-4, and NANOG immortalizes exhausted tumor-infiltrating CTLs

    Energy Technology Data Exchange (ETDEWEB)

    Bhadurihauck, Anjuli; Li, Lei [Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD (United States); Li, Qianqian; Wang, Jianjun [Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, 48201 (United States); Xiao, Zhengguo, E-mail: xiao0028@umd.edu [Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD (United States)

    2016-05-13

    Adoptive cell transfer therapy (ACT) is one of the most promising immunotherapies against cancer, using tumor-infiltrating lymphocytes (TILs) expanded in vitro. Tumor-infiltrating cytotoxic T lymphocytes (TICTLs) play a prominent role in cancer control. TILs terminally differentiate in response to immunosuppressive environments within tumors, and thus are slow to expand and challenging to maintain both in vitro and in patients. To reverse this exhaustion, we utilize a nuclear protein delivery system that exposes TICTLs to the SOX2, Oct-4, and NANOG (SON) proteins. Unlike activated naïve CTLs (effector CTLs), TICTLs respond favorably to SON treatment, exhibiting steady proliferation and extended survivability independent of cytokine and antigen stimulation. Though TICTLs treated with SON (STICTLs) still express T cell receptors as well as other critical downstream components, they are unresponsive to antigen challenge, suggesting that SON treatment regresses TICTLs into a state similar to that of an early double negative T cell. Our findings indicate the TICTL response to SON proteins is unique when compared to effector CTLs, suggesting TICTLs may be sensitive to regulation by other lineage-specific transcription factors and opening a promising new avenue into cancer immunotherapy. To our knowledge, this is the first report on lineage reprogramming of TILs using protein stem cell transcription factors delivered directly to the nucleus. -- Highlights: •TICTLs are sensitive to reprogramming by proteins of stem cell transcription factors, but effector CTLs were not. •TICTLs are regressed back to an early double negative T cell stage. •TCR signaling is deregulated by these transcription factors.

  10. Exploiting Tumor Activated Testes Proteins To Enhance Efficacy of First Line Chemotherapeutics in NSCLC

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0428 TITLE: Exploiting Tumor -Activated Testes Proteins To Enhance Efficacy of First-Line Chemotherapeutics in NSCLC...Annual 3. DATES COVERED 30 Sep 2015 – 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Exploiting Tumor -Activated Testes Proteins To Enhance...hypothesize that CTAs promote repair of these DSB in NSCLC and are essential for tumor cell survival. To evaluate this hypothesis, we are investigating the

  11. Wilms' tumor protein Wt1 regulates the Interleukin-10 (IL-10) gene.

    Science.gov (United States)

    Sciesielski, Lina K; Kirschner, Karin M; Scholz, Holger; Persson, Anja Bondke

    2010-11-19

    We identified the Wilms' tumor protein, Wt1, as a novel transcriptional activator of the immunosuppressant cytokine interleukin-10 (IL-10). Silencing of Wt1 by RNA interference reduced IL-10 mRNA levels by approximately 90%. IL-10 transcripts were increased more than 15-fold upon forced expression of Wt1. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed a cis-element that was responsible for activation of the IL-10 promoter by Wt1 in murine macrophages. Mutation of the Wt1 binding motif abrogated stimulation of the IL-10 promoter by tumor necrosis factor-α (TNFα). These results suggest a novel immune regulatory function of Wt1 in controlling IL-10 gene expression.

  12. Validation of Heat Shock Protein 70 as a Tumor-Specific Biomarker for Monitoring the Outcome of Radiation Therapy in Tumor Mouse Models

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christine; Liebhardt, Michael E.; Schmid, Thomas E. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Trajkovic-Arsic, Marija [II Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Hube, Kathrin; Specht, Hanno M. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Schilling, Daniela [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Clinical Kooperation Group, Innate Immunity in Tumor Biology, HelmholtzZentrum München, Munich (Germany); Gehrmann, Mathias; Stangl, Stefan [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Siveke, Jens T. [II Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Wilkens, Jan J. [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Multhoff, Gabriele, E-mail: Gabriele.multhoff@lrz.tum.de [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Clinical Kooperation Group, Innate Immunity in Tumor Biology, HelmholtzZentrum München, Munich (Germany)

    2014-03-01

    Purpose: Tumor cells, in contrast to normal cells, frequently overexpress heat shock protein 70 (Hsp70) in the cytosol, present it on their cell surface, and actively release it. Therefore, soluble Hsp70 (sHsp70) was investigated as a potential tumor biomarker for monitoring the outcome of radiation therapy. Methods and Materials: Plasma from mice bearing membrane Hsp70 (mHsp70)-positive FaDu human squamous cell carcinoma of the head and neck and spontaneous pancreatic ductal adenocarcinoma (PDAC) was investigated. A cohort of mice with FaDu tumors (0.32 cm{sup 3}) was irradiated with 30 Gy, and plasma was collected 24 hours after irradiation, after the tumors had shrunk to 50% of their starting volume and after complete remission. sHsp70 levels in the plasma were quantified by enzyme-linked immunosorbent assay. Results: sHsp70 levels were significantly higher in the blood of tumor-bearing mice than that of control animals. A correlation between increasing sHsp70 plasma levels and tumor volume in the range of 0.01 cm{sup 3} to 0.66 cm{sup 3} was observed. Radiation-induced regression of the tumors was associated with significantly decreased sHsp70 levels, which returned to the level of control animals after complete remission. Conclusion: We propose sHsp70 as an innovative biomarker for detecting tumors and for monitoring the clinical outcome of radiation therapy in cancer patients.

  13. Preoperative embolization of primary bone tumors: A case control study

    Science.gov (United States)

    Jha, Roushan; Sharma, Raju; Rastogi, Shishir; Khan, Shah Alam; Jayaswal, Arvind; Gamanagatti, Shivanand

    2016-01-01

    AIM: To study the safety and effectiveness of preoperative embolization of primary bone tumors in relation to intraoperative blood loss, intraoperative blood transfusion volume and surgical time. METHODS: Thirty-three patients underwent preoperative embolization of primary tumors of extremities, hip or vertebrae before resection and stabilization. The primary osseous tumors included giant cell tumors, aneurysmal bone cyst, osteoblastoma, chondroblastoma and chondrosarcoma. Twenty-six patients were included for the statistical analysis (embolization group) as they were operated within 0-48 h within preoperative embolization. A control group (non-embolization group, n = 28) with bone tumor having similar histological diagnosis and operated without embolization was retrieved from hospital record for statistical comparison. RESULTS: The mean intraoperative blood loss was 1300 mL (250-2900 mL), the mean intraoperative blood transfusion was 700 mL (0-1400 mL) and the mean surgical time was 221 ± 76.7 min for embolization group (group I, n = 26). Non-embolization group (group II, n = 28), the mean intraoperative blood loss was 1800 mL (800-6000 mL), the mean intraoperative blood transfusion was 1400 mL (700-8400 mL) and the mean surgical time was 250 ± 69.7 min. On comparison, statistically significant (P < 0.001) difference was found between embolisation group and non-embolisation group for the amount of blood loss and requirement of blood transfusion. There was no statistical difference between the two groups for the surgical time. No patients developed any angiography or embolization related complications. CONCLUSION: Preoperative embolization of bone tumors is a safe and effective adjunct to the surgical management of primary bone tumors that leads to reduction in intraoperative blood loss and blood transfusion volume. PMID:27158424

  14. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  15. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo

    DEFF Research Database (Denmark)

    Ardini, E; Agresti, R; Tagliabue, E;

    2000-01-01

    Tyrosine phosphorylation is controlled by a balance of tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Whereas the contribution of PTKs to breast tumorigenesis is the subject of intense scrutiny, the potential role of PTPs is poorly known. RPTPalpha is implicated in the activation......% of cases manifesting significant overexpression. High RPTPalpha protein levels correlated significantly with low tumor grade and positive estrogen receptor status. Expression of RPTPalpha in breast carcinoma cells led to growth inhibition, associated with increased accumulation in G0 and G1, and delayed...

  16. Locomotor proteins in tissues of primary tumors and metastases of ovarian and breast cancer

    Science.gov (United States)

    Kondakova, I. V.; Yunusova, N. V.; Spirina, L. V.; Shashova, E. E.; Kolegova, E. S.; Kolomiets, L. A.; Slonimskaya, E. M.; Villert, A. B.

    2016-08-01

    The paper discusses the capability for active movement in an extracellular matrix, wherein remodeling of the cytoskeleton by actin binding proteins plays a significant role in metastases formation. We studied the expression of actin binding proteins and β-catenin in tissues of primary tumors and metastases of ovarian and breast cancer. Contents of p45 Ser β-catenin and the actin severing protein gelsolin were decreased in metastases of ovarian cancer relative to primary tumors. The level of the cofilin, functionally similar to gelsolin, was significantly higher in metastases compared to primary ovarian and breast tumor tissue. In breast cancer, significant increase in the number of an actin monomer binder protein thymosin-β4 was observed in metastases as compared to primary tumors. The data obtained suggest the involvement of locomotor proteins in metastases formation in ovarian and breast cancer.

  17. Protein quality control in the nucleus

    DEFF Research Database (Denmark)

    Nielsen, Sofie V.; Poulsen, Esben Guldahl; Rebula, Caio A.

    2014-01-01

    to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system...... to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about...... these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation....

  18. THE EOSINOPHILIC MATERIAL IN ADENOMATOID ODONTOGENIC TUMOR ASSOCIATED WITH AMYLOID PROTEIN COMPONENT

    Institute of Scientific and Technical Information of China (English)

    SONG Bao-ping; LI Yong-mei; Haruo Okabe

    1999-01-01

    Objective: To investigate the relation between eosinophilic materials and amyloid P (AP) component in adenomatoid odontogenic tumor (AOT). Methods: The expression of amyloid proteins and basement membrane proteins, including type Ⅳ collagen, laminin and heparin sulfate proteoglycan (HSPG), in AOT were analyzed by immunohistochemical method. Results:Most eosinophilic droplets among tumor cells and some epithelial cells showed positive stain for AP component.The immunoreactions of type Ⅳ collagen and laminin were only found in blood vessels of this tumor. The tumor cells and eosinophilic materials in duct-like structures were constantly unstained for both amyloid and basement membrane proteins. Present results suggest that the nature and composition of eosinophilic droplets may differ from the eosinophilic layer in ductlike structures. This study first demonstrated that the amyloid-like deposition in AOT is associated with AP component by immunohistochemical method. It supported that AP component may be epithelial origin since the AP immunolocalization was found in tumor cells.

  19. Therapeutic efficacy of tumor-derived heat shock protein 70 immunotherapy combining interleukin-2 on tumor-bearing mice

    Institute of Scientific and Technical Information of China (English)

    傅庆国; 孟凡东; 沈晓东; 郭仁宣

    2003-01-01

    Objective To investigate the therapeutic efficacy of compound immunotherapy of tumor-derived heat shock protein 70 (HSP70) and interleukin-2 (IL-2) on tumor-bearing mice, and to provide reference for translating this strategy to human cancer. Methods Cell culture, techniques for protein extraction and purification, SDS-PAGE, Wes tern blot and capillary electrophoresis for HSP70 detection and purity analysis, and animal experiments were used. Mice were treated with HSP70 5 or 10 μg and IL-2 50 kU, 100 kU or 2 kU (maintaining dosage) at pre viously designated intervals. Results Both the mono-administration of either HSP70 or IL-2 and the compound immunoth erapy of HSP70 and IL-2 obviously inhibited the growth of the implanted tumor and prolonged the life span of the mice to different extents. However, long periods of tumor-free suvival (over 90 days) were demonstrated only in HSP70 10 μg group, HSP70 10 μg-IL-2 50 kU group, and HSP70 10 μg-IL-2 100 kU group (4 0%, 40%, 60% respectively). On the other hand, none of the mice in the rest gr oups achieved long-term survival. Statistical significance was apparent in com parison with the groups without long period survival (P<0.025-0.05). Conclusion Our research revealed that tumor-derived HSP70 immunotherapy was much more effective than IL-2 alone. And in compound immunotherapy, HSP70 was the main factor in delaying or eradicating the tumors. The proper combination of HSP70 and IL-2 (10 μg HSP70 and 100 kU IL-2 in this experimental mouse model) clea rly enhanced the immunotherapy efficacy which indicated that the specific immuno therapy as a main part of tumor immunotherapy assisted by cytokine immunotherapy would be a promising strategy in cancer treatment.

  20. Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting

    Science.gov (United States)

    Gong, Guangming; Zhi, Feng; Wang, Kaikai; Tang, Xiaolei; Yuan, Ahu; Zhao, Lili; Ding, Dawei; Hu, Yiqiao

    2011-07-01

    Human serum albumin (HSA) nanoparticles hold great promise as a nanocarrier system for targeted drug delivery. The objective of this study was to explore the possibility of preparing size controllable albumin nanoparticles using the disulfide bond breaking reagent β-mercaptoethanol (β-ME). The results showed that the protein concentration and temperature had positive effects on the sizes of the albumin nanoparticles, while pH had a negative effect on the rate of nanoparticle formation. The addition of β-ME induced changes in HSA secondary structure and exposed the hydrophobic core of HSA, leading to the formation of nanoparticles. Human serum albumin nanoparticles could be internalized by MCF-7 cells and mainly accumulated in cytoplasm. After injection in tumor bearing mice, the HSA nanoparticles accumulated in tumor tissues, demonstrating the targeting ability of the nanoparticles. Therefore, human serum albumin can be fabricated into nanoparticles by breaking the disulfide bonds and these nanoparticles exhibit high tumor targeting ability. Human serum albumin nanoparticles could be ideal for the targeted delivery of pharmacologically active substances.

  1. Parathyroid hormone related protein (PTHrP) in tumor progression.

    Science.gov (United States)

    Kremer, Richard; Li, Jiarong; Camirand, Anne; Karaplis, Andrew C

    2011-01-01

    Parathyroid hormone-related protein (PTHrP) is widely expressed in fetal and adult tissues and is a key regulator for cellular calcium transport and smooth muscle cell contractility, as well as a crucial control factor in cell proliferation, development and differentiation. PTHrP stimulates or inhibits apoptosis in an autocrine/paracrine and intracrine fashion, and is particularly important for hair follicle and bone development, mammary epithelial development and tooth eruption. PTHrP's dysregulated expression has traditionally been associated with oncogenic pathologies as the major causative agent of malignancy-associated hypercalcemia, but recent evidence revealed a driving role in skeletal metastasis progression. Here, we demonstrate that PTHrP is also closely involved in breast cancer initiation, growth and metastasis through mechanisms separate from its bone turnover action, and we suggest that PTHrP as a facilitator of oncogenes would be a novel target for therapeutic purposes.

  2. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    Science.gov (United States)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis.

  3. Purification and Crystallization of Flammulin, a Basic Protein with Anti-tumor Activities from Flammulina Velutipes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Flammulin, an anti-tumor protein, was purified from the aqueous extract of basidiomes of Flammulina Velutipes to electrophoretic homogeneity and crystallized by microdialysis against a polyethylene glycol- sodium phosphate buffer. The purified product was found to have marked antitumor effects and be able to affect the tumor cells directly.

  4. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Directory of Open Access Journals (Sweden)

    Narges Zare Mehrjardi

    2013-01-01

    Full Text Available Objective: Garlic (Allium sativum has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration.Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses.Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI. These molecules augmented the delayed type hypersensitivity (DTH response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals.Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These fi ndings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment.

  5. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Science.gov (United States)

    Ebrahimi, Marzieh; Mohammad Hassan, Zuhair; Mostafaie, Ali; Zare Mehrjardi, Narges; Ghazanfari, Tooba

    2013-01-01

    Objective: Garlic (Allium sativum) has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration. Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses. Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI). These molecules augmented the delayed type hypersensitivity (DTH) response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals. Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These findings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment. PMID:23700562

  6. Transfection of influenza A virus nuclear export protein induces the expression of tumor necrosis factor alpha.

    Science.gov (United States)

    Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio

    2014-06-24

    Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression.

  7. Whey protein versus whey protein hydrolyzate for the protection of azoxymethane and dextran sodium sulfate induced colonic tumors in rats.

    Science.gov (United States)

    Attaallah, Wafi; Yilmaz, Ayşe Mine; Erdoğan, Nusret; Yalçin, A Suha; Aktan, A Ozdemir

    2012-10-01

    Recent studies have shown that whey protein has many useful effects including its anti-cancer effect. In this study we have compared the protective effect of dietary whey protein with whey protein hydrolyzate against azoxymethane and dextran sodium sulfate induced colon cancer in rats. We used a rat model of the colon cancer induced by administration of azoxymethane followed by repeated dextran sodium sulfate ingestion which causes multiple tumor development. Colon tissues were analyzed histologically in addition to biochemical analyses performed by measuring lipid peroxidation, protein oxidation and glutathione levels in both of colon and liver tissues of rats after sacrification. Macroscopic and microscopic tumors were identified in all groups that received azoxymethane followed by repeated dextran sodium sulfate. Group fed with whey protein hydrolyzate showed significantly less macroscopic and microscopic tumor development compared with group fed with whey protein. The protocol applied to generate an appropriate model of colon cancer was successful. Whey protein hydrolyzate was found to be more effective in preventing colon tumor development compared with whey protein.

  8. Controlling the loading of protein nanocages

    NARCIS (Netherlands)

    Rurup, W.F.

    2013-01-01

    The work described in this thesis focuses on the use of natural protein building blocks to assemble nanocages. Most common strategies for the loading of different protein nanocages suffer from a lack of numerical control over cargo loading. The aim of this thesis was to create a controllable method

  9. MALDI-mass spectrometric imaging revealing hypoxia-driven lipids and proteins in a breast tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiang; Chughtai, Kamila; Purvine, Samuel O.; Bhujwalla, Zaver M.; Raman, Venu; Pasa-Tolic, Ljiljana; Heeren, Ronald M.; Glunde, Kristine

    2015-06-16

    Hypoxic areas are a common feature of rapidly growing malignant tumors and their metastases, and are typically spatially heterogeneous. Hypoxia has a strong impact on tumor cell biology and contributes to tumor progression in multiple ways. To date, only a few molecular key players in tumor hypoxia, such as for example hypoxia-inducible factor-1 (HIF-1), have been discovered. The distribution of biomolecules is frequently heterogeneous in the tumor volume, and may be driven by hypoxia and HIF-1α. Understanding the spatially heterogeneous hypoxic response of tumors is critical. Mass spectrometric imaging (MSI) provides a unique way of imaging biomolecular distributions in tissue sections with high spectral and spatial resolution. In this paper, breast tumor xenografts grown from MDA-MB-231-HRE-tdTomato cells, with a red fluorescent tdTomato protein construct under the control of a hypoxia response element (HRE)-containing promoter driven by HIF-1α, were used to detect the spatial distribution of hypoxic regions. We elucidated the 3D spatial relationship between hypoxic regions and the localization of small molecules, metabolites, lipids, and proteins by using principal component analysis – linear discriminant analysis (PCA-LDA) on 3D rendered MSI volume data from MDA-MB-231-HRE-tdTomato breast tumor xenografts. In this study we identified hypoxia-regulated proteins active in several distinct pathways such as glucose metabolism, regulation of actin cytoskeleton, protein folding, translation/ribosome, splicesome, the PI3K-Akt signaling pathway, hemoglobin chaperone, protein processing in endoplasmic reticulum, detoxification of reactive oxygen species, aurora B signaling/apoptotic execution phase, the RAS signaling pathway, the FAS signaling pathway/caspase cascade in apoptosis and telomere stress induced senescence. In parallel we also identified co-localization of hypoxic regions and various lipid species such as PC(16:0/18:1), PC(16:0/18:2), PC(18:0/18:1), PC

  10. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    Science.gov (United States)

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor.

  11. Control of the adaptive immune response by tumor vasculature

    Directory of Open Access Journals (Sweden)

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  12. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Pei-Hong Jiang; Yoshiharu Motoo; Stéphane Garcia; Juan Lucio Iovanna; Marie-Josèphe Pébusque; Norio Sawabu

    2006-01-01

    AIM: Overexpression of tumor protein p53-induced nuclear protein 1 (TP53INP1) induces G1 cell cycle arrest and increases p53-mediated apoptosis. To clarify the clinical importance of TP53INP1, we analyzed TP53INP1and p53 expression in gastric cancer.METHODS: TP53INP1 and p53 expression were examined using immunohistochemistry in 142 cases of gastric cancer. The apoptosis of gastric cancer cells was analyzed using the TUNEL method. The relationship between the expression of TP53INP1 and clinicopathological factors was statistically analyzed.RESULTS: TP53INP1 was expressed in 98% (139/142cases) of non-cancerous gastric tissues and was downexpressed in 64% (91/142 cases) of gastric cancer lesions from the same patients. TP53INP1 expression was significantly decreased (43.9%) in poorly differentiated adenocarcinoma compared with well or moderately differentiated adenocarcinoma (81.6%).Cancers invading the submucosa or deeper showed lower positively (59.1%) compared with mucosal cancers (85.2%). Decrease or loss of TP53INP1 expression was significantly correlated with lymphatic invasion (54.3%vs 82.0% without lymphatic invasion) and node-positive patients (31.3% vs 68.3% in node-negative patients).P53 was expressed in 68 (47.9%) patients of gastric cancer, whereas it was absent in normal gastric tissues.A significant association was also observed between TP53INP1 status and the level of apoptosis in tumor cells: the apoptotic index in TP53INP1-positive tissues was significantly higher than that in TP53INP1-negative portions. Finally, when survival data were analyzed,loss of TP53INP1 expression had a significant effect in predicting a poor prognosis (P= 0.0006).CONCLUSION: TP53INP1-positive rate decreases with the progression of gastric cancer. TP53INP1 protein negativity is significantly associated with aggressive pathological phenotypes of gastric cancer. TP53INP1is related to the apoptosis of gastric cancer cells. The decreased expression of the TP53INP1 protein may

  13. Protein transfection study using multicellular tumor spheroids of human hepatoma Huh-7 cells.

    Directory of Open Access Journals (Sweden)

    Takuma Kato

    Full Text Available Several protein transfection reagents are commercially available and are powerful tools for elucidating function of a protein in a cell. Here we described protein transfection studies of the commercially available reagents, Pro-DeliverIN, Xfect, and TuboFect, using Huh-7 multicellular tumor spheroid (MCTS as a three-dimensional in vitro tumor model. A cellular uptake study using specific endocytosis inhibitors revealed that each reagent was internalized into Huh-7 MCTS by different mechanisms, which were the same as monolayer cultured Huh-7 cells. A certain amount of Pro-DeliverIN and Xfect was uptaken by Huh-7 cells through caveolae-mediated endocytosis, which may lead to transcytosis through the surface-first layered cells of MCTS. The results presented here will help in the choice and use of protein transfection reagents for evaluating anti-tumor therapeutic proteins against MCTS models.

  14. A Novel Antagonist of the Immune Checkpoint Protein Adenosine A2a Receptor Restores Tumor-Infiltrating Lymphocyte Activity in the Context of the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Melanie Mediavilla-Varela

    2017-07-01

    Full Text Available BACKGROUND: Therapeutic strategies targeting immune checkpoint proteins have led to significant responses in patients with various tumor types. The success of these studies has led to the development of various antibodies/inhibitors for the different checkpoint proteins involved in immune evasion of the tumor. Adenosine present in high concentrations in the tumor microenvironment activates the immune checkpoint adenosine A2a receptor (A2aR, leading to the suppression of antitumor responses. Inhibition of this checkpoint has the potential to enhance antitumor T-cell responsiveness. METHODS: We developed a novel A2aR antagonist (PBF-509 and tested its antitumor response in vitro, in a mouse model, and in non-small cell lung cancer patient samples. RESULTS: Our studies showed that PBF-509 is highly specific to the A2aR as well as inhibitory of A2aR function in an in vitro model. In a mouse model, we found that lung metastasis was decreased after treatment with PBF-509 compared with its control. Furthermore, freshly resected tumor-infiltrating lymphocytes from lung cancer patients showed increased A2aR expression in CD4+ cells and variable expression in CD8+ cells. Ex vivo studies showed an increased responsiveness of human tumor-infiltrating lymphocytes when PBF-509 was combined with anti-PD-1 or anti-PD-L1. CONCLUSIONS: Our studies demonstrate that inhibition of the A2aR using the novel inhibitor PBF-509 could lead to novel immunotherapeutic strategies in non-small cell lung cancer.

  15. A mutant chaperone converts a wild-type protein into a tumor-specific antigen.

    Science.gov (United States)

    Schietinger, Andrea; Philip, Mary; Yoshida, Barbara A; Azadi, Parastoo; Liu, Hui; Meredith, Stephen C; Schreiber, Hans

    2006-10-13

    Monoclonal antibodies have become important therapeutic agents against certain cancers. Many tumor-specific antigens are mutant proteins that are predominantly intracellular and thus not readily accessible to monoclonal antibodies. We found that a wild-type transmembrane protein could be transformed into a tumor-specific antigen. A somatic mutation in the chaperone gene Cosmc abolished function of a glycosyltransferase, disrupting O-glycan Core 1 synthesis and creating a tumor-specific glycopeptidic neo-epitope consisting of a monosaccharide and a specific wild-type protein sequence. This epitope induced a high-affinity, highly specific, syngeneic monoclonal antibody with antitumor activity. Such tumor-specific glycopeptidic neo-epitopes represent potential targets for monoclonal antibody therapy.

  16. Protein Expression of BLM Gene and Its Apoptosis Sensitivity in Hematopoietic Tumor Cell Strains

    Institute of Scientific and Technical Information of China (English)

    Xiaobei WANG; Lihua HU

    2008-01-01

    Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the differential expression of BLM protein in hematopoietic tumor cell strains and study the effects of BLM gene on ultraviolet (UV)- or hydroxyurea (HU)-induced apoptosis, Western blot was used to detect the expression of BLM protein in normal human bone marrow mononuclear cells and 4 kinds of hematopoietic tumor cell strains. The 4 kinds of hematopoietic tumor cells were exposed to UV light with a germicidal UV lamp or treated with 2 mmol/L hydroxyurea and the apoptotic rate was detected by using AnnexinV-FITC. The results showed that these tumor cells ex- pressed BLM protein higher than the normal human bone marrow mononuclear cells (P<0.01). In the 4 hematopoietic tumor cells, BLM protein was all specially cleaved in response to UV- or HU-induced apoptosis. The increase of BLM protein expression may play an important role in the evelopment of these tumors, and BLM proteolysis is likely to be a general feature of the apoptotic esponse.

  17. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors

    DEFF Research Database (Denmark)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M;

    2016-01-01

    tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein......The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated...... with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry...

  18. Endothelial cells internalize and degrade RGD-modified proteins developed for tumor vasculature targeting

    NARCIS (Netherlands)

    Schraaa, AJ; Kok, RJ; Berendsen, AD; Moorlag, HE; Bos, EJ; Meijer, DKF; de Leij, LFMH; Molema, G

    2002-01-01

    Tumor vasculature can be targeted by peptides containing an RGD (Arg-Gly-Asp) sequence, which bind to a p, and alpha(v)beta(5) integrins on angiogenic endothelial cells. By covalently attaching cyclic RGD-peptides (cRGDfK) to a protein backbone, we prepared a multivalent peptide-protein conjugate wi

  19. Immune control of tumors by antigen presentation improvement.

    Science.gov (United States)

    Remedi, María Mónica; Bonacci, Gustavo; Vides, Miguel Angel; Donadio, Ana Carolina

    2003-01-01

    Tumor cells cannot activate T lymphocytes, since they do not usually express major histocompatibility complex (MHC) class II molecules. Thus, tumor antigens can only be presented indirectly to T cells through professional antigen-presenting cells (APC). In our laboratory, we have treated a tumor cell line (Tu1-A) - derived from an induced rat mammary sarcoma - in order to increase the expression of MHC class I and class II molecules. In our tumor model, the transference of these induced cells into normal rats generated a tumor mass that exhibited a lower tumor growth rate and an earlier regression as compared to those observed in rats inoculated with wild-type Tu1-A cells. This earlier tumor regression was associated with the development of an antigen-specific immune response. 85-87% of the rats in both groups rejected the tumor and were alive at day 60 after tumor cell inoculation. However, in rats treated with wild-type cells the rejection was delayed and took place after tumor ulceration. Rats that had rejected tumors were rechallenged with wild-type cells in order to assay the presence of a long-lived antitumor immunity. All the animals were resistant to the second tumor challenge. We conclude that the development of a specific immune response could be achieved by the superexpression of MHC molecules on tumor cells or when tumor ulceration promotes APC to take up necrotic cells and tumor antigens are presented to T lymphocytes.

  20. Dendritic-tumor fusion cells derived heat shock protein70-peptide complex has enhanced immunogenicity.

    Science.gov (United States)

    Zhang, Yunfei; Zhang, Yong; Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.

  1. Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1.

    Science.gov (United States)

    Kaur, Amanpreet; Westermarck, Jukka

    2016-12-15

    Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.

  2. LATS1 tumor suppressor is a novel actin-binding protein and negative regulator of actin polymerization

    Institute of Scientific and Technical Information of China (English)

    Stacy Visser-Grieve; Zhonghua Zhou; Yi-Min She; He Huang; Terry D Cyr; Tian Xu; Xiaolong Yang

    2011-01-01

    Dear Editor,The LATS tumor suppressor,conserved from Drosophila (dlats) to humans (LATS1,LATS2),plays a vital role in maintaining cellular homeostasis in humans since loss of either LATS1 or LATS2 leads to the development of numerous cancer types such as breast cancer and leukemia [1].Apart from its roles as a Ser/Thr kinase within the emerging Hippo pathway regulating cell proliferation and apoptosis,ultimately leading to the control of organ size and tumorigenesis [2],LATS is also implicated in a broad range of functions including regulation of genetic stability,transcription,and protein stability [1 ].Recently,tumor suppressors have also been shown to affect the later stages of tumorigenesis,including metastasis.Among this group of metastasis regulators are genes that can directly affect actin dynamics by binding to F-actin,such as the tumor suppressors p53 [3],NF2 [4] and APC [5].

  3. Tumor Necrosis Factor-alpha Induced Protein 3 Interacting Protein 1 Gene Polymorphisms and Pustular Psoriasis in Chinese Han Population

    Institute of Scientific and Technical Information of China (English)

    Jian-Wen Han; Yong Wang; Chulu Alateng; Hong-Bin Li; Yun-Hua Bai; Xin-Xiang Lyu; Rina Wu

    2016-01-01

    Background:Psoriasis is a common immune-mediated inflammatory dermatosis.Generalized pustular psoriasis (GPP) is the severe and rare type of psoriasis.The association between tumor necrosis factor-alpha induced protein 3 interacting protein 1 (TNIP1) gene and psoriasis was confirmed in people with multiple ethnicities.This study was to investigate the association between TNIP1 gene polymorphisms and pustular psoriasis in Chinese Han population.Methods:Seventy-three patients with GPP,67 patients with palmoplantar pustulosis (PPP),and 476 healthy controls were collected from Chinese Han population.Six single nucleotide polymorphisms (SNPs) of the TNIP1 gene,namely rs3805435,rs3792798,rs3792797,rs869976,rs17728338,and rs999011 were genotyped by using polymerase chain reaction-ligase detection reaction.Statistical analyses were performed using the PLINK 1.07 package.Allele frequencies and genotyping frequencies for six SNPs were compared by using Chi-square test,odd ratio (OR) (including 95% confidence interval) were calculated.The haplotype analysis was conducted by Haploview software.Results:The frequencies of alleles of five SNPs were significantly different between the GPP group and the control group (P≤ 7.22 × 10-3),especially in the GPP patients without psoriasis vulgaris (PsV).In the haplotype analysis,the most significantly different haplotype was H4:ACGAAC,with 13.1% frequency in the GPP group but only 3.4% in the control group (OR =4.16,P =4.459 × 10-7).However,no significant difference in the allele frequencies was found between the PPP group and control group for each of the six SNPs (P > 0.05).Conclusions:Polymorphisms in TNIP1 are associated with GPP in Chinese Han population.However,no association with PPP was found.These findings suggest that TNIP1 might be a susceptibility gene for GPP.

  4. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  5. Inhibition of tumor growth in xenografted nude mice with adenovirus-mediated endostatin gene comparison with recombinant endostatin protein

    Institute of Scientific and Technical Information of China (English)

    梁志慧; 吴沛宏; 李立; 薛刚; 曾益新; 黄文林

    2004-01-01

    Background Inhibition of tumor growth by endostatin has been shown to be an effective strategy in cancer therapy in mice. However, its widespread application has been hampered by difficulties in a large-scale production of the recombinant endostatin protein, rapid loss bioactivity of the protein, and the cumbersome daily administration. These limitations could be resolved by in vivo delivery and expression of the endostatin gene. In this study, we observed the effect and advantage of endostatin gene therapy mediated by a recombinant adenoviral vector (Ad/hEndo) on the growth of hepatocellular carcinoma BEL-7402 xenografted tumors, comparison with recombinant endostatin protein.Results After 4 courses of treatment, the tumor growth rates of high-dose treated group with 1×109 pfu of Ad/hEndo were inhibited by 42.26% compared with the Ad/LacZ control group (P=0.001) and by 46.26% compared with the NIH buffer control group (P=0.003), respectively. However, in this study, Ad/hEndo at low dose of 5×108 pfu failed to demonstrate significant inhibition of tumor growth, compared with control groups. After daily administration of recombinant human endostatin protein (rhEndo) for 9 days, the ratio of T/C (rhEndo group versus PBS group) was less than 47%. However, two days after rhEndo treatment ceased, the ratio of T/C was more than 50%. The peak of expression of endostatin mRNA in tumor tissue was at 2 or 3 days after administration intratumorally with Ad/hEndo of 1×109 pfu and gradually dropped undetectable by day 7. Dynamic analysis of endostatin concentration in tumor tissue showed that the highest level of mRNA is up at the third day after injection, and dropped to basal level three weeks later.Conclusions Endostatin gene therapy mediated by a recombinant adenoviral vector had significantly inhibited the growth of hepatocellular carcinoma BEL-7402 xenografted tumors at a high dose of 1×109 pfu compared with other groups. The analysis of dynamic expression of

  6. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  7. Classification of lung cancer tumors based on structural and physicochemical properties of proteins by bioinformatics models.

    Science.gov (United States)

    Hosseinzadeh, Faezeh; Ebrahimi, Mansour; Goliaei, Bahram; Shamabadi, Narges

    2012-01-01

    Rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important in diagnosis of this disease. Furthermore sequence-derived structural and physicochemical descriptors are very useful for machine learning prediction of protein structural and functional classes, classifying proteins and the prediction performance. Herein, in this study is the classification of lung tumors based on 1497 attributes derived from structural and physicochemical properties of protein sequences (based on genes defined by microarray analysis) investigated through a combination of attribute weighting, supervised and unsupervised clustering algorithms. Eighty percent of the weighting methods selected features such as autocorrelation, dipeptide composition and distribution of hydrophobicity as the most important protein attributes in classification of SCLC, NSCLC and COMMON classes of lung tumors. The same results were observed by most tree induction algorithms while descriptors of hydrophobicity distribution were high in protein sequences COMMON in both groups and distribution of charge in these proteins was very low; showing COMMON proteins were very hydrophobic. Furthermore, compositions of polar dipeptide in SCLC proteins were higher than NSCLC proteins. Some clustering models (alone or in combination with attribute weighting algorithms) were able to nearly classify SCLC and NSCLC proteins. Random Forest tree induction algorithm, calculated on leaves one-out and 10-fold cross validation) shows more than 86% accuracy in clustering and predicting three different lung cancer tumors. Here for the first time the application of data mining tools to effectively classify three classes of lung cancer tumors regarding the importance of dipeptide composition, autocorrelation and distribution descriptor has been reported.

  8. Classification of lung cancer tumors based on structural and physicochemical properties of proteins by bioinformatics models.

    Directory of Open Access Journals (Sweden)

    Faezeh Hosseinzadeh

    Full Text Available Rapid distinction between small cell lung cancer (SCLC and non-small cell lung cancer (NSCLC tumors is very important in diagnosis of this disease. Furthermore sequence-derived structural and physicochemical descriptors are very useful for machine learning prediction of protein structural and functional classes, classifying proteins and the prediction performance. Herein, in this study is the classification of lung tumors based on 1497 attributes derived from structural and physicochemical properties of protein sequences (based on genes defined by microarray analysis investigated through a combination of attribute weighting, supervised and unsupervised clustering algorithms. Eighty percent of the weighting methods selected features such as autocorrelation, dipeptide composition and distribution of hydrophobicity as the most important protein attributes in classification of SCLC, NSCLC and COMMON classes of lung tumors. The same results were observed by most tree induction algorithms while descriptors of hydrophobicity distribution were high in protein sequences COMMON in both groups and distribution of charge in these proteins was very low; showing COMMON proteins were very hydrophobic. Furthermore, compositions of polar dipeptide in SCLC proteins were higher than NSCLC proteins. Some clustering models (alone or in combination with attribute weighting algorithms were able to nearly classify SCLC and NSCLC proteins. Random Forest tree induction algorithm, calculated on leaves one-out and 10-fold cross validation shows more than 86% accuracy in clustering and predicting three different lung cancer tumors. Here for the first time the application of data mining tools to effectively classify three classes of lung cancer tumors regarding the importance of dipeptide composition, autocorrelation and distribution descriptor has been reported.

  9. Tumor-protective and tumor-promoting actions of dietary whey proteins in an N-methyl-N-nitrosourea model of rat mammary carcinogenesis.

    Science.gov (United States)

    Eason, Renea R; Till, S Reneé; Frank, Julie A; Badger, Thomas M; Korourian, Sohelia; Simmen, Frank A; Simmen, Rosalia C M

    2006-01-01

    The mammary tumor-protective effects of dietary factors are considered to be mediated by multiple signaling pathways, consistent with the heterogeneous nature of the disease and the distinct genetic profiles of tumors arising from diverse mammary cell populations. In a 7,12-dimethylbenz(a)anthracene-induced model of carcinogenesis, we showed previously that female Sprague-Dawley rats exposed to AIN-93G diet containing whey protein hydrolysate (WPH) beginning at gestation Day 4 had reduced tumor incidence than those exposed to diet containing casein (CAS), due partly to increased mammary differentiation and reduced activity of phase I metabolic enzymes. Here, we evaluated the tumor-protective effects of these same dietary proteins to the direct-acting carcinogen N-methyl-N-nitrosourea (NMU). We found that lifetime exposure to WPH, relative to CAS, decreased mammary tumor incidence and prolonged the appearance of tumors in NMU-treated female rats, with no corresponding effects on tumor multiplicity. At 115 days post-NMU, histologically normal mammary glands from WPH-fed tumor-bearing rats had increased gene expression for the tumor suppressor BRCA1 and the differentiation marker kappa-casein than those of CAS-fed tumor-bearing rats. Tumor-bearing rats from the WPH group had more advanced tumors, with a greater incidence of invasive ductal carcinoma than ductal carcinoma in situ and higher serum C-peptide levels than corresponding rats fed CAS. WPH-fed tumor-bearing rats were also heavier after NMU administration than CAS tumor-bearing rats, although no correlation was noted between body weight and C-peptide levels for either diet group. Results demonstrate the context-dependent tumor-protective and tumor-promoting effects of WPH; provide support for distinct signaling pathways underlying dietary effects on development of mammary carcinoma; and raise provocative questions on the role of diet in altering the prognosis of existing breast tumors.

  10. Special issue of clinical pharmacology: advances and applications in new protein therapeutics modulating tumor immunity

    Directory of Open Access Journals (Sweden)

    Frankel AE

    2013-11-01

    Full Text Available Arthur E Frankel Department of Internal Medicine, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA Until recent decades, the role of the immune system in harnessing tumor growth was based on anecdotal observations of increased cancers in immune-compromised patients, the benefits of graft-versus-leukemia in allogeneic stem cell transplants, and the limited but reproducible anticancer activity of several lymphokines, including interferon and interleukin (IL-2. Vaccine studies and infusions of "activated" lymphocytes yielded variable clinical responses and disease control. An improved understanding of the molecular and cell mechanisms of the innate and adaptive immune system in cancer-bearing animals and the discovery of an immune-suppressive tumor microenvironment then led to development and testing of a battery of new drug and cell-based approaches to trigger antitumor immunity. This issue of Clinical Pharmacology: Advances and Applications highlights some of the new protein-based compounds that are radically changing the cancer therapeutic landscape. The purpose of this collection of reviews is to inform the readership regarding the importance of the seismic change in cancer therapeutics and stimulate efforts to find novel niches and combinations of agents similar to recent advances in the application of cancer pathway inhibitors.

  11. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins

    Science.gov (United States)

    Boonstra, Martin C.; de Geus, Susanna W.L.; Prevoo, Hendrica A.J.M.; Hawinkels, Lukas J.A.C.; van de Velde, Cornelis J.H.; Kuppen, Peter J.K.; Vahrmeijer, Alexander L.; Sier, Cornelis F.M.

    2016-01-01

    Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.

  12. The regulation of tumor suppressor protein, p53, and estrogen receptor (ERα) by resveratrol in breast cancer cells

    Science.gov (United States)

    Saluzzo, Julieta; Hallman, Kelly M.; Aleck, Katie; Dwyer, Brigitte; Quigley, Meghan; Mladenovik, Viktoria; Siebert, Amy E.; Dinda, Sumi

    2016-01-01

    Resveratrol (RES) is a natural antioxidant found abundantly in grapes, peanuts, and berries, and is known to possess anti-tumorigenic properties. However, there is a noticeable lack of studies on the mechanistic effects of Resveratrol on tumor suppressors. Previous studies from our laboratory have shown the tumor suppressor protein p53 and estrogen receptor-alpha (ERα) to be possible molecular targets for RES. In this study, the anti-estrogenic effects of RES were analyzed on the expression of ERα and p53. The breast cancer cells grown in stripped serum were treated with 60 μM RES, as the optimum concentration based on data obtained from a concentration study using 1-100 μM RES. Our studies indicate that RES caused a decrease in the levels of protein expression of p53 and ERα as compared to the control. Increasing concentrations of RES caused a four-fold decrease in cell number in comparison to estradiol. RES, in conjunction with ICI 182,780 (ICI), caused a down-regulation of both p53 and ERα as compared to the control. These observed effects on cell proliferation and regulation of both p53 and ERα by RES may lead to further understanding of the relationship between tumor suppressor proteins and steroid receptors in breast cancer cells. PMID:28191286

  13. Reduced Expression of PTEN Protein and Its Prognostic Significance in the Gastrointestinal Stromal Tumor

    Institute of Scientific and Technical Information of China (English)

    张永红; 于冬冬; 李小兰; 胡俊波; 龚建平

    2010-01-01

    Little is reported about the role of PTEN gene in the progression and prognosis of GISTs.This study examined the clinical implications of the tumor suppressor gene PTEN as a prognostic factor in the GISTs.Immunohistological staining and immunoblotting were employed to examine the PTEN protein expression,and its association with clinical measures.Clinicopathological features were reviewed by a retrospective examination of medical records.Reduced PTEN expression was significantly associated with tumor diamete...

  14. Patrolling Monocytes Control Tumor Metastasis to the Lung

    OpenAIRE

    Hanna, Richard N.; Cekic, Caglar; Sag, Duygu; Tacke, Robert; Graham D. Thomas; Nowyhed, Heba; Herrley, Erica; Rasquinha, Nicole; McArdle, Sara; Wu, Runpei; Peluso, Esther; Metzger, Daniel; Ichinose, Hiroshi; Shaked, Iftach; Chodaczek, Grzegorz

    2015-01-01

    The immune system plays an important role in regulating tumor growth and metastasis. For example, classical monocytes promote tumorigenesis and cancer metastasis; however, how nonclassical “patrolling” monocytes interact with tumors is unknown. Here we show that patrolling monocytes are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack patrolling monocytes, showed increased ...

  15. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3

    Directory of Open Access Journals (Sweden)

    Marx Stephen J

    2008-08-01

    Full Text Available Abstract Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3, but not with non-muscle alpha-actinins (actinin-1 and actinin-4. The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells, but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin participate in sequestering parafibromin in the cytoplasmic compartment.

  16. Control the invasive growth of gastrointestinal epithelial tumor

    Institute of Scientific and Technical Information of China (English)

    Wang Cunyu

    2014-01-01

    Invasive growth of epithelial tumor is a very complex process. Therefore,clarifying the molecular mechanisms of the invasive growth of tumor cells will help us find new targets for cancer therapy,and suppress tumor growth and development more effectively.

  17. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells.

    Science.gov (United States)

    Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger

    2013-04-17

    We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.

  18. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    Directory of Open Access Journals (Sweden)

    Ayesha Fatima

    2015-01-01

    Full Text Available Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ and the Nuclear factor κB (NF-κB component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.

  19. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  20. Marrow-tumor interactions: the role of the bone marrow in controlling chemically induced tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, C

    1980-01-01

    This report summarizes work done to evaluate the role of the bone marrow in tumor growth regulation. Work done with the MCA tumor showed that several subclasses of mononuclear bone marrow cells (e.g. natural regulatory cell, NRC) play a major role in the regulation of tumor growth. Experiments with the spontaneous CE mammary carcinoma system illustrate that a rapid growth of certain neoplasms may be due to the fact that through some as yet undefined mechanism the tumor eliminates mononuclear cells in the bone marrow of the host and stops their production. (KRM)

  1. Patrolling Monocytes Control Tumor Metastasis to the Lung

    Science.gov (United States)

    Hanna, Richard N.; Cekic, Caglar; Sag, Duygu; Tacke, Robert; Thomas, Graham D.; Nowyhed, Heba; Herrley, Erica; Rasquinha, Nicole; McArdle, Sara; Wu, Runpei; Peluso, Esther; Metzger, Daniel; Ichinose, Hiroshi; Shaked, Iftach; Chodaczek, Grzegorz; Biswas, Subhra K.; Hedrick, Catherine C.

    2016-01-01

    The immune system plays an important role in regulating tumor growth and metastasis. For example, classical monocytes promote tumorigenesis and cancer metastasis; however, how nonclassical “patrolling” monocytes interact with tumors is unknown. Here we show that patrolling monocytes are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack patrolling monocytes, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient patrolling monocytes into Nr4a1-deficient mice prevented tumor invasion in lung. Patrolling monocytes established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature and promoted natural killer cell recruitment and activation. Thus, patrolling monocytes contribute to cancer immunosurveillance and may be targets for cancer immunotherapy. PMID:26494174

  2. Wilm's tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria.

    Directory of Open Access Journals (Sweden)

    Anuradha Kalani

    Full Text Available BACKGROUND: Podocyte injury is an early feature of diabetic nephropathy (DN. Recently, urinary exosomal Wilm's tumor-1 protein (WT1, shed by renal epithelial cells, has been proposed as a novel biomarker for podocyte injury. However, its usefulness as biomarker for early diabetic nephropathy has not been verified yet. We investigated urinary exosomal WT1 in type-1 diabetic patients to confirm its role as a non-invasive biomarker for predicting early renal function decline. METHODS: The expression of WT1 protein in urinary exosomes from spot urine samples of type-1 diabetes mellitus patients (n = 48 and healthy controls (n = 25 were analyzed. Patients were divided based on their urinary albumin excretion, ACR (mg/g creatinine into non- proteinuria group (ACR30 mg/g, n = 18. Regression analysis was used to assess the association between urinary exosomal levels of WT1 with parameters for renal function. Receiver Operating Characteristic (ROC curve analysis was used to determine the diagnostic performance of exosomal WT-1. RESULTS: WT1 protein was detected in 33 out of 48 diabetic patients and in only 1 healthy control. The levels of urinary exosomal WT1 protein is significantly higher (p = 0.001 in patients with proteinuria than in those without proteinuria. In addition, all the patients with proteinuria but only half of the patients without proteinuria were positive for exosomal WT1. We found that the level of exosomal WT1 were associated with a significant increase in urine protein-to-creatinine ratio, albumin-to-creatinine ratio, and serum creatinine as well as a decline in eGFR. Furthermore, patients exhibiting WT1-positive urinary exosomes had decreased renal function compared to WT1-negative patients. ROC analysis shows that WT-1 effectively predict GFR<60 ml. min-1/1.73 m(2. CONCLUSION: The predominant presence of WT1 protein in urinary exosomes of diabetic patients and increase in its expression level with decline in renal

  3. Postoperative seizure control in patients with tumor-associated epilepsy.

    Science.gov (United States)

    Neal, Andrew; Morokoff, Andrew; O'Brien, Terence John; Kwan, Patrick

    2016-11-01

    The patterns of postoperative seizure control and response to antiepileptic drugs (AEDs) in tumor-associated epilepsy (TAE) are poorly understood. We aim to document these characteristics in patients with supratentorial gliomas. This was a retrospective analysis of 186 patients with supratentorial gliomas. Seizure patterns were classified into four groups: A, no postoperative seizure; B, early postoperative seizure control within 6 months; C, fluctuating seizure control; and D, never seizure-free. Rates and duration of seizure freedom, subsequent seizure relapse, and response to AED were analyzed. Among patients included, 49 (26.3%) had grade II, 28 (15.1%) had grade III, and 109 (58.6%) had grade IV glioma. Outcome pattern A was observed in 95 (51.1%), B in 22 (11.8%), C in 45 (24.2%), and D in 24 (12.9%). One hundred nineteen patients had at least one seizure and were classified as having TAE. Compared to pattern A, pattern B was predicted by histologic progression; pattern C by tumor grade, preoperative seizure, and histologic progression, and pattern D by preoperative seizure and gross total resection. Among patients with TAE, 57.5% of grade II, 68.2% of grade III, and 26.3% of grade IV experienced a period of 12-month seizure freedom. After first 12-month seizure remission, 39.1%, 60.0%, and 13.3% of grade II, III, and IV gliomas, respectively, experienced subsequent seizure; 22.6% of those with TAE reached terminal seizure freedom of at least 12 months on their first postoperative AED regimen, 6.5% on their second regimen, and 5.4% on subsequent regimens. Distinct patterns of postoperative seizure control exist in gliomas; they have specific risk factor profiles, and we hypothesize these correspond to unique pathogenic mechanisms. Twelve-month seizure freedom with subsequent relapse is frequent in grade II-III gliomas. Response to AEDs is markedly poorer than with non-TAE, highlighting the complex epileptogenicity of gliomas. Wiley Periodicals, Inc. © 2016

  4. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  5. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review.

    LENUS (Irish Health Repository)

    Shrotriya, Shiva

    2015-01-01

    A systematic literature review was done to determine the relationship between elevated CRP and prognosis in people with solid tumors. C-reactive protein (CRP) is a serum acute phase reactant and a well-established inflammatory marker. We also examined the role of CRP to predict treatment response and tumor recurrence.

  6. Overexpression of the human major vault protein in astrocytic brain tumor cells.

    Science.gov (United States)

    Berger, W; Spiegl-Kreinecker, S; Buchroithner, J; Elbling, L; Pirker, C; Fischer, J; Micksche, M

    2001-11-01

    Evidence has shown that the major human vault protein (MVP), which is identical to lung resistance-related protein (LRP), may be causally involved in a special type of multidrug resistance (MDR). The purpose of this study was to investigate the expression and cellular localization of MVP in cells derived from brain tumors and other tumors of neuroectodermal origin. Using both established cell lines (n = 22) and primary explants (n = 30), we show that a distinct overexpression of the MVP gene at the mRNA (RT-PCR) and protein (Western blot) levels is a characteristic feature of cells derived from astrocytic brain tumors. Primary cultures obtained from meningioma specimens also expressed high MVP levels, in contrast to neuroblastoma and medulloblastoma cells, which rarely contained detectable amounts of MVP. Normal human astrocytes cultured in vitro expressed MVP, although at low amounts compared with most malignant cell types. Basal MVP expression correlated with resistance against diverse antineoplastic drugs including anthracyclins, cisplatin and etoposide. By Western blot, MVP was also detected in all tumor samples taken from 7 glioma and 3 meningioma patients. Taken together, these data suggest overexpression of MVP as one explanation for the low efficacy of chemotherapeutic treatment of astrocytic brain tumors. Copyright 2001 Wiley-Liss, Inc.

  7. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development

    Science.gov (United States)

    Czerwińska, Patrycja; Shah, Parantu K.; Tomczak, Katarzyna; Klimczak, Marta; Mazurek, Sylwia; Sozańska, Barbara; Biecek, Przemysław; Korski, Konstanty; Filas, Violetta; Mackiewicz, Andrzej; Andersen, Jannik N.; Wiznerowicz, Maciej

    2017-01-01

    The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors. PMID:27845900

  8. Kint3-4 protein from human plasminogen delays Ehrlich tumor growth in mice Efeito da proteína Kint3-4 do plasminogênio humano no crescimento do tumor de Ehrlich

    Directory of Open Access Journals (Sweden)

    Cristina Maria de Souza

    2011-08-01

    Full Text Available INTRODUCTION AND OBJECTIVE: Kint3-4 protein, originated from a genetic recombination of K1-3 and K1-4 human plasminogen segments, is recognized for its antiangiogenic and anti-inflammatory potential. This study aimed to evaluate the effect of Kint3-4 protein on tumor development in Swiss mice previously inoculated with Ehrlich tumor cells. METHODS: The protein fragment was obtained from Pichia pastoris cloning and transformation. After tumor cell inoculation three different protocols were used to assess tumor growth: beginning (0-6 days, peak (0-12 days and after peak (0-18 days. We analyzed tumor growth, histomorphological characteristics and immunohistochemistry by use of CDC47 (cellular proliferation marker and CD31 (blood vessel marker. RESULTS: Animals treated with Kint3-4 protein (150 µg/kg/48 h showed lower tumor growth in all protocols. Based on histological assessment, inflammation and tumor areas were also reduced. Moreover, both the lowest rate of tumor cell proliferation and low microvessel density were observed in animals treated with Kint3-4 protein compared with the untreated control group. CONCLUSION: The effect of Kint3-4 recombinant protein on tumor angiogenesis and control of malignant cell proliferation enhances the prospects of its use in clinical and antiangiogenic treatment.INTRODUÇÃO E OBJETIVO: A proteína Kint3-4 originou-se a partir de uma recombinação genética dos segmentos K1-3 e K1--4 do plasminogênio humano e é reconhecida por seu potencial anti-inflamatório e antiangiogênico. Este estudo teve como objetivo avaliar o efeito da proteína Kint3-4 no desenvolvimento de tumores em camundongos inoculados com células do tumor de Ehrlich. MÉTODOS: O fragmento de proteína foi obtido por uma técnica de clonagem e transformação de Pichia pastoris. Três diferentes protocolos foram avaliados após a inoculação das células tumorais: no início (0-6 dias, no pico (0-12 dias e após o pico (0-18 dias de

  9. Ornithine decarboxylase, mitogen-activated protein kinase and matrix metalloproteinase-2 expressions in human colon tumors

    Institute of Scientific and Technical Information of China (English)

    Takahiro Nemoto; Shunichiro Kubota; Hideyuki Ishida; Nobuo Murata; Daijo Hashimoto

    2005-01-01

    AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively.RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels.CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC.

  10. Expression of altered retinoblastoma protein inversely correlates with tumor invasion in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Nan-Hua Chou; Hui-Chun Chen; Nan-Song Chou; Ping-I Hsu; Hui-Hwa Tseng

    2006-01-01

    AIM: To investigate the clinical and pathological significance of altered retinoblastoma (Rb) encoding protein (pRb) in gastric carcinoma.METHODS: Expression of altered pRb was analyzed in 91 patients with gastric adenocarcinoma by immunohistochemistry.RESULTS: Sixty-five percent (59/91) of the tumors were positively stained and the staining in tumor nuclei of gastric carcinoma ranged 0%-90%. Moreover, strong expression of altered pRb was found in 35% (6/17),24% (5/21), 17% (8/46) and 0% (0/7) of T1, T2, T3 and T4 gastric carcinomas, respectively. Altered pRb expression was inversely correlated with the depth of tumor invasion (P = 0.047). Degree of immunoreactivity had no significant correlation with tumor grade, node metastasis and distant metastasis. In terms of prognostic significance, univariate analysis showed that poor differentiation [41 (66.1%) vs 34 (42.5%) P = 0.051],advanced tumor stage (P < 0.001) and weakly altered pRb expression [17 (80.5%) vs 58 (49.6%) P = 0.044]were associated with worse prognosis in these patients.However, multivariate analysis revealed that advanced tumor stage was the only independent poor prognostic factor (P < 0.001).CONCLUSION: The mutation of Rb gene is frequent in gastric carcinoma. The expression of altered pRb inversely correlates with tumor invasion and is not an independent prognostic marker in gastric adenocarcinoma

  11. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  12. [Tumor/cytotoxic effector cross-talk in the control of tumor susceptibility to lysis].

    Science.gov (United States)

    Gati, Asma; Dorothée, Guillaume; Thiéry, Jérôme; Guerra, Nadia; Richon, Catherine; Gaudin, Catherine; Mami-Chouaib, Fathia; Caignard, Anne; Diarra-Mehrpour, Maryam; Chouaib, Salem

    2003-01-01

    During the two least decades, the field of tumor immunology has met an expansion of knowledge about the molecular and cellular bases of immune regulation. The identification of cancer antigens has been of critical importance and cancer vaccine is at present a very fast moving field. However, the immunotherapy approaches in cancer are of modest success. This is mainly due to the capacity of tumor cells to escape from immunological detection and to resist to cell mediated cytotoxicity. We will discuss some mechanisms associated with the acquisition of this tumor resistance and the alteration of T cell function and how cancer profiling through genomics approaches may help to reconceptualize immunotherapy strategies.

  13. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  14. CHARACTER OF TUMOR ASSOCIATED PROTEIN RECOGNIZED BY MONOCLONAL ANTIBODY AGAINST YUNNAN GEJIU LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives: To identify and characterize lung cancer associated protein N35 and attempt to learn the prospective possibility of the clinical application of the protein N35. Methods: Immunoprecipitation, immunoblotting, differential centrifigation and subcellular assay, immunohistochemistry, N-glycanase digestion, mitotic cell immunoflourescence and multiple methods of affinity chromatography have been used with the monoclonal antibody N-35 to detect the distribution of the protein N35 among the various cancer cell lines and normal human tissue, the relationship between the protein N35 and glycoprotein, the location of the subcellular structure and chromosomal domain of the protein N35,the most effective way of purification of tumor associated protein N35. Results: The protein N35 is a glycoprotein, distributes to the human lung cancer cell line GLC-82, human cervical cancer cell line Hela, human hepatic cancer cell line HepG-2 and human breast cancer cell line PMC with different relative molecular mass(Mr), but no expression of the protein ingredient in normal human fresh tissue; concentrates at the nuclei significantly ,much more than at the mitochondrail and membrane, locates at the centriole of the chromosomal domain. Conclusions: The lung cancer associated protein N35 might be expressed only by the cancer cells and related with the proliferation of cancer cells as a role of tumor cell growth regulator.

  15. Modification of an apparatus for tumor-suppressor protein crystal growth in the International Space Station

    Science.gov (United States)

    de Morais Mendonca Teles, Antonio

    Some human diseases as tumors are being studied continuously for the development of vaccines against them. And a way of doing that is by means of proteins research. There are some kinds of proteins, like the p53 and p73 proteins, which are tumor suppressors. There are other diseases such as A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases which are protein-related. The determination of how proteins geometrically order themselves, during its biological functions is very necessary to understand how a protein's structure affects its function, to design vaccines that intercede in tumor-protein activities and in other proteins related to those other diseases. The protein crystal growth in microgravity environment produces purer crystallization than on the ground, and it is a powerful tool to produce better vaccines. Several data have already been acquired using ground-based research and in spaceflight experiments aboard the Spacelab and Space Shuttle missions, and in the MIR and in the International Space Station (ISS). Here in this paper, I propose to be performed in the ISS Biological Research Facility (which is being developed), multiple crystal growth of proteins related to cancer (as tumors suppressors and oncoproteins), A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases, for the future obtaining of possible vaccines against them. I also propose a simple and practical equipment, a modification of the crystallization plates (which use a vapor diffusion technique) inside each cylinder of the Protein Crystallization Apparatus in Microgravity (PCAM), with multiple chambers with different sizes. Instead of using some chambers with the same size it is better to use several chambers with different sizes. Why is that? The answer is: the energy associated with the surface tension of the liquid in the chamber is directly related to the circle area of it. So, to minimize the total energy of the surface tension of a proteins liquid -making it more stable

  16. Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53.

    Directory of Open Access Journals (Sweden)

    Ruey-Shyang Soong

    Full Text Available The pivotal role of p53 as a tumor suppressor protein is illustrated by the fact that this protein is found mutated in more than 50% of human cancers. In most cases, mutations in p53 greatly increase the otherwise short half-life of this protein in normal tissue and cause it to accumulate in the cytoplasm of tumors. The overexpression of mutated p53 in tumor cells makes p53 a potentially desirable target for the development of cancer immunotherapy. However, p53 protein represents an endogenous tumor-associated antigen (TAA. Immunization against a self-antigen is challenging because an antigen-specific immune response likely generates only low affinity antigen-specific CD8(+ T-cells. This represents a bottleneck of tumor immunotherapy when targeting endogenous TAAs expressed by tumors. The objective of the current study is to develop a safe cancer immunotherapy using a naked DNA vaccine. The vaccine employs a xenogeneic p53 gene to break immune tolerance resulting in a potent therapeutic antitumor effect against tumors expressing mutated p53. Our study assessed the therapeutic antitumor effect after immunization with DNA encoding human p53 (hp53 or mouse p53 (mp53. Mice immunized with xenogeneic full length hp53 DNA plasmid intramuscularly followed by electroporation were protected against challenge with murine colon cancer MC38 while those immunized with mp53 DNA were not. In a therapeutic model, established MC38 tumors were also well controlled by treatment with hp53 DNA therapy in tumor bearing mice compared to mp53 DNA. Mice vaccinated with hp53 DNA plasmid also exhibited an increase in mp53-specific CD8(+ T-cell precursors compared to vaccination with mp53 DNA. Antibody depletion experiments also demonstrated that CD8(+ T-cells play crucial roles in the antitumor effects. This study showed intramuscular vaccination with xenogeneic p53 DNA vaccine followed by electroporation is capable of inducing potent antitumor effects against tumors

  17. Expressão das proteínas BCL-2 e BAX em tumores astrocíticos humanos Expression of BCL-2 and BAX proteins in human astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Mário Henrique Girão Faria

    2006-08-01

    Full Text Available INTRODUÇÃO: Os astrocitomas constituem os mais freqüentes tumores primários do sistema nervoso central (SNC. Admite-se que parte do crescimento tumoral seja resultante da inibição da morte celular programada: a apoptose. Tal fenômeno é basicamente regulado pelo equilíbrio entre moléculas antiapoptóticas (ex.: B-cell lymphoma protein 2 [BCL-2] e pró-apoptóticas (ex.: BCL-2 associated protein X [BAX]. OBJETIVO: O presente estudo objetivou avaliar a expressão de BCL-2 e BAX em tumores astrocíticos humanos. MATERIAL E MÉTODOS: Procedeu-se ao estudo imuno-histoquímico dessas proteínas utilizando-se o método da avidina-biotina-peroxidase em 55 astrocitomas (13 do grau I, 14 do II, sete do III e 21 do grau IV e cinco amostras de tecido cerebral não-tumoral (grupo controle. RESULTADOS: Os índices de positividade para BCL-2 e BAX demonstraram propensão ao acréscimo, de acordo com a gradação tumoral, com positividade geral de 43,26% e 24,67%, respectivamente. Essas proteínas não foram detectadas entre os espécimes não-tumorais. Os escores de marcação para BCL-2 apresentaram tendência ao aumento conforme a progressão histológica, enquanto os para BAX mostraram-se semelhantes nas diversas graduações. A análise conjunta dessas proteínas demonstrou significativa correlação com a gradação tumoral (p BACKGROUND: Astrocytomas represent the most frequent primary tumors of the central nervous system. Admittedly, part of tumor growth is due to inhibition of programmed cell death: the apoptosis. This phenomenon is basically regulated by the balance between anti-apoptotic (e.g.: B-cell lymphoma protein 2 [BCL-2] and pro-apoptotic (e.g.: BCL-2 associated protein X [BAX] molecules. OBJECTIVE: The present study aimed to evaluate the expression of BCL-2 and BAX in human astrocytic tumors of different histopathological grades. MATERIAL AND METHOD: An immunohistochemical study of those proteins using the avidin

  18. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    Science.gov (United States)

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  19. Acidic Tumor Microenvironment and pH-Sensing G protein-Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Calvin R. Justus

    2013-12-01

    Full Text Available The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8, GPR68 (OGR1, and GPR132 (G2A, regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  20. Retinoblastoma-binding protein 2 (RBP2) is frequently expressed in neuroendocrine tumors and promotes the neoplastic phenotype.

    Science.gov (United States)

    Maggi, E C; Trillo-Tinoco, J; Struckhoff, A P; Vijayaraghavan, J; Del Valle, L; Crabtree, J S

    2016-08-22

    Neuroendocrine tumors (NETs), which can have survival rates as low as 4%, currently have limited therapeutic interventions available highlighting the dire need for the identification of novel biological targets for use as new potential drug targets. One such potential target is retinoblastoma-binding protein 2 (RBP2), an H3K4 demethylase whose overexpression has been linked to cancer formation and metastasis in non-endocrine tumor types. We measured RBP2 mRNA and protein levels in enteropancreatic NETs by measuring RBP2 in matched human normal and NET tissue samples. Further, proliferation, migration, invasion and colony formation assays were performed in the physiologically relevant NET cell lines βlox5, H727 and QGP-1 to understand the role of RBP2 and its demethylase activity on end points of tumorigenesis. Our data indicate a strong correlation between RBP2 mRNA and protein expression in NET specimens. RBP2 was overexpressed relative to tissue-matched normal controls in 80% of the human tumors measured. In vitro studies showed RBP2 overexpression significantly increased proliferation, migration, invasion and colony formation, whereas knockdown significantly decreases the same parameters in a demethylase-independent manner. The cell cycle inhibitors p21 and p57 decreased with RBP2 overexpression and increased upon its depletion, suggesting a regulatory role for RBP2 in cellular proliferation. Taken together, our results support the hypothesis that the aberrant overexpression of RBP2 is a frequent contributing factor to tumor formation and metastasis in enteropancreatic NETs.

  1. Mass Spectrometric Imaging of Red Fluorescent Protein in Breast Tumor Xenografts

    Science.gov (United States)

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T.; Greenwood, Tiffany R.; Raman, Venu; Bhujwalla, Zaver M.; Heeren, Ron M. A.; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  2. Immunostaining for SYT protein discriminates synovial sarcoma from other soft tissue tumors: analysis of 146 cases.

    Science.gov (United States)

    He, Rui; Patel, Rajiv M; Alkan, Serhan; Hammadeh, Rasheed; Weiss, Sharon W; Goldblum, John R; Venkataraman, Girish; Baila, Horea

    2007-05-01

    Synovial sarcoma in its classic biphasic form can be distinguished readily from other soft tissue lesions; however, monophasic and poorly differentiated forms are diagnostically more problematic. For this reason, we assessed the efficacy of immunostaining for SYT and SSX1 proteins, the gene products resulting from unique synovial sarcoma translocation, to distinguish synovial sarcoma from other soft tissue lesions. A total number of 146 cases were analyzed, including 47 synovial sarcoma cases (all of which were verified by FISH to have t(X; 18) translocation and SYT-SSX fusion gene) and 99 soft tissue tumors of various types. A polyclonal IgG antibody against SYT was used to stain formalin-fixed paraffin embedded tissues. Forty-one out of 47 (87%) synovial sarcoma displayed strong positive nuclear staining (ranging from 80 to 90% of the tumor cells) for SYT antibody. Nineteen of 99 (19%) non-synovial sarcoma cases showed variable nuclear and cytoplasmic staining with SYT, which ranged from 20 to 60% of tumor nuclei, and included malignant peripheral nerve sheath tumor (5/25), solitary fibrous tumor (2/14), Ewing sarcoma (2/6), low grade fibromyxoid tumor (2/4), extraskeletal mesenchymal chondrosarcoma (2/6), gastrointestinal tumor (4/17), epithelioid sarcoma (2/2). The remaining non-synovial sarcomas were negative. This is the first study demonstrating SYT protein expression in tissue sections of synovial sarcoma. This method could provide an easy, rapid and widely applicable means of assisting in the diagnosis of synovial sarcoma, particularly when material and/or resources are unavailable for PCR or FISH-based testing. However, as variable weak staining for SYT may be encountered in a small percentage of non-synovial sarcoma sarcomas, a positive interpretation should be made only when the staining is strong, nuclear and present in the majority of cells.

  3. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    Science.gov (United States)

    Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen

    2016-01-01

    In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  4. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    Directory of Open Access Journals (Sweden)

    Ali Moghadam

    Full Text Available In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  5. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein

    Science.gov (United States)

    Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen

    2016-01-01

    In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents. PMID:27459300

  6. THE ENHANCED GREEN FLUORESCENT PROTEIN AS A MARKER FOR HUMAN TUMOR CELLS LABELLED BY RETROVIRAL TRANSDUCTION

    Institute of Scientific and Technical Information of China (English)

    傅建新; 王玮; 白霞; 卢大儒; 阮长耿; 陈子兴

    2002-01-01

    Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tumor cell lines were infected with LGSN amphotropic virus. Tumor cell lines that stably express EGFP were selected with G418. The integration and expression of EGFP gene were analyzed by polymerase chain reaction, and flow cytometry (FCM). Results: After gene transfection and ping-pong transduction, amphotropic producer line Am12/LGSN was generated with a stable green fluorescence signal readily detectable by FCM in up to 97% of examined cells. The viral titer in the supernatants was up to 8.2×105CFU/ml. After transduction and selection, G418-resistant leukemia K562, mammary carcinoma MCF-7, and bladder cancer 5637 cells were developed, in which the integration of both EGFP and neomycin resistance gene was confirmed by DNA amplification. In comparison with uninfected cells, FCM analysis revealed EGFP expression in up to 90% (range 85.5%~90.0%) of tumor cells containing LGSN provirus. Conclusion: The retroviral vector LGSN can effectively mark the human tumor cells with a stably EGFP expression which may be in studying tumor growth, metastasis and angiogenesis.

  7. Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression.

    Science.gov (United States)

    Hardy, Serge; Wong, Nau Nau; Muller, William J; Park, Morag; Tremblay, Michel L

    2010-11-01

    The PRL-1, PRL-2, and PRL-3 phosphatases are prenylated protein tyrosine phosphatases with oncogenic activity that are proposed to drive tumor metastasis. We found that PRL-2 mRNA is elevated in primary breast tumors relative to matched normal tissue, and also dramatically elevated in metastatic lymph nodes compared with primary tumors. PRL-2 knockdown in metastatic MDA-MB-231 breast cancer cells decreased anchorage-independent growth and cell migration, suggesting that the malignant phenotype of these cells is mediated at least in part through PRL-2 signaling. In different mouse mammary tumor-derived cell lines overexpressing PRL-2, we confirmed its role in anchorage-independent growth and cell migration. Furthermore, injection of PRL-2-overexpressing cells into the mouse mammary fat pad promoted extracellular signal-regulated kinase 1/2 activation and tumor formation. MMTV-PRL-2 transgenic mice engineered to overexpress the enzyme in mammary tissue did not exhibit spontaneous tumorigenesis, but they exhibited an accelerated development of mammary tumors initiated by introduction of an MMTV-ErbB2 transgene. Together, our results argue that PRL-2 plays a role in breast cancer progression.

  8. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity.

    Directory of Open Access Journals (Sweden)

    Yuanjie Hu

    Full Text Available Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7 copy number variation (CNV in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers.

  9. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90.

  10. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Fabrice Le Boeuf

    2017-09-01

    Full Text Available The reovirus fusion-associated small transmembrane (FAST proteins are the smallest known viral fusogens (∼100–150 amino acids and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant encoding the p14 FAST protein (VSV-p14 was compared with a similar construct encoding GFP (VSV-GFP in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK, and natural killer T (NKT cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

  11. An improved quantitative mass spectrometry analysis of tumor specific mutant proteins at high sensitivity.

    Science.gov (United States)

    Ruppen-Cañás, Isabel; López-Casas, Pedro P; García, Fernando; Ximénez-Embún, Pilar; Muñoz, Manuel; Morelli, M Pia; Real, Francisco X; Serna, Antonio; Hidalgo, Manuel; Ashman, Keith

    2012-05-01

    New disease specific biomarkers, especially for cancer, are urgently needed to improve individual diagnosis, prognosis, and treatment selection, that is, for personalized medicine. Genetic mutations that affect protein function drive cancer. Therefore, the detection of such mutations represents a source of cancer specific biomarkers. Here we confirm the implementation of the mutant protein specific immuno-SRM (where SRM is selective reaction monitoring) mass spectrometry method of RAS proteins reported by Wang et al. [Proc. Natl. Acad. Sci. USA 2011, 108, 2444-2449], which exploits an antibody to simultaneously capture the different forms of the target protein and the resolving power and sensitivity of LC-MS/MS and improve the technique by using a more sensitive mass spectrometer. The mutant form G12D was quantified by SRM on a QTRAP 5500 mass spectrometer and the MIDAS workflow was used to confirm the sequence of the targeted peptides. This assay has been applied to quantify wild type and mutant RAS proteins in patient tumors, xenografted human tissue, and benign human epidermal tumors at high sensitivity. The limit of detection for the target proteins was as low as 12 amol (0.25 pg). It requires low starting amounts of tissue (ca.15 mg) that could be obtained from a needle aspiration biopsy. The described strategy could find application in the clinical arena and be applied to the study of expression of protein variants in disease.

  12. Non-hepatic tumors change the activity of genes encoding copper trafficking proteins in the liver.

    Science.gov (United States)

    Babich, Polina S; Skvortsov, Alexey N; Rusconi, Paolo; Tsymbalenko, Nadezhda V; Mutanen, Marja; Puchkova, Ludmila V; Broggini, Massimo

    2013-07-01

    To assess the statistical relationship between tumor growth and copper metabolism, we performed a metaanalysis of studies in which patients with neoplasms were characterized according to any of the copper status indexes (atomic copper serum concentration, serum oxidase activity, ceruloplasmin protein content). Our metaanalysis shows that in the majority of cases (more than 3100 patients), tumor growth positively correlates with the copper status indexes. Nude athymic CD-1 nu/nu mice with subcutaneous tumors of human origin, C57Bl/6J mice with murine melanoma and Apc(Min) mice with spontaneously developing adenomas throughout the intestinal tract were studied to experimentally determine the relationship between tumor progression, liver copper metabolism, and copper status indexes. We showed that the copper status indexes increased significantly during tumor growth. In the liver tissue of tumor-bearing mice, ceruloplasmin gene expression, as well as the expression of genes related to ceruloplasmin metallation (CTR1 and ATP7B), increased significantly. Moreover, the presence of an mRNA splice variant encoding a form of ceruloplasmin anchored to the plasma membrane by glycosylphosphatidyl inositol, which is atypical for hepatocytes, was also detected. The ATP7A copper transporter gene, which is normally expressed in the liver only during embryonic copper metabolism, was also activated. Depletion of holo-ceruloplasmin resulted in retardation of human HCT116 colon carcinoma cell growth in nude mice and induced DNA fragmentation in tumor cells. In addition, the concentration of cytochrome c increased significantly in the cytosol, while decreasing in the mitochondria. We discuss a possible trans-effect of developing tumors on copper metabolism in the liver.

  13. Vitamin D Receptor Protein Expression in Tumor Tissue and Prostate Cancer Progression

    Science.gov (United States)

    Hendrickson, Whitney K.; Flavin, Richard; Kasperzyk, Julie L.; Fiorentino, Michelangelo; Fang, Fang; Lis, Rosina; Fiore, Christopher; Penney, Kathryn L.; Ma, Jing; Kantoff, Philip W.; Stampfer, Meir J.; Loda, Massimo; Mucci, Lorelei A.; Giovannucci, Edward

    2011-01-01

    Purpose Data suggest that circulating 25-hydroxyvitamin D [25(OH)D] interacts with the vitamin D receptor (VDR) to decrease proliferation and increase apoptosis for some malignancies, although evidence for prostate cancer is less clear. How VDR expression in tumor tissue may influence prostate cancer progression has not been evaluated in large studies. Patients and Methods We examined protein expression of VDR in tumor tissue among 841 patients with prostate cancer in relation to risk of lethal prostate cancer within two prospective cohorts, the Physicians' Health Study and Health Professionals Follow-Up Study. We also examined the association of VDR expression with prediagnostic circulating 25(OH)D and 1,25-dihydroxyvitamin D levels and with two VDR single nucleotide polymorphisms, FokI and BsmI. Results Men whose tumors had high VDR expression had significantly lower prostate-specific antigen (PSA) at diagnosis (P for trend < .001), lower Gleason score (P for trend < .001), and less advanced tumor stage (P for trend < .001) and were more likely to have tumors harboring the TMPRSS2:ERG fusion (P for trend = .009). Compared with the lowest quartile, men whose tumors had the highest VDR expression had significantly reduced risk of lethal prostate cancer (hazard ratio [HR], 0.17; 95% CI, 0.07 to 0.41). This association was only slightly attenuated after adjustment for Gleason score and PSA at diagnosis (HR, 0.33; 95% CI, 0.13 to 0.83) or, additionally, for tumor stage (HR, 0.37; 95% CI, 0.14 to 0.94). Neither prediagnostic plasma vitamin D levels nor VDR polymorphisms were associated with VDR expression. Conclusion High VDR expression in prostate tumors is associated with a reduced risk of lethal cancer, suggesting a role of the vitamin D pathway in prostate cancer progression. PMID:21537045

  14. Regulator of G-Protein Signaling 5 Reduces HeyA8 Ovarian Cancer Cell Proliferation and Extends Survival in a Murine Tumor Model

    Directory of Open Access Journals (Sweden)

    Molly K. Altman

    2012-01-01

    Full Text Available The regulator of G-protein signaling 5 (RGS5 belongs to a family of GTPase activators that terminate signaling cascades initiated by extracellular mediators and G-protein-coupled receptors. RGS5 has an interesting dual biological role. One functional RGS5 role is as a pericyte biomarker influencing the switch to angiogenesis during malignant progression. Its other functional role is to promote apoptosis in hypoxic environments. We set out to clarify the extent to which RGS5 expression regulates tumor progression—whether it plays a pathogenic or protective role in ovarian tumor biology. We thus constructed an inducible gene expression system to achieve RGS5 expression in HeyA8-MDR ovarian cancer cells. Through this we observed that inducible RGS5 expression significantly reduces in vitro BrdU-positive HeyA8-MDR cells, although this did not correlate with a reduction in tumor volume observed using an in vivo mouse model of ovarian cancer. Interestingly, mice bearing RGS5-expressing tumors demonstrated an increase in survival compared with controls, which might be attributed to the vast regions of necrosis observed by pathological examination. Additionally, mice bearing RGS5-expressing tumors were less likely to have ulcerated tumors. Taken together, this data supports the idea that temporal expression and stabilization of RGS5 could be a valuable tactic within the context of a multicomponent approach for modulating tumor progression.

  15. Construction of a protein-protein interaction network of Wilms' tumor and pathway prediction of molecular complexes.

    Science.gov (United States)

    Teng, W J; Zhou, C; Liu, L J; Cao, X J; Zhuang, J; Liu, G X; Sun, C G

    2016-05-23

    Wilms' tumor (WT), or nephroblastoma, is the most common malignant renal cancer that affects the pediatric population. Great progress has been achieved in the treatment of WT, but it cannot be cured at present. Nonetheless, a protein-protein interaction network of WT should provide some new ideas and methods. The purpose of this study was to analyze the protein-protein interaction network of WT. We screened the confirmed disease-related genes using the Online Mendelian Inheritance in Man database, created a protein-protein interaction network based on biological function in the Cytoscape software, and detected molecular complexes and relevant pathways that may be included in the network. The results showed that the protein-protein interaction network of WT contains 654 nodes, 1544 edges, and 5 molecular complexes. Among them, complex 1 is predicted to be related to the Jak-STAT signaling pathway, regulation of hematopoiesis by cytokines, cytokine-cytokine receptor interaction, cytokine and inflammatory responses, and hematopoietic cell lineage pathways. Molecular complex 4 shows a correlation of WT with colorectal cancer and the ErbB signaling pathway. The proposed method can provide the bioinformatic foundation for further elucidation of the mechanisms of WT development.

  16. RNA-binding protein LIN28 is a marker for testicular germ cell tumors.

    Science.gov (United States)

    Cao, Dengfeng; Allan, Robert W; Cheng, Liang; Peng, Yan; Guo, Charles C; Dahiya, Neha; Akhi, Shirin; Li, Jianping

    2011-05-01

    LIN28 is an RNA-binding protein involved in maintaining the pluripotency of embryonic stem cells. Using formalin-fixed, paraffin-embedded tissue blocks, we performed immunohistochemical staining of LIN28 in 103 primary and 81 metastatic testicular germ cell tumors (54 intratubular germ cell neoplasias, unclassified type; 49 primary and 20 metastatic classic seminomas; 35 primary and 24 metastatic embryonal carcinomas; 35 primary and 15 metastatic yolk sac tumors; 23 primary and 12 metastatic teratomas; 6 primary and 10 metastatic choriocarcinomas; and 5 spermatocytic seminomas). The percentage of tumor cell stained was scored as 0 (0%), 1+ (≤30%), 2+ (31%-60%), 3+ (61%-90%), and 4+ (>90%). We stained LIN28 in 327 non-germ cell tumors to determine its specificity. We also compared LIN28 with SALL4 (Sal-like 4) and OCT4 (octamer-binding transcription factor 4) in all germ cell tumors. The staining was cytoplasmic for LIN28 and nuclear for SALL4 and OCT4. Strong 4+ LIN28 staining was seen in all 54 intratubular germ cell neoplasias, 59 embryonal carcinomas, and 50 yolk sac tumors. Positive LIN28 staining was seen in all 69 classic seminomas (1+ in 3, 3+ in 3, and 4+ in 63) (63, strong). Variable staining of LIN28 was seen in 10 of 35 teratomas (1+ to 3+, weak to strong intensity), 12 of 16 choriocarcinomas (1+ to 4+, weak to strong intensity), and 1 of 5 spermatocytic seminomas (2+, weak). Only 10 of 327 non-germ cell tumors showed 1+ weak LIN28 staining. Therefore, LIN28 is a highly sensitive marker for testicular intratubular germ cell neoplasias, classic seminomas, embryonal carcinomas, and yolk sac tumors with relatively high specificity. LIN28 can be used as a diagnostic marker for these tumors and has demonstrated a similar level of diagnostic utility as SALL4 (except for a few classic seminomas), although it does not show an advantage over SALL4. The major advantage of LIN28 over OCT4 is in diagnosing yolk sac tumors (yolk sac tumors negative for OCT4

  17. Expression of TMEM166 protein in human normal and tumor tissues.

    Science.gov (United States)

    Xu, Dong; Yang, Fan; He, Huiying; Hu, Jia; Lv, Xiaodong; Ma, Dalong; Chen, Ying Yu

    2013-12-01

    Transmembrane protein 166 (TMEM166) is a novel human regulator involved in both autophagy and apoptosis. In this study, we generated a specific rabbit polyclonal antibody against human TMEM166 and assessed the expression of this protein in various human normal and tumor tissue samples by tissue microarray-based immunohistochemical analysis. Varying TMEM166 protein levels were expressed in a cell-type and tissue-type-specific manner in detected tissues or organs. Strong TMEM166 expression was shown in the glomerular zona of the adrenal cortex, chromophil cells of the pituitary gland, islet cells, squamous epithelium of the esophagus mucosa, the fundic gland, and hepatocytes. Moderate or weak TMEM166 staining was identified in the parathyroid gland, the testis, vaginal stratified squamous cells, lung macrophages, hematopoietic cells, renal tubular epithelial cells, macrophages in the spleen red pulp, and neuronal cells in the cerebral cortex. Some tissues failed to stain for TMEM166, such as adipose tissue, colon, cerebellum, lymph node, mammary gland, ovary, prostate, rectum, skin, small intestine, thyroid gland, tonsil, and thymus. In comparing human normal and tumor tissues, TMEM166 expression was widely downregulated in the cancer tissues. Our studies provide the basis for future investigations into cell-type-specific functions of this protein in human normal and tumor tissues.

  18. Mediastinal Yolk Sac Tumor Producing Protein Induced by Vitamin K Absence or Antagonist-II.

    Science.gov (United States)

    Akutsu, Noriyuki; Adachi, Yasushi; Isosaka, Mai; Mita, Hiroaki; Takagi, Hideyasu; Sasaki, Shigeru; Yamamoto, Hiroyuki; Arimura, Yoshiaki; Ishii, Yoshifumi; Masumori, Naoya; Endo, Takao; Shinomura, Yasuhisa

    2015-01-01

    Extragonadal yolk sac tumors (YSTs) are rare. We herein report the case of a 66-year-old man with mediastinal, lung and liver tumors. The largest mass was located in the liver and contained a high concentration of protein induced by vitamin K absence or antagonist-II (PIVKA-II) and alpha-fetoprotein. Therefore, the lesion was difficult to distinguish from hepatocellular carcinoma. Finally, YST was diagnosed based on the results of a liver biopsy. Although chemotherapy was effective, the patient died of respiratory failure. The autopsy revealed primary mediastinal YST. In the current report, we describe this case of PIVKA-II-producing YST and review previous cases of PIVKA-II-producing tumors other than hepatoma.

  19. Immunoexpression of Wnt/β-catenin signaling pathway proteins in ameloblastoma and calcifying cystic odontogenic tumor

    Science.gov (United States)

    Dutra, Sabrina-Nogueira; Pires, Fábio-Ramôa; Armada, Luciana

    2017-01-01

    Background Wnt/β-catenin signaling pathway is essential for the beginning of odontogenesis and may be involved in the development and progression of some odontogenic tumors. Thus, the aim of this study was to comparatively evaluate the immunohistochemical expression of Wnt/β-catenin signaling pathway proteins in a series of AME and CCOT. Material and Methods Immunohistochemical reactions were performed using antibodies against Wnt1, Wnt5a and β-catenin in 17 cases of solid AME and 6 cases of CCOT. Results In the AME group, Wnt1 and Wnt5a were identified in the epithelium in most of the cases, and β-catenin was mainly identified in the cytoplasm of the tumoral cells. In the CCOT group, Wnt1 and Wnt5a were identified in the epithelium and in the ghost cells in almost all the cases, and β-catenin was mainly identified in the cytoplasm and in the nuclei of the tumoral cells. Conclusions These results contribute to support the importance of Wnt/β-catenin signaling pathway proteins in AME and CCOT tumorigenesis. The abnormal expression of cytoplasmic and/or nuclear β-catenin appears to contribute to the development of both AME and CCOT. In addition, it is possible that Wnt1 and Wnt5a expression in ghost cells can contribute to its histogenesis in CCOT. Key words:Ameloblastoma, β-catenin, calcifying cystic odontogenic tumor, immunohistochemistry, Wnt. PMID:28149478

  20. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    Science.gov (United States)

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  1. Infrared spectroscopic studies of cells and tissues: triple helix proteins as a potential biomarker for tumors.

    Science.gov (United States)

    Stelling, Allison L; Toher, Deirdre; Uckermann, Ortrud; Tavkin, Jelena; Leipnitz, Elke; Schweizer, Julia; Cramm, Holger; Steiner, Gerald; Geiger, Kathrin D; Kirsch, Matthias

    2013-01-01

    In this work, the infrared (IR) spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after resection. Comparison between normal tissue, different cell lineages in suspension, and tumors allowed preliminary assignments of IR bands to be made. The most dramatic difference between tissues and cells was found to be in weaker IR absorbances usually assigned to the triple helix of collagens. Triple helix domains are common in larger structural proteins, and are typically found in the extracellular matrix (ECM) of tissues. An algorithm to correct offsets and calculate the band heights and positions of these bands was developed, so the variance between identical measurements could be assessed. The initial results indicate the triple helix signal is surprisingly consistent between different individuals, and is altered in tumor tissues. Taken together, these preliminary investigations indicate this triple helix signal may be a reliable biomarker for a tumor-like microenvironment. Thus, this signal has potential to aid in the intra-operational delineation of brain tumor borders.

  2. Infrared spectroscopic studies of cells and tissues: triple helix proteins as a potential biomarker for tumors.

    Directory of Open Access Journals (Sweden)

    Allison L Stelling

    Full Text Available In this work, the infrared (IR spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after resection. Comparison between normal tissue, different cell lineages in suspension, and tumors allowed preliminary assignments of IR bands to be made. The most dramatic difference between tissues and cells was found to be in weaker IR absorbances usually assigned to the triple helix of collagens. Triple helix domains are common in larger structural proteins, and are typically found in the extracellular matrix (ECM of tissues. An algorithm to correct offsets and calculate the band heights and positions of these bands was developed, so the variance between identical measurements could be assessed. The initial results indicate the triple helix signal is surprisingly consistent between different individuals, and is altered in tumor tissues. Taken together, these preliminary investigations indicate this triple helix signal may be a reliable biomarker for a tumor-like microenvironment. Thus, this signal has potential to aid in the intra-operational delineation of brain tumor borders.

  3. Genetic noise control via protein oligomerization

    Directory of Open Access Journals (Sweden)

    Almaas Eivind

    2008-11-01

    Full Text Available Abstract Background Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Results We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch, integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast binding-unbinding kinetics among proteins, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced state from randomly being induced (uninduced. Conclusion The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of regulatory circuits

  4. Activation of the Proapoptotic Bcl-2 Protein Bax by a Small Molecule Induces Tumor Cell Apoptosis

    Science.gov (United States)

    Zhao, Guoping; Zhu, Yanglong; Eno, Colins O.; Liu, Yanlong; DeLeeuw, Lynn; Burlison, Joseph A.; Chaires, Jonathan B.; Trent, John O.

    2014-01-01

    The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer. PMID:24421393

  5. Detection of human CMV PP65 protein in glioma brain tumors with immunohistochemistry method

    Directory of Open Access Journals (Sweden)

    MR. Jabbari

    2015-08-01

    Full Text Available Background: Human cytomegalovirus (HCMV may play a role in the development of glioma disease that is one of the most common brain tumors. Objective: The aim of this study was to detect human CMV in patients with glioma in Imam Khomeini hospital, Tehran. Methods: This experimental study was conducted on paraffin-embedded tumor samples of 18 patients referred to Imam Khomeini hospital in 2012. Immunohistochemistry (IHC was performed with monoclonal antibody specific for HCMV PP65 protein and the samples were assessed using a light microscope. Findings: Of 18 patients, 13 (72.2% were positive for HCMV PP65 protein and four of them expired. Conclusion: With regards to the results, more comprehensive studies are recommended for detection of HCMV in patients with glioma using different diagnostic methods.

  6. Effect of hydroxyapatite nanoparticles on the growth and p53/c-Myc protein expression of implanted hepatic VX2 tumor in rabbits by intravenous injection

    Institute of Scientific and Technical Information of China (English)

    Jun Hu; Zhi-Su Liu; Sheng-Li Tang; Yue-Ming He

    2007-01-01

    AIM:To evaluate the effect of hydroxyapatite nanoparticles (Nano HAP) by intravenous injection on the inhibition of implanted hepatic VX2 tumor growth in rabbits and cell p53/c-Myc protein expression.METHODS: 60 hepatic VX2 tumor-bearing rabbits was randomly divided into five groups. Nano HAP collosol 20 mg/kg, 40 mg/kg, 5-FU solutions 20 mg/mL, mixed liquor of 5-FU solution 20 mg/mL and Nano HAP collosol 20 mg/kg were infused by vein, normal saline conducted as the control. The general state, weight, liver function and gross tumor volume were detected dynamically.The expression of p53 and c-Myc gene protein in tumor tissue was detected by immunohistochemistry methods.RESULTS: The growth of implanted hepatic VX2 tumors was significantly inhibited in all therapy groups, 3 wk after the injection, the tumor control rates in Nano HAP collosol groups were 25.5% and 32.5% respectively,and the gross tumor volumes were obviously less than that of control group. (24.81 ± 5.17 and 22.73 ± 4.23vs 33.32 ± 5.26, P < 0.05). The tumor control rate of 5-FU group was 43.7% (18.74 ± 4.40 vs 33.32 ± 5.26,P < 0.05), but the general state of the animals after injection aggravated; and the adverse reaction in the drug combination group obviously decreased. Due to the effect of Nano HAP, the positive expression of tumor associated the mutated p53 and c-Myc in tumor tissue was decreased obviously compared with the control group.CONCLUSION: Nano HAP has evident inhibitory action on rabbit implanted hepatic VX2 tumor in vivo, which may be the result of decreasing the expression of the mutated p53 and c-myc, and drug combination can obviously decrease the adverse reaction of 5-FU.

  7. Parathyroid hormone-related protein (PTHrP) modulates adhesion, migration and invasion in bone tumor cells.

    Science.gov (United States)

    Mak, Isabella W Y; Turcotte, Robert E; Ghert, Michelle

    2013-07-01

    Parathyroid-hormone-related protein (PTHrP) has been shown to be an important factor in osteolysis in the setting of metastatic carcinoma to the bone. However, PTHrP may also be central in the setting of primary bone tumors. Giant cell tumor of bone (GCT) is an aggressive osteolytic bone tumor characterized by osteoclast-like giant cells that are recruited by osteoblast-like stromal cells. The stromal cells of GCT are well established as the only neoplastic element of the tumor, and we have previously shown that PTHrP is highly expressed by these cells both in vitro and in vivo. We have also found that the stromal cells exposed to a monoclonal antibody to PTHrP exhibited rapid plate detachment and quickly died in vitro. Therefore, PTHrP may serve in an autocrine manner to increase cell proliferation and promote invasive properties in GCT. The purpose of this study was to use transcriptomic microarrays and functional assays to examine the effects of PTHrP neutralization on cell adhesion, migration and invasion. Microarray and proteomics data identified genes that were differentially expressed in GCT stromal cells under various PTHrP treatment conditions. Treatment of GCT stromal cells with anti-PTHrP antibodies showed a change in the expression of 13 genes from the integrin family relative to the IgG control. Neutralization of PTHrP reduced cell migration and invasion as evidenced by functional assays. Adhesion and anoikis assays demonstrated that although PTHrP neutralization inhibits cell adhesion properties, cell detachment related to PTHrP neutralization did not result in associated cell death, as expected in mesenchymal stromal cells. Based on the data presented herein, we conclude that PTHrP excreted by GCT stromal cells increases bone tumor cell local invasiveness and migration.

  8. Double-Stranded-RNA-Activated Protein Kinase PKR Enhances Transcriptional Activation by Tumor Suppressor p53

    OpenAIRE

    1999-01-01

    The tumor suppressor p53 plays a key role in inducing G1 arrest and apoptosis following DNA damage. The double-stranded-RNA-activated protein PKR is a serine/threonine interferon (IFN)-inducible kinase which plays an important role in regulation of gene expression at both transcriptional and translational levels. Since a cross talk between IFN-inducible proteins and p53 had already been established, we investigated whether and how p53 function was modulated by PKR. We analyzed p53 function in...

  9. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  10. Immunolocalization of cementum specific proteins CEMP1 and CAP in tumor cells.

    Directory of Open Access Journals (Sweden)

    Patricia González-Alva

    2013-04-01

    Full Text Available Introduction: CEMP1 and CAP are recognized as cementum proteins, they appear to be limited to cementoblasts and their progenitors, and participate in the mineralization process of periodontal ligament tissues, including the proliferation and migration of periodontal ligament fibroblasts. However, their contribution in neoplastic processes had not been explored. In the present study, we investigated their protein expression and localization in cancer tissues and cells. Materials and Methods: CEMP1 and CAP expressions were analyzed immunohistochemically in 13 cancer cases with bone metastasis. In addition, Wester Blot essays were use to detect expression of the proteins in the prostate (PC-3 and mama (MCF-7 cancer cell lines. Results: CAP expression was detected in all tissues examined. Strong cytoplasmatic and rarely nuclear staining was found in small tumor nests, glandular structures and, in the stromal fibroblasts at the immediate vicinity of the tumor nests. CEMP1 was found in the cytoplasm of tumor cells in 5 cases, but its expression was negative in the stromal tissues. Also, cancer lines PC-3 and MCF-7 showed CEMP1 expression; however, CAP expression was observed only in MCF-7 cells. Conclusions: The results suggest that CEMP1 and CAP are present in tissues other that cementum and possibly contribute to pathological conditions such as metastatic cancer.

  11. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-Ju [Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Taiwan (China); Jan, Yee-Jee [Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Ko, Bor-Sheng [Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (China); Liang, Shu-Man; Liou, Jun-Yang, E-mail: jliou@nhri.org.tw [Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Taiwan (China)

    2015-06-15

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3’s regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation.

  12. Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors.

    Science.gov (United States)

    Vucic, Domagoj

    2008-03-01

    Apoptosis, or programmed cell death, is a cell suicide process with a major role in development and homeostasis in vertebrates and invertebrates. Dysregulation of apoptosis leading to early cell death or the absence of normal cell death contributes to a number of disease conditions including neurodegenerative diseases and cancer. Inhibition of apoptosis enhances the survival of cancer cells and facilitates their escape from immune surveillance and cytotoxic therapies. Inhibitor of apoptosis (IAP) proteins, a family of anti-apoptotic regulators that block cell death in response to diverse stimuli through interactions with inducers and effectors of apoptosis are among the principal molecules contributing to this phenomenon. IAP proteins are expressed in the majority of human malignancies at elevated levels and play an active role in promoting tumor maintenance through the inhibition of cellular death and participation in signaling pathways associated with malignancies. Herein, the role of IAP proteins in cancer and strategies toward targeting IAP proteins for therapeutic intervention will be discussed.

  13. Tumor control and normal tissue toxicity: The two faces of radiotherapy

    NARCIS (Netherlands)

    van Oorschot, B.

    2016-01-01

    This thesis discusses the two contrasting sides of radiotherapy: tumor control and normal tissue toxicity. On one hand, radiation treatment aims to target the tumor with the highest possible radiation dose, inducing as much lethal DNA damage as possible. On the other hand however, escalation of the

  14. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area.

  15. Immunolocalization of notch signaling protein molecules in a maxillary chondrosarcoma and its recurrent tumor

    Directory of Open Access Journals (Sweden)

    Siar CH

    2010-10-01

    Full Text Available Abstract Background Notch receptors are critical determinants of cell fate in a variety of organisms. Notch signaling is involved in the chondrogenic specification of neural crest cells. Aberrant Notch activity has been implicated in numerous human diseases including cancers; however its role in chondrogenic tumors has not been clarified. Method Tissue samples from a case of primary chondrosarcoma of the maxilla and its recurrent tumor were examined immunohistochemically for Notch1-4 and their ligands (Jagged1, Jagged2 and Delta1 expression. Results Both primary and recurrent tumors were histopathologically diagnosed as conventional hyaline chondrosarcoma (WHO Grade I. Hypercellular tumor areas strongly expressed Notch3 and Jagged1 in spindle and pleomorphic cells suggesting up-regulation of these protein molecules at sites of tumor proliferation. Expression patterns were distinct with some overlap. Differentiated malignant and atypical chondrocytes demonstrated variable expression levels of Jagged1, and weak to absent staining for Notch1, 4 and Delta1. Protein immunolocalization was largely membranous and cytoplasmic, sometimes outlining the lacunae of malignant chondrocytes. Hyaline cartilage demonstrated a diffuse or granular precipitation of Jagged1 suggesting presence of soluble Jagged1 activity at sites of abnormal chondrogenesis. No immunoreactivity for the other Notch members was observed. Calcified cartilage was consistently Notch-negative indicating down-regulation of Notch with cartilage maturation. Stromal components namely endothelial cells and fibroblasts variably expressed Notch1, 3 and Jagged1 but were mildly or non-reactive for the other members. Conclusions Results indicate that Notch signaling pathway may participate in cellular differentiation and proliferation in chondrosarcoma. Findings implicate Notch3 and Jagged1 as key molecules that influence the differentiation and maturation of cells of chondrogenic lineage.

  16. Loci controlling lymphocyte production of interferon c after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility.

    Science.gov (United States)

    Lipoldová, Marie; Havelková, Helena; Badalova, Jana; Vojtísková, Jarmila; Quan, Lei; Krulova, Magdaléna; Sohrabi, Yahya; Stassen, Alphons P; Demant, Peter

    2010-02-01

    Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1–Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2pz) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2b) or BALB/ cHeA (H2d) mice, or by ConA. IFNγ production in MLCs of individual (O20 9 OcB-9)F2mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.

  17. Overexpression of MDM2 protein in ameloblastomas as compared to adenomatoid odontogenic tumor

    Directory of Open Access Journals (Sweden)

    A Krishna

    2012-01-01

    Full Text Available Background: Recent studies on odontogenic tumors have identified various molecular alterations responsible for their development, and determination of epithelial proliferation is a useful means of investigating the differences in biologic behavior of these tumors. One such specific marker to identify proliferative activity and tumor aggressiveness by immunohistochemistry (IHC is MDM2, 90-95kDa protein. Objective: This immunohistochemical study using MDM2 expression was undertaken to understand better the diverse biological activity of two groups of odontogenic tumors namely ameloblastoma and adenomatoid odontogenic tumor (AOT based on their cell proliferation activity. Materials and Methods: A total of 50 cases, comprising of 36 ameloblastoma samples and 14 AOT samples, were subjected to heat-induced antigen retrieval method using citrate buffer in a pressure cooker. Consequently, the sections were stained with MDM2 monoclonal antibody and visualized using an LSAB+ kit. Results: In ameloblastomas, statistically significant association was seen between plexiform ameloblastomas, follicular ameloblastomas with granular cell changes, desmoplastic and unicystic variants. The predominant nuclear staining by MDM2 revealed overexpression in ameloblastomas as compared to AOT. Conclusion: The MDM2 overexpression noticed in plexiform ameloblastoma, follicular ameloblastoma with granular cell changes and acanthomatous ameloblastoma when compared to simple unicystic and desmoplastic ameloblastoma suggest a relatively enhanced proliferative phenotype of these solid multicystic variants of ameloblastomas. On overall comparison, higher expression was noted in ameloblastomas when compared to AOT. This indicates differences in the aggressive nature between these two groups of odontogenic tumors favoring the perception of a greater aggressive nature of ameloblastomas.

  18. MAP17 and SGLT1 protein expression levels as prognostic markers for cervical tumor patient survival.

    Directory of Open Access Journals (Sweden)

    Marco Perez

    Full Text Available MAP17 is a membrane-associated protein that is overexpressed in human tumors. Because the expression of MAP17 increases reactive oxygen species (ROS generation through SGLT1 in cancer cells, in the present work, we investigated whether MAP17 and/or SGLT1 might be markers for the activity of treatments involving oxidative stress, such as cisplatin or radiotherapy. First, we confirmed transcriptional alterations in genes involved in the oxidative stress induced by MAP17 expression in HeLa cervical tumor cells and found that Hela cells expressing MAP17 were more sensitive to therapies that induce ROS than were parental cells. Furthermore, MAP17 increased glucose uptake through SGLT receptors. We then analyzed MAP17 and SGLT1 expression levels in cervical tumors treated with cisplatin plus radiotherapy and correlated the expression levels with patient survival. MAP17 and SGLT1 were expressed in approximately 70% and 50% of cervical tumors of different types, respectively, but they were not expressed in adenoma tumors. Furthermore, there was a significant correlation between MAP17 and SGLT1 expression levels. High levels of either MAP17 or SGLT1 correlated with improved patient survival after treatment. However, the patients with high levels of both MAP17 and SGLT1 survived through the end of this study. Therefore, the combination of high MAP17 and SGLT1 levels is a marker for good prognosis in patients with cervical tumors after cisplatin plus radiotherapy treatment. These results also suggest that the use of MAP17 and SGLT1 markers may identify patients who are likely to exhibit a better response to treatments that boost oxidative stress in other cancer types.

  19. Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James; Takenaka, Yasuhiro; Stampfer, Martha R.; Gilley, David; Yaswen, Paul

    2004-12-23

    We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor by expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.

  20. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Linda [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Koi, Lydia [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Deutsches Konsortium für Translationale Krebsforschung, Site Dresden, Dresden (Germany); Brüchner, Kerstin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Institute of Radiooncology Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Gurtner, Kristin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Hess-Stumpp, Holger; Unterschemmann, Kerstin [Global Drug Discovery, Bayer Pharma, Berlin (Germany); Pruschy, Martin [Radiation Oncology, University of Zurich, Zurich (Switzerland); and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  1. The retinoblastoma protein: a master tumor suppressor acts as a link between cell cycle and cell adhesion

    Directory of Open Access Journals (Sweden)

    Engel BE

    2014-12-01

    Full Text Available Brienne E Engel,1 W Douglas Cress,1 Pedro G Santiago-Cardona2 1Molecular Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; 2Department of Biochemistry, Ponce School of Medicine, Ponce, Puerto Rico, USA Abstract: RB1 was the first tumor suppressor gene discovered. Over 4 decades of work have revealed that the Rb protein (Rb is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability, and apoptosis. While these many processes may account for a significant portion of RB1's potency as a tumor suppressor, a small but growing stream of evidence suggests that RB1 also significantly influences how a cell interacts with its environment, including cell-to-cell and cell-to-extracellular matrix interactions. This review will highlight Rb’s role in the control of cell adhesion and how alterations in the adhesive properties of tumor cells may drive the deadly process of metastasis. Keywords: cadherin, integrin, Rb, cancer, aggressiveness, metastasis

  2. Combined analysis of cell growth and apoptosis-regulating proteins in HPVs associated anogenital tumors

    Directory of Open Access Journals (Sweden)

    Kawana Seiji

    2010-03-01

    Full Text Available Abstract Background The clinical course of human papillomavirus (HPV associated with Bowenoid papulosis and condyloma acuminatum of anogenital tumors are still unknown. Here we evaluated molecules that are relevant to cellular proliferation and regulation of apoptosis in HPV associated anogenital tumors. Methods We investigated the levels of telomerase activity, and inhibitor of apoptosis proteins (IAPs family (c-IAP1, c-IAP2, XIAP and c-Myc mRNA expression levels in 20 specimens of Bowenoid papulosis and 36 specimens of condyloma acuminatum in anogenital areas. Overall, phosphorylated (p- AKT, p-ribosomal protein S6 (S6 and p-4E-binding protein 1 (4EBP1 expression levels were examined by immunohistochemistry in anogenital tumors both with and without positive telomerase activity. Results Positive telomerase activity was detected in 41.7% of Bowenoid papulosis and 27.3% of condyloma acuminatum compared to normal skin (p p p p = 0.022, respectively and normal skin (p p = 0.002, p = 0.034, respectively. Overall, 30% of Bowenoid papulosis with high risk HPV strongly promoted IAPs family and c-Myc but condyloma acuminatum did not significantly activate those genes. Immunohistochemically, p-Akt and p-S6 expressions were associated with positive telomerase activity but not with p-4EBP1 expression. Conclusion Combined analysis of the IAPs family, c-Myc mRNA expression, telomerase activity levels and p-Akt/p-S6 expressions may provide clinically relevant molecular markers in HPV associated anogenital tumors.

  3. Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors.

    Science.gov (United States)

    Pizzamiglio, Sara; De Bortoli, Maida; Taverna, Elena; Signore, Michele; Veneroni, Silvia; Cho, William Chi-Shing; Orlandi, Rosaria; Verderio, Paolo; Bongarzone, Italia

    2017-02-14

    We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA) or reverse-phase protein array (RPPA), were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012). The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5), signal transducer and activator of transcription 3 (STAT3), bone morphogenetic protein 6 (BMP6), cluster of differentiation 74 (CD74), transferrin receptor (TFRC), inhibin alpha (INHA), and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88), CD74, iron exporter ferroportin (FPN), high mobility group box 1 (HMGB1), STAT3_pS727, TFRC, ferritin heavy chain (FTH), and ferritin light chain (FTL). Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.

  4. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors.

    Science.gov (United States)

    Feng, Shangyuan; Huang, Shaohua; Lin, Duo; Chen, Guannan; Xu, Yuanji; Li, Yongzeng; Huang, Zufang; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2015-01-01

    The capability of saliva protein analysis, based on membrane protein purification and surface-enhanced Raman spectroscopy (SERS), for detecting benign and malignant breast tumors is presented in this paper. A total of 97 SERS spectra from purified saliva proteins were acquired from samples obtained from three groups: 33 healthy subjects; 33 patients with benign breast tumors; and 31 patients with malignant breast tumors. Subtle but discernible changes in the mean SERS spectra of the three groups were observed. Tentative assignments of the saliva protein SERS spectra demonstrated that benign and malignant breast tumors led to several specific biomolecular changes of the saliva proteins. Multiclass partial least squares-discriminant analysis was utilized to analyze and classify the saliva protein SERS spectra from healthy subjects, benign breast tumor patients, and malignant breast tumor patients, yielding diagnostic sensitivities of 75.75%, 72.73%, and 74.19%, as well as specificities of 93.75%, 81.25%, and 86.36%, respectively. The results from this exploratory work demonstrate that saliva protein SERS analysis combined with partial least squares-discriminant analysis diagnostic algorithms has great potential for the noninvasive and label-free detection of breast cancer.

  5. Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer.

    Science.gov (United States)

    Zhang, Shaojuan; Yang, Ling; Ling, Xiaoxi; Shao, Pin; Wang, Xiaolei; Edwards, W Barry; Bai, Mingfeng

    2015-12-01

    Photodynamic therapy (PDT) has been proven to be a minimally invasive and effective therapeutic strategy for cancer treatment. It can be used alone or as a complement to conventional cancer treatments, such as surgical debulking and chemotherapy. The mitochondrion is an attractive target for developing novel PDT agents, as it produces energy for cells and regulates apoptosis. Current strategy of mitochondria targeting is mainly focused on utilizing cationic photosensitizers that bind to the negatively charged mitochondria membrane. However, such an approach is lack of selectivity of tumor cells. To minimize the damage on healthy tissues and improve therapeutic efficacy, an alternative targeting strategy with high tumor specificity is in critical need. Herein, we report a tumor mitochondria-specific PDT agent, IR700DX-6T, which targets the 18kDa mitochondrial translocator protein (TSPO). IR700DX-6T induced apoptotic cell death in TSPO-positive breast cancer cells (MDA-MB-231) but not TSPO-negative breast cancer cells (MCF-7). In vivo PDT study suggested that IR700DX-6T-mediated PDT significantly inhibited the growth of MDA-MB-231 tumors in a target-specific manner. These combined data suggest that this new TSPO-targeted photosensitizer has great potential in cancer treatment. Photodynamic therapy (PDT) is an effective and minimally invasive therapeutic technique for treating cancers. Mitochondrion is an attractive target for developing novel PDT agents, as it produces energy to cells and regulates apoptosis. Current mitochondria targeted photosensitizers (PSs) are based on cationic molecules, which interact with the negatively charged mitochondria membrane. However, such PSs are not specific for cancerous cells, which may result in unwanted side effects. In this study, we developed a tumor mitochondria-targeted PS, IR700DX-6T, which binds to translocator protein (TSPO). This agent effectively induced apoptosis in TSPO-positive cancer cells and significantly

  6. A switching control law approach for cancer immunotherapy of an evolutionary tumor growth model.

    Science.gov (United States)

    Doban, Alina I; Lazar, Mircea

    2017-02-01

    We propose a new approach for tumor immunotherapy which is based on a switching control strategy defined on domains of attraction of equilibria of interest. For this, we consider a recently derived model which captures the effects of the tumor cells on the immune system and viceversa, through predator-prey competition terms. Additionally, it incorporates the immune system's mechanism for producing hunting immune cells, which makes the model suitable for immunotherapy strategies analysis and design. For computing domains of attraction for the tumor nonlinear dynamics, and thus, for deriving immunotherapeutic strategies we employ rational Lyapunov functions. Finally, we apply the switching control strategy to destabilize an invasive tumor equilibrium and steer the system trajectories to tumor dormancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. May Sonic Hedgehog proteins be markers for malignancy in uterine smooth muscle tumors?

    Science.gov (United States)

    Garcia, Natalia; Bozzini, Nilo; Baiocchi, Glauco; da Cunha, Isabela Werneck; Maciel, Gustavo Arantes; Soares Junior, José Maria; Soares, Fernando Augusto; Baracat, Edmund Chada; Carvalho, Katia Candido

    2016-04-01

    Several studies have demonstrated that the Sonic Hedgehog signaling pathway (SHH) plays an important role in tumorigenesis and cellular differentiation. We analyzed the protein expression of SHH pathway components and evaluated whether their profile could be useful for the diagnosis, prognosis, or prediction of the risk of malignancy for uterine smooth muscle tumors (USMTs). A total of 176 samples (20 myometrium, 119 variants of leiomyoma, and 37 leiomyosarcoma) were evaluated for the protein expression of the SHH signaling components, HHIP1 (SHH inhibitor), and BMP4 (SHH target) by immunohistochemistry. Western blot analysis was performed to verify the specificity of the antibodies. We grouped leiomyoma samples into conventional leiomyomas and unusual leiomyomas that comprise atypical, cellular, mitotically active leiomyomas and uterine smooth muscle tumors of uncertain malignant potential. Immunohistochemical analysis showed that SMO, SUFU, GLI1, GLI3, and BMP4 expression gradually increased depending on to the histologic tissue type. The protein expression of SMO, SUFU, and GLI1 was increased in unusual leiomyoma and leiomyosarcoma samples compared to normal myometrium. The inhibitor HHIP1 showed higher expression in myometrium, whereas only negative or basal expression of SMO, SUFU, GLI1, and GLI3 was detected in these samples. Strong expression of SHH was associated with poorer overall survival. Our data suggest that the expression of SHH proteins can be useful for evaluating the potential risk of malignancy for USMTs. Moreover, GLI1 and SMO may serve as future therapeutic targets for women with USMTs.

  8. Tumor-Suppressor Function of SPARC-Like Protein 1/Hevin in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Irene Esposito

    2007-01-01

    Full Text Available SPARC-like protein 1 (SPARCL1, a member of the SPARC family, is downregulated in various tumors. In the present study, the expression and localization of SPARCL1 were analyzed in a wide range of nontumorous and neoplastic pancreatic tissues by quantitative reverse transcription-polymerase chain reaction, laser capture microdissection, microarray analysis, and immunohistochemistry. For functional analysis, proliferation and invasion assays were used in cultured pancreatic cancer cells. Pancreatic ductal adenocarcinoma (PDAC and other pancreatic neoplasms exhibited increased SPARCL1 mRNA levels compared to those of the normal pancreas. SPARCL1 mRNA levels were low to absent in microdissected and cultured pancreatic cancer cells, and promoter demethylation increased SPARCL1 levels only slightly in three of eight cell lines. SPARCL1 was observed in small capillaries in areas of inflammation/tumor growth and in some islet cells. In PDAC, 15.4% of vessels were SPARCL1-positive. In contrast, the percentage of SPARCL1-positive vessels was higher in chronic pancreatitis and benign and borderline pancreatic tumors. Recombinant SPARCL1 inhibited pancreatic cancer cell invasion and exerted moderate growth-inhibitory effects. In conclusion, SPARCL1 expression in pancreatic tissues is highly correlated with level of vascularity. Its antiinvasive effects and reduced expression in metastasis indicate tumor-suppressor function.

  9. In Silico Analysis of Tumor Necrosis Factor α-Induced Protein 8-Like-1 (TIPE1 Protein.

    Directory of Open Access Journals (Sweden)

    Pei Shen

    Full Text Available Tumor necrosis factor α-induced protein 8 (TNFAIP8-like protein 1 (TIPE1 was a member of TNFAIP8 family. Previous studies have shown that TIPE1 could induce apoptosis in hepatocellular carcinoma. In this study, we attempted to predict its potential structure. Bioinformatic analysis of TIPE1 was performed to predict its potential structure using the bioinfomatic web services or softwares. The results showed that the amino acid sequences of TIPE1 were well conserved in mammals. No signal peptide and no transmembrane domain existed in human TIPE1. The aliphatic index of TIPE1 was 100.75 and the theoretical pI was 9.57. TIPE1 was a kind of stable protein and its grand average of hydropathicity was -0.108. Various post-translational modifications were also speculated to exist in TIPE1. In addition, the results of Swiss-Model Server and Swiss-Pdb Viewer program revealed that the predicted three-dimensional structure of TIPE1 protein was stable and it may accord with the rule of stereochemistry. TIPE1 was predicted to interact with FBXW5, caspase8 and so on. In conclusion, TIPE1 may be a stable protein with no signal peptide and no transmembrane domain. The bioinformatic analysis of TIPE1 will provide the basis for the further study on the function of TIPE1.

  10. Magnetic Control of Convection during Protein Crystallization

    Science.gov (United States)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  11. Ability of cell-sized beads bearing tumor cell membrane proteins to stimulate LAK cells to secrete interferon-gamma and tumor necrosis factor-alpha.

    Science.gov (United States)

    Chong, A S; Pinkard, J K; Lam, K S; Scuderi, P; Hersh, E M; Grimes, W J

    1991-04-15

    We recently reported that lymphokine activated killer (LAK) cells were stimulated to release both interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) when stimulated by a variety of tumor cells. We proposed then that the released cytokines may play a role in mediating tumor cell regression in vivo. In this paper, we provide further information on the nature of the signals, provided by the tumor cells (K562 erythroleukemia), that stimulate LAK cells to secrete IFN-gamma and TNF-alpha. Using a previously published protocol for coating tumor-membrane molecules onto cell-sized hydrophobic beads (also called pseudocytes), we demonstrate that the signal provided by the tumor cell is membrane associated. Beads coated with K562 membranes stimulated LAK cells to release IFN-gamma and TNF-alpha. The pretreatment of these beads with trypsin and sodium periodate eliminated the ability of these pseudocytes to stimulate cytokine release in LAK cells. The glycoproteins that stimulate LAK cells to secrete IFN-gamma and TNF-alpha were further enriched by their ability to bind concanavalin A (Con A, Jack Bean). To determine if the tumor-associated molecules that stimulate LAK cells to release IFN-gamma and TNF-alpha are also the molecules involved in mediating tumor cell lysis, we tested the ability of the Con A binding and nonbinding proteins to inhibit the LAK cell-mediated lysis of K562 cells. Our results demonstrate that molecules that inhibited LAK cell-mediated cytotoxicity were not enriched by Con A. These results are therefore consistent with the conclusion that different sets of tumor-associated molecules are involved in the stimulation of LAK cells to secrete cytokine and in the induction of LAK cells to mediate tumor cell cytolysis.

  12. Absence of caveolin-1 alters heat shock protein expression in spontaneous mammary tumors driven by Her-2/neu expression.

    Science.gov (United States)

    Ciocca, Daniel R; Cuello-Carrión, F Darío; Natoli, Anthony L; Restall, Christina; Anderson, Robin L

    2012-02-01

    In a previous study, we measured caveolin-1 protein levels, both in the normal breast and in breast cancer. The study revealed no association between caveolin-1 expression in the epithelial compartment and clinical disease outcome. However, high levels of caveolin-1 in the stromal tissue surrounding the tumor associated strongly with reduced metastasis and improved survival. Using an animal model, we found that the onset of mammary tumors driven by Her-2/neu expression was accelerated in mice lacking caveolin-1. We have analysed the heat shock protein (Hsp) response in the tumors of mice lacking caveolin-1. In all cases, the mammary tumors were estrogen and progesterone receptor negative, and the levels of Her-2/neu (evaluated by immunohistochemistry) were not different between the caveolin-1 +/+ (n = 8) and the caveolin-1 -/- (n = 7) tumors. However, a significant reduction in the extent of apoptosis was observed in mammary tumors from animals lacking caveolin-1. While Bcl-2, Bax, and survivin levels in the tumors were not different, the amount of HSPA (Hsp70) was almost double in the caveolin-1 -/- tumors. In contrast, HSPB1 (Hsp27/Hsp25) levels were significantly lower in the caveolin-1 -/- tumors. The mammary tumors from caveolin-1 null mice expressed more HSPC4 (gp96 or grp94), but HSPC1 (Hsp90), HSPA5 (grp78), HSPD1 (Hsp60), and CHOP were not altered. No significant changes in these proteins were found in the stroma surrounding these tumors. These results demonstrate that the disruption of the Cav-1 gene can cause alterations of specific Hsps as well as tumor development.

  13. Expression of Yes-associated protein (YAP) in breast phyllodes tumor.

    Science.gov (United States)

    Kim, Sang Kyum; Jung, Woo Hee; Koo, Ja Seung

    2014-01-01

    This study aimed to identify expression profiles of Yes-associated protein (YAP) and its phosphorylated form (pYAP) in phyllodes tumor (PT) of human breast and verify the clinical implications. We selected PTs from the pathologic archive and reviewed the histologic features (141 benign, 27 borderline, and 15 malignant). We made tissue microarray (TMA) block from the formalin-fixed paraffin-embedded (FFPE) tissue corresponding to the representative section. Using TMA block, we performed immunohistochemical staining of YAP and pYAP. In the stromal component, expressions of YAP and pYAP were increased in borderline/malignant PT with comparison of benign PT (P = 0.002, and P tumor progression and poor prognosis.

  14. Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors.

    Science.gov (United States)

    Nagano, Kazuya; Imai, Sunao; Zhao, Xiluli; Yamashita, Takuya; Yoshioka, Yasuo; Abe, Yasuhiro; Mukai, Yohei; Kamada, Haruhiko; Nakagawa, Shinsaku; Tsutsumi, Yasuo; Tsunoda, Shin-Ichi

    2015-07-01

    Metastasis is an important prognosis factor in lung cancer, therefore, it is imperative to identify target molecules and elucidate molecular mechanism of metastasis for developing new therapeutics and diagnosis methods. We searched for metastasis-related proteins by utilizing a novel antibody proteome technology developed in our laboratory that facilitated efficient screening of useful target proteins. Two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis identified sixteen proteins, which were highly expressed in metastatic lung cancer cells, as protein candidates. Monoclonal single-chain variable fragments (scFvs) binding to candidates were isolated from a scFv-displaying phage library by affinity selection. Tissue microarray analysis of scFvs binding to candidates revealed that oxysterol binding protein-like 5 (OSBPL5) and calumenin (CALU) were expressed at a significantly higher levels in the lung tissues of metastasis-positive cases than that in the metastasis-negative cases (OSBPL5; p=0.0156, CALU; p=0.0055). Furthermore, 80% of OSBPL5 and CALU double-positive cases were positive for lymph node metastasis. Consistent with these observations, overexpression of OSBPL5 and CALU promoted invasiveness of lung cancer cells. Conversely, knockdown of these proteins using respective siRNAs reversed the invasiveness of the lung cancer cells. Moreover, these proteins were expressed in lung tumor tissues, but not in normal lung tissues. In conclusion, OSBPL5 and CALU are related to metastatic potential of lung cancer cells, and they could be useful targets for cancer diagnosis and also for development of drugs against metastasis.

  15. Snail levels control the migration mechanism of mesenchymal tumor cells.

    Science.gov (United States)

    Belgiovine, Cristina; Chiesa, Giulio; Chiodi, Ilaria; Frapolli, Roberta; Bonezzi, Katiuscia; Taraboletti, Giulia; D'Incalci, Maurizio; Mondello, Chiara

    2016-07-01

    Cancer cells use two major types of movement: Mesenchymal, which is typical of cells of mesenchymal origin and depends on matrix metalloproteinase (MMP) activity, and amoeboid, which is characteristic of cells with a rounded shape and relies on the activity of Rho-associated kinase (ROCK). The present authors previously demonstrated that, during neoplastic transformation, telomerase-immortalized human fibroblasts (cen3tel cells) acquired a ROCK-dependent/MMP independent mechanism of invasion, mediated by the downregulation of the ROCK cellular inhibitor Round (Rnd)3/RhoE. In the present study, cen3tel transformation was also demonstrated to be paralleled by downregulation of Snail, a major determinant of the mesenchymal movement. To test whether Snail levels could determine the type of movement adopted by mesenchymal tumor cells, Snail was ectopically expressed in tumorigenic cells. It was observed that ectopic Snail did not increase the levels of typical mesenchymal markers, but induced cells to adopt an MMP-dependent mechanism of invasion. In cells expressing ectopic Snail, invasion became sensitive to the MMP inhibitor Ro 28-2653 and insensitive to the ROCK inhibitor Y27632, suggesting that, once induced by Snail, the mesenchymal movement prevails over the amoeboid one. Snail-expressing cells had a more aggressive behavior in vivo, and exhibited increased tumor growth rate and metastatic ability. These results confirm the high plasticity of cancer cells, which can adopt different types of movement in response to changes in the expression of specific genes. Furthermore, the present findings indicate that Rnd3 and Snail are possible regulators of the type of invasion mechanism adopted by mesenchymal tumor cells.

  16. A Well-Controlled Experimental System To Study Interactions Of Cytotoxic T Lymphocytes With Tumor Cells

    Directory of Open Access Journals (Sweden)

    Natalie Jessica Neubert

    2016-08-01

    Full Text Available While T cell-based immunotherapies are steadily improving, there are still many patients who progress, despite T cell-infiltrated tumors. Emerging evidence suggests that T cells themselves may provoke immune escape of cancer cells. Here we describe a well-controlled co-culture system for studying the dynamic T cell - cancer cell interplay, using human melanoma as a model. We explain starting material, controls and culture parameters to establish reproducible and comparable cultures with highly heterogeneous tumor cells. Low passage melanoma cell lines and melanoma-specific CD8+ T cell clones generated from patient blood were cultured together for up to three days. Living melanoma cells were isolated from the co-culture system by fluorescence-activated cell sorting. We demonstrate that the characterization of isolated melanoma cells is feasible using flow cytometry for protein expression analysis as well as an Agilent whole human genome microarray and the NanoString Technology for differential gene expression analysis. In addition, we identify five genes (ALG12, GUSB, RPLP0, KRBA2 and ADAT2 that are stably expressed in melanoma cells independent of the presence of T cells or the T cell-derived cytokines IFNγ and TNFα. These genes are essential for correct normalization of gene expression data by NanoString. Further to the characterization of melanoma cells after exposure to CTLs, this experimental system might be suitable to answer a series of questions including how the affinity of CTLs for their target antigen influences the melanoma cell response and whether CTL-induced gene expression changes in melanoma cells are reversible. Taken together, our human T cell - melanoma cell culture system is well suited to characterize immune-related mechanisms in cancer cells.

  17. SU-E-T-471: Improvement of Gamma Knife Treatment Planning Through Tumor Control Probability for Metastatic Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z [East Carolina University, Greenville, NC (United States); Feng, Y [East Carolina Univ, Rockville, MD (United States); Lo, S [Case Western Reserve University, Cleveland, OH (United States); Grecula, J [Ohio State University, Columbus, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The dose–volume histogram (DVH) has been normally accepted as a tool for treatment plan evaluation. However, spatial information is lacking in DVH. As a supplement to the DVH in three-dimensional treatment planning, the differential DVH (DDVH) provides the spatial variation, the size and magnitude of the different dose regions within a region of interest, which can be incorporated into tumor control probability model. This study was to provide a method in evaluating and improving Gamma Knife treatment planning. Methods: 10 patients with brain metastases from different primary tumors including melanoma (#1,#4,#5, #10), breast cancer (#2), prostate cancer (#3) and lung cancer (#6–9) were analyzed. By using Leksell GammaPlan software, two plans were prepared for each patient. Special attention was given to the DDVHs that were different for different plans and were used for a comparison between two plans. Dose distribution inside target and tumor control probability (TCP) based on DDVH were calculated, where cell density and radiobiological parameters were adopted from literature. The plans were compared based on DVH, DDVH and TCP. Results: Using DVH, the coverage and selectivity were the same between plans for 10 patients. DDVH were different between two plans for each patient. The paired t-test showed no significant difference in TCP between the two plans. For brain metastases from melanoma (#1, #4–5), breast cancer (#2) and lung cancer (#6–8), the difference in TCP was less than 5%. But the difference in TCP was about 6.5% for patient #3 with the metastasis from prostate cancer, 10.1% and 178.7% for two patients (#9–10) with metastasis from lung cancer. Conclusion: Although DVH provides average dose–volume information, DDVH provides differential dose– volume information with respect to different regions inside the tumor. TCP provides radiobiological information and adds additional information on improving treatment planning as well as adaptive

  18. Tumor tissue characterization evaluating the luciferase activity under the control of a hsp70 promoter and MR imaging in three tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Walter [Department of Radiology, Lucas MRS Research Center, Stanford School of Medicine, Stanford, CA 94305 (United States); Department of Clinical Radiology, University of Munich (Germany)], E-mail: walter.hundt@web.de; Steinbach, Silke [Department of Otolaryngology-Head and Neck Surgery, Technical University of Munich (Germany); O' Connell-Rodwell, Caitlin E. [Department of Pediatrics, Microbiology and Immunology and Radiology, Stanford School of Medicine, Stanford, CA 94305 (United States); Mayer, Dirk; Bednarski, Mark D.; Guccione, Samira [Department of Radiology, Lucas MRS Research Center, Stanford School of Medicine, Stanford, CA 94305 (United States)

    2009-05-15

    We investigated the luciferase activity under the control of a hsp70 promoter and MR imaging for three tumor cell lines. Three tumor cell lines, SCCVII, NIH3T3 and M21 were transfected with a plasmid containing the hsp70 promoter fragment and the luciferase reporter gene and grown in mice. Bioluminescence imaging of the tumors was performed every other day. MR imaging, pre- and post-contrast T1-wt SE, T2-wt FSE, Diffusion-wt STEAM-sequence, T2-time determination were obtained on a 1.5-T GE MRI scanner at a tumor size of 600-800 mm{sup 3} and 1400-1600 mm{sup 3}. Comparing the different tumor sizes the luciferase activity of the M21 tumors increased about 149.3%, for the NIH3T3 tumors about 47.4% and for the SCCVII tumors about 155.8%. Luciferase activity of the M21 tumors (r = 0.82, p < 0.01) and the SCCVII tumors (r = 0.62, p = 0.03) correlated significant with the diffusion coefficient. In the NIH3T3 tumors the best correlation between the luciferase activity and the MRI parameter was seen for the SNR (T2) values (r = 0.78, p < 0.01). The luciferase activity per mm{sup 3} tumor tissue correlated moderate with the contrast medium uptake (r = 0.55, p = 0.01) in the M21 tumors. In the NIH3T3 and SCCVII tumors a negative correlation (r = -0.78, p < 0.01, respectively, r = -0.49, p = 0.02) was found with the T2 time. Different tissue types have different luciferase activity under the control of the same hsp70 promoter. The combination of MR imaging with bioluminescence imaging improves the characterization of tumor tissue giving better information of this tissue on the molecular level.

  19. Analysis of the anti-tumor effect of cetuximab using protein kinetics and mouse xenograft models

    Directory of Open Access Journals (Sweden)

    Matsuo Teppei

    2011-05-01

    Full Text Available Abstract Background The binding of EGFR and its ligands leads to autophosphorylation of receptor tyrosine kinase as well as subsequent activation of signal transduction pathways that are involved in regulating cellular proliferation, differentiation, and survival. An EGFR inhibitor, cetuximab binds to EGFR and consequently blocks a variety of cellular processes. KRAS/BRAF mutations are known to be associated with a low response rate to cetuximab. In the present study, to clarify the anti-tumor mechanisms of cetuximab, we evaluated the KRAS/BRAF status, phosphorylation level of the EGFR pathway, and the tumor suppression effect in vivo, using a human colon cancer cell line HT29, which exhibited the highest EGFR expression in response to the cetuximab therapy among the 6 colorectal cancer cell lines tested. Findings The conventional growth suppression assay did not work efficiently with cetuximab. EGF, TGF-α, and IGF activated the EGFR/MAPK cell signaling pathway by initiating the phosphorylation of EGFR. Cetuximab partially inhibited the EGFR/MAPK pathway induced by EGF, TGF-α, and IGF. However, cetuximab exposure induced the EGFR, MEK, and ERK1/2 phosphorylation by itself. Mouse xenograft tumor growth was significantly inhibited by cetuximab and both cetuximab-treated and -untreated xenograft specimens exhibited phosphorylations of the EGFR pathway proteins. Conclusions We have confirmed that cetuximab inhibited the EGFR/MAPK pathway and reduced tumor growth in the xenografts while the remaining tumor showed EGFR pathway activation. These results suggest that: ( i The effect of cetuximab in growth signaling is not sufficient to induce complete growth suppression in vitro; ( ii time-course monitoring may be necessary to evaluate the effect of cetuximab because EGFR signaling is transmitted in a minute order; and ( iii cetuximab treatment may have cells acquired resistant selectively survived in the heterogeneous cancer population.

  20. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  1. Split End Family RNA Binding Proteins: Novel Tumor Suppressors Coupling Transcriptional Regulation with RNA Processing

    Directory of Open Access Journals (Sweden)

    Hairui Su

    2015-01-01

    Full Text Available Split End (SPEN family proteins have three members: SPEN, RBM15, and RBM15B. SPEN family proteins contain three conserved RNA recognition motifs on the N-terminal region and an SPOC domain on the C-terminal region. RBM15 is fused to MKL1 in chromosome translocation t (1;22, which causes childhood acute megakaryoblastic leukemia (AMKL. Haploinsufficiency of RBM15 in AMKL indicates that RBM15 is a tumor suppressor. Both SPEN and RBM15 are mutated in a variety of cancer types, implying that they are tumor suppressors. SPEN and RBM15are required for the development of multiple organs including hematopoiesis partly via regulating the NOTCH signaling pathway, as well as the WNT signaling pathway in species ranging from Drosophila to mammals. Besides transcriptional regulation, RBM15 regulates RNA export and RNA splicing. In this review, we summarized data in the literature on how the members in SPEN family regulate gene expression at transcription and RNA processing steps. The crosstalk between epigenetic regulation and RNA metabolism is increasingly appreciated in understanding tumorigenesis. Studying the SPEN family of RNA binding proteins will create new perspectives for cancer therapy.

  2. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis.

    Science.gov (United States)

    Braumann, Chris; Henke, Wolfgang; Jacobi, Christoph A; Dubiel, Wolfgang

    2004-11-01

    Taurolidine has been successfully used as a disinfectant and to prevent the spreading and growth of tumor cells after surgical excision. However, the underlying mechanisms regarding its effects remain obscure. Here, we show that taurolidine treatment reduces endogenous levels of IkappaBalpha, p105, c-Jun, p53 and p27 in a dose-dependent manner in colon adenocarcinoma cells, which can be in part due to massive cell death. Because expression of tested proteins was affected by taurolidine, its influence on protein expression was studied. In the coupled transcription/translation system, taurolidine inhibited c-Jun expression with an IC50 value of 1.4 mM. There was no or little effect on transcription. In contrast, translation of c-Jun or p53 mRNA was completely inhibited by taurolidine. To determine which step of translation was affected, prominent complexes occurring in the course of translation were analyzed by density gradient centrifugation. In the presence of taurolidine, no preinitiation translation complex was assembled. Taurolidine also suppressed protein expression in bacteria. Based on our data, we conclude that taurolidine blocks a fundamental early phase of translation, which might explain its effects as a disinfectant and inhibitor of tumor growth.

  3. Prognostic value of radiobiological hypoxia during fractionated irradiation for local tumor control.

    Science.gov (United States)

    Zips, Daniel; Böke, Simon; Kroeber, Theresa; Meinzer, Andreas; Brüchner, Kerstin; Thames, Howard D; Baumann, Michael; Yaromina, Ala

    2011-05-01

    Previous experiments showed that the fraction of radiobiologically hypoxic tumor cells (rHF) in un-treated tumors did not accurately predict local tumor control after fractionated irradiation. Thus, the prognostic value of rHF determined during fractionated irradiation was investigated. Six human squamous cell carcinoma lines were transplanted into nude mice and then irradiated with 15 fractions over 3 weeks. Thereafter, single dose irradiation under normal and clamped blood flow was given. Local tumor control rates were used to calculate the rHF and the TCD₅₀, i.e., the radiation dose necessary to control 50% of the tumors, after single dose irradiation. These values were compared with the in parallel determined TCD₅₀ after 30 fractions in 6 weeks. The rHF after 15 fractions varied between 28% and 100%. No correlation was found with the TCD₅₀ after 30 fractions in 6 weeks. Single dose top-up TCD₅₀ under ambient and clamp conditions after 15 fractions significantly correlated with TCD₅₀ after 30 fractions in 6 weeks. rHF after 15 fractions is not a prognostic parameter for the outcome after fractionated irradiation. In contrast, the radiobiological parameters number of tumor stem cells, intrinsic radiosensitivity, and number of radiobiologically hypoxic tumor cells appear promising to predict outcome after fractionated irradiation.

  4. Prognostic value of radiobiological hypoxia during fractionated irradiation for local tumor control

    Energy Technology Data Exchange (ETDEWEB)

    Zips, Daniel; Boeke, Simon; Kroeber, Theresa; Meinzer, Andreas; Bruechner, Kerstin; Yaromina, Ala [OncoRay National Center for Radiation Research in Oncology, Dresden (Germany). Dept. of Radiation Oncology; Thames, Howard D. [Texas Univ., M.D. Anderson Cancer Center, Houston, TX (United States). Div. of Quantitative Sciences; Baumann, Michael [OncoRay National Center for Radiation Research in Oncology, Dresden (Germany). Dept. of Radiation Oncology; Universitaetsklinikum Dresden (Germany). Experimental Center

    2011-05-15

    Background and Purpose: Previous experiments showed that the fraction of radiobiologically hypoxic tumor cells (rHF) in untreated tumors did not accurately predict local tumor control after fractionated irradiation. Thus, the prognostic value of rHF determined during fractionated irradiation was investigated. Materials and Methods: Six human squamous cell carcinoma lines were transplanted into nude mice and then irradiated with 15 fractions over 3 weeks. Thereafter, single dose irradiation under normal and clamped blood flow was given. Local tumor control rates were used to calculate the rHF and the TCD{sub 50}, i.e., the radiation dose necessary to control 50% of the tumors, after single dose irradiation. These values were compared with the in parallel determined TCD{sub 50} after 30 fractions in 6 weeks. Results: The rHF after 15 fractions varied between 28% and 100%. No correlation was found with the TCD{sub 50} after 30 fractions in 6 weeks. Single dose top-up TCD{sub 50} under ambient and clamp conditions after 15 fractions significantly correlated with TCD{sub 50} after 30 fractions in 6 weeks. Conclusion: rHF after 15 fractions is not a prognostic parameter for the outcome after fractionated irradiation. In contrast, the radiobiological parameters number of tumor stem cells, intrinsic radiosensitivity, and number of radiobiologically hypoxic tumor cells appear promising to predict outcome after fractionated irradiation. (orig.)

  5. Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1

    Directory of Open Access Journals (Sweden)

    Laura eAmo

    2014-09-01

    Full Text Available Besides their essential role in hemostasis and thrombosis, platelets are involved in the onset of cancer metastasis by interacting with tumor cells. Platelets release secretory factors that promote tumor growth, angiogenesis, and metastasis. Furthermore, the formation of platelet-tumor cell aggregates in the bloodstream provides cancer cells with an immune escape mechanism by protecting circulating malignant cells from immune-mediated lysis by natural killer (NK cells. Platelet-tumor cell interaction is accomplished by specific adhesion molecules, including integrins, selectins, and their ligands. Podocalyxin-like protein 1 (PCLP1 is a selectin ligand protein which overexpression has been associated with several aggressive cancers. PCLP1 expression enhances cell adherence to platelets in an integrin-dependent process and through the interaction with P-selectin expressed on activated platelets. However, the involvement of PCLP1-induced tumor-platelet interaction in tumor immune evasion still remains unexplored. The identification of selectin ligands involved in the interaction of platelets with tumor cells may provide help for the development of effective therapies to restrain cancer cell dissemination. This article summarizes the current knowledge on molecules that participate in platelet-tumor cell interaction as well as discusses the potential role of PCLP1 as a molecule implicated in tumor immune evasion.

  6. ENO1 Protein Levels in the Tumor Tissues and Circulating Plasma Samples of Non-small Cell Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ying ZHANG

    2010-12-01

    Full Text Available Background and objective Proper tumor markers are useful to diagnosis, prognosis and treatment for lung cancer. The aim of this study is to examine the levels of alpha-enolase (ENO1 protein in the tumor tissues and peripheral plasma samples obtained from non-small cell lung cancer (NSCLC patients, and evaluate its potential clinical significance. Methods The ENO1 protein levels in the tumor tissues and corresponding normal tissues from 16 cases of lung squamous cell carcinoma were analyzed by Western blot. The ENO1 protein levels in the plasma samples from 42 healthy individuals, 34 patients with lung benign disease and 84 patients with NSCLC were measured by double antibody sandwich enzyme-linked immunosorbent assay. Results For 87.5% (14/16 of the patients with lung squamous cell carcinoma, the ENO1 protein level in the tumor tissues was higher than that in the corresponding normal lung tissues. The ENO1 protein level in the plasma of NSCLC patients was significantly higher than that in the plasma of healthy individuals (P=0.031 and patients with lung benign disease (P=0.019. Furthermore, the ENO1 protein level was significantly higher in the plasma of patients with lung adenocarcinoma than that of patients with lung squamous cell carcinoma. Conclusion The elevated levels of ENO1 protein in the tumor tissues and the plasma samples from NSCLC patients indicate ENO1 may be a candidate biomarker of lung cancer.

  7. Heat Shock Protein translocation induced by membrane fluidization increases tumor-cell sensitivity to chemotherapeutic drugs.

    Science.gov (United States)

    Dempsey, Nina C; Ireland, H Elyse; Smith, Carly M; Hoyle, Christine F; Williams, John H H

    2010-10-28

    Treatment of chronic lymphocytic leukemia (CLL) remains a challenge due to the frequency of drug resistance amongst patients. Improving the delivery of chemotherapeutic agents while reducing the expression of anti-apoptotic Heat Shock Proteins (HSPs) within the cancer cells may facilitate in overcoming this drug resistance. We demonstrate for the first time that sub-lethal doses of chemotherapeutic agents can be combined with membrane fluidizing treatments to produce a significant increase in drug efficacy and apoptosis in vitro. We show that fluidizers result in a transient decrease in intracellular HSPs, resulting in increased tumor-cell sensitivity and a membrane-associated induction of HSP gene expression.

  8. An Engineered Arginase FC Protein Inhibits Tumor Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2013-01-01

    Full Text Available Arginine is a semiessential amino acid required for the growth of melanoma and hepatocellular carcinoma, and the enzymatic removal of arginine by pegylated arginine deiminase (ADI or arginase is being tested clinically. Here, we report a genetically engineered arginase FC fusion protein exhibiting a prolonged half-life and enhanced efficacy. The use of this enzyme to treat different tumor lines both inhibited cell proliferation and impaired cellular migration in vitro and in vivo. Our data reinforce the hypothesis that nutritional depletion is a key strategy for cancer treatment.

  9. Calcium-dependent potassium channels as a target protein for modulation of the blood-brain tumor barrier.

    Science.gov (United States)

    Ningaraj, Nagendra S; Rao, Mamatha; Black, Keith L

    2003-06-01

    Even though the blood-brain tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), the BTB still significantly restricts the delivery of anticancer drugs to brain tumors. Brain tumor capillaries that form the BTB, however, express certain unique protein markers that are absent or barely detectable in normal brain capillaries. We were able to biochemically modulate one such protein marker, the calcium-dependent potassium (K(Ca)) channel, by using a specific K(Ca) channel agonist, NS-1619, to obtain sustained enhancement of selective drug delivery, including molecules of varying sizes, to tumors in rat syngeneic and xenograft brain tumor models. Immunolocalization and potentiometric studies showed increased K(Ca) channel distribution on tumor cells compared with normal cells, suggesting that tumor cell-specific signals might induce overexpression of K(Ca) channels in capillary endothelial cells, leading to increased BTB permeability. We also demonstrated that the cellular mechanism for K(Ca) channel-mediated BTB permeability increase is due to accelerated formation of pinocytotic vesicles, which can transport therapeutic molecules across the BTB. This concept was investigated by using NS-1619 to facilitate increased delivery of carboplatin to brain tumor leading to enhanced survival in rats with brain tumors. Additionally, we showed that K(Ca) channel modulation resulted in enhanced permeability to macromolecules, including Her-2 monoclonal antibody and green fluorescent protein-adenoviral vectors, in a human, primary brain-tumor xenograft model. Therefore, K(Ca) channels are a potential, promising target for biochemical modulation of BTB permeability to increase antineoplastic drug delivery selectively to brain tumors.

  10. Mechanisms for quality control of misfolded transmembrane proteins

    OpenAIRE

    Houck, Scott A.; Cyr, Douglas M.

    2011-01-01

    To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionall...

  11. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis

    Science.gov (United States)

    Cubillos-Ruiz, Juan R.; Silberman, Pedro C.; Rutkowski, Melanie R.; Chopra, Sahil; Perales-Puchalt, Alfredo; Song, Minkyung; Zhang, Sheng; Bettigole, Sarah E.; Gupta, Divya; Holcomb, Kevin; Ellenson, Lora H.; Caputo, Thomas; Lee, Ann-Hwee; Conejo-Garcia, Jose R.; Glimcher, Laurie H.

    2015-01-01

    SUMMARY Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy. PMID:26073941

  12. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis.

    Science.gov (United States)

    Cubillos-Ruiz, Juan R; Silberman, Pedro C; Rutkowski, Melanie R; Chopra, Sahil; Perales-Puchalt, Alfredo; Song, Minkyung; Zhang, Sheng; Bettigole, Sarah E; Gupta, Divya; Holcomb, Kevin; Ellenson, Lora H; Caputo, Thomas; Lee, Ann-Hwee; Conejo-Garcia, Jose R; Glimcher, Laurie H

    2015-06-18

    Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy.

  13. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.

    Science.gov (United States)

    Willingham, Stephen B; Volkmer, Jens-Peter; Gentles, Andrew J; Sahoo, Debashis; Dalerba, Piero; Mitra, Siddhartha S; Wang, Jian; Contreras-Trujillo, Humberto; Martin, Robin; Cohen, Justin D; Lovelace, Patricia; Scheeren, Ferenc A; Chao, Mark P; Weiskopf, Kipp; Tang, Chad; Volkmer, Anne Kathrin; Naik, Tejaswitha J; Storm, Theresa A; Mosley, Adriane R; Edris, Badreddin; Schmid, Seraina M; Sun, Chris K; Chua, Mei-Sze; Murillo, Oihana; Rajendran, Pradeep; Cha, Adriel C; Chin, Robert K; Kim, Dongkyoon; Adorno, Maddalena; Raveh, Tal; Tseng, Diane; Jaiswal, Siddhartha; Enger, Per Øyvind; Steinberg, Gary K; Li, Gordon; So, Samuel K; Majeti, Ravindra; Harsh, Griffith R; van de Rijn, Matt; Teng, Nelson N H; Sunwoo, John B; Alizadeh, Ash A; Clarke, Michael F; Weissman, Irving L

    2012-04-24

    CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.

  14. Structural Basis for Ubiquitin Recognition by the Otu1 Ovarian Tumor Domain Protein

    Energy Technology Data Exchange (ETDEWEB)

    T Messick; N Russel; A Iwata; K Sarachan; R Shiekhattar; I Shanks; F Reyes-Turcu; K Wilkinson; R Marmorstein

    2011-12-31

    Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of {approx}130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys{sup 48} linkages, having little or no activity on Lys{sup 63}- and Lys{sup 29}-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.

  15. Small structural differences of targeted anti-tumor toxins result in strong variation of protein expression.

    Science.gov (United States)

    Gilabert-Oriol, Roger; Thakur, Mayank; Weise, Christoph; Dernedde, Jens; von Mallinckrodt, Benedicta; Fuchs, Hendrik; Weng, Alexander

    2013-09-01

    Targeted anti-tumor toxins consist of a toxic functional moiety that is chemically linked or recombinantly fused to a cell-directing ligand. Ribosome-inactivating proteins (RIPs), especially type I RIPs such as saporin or dianthin, are commonly used as toxin components. Although expression of type I RIP-based fusion proteins is well reported, the achievement of higher protein yields in heterologous expression systems through innovative strategies is of major interest. In the present study, the targeted toxins (his)saporin-EGF (SE) and (his)dianthin-EGF (DE) were expressed as fusion proteins under identical expression conditions. However, the total amount of DE was nearly two-times higher than SE. The identity of the heterologously expressed targeted toxins was confirmed by mass spectrometric studies. Their biological specific activity, monitored in real time, was almost equal. Sequence alignment shows 84% identity and a structural comparison revealed five major differences, two of which affect the secondary structure resulting in a loop (SE) to β-strand (DE) conversion and one introduces a gap in SE (after position 57). In conclusion, these structural variations resulted in different protein expression levels while codon usage and toxicity to bacteria were excluded as a cause. Minor structural differences identified in this study may be considered responsible for the protection of DE from bacterial proteases and therefore may serve as a lead to modify certain domains in type I RIP-based targeted toxins. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments.

    Science.gov (United States)

    Yoshimura, Teizo

    2017-02-08

    Infiltration of leukocytes is one of the hallmarks of the inflammatory response. Among the leukocyte populations, neutrophils are the first to infiltrate, followed by monocytes and lymphocytes, suggesting the presence of mediators that specifically recruit these cell types. Cytokine-like chemoattractants with monocyte chemotactic activity, such as lymphocyte-derived chemotactic factor (LDCF) or tumor-derived chemotactic factor (TDCF), were reported as molecules that could play a critical role in the recruitment of monocytes into sites of immune responses or tumors; however, their identities remained unclear. In the 1980s, researchers began to test the hypothesis that leukocyte chemotactic activity is a part of the wider activities exhibited by cytokines, such as interleukin-1 (IL-1). In 1987, we demonstrated, for the first time, the presence of a cytokine like chemoattractant with cell type-specificity (now known as the chemokine interleukin-8 or CXC chemokine ligand 8) that was different from IL-1. This led us to the purification of the second such molecule with monocyte chemotactic activity. This monocyte chemoattractant was found identical to the previously described LDCF or TDCF, and termed monocyte chemoattractant protein-1 (MCP-1). Isolation of MCP-1 created a revolution in not only inflammation but also cancer research that continues today, and MCP-1 has become a molecular target to treat patients with many diseases. In this review, I will first describe a history associated with the discovery of MCP-1 and then discuss complex mechanisms regulating MCP-1 production in tumor microenvironments.

  17. Interspecies radioimmunoassay for the major internal protein of mammary tumor viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hand, P.H.; Teramoto, Y.A.; Callahan, R.; Schlom, J.

    1980-02-01

    An interspecies radioimmunoassay was developed which detects antigenic determinants shared by type-B mammary tumor viruses (MTVs). This interspecies assay is specific for antigenic sites which the 28,000-dalton major internal protein of MMTVs of laboratory mice (Mus musculus) has in common with polypeptides of MC-MTV. MC-MTV is a new type-B retrovirus isolated from the Asian rodent. Mus cervicolor. Other retrovirus isolates of Mus cervicolor, i.e., M432, CERV-CI, and CERV-CII, as well as other type-C and type-D retroviruses, do not compete in the interspecies assay. The interspecies assay detected MTV cross-reactive antigenic determinants with equal efficiency in milks, lactating mammary glands, and in spontaneous mammary tumors of three distinct species. Particles morphologically indistinguishable from MMTV and MC-MTV have also been detected in Mus cookii mammary tumor cells. The interspecies MTV p28 radioimmunoassay thus provides a potentially useful tool for the detection of etiologically related viruses or viral translational products in species other than the laboratory mouse.

  18. The membrane protein melanoma cell adhesion molecule (MCAM) is a novel tumor marker that stimulates tumorigenesis in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, J; Tang, X; Weng, W; Qiao, Y; Lin, J; Liu, W; Liu, R; Ma, L; Yu, W; Yu, Y; Pan, Q; Sun, F

    2015-11-19

    Yes-associated protein (YAP) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). However, whether membrane protein can serve not only as a tumor marker that reflects YAP function but also as a therapeutic target that stimulates tumorigenesis in HCC remains unknown. Here we report that the membrane protein melanoma cell adhesion molecule (MCAM) was under positive regulation by YAP and was highly elevated in HCC cells. Within the MCAM promoter, we found the presence of a cAMP Response Element (CRE; -32 to -25 nt), which is conserved among species and is essential for YAP- and CREB-dependent regulation. Moreover, the interaction between CREB and YAP at the CRE site was dependent on PTPIY-WW domain interactions. However, MCAM expression was low and could not be regulated by YAP in breast and colon cancer cells because of the low levels of the acetyltransferase p300. In HCC cells, high levels of p300 facilitated the binding of YAP to the MCAM promoter, which in turn enhanced histone acetylation and polymerase II recruitment through the dissociation of the deacetylase Sirt1. These results suggest that MCAM is an HCC-specific target of YAP. In clinical serum samples, we found that the serum levels of MCAM were highly elevated in patients with HCC compared with healthy controls and with patients with cirrhosis, hepatitis, colon cancer and breast cancer. MCAM levels were shown to be a slightly better indicator than serum alpha-fetoprotein for predicting HCC. We further demonstrated that MCAM is essential for the survival and transformation of HCC. Mechanistically, MCAM induced translation initiation and the transcriptional activities of c-Jun/c-Fos. In addition, AKT activation had an essential role in the MCAM-promoted binding of eukaryotic initiation factor 4E to c-Jun/c-Fos mRNA. In conclusion, we demonstrated that MCAM may be a potential tumor marker and therapeutic target for the diagnosis and treatment of HCC.

  19. Chemotherapy modulates intestinal immune gene expression including surfactant Protein-D and deleted in malignant brain tumors 1 in piglets

    DEFF Research Database (Denmark)

    Rathe, Mathias; Thomassen, Mads; Shen, René L.

    2016-01-01

    Background: Information about chemotherapy-induced intestinal gene expression may provide insight into the mechanisms underlying gut toxicity and help identify biomarkers and targets for intervention. Methods: We analyzed jejunal tissue from piglets subjected to two different, clinically relevant...... the upregulated genes for both treatments. Conclusion: In the developing intestine, chemotherapy increases the expression of genes related to innate immune functions involved in surveillance, protection, and homeostasis of mucosal surfaces....... the BUCY and DOX piglets. Selected genes of potential biological significance with a similar change in expression across the treatments were controlled by real-time polymerase chain reaction. Key innate defense molecules, including surfactant protein-D and deleted in malignant brain tumors 1, were among...

  20. Characterization of Poly(A)-Protein Complexes Isolated from Free and Membrane-Bound Polyribosomes of Ehrlich Ascites Tumor Cells

    NARCIS (Netherlands)

    Janssen, Dick B.; Counotte-Potman, Anda D.; Venrooij, Walther J. van

    1976-01-01

    Proteins present in messenger ribonucleoprotein particles were labeled with [35S]-methionine in Ehrlich ascites tumor cells in which synthesis of new ribosomes was inhibited. Poly(A)-protein complexes were isolated from free and membrane-bound polyribosomes by sucrose gradient centrifugation and aff

  1. RNA-binding protein LIN28 is a sensitive marker of pediatric yolk sac tumors.

    Science.gov (United States)

    Feng, Shaoguang; Huang, Songsong; Tong, Yulong; Chen, Zhongliang; Shen, Delei; Wu, Dazhou; Lai, Xin-He; Chen, Xiaoming

    2016-08-01

    RNA-binding protein LIN28 is involved in maintaining the pluripotency of embryonic stem cells. It has been detected in different types of testicular and ovarian germ cell tumors (GCTs), but its status in pediatric YSTs (yolk sac tumors) is still unknown. The aim of this study was to determine the immunohistochemical profile of LIN28 in pediatric YSTs. Immunohistochemistry detection of LIN28 was performed in 22 cases of pediatric YSTs and 10 mature teratomas. The percentage of tumor cells stained was scored as 0, 1+ (1-30 % cells), 2+ (31-60 %), 3+ (61-90 %), and 4+ (>90 %). To compare its sensitive and specificity with alpha-fetoprotein (AFP), we also stained AFP in 22 cases of pediatric YSTs and 10 mature teratomas in children. LIN28 staining was high in all 22 pediatric yolk sac tumor (2+ in 1, 3+ in 1, and 4+ in 20), and weak staining of LIN28 was seen in 1 of 10 mature teratomas (1+), 9 of 10 mature teratomas were negative expression. However, the expression of AFP in pediatric YST was lower compared with Lin28 (- in 1, 1+ in 8, 2+ in 12, and 3+ in 1), and weak expression of AFP was seen in 2 of 10 mature teratomas (1+), 8 of 10 mature teratomas were negative. LIN28 had higher intensity expression than AFP in pediatric YSTs (P LIN28 is a sensitive marker for pediatric YSTs and it can be used to distinguish them from mature teratomas. LIN28 is likely to become a new and valuable biomarker for diagnosing of pediatric YST.

  2. Regulator of G protein signaling 6 is a novel suppressor of breast tumor initiation and progression.

    Science.gov (United States)

    Maity, Biswanath; Stewart, Adele; O'Malley, Yunxia; Askeland, Ryan W; Sugg, Sonia L; Fisher, Rory A

    2013-08-01

    Breast cancer is a large global health burden and the most frequently diagnosed malignancy in women worldwide. Here, we utilize RGS6(-/-) mice to interrogate the role of regulator of G protein signaling 6 (RGS6), localized to the ductal epithelium in mouse and human breast, as a novel tumor suppressor in vivo. RGS6(-/-) mice exhibit accelerated 7,12-dimethylbenza[α]anthracene (DMBA)-induced tumor initiation and progression, as well as decreased overall survival. Analysis of carcinogenic aberrations in the mammary glands of DMBA-treated mice revealed a failure of the DNA damage response concurrent with augmented oncogenesis in RGS6(-/-) animals. Furthermore, RGS6 suppressed cell growth induced by either human epidermal growth factor receptor 2 or estrogen receptor activation in both MCF-7 breast cancer cells and mammary epithelial cells (MECs). MECs isolated from RGS6(-/-) mice also showed a deficit in DMBA-induced ATM/p53 activation, reactive oxygen species generation and apoptosis confirming that RGS6 is required for effective activation of the DNA damage response in these cells, a critical countermeasure against carcinogen-mediated genotoxic stress. The ability of RGS6 to simultaneously enhance DNA-damage-induced apoptotic signaling and suppress oncogenic cell growth likely underlie the accelerated tumorigenesis and cellular transformation observed in DMBA-treated RGS6(-/-) mice and isolated MECs, respectively. Unsurprisingly, spontaneous tumor formation was also seen in old female RGS6(-/-) but not in wild-type mice. Our finding that RGS6 is downregulated in all human breast cancer subtypes independent of their molecular classification indicates that obtaining a means to restore the growth suppressive and pro-apoptotic actions of RGS6 in breast might be a viable means to treat a large spectrum of breast tumors.

  3. State-Dependent Impulsive Control Strategies for a Tumor-Immune Model

    Directory of Open Access Journals (Sweden)

    Kwang Su Kim

    2016-01-01

    Full Text Available Controlling the number of tumor cells leads us to expect more efficient strategies for treatment of tumor. Towards this goal, a tumor-immune model with state-dependent impulsive treatments is established. This model may give an efficient treatment schedule to control tumor’s abnormal growth. By using the Poincaré map and analogue of Poincaré criterion, some conditions for the existence and stability of a positive order-1 periodic solution of this model are obtained. Moreover, we carry out numerical simulations to illustrate the feasibility of our main results and compare fixed-time impulsive treatment effects with state-dependent impulsive treatment effects. The results of our simulations say that, in determining optimal treatment timing, the model with state-dependent impulsive control is more efficient than that with fixed-time impulsive control.

  4. Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors.

    Directory of Open Access Journals (Sweden)

    Amit Tiwari

    Full Text Available We previously reported that the expression of KIAA1199 in human colorectal tumors (benign and malignant is markedly higher than that in the normal colonic mucosa. In this study, we investigated the functions of the protein encoded by this gene, which are thus far unknown. Immunostaining studies were used to reveal its subcellular localization, and proteomic and gene expression experiments were conducted to identify proteins that might interact with KIAA1199 and molecular pathways in which it might play roles. Using colon cancer cell lines, we showed that both endogenous and ectopically expressed KIAA1199 is secreted into the extracellular environment. In the cells, it was found mainly in the perinuclear space (probably the ER and cell membrane. Both cellular compartments were also over-represented in lists of proteins identified by mass spectrometry as putative KIAA1199 interactors and/or proteins encoded by genes whose transcription was significantly changed by KIAA1199 expression. These proteomic and transcriptomic datasets concordantly link KIAA1199 to several genes/proteins and molecular pathways, including ER processes like protein binding, transport, and folding; and Ca(2+, G-protein, ephrin, and Wnt signaling. Immunoprecipitation experiments confirmed KIAA1199's interaction with the cell-membrane receptor ephrin A2 and with the ER receptor ITPR3, a key player in Ca(2+ signaling. By modulating Ca(2+ signaling, KIAA1199 could affect different branches of the Wnt network. Our findings suggest it may negatively regulate the Wnt/CTNNB1 signaling, and its expression is associated with decreased cell proliferation and invasiveness.

  5. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  6. Effect of DAPT, a gamma secretase inhibitor, on tumor angiogenesis in control mice

    Directory of Open Access Journals (Sweden)

    Elmira Kalantari

    2013-01-01

    Full Text Available Background: Notch signaling is a key factor for angiogenesis in physiological and pathological condition and γ-secretase is the regulator of Notch signaling. The main goal of this study was to assess the effect of (N-[N-(3,5-Diflurophenaacetyl-L-alanyl]-S-phenylglycine t-Butyl Ester DAPT, a γ-secretase inhibitor, on serum angiogenic biomarkers, and tumor angiogenesis in control mice. Materials and Methods: Tumor was induced by inoculation of colon adenocarcinoma cells (CT26 in 12 male Balb/C mice. When tumors size is reached to a 350 ± 50 mm 3 , the animals were randomly divided into two groups: control and DAPT (n = 6/group. DAPT was injected subcutaneously 10 mg/kg/day. After 14 days, blood samples were taken and the tumors were harvested for immunohistochemical staining. Results: Administration of DAPT significantly increased serum nitric oxide concentration and reduced vascular endothelial growth factor receptors-1 (VEGFR1 concentration without changes on serum VEGF concentration. DAPT reduced tumor vascular density in control mice (280.6 ± 81 vs. 386 ± 59.9 CD31 positive cells/mm 2 , although, it was not statistically significant. Conclusion: It seems that γ-secretase inhibitors can be considered for treatment of disorders with abnormal angiogenesis such as tumor angiogenesis.

  7. Tumor type M2 pyruvate kinase expression in gastric cancer,colorectal cancer and controls

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Jian-Ying Chen; Dao-Da Chen; Guo-Bin Wang; Ping Shen

    2004-01-01

    AIM: Tumor formation is generally linked to an expansion of glycolytic phosphometabolite pools and aerobic glycolytic flux rates. To achieve this, tumor cells generally overexpress a special glycolytic isoenzyme, termed pyruvate kinase type M2. The present study was designed to evaluate the use of a new tumor marker, tumor M2-PK, in discriminating gastrointestinal cancer patients from healthy controls, and to compare with the reference tumor markers CEA and CA72-4.METHODS: The concentration of tumor M2-PK in body fluids could be quantitatively determined by a commercially available enzyme-linked immunosorbent assay (ELISA)-kit (ScheBo(R) Tech, Giessen, Germany). By using this kit, the tumor M2-PK concentration was measured in EDTA-plasma of 108 patients. For the healthy blood donors a cut-off value of 15 U/mL was evaluated, which corresponded to 90% specificity. Overall 108 patients were included in this study, 54 patients had a histological confirmed gastric cancer, 54 patients colorectal cancer, and 20 healthy volunteers served as controls.RESULTS: The cut-off value to discriminate patients from controls was established at 15 U/mL for tumor M2-PK. The mean tumor M2-PK concentration of gastric cancer was 26.937 U/mL. According to the TNM stage system, the mean tumor M2-PK concentration of stage Ⅰ was 16.324 U/mL, of stage Ⅱ 15.290 U/mL, of stage Ⅲ 30.289 U/mL, of stage Ⅳ127.31 U/mL, of non-metastasis 12.854 U/mL and of metastasis 35.711 U/mL. The mean Tumor M2-PK concentration of colorectal cancer was 30.588 U/mL. According to the Dukes stage system, the mean tumor M2-PK concentration of Dukes A was 16.638 U/mL, of Dukes B 22.070 U/mL, and of Dukes C 48.024 U/mL, of non-metastasis 19.501 U/mL, of metastasis 49.437 U/mL. The mean tumor M2-PK concentration allowed a significant discrimination of colorectal cancers (30.588 U/mL) from controls (10.965 U/mL) (P<0.01), and gastric cancer (26.937 U/mL) from controls (10.965 U/mL)(P<0.05). The overall

  8. Dextran-based microspheres as controlled delivery systems for proteins

    NARCIS (Netherlands)

    Vlugt-Wensink, K.D.F.

    2007-01-01

    Dextran-based microspheres as controlled delivery systems for proteins Dextran based microspheres are investigated as controlled delivery system for proteins. Microspheres were prepared by polymerization of dex-HEMA in an aqueous two-phase system of dex-HEMA and PEG. Protein loaded microspheres are

  9. Quantitative Analysis of Survivin Protein Expression and Its Therapeutic Depletion by an Antisense Oligonucleotide in Human Lung Tumors

    Directory of Open Access Journals (Sweden)

    Anna L Olsen

    2012-01-01

    Full Text Available RNA-directed antisense and interference therapeutics are a promising treatment option for cancer. The demonstration of depletion of target proteins within human tumors in vivo using validated methodology will be a key to the application of this technology. Here, we present a flow cytometric-based approach to quantitatively determine protein levels in solid tumor material derived by fiber optic brushing (FOB of non-small cell lung cancer (NSCLC patients. Focusing upon the survivin protein, and its depletion by an antisense oligonucleotide (ASO (LY2181308, we show that we can robustly identify a subpopulation of survivin positive tumor cells in FOB samples, and, moreover, detect survivin depletion in tumor samples from a patient treated with LY2181308. Survivin depletion appears to be a result of treatment with this ASO, because a tumor treated with conventional cytotoxic chemotherapy did not exhibit a decreased percentage of survivin positive cells. Our approach is likely to be broadly applicable to, and useful for, the quantification of protein levels in tumor samples obtained as part of clinical trials and studies, facilitating the proof-of-principle testing of novel targeted therapies.

  10. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2010-06-01

    Full Text Available Yuan Li1, Janine A Burns1, Carol A Cheney1, Ningyan Zhang1, Salvatore Vitelli1, Fubao Wang1, Andrew Bett2, Michael Chastain2, Laurent P Audoly1, Zhi-Qiang Zhang1,31Department of Biologics Research, 2Department of Vaccine Research, Merck Research Laboratories, West Point, PA, USA; 3Clinical Development Laboratory, Merck Research Laboratories, Rahway, NJ, USAAbstract: Biological therapies, such as monoclonal antibodies (mAbs that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1 whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2 the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC, but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers.Keywords: Notch

  11. Interferon-Inducible Protein 16: Insight into the Interaction with Tumor Suppressor p53

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jack C.C.; Lam, Robert; Brazda, Vaclav; Duan, Shili; Ravichandran, Mani; Ma, Justin; Xiao, Ting; Tempel, Wolfram; Zuo, Xiaobing; Wang, Yun-Xing; Chirgadze, Nickolay Y.; Arrowsmith, Cheryl H. (Toronto); (NCI)

    2011-08-24

    IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 {angstrom} resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.

  12. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation.

    Science.gov (United States)

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-04-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kappaB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chk1 and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  13. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Institute of Scientific and Technical Information of China (English)

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  14. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors.

    Science.gov (United States)

    Vilgelm, Anna E; Washington, Mary K; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S; Zaika, Alexander I

    2010-03-01

    p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.

  15. Microsurgical resectability, outcomes, and tumor control in meningiomas occupying the cavernous sinus.

    Science.gov (United States)

    Nanda, Anil; Thakur, Jai Deep; Sonig, Ashish; Missios, Symeon

    2016-08-01

    OBJECTIVE Cavernous sinus meningiomas (CSMs) represent a cohort of challenging skull base tumors. Proper management requires achieving a balance between optimal resection, restoration of cranial nerve (CN) function, and maintaining or improving quality of life. The objective of this study was to assess the pre-, intra-, and postoperative factors related to clinical and neurological outcomes, morbidity, mortality, and tumor control in patients with CSM. METHODS A retrospective review of a single surgeon's experience with microsurgical removal of CSM in 65 patients between January 1996 and August 2013 was done. Sekhar's classification, modified Kobayashi grading, and the Karnofsky Performance Scale were used to define tumor extension, tumor removal, and clinical outcomes, respectively. RESULTS Preoperative CN dysfunction was evident in 64.6% of patients. CN II deficits were most common. The greatest improvement was seen for CN V deficits, whereas CN II and CN IV deficits showed the smallest degree of recovery. Complete resection was achieved in 41.5% of cases and was not significantly associated with functional CN recovery. Internal carotid artery encasement significantly limited the complete microscopic resection of CSM (p < 0.0001). Overall, 18.5% of patients showed symptomatic recurrence after their initial surgery (mean follow-up 60.8 months [range 3-199 months]). The use of adjuvant stereotactic radiosurgery (SRS) after microsurgery independently decreased the recurrence rate (p = 0.009; OR 0.036; 95% CI 0.003-0.430). CONCLUSIONS Modified Kobayashi tumor resection (Grades I-IIIB) was possible in 41.5% of patients. CN recovery and tumor control were independent of extent of tumor removal. The combination of resection and adjuvant SRS can achieve excellent tumor control. Furthermore, the use of adjuvant SRS independently decreases the recurrence rates of CSM.

  16. Response to Hepatocarcinoma Hca-F of Mice Immunized with Heat Shock Protein 70 from Elemene Combo Tumor Cell Vaccine

    Institute of Scientific and Technical Information of China (English)

    Lianying Guo; Guangxia Shi; Zhihong Gao; Jie Shen; Rong Xing; Zhenchao Qian

    2006-01-01

    To analyze immune response to murine hepatocarcinoma Hca-F of mice immunized with heat shock protein 70(HSP70) derived from elemene combo tumor cell vaccine (EC-TCV) of Hca-F, HSP70 was isolated from EC-TCV by ADP affinity chromatography. Mice were immunized with HSP70 intraperitoneally three times and spleen cells were sampled. For cells, their proliferation and cytotoxicity against Hca-F were measured with MTT assay and their phenotypes were analyzed with flow cytometry. Spleen cells of immunized mice with HSP70 exhibited more potent cytotoxicity against Hca-F and proliferation than that of normal control mice, but less potent than that of mice immunized with EC-TCV. Among three groups, the percent of γδ T lymphocytes in the mice immunized with HSP70 (35.5%) was the highest compared with 6.25% in normal mice, and 28.4% in the mice immunized with EC-TCV. Immunization of HSP70 derived from EC-TCV could elicit potent immune response to Hca-F. HSP70 is one of elements inducing anti-tumor immune responses against Hca-F. Cellular & Molecular Immunology. 2006;3(4):291-295.

  17. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review

    Science.gov (United States)

    Shrotriya, Shiva; Walsh, Declan; Bennani-Baiti, Nabila; Thomas, Shirley; Lorton, Cliona

    2015-01-01

    Purpose A systematic literature review was done to determine the relationship between elevated CRP and prognosis in people with solid tumors. C-reactive protein (CRP) is a serum acute phase reactant and a well-established inflammatory marker. We also examined the role of CRP to predict treatment response and tumor recurrence. Methods MeSH (Medical Subject Heading) terms were used to search multiple electronic databases (PubMed, EMBASE, Web of Science, SCOPUS, EBM-Cochrane). Two independent reviewers selected research papers. We also included a quality Assessment (QA) score. Reports with QA scores lung, pancreas, hepatocellular cancer, and bladder) an elevated CRP also predicted prognosis. In addition there is also evidence to support the use of CRP to help decide treatment response and identify tumor recurrence. Better designed large scale studies should be conducted to examine these issues more comprehensively. PMID:26717416

  18. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis.

    Science.gov (United States)

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P; Sotgia, Federica

    2012-11-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with "stemness." These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) "cancer stem cells." These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies.

  19. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes.

    Science.gov (United States)

    Park, Jung Eun; Tan, Hon Sen; Datta, Arnab; Lai, Ruenn Chai; Zhang, Huoming; Meng, Wei; Lim, Sai Kiang; Sze, Siu Kwan

    2010-06-01

    Under hypoxia, tumor cells produce a secretion that modulates their microenvironment to facilitate tumor angiogenesis and metastasis. Here, we observed that hypoxic or reoxygenated A431 carcinoma cells exhibited enhanced angiogenic and metastatic potential such as reduced cell-cell and cell-extracellular matrix adhesion, increased invasiveness, and production of a secretion with increased chorioallantoic membrane angiogenic activity. Consistent with these observations, quantitative proteomics revealed that under hypoxia the tumor cells secreted proteins involved in angiogenesis, focal adhesion, extracellular matrix-receptor interaction, and immune cell recruitment. Unexpectedly, the secreted proteins were predominantly cytoplasmic and membrane proteins. Ultracentrifugation at 100,000 x g precipitated 54% of the secreted proteins and enriched for many exosome-associated proteins such as the tetraspanins and Alix and also proteins with the potential to facilitate angiogenesis and metastasis. Two tetraspanins, CD9 and CD81, co-immunoprecipitated. Together, these data suggested that tumor cells secrete proteins and exosomes with the potential to modulate their microenvironment and facilitate angiogenesis and metastasis.

  20. Visual Analysis of Tumor Control Models for Prediction of Radiotherapy Response

    DEFF Research Database (Denmark)

    Raidou, Renata G.; Casares Magaz, Oscar; Muren, Ludvig;

    2016-01-01

    In radiotherapy, tumors are irradiated with a high dose, while surrounding healthy tissues are spared. To quantify the probability that a tumor is effectively treated with a given dose, statistical models were built and employed in clinical research. These are called tumor control probability (TCP......) models. Recently, TCP models started incor- porating additional information from imaging modalities. In this way, patient-specific properties of tumor tissues are included, improving the radiobiological accuracy of models. Yet, the employed imaging modalities are subject to uncertainties with significant...... on TCP modeling, to explore the information provided by their models, to discover new knowledge and to confirm or generate hypotheses within their data. Our approach incorporates the following four main components: (1) It supports the exploration of uncertainty and its effect on TCP models; (2...

  1. DEK Expression is controlled by E2F and deregulated in diverse tumor types.

    Science.gov (United States)

    Carro, Maria Stella; Spiga, Fabio Mario; Quarto, Micaela; Di Ninni, Valentina; Volorio, Sara; Alcalay, Myriam; Müller, Heiko

    2006-06-01

    Deregulation of the retinoblastoma (pRB) tumor suppressor pathway associated with aberrant activity of E2F transcription factors is frequently observed in human cancer. Microarray based analyses have revealed a large number of potential downstream mediators of the tumor suppressing activity of pRB, including DEK, a fusion partner of CAN found in a subset of acute myeloid leukaemia (AML) patients carrying a (6; 9) translocation. Here we report that the expression of DEK is under direct control of E2F transcription factors. Chromatin immunoprecipitation assays show that the DEK promoter is bound by endogenous E2F in vivo. The DEK promoter is transactivated by E2F and mutation of E2F binding sites eliminates this effect. Expression levels of DEK in human tumors have been investigated by tissue micro array analysis. We find that DEK is overexpressed in many solid tumors such as colon cancer, larynx cancer, bladder cancer, and melanoma.

  2. Quantification analysis of the expression of tumor-associated proteins in serum samples from patients with ovarian cancer and those with other tumor location. Possibilities of their use in the diagnosis and estimation of the extent of a tumorous process

    Directory of Open Access Journals (Sweden)

    T. S. Bobrova

    2012-01-01

    Full Text Available The specific features of the expression of tumor-associated proteins (TAP were immunologically studied in the sera of patients with ovarian cancer (OC and other tumor location by means of immune sera (As or monoclonal antibodies (MAb to find out whether they could be used to diagnose and estimate the extent of a tumorous process.MAb 1 (to HEp-2 cell membrane proteins, larynx cancer, Ac4 (to a pool of two ovarian cystadenocarcinomas, and MAb 3 (to affinity-pu- rified proteins of the apparently intact human gastric mucosa were used to examine the sera of patients with OC and other tumor location and positive responsiveness was detected in 82, ~100, and 77 % of cases, respectively. The differences in the expression of TAP in the patients versus healthy donors were shown to be statistically significant (p = 0.0001; p = 0.015; p = 0.01, respectively.The sensitivity of quantifying ELISA in detecting TAP was 78 and 85 % in patients with Stages I–II and III–IV OC, respectively; ~100 and 89 % in patients with breast cancer and in those with gastrointestinal tract cancer, respectively; and 60 and 14 % in patients with lymphopro- liferative diseases and healthy donors, respectively. Comparison of TAP detection rates in the authors’ test systems with multiplex testing with a biochip array of 12 tumor markers has shown that these test systems are at the world standard level.

  3. Suppression of tumor necrosis factor receptor-associated protein 1 expression induces inhibition of cell proliferation and tumor growth in human esophageal cancer cells.

    Science.gov (United States)

    Tian, Xin; Ma, Ping; Sui, Cheng-Guang; Meng, Fan-Dong; Li, Yan; Fu, Li-Ye; Jiang, Tao; Wang, Yang; Jiang, You-Hong

    2014-06-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone involved in multidrug resistance and antiapoptosis in some human tumors, but its regulatory mechanisms have not been revealed in esophageal squamous cell carcinoma (ESCC). In this study, 138 specimens of ESCC were analyzed. TRAP1 was overexpressed in ESCC, particularly in poorly differentiated tumors. To further explore the molecular regulatory mechanism, we constructed specific small interfering RNA-expressing vectors targeting Trap1, and knocked down Trap1 expression in the esophageal cancer cell lines ECA109 and EC9706. Knockdown of Trap1 induced increases in reactive oxygen species and mitochondrial depolarization, which have been proposed as critical regulators of apoptosis. The cell cycle was arrested in G2/M phase, and in vitro inhibition of cell proliferation was confirmed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and bromodeoxyuridine assays. Furthermore, re-expression of TRAP1 in Trap1 small interfering RNA-transfected ESCC cells restored cell proliferation and cell apoptosis. Bioluminescence of subcutaneously xenografted ESCC tumor cells demonstrated significant inhibition of in vivo tumor growth by Trap1 knockdown. This study shows that TRAP1 was overexpressed in most patients with ESCC, and caused an increase in antiapoptosis potency. TRAP1 may be regarded as a target in ESCC biotherapy.

  4. Translocator protein (18 kDa) mediates the pro-growth effects of diazepam on Ehrlich tumor cells in vivo.

    Science.gov (United States)

    Sakai, M; Ferraz-de-Paula, V; Pinheiro, M L; Ribeiro, A; Quinteiro-Filho, W M; Rone, M B; Martinez-Arguelles, D B; Dagli, M L Z; Papadopoulos, V; Palermo-Neto, J

    2010-01-25

    The Translocator Protein (TSPO), previously known as the peripheral-type benzodiazepine receptor, is a ubiquitous drug- and cholesterol-binding protein that is up regulated in several types of cancer cells. TSPO drug ligands (e.g., diazepam) induce or inhibit tumor cell proliferation, depending on the dose and tissue origin. We have previously shown that TSPO is expressed in Ehrlich tumor cells and that diazepam increases proliferation of these cells in vitro. Here, we investigated the in vivo effects of diazepam on Ehrlich tumor growth and the role of TSPO in mediating this process. Oral administration of diazepam to mice (3.0mg/kg/day for 7 days) produced plasma and ascitic fluid drug concentrations of 83.83 and 54.12 nM, respectively. Diazepam increased Ehrlich tumor growth, likely due to its ability to increase tumor cell proliferation and Reactive Oxygen Species production. Radioligand binding assays and nucleotide sequencing revealed that Ehrlich tumor cell TSPO had the same pharmacological and biochemical properties as TSPO described in other tumor cells. The estimated K(d) for PK 11195 in Ehrlich tumor cells was 0.44 nM and 8.70 nM (low and high binding site, respectively). Structurally diverse TSPO drug ligands with exclusive affinity for TSPO (i.e., 4-chlordiazepam, Ro5-4864, and isoquinoline-carboxamide PK 11195) also increased Ehrlich tumor growth. However, clonazepam, a GABA(A)-specific ligand with no affinity for TSPO, failed to do so. Taken together, these data suggest that diazepam induces in vivo Ehrlich tumor growth in a TSPO-dependent manner.

  5. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    Science.gov (United States)

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  6. Fibrinogen-like protein 2/fibroleukin prothrombinase contributes to tumor hypercoagulability via IL-2 and IFN-γ

    Institute of Scientific and Technical Information of China (English)

    Kai Su; Fang Chen; Wei-Ming Yan; Qi-Li Zeng; Li Xu; Dong Xi; Bin Pi; Xiao-Ping Luo; Qin Ning

    2008-01-01

    AIM: To examine the role of Fibrinogen-like protein 2 (fgl2)/fibroleukin in tumor development. Fgl2 has been reported to play a vital role in the pathogenesis in MHV-3 (mouse hepatitis virus) induced fulminant and severe hepatitis, spontaneous abortion, allo- and xeno- graft rejection by mediating "immune coagulation".METHODS: Tumor tissues from 133 patients with six types of distinct cancers and the animal tumor tissues from human hepatocellular carcinoma (HCC) model on nude mice (established from high metastasis HCC cell line MHCC97LM6) were obtained.RESULTS: Hfgl2 was detected in tumor tissues from 127 out of 133 patients as well as tumor tissues collected from human HCC nude mice. Hfgl2 was highly expressed both in cancer cells and interstitial inflammatory cells including macrophages, NK cells, and CD8+ T lymphocytes and vascular endothelial cells. Hfgl2 mRNA was localized in cells that expressed hfgl2 protein. Fibrin (nogen) co-localization with hfgl2 expression was determined by dual immunohistochemical staining. In vitro, IL-2 and IFN-γ increased hfgl2 mRNA by 10-100 folds and protein expression in both THP-1 and HUVEC cell lines. One-stage clotting assays demonstrated that THP-1 and HUVEC cells expressing hfgl2 had increased procoagulant activity following cytokines stimulation.CONCLUSION: The hfgl2 contributes to the hypercoagulability in cancer and may induce tumor angiogenesis and metastasis via cytokine induction.

  7. Visual outcome, endocrine function and tumor control after fractionated stereotactic radiation therapy of craniopharyngiomas in adults

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Munck Af Rosenschöld, Per; Feldt-Rasmussen, Ulla

    2017-01-01

    BACKGROUND: The purpose of this study was to examine visual outcome, endocrine function and tumor control in a prospective cohort of craniopharyngioma patients, treated with fractionated stereotactic radiation therapy (FSRT). MATERIAL AND METHODS: Sixteen adult patients with craniopharyngiomas were.......7-13.1) for visual outcome, endocrine function, and tumor control, respectively. RESULTS: Visual acuity impairment was present in 10 patients (62.5%) and visual field defects were present in 12 patients (75%) before FSRT. One patient developed radiation-induced optic neuropathy at seven years after FSRT. Thirteen...

  8. Albendazole as a promising molecule for tumor control

    Directory of Open Access Journals (Sweden)

    L.S.E.P.W. Castro

    2016-12-01

    Full Text Available This work evaluated the antitumor effects of albendazole (ABZ and its relationship with modulation of oxidative stress and induction of DNA damage. The present results showed that ABZ causes oxidative cleavage on calf-thymus DNA suggesting that this compound can break DNA. ABZ treatment decreased MCF-7 cell viability (EC50=44.9 for 24 h and inhibited MCF-7 colony formation (~67.5% at 5 μM. Intracellular ROS levels increased with ABZ treatment (~123%. The antioxidant NAC is able to revert the cytotoxic effects, ROS generation and loss of mitochondrial membrane potential of MCF-7 cells treated with ABZ. Ehrlich carcinoma growth was inhibited (~32% and survival time was elongated (~50% in animals treated with ABZ. Oxidative biomarkers (TBARS and protein carbonyl levels and activity of antioxidant enzymes (CAT, SOD and GR increased, and reduced glutathione (GSH was depleted in animals treated with ABZ, indicating an oxidative stress condition, leading to a DNA damage causing phosphorylation of histone H2A variant, H2AX, and triggering apoptosis signaling, which was confirmed by increasing Bax/Bcl-xL rate, p53 and Bax expression. We propose that ABZ induces oxidative stress promoting DNA fragmentation and triggering apoptosis and inducing cell death, making this drug a promising leader molecule for development of new antitumor drugs.

  9. Whey Protein Hydrolysate but not Whole Whey Protein Protects Against 7,12-Dimethylbenz(a)anthracene-Induced Mammary Tumors in Rats.

    Science.gov (United States)

    Ronis, Martin J; Hakkak, Reza; Korourian, Soheila; Badger, Thomas M

    2015-01-01

    Effects of intact and processed bovine milk proteins on development of chemically induced mammary tumors in female rats were compared. AIN-93G diets were made with 20% casein (CAS), casein hydrolysate (CASH), intact whey protein (IWP), or whey protein hydrolysate (WPH). Pregnant Sprague-Dawley rats were fed the diets starting at Gestational Day 4. Offspring were fed the same diet. At 50 days, female offspring (44-49/group) were gavaged with sesame oil containing 80 mg/kg of the mammary carcinogen dimethylbenzanthracene (DMBA) and euthanized 62 days posttreatment. Rats fed WPH had an adenocarcinoma incidence of 17% compared to the rats fed CAS, CASH, and IWP diets (34%, 33%, and 36% respectively) (P whey protein is required for this diet to be effective in reducing DMBA-induced mammary tumors. The bioactive compounds produced during whey protein processing and mechanisms underlying the anticancer effects of WPH are yet to be identified.

  10. Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein

    Science.gov (United States)

    Minervini, Giovanni; Mazzotta, Gabriella M.; Masiero, Alessandro; Sartori, Elena; Corrà, Samantha; Potenza, Emilio; Costa, Rodolfo; Tosatto, Silvio C. E.

    2015-01-01

    Deregulation of the von Hippel-Lindau tumor suppressor protein (pVHL) is considered one of the main causes for malignant renal clear-cell carcinoma (ccRCC) insurgence. In human, pVHL exists in two isoforms, pVHL19 and pVHL30 respectively, displaying comparable tumor suppressor abilities. Mutations of the p53 tumor suppressor gene have been also correlated with ccRCC insurgence and ineffectiveness of treatment. A recent proteomic analysis linked full length pVHL30 with p53 pathway regulation through complex formation with the p14ARF oncosuppressor. The alternatively spliced pVHL19, missing the first 53 residues, lacks this interaction and suggests an asymmetric function of the two pVHL isoforms. Here, we present an integrative bioinformatics and experimental characterization of the pVHL oncosuppressor isoforms. Predictions of the pVHL30 N-terminus three-dimensional structure suggest that it may exist as an ensemble of structured and disordered forms. The results were used to guide Yeast two hybrid experiments to highlight isoform-specific binding properties. We observed that the physical pVHL/p14ARF interaction is specifically mediated by the 53 residue long pVHL30 N-terminal region, suggesting that this N-terminus acts as a further pVHL interaction interface. Of note, we also observed that the shorter pVHL19 isoform shows an unexpected high tendency to form homodimers, suggesting an additional isoform-specific binding specialization. PMID:26211615

  11. Hypercalcemia secondary to gastrointestinal stromal tumors: parathyroid hormone-related protein independent mechanism?

    Science.gov (United States)

    Jasti, Prathima; Lakhani, Vipul Tulsi; Woodworth, Alison; Dahir, Kathryn McCrystal

    2013-01-01

    Hypercalcemia is a common paraneoplastic manifestation of many malignancies like breast, ovarian, and squamous-cell cancers of head and neck; however, there have been only a few case reports of hypercalcemia associated with gastrointestinal stromal tumors (GISTs). We report a case of GIST presenting with hypercalcemia without any osseous metastasis and provide a literature review regarding the mechanisms of hypercalcemia and therapeutic strategies. We present a report of case and a review of the relevant literature. A 52-year-old woman with history of localized breast cancer in remission and a pelvic 13 × 12 cm GIST with peritoneal, liver, and lung metastases presented with hypercalcemia of 14.3 mg/dL (8.5-10.5 mg/dL). Parathyroid hormone-related protein (PTHrP) was undetectable, intact parathyroid hormone (PTH) was appropriately low at 1 pg/mL (10-65 pg/mL), and 1,25 dihydroxy vitamin D (1,25 OH2 vit D) was elevated at 131 pg/mL (18-78 pg/mL) with normal renal function. Calcium responded transiently to tyrosine kinase inhibitor therapy and bisphosphonates but within a year, she expired due to tumor progression. GIST is a rare cause of hypercalcemia. In addition to PTHrP expression, direct tumor production of 1,25(OH)2 vit D or 1-α hydroxylase enzyme resulting in activation of 25-hydroxy vitamin D may be an alternative mechanism in GIST-related hypercalcemia. Therapy with tyrosine kinase inhibitors and bisphosphonates is recommended, though prognosis is poor. Further investigations are needed to characterize the etiology and management of hypercalcemia in these patients.

  12. Aspirin inhibits colon cancer cell and tumor growth and downregulates specificity protein (Sp transcription factors.

    Directory of Open Access Journals (Sweden)

    Satya Pathi

    Full Text Available Acetylsalicylic acid (aspirin is highly effective for treating colon cancer patients postdiagnosis; however, the mechanisms of action of aspirin in colon cancer are not well defined. Aspirin and its major metabolite sodium salicylate induced apoptosis and decreased colon cancer cell growth and the sodium salt of aspirin also inhibited tumor growth in an athymic nude mouse xenograft model. Colon cancer cell growth inhibition was accompanied by downregulation of Sp1, Sp3 and Sp4 proteins and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1, c-MET and p65 (NFκB. Moreover, we also showed by RNA interference that β-catenin, an important target of aspirin in some studies, is an Sp-regulated gene. Aspirin induced nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 proteins and this response was related to sequestration of zinc ions since addition of zinc sulfate blocked aspirin-mediated apoptosis and repression of Sp proteins. The results demonstrate an important underlying mechanism of action of aspirin as an anticancer agent and, based on the rapid metabolism of aspirin to salicylate in humans and the high salicylate/aspirin ratios in serum, it is likely that the anticancer activity of aspirin is also due to the salicylate metabolite.

  13. Small-molecule control of protein function through Staudinger reduction

    Science.gov (United States)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  14. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    Directory of Open Access Journals (Sweden)

    Whitney K. Petrie

    2013-01-01

    Full Text Available Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene, the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  15. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  16. Role of Protein Quality Control Failure in Alcoholic Hepatitis Pathogenesis

    Directory of Open Access Journals (Sweden)

    Samuel W. French

    2017-02-01

    Full Text Available The mechanisms of protein quality control in hepatocytes in cases of alcoholic hepatitis (AH including ufmylation, FAT10ylation, metacaspase 1 (Mca1, ERAD (endoplasmic reticulum-associated degradation, JUNQ (juxta nuclear quality control, IPOD (insoluble protein deposit autophagocytosis, and ER stress are reviewed. The Mallory–Denk body (MDB formation develops in the hepatocytes in alcoholic hepatitis as a consequence of the failure of these protein quality control mechanisms to remove misfolded and damaged proteins and to prevent MDB aggresome formation within the cytoplasm of hepatocytes. The proteins involved in the quality control pathways are identified, quantitated, and visualized by immunofluorescent antibody staining of liver biopsies from patients with AH. Quantification of the proteins are achieved by measuring the fluorescent intensity using a morphometric system. Ufmylation and FAT10ylation pathways were downregulated, Mca1 pathways were upregulated, autophagocytosis was upregulated, and ER stress PERK (protein kinase RNA-like endoplasmic reticulum kinase and CHOP (CCAAT/enhancer-binding protein homologous protein mechanisms were upregulated. In conclusion: Despite the upregulation of several pathways of protein quality control, aggresomes (MDBs still formed in the hepatocytes in AH. The pathogenesis of AH is due to the failure of protein quality control, which causes balloon-cell change with MDB formation and ER stress.

  17. Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo.

    Science.gov (United States)

    Luo, Haiming; Yang, Jie; Jin, Honglin; Huang, Chuan; Fu, Jianwei; Yang, Fei; Gong, Hui; Zeng, Shaoqun; Luo, Qingming; Zhang, Zhihong

    2011-06-01

    Relatively weak tumor affinities and short retention time in vivo hinder the application of targeting peptides in tumor molecular imaging. Multivalent strategies based on various scaffolds have been utilized to improve the ability of peptide-receptor binding or extend the clearance time of peptide-based probes. Here, we use a tetrameric far-red fluorescent protein (tfRFP) as a scaffold to create a self-assembled octavalent peptide fluorescent nanoprobe (Octa-FNP) using a genetic engineering approach. The multiligand connecting, fluorophore labeling and nanostructure formation of Octa-FNP were performed in one step. In vitro studies showed Octa-FNP is a 10-nm fluorescent probe with excellent serum stability. Cellular uptake of Octa-FNP by human nasopharyngeal cancer 5-8F cells is 15-fold of tetravalent probe, ∼80-fold of monovalent probe and ∼600-fold of nulvalent tfRFP. In vivo enhanced tumor targeting and intracellular uptake of Octa-FNP were confirmed using optical imaging and Western blot analysis. It achieved extremely high contrast of Octa-FNP signal between tumor tissue and normal organs, especially seldom Octa-FNP detected in liver and spleen. Owing to easy preparation, precise structural and functional control, and multivalent effect, Octa-FNP provides a powerful tool for tumor optical molecular imaging and evaluating the targeting ability of numerous peptides in vivo.

  18. Regulatory roles of tumor necrosis factor alpha-induced proteins (TNFAIPs) 3 and 9 in arthritis.

    Science.gov (United States)

    Matsumoto, Isao; Inoue, Asuka; Takai, Chinatsu; Umeda, Naoto; Tanaka, Yuki; Kurashima, Yuko; Sumida, Takayuki

    2014-07-01

    Tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) have proved to be important in rheumatoid arthritis (RA) because the outcome of RA has greatly improved with the recent availability of biologics targeting them. It is well accepted that these cytokines are involved in the activation of the nuclear factor-κB (NF-κB) signaling pathway, but our understanding of the dependency of these pro-inflammatory cytokines and the link between them in RA is currently limited. Recently, we and others proved the importance of TNFα-induced protein (TNFAIP), due to the spontaneous development of arthritis in deficient animals that are dependent on IL-6. To date, nine TNFAIPs have been identified, and TNFAIP3 and TNFAIP9 were found to be clearly associated with mouse and human arthritis. In this review, we compare and discuss recent TNFAIP topics, especially focusing on TNFAIP3 and TNFAIP9 in autoimmune arthritis in mice and humans.

  19. The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein

    Science.gov (United States)

    Ramos-Espiritu, Lavoisier; Diaz, Ana; Nardin, Charlee; Saviola, Anthony J.; Shaw, Fiona; Plitt, Tamar; Yang, Xia; Wolchok, Jedd; Pirog, Edyta C.; Desman, Garrett; Sboner, Andrea; Zhang, Tuo; Xiang, Jenny; Merghoub, Taha; Levin, Lonny R.; Buck, Jochen; Zippin, Jonathan H.

    2016-01-01

    cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein. PMID:27323809

  20. MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a.

    Science.gov (United States)

    Gao, Feng; Wang, Wenhui

    2015-02-01

    MicroRNAs (miRNAs) are a conserved class of small, endogenous, non protein-coding RNA molecules that are capable of regulating gene expression at post-transcriptional levels and are involved in diverse cellular processes, including cancer pathogenesis. It has previously been reported that miRNA-96 (miR-96) is overexpressed in human colorectal cancer (CRC). However, the underlying mechanism of miR-96 regulation in CRC remains to be elucidated. In the present study, miR-96 was confirmed to be upregulated in CRC tissues by reverse transcription quantitative polymerase chain reaction. MTT assay, colony formation assay and cell cycle analysis revealed that miR-96 overexpression led to increased tumor cell viability, colony formation ability and cell cycle progression. By contrast, inhibition of miR-96 resulted in the suppression of cell proliferation. It was also demonstrated that miR-96 reduced the messenger RNA and protein expression levels of tumor protein p53 inducible nuclear protein 1 (TP53INP1), forkhead box protein O1 (FOXO1) and FOXO3a, which are closely associated with cell proliferation. A luciferase reporter assay indicated that miR-96 inhibited luciferase intensity controlled by the 3'UTRs of TP53INP1, FOXO1 and FOXO3a. In conclusion, the results of the present study demonstrated that miR-96 contributed to CRC cell growth and that TP53INP1, FOXO1 and FOXO3a were direct targets of miR-96, suggesting that miR-96 may have the potential to be used in the development of miRNA‑based therapies for CRC patients.

  1. Tumor progression-related transmembrane protein aspartate β-hydroxylase is a target for immunotherapy of hepatocellular carcinoma

    Science.gov (United States)

    Shimoda, Masafumi; Tomimaru, Yoshito; Charpentier, Kevin P.; Safran, Howard; Carlson, Rolf I.; Wands, Jack

    2012-01-01

    Background/Aims Hepatocellular carcinoma (HCC) has a poor survival rate due to recurrent intrahepatic metastases and lack of effective adjuvant therapy. Aspartate-β-hydroxylase (ASPH) is an attractive cellular target since it is a highly conserved transmembrane protein overexpressed on both murine and human HCC tumors, and promotes a malignant phenotype as characterized by enhanced tumor cell migration and invasion. Methods Dendritic cells (DCs), expanded and isolated from the spleen, were incubated with a cytokine cocktail to optimize IL-12 secretion and co-stimulatory molecule expression, then subsequently loaded with ASPH protein for immunization. Mice were injected with syngeneic BNL HCC tumor cells followed by subcutaneous inoculation with 5–10×105 ASPH loaded DCs using a prophylactic and therapeutic experimental approach. Tumor infiltrating lymphocytes (TILs) were characterized, and their role in producing anti-tumor effects determined. The immunogenicity of ASPH protein with respect to activating antigen specific CD4+ T cells derived from human peripheral blood mononuclear cells (PBMCs) was also explored. Methods We found that immunotherapy with ASPH-loaded DCs suppressed and delayed established HCC and tumor growth when administered prophylactically. Ex-vivo re-stimulation experiments and in vivo depletion studies demonstrate that both CD4+ and CD8+ cells contributed to anti-tumor effects. Using PBMCs derived from healthy volunteers and HCC patients, we showed that ASPH stimulation led to significant development of antigen-specific CD4+ T-cells. Conclusion Immunization with ASPH-loaded DCs has substantial anti-tumor effects which could reduce the risk of HCC recurrence. PMID:22245894

  2. Expressions of beta-catenin, APC Protein, C-myc and Cyclin D1 in Ovarian Epithelial Tumor and Their Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2007-01-01

    Objective: To investigate the expressions of beta-catenin, protein APC (adenomatous polyposis coli protein), c-myc and cyclin D1 and their implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to identify the expressions of beta-catenin, APC protein, c-myc and cyclin D1 in ovarian epithelial tumor in 48 cases. Results: The abnormal expression rate of beta-catenin in malignant and borderline ovarian epithelial tumors was higher than that in benign epithelial tumors (P<0.01). The expression rates of c-myc and cyclin-D1 in ovarian malignant and borderline epithelial tumors were higher than those in benign epithelial tumors too(P<0.05). The prevalence of APC protein positive expression in benign epithelial tumors were significantly greater than that in malignant epithelial tumors (P<0.05). A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors; while a significant positive correlation was found between beta-catenin, c-myc and cyclin-D1 in ovarian epithelial tumor (P<0.05). Conclusion: The abnormal expressions of Beta-catenin, APC protein, c-myc and cyclin-D1 might be used to indicate the malignance transform of ovarian epithelial tumors.

  3. High expression of G-protein signaling modulator 2 in hepatocellular carcinoma facilitates tumor growth and metastasis by activating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    He, Xiao-Qin; Zhang, Yue-Feng; Yu, Jia-Jun; Gan, Yuan-Yuan; Han, Na-Na; Zhang, Mei-Xia; Ge, Wei; Deng, Jun-Jian; Zheng, Yong-Fa; Xu, Xi-Ming

    2017-03-01

    The aim of this study was to investigate the role of G-protein signaling modulator 2 in the carcinogenesis and progression of hepatocellular carcinoma. We previously showed that G-protein signaling modulator 2 was upregulated in hepatitis B virus-related hepatocellular carcinoma tissues through a hierarchical clustering analysis. With this study, we first assessed the expression pattern of G-protein signaling modulator 2 in hepatocellular carcinoma specimens and adjacent noncancerous tissues; clinical data were analyzed, along survival times, utilizing the Kaplan-Meier method. Moreover, the functions of G-protein signaling modulator 2 were examined using small-interfering RNAs in vitro. The results showed that G-protein signaling modulator 2 was clearly overexpressed in hepatocellular carcinoma tissues and cell lines and that the G-protein signaling modulator 2 expression level was related to tumor size and hepatitis B virus infection. Furthermore, G-protein signaling modulator 2 knockdown studies suggested that G-protein signaling modulator 2 accelerates cell growth, cell cycle, migration, and invasion and inhibits apoptosis, acting as an oncogene in hepatocellular carcinoma. Western blotting indicated that silencing of G-protein signaling modulator 2 in HepG2 and SMMC-7721 cells increased the expression levels of Bax, caspase-3, and E-cadherin, while notably suppressing the cyclin-dependent kinase 4, cyclin-dependent kinase 6, CyclinD1, Snail1, Vimentin, and matrix metallopeptidase 9 expression levels, compared with that in the control groups. In addition, we found that G-protein signaling modulator 2 can affect the expression of key proteins involved in protein kinase B activation. In conclusion, high expression of G-protein signaling modulator 2 was involved in the pathological processes of hepatocellular carcinoma through activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which may provide an attractive potential diagnostic

  4. RNA sequencing and pathway analysis identify tumor necrosis factor alpha driven small proline-rich protein dysregulation in chronic rhinosinusitis.

    Science.gov (United States)

    Ramakrishnan, Vijay R; Gonzalez, Joseph R; Cooper, Sarah E; Barham, Henry P; Anderson, Catherine B; Larson, Eric D; Cool, Carlyne D; Diller, John D; Jones, Kenneth; Kinnamon, Sue C

    2017-09-01

    Chronic rhinosinusitis (CRS) is a heterogeneous inflammatory disorder in which many pathways contribute to end-organ disease. Small proline-rich proteins (SPRR) are polypeptides that have recently been shown to contribute to epithelial biomechanical properties relevant in T-helper type 2 inflammation. There is evidence that genetic polymorphism in SPRR genes may predict the development of asthma in children with atopy and, correlatively, that expression of SPRRs is increased under allergic conditions, which leads to epithelial barrier dysfunction in atopic disease. RNAs from uncinate tissue specimens from patients with CRS and control subjects were compared by RNA sequencing by using Ingenuity Pathway Analysis (n = 4 each), and quantitative polymerase chain reaction (PCR) (n = 15). A separate cohort of archived sinus tissue was examined by immunohistochemistry (n = 19). A statistically significant increase of SPRR expression in CRS sinus tissue was identified that was not a result of atopic presence. SPRR1 and SPRR2A expressions were markedly increased in patients with CRS (p < 0.01) on RNA sequencing, with confirmation by using real-time PCR. Immunohistochemistry of archived surgical samples demonstrated staining of SPRR proteins within squamous epithelium of both groups. Pathway analysis indicated tumor necrosis factor (TNF) alpha as a master regulator of the SPRR gene products. Expression of SPRR1 and of SPRR2A is increased in mucosal samples from patients with CRS and appeared as a downstream result of TNF alpha modulation, which possibly resulted in epithelial barrier dysfunction.

  5. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na, E-mail: luna555@163.com; Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn

    2013-09-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  6. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    Science.gov (United States)

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are

  7. Protein Kinase A Effects of an Expressed PRKAR1A Mutation Associated with Aggressive Tumors

    Science.gov (United States)

    Meoli, Elise; Bossis, Ioannis; Cazabat, Laure; Mavrakis, Manos; Horvath, Anelia; Stergiopoulos, Sotiris; Shiferaw, Miriam L.; Fumey, Glawdys; Perlemoine, Karine; Muchow, Michael; Robinson-White, Audrey; Weinberg, Frank; Nesterova, Maria; Patronas, Yianna; Groussin, Lionel; Bertherat, Jérôme; Stratakis, Constantine A.

    2011-01-01

    Most PRKAR1A tumorigenic mutations lead to nonsense mRNA that is decayed; tumor formation has been associated with an increase in type II protein kinase A (PKA) subunits. The IVS6+1G>T PRKAR1A mutation leads to a protein lacking exon 6 sequences [R1αΔ184-236 (R1αΔ6)]. We compared in vitro R1αΔ6 with wild-type (wt) R1α. We assessed PKA activity and subunit expression, phosphorylation of target molecules, and properties of wt-R1α and mutant (mt) R1α; we observed by confocal microscopy R1α tagged with green fluorescent protein and its interactions with Cerulean-tagged catalytic subunit (Cα). Introduction of the R1αΔ6 led to aberrant cellular morphology and higher PKA activity but no increase in type II PKA subunits. There was diffuse, cytoplasmic localization of R1α protein in wt-R1α– and R1αΔ6-transfected cells but the former also exhibited discrete aggregates of R1α that bound Cα; these were absent in R1αΔ6-transfected cells and did not bind Cα at baseline or in response to cyclic AMP. Other changes induced by R1αΔ6 included decreased nuclear Cα. We conclude that R1αΔ6 leads to increased PKA activity through the mt-R1α decreased binding to Cα and does not involve changes in other PKA subunits, suggesting that a switch to type II PKA activity is not necessary for increased kinase activity or tumorigenesis. PMID:18451138

  8. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    Science.gov (United States)

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and tumor grade (p = 0.01). Given the important role of cell cycle checkpoint

  9. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model.

    Science.gov (United States)

    Lamming, Dudley W; Cummings, Nicole E; Rastelli, Antonella L; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto; Fontana, Luigi

    2015-10-13

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases.

  10. Total protein or high-abundance protein: Which offers the best loading control for Western blotting?

    Science.gov (United States)

    Thacker, Jonathan S; Yeung, Derrick H; Staines, W Richard; Mielke, John G

    2016-03-01

    Western blotting routinely involves a control for variability in the amount of protein across immunoblot lanes. Normalizing a target signal to one found for an abundantly expressed protein is widely regarded as a reliable loading control; however, this approach is being increasingly questioned. As a result, we compared blotting for two high-abundance proteins (actin and glyceraldehyde 3-phosphate dehydrogenase [GAPDH]) and two total protein membrane staining methods (Ponceau and Coomassie Brilliant Blue) to determine the best control for loading variability. We found that Ponceau staining optimally balanced accuracy and precision, and we suggest that this approach be considered as an alternative to normalizing with a high-abundance protein.

  11. Correlativity study between expression of DNA double-strand break repair protein and radiosensitivity of tumor cells

    Institute of Scientific and Technical Information of China (English)

    Liang ZHUANG; Shiying YU; Xiaoyuan HUANG; Yang CAO; Huihua XIONG

    2009-01-01

    DNA double-strand break (DSB) is generally regarded as the most lethal of all DNA lesions after radiation. KuS0, DNA-PK catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) proteins are major DSB repair proteins. In this study, survival fraction at 2Gy (SF2) values of eight human tumor cell lines (including four human cervical carcinoma cell lines HeLa, SiHa, C33A, Caski, three human breast carcinoma cell lines MCF-7, MDA-MB-231, MDA-MB-453, and one human lung carcinoma cell line A549) were acquired by clone formation assay, and western blot was applied to detect the expressions of Ku80, DNA-PKcs and ATM protein. The correlativity of protein expression with SF2 value was analyzed by Pearson linear correlation analysis. We found that the expression of the same protein in different cell lines and the expression of three proteins in the same cell line had a significant difference. The SF2 values were also different in eight tumor cell lines and there was a positive correlativity between the expression of DNA-PKcs and SF2 (r=0.723, P =0.043), but Ku80 and ATM expression had no correlation with SF2 (P>0.05). These findings suggest that the expression level of DNA-PKcs protein can be an indicator for predicting the radiosensitivity of tumor cells.

  12. Pre-B-cell leukemia homeobox interacting protein 1 is overexpressed in astrocytoma and promotes tumor cell growth and migration

    Science.gov (United States)

    van Vuurden, Dannis G.; Aronica, Eleonora; Hulleman, Esther; Wedekind, Laurine E.; Biesmans, Dennis; Malekzadeh, Arjan; Bugiani, Marianna; Geerts, Dirk; Noske, David P.; Vandertop, W. Peter; Kaspers, Gertjan J.L.; Cloos, Jacqueline; Würdinger, Thomas; van der Stoop, Petra P.M.

    2014-01-01

    Background Glial brain tumors cause considerable mortality and morbidity in children and adults. Innovative targets for therapy are needed to improve survival and reduce long-term sequelae. The aim of this study was to find a candidate tumor-promoting protein, abundantly expressed in tumor cells but not in normal brain tissues, as a potential target for therapy. Methods In silico proteomics and genomics, immunohistochemistry, and immunofluorescence microscopy validation were performed. RNA interference was used to ascertain the functional role of the overexpressed candidate target protein. Results In silico proteomics and genomics revealed pre-B-cell leukemia homeobox (PBX) interacting protein 1 (PBXIP1) overexpression in adult and childhood high-grade glioma and ependymoma compared with normal brain. PBXIP1 is a PBX-family interacting microtubule-binding protein with a putative role in migration and proliferation of cancer cells. Immunohistochemical studies in glial tumors validated PBXIP1 expression in astrocytoma and ependymoma but not in oligodendroglioma. RNAi-mediated PBXIP1-knockdown in glioblastoma cell lines strongly reduced proliferation and migration and induced morphological changes, indicating that PBXIP1 knockdown decreases glioma cell viability and motility through rearrangements of the actin cytoskeleton. Furthermore, expression of PBXIP1 was observed in radial glia and astrocytic progenitor cells in human fetal tissues, suggesting that PBXIP1 is an astroglial progenitor cell marker during human embryonic development. Conclusion PBXIP1 is a novel protein overexpressed in astrocytoma and ependymoma, involved in tumor cell proliferation and migration, that warrants further exploration as a novel therapeutic target in these tumors. PMID:24470547

  13. (89)Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection.

    Science.gov (United States)

    Price, Eric W; Carnazza, Kathryn E; Carlin, Sean D; Cho, Andrew; Edwards, Kimberly J; Sevak, Kuntal K; Glaser, Jonathan M; de Stanchina, Elisa; Janjigian, Yelena Y; Lewis, Jason S

    2017-09-01

    The hepatocyte growth factor (HGF) binding antibody rilotumumab (AMG102) was modified for use as a (89)Zr-based immuno-PET imaging agent to noninvasively determine the local levels of HGF protein in tumors. Because recent clinical trials of HGF-targeting therapies have been largely unsuccessful in several different cancers (e.g., gastric, brain, lung), we have synthesized and validated (89)Zr-DFO-AMG102 as a companion diagnostic for improved identification and selection of patients having high local levels of HGF in tumors. To date, patient selection has not been performed using the local levels of HGF protein in tumors. Methods: The chelator p-SCN-Bn-DFO was conjugated to AMG102, radiolabeling with (89)Zr was performed in high radiochemical yields and purity (>99%), and binding affinity of the modified antibody was confirmed using an enzyme-linked immunosorbent assay (ELISA)-type binding assay. PET imaging, biodistribution, autoradiography and immunohistochemistry, and ex vivo HGF ELISA experiments were performed on murine xenografts of U87MG (HGF-positive, MET-positive) and MKN45 (HGF-negative, MET-positive) and 4 patient-derived xenografts (MET-positive, HGF unknown). Results: Tumor uptake of (89)Zr-DFO-AMG102 at 120 h after injection in U87MG xenografts (HGF-positive) was high (36.8 ± 7.8 percentage injected dose per gram [%ID/g]), whereas uptake in MKN45 xenografts (HGF-negative) was 5.0 ± 1.3 %ID/g and a control of nonspecific human IgG (89)Zr-DFO-IgG in U87MG tumors was 11.5 ± 3.3 %ID/g, demonstrating selective uptake in HGF-positive tumors. Similar experiments performed in 4 different gastric cancer patient-derived xenograft models showed low uptake of (89)Zr-DFO-AMG102 (∼4-7 %ID/g), which corresponded with low HGF levels in these tumors (ex vivo ELISA). Autoradiography, immunohistochemical staining, and HGF ELISA assays confirmed that elevated levels of HGF protein were present only in U87MG tumors and that (89)Zr-DFO-AMG102 uptake was closely

  14. Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions.

    Science.gov (United States)

    Baltz, Katrin M; Krusch, Matthias; Bringmann, Anita; Brossart, Peter; Mayer, Frank; Kloss, Mercedes; Baessler, Tina; Kumbier, Ingrid; Peterfi, Andrea; Kupka, Susan; Kroeber, Stefan; Menzel, Dagmar; Radsak, Markus P; Rammensee, Hans-Georg; Salih, Helmut R

    2007-08-01

    Glucocorticoid-induced TNF-related protein (GITR) has been shown to stimulate T cell-mediated antitumor immunity in mice. However, the functional relevance of GITR and its ligand (GITRL) for non-T cells has yet to be fully explored. In addition, recent evidence suggests that GITR plays different roles in mice and humans. We studied the role of GITR-GITRL interaction in human tumor immunology and report for the first time that primary gastrointestinal cancers and tumor cell lines of different histological origin express substantial levels of GITRL. Signaling through GITRL down-regulated the expression of the immunostimulatory molecules CD40 and CD54 and the adhesion molecule EpCAM, and induced production of the immunosuppressive cytokine TGF-beta by tumor cells. On NK cells, GITR is constitutively expressed and up-regulated following activation. Blocking GITR-GITRL interaction in cocultures of tumor cells and NK cells substantially increased cytotoxicity and IFN-gamma production of NK cells demonstrating that constitutive expression of GITRL by tumor cells diminishes NK cell antitumor immunity. GITRL-Ig fusion protein or cell surface-expressed GITRL did not induce apoptosis in NK cells, but diminished nuclear localized c-Rel and RelB, indicating that GITR might negatively modulate NK cell NF-kappaB activity. Taken together, our data indicate that tumor-expressed GITRL mediates immunosubversion in humans.

  15. Surface Sites for Engineering Allosteric Control in Proteins

    Science.gov (United States)

    Lee, Jeeyeon; Natarajan, Madhusudan; Nashine, Vishal C.; Socolich, Michael; Vo, Tina; Russ, William P.; Benkovic, Stephen J.; Ranganathan, Rama

    2010-01-01

    Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites. PMID:18927392

  16. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors

    Science.gov (United States)

    Wang, Tao; Yang, Shenghong; Mei, Leslie A.; Parmar, Chirag K.; Gillespie, James W.; Praveen, Kulkarni P.; Petrenko, Valery A.; Torchilin, Vladimir P.

    2014-01-01

    In an effort to improve the therapeutic index of cancer chemotherapy, we developed an advanced nanopreparation based on the combination of landscape phage display to obtain new targeting ligands with micellar nanoparticles for tumor targeting of water insoluble neoplastic agents. With paclitaxel as a drug, this self-assembled nanopreparation composed of MCF-7-specific phage protein and polyethylene glycol phosphatidyl ethanolamine (PEG- PE) micelles showed selective toxicity to target cancer cells rather than non-target, non- cancer cells in vitro. In vivo, the targeted phage-micelles triggered a dramatic tumor reduction and extensive necrosis as a result of improved tumor delivery of paclitaxel. The enhanced anticancer effect was also verified by an enhanced apoptosis and reduced tumor cell proliferation following the treatment with the targeted micellar paclitaxel both in vitro and in vivo. The absence of hepatotoxicity and pathological changes in tissue sections of vital organs, together with maintenance of overall health of mice following the treatment, further support its translational potential as an effective and safe chemotherapy for improved breast cancer treatment. PMID:25239936

  17. Exceptionally Potent Anti-Tumor Bystander Activity of an scFv:sTRAIL Fusion Protein with Specificity for EGP2 Toward Target Antigen-Negative Tumor Cells

    Directory of Open Access Journals (Sweden)

    Edwin Bremer

    2004-09-01

    Full Text Available Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL genetically linked to the antibody fragment scFvC54 specific for the cell surface target antigen EGP2. In the present study, we report that the selective binding of scFvC54:sTRAIL to EGP2-positive target cells conveys an exceptionally potent pro-apoptotic effect toward neighboring tumor cells that are devoid of EGP2 expression (bystander cells. The anti-tumor bystander activity of scFvC54:sTRAIL was detectable at target-tobystander cell ratios as low as 1:100. Treatment in the presence of EGP2-blocking or TRAIL-neutralizing antibody strongly inhibited apoptosis in both target and bystander tumor cells. In the absence of target cells, bystander cell apoptosis induction was abrogated. The bystander apoptosis activity of scFvC54:sTRAIL did not require internalization, enzymatic conversion, diffusion, or communication (gap junctional intracellular communication between target and bystander cells. Furthermore, scFvC54:sTRAIL showed no detectable signs of innocent bystander activity toward freshly isolated blood cells. Further development of this new principle is warranted for approaches where cancer cells can escape from antibody-based therapy due to partial loss of target antigen expression.

  18. TU-CD-304-06: Using FFF Beams Improves Tumor Control in Radiotherapy of Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliev, O [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Wang, H [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Electron disequilibrium at the lung-tumor interface results in an under-dosage of tumor regions close to its surface. This under-dosage is known to be significant and can compromise tumor control. Previous studies have shown that in FFF beams, disequilibrium effects are less pronounced, which is manifested in an increased skin dose. In this study we investigate the improvement in tumor dose coverage that can be achieved with FFF beams. The significance of this improvement is evaluated by comparing tumor control probabilities of FFF beams and conventional flattened beams. Methods: The dosimetric coverage was investigated in a virtual phantom representing the chest wall, lung tissue and the tumor. A range of tumor sizes was investigated, and two tumor locations – central and adjacent to the chest wall. Calculations were performed with BEAMnrc Monte Carlo code. Parallel-opposed and multiple coplanar 6-MV beams were simulated. The tumor control probabilities were calculated using the logistic model with parameters derived from clinical data for non-small lung cancer patients. Results: FFF beams were not entirely immune to disequilibrium effects. They nevertheless consistently delivered more uniform dose distribution throughout the volume of the tumor, and eliminated up to ∼15% of under-dosage in the most affected by disequilibrium 1-mm thick surface region of the tumor. A voxel-by-voxel comparison of tumor control probabilities between FFF and conventional flattened beams showed an advantage of FFF beams that, depending on the set up, was from a few to ∼9 percent. Conclusion: A modest improvement in tumor control probability on the order of a few percent can be achieved by replacing conventional flattened beams with FFF beams. However, given the large number of lung cancer patients undergoing radiotherapy, these few percent can potentially prevent local tumor recurrence for a significant number of patients.

  19. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53.

    Science.gov (United States)

    Piao, Shudong; Pei, Han Zhong; Huang, Bin; Baek, Suk-Hwan

    2017-05-01

    Ubiquitination and deubiquitination pathways play important roles in the regulation of p53 stability and activity. p53 is ubiquitinated and destabilized by E3 ubiquitin ligases and is deubiquitinated and stabilized by deubiquitinases (DUBs). We screened ovarian tumor (OTU) subfamily proteins to identify novel DUBs that stabilized p53. OTU domain-containing protein 1 (OTUD1) is a DUB belonging to the OTU family; however, its substrates and its role in cells are unknown. Here, we used an overexpression and knockdown system to show that OTUD1 is a novel regulator of p53 stability. OTUD1 overexpression increased p53 stability, whereas OTUD1 knockdown decreased p53 stability. Moreover, we observed that OTUD1 directly interacted with p53. Our results showed that OTUD1 deubiquitinated p53 and that functional OTUD1 was required for p53 stabilization. The deubiquitination activity of OTUD1 was necessary for p53 stabilization, as confirmed using an inactive OTUD1 mutant (C320S OTUD1 mutant). We also found that wild-type OTUD1 upregulated p21 and Mdm2 expression but inactive OTUD1 mutant did not. Furthermore, OTUD1 significantly suppressed colony formation. Next, we confirmed that OTUD1 overexpression increased the cleavage of caspase-3 and PARP and subsequently increased apoptosis. Together, these results suggest that OTUD1 is a novel regulator of p53 stability and activity.

  20. Expression of CAF-Related Proteins Is Associated with Histologic Grade of Breast Phyllodes Tumor

    Directory of Open Access Journals (Sweden)

    Hye Min Kim

    2016-01-01

    Full Text Available Purpose. The purpose of this study was to investigate the expression of cancer-associated fibroblast- (CAF- related proteins and the implications in breast phyllodes tumor (PT. Methods. Tissue microarrays of 194 PT cases (151 benign PT, 27 borderline PT, and 16 malignant PT were constructed. We performed immunohistochemical staining for CAF-related proteins (podoplanin, prolyl 4-hydroxylase, FAPα, S100A4, PDGFR α/β, and NG2 and analyzed the results according to clinicopathologic parameters. Results. Expression of PDGFRα and PDGFRβ in the stromal component increased with increasing histologic grade of PT (p=0.003 and p=0.034, resp.. Among clinicopathologic parameters, only expression of FAPα in stroma was associated with distant metastasis (p=0.002. In univariate analysis, stromal expression of PDGFRα was associated with shorter overall survival (p=0.002. In Cox multivariate analysis, stromal overgrowth and PDGFRα stromal positivity were associated with shorter overall survival (p=0.006 and p=0.050, resp.. Furthermore, expression of PDGFRβ in stroma was associated with shorter overall survival in patients with malignant PT (p=0.041. Conclusion. Stromal expression of PDGFRα and PDGFRβ increased with increasing histologic grade of PT. In addition, PDGFR stromal positivity was associated with shorter overall survival. These results suggest that CAFs are associated with breast PT progression.

  1. Expression of CAF-Related Proteins Is Associated with Histologic Grade of Breast Phyllodes Tumor.

    Science.gov (United States)

    Kim, Hye Min; Lee, Yu Kyung; Koo, Ja Seung

    2016-01-01

    Purpose. The purpose of this study was to investigate the expression of cancer-associated fibroblast- (CAF-) related proteins and the implications in breast phyllodes tumor (PT). Methods. Tissue microarrays of 194 PT cases (151 benign PT, 27 borderline PT, and 16 malignant PT) were constructed. We performed immunohistochemical staining for CAF-related proteins (podoplanin, prolyl 4-hydroxylase, FAPα, S100A4, PDGFR α/β, and NG2) and analyzed the results according to clinicopathologic parameters. Results. Expression of PDGFRα and PDGFRβ in the stromal component increased with increasing histologic grade of PT (p = 0.003 and p = 0.034, resp.). Among clinicopathologic parameters, only expression of FAPα in stroma was associated with distant metastasis (p = 0.002). In univariate analysis, stromal expression of PDGFRα was associated with shorter overall survival (p = 0.002). In Cox multivariate analysis, stromal overgrowth and PDGFRα stromal positivity were associated with shorter overall survival (p = 0.006 and p = 0.050, resp.). Furthermore, expression of PDGFRβ in stroma was associated with shorter overall survival in patients with malignant PT (p = 0.041). Conclusion. Stromal expression of PDGFRα and PDGFRβ increased with increasing histologic grade of PT. In addition, PDGFR stromal positivity was associated with shorter overall survival. These results suggest that CAFs are associated with breast PT progression.

  2. Mutation analysis of tumor necrosis factor alpha-induced protein 3 gene in Hodgkin lymphoma.

    Science.gov (United States)

    Etzel, Barbara-Magdalena; Gerth, Melanie; Chen, Yuan; Wünsche, Elisa; Facklam, Tina; Beck, James F; Guntinas-Lichius, Orlando; Petersen, Iver

    2017-03-01

    Survival and proliferation of Hodgkin and Reed-Sternberg (HRS) cells, the malignant cells of classical Hodgkin lymphoma (CHL), are dependent on constitutive activation of nuclear factor kB (NF-κB). A20, encoded by TNF alpha-induced protein 3 (TNFAIP3), one of the inhibitors of NF-kB, was found to be inactivated by deletions and/or point mutations in CHL. TNFAIP3 mutations were examined in 37 patients with CHL by using PCR and direct sequencing. In addition, protein expression of A20 was evaluated by immunohistochemistry. Epstein-Barr virus (EBV) status of HL samples was determined by EBV EBER chromogenic in situ hybridization (ISH). We identified 8 mutation positive cases in a collective of 37 investigated cases (22%). Mutations were most frequent in the nodular sclerosis subtype. Our results revealed the tendency that cases harboring A20 mutations were negative for A20 staining. None of A20 mutation-positive CHL cases showed EBV infection. Our study confirms the involvement of the TNFAIP3 tumor suppressor gene in CHL. A20 may represent a suppressor of human lymphoma and provide a critical molecular link between chronic inflammation and cancer. None of A20 mutation-positive CHL cases showed EBV infection. This fact suggests complementing functions of TNFAIP3 inactivation and EBV infection in CHL pathogenesis and may represent an interesting point of further investigations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins

    Directory of Open Access Journals (Sweden)

    Senger Jenna-Lynn B

    2010-07-01

    Full Text Available Abstract Aim The aim of our study was to evaluate survival outcomes in malignant mixed Mullerian tumors (MMMT of the uterus with respect to the role of cell cycle and apoptotic regulatory proteins in the carcinomatous and sarcomatous components. Methods 23 cases of uterine MMMT identified from the Saskatchewan Cancer Agency (1970-1999 were evaluated. Immunohistochemical expression of Bad, Mcl-1, bcl-x, bak, mdm2, bax, p16, p21, p53, p27, EMA, Bcl-2, Ki67 and PCNA was correlated with clinico-pathological data including survival outcomes. Results Histopathological examination confirmed malignant epithelial component with homologous (12 cases and heterologous (11 cases sarcomatous elements. P53 was strongly expressed (70-95% in 15 cases and negative in 5 cases. The average survival in the p53+ve cases was 3.56 years as opposed to 8.94 years in p53-ve cases. Overexpression of p16 and Mcl-1 were observed in patients with longer survival outcomes (> 2 years. P16 and p21 were overexpressed in the carcinomatous and sarcomatous elements respectively. Cyclin-D1 was focally expressed only in the carcinomatous elements. Conclusions Our study supports that a cell cycle and apoptotic regulatory protein dysregulation is an important pathway for tumorigenesis and b p53 is an important immunoprognostic marker in MMMT of the uterus.

  4. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Marie C Lin; Nikki P Lee; Ning Zheng; Pai-Hao Yang; Oscar G Wong; Hsiang-Fu Kung; Chee-Kin Hui; John M Luk; George Ka-Kit Lau

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins.METHODS: The gene expression profile was compared in a pair of HBV-infected twins.RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV,whereas the other became a chronic HBV carrier. Eightyeight and forty-six genes were found to be up- or downregulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RTPCR. However, upon HBV core antigen stimulation,TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins.CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV.

  5. Effects of dendritic cell vaccine activated with protein components of toxoplasma gondii on tumor specific CD8+ T-cells

    Directory of Open Access Journals (Sweden)

    Amari A

    2009-12-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Dendritic Cell (DC is an important antigen-presenting cell that present tumor antigen to CD8+ and CD4+ T- Lymphocytes and induce specific anti-tumor immunity. In order to induce effective anti-tumor response, an option is increasing the efficiency of antigen presentation of dendritic cells and T cell activation capacity. The aim of the present study was to investigate the effect of dendritic cell maturation with protein components of toxoplasma gondii on cytotoxic T lymphocyte activity and their infiltration in to the tumor."n"nMethods: For DC generation, bone marrow cells were cultured in the presence of GM-CSF and IL-4 for five days. After that, LPS, protein components and whole extract of toxoplasma gondii were added to the culture media and incubated for another two days for DC maturation. To generate tumor, mices were injected subcutaneously with WEHI-164 cell line. For immunotherapy 106 DCs matured with different compounds were injected around the tumor site. Infiltration of CD8+ T cells were determined by flow cytometry and cytotoxic activity was measured by LDH detection kit."n"nResults: Immunotherapy with DCs treated with protein components of toxoplasma gondii led to a significant increase in the

  6. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression

    Science.gov (United States)

    Shackelford, David B.; Shaw, Reuben J.

    2009-01-01

    In the past decade, studies of the human tumor suppressor LKB1 have uncovered a novel signaling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues such as liver, muscle, and adipose, a function that has made it a key therapeutic target in patients with diabetes. The connection of AMPK with several tumor suppressors suggests that therapeutic manipulation of this pathway with established diabetes drugs warrants further investigation in patients with cancer. PMID:19629071

  7. Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3.

    Science.gov (United States)

    Singh, Rana P; Tyagi, Anil K; Dhanalakshmi, Sivanandhan; Agarwal, Rajesh; Agarwal, Chapla

    2004-02-20

    Dietary intake of many fruits and vegetables has been shown to be associated with reduced risk of cancer. We investigated the in vivo efficacy of grape seed extract (GSE, patented as Traconol) against prostate cancer (PCA) and associated molecular events. Athymic nude mice were implanted with hormone-refractory human prostate carcinoma DU145 cells and fed with 100 and 200 mg/kg/day (5 days/week) doses of GSE for 7 weeks. At the end of experiment, tumors were immunohistochemically analyzed for cell proliferation, apoptosis and angiogenesis. Our data show that GSE feeding strongly inhibited tumor growth that accounted for 59-73% (p < 0.001) inhibition in tumor volume and 37-47% (p < 0.05) decrease in tumor weight at the end of the experiment. It did not show any significant change in body weight gain profile and diet consumption. Immunohistochemical analysis of tumors showed that GSE decreases proliferation index by 51-66% (p < 0.001) and increases apoptotic index by 3-4-fold (p < 0.001). CD31 staining for endothelial cells, showed decrease in intratumoral microvasculature in GSE-fed group of mice. Control tumors showed 64.0 +/- 1.6 CD31 positive cells/400x field compared to 23.2 +/- 0.9 and 15.7 +/- 0.08 (p < 0.001) CD31 positive cells in 100 and 200 mg/kg doses of GSE-treated tumors, respectively. GSE strongly inhibited (47-70%, p < 0.05) vascular endothelial growth factor (VEGF) secretion in conditioned medium by DU145 cells. Recently, the circulating level of insulin-like growth factor binding protein (IGFBP)-3 is shown to inversely related with PCA risk, growth and prognosis. Consistent with this, we observed 6-7-fold (p < 0.001) increase in tumor-secreted levels of IGFBP-3 after GSE feeding. In other immunohistochemical studies, compared to controls, tumor xenografts from GSE-fed groups of mice showed a moderate decrease in VEGF but an increase in IGFBP-3 levels. These findings suggest that GSE possesses in vivo anticancer efficacy against hormone

  8. Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva.

    Science.gov (United States)

    Yang, Jieping; Wei, Fang; Schafer, Christopher; Wong, David T W

    2014-01-01

    The discovery of disease-specific biomarkers in oral fluids has revealed a new dimension in molecular diagnostics. Recent studies have reported the mechanistic involvement of tumor cells derived mediators, such as exosomes, in the development of saliva-based mRNA biomarkers. To further our understanding of the origins of disease-induced salivary biomarkers, we here evaluated the hypothesis that tumor-shed secretory lipidic vesicles called exosome-like microvesicles (ELMs) that serve as protective carriers of tissue-specific information, mRNAs, and proteins, throughout the vasculature and bodily fluids. RNA content was analyzed in cell free-saliva and ELM-enriched fractions of saliva. Our data confirmed that the majority of extracellular RNAs (exRNAs) in saliva were encapsulated within ELMs. Nude mice implanted with human lung cancer H460 cells expressing hCD63-GFP were used to follow the circulation of tumor cell specific protein and mRNA in the form of ELMs in vivo. We were able to identify human GAPDH mRNA in ELMs of blood and saliva of tumor bearing mice using nested RT-qPCR. ELMs positive for hCD63-GFP were detected in the saliva and blood of tumor bearing mice as well as using electric field-induced release and measurement (EFIRM). Altogether, our results demonstrate that ELMs carry tumor cell-specific mRNA and protein from blood to saliva in a xenografted mouse model of human lung cancer. These results therefore strengthen the link between distal tumor progression and the biomarker discovery of saliva through the ELMs.

  9. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, DR; Petyuk, Vladislav A.; Gillette, Michael; Clauser, Karl; Qiao, Jana; Gritsenko, Marina A.; Moore, Ronald J.; Levine, Douglas; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri; Ruggles, Kelly; Fenyo, David; Kitchens, R. T.; Li, Shunqiang; Olvera, Narcisco; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W.; Liebler, Daniel; White, Forest; Rodland, Karin D.; Mills, Gordon; Smith, Richard D.; Paulovich, Amanda G.; Ellis, Matthew; Carr, Steven A.

    2014-07-01

    Advances in quantitative mass spectrometry (MS)-based proteomics have sparked efforts to characterize the proteomes of tumor samples to provide complementary and unique information inaccessible by genomics. Tumor samples are usually not accrued with proteomic characterization in mind, raising concerns regarding effects of undocumented sample ischemia on protein abundance and phosphosite stoichiometry. Here we report the effects of cold ischemia time on clinical ovarian cancer samples and patient-derived basal and luminal breast cancer xenografts. Tumor tissues were excised and collected prior to vascular ligation, subjected to accurately defined ischemia times up to 60 min, and analyzed by quantitative proteomics and phosphoproteomics using isobaric tags and high-performance, multidimensional LC-MS/MS. No significant changes were detected at the protein level in each tumor type after 60 minutes of ischemia, and the majority of the >25,000 phosphosites detected were also stable. However, large, reproducible increases and decreases in protein phosphorylation at specific sites were observed in up to 24% of the phosphoproteome starting as early as 5 minutes post-excision. Early and sustained activation of stress response, transcriptional regulation and cell death pathways were observed in common across tumor types. Tissue-specific changes in phosphosite stability were also observed suggesting idiosyncratic effects of ischemia in particular lineages. Our study provides insights into the information that may be obtained by proteomic characterization of tumor samples after undocumented periods of ischemia, and suggests caution especially in interpreting activation of stress pathways in such samples as they may reflect sample handling rather than tumor physiology.

  10. A Comparison of Dose Metrics to Predict Local Tumor Control for Photofrin-mediated Photodynamic Therapy.

    Science.gov (United States)

    Qiu, Haixia; Kim, Michele M; Penjweini, Rozhin; Finlay, Jarod C; Busch, Theresa M; Wang, Tianhao; Guo, Wensheng; Cengel, Keith A; Simone, Charles B; Glatstein, Eli; Zhu, Timothy C

    2017-07-01

    This preclinical study examines light fluence, photodynamic therapy (PDT) dose and "apparent reacted singlet oxygen," [(1) O2 ]rx , to predict local control rate (LCR) for Photofrin-mediated PDT of radiation-induced fibrosarcoma (RIF) tumors. Mice bearing RIF tumors were treated with in-air fluences (50-250 J cm(-2) ) and in-air fluence rates (50-150 mW cm(-2) ) at Photofrin dosages of 5 and 15 mg kg(-1) and a drug-light interval of 24 h using a 630-nm, 1-cm-diameter collimated laser. A macroscopic model was used to calculate [(1) O2 ]rx and PDT dose based on in vivo explicit dosimetry of the drug concentration, light fluence and tissue optical properties. PDT dose and [(1) O2 ]rx were defined as a temporal integral of drug concentration and fluence rate, and singlet oxygen concentration consumed divided by the singlet oxygen lifetime, respectively. LCR was stratified for different dose metrics for 74 mice (66 + 8 control). Complete tumor control at 14 days was observed for [(1) O2 ]rx ≥ 1.1 mm or PDT dose ≥1200 μm J cm(-2) but cannot be predicted with fluence alone. LCR increases with increasing [(1) O2 ]rx and PDT dose but is not well correlated with fluence. Comparing dosimetric quantities, [(1) O2 ]rx outperformed both PDT dose and fluence in predicting tumor response and correlating with LCR. © 2017 The American Society of Photobiology.

  11. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  12. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    Directory of Open Access Journals (Sweden)

    Meehan Maria

    2012-02-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA, an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA's primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  13. Low p21(Waf1/Cip1) protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis

    NARCIS (Netherlands)

    Spierings, DCJ; de Vries, EGE; Stel, AJ; Rietstap, NT; Vellenga, E; de Jong, S

    2004-01-01

    In the present study, we investigated the relation between p21 expression and the sensitivity of testicular germ cell tumor (TGCT) cells to apoptotic stimuli. Despite similar cisplatin-induced wild-type p53 accumulation, the TGCT cell lines Tera and Scha expressed low p21 protein and mRNA levels in

  14. A case-control study of borderline ovarian tumors: the influence of perineal exposure to talc.

    Science.gov (United States)

    Harlow, B L; Weiss, N S

    1989-08-01

    The authors interviewed 116 female residents of western Washington State with serous and mucinous borderline ovarian tumors diagnosed between 1980 and 1985 and questioned them on their use of hygienic powders. A sample of 158 control women from the same counties were identified through random digit dialing and were interviewed as well. Neither the perineal application of baby powder nor the perineal application of cornstarch was associated with an appreciably altered risk of borderline ovarian tumors. However, women who used deodorizing powders alone or in combination with other talc-containing powders had 2.8 times the risk (95% confidence interval 1.1-11.7) of women who had not had perineal exposure to powder. These results suggest that future studies of ovarian tumors in relation to the application of talc-containing powders should consider ascertaining the specific type(s) of powder used.

  15. Label-free LC-MSe in tissue and serum reveals protein networks underlying differences between benign and malignant serous ovarian tumors.

    Directory of Open Access Journals (Sweden)

    Wouter Wegdam

    Full Text Available PURPOSE: To identify proteins and (molecular/biological pathways associated with differences between benign and malignant epithelial ovarian tumors. EXPERIMENTAL PROCEDURES: Serum of six patients with a serous adenocarcinoma of the ovary was collected before treatment, with a control group consisting of six matched patients with a serous cystadenoma. In addition to the serum, homogeneous regions of cells exhibiting uniform histology were isolated from benign and cancerous tissue by laser microdissection. We subsequently employed label-free liquid chromatography tandem mass spectrometry (LC-MSe to identify proteins in these serum and tissues samples. Analyses of differential expression between samples were performed using Bioconductor packages and in-house scripts in the statistical software package R. Hierarchical clustering and pathway enrichment analyses were performed, as well as network enrichment and interactome analysis using MetaCore. RESULTS: In total, we identified 20 and 71 proteins that were significantly differentially expressed between benign and malignant serum and tissue samples, respectively. The differentially expressed protein sets in serum and tissue largely differed with only 2 proteins in common. MetaCore network analysis, however inferred GCR-alpha and Sp1 as common transcriptional regulators. Interactome analysis highlighted 14-3-3 zeta/delta, 14-3-3 beta/alpha, Alpha-actinin 4, HSP60, and PCBP1 as critical proteins in the tumor proteome signature based on their relative overconnectivity. The data have been deposited to the ProteomeXchange with identifier PXD001084. DISCUSSION: Our analysis identified proteins with both novel and previously known associations to ovarian cancer biology. Despite the small overlap between differentially expressed protein sets in serum and tissue, APOA1 and Serotransferrin were significantly lower expressed in both serum and cancer tissue samples, suggesting a tissue-derived effect in serum

  16. Intraoperative neuronavigation integrated high resolution 3D ultrasound for brainshift and tumor resection control

    Directory of Open Access Journals (Sweden)

    Giovani A.

    2015-06-01

    Full Text Available INTRODUCTION: The link between the neurosurgeon’s knowledge and the scientific improvements made a dramatic change in the field expressed both in impressive drop in the mortality and morbidity rates that were operated in the beginning of the XXth century and in operating with high rates of success cases that were considered inoperable in the past. Neuronavigation systems have been used for many years on surgical orientation purposes especially for small, deep seated lesions where the use of neuronavigation is correlated with smaller corticotomies and with the extended use of transulcal approaches. The major problem of neuronavigation, the brainshift once the dura is opened can be solved either by integrated ultrasound or intraoperative MRI which is out of reach for many neurosurgical departments. METHOD: The procedure of neuronavigation and ultrasonic localization of the tumor is described starting with positioning the patient in the visual field of the neuronavigation integrated 3D ultrasonography system to the control of tumor resection by repeating the ultrasonographic scan in the end of the procedure. DISCUSSION: As demonstrated by many clinical trials on gliomas, the more tumor removed, the better long term control of tumor regrowth and the longer survival with a good quality of life. Of course, no matter how aggressive the surgery, no new deficits are acceptable in the modern era neurosurgery. There are many adjuvant methods for the neurosurgeon to achieve this maximal and safe tumor removal, including the 3T MRI combined with tractography and functional MRI, the intraoperative neuronavigation and neurophysiologic monitoring in both anesthetized and awake patients. The ultrasonography integrated in neuronavigaton comes as a welcomed addition to this adjuvants to help the surgeon achieve the set purpose. CONCLUSION: With the use of this real time imaging device, the common problem of brainshift encountered with the neuronavigation systems

  17. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    Protein ubiquitylation is an important post-translational modification that holds a variety of cellular functions. This Ph.D. thesis is comprised of two studies, of which one focused on ubiquitylation related to inflammatory signaling, and the other on the role of the ubiquitin-proteasome system ...

  18. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    Full Text Available BACKGROUND: ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated. METHODOLOGY/PRINCIPAL FINDINGS: We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2. CONCLUSIONS/SIGNIFICANCE: These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic

  19. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy.

    Science.gov (United States)

    Hussain, Muzammal; Shah, Zahir; Abbas, Nasir; Javeed, Aqeel; Mukhtar, Muhammad Mahmood; Zhang, Jiancun

    2016-01-01

    Despite the tremendous progress in last few years, the cancer immunotherapy has not yet improved disease-free because of the tumor-associated immune suppression being a major barrier. Novel trends to enhance cancer immunotherapy aims at harnessing the therapeutic manipulation of signaling pathways mediating the tumor-associated immune suppression, with the general aims of: (a) reversing the tumor immune suppression; (b) enhancing the innate and adaptive components of anti-tumor immunosurveillance, and (c) protecting immune cells from the suppressive effects of T regulatory cells (Tregs) and the tumor-derived immunoinhibitory mediators. A particular striking example in this context is the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A type I (PKAI) pathway. Oncogenic cAMP/PKAI signaling has long been implicated in the initiation and progression of several human cancers. Emerging data indicate that cAMP/PKAI signaling also contributes to tumor- and Tregs-derived suppression of innate and adaptive arms of anti-tumor immunosurveillance. Therapeutically, selective PKAI inhibitors have been developed which have shown promising anti-cancer activity in pre-clinical and clinical settings. Rp-8-Br-cAMPS is a selective PKAI antagonist that is widely used as a biochemical tool in signal transduction research. Collateral data indicate that Rp-8-Br-cAMPS has shown immune-rescuing potential in terms of enhancing the innate and adaptive anti-tumor immunity, as well as protecting adaptive T cells from the suppressive effects of Tregs. Therefore, this proposal specifically implicates that combining selective PKAI antagonists/inhibitors with cancer immunotherapy may have multifaceted benefits, such as rescuing the endogenous anti-tumor immunity, enhancing the efficacy of cancer immunotherapy, and direct anti-cancer effects.

  20. The Retinoblastoma Tumor Suppressor Protein (pRb)/E2 Promoter Binding Factor 1 (E2F1) Pathway as a Novel Mediator of TGFβ-induced Autophagy.

    Science.gov (United States)

    Korah, Juliana; Canaff, Lucie; Lebrun, Jean-Jacques

    2016-01-29

    TGFβ is a multifunctional cytokine that regulates cell proliferation, cell immortalization, and cell death, acting as a key homeostatic mediator in various cell types and tissues. Autophagy is a programmed mechanism that plays a pivotal role in controlling cell fate and, consequently, many physiological and pathological processes, including carcinogenesis. Although autophagy is often considered a pro-survival mechanism that renders cells viable in stressful conditions and thus might promote tumor growth, emerging evidence suggests that autophagy is also a tumor suppressor pathway. The relationship between TGFβ signaling and autophagy is context-dependent and remains unclear. TGFβ-mediated activation of autophagy has recently been suggested to contribute to the growth inhibitory effect of TGFβ in hepatocarcinoma cells. In the present study, we define a novel process of TGFβ-mediated autophagy in cancer cell lines of various origins. We found that autophagosome initiation and maturation by TGFβ is dependent on the retinoblastoma tumor suppressor protein/E2 promoter binding factor (pRb/E2F1) pathway, which we have previously established as a critical signaling axis leading to various TGFβ tumor suppressive effects. We further determined that TGFβ induces pRb/E2F1-dependent transcriptional activation of several autophagy-related genes. Together, our findings reveal that TGFβ induces autophagy through the pRb/E2F1 pathway and transcriptional activation of autophagy-related genes and further highlight the central relevance of the pRb/E2F1 pathway downstream of TGFβ signaling in tumor suppression.

  1. The regulation of the expression of ABCG2 gene through mitogen-activated protein kinase pathways in canine lymphoid tumor cell lines.

    Science.gov (United States)

    Tomiyasu, Hirotaka; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2014-03-01

    Treatments for canine lymphoma often fail, because tumor cells acquire multidrug resistance (MDR). MDR can develop through several mechanisms, among which the overexpression of drug transporters in tumor cells is a well-studied mechanism. ATP-binding cassette sub-family G member 2 (ABCG2) belongs to the ABC-transporters, that are representative drug efflux pumps associated with MDR in human tumor cells. However, the regulation of ABCG2 gene expression in canine tumors is not well understood. The purpose of the present study was to reveal the regulatory mechanism of ABCG2 gene expression in 4 canine lymphoid tumor cell lines, GL-1, CLBL-1, UL-1 and Ema. Treatment with phorbol 12-myristate 13-acetate (PMA), the protein kinase C (PKC) activator, stimulated MAPK/ERK pathway in GL-1, UL-1 and Ema cells and JNK pathway in UL-1 and Ema cells. When GL-1 and UL-1 cells were treated with PMA and the MAPK/ERK kinase inhibitor U0126, ABCG2 gene expression levels were elevated above those in untreated cells. Similarly, ABCG2 gene expression increased above control levels in UL-1 and Ema cells treated with PMA and the JNK inhibitor SP600125. However, ABCG2 gene expression was unaffected by U0126 exposure in CLBL-1 cells, in which activation of MAPK/ERK pathway was observed in non-treated cells. These results suggested that MAPK/ERK and JNK pathways downregulate ABCG2 gene expression, which is upregulated by unidentified but possibly PKC-dependent pathways, in several types of canine lymphoid tumor cells.

  2. Nitrogen control of photosynthetic protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1986-09-01

    Plant growth is severely affected by impaired photosynthesis resulting from nitrogen deficiency. The molecular aspects of this effect are being studied in the green alga Chlamydomonas grown in continuous culture systems. Photosynthetic membranes of nitrogen-limited cells are dramatically depleted in chlorophylls, xanthophylls and proteins of the light-harvesting complexes. In contrast, enzymes of the reductive pentose phosphate cycle and electron transport chain complexes are reduced only 40 to 65% on a per cell basis comparison with nitrogen-sufficient cultures. From analyses of mRNA levels by in vitro translation and hybridization analyses with cloned DNA sequences for photosynthetic proteins, we have found there are rather minor effects of nitrogen deficiency on nuclear or chloroplast gene transcription. Maturation of a transcript of the nuclear-encoded small subunit of ribulose 1,5-bisphosphate carboxylase is inhibited in nitrogen-deficient cells and causes accumulation of large amounts of mRNA precursors. Most of the effects of nitrogen deficiency on photosynthetic proteins appear to result from posttranscriptional regulatory processes: light-harvesting protein synthesis may be sustained but their import into chloroplasts or translocation to photosynthetic membranes is impaired. Nitrogen-deficient cells lack violaxanthin, a pigment that is essential for the structure, function and biogenesis of the major antenna complexes. The absence of this pigment may be a causative factor for the deficiency of light harvesting complexes. Finally, the accumulation of massive amounts of starch and triglycerides in nitrogen-limited cells indicate there are some genes whose maximal expression is dependent upon nitrogen-limiting conditions. 10 refs.

  3. Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein.

    Science.gov (United States)

    Hara, I; Takechi, Y; Houghton, A N

    1995-11-01

    The immune system can recognize differentiation antigens that are selectively expressed on malignant cells and their normal cell counterparts. However, it is uncertain whether immunity to differentiation antigens can effectively lead to tumor rejection. The mouse brown locus protein, gp75 or tyrosinase-related protein 1, is a melanocyte differentiation antigen expressed by melanomas and normal melanocytes. The gp75 antigen is recognized by autoantibodies and autoreactive T cells in persons with melanoma. To model autoimmunity against a melanocyte differentiation antigen, mouse antibodies against gp75 were passively transferred into tumor-bearing mice. Passive immunization with a mouse monoclonal antibody against gp75 induced protection and rejection of both subcutaneous tumors and lung metastases in syngeneic C57BL/6 mice, including established tumors. Passive immunity produced coat color alterations but only in regenerating hairs. This system provides a model for autoimmune vitiligo and shows that immune responses to melanocyte differentiation antigens can influence mouse coat color. Immune recognition of a melanocyte differentiation antigen can reject tumors, providing a basis for targeting tissue autoantigens expressed on cancer.

  4. Noninvasive near-infrared fluorescent protein-based imaging of tumor progression and metastases in deep organs and intraosseous tissues

    Science.gov (United States)

    Jiguet-Jiglaire, Carine; Cayol, Mylène; Mathieu, Sylvie; Jeanneau, Charlotte; Bouvier-Labit, Corinne; Ouafik, L.'houcine; El-Battari, Assou

    2014-01-01

    Whole-body imaging of experimental tumor growth is more feasible within the near-infrared (NIR) optical window because of the highest transparency of mammalian tissues within this wavelength spectrum, mainly due to improved tissue penetration and lower autofluorescence. We took advantage from the recently cloned infrared fluorescent protein (iRFP) together with a human immunodeficiency virus (HIV)-based lentiviral vector to produce virally transduced tumor cells that permanently express this protein. We then noninvasively explored metastatic spread as well as primary tumor growth in deep organs and behind bone barriers. Intrabone tumor growth was investigated through intracranial and intratibial injections of glioblastoma and osteosarcoma cells, respectively, and metastasis was assessed by tail vein injection of melanoma cells. We found that the emitted fluorescence is captured as sharp images regardless of the organ or tissue considered. Furthermore, by overlaying fluorescence spots with the white light, it was possible to afford whole-body images yet never observed before. This approach allowed us to continuously monitor the growth and dissemination of tumor cells with a small number of animals, minimal animal handling, and without the need for any additive. This iRFP-based system provides high-resolution readouts of tumorigenesis that should greatly facilitate preclinical trials with anticancer therapeutic molecules.

  5. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  6. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells.

    Science.gov (United States)

    Labrecque, Mark P; Takhar, Mandeep K; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J; Massah, Shabnam; Haegert, Anne; Bell, Robert H; Altamirano-Dimas, Manuel; Collins, Colin C; Lee, Frank J S; Prefontaine, Gratien G; Cox, Michael E; Beischlag, Timothy V

    2016-04-26

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies.

  7. Radiofrequency ablation of malignant liver tumors: use of a volumetric necrosis-tumor ratio for local control; Radiofrequenzablation von malignen Lebertumoren: Erlaubt ein volumetrischer Nekrose-/Tumor-Quotient eine Vorhersage zur lokalen Tumorkontrolle?

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, H. [Inst. fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinik Essen (Germany); Stattaus, J.; Antoch, G.; Forsting, M. [Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitaetsklinik Essen (Germany); Kuehl, B. [Klinik fuer Strahlentherapie, Universitaetsklinik Essen (Germany); Boes, T. [Inst. fuer Medizinische Informatik, Biometrie und Epidemiologie, Universitaetsklinik Essen (Germany); Frilling, A. [Klinik fuer Allgemein-, Viszeral- und Transplantationschirurgie, Universitaetsklinik Essen (Germany)

    2006-12-15

    Purpose: Sufficient safety margins are essential for preventing local tumor recurrence after radiofrequency ablation RFA of malignant liver tumors. The aim was to determine the initial tumor volume, ablation necrosis volume, and the necrosis-tumor quotient in order to compare these parameters with the rate of local control during follow-up. Materials and Methods: 35 patients with 53 tumor nodules (29 colorectal metastases and 24 HCC nodules) were enrolled. RFA procedures were performed under CT guidance with intravenous conscious sedation. Tumor volumes were measured based on CT data sets and the necrosis volume was assessed using the sum-of-area method. A volumetric necrosis/tumor quotient (NTQ) was calculated for all lesions. Follow-up examinations were performed after 3, 6, and 12 months and then on a yearly basis to identify local recurrent tumors. Results: The CRC metastases and HCC nodules had a median tumor volume of 8.3 ml and 7.4 ml, respectively. The mean ablation volumes were 37.6 ml and 29.5 ml, respectively. This resulted in a median NTQ of 3.9 for metastases and 3.4 for HCC. The follow-up (mean time 18 months) revealed local tumor recurrence in 16 of 29 (55%) metastases and 10 of 24 (42%) HCC nodules. In lesions with local recurrence, the initial tumor volume was significantly greater and the NTQ was significantly smaller. A threshold value of 3.4 for NTQ has the highest predictive value for local tumor recurrence. (orig.)

  8. Characterization in vitro of a human tumor necrosis factor-binding protein. A soluble form of a tumor necrosis factor receptor.

    OpenAIRE

    Lantz, M.; Gullberg, U; Nilsson, E; OLSSON, I.

    1990-01-01

    Tumor necrosis factor (TNF) is a pleiotropic mediator of inflammatory responses. A cysteine-rich, highly glycosylated 30-kD TNF-binding protein (TNF-BP) purified from urine may have a role in regulation because it protects in vitro against the biological effects of TNF. The cytotoxic effect of TNF on the fibrosarcoma cell line WEHI 164 was inhibited by 50% at a 10-fold excess of TNF-BP. The binding of TNF to the receptor was partially reversed after the addition of TNF-BP. Results from biosyn...

  9. Quantitative proteomics of primary tumors with varying metastatic capabilities using stable isotope-labeled proteins of multiple histogenic origins

    DEFF Research Database (Denmark)

    Lund, Rikke Raaen; Terp, Mikkel Green; Laenkholm, Anne-Vibeke

    2012-01-01

    The development of metastasis is a complex, multistep process that remains poorly defined. To identify proteins involved in the colonization phase of the metastatic process, we compared the proteome of tumors derived from inoculation of a panel of isogenic human cancer cell lines with different...... multiple histogenic origins and displayed superior features compared to standard super-SILAC. The expression of some proteins correlated with metastatic capabilities, such as myosin-9 (non-muscle myosin II A) and L-lactate dehydrogenase A, while the expression of elongation factor tu correlated inversely...... to metastatic capabilities. The expression of these proteins was biochemically-validated, and expression of myosin-9 in clinical breast cancer samples was further shown to be altered in primary tumors vs. corresponding lymph node metastasis. Our study demonstrates an improved strategy for quantitative...

  10. Searching urinary tumor-associated proteins for bladder transitional cell carcinoma in southwestern Taiwan using gel-based proteomics

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Su

    2016-12-01

    Conclusion: In this paper, 11 de-regulated proteins were observed in the urinary specimens of BTTC patients from the southwestern coast of Taiwan where Blackfoot disease is endemic and the unusually high incidence of BTTC in this area might attribute to high arsenic content in the drinking water. It is possible that long-term arsenic-induced alteration of these de-regulated proteins, most of which were extracellularmatrix – (ECM related proteins which may play roles in regulating the immune response, signal transduction and tumor invasions, might be involved in BTTC development in southwestern Taiwan.

  11. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors.

    Science.gov (United States)

    Smart, Chanel E; Askarian Amiri, Marjan E; Wronski, Ania; Dinger, Marcel E; Crawford, Joanna; Ovchinnikov, Dmitry A; Vargas, Ana Cristina; Reid, Lynne; Simpson, Peter T; Song, Sarah; Wiesner, Christiane; French, Juliet D; Dave, Richa K; da Silva, Leonard; Purdon, Amy; Andrew, Megan; Mattick, John S; Lakhani, Sunil R; Brown, Melissa A; Kellie, Stuart

    2012-01-01

    The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

  12. Functional assessment of population and tumor-associated APE1 protein variants.

    Directory of Open Access Journals (Sweden)

    Jennifer L Illuzzi

    Full Text Available Apurinic/apyrimidinic endonuclease 1 (APE1 is the predominant AP site repair enzyme in mammals. APE1 also maintains 3'-5' exonuclease and 3'-repair activities, and regulates transcription factor DNA binding through its REF-1 function. Since complete or severe APE1 deficiency leads to embryonic lethality and cell death, it has been hypothesized that APE1 protein variants with slightly impaired function will contribute to disease etiology. Our data indicate that except for the endometrial cancer-associated APE1 variant R237C, the polymorphic variants Q51H, I64V and D148E, the rare population variants G241R, P311S and A317V, and the tumor-associated variant P112L exhibit normal thermodynamic stability of protein folding; abasic endonuclease, 3'-5' exonuclease and REF-1 activities; coordination during the early steps of base excision repair; and intracellular distribution when expressed exogenously in HeLa cells. The R237C mutant displayed reduced AP-DNA complex stability, 3'-5' exonuclease activity and 3'-damage processing. Re-sequencing of the exonic regions of APE1 uncovered no novel amino acid substitutions in the 60 cancer cell lines of the NCI-60 panel, or in HeLa or T98G cancer cell lines; only the common D148E and Q51H variants were observed. Our results indicate that APE1 missense mutations are seemingly rare and that the cancer-associated R237C variant may represent a reduced-function susceptibility allele.

  13. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer

    Science.gov (United States)

    Mendoza-Rodriguez, Mónica; Arreola, Hugo; Valdivia, Alejandra; Peralta, Raúl; Serna, Humberto; Villegas, Vanessa; Romero, Pablo; Alvarado-Hernández, Beatriz; Paniagua, Lucero; Marrero-Rodríguez, Daniel; Meraz, Marco A; Salcedo, Mauricio

    2013-01-01

    Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC. PMID:24040446

  14. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II.

    Science.gov (United States)

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng

    2016-10-01

    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  15. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    Protein ubiquitylation is an important post-translational modification that holds a variety of cellular functions. This Ph.D. thesis is comprised of two studies, of which one focused on ubiquitylation related to inflammatory signaling, and the other on the role of the ubiquitin-proteasome system......-terminal methionine (M1), and recently, the deubiquitylating enzyme, OTULIN, was discovered to counter LUBAC activity by exclusively cleaving M1-linked ubiquitin chains. We provide the molecular detail of the interaction between the LUBAC subunit, HOIP, and OTULIN. The interaction was mapped to the PUB-domain of HOIP...

  16. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors

    Directory of Open Access Journals (Sweden)

    Annabel Sophie Berthon

    2015-05-01

    Full Text Available Cyclic-AMP (cAMP-dependent protein kinase (PKA is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD. PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH. More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα, were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA’s role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway.

  17. Regulatory roles of tumor-suppressor proteins and noncoding RNA in cancer and normal cell functions.

    Science.gov (United States)

    Garen, Alan; Song, Xu

    2008-04-15

    We describe a mechanism for reversible regulation of gene transcription, mediated by a family of tumor-suppressor proteins (TSP) containing a DNA-binding domain (DBD) that binds to a gene and represses transcription, and RNA-binding domains (RBDs) that bind RNA, usually a noncoding RNA (ncRNA), forming a TSP/RNA complex that releases the TSP from a gene and reverses repression. This mechanism appears to be involved in the regulation of embryogenesis, oncogenesis, and steroidogenesis. Embryonic cells express high levels of RNA that bind to a TSP and prevent repression of proto-oncogenes that drive cell proliferation. The level of the RNA subsequently decreases in most differentiating cells, enabling a TSP to repress proto-oncogenes and stop cell proliferation. Oncogenesis can result when the level of the RNA fails to decrease in a proliferating cell or increases in a differentiated cell. This mechanism also regulates transcription of P450scc, the first gene in the steroidogenic pathway.

  18. Purification, Characterization and in vitro Anti-Tumor Activity of Proteins from Arca subcrenata Lischke

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2008-07-01

    Full Text Available Two purified proteins G-6 and G-4-2 were obtained from Arca subcrenata Lischke using the homogenization, salting-out with ammonium sulfate, ion-exchange chromatography and gel filtration chromatography techniques. The purity of G-6 and G-4-2 was over 96%, as measured by RP-HPLC. G-6 and G-4-2 were measured by SDS-PAGE and IEF-PAGE to have molecular weights of 8.2 kDa and 16.0 kDa, and isoelectric points of 6.6 and 6.1, respectively. The amino acid constituents of G-6 and G-4-2 were also determined. The existence of saccharides in G-6 was demonstrated by the phenol-sulfuric acid method. G-6 and G-4-2 inhibited the proliferation of human tumor cells in vitro. By MTT assay, the IC50 values of G-4-2 were 22.9 μg/mL, 46.1 μg/mL and 57.7 μg/mL against Hela, HL-60 and KB cell lines, respectively, and the IC50 value of G-6 against HL-60 cell line was measured to be 123.2 μg/mL.

  19. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis

    Science.gov (United States)

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with “stemness.” These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) “cancer stem cells.” These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies. PMID:23047602

  20. Dissecting functions of the retinoblastoma tumor suppressor and the related pocket proteins by integrating genetic, cell biology, and electrophoretic techniques

    DEFF Research Database (Denmark)

    Hansen, Klaus; Lukas, J; Holm, K

    1999-01-01

    The members of the 'pocket protein' family, comprising the retinoblastoma tumor suppressor (pRB) and its relatives, p107 and p130, negatively regulate cell proliferation and modulate fundamental biological processes including embryonic development, differentiation, homeostatic tissue renewal, and......RB family, and show examples of how integration of genetic, cell biology, and a range of electrophoretic approaches help to advance our understanding of the biological roles played by the pocket proteins in both normal and cancer cells.......The members of the 'pocket protein' family, comprising the retinoblastoma tumor suppressor (pRB) and its relatives, p107 and p130, negatively regulate cell proliferation and modulate fundamental biological processes including embryonic development, differentiation, homeostatic tissue renewal......, and defense against cancer. The large, multidomain pocket proteins act by binding a plethora of cell fate-determining and growth-stimulatory proteins, the most prominent of which are the E2F/DP transcription factors. These protein-protein interactions are in turn regulated by carefully orchestrated...

  1. Copper Transporter 2 Regulates Endocytosis and Controls Tumor Growth and Sensitivity to Cisplatin In Vivo

    Science.gov (United States)

    Blair, Brian G.; Larson, Christopher A.; Adams, Preston L.; Abada, Paolo B.; Pesce, Catherine E.; Safaei, Roohangiz

    2011-01-01

    Copper transporter 2 (CTR2) is one of the four copper transporters in mammalian cells that influence the cellular pharmacology of cisplatin and carboplatin. CTR2 was knocked down using a short hairpin RNA interference. Robust expression of CTR2 was observed in parental tumors grown in vivo, whereas no staining was found in the tumors formed from cells in which CTR2 had been knocked down. Knockdown of CTR2 reduced growth rate by 5.8-fold, increased the frequency of apoptotic cells, and decreased the vascular density, but it did not change copper content. Knockdown of CTR2 increased the tumor accumulation of cis-diamminedichloroplatinum(II) [cisplatin (cDDP)] by 9.1-fold and greatly increased its therapeutic efficacy. Because altered endocytosis has been implicated in cDDP resistance, uptake of dextran was used to quantify the rate of macropinocytosis. Knockdown of CTR2 increased dextran uptake 2.5-fold without reducing exocytosis. Inhibition of macropinocytosis with either amiloride or wortmannin blocked the increase in macropinocytosis mediated by CTR2 knockdown. Stimulation of macropinocytosis by platelet-derived growth factor coordinately increased dextran and cDDP uptake. Knockdown of CTR2 was associated with activation of the Rac1 and cdc42 GTPases that control macropinocytosis but not activation of the phosphoinositide-3 kinase pathway. We conclude that CTR2 is required for optimal tumor growth and that it is an unusually strong regulator of cisplatin accumulation and cytotoxicity. CTR2 regulates the transport of cDDP in part through control of the rate of macropinocytosis via activation of Rac1 and cdc42. Selective knockdown of CTR2 in tumors offers a strategy for enhancing the efficacy of cDDP. PMID:20930109

  2. The Roles of the Bone Marrow Microenvironment in Controlling Tumor Dormancy

    Science.gov (United States)

    2016-10-01

    into the mammary fat pads of mice. The treatment of animals with scaffolds had no significant effect on primary tumor growth. However, extensive...chips [6e9] or marrow [10] are used and implanted subcutaneously: þ1 617 627 3231. an). f Biomedical Engineering, 4or in the mammary fat pad. While human...BMP-2 functionalized or control silk scaffolds were implanted subcutaneously at three different sites, namely the rotator cuff, lower abdomen , and upper

  3. RNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2014-10-01

    Full Text Available Protein homeostasis is critical for cell survival and functions during stress and is regulated at both RNA and protein levels. However, how the cell integrates RNA-processing programs with post-translational protein quality control systems is unknown. Transactive response DNA-binding protein (TARDBP/TDP-43 is an RNA-processing protein that is involved in the pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Here, we report a conserved role for TDP-43, from C. elegans to mammals, in the regulation of protein clearance via activation of FOXO transcription factors. In response to proteotoxic insults, TDP-43 redistributes from the nucleus to the cytoplasm, promoting nuclear translocation of FOXOs and relieving an inhibition of FOXO activity in the nucleus. The interaction between TDP-43 and the FOXO pathway in mammalian cells is mediated by their competitive binding to 14-3-3 proteins. Consistent with FOXO-dependent protein quality control, TDP-43 regulates the levels of misfolded proteins. Therefore, TDP-43 mediates stress responses and couples the regulation of RNA metabolism and protein quality control in a FOXO-dependent manner. The results suggest that compromising the function of TDP-43 in regulating protein homeostasis may contribute to the pathogenesis of related neurodegenerative diseases.

  4. RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response

    Science.gov (United States)

    Zhang, Tao; Baldie, Gerard; Periz, Goran; Wang, Jiou

    2014-01-01

    Protein homeostasis is critical for cell survival and functions during stress and is regulated at both RNA and protein levels. However, how the cell integrates RNA-processing programs with post-translational protein quality control systems is unknown. Transactive response DNA-binding protein (TARDBP/TDP-43) is an RNA-processing protein that is involved in the pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we report a conserved role for TDP-43, from C. elegans to mammals, in the regulation of protein clearance via activation of FOXO transcription factors. In response to proteotoxic insults, TDP-43 redistributes from the nucleus to the cytoplasm, promoting nuclear translocation of FOXOs and relieving an inhibition of FOXO activity in the nucleus. The interaction between TDP-43 and the FOXO pathway in mammalian cells is mediated by their competitive binding to 14-3-3 proteins. Consistent with FOXO-dependent protein quality control, TDP-43 regulates the levels of misfolded proteins. Therefore, TDP-43 mediates stress responses and couples the regulation of RNA metabolism and protein quality control in a FOXO-dependent manner. The results suggest that compromising the function of TDP-43 in regulating protein homeostasis may contribute to the pathogenesis of related neurodegenerative diseases. PMID:25329970

  5. Controlled oxidative protein refolding using an ion-exchange column.

    Science.gov (United States)

    Langenhof, Marc; Leong, Susanna S J; Pattenden, Leonard K; Middelberg, Anton P J

    2005-04-01

    Column-based refolding of complex and highly disulfide-bonded proteins simplifies protein renaturation at both preparative and process scale by integrating and automating a number of operations commonly used in dilution refolding. Bovine serum albumin (BSA) was used as a model protein for refolding and oxido-shuffling on an ion-exchange column to give a refolding yield of 55% after 40 h incubation. Successful on-column refolding was conducted at protein concentrations of up to 10 mg/ml and refolded protein, purified from misfolded forms, was eluted directly from the column at a concentration of 3 mg/ml. This technique integrates the dithiothreitol removal, refolding, concentration and purification steps, achieving a high level of process simplification and automation, and a significant saving in reagent costs when scaled. Importantly, the current result suggests that it is possible to controllably refold disulfide-bonded proteins using common and inexpensive matrices, and that it is not always necessary to control protein-surface interactions using affinity tags and expensive chromatographic matrices. Moreover, it is possible to strictly control the oxidative refolding environment once denatured protein is bound to the ion-exchange column, thus allowing precisely controlled oxido-shuffling.

  6. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  7. Serum peptide/protein profiling by mass spectrometry provides diagnostic information independently of CA125 in women with an ovarian tumor

    DEFF Research Database (Denmark)

    Callesen, Anne; Madsen, Jonna S; Iachina, Maria;

    2010-01-01

    In the present study, the use of a robust and sensitive mass spectrometry based protein profiling analysis was tested as diagnostic tools for women with an ovarian tumor. The potential additional diagnostic value of serum protein profiles independent of the information provided by CA125 were also...... investigated. Protein profiles of 113 serum samples from women with an ovarian tumor (54 malign and 59 benign) were generated using MALDI-TOF MS. A total of 98 peaks with a significant difference (pwomen with benign tumors/cysts and malignant ovarian tumors were identified. After...... average linkage clustering, a profile of 46 statistical significant mass peaks was identified to distinguish malignant tumors and benign tumors/cysts. In the subgroup of women with normal CA125 values (

  8. BRIEF REPORT OF ACTIVE CONTROLLED AND OBSERVABLE PROTEIN CRYSTALLIZATION FACILITY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ There are two tendency of development on space protein crystal growth facility.Increase the number of samples, for commercial purpose, or observe and control the crystallization process, for study of crystallization process.

  9. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies......Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we...

  10. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  11. A randomized controlled study of juvenile idiopathic arthritis treated with recombinant human Ⅱ tumor necrosis factor-Fc function protein%重组人Ⅱ型肿瘤坏死因子受体-抗体融合蛋白治疗幼年特发性关节炎的随机对照研究

    Institute of Scientific and Technical Information of China (English)

    曾萍; 谢颖; 唐盈; 李丰; 曾华松

    2012-01-01

    及合并巨噬细胞活化综合征的全身型JIA患儿可以考虑使用rhTNFR:Fc.%Objective Through the application of recombinant human Ⅱ tumor necrosis factor-Fc function protein (rhTNFR:Fc) in the treatment of juvenile idiopathic arthritis (JIA) with randomized control study,clinical characteristic and clinical effect were summarized.Methods According to the randomized controlled principle,124 patients with JIA were divided into control group and treatment group.The basic treatment in two groups were one antirheumatic slow-acting drug,nonsteroidal drug,adrenal cortical hormone.There were no significant differences between clinical type and basic treatment in two groups (P > 0.05).Sixty-two patients of JIA treated with rhTNFR:Fc by subcutaneous injection.The doses was 0.8mg /kg per week.There were 17 cases of oligoarthritis,15 cases of polyarthritis,30 cases of systemic arthritis in the treatment group and control group respectively.The basic antirheumatic drugs,nonsteroidal anti-inflamatory drugs ( NSAIDs),adrenal cortex hormone were allowed to continued.Clinical evaluation index included ACR Pedi 30,ACR Pedi 50 and ACR Pedi 70.The adverse drug reactions were recorded.Results The remission rate of ACR Pedi 30,50,70 in 2 weeks,one month,three monthes and six monthes were different in types of JIA patients in the treatment group ( P < 0.05 ).The remission rate of systemic arthritis was lower than the other two groups of arthritis ( P < 0.05 ).Only 44% ACR Pedi 50 remission was achieved after three monthes medication in systemic arthritis and 41.7% ACR Pedi 50,29.2% ACR Pedi 70 were achieved after six monthes.The remission rate in the types of oligoarthritis and polyarthritis at different time points (2 weeks,one month,three monthes,six monthes) of ACR Pedi 30,50,70 were similar.After six monthes,more than 80% reached ACR Pedi 50 remission,more than half of patients reached ACR Pedi 70 remission.Three cases of macrophage activation syndrome in

  12. In situ tumor vaccination with adenovirus vectors encoding measles virus fusogenic membrane proteins and cytokines

    Institute of Scientific and Technical Information of China (English)

    Dennis Hoffmann; Wibke Bayer; Oliver Wildner

    2007-01-01

    AIM: To evaluate whether intratumoral expression of measles virus fusogenic membrane glycoproteins H and "F (MV-FMG), encoded by an adenovirus vector Ad.MV-H/ F, alone or in combination with local coexpression of cytokines (IL-2, IL-12, IL-18, IL-21 or GM-CSF), can serve as a platform for inducing tumor-specific immune responses in colon cancer.METHODS: We used confocal laser scanning microscopy and flow cytometry to analyze cell-cell fusion after expression of MV-FMG by dye colocalization. In a syngeneic bilateral subcutaneous MC38 and Colon26 colon cancer model in C57BL/6 and BALB/c mice, we assessed the effect on both the directly vector-treated tumor as well as the contralateral, not directly vector-treated tumor. We assessed the induction of a tumor-specific cytotoxic T lymphocyte (CTL) response with a lactate dehydrogenase (LDH) release assay.RESULTS: We demonstrated in vitro that transduction of MC38 and Colon26 cells with Ad.MV-H/F resulted in dye colocalization, indicative of cell-cell fusion. In addition, in the syngeneic bilateral tumor model we demonstrated a significant regression of the directly vector-inoculated tumor upon intratumoral expression of MV-FMG alone or in combination with the tested cytokines. We observed the highest anti-neoplastic efficacy with MV-FMG and IL-21 coexpression. The degree of tumor regression of the not directly vector-treated tumor correlated with the anti-neoplastic response of the directly vector-treated tumor. This regression was mediated by a tumor-specific CTL response.CONCLUSION: Our data indicate that intratumoral expression of measles virus fusogenic membrane glycoproteins is a promising tool both for direct tumor treatment as well as for tumor vaccination approaches that can be further enhanced by cytokine coexpression.

  13. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression.

    Directory of Open Access Journals (Sweden)

    Danilo Marimpietri

    Full Text Available Neuroblastoma (NB is the most common extracranial solid tumor in childhood, with grim prognosis in a half of patients. Exosomes are nanometer-sized membrane vesicles derived from the multivesicular bodies (MVBs of the endocytic pathway and released by normal and neoplastic cells. Tumor-derived exosomes have been shown in different model systems to carry molecules that promote cancer growth and dissemination. In this respect, we have here performed the first characterization and proteomic analysis of exosomes isolated from human NB cell lines by filtration and ultracentrifugation. Electron microscopy demonstrated that NB-derived exosomes exhibited the characteristic cup-shaped morphology. Dynamic light scattering studies showed a bell-shaped curve and a polydispersity factor consistent with those of exosomes. Zeta potential values suggested a good nanoparticle stability. We performed proteomic analysis of NB-derived exosomes by two dimension liquid chromatography separation and mass spectrometry analyses using the multidimensional protein identification technology strategy. We found that the large majority of the proteins identified in NB derived exosomes are present in Exocarta database including tetraspanins, fibronectin, heat shock proteins, MVB proteins, cytoskeleton-related proteins, prominin-1 (CD133, basigin (CD147 and B7-H3 (CD276. Expression of the CD9, CD63 and CD81 tetraspanins, fibronectin, CD133, CD147 and CD276 was validated by flow cytometry. Noteworthy, flow cytometric analysis showed that NB-derived exosomes expressed the GD2 disialoganglioside, the most specific marker of NB. In conclusion, this study shows that NB-derived exosomes express a discrete set of molecules involved in defense response, cell differentiation, cell proliferation and regulation of other important biological process. Thus, NB-derived exosomes may play an important role in the modulation of tumor microenvironment and represent potential tumor biomarkers.

  14. Characterization of native 40 S particles from Krebs II mouse ascites tumor cells: resolution, nomenclature and molecular weights of the nonribosomal proteins

    DEFF Research Database (Denmark)

    Reichert, G; Issinger, O G

    1981-01-01

    Native 40 S particles from Krebs II mouse ascites tumor cells were isolated on a large scale. A nonribosomal protein moiety of about 30 proteins could be removed from the ribosomal particles by treatment with 250 mM KCl. These proteins were analysed by two-dimensional polyacrylamide gel electroph......Native 40 S particles from Krebs II mouse ascites tumor cells were isolated on a large scale. A nonribosomal protein moiety of about 30 proteins could be removed from the ribosomal particles by treatment with 250 mM KCl. These proteins were analysed by two-dimensional polyacrylamide gel...

  15. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels.

    Science.gov (United States)

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, D R; Petyuk, Vladislav A; Gillette, Michael A; Clauser, Karl R; Qiao, Jana W; Gritsenko, Marina A; Moore, Ronald J; Levine, Douglas A; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E; Davies, Sherri R; Ruggles, Kelly V; Fenyo, David; Kitchens, R Thomas; Li, Shunqiang; Olvera, Narciso; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W; Liebler, Daniel; White, Forest; Rodland, Karin D; Mills, Gordon B; Smith, Richard D; Paulovich, Amanda G; Ellis, Matthew; Carr, Steven A

    2014-07-01

    Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis.

  16. Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels*

    Science.gov (United States)

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, D. R.; Petyuk, Vladislav A.; Gillette, Michael A.; Clauser, Karl R.; Qiao, Jana W.; Gritsenko, Marina A.; Moore, Ronald J.; Levine, Douglas A.; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri R.; Ruggles, Kelly V.; Fenyo, David; Kitchens, R. Thomas; Li, Shunqiang; Olvera, Narciso; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W.; Liebler, Daniel; White, Forest; Rodland, Karin D.; Mills, Gordon B.; Smith, Richard D.; Paulovich, Amanda G.; Ellis, Matthew; Carr, Steven A.

    2014-01-01

    Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis. PMID:24719451

  17. Tumor-based case-control studies of infection and cancer: muddling the when and where of molecular epidemiology.

    Science.gov (United States)

    Engels, Eric A; Wacholder, Sholom; Katki, Hormuzd A; Chaturvedi, Anil K

    2014-10-01

    We describe the "tumor-based case-control" study as a type of epidemiologic study used to evaluate associations between infectious agents and cancer. These studies assess exposure using diseased tissues from affected individuals (i.e., evaluating tumor tissue for cancer cases), but they must utilize nondiseased tissues to assess control subjects, who do not have the disease of interest. This approach can lead to exposure misclassification in two ways. First, concerning the "when" of exposure assessment, retrospective assessment of tissues may not accurately measure exposure at the key earlier time point (i.e., during the etiologic window). Second, concerning the "where" of exposure assessment, use of different tissues in cases and controls can have different accuracy for detecting the exposure (i.e., differential exposure misclassification). We present an example concerning the association of human papillomavirus with various cancers, where tumor-based case-control studies likely overestimate risk associated with infection. In another example, we illustrate how tumor-based case-control studies of Helicobacter pylori and gastric cancer underestimate risk. Tumor-based case-control studies can demonstrate infection within tumor cells, providing qualitative information about disease etiology. However, measures of association calculated in tumor-based case-control studies are prone to over- or underestimating the relationship between infections and subsequent cancer risk.

  18. A unique method for isolation and solubilization of proteins after extraction of RNA from tumor tissue using trizol.

    Science.gov (United States)

    Likhite, Neah; Warawdekar, Ujjwala M

    2011-04-01

    The aim of this study was to develop a systems approach to study tumor tissue. The importance of concurrent extraction of RNA, DNA, and protein is evident when genetic aberrations and the differences in the proteome and transcriptome have to be correlated. The need is magnified, as the tissue available for study is miniscule, is shared amongst investigators, and needs to support the holistic approach. Trizol is a monophasic solution of phenol and guanidine isothiocyanate and can be used to isolate the three biomolecules simultaneously. Trizol solution was used for RNA extraction in an ongoing study about expression of molecular markers in non-small cell lung carcinoma (NSCLC) and breast tumor tissue. After isolation of RNA, the remaining Trizol fraction was stored at -80°C for over 6 months. We have shown the extraction of protein from 17 tumor and adjacent, normal tissue samples and PBMC obtained from four blood samples. The isolation and solubilization of the protein fraction were done according to the product information using isopropanol for precipitation and guanidine hydrochloride and SDS for washing and solubilization, respectively, modifying the time of solubilization. The protein was estimated by the bicinchoninic acid (BCA) method and analyzed on polyacrylamide gels. Staining showed a wide repertoire, and Western blotting confirmed extraction of cytokeratins (CK) and DNA repair proteins. Whereas tissue samples in which the RNA was degraded could be assessed by the presence of the protein salvaging the marker analysis, it was seen that nuclear proteins cannot be retrieved and are probably lost with the DNA fraction.

  19. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes.

    Science.gov (United States)

    Spiegl-Kreinecker, Sabine; Buchroithner, Johanna; Elbling, Leonilla; Steiner, Elisabeth; Wurm, Gabriele; Bodenteich, Angelika; Fischer, Johannes; Micksche, Michael; Berger, Walter

    2002-03-01

    The poor prognosis of glioma patients is partly based on the minor success obtained from chemotherapeutic treatments. Resistance mechanisms at the tumor cell level may be, in addition to the blood-brain barrier, involved in the intrinsic chemo-insensitivity of brain tumors. We investigated the expression of the drug-transporter proteins P-glycoprotein (P-gp) and multidrug-resistance protein 1 (MRP1) in cell lines (N = 24) and primary cell cultures (N = 36) from neuroectodermal tumors, as well as in brain tumor extracts (N = 18) and normal human astrocytes (N = 1). We found that a considerable expression of P-gp was relatively rare in glioma cells, in contrast to MRP1, which was constitutively overexpressed in cells derived from astrocytomas as well as glioblastomas. Also, normal astrocytes cultured in vitro expressed high amounts of MRPI but no detectable P-gp. Meningioma cells frequently co-expressed P-gp and MRP1, while, most of the neuroblastoma cell lines express higher P-gp but lower MRP1 levels as compared to the other tumor types. Both, a drug-exporting and a chemoprotective function of P-gp as well as MRP1 could be demonstrated in selected tumor cells by a significant upregulation of cellular 3H-daunomycin accumulation and daunomycin cytotoxicity via administration of transporter antagonists. Summing up, our data suggest that P-gp contributes to cellular resistance merely in a small subgroup of gliomas, but frequently in neuroblastomas and meningiomas. In contrast, MRP1 is demonstrated to play a constitutive role in the intrinsic chemoresistance of gliomas and their normal cell counterpart.

  20. [Mechanism of protective effects of tumor necrosis factor receptor associated protein 1 on hypoxic cardiomyocytes of rats].

    Science.gov (United States)

    Xiang, F; Zhang, D X; Ma, S Y; Huang, Y S

    2016-12-20

    Objective: To investigate the mechanism of protective effects of tumor necrosis factor receptor associated protein 1 (TRAP1) on hypoxic cardiomyocytes of rats. Methods: Primary cultured cardiomyocytes were obtained from neonatal Sprague-Dawley rats (aged 1 to 3 days) and then used in the following experiments. (1) Cells were divided into group TRAP1 and control group according to the random number table (the same grouping method below), and then the total protein of cells was extracted. Total protein of cells in group TRAP1 was added with mouse anti-rat TRAP1 monoclonal antibody, while that in control group was added with the same type of IgG from mouse. Co-immunoprecipitation and protein mass spectrography analysis were used to determine the possible proteins interacted with TRAP1. (2) Cells were divided into normoxia blank control group (NBC), normoxia+ TRAP1 interference control group (NTIC), normoxia+ TRAP1 interference group (NTI), normoxia+ TRAP1 over-expression control group (NTOC), and normoxia+ TRAP1 over-expression group (NTO), with 1 well in each group. Cells in group NBC were routinely cultured, while cells in the latter four groups were respectively added with TRAP1 RNA interference empty virus vector, TRAP1 RNA interference adenovirus vector, TRAP1 over-expression empty virus vector, and TRAP1 over-expression adenovirus vector. Another batch of cells were divided into group NBC, hypoxic blank control group (HBC), hypoxic+ TRAP1 interference control group (HTIC), hypoxic+ TRAP1 interference group (HTI), hypoxic+ TRAP1 over-expression control group (HTOC), and hypoxic+ TRAP1 over-expression group (HTO), with 1 well in each group. Cells in hypoxic groups were under hypoxic condition for 6 hours after being treated as those in the corresponding normoxia groups, respectively. The mRNA expression of cytochrome c oxidase subunit Ⅱ (COXⅡ) of cells in each group was detected by real time fluorescent quantitive reverse transcription polymerase chain

  1. Autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96 in patients with metastatic melanoma

    Directory of Open Access Journals (Sweden)

    Bedikian Agop Y

    2010-01-01

    Full Text Available Abstract Background Glycoprotein-96, a non-polymorphic heat-shock protein, associates with intracellular peptides. Autologous tumor-derived heat shock protein-peptide complex 96 (HSPPC-96 can elicit potent tumor-specific T cell responses and protective immunity in animal models. We sought to investigate the feasibility, safety, and antitumor activity of HSPPC-96 vaccines prepared from tumor specimens of patients with metastatic melanoma. Methods Patients with a Karnofsky Performance Status >70% and stage III or stage IV melanoma had to have a metastasis >3 cm in diameter resectable as part of routine clinical management. HSPPC-96 tumor-derived vaccines were prepared in one of three dose levels (2.5, 25, or 100 μg/dose and administered as an intradermal injection weekly for 4 consecutive weeks. In vivo induction of immunity was evaluated using delayed-type hypersensitivity (DTH to HSPPC-96, irradiated tumor, and dinitrochlorobenzene (DNCB. The γ-interferon (IFNγ ELISPOT assay was used to measure induction of a peripheral blood mononuclear cell response against autologous tumor cells at baseline and at the beginning of weeks 3, 4, and 8. Results Among 36 patients enrolled, 72% had stage IV melanoma and 83% had received prior systemic therapy. The smallest tumor specimen from which HSPPC-96 was prepared weighed 2 g. Twelve patients (including 9 with stage IV and indicator lesions had a negative DNCB skin test result at baseline. All 36 patients were treated and evaluable for toxicity and response. There were no serious toxicities. There were no observed DTH responses to HSPPC-96 or to autologous tumor cells before or during treatment. The IFNγ-producing cell count rose modestly in 5 of 26 patients and returned to baseline by week 8, with no discernible association with HSPPC-96 dosing or clinical parameters. There were no objective responses among 16 patients with stage IV disease and indicator lesions. Among 20 patients treated in the adjuvant

  2. A new synthetic protein, TAT-RH, inhibits tumor growth through the regulation of NFκB activity

    Directory of Open Access Journals (Sweden)

    Leggiero Eleonora

    2009-11-01

    Full Text Available Abstract Background Based on its role in angiogenesis and apoptosis, the inhibition of NFκB activity is considered an effective treatment for cancer, hampered by the lack of selective and safe inhibitors. We recently demonstrated that the RH domain of GRK5 (GRK5-RH inhibits NFκB, thus we evaluated its effects on cancer growth. Methods The role of GRK5-RH on tumor growth was assessed in a human cancer cell line (KAT-4. RH overexpression was induced by adenovirus mediated gene transfer; alternatively we administered a synthetic protein reproducing the RH domain of GRK5 (TAT-RH, actively transported into the cells. Results In vitro, adenovirus mediated GRK5-RH overexpression (AdGRK5-NT in human tumor cells (KAT-4 induces IκB accumulation and inhibits NFκB transcriptional activity leading to apoptotic events. In BALB/c nude mice harboring KAT-4 induced neoplasias, intra-tumor delivery of AdGRK5-NT reduces in a dose-dependent fashion tumor growth, with the highest doses completely inhibiting it. This phenomenon is paralleled by a decrease of NFκB activity, an increase of IκB levels and apoptotic events. To move towards a pharmacological setup, we synthesized the TAT-RH protein. In cultured KAT-4 cells, different dosages of TAT-RH reduced cell survival and increased apoptosis. In BALB/c mice, the anti-proliferative effects of TAT-RH appear to be dose-dependent and highest dose completely inhibits tumor growth. Conclusion Our data suggest that GRK5-RH inhibition of NFκB is a novel and effective anti-tumoral strategy and TAT-RH could be an useful tool in the fighting of cancer.

  3. Anti-tumor properties of the cGMP/protein kinase G inhibitor DT3 in pancreatic adenocarcinoma.

    Science.gov (United States)

    Soltek, Sabine; Karakhanova, Svetlana; Golovastova, Marina; D'Haese, Jan G; Serba, Susanne; Nachtigall, Ines; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2015-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Therefore, new therapeutic options are urgently needed to improve the survival of PDAC patients. Protein kinase G (PKG) conducts the interlude of cGMP signaling which is important for healthy as well as for cancer cells. DT3 is a specific inhibitor of PKG, and it has been shown to possess an anti-tumor cytotoxic activity in vitro. The main aim of this work was to investigate anti-tumor effects of DT3 upon PDAC in vivo.Expression of PKG was assessed with real-time PCR analysis in the normal and tumor pancreatic cells. In vitro cell viability, proliferation, apoptosis, necrosis, migration, and invasion of the murine PDAC cell line Panc02 were assessed after DT3 treatment. In vivo anti-tumor effects of DT3 were investigated in the murine Panc02 orthotopic model of PDAC. Western blot analysis was used to determine the phosphorylation state of the proteins of interest.Functional PKGI is preferentially expressed in PDAC cells. DT3 was capable to reduce viability, proliferation, and migration of murine PDAC cells in vitro. At the same time, DT3 treatment did not change the viability of normal epithelial cells of murine liver. In vivo, DT3 treatment reduced the tumor volume and metastases in PDAC-bearing mice, but it was ineffective to prolong the survival of the tumor-bearing animals. In addition, DT3 treatment decreased phosphorylation of GSK-3, P38, and CREB in murine PDAC.Inhibition of PKG could be a potential therapeutic strategy for PDAC treatment which should be carefully validated in future pre-clinical studies.

  4. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors.

    Science.gov (United States)

    Lee, Joomin; Hahm, Eun-Ryeong; Marcus, Adam I; Singh, Shivendra V

    2015-06-01

    We have shown previously that withaferin A (WA), a bioactive component of the medicinal plant Withania somnifera, inhibits growth of cultured and xenografted human breast cancer cells and prevents breast cancer development and pulmonary metastasis incidence in a transgenic mouse model. The present study was undertaken to determine if the anticancer effect of WA involved inhibition of epithelial-mesenchymal transition (EMT). Experimental EMT induced by exposure of MCF-10A cells to tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β) was partially reversed by treatment with WA but not by its structural analogs withanone or withanolide A. Combined TNF-α and TGF-β treatments conferred partial protection against MCF-10A cell migration inhibition by WA. Inhibition of TNF-α and TGF-β-induced MCF-10A cell migration by WA exposure was modestly attenuated by knockdown of E-cadherin protein. MCF-7 and MDA-MB-231 cells exposed to WA exhibited sustained (MCF-7) or transient (MDA-MB-231) induction of E-cadherin protein. On the other hand, the level of vimentin protein was increased markedly after 24 h treatment of MDA-MB-231 cells with WA. WA-induced apoptosis was not affected by vimentin protein knockdown in MDA-MB-231 cells. Protein level of vimentin was significantly lower in the MDA-MB-231 xenografts as well as in MMTV-neu tumors from WA-treated mice compared with controls. The major conclusions of the present study are that (a) WA treatment inhibits experimental EMT in MCF-10A cells, and (b) mammary cancer growth inhibition by WA administration is associated with suppression of vimentin protein expression in vivo.

  5. Transcription regulation by CHD proteins to control plant development

    Directory of Open Access Journals (Sweden)

    Yongfeng eHu

    2014-05-01

    Full Text Available CHD (Chromodomain-Helicase-DNA binding proteins have been characterized in various species as important transcription regulators by their chromatin remodeling activity. However, in plant the function of these proteins has hardly been analyzed before except that Arabidopsis PICKLE and rice CHR729 are identified to play critical roles in the regulation of series of genes involved in developmental or stress responding process. In this review we focus on how plant CHD proteins regulate gene expression and the role of these proteins in controlling plant development and stress response.

  6. HPV16-associated tumors control myeloid cell homeostasis in lymphoid organs, generating a suppressor environment for T cells.

    Science.gov (United States)

    Stone, Simone Cardozo; Rossetti, Renata Ariza Marques; Bolpetti, Aline; Boccardo, Enrique; Souza, Patricia Savio de Araujo; Lepique, Ana Paula

    2014-10-01

    Tumors are complex structures containing different types of cells and molecules. The importance of the tumor microenvironment in tumor progression, growth, and maintenance is well-established. However, tumor effects are not restricted to the tumor microenvironment. Molecules secreted by, as well as cells that migrate from tumors, may circulate and reach other tissues. This may cause a series of systemic effects, including modulation of immune responses, and in some cases, leukocytosis and metastasis promotion. Leukocytosis has been described as a poor prognostic factor in patients with cervical cancer. The main etiological factor for cervical cancer development is persistent infection with high oncogenic risk HPV. Our laboratory has been exploring the effects of high oncogenic risk, HPV-associated tumors on lymphoid organs of the host. In the present study, we observed an increase in myeloid cell proliferation and alteration in cell signaling in APCs in the spleen of tumor-bearing mice. In parallel, we characterized the cytokines secreted in the inflammatory and tumor cell compartments in the tumor microenvironment and in the spleen of tumor-bearing mice. We show evidence of constitutive activation of the IL-6/STAT3 signaling pathway in the tumor, including TAMs, and in APCs in the spleen. We also observed that IL-10 is a central molecule in the tolerance toward tumor antigens through control of NF-κB activation, costimulatory molecule expression, and T cell proliferation. These systemic effects over myeloid cells are robust and likely an important problem to be addressed when considering strategies to improve anti-tumor T cell responses.

  7. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  8. Mitochondrial p32 Protein Is a Critical Regulator of Tumor Metabolism via Maintenance of Oxidative Phosphorylation ▿

    Science.gov (United States)

    Fogal, Valentina; Richardson, Adam D.; Karmali, Priya P.; Scheffler, Immo E.; Smith, Jeffrey W.; Ruoslahti, Erkki

    2010-01-01

    p32/gC1qR/C1QBP/HABP1 is a mitochondrial/cell surface protein overexpressed in certain cancer cells. Here we show that knocking down p32 expression in human cancer cells strongly shifts their metabolism from oxidative phosphorylation (OXPHOS) to glycolysis. The p32 knockdown cells exhibited reduced synthesis of the mitochondrial-DNA-encoded OXPHOS polypeptides and were less tumorigenic in vivo. Expression of exogenous p32 in the knockdown cells restored the wild-type cellular phenotype and tumorigenicity. Increased glucose consumption and lactate production, known as the Warburg effect, are almost universal hallmarks of solid tumors and are thought to favor tumor growth. However, here we show that a protein regularly overexpressed in some cancers is capable of promoting OXPHOS. Our results indicate that high levels of glycolysis, in the absence of adequate OXPHOS, may not be as beneficial for tumor growth as generally thought and suggest that tumor cells use p32 to regulate the balance between OXPHOS and glycolysis. PMID:20100866

  9. Cloning and Expression of a Novel Target Fusion Protein and its Application in Anti-Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2015-03-01

    Full Text Available Backgrounds: Epidermal growth factor (EGF is a 53 amino acid polypeptide and its receptor EGFR is an established therapeutic target for anti-tumor therapy. Two major categories of EGFR-targeted drugs include monoclonal antibodies (mAbs and small molecular tyrosine kinase inhibitors (TKIs. However, drug resistance occurs in a significant proportion of patients due to EGFR mutations. Since EGFR can maintain activation while abrogating the activity of mAbs or TKIs, or bypass signaling functions while successfully circumventing the EGF-EGFR switch, developing new mechanism-based inhibitors is necessary. Methods: In this study, based on the principle of tumor immunotherapy, a recombinant protein pLLO-hEGF was constructed. The N-terminal portion contains three immunodominant epitopes from listeriolysin O (LLO and the C-terminal includes EGF. To use EGF as a target vector to recognize EGFR-expressing cancer cells, immunodominant epitopes could enhance immunogenicity of tumor cells for immune cell activation and attack. Results: Recombinant protein pLLO-hEGF was successfully expressed and showed strong affinity to cancer cells. Also, pLLO-hEGF could significantly stimulate human lymphocyte proliferation and the lymphocytes demonstrated enhanced killing potency in EGFR-expressing cancer cells in vitro and in vivo. Conclusion: This study can provide novel strategies and directions in tumor biotherapy.

  10. Tumor control and normal tissue complications in BNCT treatment of nodular melanoma: A search for predictive quantities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, S.J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917, (1033) Cdad. de Buenos Aires (Argentina)], E-mail: srgonzal@cnea.gov.ar; Casal, M. [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Pereira, M.D. [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Agencia Nacional de Promocion Cientifica y Tecnologica, PAV 22393 (Argentina); Santa Cruz, G.A. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Carando, D.G. [CONICET, Avda. Rivadavia 1917, (1033) Cdad. de Buenos Aires (Argentina); Dpto. de Matematica, Pab. I Ciudad Universitaria, UBA, (1428) Cdad. de Buenos Aires (Argentina); Blaumann, H. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Bonomi, M. [CONICET, Avda. Rivadavia 1917, (1033) Cdad. de Buenos Aires (Argentina); Calzetta Larrieu, O.; Feld, D.; Fernandez, C. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Gossio, S. [FCEyN, Pab. II Ciudad Universitaria, UBA, (1428) Cdad. de Buenos Aires (Argentina); Jimenez Rebagliatti, R.; Kessler, J.; Longhino, J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Menendez, P. [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Nievas, S. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Roth, B.M.C [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Liberman, S.J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina)

    2009-07-15

    A previous work concerning tumor control and skin damage in cutaneous melanoma treatments with BNCT has been extended to include doses, volumes and responses of 104 subcutaneous lesions from all patients treated in Argentina. Acute skin reactions were also scored for these patients, and cumulative dose-area histograms and dose-based figures of merit for skin were calculated. Broadening the tumor response analysis with the latest data showed that the (minimum or mean) tumor dose is not a good predictor of the observed clinical outcome by itself. However, when the tumor volume was included in the model as second explicative variable, the dose increases its significance and becomes a critical variable jointly with the volume (p-values<0.05). A preliminary analysis to estimate control doses for two groups of tumor sizes revealed that for small tumor volumes (< 0.1 cm{sup 3}) doses greater than 20 Gy-Eq produce a high tumor control (> 80%). However, when tumor volumes are larger than 0.1 cm{sup 3}, control is moderate (< 40%) even for minimum doses up to 40 Gy-Eq. Some quantities based on skin doses, areas and complication probabilities were proposed as candidates for predicting the severity of the early skin reactions. With the current data, all the evaluated figures of merit derived similar results: ulceration is present among the cases for which these quantities take the highest values.

  11. The strength of the T cell response against a surrogate tumor antigen induced by oncolytic VSV therapy does not correlate with tumor control.

    Science.gov (United States)

    Janelle, Valérie; Langlois, Marie-Pierre; Lapierre, Pascal; Charpentier, Tania; Poliquin, Laurent; Lamarre, Alain

    2014-06-01

    Cancer therapy using oncolytic viruses has gained interest in the last decade. Vesicular stomatitis virus is an attractive candidate for this alternative treatment approach. The importance of the immune response against tumor antigens in virotherapy efficacy is now well recognized, however, its relative contribution versus the intrinsic oncolytic capacity of viruses has been difficult to evaluate. To start addressing this question, we compared glycoprotein and matrix mutants of vesicular stomatitis virus (VSV), showing different oncolytic potentials for B16/B16gp33 melanoma tumor cells in vitro, with the wild-type virus in their ability to induce tumor-specific CD8(+) T cell responses and control tumor progression in vivo. Despite the fact that wild-type and G mutants induced a stronger gp33-specific immune response compared to the MM51R mutant, all VSV strains showed a similar capacity to slow down tumor progression. The effectiveness of the matrix mutant treatment proved to be CD8(+) dependent and directed against tumor antigens other than gp33 since adoptive transfer of isolated CD8(+) T lymphocytes from treated B16gp33-bearing mice resulted in significant protection of naive mice against challenge with the parental tumor. Remarkably, the VSV matrix mutant induced the upregulation of major histocompatibility class-I antigen at the tumor cell surface thus favoring recognition by CD8(+) T cells. These results demonstrate that VSV mutants induce an antitumor immune response using several mechanisms. A better understanding of these mechanisms will prove useful for the rational design of viruses with improved therapeutic efficacy.

  12. Rapid T cell–based identification of human tumor tissue antigens by automated two-dimensional protein fractionation

    Science.gov (United States)

    Beckhove, Philipp; Warta, Rolf; Lemke, Britt; Stoycheva, Diana; Momburg, Frank; Schnölzer, Martina; Warnken, Uwe; Schmitz-Winnenthal, Hubertus; Ahmadi, Rezvan; Dyckhoff, Gerhard; Bucur, Mariana; Jünger, Simone; Schueler, Thomas; Lennerz, Volker; Woelfel, Thomas; Unterberg, Andreas; Herold-Mende, Christel

    2010-01-01

    Identifying the antigens that have the potential to trigger endogenous antitumor responses in an individual cancer patient is likely to enhance the efficacy of cancer immunotherapy, but current methodologies do not efficiently identify such antigens. This study describes what we believe to be a new method of comprehensively identifying candidate tissue antigens that spontaneously cause T cell responses in disease situations. We used the newly developed automated, two-dimensional chromatography system PF2D to fractionate the proteome of human tumor tissues and tested protein fractions for recognition by preexisting tumor-specific CD4+ Th cells and CTLs. Applying this method using mice transgenic for a TCR that recognizes an OVA peptide presented by MHC class I, we demonstrated efficient separation, processing, and cross-presentation to CD8+ T cells by DCs of OVA expressed by the OVA-transfected mouse lymphoma RMA-OVA. Applying this method to human tumor tissues, we identified MUC1 and EGFR as tumor-associated antigens selectively recognized by T cells in patients with head and neck cancer. Finally, in an exemplary patient with a malignant brain tumor, we detected CD4+ and CD8+ T cell responses against two novel antigens, transthyretin and calgranulin B/S100A9, which were expressed in tumor and endothelial cells. The immunogenicity of these antigens was confirmed in 4 of 10 other brain tumor patients. This fast and inexpensive method therefore appears suitable for identifying candidate T cell antigens in various disease situations, such as autoimmune and malignant diseases, without being restricted to expression by a certain cell type or HLA allele. PMID:20458140

  13. Suppression of Tumor Growth in Mice by Rationally Designed Pseudopeptide Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase

    Directory of Open Access Journals (Sweden)

    Kenneth W. Jackson

    2015-01-01

    Full Text Available Tumor microenvironments (TMEs are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP and prolyl oligopeptidase (POP, are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth >90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs.

  14. Tumor-based case-control studies of infection and cancer: muddling the when and where of molecular epidemiology

    Science.gov (United States)

    Engels, Eric A.; Wacholder, Sholom; Katki, Hormuzd A.; Chaturvedi, Anil K.

    2014-01-01

    We describe the “tumor-based case-control” study as a type of epidemiologic study used to evaluate associations between infectious agents and cancer. These studies assess exposure using diseased tissues from affected individuals (i.e., evaluating tumor tissue in studying cancer cases), but they must utilize non-diseased tissues to assess control subjects, who do not have the disease of interest. This approach can lead to exposure misclassification in two ways. First, concerning the “when” of exposure assessment, retrospective assessment of tissues may not accurately measure exposure at the key earlier timepoint (i.e., during the etiologic window). Second, concerning the “where” of exposure assessment, use of different tissues in cases and controls can have different accuracy for detecting the exposure (i.e., differential exposure misclassification). We present an example concerning the association of human papillomavirus with various cancers, where tumor-based case-control studies likely overestimate risk associated with infection. In another example, we illustrate how tumor-based case-control studies of Helicobacter pylori and gastric cancer underestimate risk. Tumor-based case-control studies can demonstrate infection within tumor cells, providing qualitative information regarding disease etiology. However, measures of association calculated in tumor-based case-control studies are prone to over- or under-estimating the relationship between infections and subsequent cancer risk. PMID:25063520

  15. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  16. The effect of housing temperature on the growth of CT26 tumor expressing fluorescent protein EGFP

    Science.gov (United States)

    Yuzhakova, Diana V.; Shirmanova, Marina V.; Lapkina, Irina V.; Serebrovskaya, Ekaterina O.; Lukyanov, Sergey A.; Zagaynova, Elena V.

    2016-04-01

    To date, the effect of housing temperature on tumor development in the immunocompetent mice has been studied on poorly immunogenic cancer models. Standard housing temperature 20-26°C was shown to cause chronic metabolic cold stress and promote tumor progression via suppression of the antitumor immune response, whereas a thermoneutral temperature 30-31°C was more preferable for normal metabolism of mice and inhibited tumor growth. Our work represents the first attempt to discover the potential effect of housing temperature on the development of highly immunogenic tumor. EGFP-expressing murine colon carcinoma CT26 generated in Balb/c mice was used as a tumor model. No statistically significant differences were shown in tumor incidences and growth rates at 20°C, 25°C and 30°C for non-modified CT26. Maintaining mice challenged with CT26-EGFP cells at 30°C led to complete inhibition of tumor development. In summary, we demonstrated that the housing temperature is important for the regulation of growth of highly immunogenic tumors in mice through antitumor immunity.

  17. Power-Frequency Magnetic Fields and Childhood Brain Tumors: A Case-Control Study in Japan

    Science.gov (United States)

    Saito, Tomohiro; Nitta, Hiroshi; Kubo, Osami; Yamamoto, Seiichiro; Yamaguchi, Naohito; Akiba, Suminori; Honda, Yasushi; Hagihara, Jun; Isaka, Katsuo; Ojima, Toshiyuki; Nakamura, Yosikazu; Mizoue, Tetsuya; Ito, Satoko; Eboshida, Akira; Yamazaki, Shin; Sokejima, Shigeru; Kurokawa, Yoshika; Kabuto, Michinori

    2010-01-01

    Background The strength of the association between brain tumors in children and residential power-frequency magnetic fields (MF) has varied in previous studies, which may be due in part to possible misclassification of MF exposure. This study aimed to examine this association in Japan by improving measurement techniques, and by extending measurement to a whole week. Methods This population-based case-control study encompassed 54% of Japanese children under 15 years of age. After excluding ineligible targeted children, 55 newly diagnosed brain tumor cases and 99 sex-, age-, and residential area-matched controls were included in the analyses. The MF exposures of each set of matching cases and controls were measured in close temporal proximity to control for seasonal variation; the average difference was 12.4 days. The mean interval between diagnosis and MF measurements was 1.1 years. The weekly mean MF level was defined as the exposure. The association was evaluated using conditional logistic regression analysis that controlled for possible confounding factors. Results The odds ratios (95% CI) for exposure categories of 0.1 to 0.2, 0.2 to 0.4, and above 0.4 µT, against a reference category of <0.1 µT, were 0.74 (0.17–3.18), 1.58 (0.25–9.83), and 10.9 (1.05–113), respectively, after adjusting for maternal education. This dose-response pattern was stable when other variables were included in the model as possible confounding factors. Conclusions A positive association was found between high-level exposure—above 0.4 µT—and the risk of brain tumors. This association could not be explained solely by confounding factors or selection bias. PMID:19915304

  18. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    Science.gov (United States)

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  19. IMRT for Sinonasal Tumors Minimizes Severe Late Ocular Toxicity and Preserves Disease Control and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Duprez, Frederic, E-mail: frederic.duprez@ugent.be [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Madani, Indira; Morbee, Lieve [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Bonte, Katrien; Deron, Philippe; Domjan, Vilmos [Department of Head and Neck Surgery, Ghent University Hospital, Ghent (Belgium); Boterberg, Tom; De Gersem, Werner; De Neve, Wilfried [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium)

    2012-05-01

    Purpose: To report late ocular (primary endpoint) and other toxicity, disease control, and survival (secondary endpoints) after intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between 1998 and 2009, 130 patients with nonmetastatic sinonasal tumors were treated with IMRT at Ghent University Hospital. Prescription doses were 70 Gy (n = 117) and 60-66 Gy (n = 13) at 2 Gy per fraction over 6-7 weeks. Most patients had adenocarcinoma (n = 82) and squamous cell carcinoma (n = 23). One hundred and one (101) patients were treated postoperatively. Of 17 patients with recurrent tumors, 9 were reirradiated. T-stages were T1-2 (n = 39), T3 (n = 21), T4a (n = 38), and T4b (n = 22). Esthesioneuroblastoma was staged as Kadish A, B, and C in 1, 3, and 6 cases, respectively. Results: Median follow-up was 52, range 15-121 months. There was no radiation-induced blindness in 86 patients available for late toxicity assessment ({>=}6 month follow-up). We observed late Grade 3 tearing in 10 patients, which reduced to Grade 1-2 in 5 patients and Grade 3 visual impairment because of radiation-induced ipsilateral retinopathy and neovascular glaucoma in 1 patient. There was no severe dry eye syndrome. The worst grade of late ocular toxicity was Grade 3 (n = 11), Grade 2 (n = 31), Grade 1 (n = 33), and Grade 0 (n = 11). Brain necrosis and osteoradionecrosis occurred in 6 and 1 patients, respectively. Actuarial 5-year local control and overall survival were 59% and 52%, respectively. On multivariate analysis local control was negatively affected by cribriform plate and brain invasion (p = 0.044 and 0.029, respectively) and absence of surgery (p = 0.009); overall survival was negatively affected by cribriform plate and orbit invasion (p = 0.04 and <0.001, respectively) and absence of surgery (p = 0.001). Conclusions: IMRT for sinonasal tumors allowed delivering high doses to targets at minimized ocular toxicity, while maintaining disease control and survival

  20. A pilot randomized control study to evaluate endoscopic resection using a ligation device for rectal carcinoid tumors

    Institute of Scientific and Technical Information of China (English)

    Hiroyuki Sakata; Sadahiro Amemori; Kotaro Mannen; Masanobu Mizuguchi; Kazuma Fujimoto; Ryuichi Iwakiri; Akifumi Ootani; Seiji Tsunada; Shinichi Ogata; Hibiki Ootani; Ryo Shimoda; Kanako Yamaguchi; Yasuhisa Sakata

    2006-01-01

    AIM: Rectal carcinoid tumors smaller than 10 mm can be resected with local excision using endoscopy. In order to remove rectal carcinoid tumors completely, we evaluated endoscopic mucosal resection with a ligation device in this pilot control randomized study.METHODS: Fifteen patients were diagnosed with rectal carcinoid tumor (less than 10 mm) in our hospital from 1993 to 2002. There were 9 males and 6 females,with a mean age 61.5 years (range, 34-77 years).The patientshad no complaints of carcinoid syndrome symptoms. Fifteen patients were randomly divided into 2 groups: 7 carcinoid tumors were treated by conventional endoscopic resection, and 8 carcinoid tumors were treated by endoscopic resection using a ligation device.RESULTS: All rectal carcinoid tumors were located at the middle to distal rectum. The size of the tumors varied from 3 mm to 10 mm and background characteristics of the patients were not different in the two groups.The rate of complete removal of carcinoid tumors using a ligation device (100%, 8/8) was significantly higher than that of conventional endoscopic resection (57.1%,4/7). The three patients had tumor involvement of deep margin, for which additional treatment was performed.No complications occurred during or after endoscopic resection using a ligation device. All patients in the both groups were alive during the 3-year observation period.CONCLUSION: Endoscopic resection using a ligation device is a useful and safe method for resection of small rectal carcinoid tumors.

  1. A pilot randomized control study to evaluate endoscopic resection using a ligation device for rectal carcinoid tumors

    Science.gov (United States)

    Sakata, Hiroyuki; Iwakiri, Ryuichi; Ootani, Akifumi; Tsunada, Seiji; Ogata, Shinichi; Ootani, Hibiki; Shimoda, Ryo; Yamaguchi, Kanako; Sakata, Yasuhisa; Amemori, Sadahiro; Mannen, Kotaro; Mizuguchi, Masanobu; Fujimoto, Kazuma

    2006-01-01

    AIM: Rectal carcinoid tumors smaller than 10 mm can be resected with local excision using endoscopy. In order to remove rectal carcinoid tumors completely, we evaluated endoscopic mucosal resection with a ligation device in this pilot control randomized study. METHODS: Fifteen patients were diagnosed with rectal carcinoid tumor (less than 10 mm) in our hospital from 1993 to 2002. There were 9 males and 6 females, with a mean age 61.5 years (range, 34-77 years). The patients had no complaints of carcinoid syndrome symptoms. Fifteen patients were randomly divided into 2 groups: 7 carcinoid tumors were treated by conventional endoscopic resection, and 8 carcinoid tumors were treated by endoscopic resection using a ligation device. RESULTS: All rectal carcinoid tumors were located at the middle to distal rectum. The size of the tumors varied from 3 mm to 10 mm and background characteristics of the patients were not different in the two groups. The rate of complete removal of carcinoid tumors using a ligation device (100%, 8/8) was significantly higher than that of conventional endoscopic resection (57.1%, 4/7). The three patients had tumor involvement of deep margin, for which additional treatment was performed. No complications occurred during or after endoscopic resection using a ligation device. All patients in the both groups were alive during the 3-year observation period. CONCLUSION: Endoscopic resection using a ligation device is a useful and safe method for resection of small rectal carcinoid tumors. PMID:16810752

  2. Local control of extra-abdominal desmoid tumors: systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Michelle A. Ghert

    2013-02-01

    Full Text Available The local control of desmoid tumors constitutes a continuing treatment dilemma due to its high recurrence rates. The purpose of this systematic review was to critically examine the current treatment of these rare tumors and to specifically evaluate the local failure and response rates of surgery, radiation and systemic therapy. We comprehensively searched the literature for relevant studies across Cinahl, Embase, Medline and the Cochrane databases. Articles were categorized as surgery, radiation, surgery + radiation and systemic therapy (including cytotoxic and non cytotoxic. Methodological quality of included studies was assessed using the Newcastle-Ottawa Scale. Pooled odd ratios (OR for comparative studies and weighted proportions with 95% confidence intervals (CI are reported. Thirty-five articles were included in the final analysis. Weighted mean local failure rates were 22% [95% CI (16-28%], 35% [95% CI (26-44%] and 28% [95% CI (18-39%] for radiation alone, surgery alone and surgery + radiation respectively. In the analysis of comparative studies, surgery and radiation in combination had lower local failure rates than radiation alone [OR 0.7 (0.4, 1.2] and surgery alone [OR 0.7 (0.4, 1.0]. Weighted mean stable disease rates were 91% [95% CI (85-96%] and 52% [95% CI (38-65%] for non cytotoxic and cytotoxic chemotherapy respectively. The current evidence suggests that surgery alone has a consistently high rate of local recurrence in managing extra-abdominal desmoid tumors. Radiation therapy in combination with surgery improves local control rates. However, the limited data on systemic therapy for this rare tumor suggests the benefit of using both cytotoxic and non cytotoxic chemotherapy to achieve stable disease.

  3. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    OpenAIRE

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-01-01

    Cyclin dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint (1). More recently, Wang et al (2007) found that C53/LZAP may function as a tumor suppressor via inhibiting NF-κB signaling (2). We report here identification of C53 protein as a novel...

  4. Anterior gradient protein 3 is associated with less aggressive tumors and better outcome of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Obacz J

    2015-06-01

    Full Text Available Joanna Obacz,1 Veronika Brychtova,1 Jan Podhorec,1 Pavel Fabian,2 Petr Dobes,1 Borivoj Vojtesek,1 Roman Hrstka1 1Regional Centre for Applied Molecular Oncology (RECAMO, 2Department of Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic Abstract: Anterior gradient protein (AGR 3 is a highly related homologue of pro-oncogenic AGR2 and belongs to the family of protein disulfide isomerases. Although AGR3 was found in breast, ovary, prostate, and liver cancer, it remains of yet poorly defined function in tumo-rigenesis. This study aimed to determine AGR3 expression in a cohort of 129 primary breast carcinomas and evaluate the clinical and prognostic significance of AGR3 in these tumors. The immunohistochemical analysis revealed the presence of AGR3 staining to varying degrees in 80% of analyzed specimens. The percentage of AGR3-positive cells significantly correlated with estrogen receptor, progesterone receptor (both P<0.0001 as well as low histological grade (P=0.003, and inversely correlated with the level of Ki-67 expression (P<0.0001. In the whole cohort, AGR3 expression was associated with longer progression-free survival (PFS, whereas AGR3-positive subgroup of low-histological grade tumors showed both significantly longer PFS and overall survival. In conclusion, AGR3 is associated with the level of differentiation, slowly proliferating tumors, and more favorable prognosis of breast cancer patients. Keywords: AGR3, patient survival, protein disulfide isomerase, ER-positive breast cancer, immuno­histochemistry

  5. Characterization of parathyroid hormone/parathyroid hormone-related protein receptor and signaling in hypercalcemic Walker 256 tumor cells.

    Science.gov (United States)

    Esbrit, P; Benítez-Verguizas, J; de Miguel, F; Valín, A; García-Ocaña, A

    2000-07-01

    Parathyroid hormone (PTH)-related protein (PTHrP) is the main factor responsible for humoral hypercalcemia of malignancy. Both PTH and PTHrP bind to the common type I PTH/PTHrP receptor (PTHR), thereby activating phospholipase C and adenylate cyclase through various G proteins, in bone and renal cells. However, various normal and transformed cell types, including hypercalcemic Walker 256 (W256) tumor cells, do not produce cAMP after PTHrP stimulation. We characterized the PTHrP receptor and the signaling mechanism upon its activation in the latter cells. Scatchard analysis of PTHrP-binding data in W256 tumor cells revealed the presence of high affinity binding sites with an apparent K(d) of 17 nM, and a density of 90 000 sites/cell. In addition, W256 tumor cells immunostained with an anti-PTHR antibody, recognizing its extracellular domain. Furthermore, reverse transcription followed by PCR, using primers amplifying two different regions in the PTHR cDNA corresponding to the N- and C-terminal domains, yielded products from W256 tumor cell RNA which were identical to the corresponding products obtained from rat kidney RNA. Consistent with our previous findings on cAMP production, 1 microM PTHrP(1-34), in contrast to 10 microg/ml cholera toxin or 1 microM isoproterenol, failed to affect protein kinase A activity in W256 tumor cells. However, in these cells we found a functional PTHR coupling to G(alpha)(q/11), whose presence was demonstrated in these tumor cell membranes by Western blot analysis. Our findings indicate that W256 tumor cells express the PTHR, which seems to be coupled to G(alpha)(q/11). Taken together with previous data, these results support the hypothesis that a switch from the cAMP pathway to the phospholipase C-intracellular calcium pathway, associated with PTHR activation, occurs in malignant cells.

  6. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect.

    Directory of Open Access Journals (Sweden)

    Peiyuan Jia

    Full Text Available p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH, as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R, was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.

  7. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family.

    Science.gov (United States)

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M

    2016-05-19

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems.

  8. A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A.

    Science.gov (United States)

    Ottmann, Christian; Weyand, Michael; Sassa, Takeshi; Inoue, Takatsugu; Kato, Nobuo; Wittinghofer, Alfred; Oecking, Claudia

    2009-03-06

    Cotylenin A, a fungal metabolite originally described as a cytokinin-like bioactive substance against plants shows differentiation-inducing and anti-tumor activity in certain human cancers. Here, we present the crystal structure of cotylenin A acting on a 14-3-3 regulatory protein complex. By comparison with the closely related, but non-anticancer agent fusicoccin A, a rationale for the activity of cotylenin A in human cancers is presented. This class of fusicoccane diterpenoids are possible general modulators of 14-3-3 protein-protein interactions. In this regard, specificities for individual 14-3-3/target protein complexes might be achieved by varying the substituent pattern of the diterpene ring system. As the different activities of fusicoccin A and cotylenin A in human cancers suggest, hydroxylation of C12 might be a sufficient determinant of structural specificity.

  9. Optimal distributed control of a diffuse interface model of tumor growth

    Science.gov (United States)

    Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen

    2017-06-01

    In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by Hawkins-Daruud et al in Hawkins-Daruud et al (2011 Int. J. Numer. Math. Biomed. Eng. 28 3-24). The model consists of a Cahn-Hilliard equation for the tumor cell fraction φ coupled to a reaction-diffusion equation for a function σ representing the nutrient-rich extracellular water volume fraction. The distributed control u monitors as a right-hand side of the equation for σ and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables. The financial support of the FP7-IDEAS-ERC-StG #256872 (EntroPhase) and of the project Fondazione Cariplo-Regione Lombardia MEGAsTAR ‘Matematica d’Eccellenza in biologia ed ingegneria come accelleratore di una nuona strateGia per l’ATtRattività dell’ateneo pavese’ is gratefully acknowledged. The paper also benefited from the support of the MIUR-PRIN Grant 2015PA5MP7 ‘Calculus of Variations’ for PC and GG, and the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) for PC, GG and ER.

  10. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  11. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection.

    Science.gov (United States)

    Fridman, Rafael; Benton, Gabriel; Aranoutova, Irina; Kleinman, Hynda K; Bonfil, R Daniel

    2012-05-17

    This protocol requires 2-4 h and presents a method for injecting tumor cells, cancer stem cells or dispersed biopsy material into subcutaneous or orthotopic locations within recipient mice. The tumor cells or biopsy are mixed with basement membrane matrix proteins (CultrexBME or Matrigel) at 4 °C and then injected into recipient animals at preferred anatomical sites. Tumor cells can also be co-injected with additional cell types, such as fibroblasts, stromal cells, endothelial cells and so on. Details are given on appropriate cell numbers, handling and concentration of the basement membrane proteins, recipient animals, injection location and techniques. This procedure enables the growth of tumors from cells or biopsy material (tumor graft) with greater efficiency of take and growth, and with retention of the primary tumor phenotype based on histology. Co-injection with additional cell types provides more physiological models of human cancers for use in drug screening and studying cancer biology.

  12. The diagnostic value of tumor abnormal protein and high sensitivity C reactive protein in screening for endometrial cancer with endometrial thickness less than 8 mm

    Institute of Scientific and Technical Information of China (English)

    Yi Li; Ruiqin Yue; Dongrui Qin; Yanqing Wang; Xinling Zhou; Xinyong Jing; Chuanzhong Wu

    2016-01-01

    Objective This study aimed to combine tumor abnormal protein (TAP) and high-sensitivity C-reactive protein (hs-CRP) level detection to diagnose endometrial cancer in patients with endometrial thickness less than 8 mm, and to provide a reference for clinical screening and diagnosis. Methods Clinical data from 19 cases of endometrial cancer, diagnosed on the basis of pathological find-ings, were col ected from September 2014 to December 2015. The inclusion criteria were as fol ows: the patients were first diagnosed with endometrial thickness less than 8 mm and were al in menopause. Peri-menopausal patients (n = 26) with uterine fibroids seen during the same period were selected as a control group. Serum TAP and hs-CRP levels of the patients in the two groups were simultaneously determined on admission. Results We found that both TAP and hs-CRP levels in the experimental group were higher than those in the control group [(182.95 ± 72.14) μm2 vs. (133.19 ± 55.18) μm2, P = 0.019; (7.52 ± 19.03) mg/L vs. (1.66 ± 2.31) mg/L, P = 0.136]. The sensitivity of TAP for the diagnosis of endometrial cancer was 73.68%, the specificity was 69.23%, and the Youden index was 0.4291. The diagnostic sensitivity and specificity of hs-CRP was 15.79% and 100%, respectively, and the Youden index was 0.1579. After plotting the receiver operating characteristics curves, the optimal cut-of value for TAP in diagnosing endometrial cancer was found to be 160.662 μm2 and that for hs-CRP was 1.07 mg/L. Conclusion For patients suspected of having endometrial cancer with endometrial thickness less than 8 mm, combined detection of TAP and hs-CRP levels can be used as a screening tool and can provide new ideas regarding clinical diagnosis and treatment.

  13. Serum protein fingerprinting coupled with artificial neural network distinguishes glioma from healthy population or brain benign tumor

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; ZHENG Shu; YU Jie-kai; ZHANG Jian-min; CHEN Zhe

    2005-01-01

    To screen and evaluate protein biomarkers for the detection of gliomas (Astrocytoma grade Ⅰ-Ⅳ) from healthy individuals and gliomas from brain benign tumors by using surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS) coupled with an artificial neural network (ANN) algorithm. SELDI-TOF-MS protein fingerprinting of serum from 105 brain tumor patients and healthy individuals, included 28 patients with glioma (Astrocytoma Ⅰ-Ⅳ), 37 patients with brain benign tumor, and 40 age-matched healthy individuals. Two thirds of the total samples of every compared pair as training set were used to set up discriminating patterns, and one third of total samples of every compared pair as test set were used to cross-validate; simultaneously, discriminate-cluster analysis derived SPSS 10.0 software was used to compare Astrocytoma grade Ⅰ-Ⅱ with grade Ⅲ-Ⅳ ones. An accuracy of 95.7%, sensitivity of 88.9%, specificity of 100%, positive predictive value of 90% and negative predictive value of 100% were obtained in a blinded test set comparing gliomas patients with healthy individuals; an accuracy of 86.4%, sensitivity of 88.9%, specificity of 84.6%, positive predictive value of 90% and negative predictive value of 85.7% were obtained when patient's gliomas was compared with benign brain tumor. Total accuracy of 85.7%, accuracy of grade Ⅰ-Ⅱ Astrocytoma was 86.7%, accuracy ofⅢ-Ⅳ Astrocytoma was 84.6% were obtained when grade Ⅰ-Ⅱ Astrocytoma was compared with grade Ⅲ-Ⅳ ones (discriminant analysis). SELDI-TOF-MS combined with bioinformatics tools, could greatly facilitate the discovery of better biomarkers. The high sensitivity and specificity achieved by the use of selected biomarkers showed great potential application for the discrimination of gliomas patients from healthy individuals and glioma from brain benign tumors.

  14. Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Avanzo, Michele; Stancanello, Joseph; Franchin, Giovanni; Sartor, Giovanna; Jena, Rajesh; Drigo, Annalisa; Dassie, Andrea; Gigante, Marco; Capra, Elvira [Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Research and Clinical Collaborations, Siemens Healthcare, Erlangen 91052 (Germany); Department of Radiation Oncology, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ (United Kingdom); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Radiation Oncology, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy)

    2010-04-15

    Purpose: To extend the application of current radiation therapy (RT) based tumor control probability (TCP) models of nasopharyngeal carcinoma (NPC) to include the effects of hypoxia and chemoradiotherapy (CRT). Methods: A TCP model is described based on the linear-quadratic model modified to account for repopulation, chemotherapy, heterogeneity of dose to the tumor, and hypoxia. Sensitivity analysis was performed to determine which parameters exert the greatest influence on the uncertainty of modeled TCP. On the basis of the sensitivity analysis, the values of specific radiobiological parameters were set to nominal values reported in the literature for NPC or head and neck tumors. The remaining radiobiological parameters were determined by fitting TCP to clinical local control data from published randomized studies using both RT and CRT. Validation of the model was performed by comparison of estimated TCP and average overall local control rate (LCR) for 45 patients treated at the institution with conventional linear-accelerator-based or helical tomotherapy based intensity-modulated RT and neoadjuvant chemotherapy. Results: Sensitivity analysis demonstrates that the model is most sensitive to the radiosensitivity term {alpha} and the dose per fraction. The estimated values of {alpha} and OER from data fitting were 0.396 Gy{sup -1} and 1.417. The model estimate of TCP (average 90.9%, range 26.9%-99.2%) showed good correlation with the LCR (86.7%). Conclusions: The model implemented in this work provides clinicians with a useful tool to predict the success rate of treatment, optimize treatment plans, and compare the effects of multimodality therapy.

  15. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders

    Science.gov (United States)

    Volpi, Vera G.; Touvier, Thierry; D'Antonio, Maurizio

    2017-01-01

    Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia. PMID:28101003

  16. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery.

    Science.gov (United States)

    Wang, Christine E; Stayton, Patrick S; Pun, Suzie H; Convertine, Anthony J

    2015-12-10

    The development of drug delivery systems based on well-defined polymer nanostructures could lead to significant improvements in the treatment of cancer. The design of these therapeutic nanosystems must account for numerous systemic and circulation obstacles as well as the specific pathophysiology of the tumor. Nanoparticle size and surface charge must also be carefully selected in order to maintain long circulation times, allow tumor penetration, and avoid clearance by the reticuloendothelial system (RES). Targeting ligands such as vitamins, peptides, and antibodies can improve the accumulation of nanoparticle-based therapies in tumor tissue but must be optimized to allow for intratumoral penetration. In this review, we will highlight factors influencing the design of nanoparticle therapies as well as the development of modern controlled "living" polymerization techniques (e.g. ATRP, RAFT, ROMP) that are leading to the creation of sophisticated new polymer architectures with discrete spatially-defined functional modules. These innovative materials (e.g. star polymers, polymer brushes, macrocyclic polymers, and hyperbranched polymers) combine many of the desirable properties of traditional nanoparticle therapies while substantially reducing or eliminating the need for complex formulations.

  17. N-Nitroso compounds and childhood brain tumors: a case-control study.

    Science.gov (United States)

    Preston-Martin, S; Yu, M C; Benton, B; Henderson, B E

    1982-12-01

    We questioned mothers of 209 young brain tumor patients and mothers of 209 controls about experiences of possible etiological relevance which they had during pregnancy or which their children had while growing up. Long-suspected brain tumor risk factors such as head trauma and X-rays appeared to be factors for relatively few cases. Increased risk was associated with maternal contact with nitrosamine-containing substances such as burning incense (odds ratio, 3.3; p = 0.005), sidestream cigarette smoke (odds ratio, 1.5; p = 0.03), and face makeup (odds ratio, 1.6; p = 0.02); with maternal use of diuretics (odds ratio, 2.0; p = 0.03) and antihistamines (odds ratio, 3.4; p = 0.002); and with the level of maternal consumption of cured meats (p = 0.008). These drugs contain nitrosatable amines and amides, and the cured meats contain nitrites, chemicals which are precursors of N-nitroso compounds. We propose a hypothesis that brain tumors in these young people are related to in utero exposure to N-nitroso compounds and their precursors, the most potent nervous system carcinogens known in experimental animals.

  18. Characterization of native 40 S particles from Krebs II mouse ascites tumor cells: resolution, nomenclature and molecular weights of the nonribosomal proteins

    DEFF Research Database (Denmark)

    Reichert, G; Issinger, O G

    1981-01-01

    Native 40 S particles from Krebs II mouse ascites tumor cells were isolated on a large scale. A nonribosomal protein moiety of about 30 proteins could be removed from the ribosomal particles by treatment with 250 mM KCl. These proteins were analysed by two-dimensional polyacrylamide gel electroph...

  19. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  20. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    Science.gov (United States)

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  1. The ubiquitin+proteasome protein degradation pathway as a therapeutic strategy in the treatment of solid tumor malignancies.

    Science.gov (United States)

    Driscoll, James J; Minter, Alex; Driscoll, Daniel A; Burris, Jason K

    2011-02-01

    A concept that currently steers the development of cancer therapies has been that agents directed against specific proteins that facilitate tumorigenesis or maintain a malignant phenotype will have greater efficacy, less toxicity and a more sustained response relative to traditional cytotoxic chemotherapeutic agents. The clinical success of the targeted agent Imatinib mesylate as an inhibitor of the tyrosine kinase associated with the breakpoint cluster region-Abelson oncogene locus (BCR-ABL) in the treatment of Philadelphia-positive chronic myelogenous leukemia (CML) has served as a paradigm. While intellectually gratifying, the selective targeting of a single driver event by a small molecule, e.g., kinase inhibitor, to dampen a tumor-promoting pathway in the treatment of solid tumors is limited by many factors. Focus can alternatively be placed on targeting fundamental cellular processes that regulate multiple events, e.g., protein degradation, through the Ubiquitin (Ub)+Proteasome System (UPS). The UPS plays a critical role in modulating numerous cellular proteins to regulate cellular processes such as signal transduction, growth, proliferation, differentiation and apoptosis. Clinical success with the proteasome inhibitor bortezomib revolutionized treatment of B-cell lineage malignancies such as Multiple Myeloma (MM). However, many patients harbor primary resistance and do not respond to bortezomib and those that do respond inevitably develop resistance (secondary resistance). The lack of clinical efficacy of proteasome inhibitors in the treatment of solid tumors may be linked mechanistically to the resistance detected during treatment of hematologic malignancies. Potential mechanisms of resistance and means to improve the response to proteasome inhibitors in solid tumors are discussed.

  2. Genetic modelling of PIM proteins in cancer: proviral tagging, cooperation with oncogenes, tumor suppressor genes and carcinogens.

    Directory of Open Access Journals (Sweden)

    Enara eAguirre

    2014-05-01

    Full Text Available The PIM proteins, which were initially discovered as proviral insertion sites in Moloney murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anticancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim and a third group of genes (including bmi1 and gfi1 as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all 3 isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.

  3. Quality control of the proteins associated with neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Xuechao Gao; Hongyu Hu

    2008-01-01

    Most neurodegenerative diseases including Alzheimer'sdisease,Parkinson's disease,Huntington's disease and other polyglutamine diseases are associated with degeneration and death of specific neuronal populations due to misfolding or aggregation of certain proteins.These aggregates often contain ubiquitin that is the signal for proteolysis by the ubiquitin-proteasome system,and chaperone proteins that are involved in the assistance of protein folding.Here we review the role of protein quality control systems in the pathogenesis of neurodegenerative diseases,and aim to learn more from the cooperation between molecular chaperones and ubiquitin-proteasome system responding to cellular protein aggregates,in order to find molecular targets for therapeutic intervention.

  4. Vaccinia complement control protein: Multi-functional protein and a potential wonder drug

    Indian Academy of Sciences (India)

    Purushottam Jha; Girish J Kotwal

    2003-04-01

    Vaccinia virus complement control protein (VCP) was one of the first viral molecules demonstrated to have a role in blocking complement and hence in the evasion of host defense. Structurally it is very similar to the human C4b-BP and the other members of complement control protein. Functionally it is most similar to the CR1 protein. VCP blocks both major pathways of complement activation. The crystal structure of VCP was determined a little over a year ago and it is the only known structure of an intact and complete complement control protein. In addition to binding complement, VCP also binds to heparin. These two binding abilities can take place simultaneously and contribute to its many function and to its potential use in several inflammatory diseases, e.g. Alzheimer’s disease (AD), CNS injury, xenotransplantation, etc. making it a truly fascinating molecule and potential drug.

  5. Modeling tumor control probability for spatially inhomogeneous risk of failure based on clinical outcome data.

    Science.gov (United States)

    Lühr, Armin; Löck, Steffen; Jakobi, Annika; Stützer, Kristin; Bandurska-Luque, Anna; Vogelius, Ivan Richter; Enghardt, Wolfgang; Baumann, Michael; Krause, Mechthild

    2017-07-01

    Objectives of this work are (1) to derive a general clinically relevant approach to model tumor control probability (TCP) for spatially variable risk of failure and (2) to demonstrate its applicability by estimating TCP for patients planned for photon and proton irradiation. The approach divides the target volume into sub-volumes according to retrospectively observed spatial failure patterns. The product of all sub-volume TCPi values reproduces the observed TCP for the total tumor. The derived formalism provides for each target sub-volume i the tumor control dose (D50,i) and slope (γ50,i) parameters at 50% TCPi. For a simultaneous integrated boost (SIB) prescription for 45 advanced head and neck cancer patients, TCP values for photon and proton irradiation were calculated and compared. The target volume was divided into gross tumor volume (GTV), surrounding clinical target volume (CTV), and elective CTV (CTVE). The risk of a local failure in each of these sub-volumes was taken from the literature. Convenient expressions for D50,i and γ50,i were provided for the Poisson and the logistic model. Comparable TCP estimates were obtained for photon and proton plans of the 45 patients using the sub-volume model, despite notably higher dose levels (on average +4.9%) in the low-risk CTVE for photon irradiation. In contrast, assuming a homogeneous dose response in the entire target volume resulted in TCP estimates contradicting clinical experience (the highest failure rate in the low-risk CTVE) and differing substantially between photon and proton irradiation. The presented method is of practical value for three reasons: It (a) is based on empirical clinical outcome data; (b) can be applied to non-uniform dose prescriptions as well as different tumor entities and dose-response models; and (c) is provided in a convenient compact form. The approach may be utilized to target spatial patterns of local failures observed in patient cohorts by prescribing different doses to

  6. Optimal control oriented to therapy for a free-boundary tumor growth model.

    Science.gov (United States)

    Calzada, M Carmen; Fernández-Cara, Enrique; Marín, Mercedes

    2013-05-21

    This paper is devoted to present and solve some optimal control problems, oriented to therapy, for a particular model of tumor growth. In the considered systems, the state is given by one or several functions that provide information on the cell population and also the tumor shape evolution and the control is a time dependent function associated to the therapy strategy (in practice, a cytotoxic drug). We first present and analyze the model (based on PDEs) and the related optimal control problems. The solutions are expected to provide the best therapy strategies for a given set of constraints (here, the cost or objective function is a measure of the number of cells at a given final time T). We also recall some mathematical techniques for solving the related optimization problems and we illustrate the behavior of the methods and the validity of the models with several numerical experiments. In view of the results, we are able to design appropriate strategies that, at least to some extent, are confirmed by real data. Finally, we present some conclusions and indications on future work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Cryotherapy with concurrent CpG oligonucleotide treatment controls local tumor recurrence and modulates Her2/neu immunity

    Science.gov (United States)

    Veenstra, Jesse J.; Gibson, Heather M.; Littrup, Peter J.; Reyes, Joyce D.; Cher, Michael L.; Takashima, Akira; Wei, Wei-Zen

    2014-01-01

    Percutaneous cryoablation is a minimally invasive procedure for tumor destruction, which can potentially initiate or amplify antitumor immunity through the release of tumor-associated antigens. However, clinically efficacious immunity is lacking and regional recurrences are a limiting factor relative to surgical excision. To understand the mechanism of immune activation by cryoablation, comprehensive analyses of innate immunity and Her2/neu humoral and cellular immunity following cryoablation with or without peritumoral CpG injection was conducted using two Her2/neu+ tumor systems in wild type, neu-tolerant, and SCID mice. Cryoablation of neu+ TUBO tumor in BALB/c mice resulted in systemic immune priming, but not in neu-tolerant BALB NeuT mice. Cryoablation of human Her2+ D2F2/E2 tumor enabled the functionality of tumor-induced immunity but secondary tumors were refractory to anti-tumor immunity if rechallenge occurred during the resolution phase of the cryoablated tumor. A step-wise increase in local recurrence was observed in wild type, neu-tolerant, and SCID mice indicating a role of adaptive immunity in controlling residual tumor foci. Importantly, local recurrences were eliminated or greatly reduced in wild type, neu tolerant and SCID mice when CpG was incorporated in the cryoablation regimen, showing significant local control by innate immunity. For long-term protection, however, adaptive immunity was required because most SCID mice eventually succumbed to local tumor recurrence even with combined cryoablation and CpG treatment. This improved understanding of the mechanisms by which cryoablation affects innate and adaptive immunity will help guide appropriate combination of therapeutic interventions to improve treatment outcomes. PMID:25092895

  8. Protein damage and repair controlling seed vigor and longevity.

    Science.gov (United States)

    Ogé, Laurent; Broyart, Caroline; Collet, Boris; Godin, Béatrice; Jallet, Denis; Bourdais, Gildas; Job, Dominique; Grappin, Philippe

    2011-01-01

    The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

  9. Validation of tumor protein marker quantification by two independent automated immunofluorescence image analysis platforms

    Science.gov (United States)

    Peck, Amy R; Girondo, Melanie A; Liu, Chengbao; Kovatich, Albert J; Hooke, Jeffrey A; Shriver, Craig D; Hu, Hai; Mitchell, Edith P; Freydin, Boris; Hyslop, Terry; Chervoneva, Inna; Rui, Hallgeir

    2016-01-01

    Protein marker levels in formalin-fixed, paraffin-embedded tissue sections traditionally have been assayed by chromogenic immunohistochemistry and evaluated visually by pathologists. Pathologist scoring of chromogen staining intensity is subjective and generates low-resolution ordinal or nominal data rather than continuous data. Emerging digital pathology platforms now allow quantification of chromogen or fluorescence signals by computer-assisted image analysis, providing continuous immunohistochemistry values. Fluorescence immunohistochemistry offers greater dynamic signal range than chromogen immunohistochemistry, and combined with image analysis holds the promise of enhanced sensitivity and analytic resolution, and consequently more robust quantification. However, commercial fluorescence scanners and image analysis software differ in features and capabilities, and claims of objective quantitative immunohistochemistry are difficult to validate as pathologist scoring is subjective and there is no accepted gold standard. Here we provide the first side-by-side validation of two technologically distinct commercial fluorescence immunohistochemistry analysis platforms. We document highly consistent results by (1) concordance analysis of fluorescence immunohistochemistry values and (2) agreement in outcome predictions both for objective, data-driven cutpoint dichotomization with Kaplan–Meier analyses or employment of continuous marker values to compute receiver-operating curves. The two platforms examined rely on distinct fluorescence immunohistochemistry imaging hardware, microscopy vs line scanning, and functionally distinct image analysis software. Fluorescence immunohistochemistry values for nuclear-localized and tyrosine-phosphorylated Stat5a/b computed by each platform on a cohort of 323 breast cancer cases revealed high concordance after linear calibration, a finding confirmed on an independent 382 case cohort, with concordance correlation coefficients >0

  10. Controlling micro- and nano-environment of tumor and stem cells for novel research and therapy of brain cancer

    Science.gov (United States)

    Smith, Christopher Lloyd

    The use of modern technologies in cancer research has engendered a great deal of excitement. Many of these advanced approaches involve in-depth mathematical analyses of the inner working of cells, via genomic and proteomic analyses. However these techniques may not be ideal for the study of complex cell phenotypes and behaviors. This dissertation explores cancer and potential therapies through phenotypic analysis of cell behaviors, an alternative approach. We employ this experimental framework to study brain cancer (glioma), a particularly formidable example of this diverse ailment. Through the application of micro- and nanotechnology, we carefully control the surrounding environments of cells to understand their responses to various cues and to manipulate their behaviors. Subsequently we obtain clinically relevant information that allows better understanding of glioma, and enhancement of potential therapies. We first aim to address brain tumor dispersal, through analysis of cell migration. Utilizing nanometer-scale topographic models of the extracellular matrix, we study the migratory response of glioma cells to various stimuli in vitro. Second, we implement knowledge gained from these investigations to define characteristics of tumor progression in patients, and to develop treatments inhibiting cell migration. Next we use microfluidic and nanotopographic models to study the behaviors of stem cells in vitro. Here we attempt to improve their abilities to deliver therapeutic proteins to cancer, an innovative treatment approach. We analyze the multi-step process by which adipose-derived stem cells naturally home to tumor sites, and identify numerous environmental perturbations to enhance this behavior. Finally, we attempt to demonstrate that these cell culture-based manipulations can enhance the localization of adipose stem cells to glioma in vivo using animal models. Throughout this work we utilize environmental cues to analyze and induce particular behaviors in

  11. Identification of Molecular Tumor Markers in Renal Cell Carcinomas with TFE3 Protein Expression by RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Dorothee Pflueger

    2013-11-01

    Full Text Available TFE3 translocation renal cell carcinoma (tRCC is defined by chromosomal translocations involving the TFE3 transcription factor at chromosome Xp11.2. Genetically proven TFE3 tRCCs have a broad histologic spectrum with overlapping features to other renal tumor subtypes. In this study,we aimed for characterizing RCC with TFE3 protein expression. Using next-generation whole transcriptome sequencing (RNA-Seq as a discovery tool, we analyzed fusion transcripts, gene expression profile, and somatic mutations in frozen tissue of one TFE3 tRCC. By applying a computational analysis developed to call chimeric RNA molecules from paired-end RNA-Seq data, we confirmed the known TFE3 translocation. Its fusion partner SFPQ has already been described as fusion partner in tRCCs. In addition, an RNAread-through chimera between TMED6 and COG8 as well as MET and KDR (VEGFR2 point mutations were identified. An EGFR mutation, but no chromosomal rearrangements, was identified in a control group of five clear cell RCCs (ccRCCs. The TFE3 tRCC could be clearly distinguished from the ccRCCs by RNA-Seq gene expression measurements using a previously reported tRCC gene signature. In validation experiments using reverse transcription-PCR, TMED6-COG8 chimera expression was significantly higher in nine TFE3 translocated and six TFE3-expressing/non-translocated RCCs than in 24 ccRCCs (P<.001 and 22 papillaryRCCs (P<.05-.07. Immunohistochemical analysis of selected genes from the tRCC gene signature showed significantly higher eukaryotic translation elongation factor 1 alpha 2 (EEF1A2 and Contactin 3 (CNTN3 expression in 16 TFE3 translocated and six TFE3-expressing/non-translocated RCCs than in over 200 ccRCCs (P < .0001, both.

  12. Non-Structural protein 1 (NS1) gene of Canine Parvovirus-2 regresses chemically induced skin tumors in Wistar rats.

    Science.gov (United States)

    Santra, Lakshman; Rajmani, R S; Kumar, G V P P S Ravi; Saxena, Shikha; Dhara, Sujoy K; Kumar, Amit; Sahoo, Aditya Prasad; Singh, Lakshya Veer; Desai, G S; Chaturvedi, Uttara; Kumar, Sudesh; Tiwari, Ashok K

    2014-10-01

    The Non-Structural protein 1 of Canine Parvovirus-2 (CPV2.NS1) plays a major role in viral cytotoxicity and pathogenicity. CPV2.NS1 has been proven to cause apoptosis in HeLa cells in vitro in our laboratory. Here we report that CPV2.NS1 has no toxic side effects on healthy cells but regresses skin tumors in Wistar rats. Histopathological examination of tumor tissue from CPV2.NS1 treated group revealed infiltration of mononuclear and polymorphonuclear cells with increased extra cellular matrix, indicating signs of regression. Tumor regression was also evidenced by significant decrease in mitotic index, AgNOR count and PCNA index, and increase in TUNEL positive apoptotic cells in CPV2.NS1 treated group. Further, CPV2.NS1 induced anti-tumor immune response through significant increase in CD8(+) and NK cell population in CPV2.NS1 treated group. These findings suggest that CPV2.NS1 can be a possible therapeutic candidate as an alternative to chemotherapy for the treatment of cancer.

  13. O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients.

    Science.gov (United States)

    Spiegl-Kreinecker, Sabine; Pirker, Christine; Filipits, Martin; Lötsch, Daniela; Buchroithner, Johanna; Pichler, Josef; Silye, Rene; Weis, Serge; Micksche, Michael; Fischer, Johannes; Berger, Walter

    2010-01-01

    O(6)-Methylguanine DNA methyltransferase (MGMT) is implicated as a major predictive factor for treatment response to alkylating agents including temozolomide (TMZ) of glioblastoma multiforme (GBM) patients. However, whether the MGMT status in GBM patients should be detected at the level of promoter methylation or protein expression is still a matter of debate. Here, we compared promoter methylation (by methylation-specific polymerase chain reaction) and protein expression (by Western blot) in tumor cell explants with respect to prediction of TMZ response and survival of GBM patients (n = 71). Methylated MGMT gene promoter sequences were detected in 47 of 71 (66%) cases, whereas 37 of 71 (52%) samples were scored positive for MGMT protein expression. Although overall promoter methylation correlated significantly with protein expression (chi(2) test, P < .001), a small subgroup of samples did not follow this association. In the multivariate Cox regression model, a significant interaction between MGMT protein expression, but not promoter methylation, and TMZ therapy was observed (test for interaction, P = .015). In patients treated with TMZ (n = 42), MGMT protein expression predicted a significantly shorter overall survival (OS; hazard ratio [HR] for death 5.53, 95% confidence interval [CI] 1.76-17.37; P = .003), whereas in patients without TMZ therapy (n = 29), no differences in OS were observed (HR for death 1.00, 95% CI 0.45-2.20; P = .99). These data suggest that lack of MGMT protein expression is superior to promoter methylation as a predictive marker for TMZ response in GBM patients.

  14. Changed adipocytokine concentrations in colorectal tumor patients and morbidly obese patients compared to healthy controls

    Directory of Open Access Journals (Sweden)

    Hillenbrand Andreas

    2012-11-01

    Full Text Available Abstract Background Obesity has been associated with increased incidence of colorectal cancer. Adipose tissue dysfunction accompanied with alterations in the release of adipocytokines has been proposed to contribute to cancer pathogenesis and progression. The aim of this study was to analyze plasma concentrations of several adipose tissue expressed hormones in colorectal cancer patients (CRC and morbidly obese (MO patients and to compare these concentrations to clinicopathological parameters. Methods Plasma concentrations of adiponectin, resistin, leptin, active plasminogen activator inhibitor (PAI-1, monocyte chemotactic protein (MCP-1, interleukin (IL-1 alpha, and tumor necrosis factor (TNF-alpha were determined in 67 patients operated on for CRC (31 rectal cancers, 36 colon cancers, 37 patients operated on for morbid obesity and 60 healthy blood donors (BD. Results Compared to BD, leptin concentrations were lowered in CRC patients whereas those of MO patients were elevated. Adiponectin concentrations were only lowered in MO patients. Concentrations of MCP-1, PAI-1, and IL-1 alpha were elevated in both CRC and MO patients, while resistin and TNF-alpha were similarly expressed in MO and CRC patients compared to BD. Resistin concentrations positively correlated with tumor staging (p Conclusions The results suggest that both MO and CRC have low-grade inflammation as part of their etiology.

  15. Influence of methionine/valine-depleted enteral nutrition on nucleic acid and protein metabolism in tumor-bearing rats

    Institute of Scientific and Technical Information of China (English)

    Yin-Cheng He; Jun Cao; Ji-Wei Chen; Ding-Yu Pan; Ya-Kui Zhou

    2003-01-01

    AIM: To investigate the effects of methionine/valine-depleted enteral nutrition (EN) on RNA, DNA and protein metabolism in tumor-bearing (TB) rats.METHODS: Sprague-Dawlley (SD) rats underwent jejunostomy for nutritional support. A suspension of Walker256 carcinosarcoma cells was subcutaneously inoculated.48 TB rats were randomly divided in 4 groups: A, B, C and D. The TB rats had respectively received jejunal feedings supplemented with balanced amino acids, methioninedepleted, balanced amino acids and valine-depleted for 6days before injection of 740 KBq 3H- methionine/valine via jejunum. The 3H incorporation rate of the radioactivity into RNA, DNA and proteins in tumor tissues at 0.5, 1, 2, 4 h postinjection of tracers was assessed with liquid scintillation counter.RESULTS: Incorporation of 3H into proteins in groups B and D was (0.500±0.020) % to (3.670±0.110) % and (0.708±0.019) % to (3.813±0.076) % respectively, lower than in groups A [(0.659±0.055) % to (4.492±0.108) %]and C r(0.805±0.098) % to (4.180±0.018) %]. Incorporation of 3H into RNA, DNA in group B was (0.237±0.075) %and (0.231±0.052) % respectively, lower than in group A (P<0.01). There was no significant difference in uptake of 3H by RNA and DNA between group C and D (P>0.05).CONCLUSION: Protein synthesis was inhibited by methionine/valine starvation in TB rats and nucleic acid synthesis was reduced after methionine depletion, thus resulting in suppression of tumor growth.

  16. Trace metals and over-expression of metallothioneins in bladder tumoral lesions: a case-control study

    Directory of Open Access Journals (Sweden)

    Cymbron Teresa

    2009-07-01

    Full Text Available Abstract Background Previous studies have provided some evidence of a possible association between cancer and metallothioneins. Whether this relates to an exposure to carcinogenic metals remains unclear. Methods In order to examine the association between the expression of metallothioneins and bladder tumors, and to compare the levels of arsenic, cadmium, chromium, lead and nickel in animals with bladder tumors and animals without bladder tumors, 37 cases of bovine bladder tumors and 17 controls were collected. The detection and quantification of metallothioneins in bladder tissue of both cases and controls was performed by immunohistochemistry. And the quantification of metals in tissue and hair was assessed by inductively coupled plasma – mass spectrometry. Results Increased expression of metallothioneins was associated with bladder tumors when compared with non-tumoral bladder tissue (OR = 9.3, 95% CI: 1.0 – 480. The concentrations of cadmium, chromium, lead and nickel in hair of cases were significantly higher than those of controls. However, as for the concentration of metals in bladder tissue, the differences were not significant. Conclusion Though the sample size was small, the present study shows an association between bladder tumors and metallothioneins. Moreover, it shows that concentrations of metals such as cadmium, chromium, lead and nickel in hair may be used as a biomarker of exposure.

  17. Dietary whey protein lowers serum C-peptide concentration and duodenal SREBP-1c mRNA abundance, and reduces occurrence of duodenal tumors and colon aberrant crypt foci in azoxymethane-treated male rats.

    Science.gov (United States)

    Xiao, Rijin; Carter, Julie A; Linz, Amanda L; Ferguson, Matthew; Badger, Thomas M; Simmen, Frank A

    2006-09-01

    We evaluated partially hydrolyzed whey protein (WPH) for inhibitory effects on the development of colon aberrant crypt foci (ACF) and intestinal tumors in azoxymethane (AOM)-treated rats. Pregnant Sprague-Dawley rats and their progeny were fed AIN-93G diets containing casein (CAS, control diet) or WPH as the sole protein source. Colons and small intestines from the male progeny were obtained at 6, 12, 20 and 23 weeks after AOM treatment. At 6 and 23 weeks, post-AOM, WPH-fed rats had fewer ACF than did CAS-fed rats. Intestinal tumors were most frequent at 23 weeks, post-AOM. At this time point, differences in colon tumor incidence with diet were not observed; however, WPH-fed rats had fewer tumors in the small intestine (7.6% vs. 26% incidence, P=.004). Partially hydrolized whey protein suppressed circulating C-peptide concentration (a stable indicator of steady-state insulin secretion) at all four time points relative to the corresponding CAS-fed animals. The relative mRNA abundance for the insulin-responsive, transcription factor gene, SREBP-1c, was reduced by WPH in the duodenum but not colon. Results indicate potential physiological linkages of dietary protein type with circulating C-peptide (and by inference insulin), local expression of SREBP-1c gene and propensity for small intestine tumorigenesis.

  18. Yeast prions are useful for studying protein chaperones and protein quality control.

    Science.gov (United States)

    Masison, Daniel C; Reidy, Michael

    2015-01-01

    Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.

  19. Expression of cell cycle and apoptosis-related proteins in ameloblastoma and keratocystic odontogenic tumor.

    Science.gov (United States)

    Metgud, Rashmi; Gupta, Kanupriya

    2013-12-01

    Tumors arising from epithelium of the odontogenic apparatus or from its derivatives or remnants exhibit considerable histologic variation and are classified into several benign and malignant entities. A high proliferative activity of the odontogenic epithelium in ameloblastoma (AM) and keratocystic odontogenic tumor (KCOT) has been demonstrated in some studies individually. However, very few previous studies have simultaneously evaluated cell proliferation and apoptotic indexes in AM and KCOT, comparing both lesions. The aim of this study was to assess and compare cell proliferation and apoptotic rates between these two tumors. Specimens of 15 solid AM and 15 KCOT were evaluated. The proliferation index (PI) was assessed by immunohistochemical detection of Ki-67 and the apoptotic index (AI) by methyl green-pyronin stain. KCOT presented a higher PI than AM (P < .05). No statistically significant difference was found in the AI between AM and KCOT. PI and AI were higher in the peripheral cells of AM and respectively in the suprabasal and superficial layers of KCOT. In conclusion, KCOT showed a higher cell proliferation than AM and the AI was similar between these tumors. These findings reinforce the classification of KCOT as an odontogenic tumor and should contribute to its aggressive clinical behavior. © 2013.

  20. Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis.

    Science.gov (United States)

    Pouliot, Normand; Kusuma, Nicole

    2013-01-01

    Laminins are major constituents of basement membranes. At least 16 isoforms have now been described, each with distinct spatio-temporal expression patterns and functions. The laminin-511 heterotrimer (α5β1γ1) is one of the more recent isoforms to be identified and a potent adhesive and pro-migratory substrate for a variety of normal and tumor cell lines in vitro. As our understanding of its precise function in normal tissues and in pathologies is rapidly unraveling, current evidence suggests an important regulatory role in cancer. This review describes published data on laminin-511 expression in several malignancies and experimental evidence from both in vitro and in vivo studies supporting its functional role during tumor progression. A particular emphasis is put on more recent studies from our laboratory and that of others indicating that laminin-511 contributes to tumor dissemination and metastasis in advanced breast carcinomas and other tumor types. Collectively, the experimental evidence suggests that high expression of laminin-511 has prognostic significance and that targeting tumor-laminin-511 interactions may have therapeutic potential in advanced cancer patients.

  1. STK25 protein mediates TrkA and CCM2 protein-dependent death in pediatric tumor cells of neural origin.

    Science.gov (United States)

    Costa, Barbara; Kean, Michelle J; Ast, Volker; Knight, James D R; Mett, Alice; Levy, Zehava; Ceccarelli, Derek F; Badillo, Beatriz Gonzalez; Eils, Roland; König, Rainer; Gingras, Anne-Claude; Fainzilber, Mike

    2012-08-24

    The TrkA receptor tyrosine kinase induces death in medulloblastoma cells via an interaction with the cerebral cavernous malformation 2 (CCM2) protein. We used affinity proteomics to identify the germinal center kinase class III (GCKIII) kinases STK24 and STK25 as novel CCM2 interactors. Down-modulation of STK25, but not STK24, rescued medulloblastoma cells from NGF-induced TrkA-dependent cell death, suggesting that STK25 is part of the death-signaling pathway initiated by TrkA and CCM2. CCM2 can be phosphorylated by STK25, and the kinase activity of STK25 is required for death signaling. Finally, STK25 expression in tumors is correlated with positive prognosis in neuroblastoma patients. These findings delineate a death-signaling pathway downstream of neurotrophic receptor tyrosine kinases that may provide targets for therapeutic intervention in pediatric tumors of neural origin.

  2. A Tumor Surveillance Model: A Non-Coding RNA Senses Neoplastic Cells and Its Protein Partner Signals Cell Death

    Directory of Open Access Journals (Sweden)

    Yong Sun Lee

    2012-10-01

    Full Text Available nc886 (= pre-miR-886 or vtRNA2-1 is a non-coding RNA that has been recently identified as a natural repressor for the activity of PKR (Protein Kinase R. The suppression of nc886 activates PKR and thereby provokes a cell death pathway. When combined with the fact that nc886 is suppressed in a wide range of cancer cells, the nc886-PKR relationship suggests a tumor surveillance model. When neoplastic cells develop and nc886 decreases therein, PKR is released from nc886 and becomes the active phosphorylated form, which initiates an apoptotic cascade to eliminate those cells. The nc886-PKR pathway is distinct from conventional mechanisms, such as the immune surveillance hypothesis or intrinsic mechanisms that check/proofread the genomic integrity, and thus represents a novel example of tumor surveillance.

  3. Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target.

    Science.gov (United States)

    Weingart, Melanie F; Roth, Jacquelyn J; Hutt-Cabezas, Marianne; Busse, Tracy M; Kaur, Harpreet; Price, Antoinette; Maynard, Rachael; Rubens, Jeffrey; Taylor, Isabella; Mao, Xing-Gang; Xu, Jingying; Kuwahara, Yasumichi; Allen, Sariah J; Erdreich-Epstein, Anat; Weissman, Bernard E; Orr, Brent A; Eberhart, Charles G; Biegel, Jaclyn A; Raabe, Eric H

    2015-02-20

    Atypical teratoid rhabdoid tumor (AT/RT) is among the most fatal of all pediatric brain tumors. Aside from loss of function mutations in the SMARCB1 (BAF47/INI1/SNF5) chromatin remodeling gene, little is known of other molecular drivers of AT/RT. LIN28A and LIN28B are stem cell factors that regulate thousands of RNAs and are expressed in aggressive cancers. We identified high-levels of LIN28A and LIN28B in AT/RT primary tumors and cell lines, with corresponding low levels of the LIN28-regulated microRNAs of the let-7 family. Knockdown of LIN28A by lentiviral shRNA in the AT/RT cell lines CHLA-06-ATRT and BT37 inhibited growth, cell proliferation and colony formation and induced apoptosis. Suppression of LIN28A in orthotopic xenograft models led to a more than doubling of median survival compared to empty vector controls (48 vs 115 days). LIN28A knockdown led to increased expression of let-7b and let-7g microRNAs and a down-regulation of KRAS mRNA. AT/RT primary tumors expressed increased mitogen activated protein (MAP) kinase pathway activity, and the MEK inhibitor selumetinib (AZD6244) decreased AT/RT growth and increased apoptosis. These data implicate LIN28/RAS/MAP kinase as key drivers of AT/RT tumorigenesis and indicate that targeting this pathway may be a therapeutic option in this aggressive pediatric malignancy.

  4. Quality control mechanisms of protein biogenesis: proteostasis dies hard

    Directory of Open Access Journals (Sweden)

    Timothy Jan Bergmann

    2016-10-01

    Full Text Available The biosynthesis of proteins entails a complex series of chemical reactions that transform the information stored in the nucleic acid sequence into a polypeptide chain that needs to properly fold and reach its functional location in or outside the cell. It is of no surprise that errors might occur that alter the polypeptide sequence leading to a non-functional proteins or that impede delivery of proteins at the appropriate site of activity. In order to minimize such mistakes and guarantee the synthesis of the correct amount and quality of the proteome, cells have developed folding, quality control, degradation and transport mechanisms that ensure and tightly regulate protein biogenesis. Genetic mutations, harsh environmental conditions or attack by pathogens can subvert the cellular quality control machineries and perturb cellular proteostasis leading to pathological conditions. This review summarizes basic concepts of the flow of information from DNA to folded and active proteins and to the variable fidelity (from incredibly high to quite sloppy characterizing these processes. We will give particular emphasis on events that maintain or recover the homeostasis of the endoplasmic reticulum (ER, a major site of proteins synthesis and folding in eukaryotic cells. Finally, we will report on how cells can adapt to stressful conditions, how perturbation of ER homeostasis may result in diseases and how these can be treated.

  5. Effect of perioperative application ofL-asrginine combined with intacted protein compound preparations on postoperative antitumor immunity and tumor load in patients with gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Xiu-Lan Jiang

    2016-01-01

    Objective:To analyze the effect of perioperative application ofL-arginine combined with intacted protein compound preparations on postoperative antitumor immunity and tumor load in patients with gastric cancer.Methods:A total of 68 patients with gastric cancer received radical operation, and according to different perioperative nutrition intervention, they were divided into control group (normal glucose saline enteral nutrition) and observation group (L-arginine combined with intacted protein compound preparations enteral nutrition) by half. Postoperative short-term antitumor immune cell levels and serum levels of illness-related indexes, nutrition and inflammation indexes of two groups were detected, patients were followed up for 3 years and the gastric stump MRI changes were observed.Results:Venous blood CD4+T lymphocyte level and CD4+/CD8+ ratio of observation group 3 months after treatment were higher than those of control group while CD8+T lymphocyte and Treg cell levels were lower than those of control group; serum Pentraxin-3, CYFRA21-1, TTF-1 and HE4 levels were lower than those of control group; ALB, PA and IL-2 levels were higher than those of control group while IL-6 and IL-10 levels were lower than those of control group (P<0.05). Gastric stump MRI images 3 years after operation were significantly different between two groups.Conclusions:Perioperative application ofL-arginine combined with intacted protein compound preparations can optimize postoperative immune and nutritional state in patients with gastric cancer, and it also has positive effect on reducing the incidence of long-term gastric stump carcinoma and other aspects.

  6. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models.

    Science.gov (United States)

    Zollo, Massimo; Di Dato, Valeria; Spano, Daniela; De Martino, Daniela; Liguori, Lucia; Marino, Natascia; Vastolo, Viviana; Navas, Luigi; Garrone, Beatrice; Mangano, Giorgina; Biondi, Giuseppe; Guglielmotti, Angelo

    2012-08-01

    Prostate and breast cancer are major causes of death worldwide, mainly due to patient relapse upon disease recurrence through formation of metastases. Chemokines are small proteins with crucial roles in the immune system, and their regulation is finely tuned in early inflammatory responses. They are key molecules during inflammatory processes, and many studies are focusing on their regulatory functions in tumor growth and angiogenesis during metastatic cell seeding and spreading. Bindarit is an anti-inflammatory indazolic derivative that can inhibit the synthesis of MCP-1/CCL2, with a potential inhibitory function in tumor progression and metastasis formation. We show here that in vitro, bindarit can modulate cancer-cell proliferation and migration, mainly through negative regulation of TGF-β and AKT signaling, and it can impair the NF-κB signaling pathway through enhancing the expression of the NF-κB inhibitor IkB-α. In vivo administration of bindarit results in impaired metastatic disease in prostate cancer xenograft mice (PC-3M-Luc2 cells injected intra-cardially) and impairment of local tumorigenesis in syngeneic Balb/c mice injected under the mammary gland with murine breast cancer cells (4T1-Luc cells). In addition, bindarit treatment significantly decreases the infiltration of tumor-associated macrophages and myeloid-derived suppressor cells in 4T1-Luc primary tumors. Overall, our data indicate that bindarit is a good candidate for new therapies against prostate and breast tumorigenesis, with an action through impairment of inflammatory cell responses during formation of the tumor-stroma niche microenvironment.

  7. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells.

    Science.gov (United States)

    Noessner, Elfriede; Gastpar, Robert; Milani, Valeria; Brandl, Anna; Hutzler, Peter J S; Kuppner, Maria C; Roos, Miriam; Kremmer, Elisabeth; Asea, Alexzander; Calderwood, Stuart K; Issels, Rolf D

    2002-11-15

    Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.

  8. Local Tumor Control and Normal Tissue Toxicity of Pulsed Low-Dose Rate Radiotherapy for Recurrent Lung Cancer

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-05-01

    Full Text Available Objectives: This study investigates (1 local tumor control and (2 normal tissue toxicity of pulsed low-dose rate radiotherapy (PLDR for recurrent lung cancer. Methods: For study 1, nude mice were implanted with A549 tumors and divided into the following 3 groups: (1 control (n = 10, (2 conventional radiotherapy (RT; n = 10, and (3 PLDR (n = 10. Tumor-bearing mice received 2 Gy daily dose for 2 consecutive days. Weekly magnetic resonance imaging was used for tumor growth monitoring. For study 2, 20 mice received 8 Gy total body irradiation either continuously (n = 10 or 40 × 0.2 Gy pulses with 3-minute intervals (n = 10. Results: For study 1, both conventional RT and PLDR significantly inhibited the growth of A549 xenografts compared with the control group (>35% difference in the mean tumor volume; P .05. For study 2, the average weight was 20.94 ± 1.68 g and 25.69 ± 1.27 g and the survival time was 8 days and 12 days for mice treated with conventional RT and PLDR (P < .05, respectively. Conclusion: This study showed that PLDR could control A549 tumors as effectively as conventional RT, and PLDR induced much less normal tissue toxicity than conventional RT. Thus, PLDR would be a good modality for recurrent lung cancers. Advances in Knowledge: This article reports our results of an in vivo animal investigation of PLDR for the treatment of recurrent cancers, which may not be eligible for treatment because of the dose limitations on nearby healthy organs that have been irradiated in previous treatments. This was the first in vivo study to quantify the tumor control and normal tissue toxicities of PLDR using mice with implanted tumors, and our findings provided evidence to support the clinical trials that employ PLDR treatment techniques.

  9. Deleted in Malignant Brain Tumors-1 Protein (DMBT1: A Pattern Recognition Receptor with Multiple Binding Sites

    Directory of Open Access Journals (Sweden)

    Enno C. I. Veerman

    2010-12-01

    Full Text Available Deleted in Malignant Brain Tumors-1 protein (DMBT1, salivary agglutinin (DMBT1SAG, and lung glycoprotein-340 (DMBT1GP340 are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW. Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  10. Periodontal and serum protein profiles in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitor adalimumab.

    Science.gov (United States)

    Kobayashi, Tetsuo; Yokoyama, Tomoko; Ito, Satoshi; Kobayashi, Daisuke; Yamagata, Akira; Okada, Moe; Oofusa, Ken; Narita, Ichiei; Murasawa, Akira; Nakazono, Kiyoshi; Yoshie, Hiromasa

    2014-11-01

    Tumor necrosis factor (TNF)-α inhibitor has been shown to affect the periodontal condition of patients with rheumatoid arthritis (RA). The aim of the present study is to assess the effect of a fully humanized anti-TNF-α monoclonal antibody, adalimumab (ADA), on the periodontal condition of patients with RA and to compare serum protein profiles before and after ADA therapy. The study participants consisted of 20 patients with RA treated with ADA. Clinical periodontal and rheumatologic parameters and serum cytokine levels were evaluated at baseline and 3 months later. Serum protein spot volume was examined with two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins with significant difference in abundance before and after ADA therapy were found and identified using mass spectrometry and protein databases. The patients showed a significant decrease in gingival index (P = 0.002), bleeding on probing (P = 0.003), probing depth (P = 0.002), disease activity score including 28 joints using C-reactive protein (P periodontal condition of patients with RA, which might be related to differences in serum protein profiles before and after ADA therapy.

  11. CHROMATOGRAPHIC REFOLDING OF PROTEINS: MOLECULAR ACTION AND COLUMN CONTROL

    Institute of Scientific and Technical Information of China (English)

    Fangwei Wang; Yongdong Liu; Jing Chen; Zhiguo Su

    2005-01-01

    Protein expression in E. coli often results in the formation of a kind of protein aggregate called inclusion body. Conversion of the inactive protein aggregate into biologically active protein is a key step in production of recombinant products. Conventional dilution refolding technique suffers from disadvantages of low recovery and low concentration. Various chromatographic refolding techniques have been developed over the last few years. These include size-exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography and different affinity chromatography. A successful strategy is the use of gradient elution in column control which provides a gentle and gradual change of the solution environment for the macromolecule to refold at nano-scale. The gradient refolding at column scale could minimize misfolding and aggregation which are induced by sudden change of the solution in conventional refolding operation.

  12. Hydrophilic and size-controlled graphene nanopores for protein detection

    Science.gov (United States)

    Goyal, Gaurav; Bok Lee, Yong; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun

    2016-12-01

    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  13. Hydrophobic protein in colorectal cancer in relation to tumor stages and grades

    Institute of Scientific and Technical Information of China (English)

    Lay-Chin; Yeoh; Chee-Keat; Loh; Boon-Hui; Gooi; Manjit; Singh; Lay-Harn; Gam

    2010-01-01

    AIM: To identify differentially expressed hydrophobic proteins in colorectal cancer. METHODS: Eighteen pairs of colorectal cancerous tissues in addition to tissues from normal mucosa were analysed. Hydrophobic proteins were extracted from the tissues, separated using 2-D gel electrophoresis and analysed using Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS). Statistical analysis of the proteins was carried out in order to determine the significance of each protein to colorectal cancer (CRC) and als...

  14. Endoplasmic Reticulum-Mediated Protein Quality Control in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianming eLi

    2014-04-01

    Full Text Available A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally-misfolded ones via a unique multiple-step degradation process known as ER-associate degradation (ERAD. Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.

  15. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Who-Whong Wang

    Full Text Available Early diagnosis of hepatocellullar carcinoma (HCC remains a challenge. The current practice of serum alpha-fetoprotein (AFP measurement is inadequate. Here we utilized a proteomic approach to identify novel serum biomarkers for distinguishing HCC patients from non-cancer controls. We profiled the serum proteins in a group of 58 resectable HCC patients and 11 non-HCC chronic hepatitis B (HBV carrier samples from the Singapore General Hospital (SGH using the RayBio® L-Series 507 Antibody Array and found 113 serum markers that were significantly modulated between HCC and control groups. Selected potential biomarkers from this list were quantified using a multiplex sandwich enzyme-linked immunosorbent assay (ELISA array in an expanded SGH cohort (126 resectable HCC patients and 115 non-HCC chronic HBV carriers (NC group, confirming that serum prolactin and monocyte chemoattractant protein-1 (MCP-1 were significantly upregulated in HCC patients. This finding of serum MCP-1 elevation in HCC patients was validated in a separate cohort of serum samples from the Mochtar Riady Institute for Nanotechnology, Indonesia (98 resectable HCC, 101 chronic hepatitis B patients and 100 asymptomatic HBV/HCV carriers by sandwich ELISA. MCP-1 and prolactin levels were found to correlate with AFP, while MCP-1 also correlated with disease stage. Subsequent receiver operating characteristic (ROC analysis of AFP, prolactin and MCP-1 in the SGH cohort and comparing their area under the ROC curve (AUC indicated that neither prolactin nor MCP-1 on their own performed better than AFP. However, the combination of AFP+MCP-1 (AUC, 0.974 had significantly superior discriminative ability than AFP alone (AUC, 0.942; p<0.001. In conclusion, prolactin and MCP-1 are overexpressed in HCC and are conveniently quantifiable in patients' sera by ELISA. MCP-1 appears to be a promising complementary biomarker for HCC diagnosis and this MCP-1+AFP model should be further evaluated as

  16. Immune-associated proteins with potential in vivo anti-tumor activities are upregulated in lung cancer cells treated with umbelliprenin: A proteomic approach

    Science.gov (United States)

    Khaghanzadeh, Narges; Nakamura, Kazuyuki; Kuramitsu, Yasuhiro; Ghaderi, Abbas; Mojtahedi, Zahra

    2016-01-01

    Umbelliprenin (Umb), a natural coumarin, has demonstrated anti-tumor activities, both in vitro and particularly in vivo, in several types of cancer, including lung cancer. The present study aimed to identify molecular targets of Umb using a high-throughput approach. Lung cancer cell lines, QU-DB (large-cell lung carcinoma) and A549 (adenocarcinoma), were treated with Umb. Differentially-expressed proteins were identified using two-dimensional electrophoresis coupled to mass spectrometry. In the QU-DB cells, differential expression of proteins, including downregulation of the tumorigenic protein heat shock protein 90 kDa and upregulation of the potential anti-tumor proteins Nipsnap1 and glycine-tRNA ligase (GRS), suggested that Umb is a strong anti-tumor compound. In the A549 cells, differential expression of proteins indicated possible contradictory effects of Umbregarding tumorigenesis, which included downregulation of the tumorigenic protein cyclophilin and the tumor suppressor MST, and upregulation of stathmin (tumorigenic) and calreticulin. Calreticulun, in addition to GRS in QU-DB cells, stimulates anti-tumor immune responses in vivo. To the best of our knowledge, the present study is the first to use a high-throughput approach to identify targets of Umb in cancer. These molecular targets suggested that Umb may exhibit stronger in vitro anti-tumor activity against the large-cell carcinoma model than the adenocarcinoma model. Furthermore, it has been reported that Umb exhibits higher cytotoxicity against QU-DB cells than A549 cells in vitro, and significant Umb anti-tumor activity against lung cancer in vivo, which is consistent with previously published literature. In each cell type, immune-associated molecules were upregulated, indicating that this naturally occurring compound exhibits marked anti-tumor activity in vivo. However, further studies that investigate the effect of Umb in different in vitro models of cancer are required. PMID:28105238

  17. Controlled expression of enhanced green fluorescent protein and hepatitis B virus precore protein in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel tetracycline regulation expression system was used to regulate the expression of enhanced green fluorescent protein (EGFP) and hepatitis B virus precore protein in the mammalian cell lines with lipofectAMINE. Flow cytometry assays showed that application of the system resulted in about 18-fold induction of EGFP expression in CHO cell lines and 5-fold induction in SSMC-7721 cells and about 2-fold in the HEK293 cells. Furthermore, the effective use of this system for the controlled expression of HBV precore protein gene in hepatocellular carcinoma cells was tested.

  18. Transcriptomic and proteomic analyses in bone tumor cells: Deciphering parathyroid hormone-related protein regulation of the cell cycle and apoptosis.

    Science.gov (United States)

    Mak, Isabella W Y; Turcotte, Robert E; Ghert, Michelle

    2012-09-01

    Giant cell tumor of bone (GCT) is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates, and metastatic potential. Previous works in our laboratory, including functional assays, have shown that neutralization of parathyroid hormone-related protein (PTHrP) in the cell environment inhibits cell proliferation and induces cell death in GCT stromal cells, indicating a role for PTHrP in cell propagation and survival. The objective of this study was to investigate the global gene and protein expression patterns of GCT cells in order to identify the underlying pathways and mechanisms of neoplastic proliferation provided by PTHrP in the bone microenvironment. Primary stromal cell cultures from 10 patients with GCT were used in this study. Cells were exposed to optimized concentrations of either PTHrP peptide or anti-PTHrP neutralizing antiserum and were analyzed with both cDNA microarray and proteomic microarray assays in triplicate. Hierarchical clustering and principal component analyses confirmed that counteraction of PTHrP in GCT stromal cells results in a clear-cut gene expression pattern distinct from all other treatment groups and the control cell line human fetal osteoblast (hFOB). Multiple bioinformatics tools were used to analyze changes in gene/protein expression and identify important gene ontologies and pathways common to this anti-PTHrP-induced regulatory gene network. PTHrP neutralization interferes with multiple cell survival and apoptosis signaling pathways by triggering both death receptors and cell cycle-mediated apoptosis, particularly via the caspase pathway, TRAIL pathway, JAK-STAT signaling pathway, and cyclin E/CDK2-associated G1/S cell cycle progression. These findings indicate that PTHrP neutralization exhibits anticancer potential by regulating cell-cycle progression and apoptosis in bone tumor cells, with the corollary being that PTHrP is a pro-neoplastic factor that can be targeted in the treatment of bone

  19. Abundant immunohistochemical expression of dopamine D2 receptor and p53 protein in meningiomas: follow-up, relation to gender, age, tumor grade, and recurrence

    Directory of Open Access Journals (Sweden)

    G. Trott

    2015-05-01

    Full Text Available Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D2 receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D2 receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%, II (n=13, 8.3%, or grade III (n=3, 1.9%. Dopamine D2 receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D2 receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas.

  20. An IL12-IL2-antibody fusion protein targeting Hodgkin's lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack.

    Directory of Open Access Journals (Sweden)

    Tobias Jahn

    Full Text Available Successful immunotherapy of Hodgkin's disease is so far hampered by the striking unresponsiveness of lymphoma infiltrating immune cells. To mobilize both adoptive and innate immune cells for an anti-tumor attack we fused the pro-inflammatory cytokines IL2 and IL12 to an anti-CD30 scFv antibody in a dual cytokine fusion protein to accumulate both cytokines at the malignant CD30(+ Hodgkin/Reed-Sternberg cells in the lymphoma lesion. The tumor-targeted IL12-IL2 fusion protein was superior in activating resting T cells to amplify and secrete pro-inflammatory cytokines compared to targeted IL2 or IL12 alone. NK cells were also activated by the dual cytokine protein to secrete IFN-γ and to lyse target cells. The tumor-targeted IL12-IL2, when applied by i.v. injection to immune-competent mice with established antigen-positive tumors, accumulated at the tumor site and induced tumor regression. Data demonstrate that simultaneous targeting of two cytokines in a spatial and temporal simultaneous fashion to pre-defined tissues is feasible by a dual-cytokine antibody fusion protein. In the case of IL12 and IL2, this produced superior anti-tumor efficacy implying the strategy to muster a broader immune cell response in the combat against cancer.

  1. Abundant immunohistochemical expression of dopamine D{sub 2} receptor and p53 protein in meningiomas: follow-up, relation to gender, age, tumor grade, and recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Trott, G.; Pereira-Lima, J.F.S.; Leães, C.G.S. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Ferreira, N.P. [Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Barbosa-Coutinho, L.M. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Oliveira, M.C. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2015-03-03

    Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D{sub 2} receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D{sub 2} receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D{sub 2} receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D{sub 2} receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas.

  2. Metastasis-associated protein 1 as a new prognostic marker for solid tumors: a meta-analysis of cohort studies.

    Science.gov (United States)

    Luo, Haiqing; Li, Hongjiao; Yao, Na; Hu, Liren; He, Taiping

    2014-06-01

    Metastasis-associated protein 1 (MTA1) is a molecular marker in various solid tumors that has recently been investigated. The prognostic significance of MAT1 expression remains controversial. In this work, we aimed to determine the relationship between immunohistochemistry-detected MAT1 expression and survival of patients with solid tumors by conducting a meta-analysis of cohort studies. Relevant studies were identified via an electronic database search updated on October 28, 2013. We included cohort studies that reported hazard ratios (HRs) or odds ratios (ORs) with 95 % confidence intervals (CIs) to determine the association of high MTA1 expression with overall survival (OS) and clinicopathological characteristics. Heterogeneity was quantified using I (2) statistics, and publication bias was evaluated using funnel plots. Sensitivity analysis was conducted to evaluate the robustness of meta-analysis findings. We identified 16 cohort studies that focused on MTA1 overexpression and prognosis involving 2,253 cancer patients. Overall, the combined HR for OS was 1.85 (95 % CI: 1.55-2.28, P<0.001). Omission of any single study had no significant effect on the pooled HR estimate. When the studies were stratified by tumor type, similar results of poor prognosis were observed in non-small cell lung cancer (HR=2.05, 95 % CI: 1.14-3.68, P=0.016) and esophageal squamous cell carcinoma (HR=1.86, 95 % CI: 1.44-2.39, P<0.001). Moreover, multivariate survival analysis showed that MTA1 overexpression was an independent predictor of poor prognosis (HR=1.90, 95 % CI: 1.53-2.37, P<0.001). In addtional, MTA1 overexpression was significantly associated with tumor size (OR=2.72, 95 % CI=1.44-5.14, P=0.002), tumor stage (OR=2.44, 95 % CI=1.67-3.57, P<0.001), depth of invasion (OR=2.63, 95 % CI=1.74-3.97, P<0.001), and lymph node metastasis (OR=2.57, 95 % CI=1.57-4.19, P<0.001). However, when age, sex, and tumor differentiation were considered, no obvious association was observed. This

  3. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  4. Localization of telomerase hTERT protein in frozen sections of basal cell carcinomas (BCC) and tumor margin tissues.

    Science.gov (United States)

    Fabricius, Eva-Maria; Kruse-Boitschenko, Ute; Khoury, Reem; Wildner, Gustav-Paul; Raguse, Jan-Dirk; Klein, Martin; Hoffmeister, Bodo

    2009-12-01

    In previous studies we demonstrated telomerase activity in frozen tissues from BCC and their tumor-free margins by the PCR ELISA. In this study we examined in the same frozen sections immunohistochemical presence of hTERT in the nucleus. After fixation in acetone and methanol followed by steaming we used for visualization the antigen-antibody reactions by APAAP. This was the best method of preparation of the frozen sections in our preliminary hTERT-study with squamous cell carcinomas. This study was supplemented with antibodies against Ki-67, nucleolin, common leucocyte antigen CD45 and mutated p53. The immunoreactive scores were determined and included the comparison with telomerase activity. The investigation of hTERT expression was performed in the tissues of 41 patients with BCC and control tissues of 14 patients without tumor. Eleven commercial antibodies were used for a nuclear staining of hTERT expression. With the anti-hTERT antibodies we looked for both satisfactory distribution and intensity of immunohistochemical labeling in the carcinomas and in the squamous epithelia of the tumor centers, of the tumor-free margins and of the control tissues. The hTERT expression in the BCC was distributed heterogeneously. The score values established by the anti-hTERT antibodies used were variably or significantly increased. In the stroma they tended to be negative, so we disregarded stroma hTERT. Proof of hTERT did not differ uniformly from telomerase activity. We compared the high with the lower median hTERT values in the Kaplan-Meier curve. Patients with lower hTERT scores in the center or tumor margin as shown by some of the antibodies suffered relapse earlier. Finally, we compared the hTERT expression in BCC tissues with the hTERT scores in HNSCC tissues from our previous study. Only one anti-hTERT antibody (our Ab 7) yielded significantly higher scores in BCC than in HNSCC.

  5. Structural proteins of ribonucleic acid tumor viruses. Purification of envelope, core, and internal components.

    Science.gov (United States)

    Strand, M; August, J T

    1976-01-25

    Murine type C virus structural proteins, the envelope glycopeptides, 30,000 dalton major core protein, and 15,000 dalton internal protein have each been purified to near homogeneity and in high yield from the smae batch of virus by use of phosphocellulose column chromatography and gel filtration procedures. Evidence that these proteins are specified by the viral genome was obtained by competition radioimmunoassay analysis, comparing these polypeptides from Rauscher virus cultivated in a variety of mammalian cell lines; all of the reactive antigenic determinants of these proteins appeared to be virus-specific.

  6. Effect of Tumor Infiltrating Lymphocyte on Local Control of Rectal Cancer after Preoperative Radiotherapy

    Institute of Scientific and Technical Information of China (English)

    XU Gang; XU Bo; ZHANG Shan-wen

    2008-01-01

    Objective:To study the effect of tumor infiltrating lymphocytes at cancer nest on local control of rectal cancer after preoperative radiotherapy.Methods:From Jan.1999 to Oct.2007,a total of 107 patients with rectal cancer were reviewed.They were treated by preoperative radiotherapy,30 Gy/10 fractions/12 days.Two weeks later,the patient underwent a surgical operation.Their pathological samples were kept in our hospital before and after radiotherapy.Lymphocyte infiltration(LI)degree,pathologic degradation and fibrosis degree after radiotherapy in paraffin section were evaluated under microscope.Results:After followed-up of 21 months(2-86 months),a total of 107 patients were reviewed.Univariate analysis showed that lymphocyte infiltration(LI),fibrosis and pathologic changes after radiotherapy were significant factors on local control.Logistic regression analysis showed that LI after radiotherapy was a significant effect factor on local control.Conclusion:LI,fibrosis and pathologic degradation after radiotherapy are significant for local control of rectal cancer after preoperative radiotherapy.LI after radiotherapy was a significantly prognostic index for local control of rectal cancer after preoperative radiotherapy.

  7. Synthesis of vitamin-selenium complex and its effects on proteins and tumor cells

    Science.gov (United States)

    Zhang, Hua-xin; Zhang, Pei

    2011-12-01

    A selenium-vitamin P complex (SEVP) was synthesized and its structure was determined by IR, LC-MS and 1H NMR. Its biological effects on bovine serum albumin (BSA) and human colon carcinoma tumor cells were studied by molecular spectra, MTT and flow cytometry. The interaction of SEVP and BSA was discussed by fluorescence quenching method and Förster non-radiation energy transfer theory. The thermodynamic parameters Δ Hθ, Δ Gθ, Δ Sθ at different temperatures were calculated and the results indicate the interaction is an exothermic as well as entropy-driven process. Hydrogen bond and electrostatic force played major role in the reaction. The binding geometry and conformation changes of BSA were investigated by fluorescence probe technique and circular dichroism (CD) spectra. The effects of SEVP on human colon carcinoma tumor cells HT29 were tested by MTT method and flow cytometry (FCM). The MTT results show the proliferation of HT29 tumor cells were inhibited by SEVP and the inhibition was associated with dose and time. The FCM analysis disclosed SEVP interrupted the DNA synthesis of tumor cells at S phase.

  8. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein.

    OpenAIRE

    Gray, P W; Barrett, K; Chantry, D; Turner, M.; Feldmann, M

    1990-01-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNF alpha with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surf...

  9. Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis.

    Science.gov (United States)

    N'guessan, Prudence; Pouyet, Laurent; Gosset, Gaëlle; Hamlaoui, Sonia; Seillier, Marion; Cano, Carla E; Seux, Mylène; Stocker, Pierre; Culcasi, Marcel; Iovanna, Juan L; Dusetti, Nelson J; Pietri, Sylvia; Carrier, Alice

    2011-09-15

    The p53-transcriptional target TP53INP1 is a potent stress-response protein promoting p53 activity. We previously showed that ectopic overexpression of TP53INP1 facilitates cell cycle arrest as well as cell death. Here we report a study investigating cell death in mice deficient for TP53INP1. Surprisingly, we found enhanced stress-induced apoptosis in TP53INP1-deficient cells. This observation is underpinned in different cell types in vivo (thymocytes) and in vitro (thymocytes and MEFs), following different types of injury inducing either p53-dependent or -independent cell death. Nevertheless, absence of TP53INP1 is unable to overcome impaired cell death of p53