WorldWideScience

Sample records for controlled polyphosphate metabolism

  1. Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas[OPEN

    Science.gov (United States)

    Evans, Bradley S.; Li, Jia; Liu, Yu; Diamond, Spencer

    2016-01-01

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of Rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas reinhardtii using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8. Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively overaccumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation. PMID:27600537

  2. Control of Vertebrate Skeletal Mineralization by Polyphosphates

    Science.gov (United States)

    Omelon, Sidney; Georgiou, John; Henneman, Zachary J.; Wise, Lisa M.; Sukhu, Balram; Hunt, Tanya; Wynnyckyj, Chrystia; Holmyard, Douglas; Bielecki, Ryszard; Grynpas, Marc D.

    2009-01-01

    Background Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO3−)n) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. Principal Findings/Methodology The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO43−) concentration while permitting the accumulation of a high total PO43− concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO43− and free

  3. Polyphosphate - an ancient energy source and active metabolic regulator

    Directory of Open Access Journals (Sweden)

    Achbergerová Lucia

    2011-08-01

    Full Text Available Abstract There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs can currently be categorized into three groups (PPK1, PPK2 and PPK3 according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC. This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate.

  4. Control of vertebrate skeletal mineralization by polyphosphates.

    Directory of Open Access Journals (Sweden)

    Sidney Omelon

    Full Text Available BACKGROUND: Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3(-(n are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY: The enzymatic formation (condensation and destruction (hydrolytic degradation of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4(3- concentration while permitting the accumulation of a high total PO(4(3- concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO

  5. A Soluble Pyrophosphatase Is Essential to Oogenesis and Is Required for Polyphosphate Metabolism in the Red Flour Beetle (Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Klébea Carvalho

    2015-03-01

    Full Text Available Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum. A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA, and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis.

  6. A Soluble Pyrophosphatase Is Essential to Oogenesis and Is Required for Polyphosphate Metabolism in the Red Flour Beetle (Tribolium castaneum)

    Science.gov (United States)

    Carvalho, Klébea; Ribeiro, Lupis; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Souza-Menezes, Jackson; Logullo, Carlos; Nunes da Fonseca, Rodrigo; Campos, Eldo

    2015-01-01

    Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum) A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA), and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis. PMID:25811926

  7. Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles.

    Science.gov (United States)

    Gerasimaitė, Rūta; Mayer, Andreas

    2016-02-01

    Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.

  8. Cadmium Tolerance and Removal from Cunninghamella elegans Related to the Polyphosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Hercília M. L. Rolim

    2013-03-01

    Full Text Available The aim of the present work was to study the cadmium effects on growth, ultrastructure and polyphosphate metabolism, as well as to evaluate the metal removal and accumulation by Cunninghamella elegans (IFM 46109 growing in culture medium. The presence of cadmium reduced growth, and a longer lag phase was observed. However, the phosphate uptake from the culture medium increased 15% when compared to the control. Moreover, C. elegans removed 70%–81% of the cadmium added to the culture medium during its growth. The C. elegans mycelia showed a removal efficiency of 280 mg/g at a cadmium concentration of 22.10 mg/L, and the removal velocity of cadmium was 0.107 mg/h. Additionally, it was observed that cadmium induced vacuolization, the presence of electron dense deposits in vacuoles, cytoplasm and cell membranes, as well as the distinct behavior of polyphosphate fractions. The results obtained with C. elegans suggest that precipitation, vacuolization and polyphosphate fractions were associated to cadmium tolerance, and this species demonstrated a higher potential for bioremediation of heavy metals.

  9. Novel analysis of oceanic surface water metagenomes suggests importance of polyphosphate metabolism in oligotrophic environments.

    Directory of Open Access Journals (Sweden)

    Ben Temperton

    Full Text Available Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when transferred from phosphate-limited to phosphate-rich media--a process exploited in wastewater treatment and other environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel Isofunctional Homolog Annotation Tool (IHAT to detect homologs of genes with a broad range of conservation without bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS dataset revealed that genes associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited, suggesting an important role for polyphosphate metabolism in marine oligotrophs.

  10. Copper influence on polyphosphate metabolism of Cunninghamella elegans Influência de cobre no metabolismo de polifosfato de Cunninghamella elegans

    Directory of Open Access Journals (Sweden)

    Patrícia Mendes de Souza

    2005-12-01

    Full Text Available The aim of this work was to evaluate the physiological aspects of polyphosphate metabolism of Cunninghamella elegans grown in presence of copper. The growth profile was obtained by means of biomass yields, orthophosphate consumption, polyphosphate accumulation and phosphatases activities. The results revealed the influence of copper on the growth, observed by biomass yields. Orthophosphate consumption was faster in cells grown in the presence of copper. The presence of copper in the culture medium induced polyphosphate accumulation. The polyphosphate level was almost constant in the beginning of control culture growth, and could be related to the exponential growth phase. On the other hand, the copper treated cultures exhibited a significant reduction in the polyphosphate levels, indicating an active metabolization of the polymer. Acid phosphatase activity was not detected in the conditions studied, but alkaline phosphatase activity was significantly lower in the treated cultures. The results suggest the potential use of Cunninghamella elegans isolate in bioremediation and biosorption applied to environments polluted by copper.O presente trabalho teve como finalidade avaliar os aspectos fisiológicos do metabolismo do polifosfato em Cunninghamella. elegans cultivada em meio contendo cobre. O perfil de crescimento foi estabelecido em função da produção de biomassa, consumo de ortofosfato, acumulação de polifosfato e atividade das fosfatases. Os resultados obtidos indicaram a influência do metal pesado sobre o crescimento, como observado pelo rendimento da biomassa. O consumo da fonte de fósforo durante as primeiras 24 horas de crescimento na cultura tratada com cobre foi maior que na cultura controle. A acumulação de polifosfato permitiu verificar comportamentos distintos na ausência e presença do metal. A análise do polifosfato celular revelou que, nas amostras tratadas, o polímero é significativamente metabolizado durante o in

  11. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2016-01-01

    In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.

  12. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms.

    Science.gov (United States)

    Oehmen, A; Carvalho, G; Lopez-Vazquez, C M; van Loosdrecht, M C M; Reis, M A M

    2010-09-01

    In the enhanced biological phosphorus removal (EBPR) process, the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) has been studied intensively in recent years by both microbiologists and engineers, due to its important effects on phosphorus removal performance and efficiency. This study addresses the impact of microbial ecology on assessing the PAO-GAO competition through metabolic modelling, focussing on reviewing recent developments, discussion of how the results from molecular studies can impact the way we model the process, and offering perspectives for future research opportunities based on unanswered questions concerning PAO and GAO metabolism. Indeed, numerous findings that are seemingly contradictory could in fact be explained by the metabolic behaviour of different sub-groups of PAOs and/or GAOs exposed to different environmental and operational conditions. Some examples include the glycolysis pathway (i.e. Embden-Meyerhof-Parnas (EMP) vs. Entner-Doudoroff (ED)), denitrification capacity, anaerobic tricarboxylic acid (TCA) cycle activity and PAOs' ability to adjust their metabolism to e.g. a GAO-like metabolism. Metabolic modelling may further yield far-reaching influences on practical applications as well, and serves as a bridge between molecular/biochemical research studies and the optimisation of wastewater treatment plant operation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration.

    Science.gov (United States)

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Wang, Xiaohong

    2015-09-01

    The initial mineralization centers during human bone formation onto osteoblasts are composed of CaCO3 . Those bioseeds are enzymatically formed via carbonic anhydrase(s) in close association with the cell surface of the osteoblasts. Subsequently, the bicarbonate/carbonate anions are exchanged non-enzymatically by inorganic phosphate [Pi ]. One source for the supply of Pi is polyphosphate [polyP] which is a physiological polymer, formed in the osteoblasts as well as in the platelets. The energy-rich acid anhydride bonds within the polyP chain are cleaved by phosphatase(s); during this reaction free-energy might be released that could be re-used, as metabolic fuel, for the maintenance of the steady-state concentrations of the substrates/products during mineralization. Finally it is outlined that polyP, as a morphogenetically active scaffold, is even suitable for 3D cell printing.

  14. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs).

    Science.gov (United States)

    Carvalheira, Mónica; Oehmen, Adrian; Carvalho, Gilda; Reis, Maria A M

    2014-11-01

    The type of carbon source present in the wastewater is one factor that affects the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) and therefore, the efficiency of the enhanced biological phosphorus removal (EBPR) process. This study investigated the impact of the carbon source composition on the anaerobic and aerobic kinetics of PAOs and the EBPR performance of an 85% PAO enrichment. When both acetate (HAc) and propionate (HPr) were present, propionate was depleted more quickly, with a constant uptake rate of 0.18 ± 0.02 C-mol/(C-mol biomass·h), while the acetate uptake rate decreased with an increase in propionate concentration, due to the substrate competition between acetate and propionate. The metabolic model for PAOs was modified to incorporate the anaerobic substrate competition effect. The aerobic rates for phosphorus (P) uptake, glycogen production and polyhydroxyalkanoates (PHA) degradation were within the same range for all tests, indicating that these rates are essentially independent of the acetate and propionate concentration, simplifying the calibration procedure for metabolic models. The metabolic model applied to describe the anaerobic and aerobic activity agreed well with the experimental data of HAc, HPr, P, PHA and biomass growth. The low glycogen consumption observed suggest that some reducing equivalents were generated anaerobically through the TCA cycle. The results of this work suggest that the propionate uptake kinetics by PAOs can provide them an advantage over GAOs in EBPR systems, even when the propionate fraction of the influent is relatively low.

  15. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi.

    Science.gov (United States)

    Jimenez, Veronica; Docampo, Roberto

    2015-09-01

    We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX (named after SYG1, Pho81 and XPR1) domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low-affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-green fluorescent protein have significantly higher levels of pyrophosphate (PPi ) and short-chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi , they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi.

  16. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase

    Science.gov (United States)

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.

  17. Control of dinucleoside polyphosphates by the FHIT-homologous HNT2 gene, adenine biosynthesis and heat shock in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Bieganowski Pawel

    2002-05-01

    Full Text Available Abstract Background The FHIT gene is lost early in the development of many tumors. Fhit possesses intrinsic ApppA hydrolase activity though ApppA cleavage is not required for tumor suppression. Because a mutant form of Fhit that is functional in tumor suppression and defective in catalysis binds ApppA well, it was hypothesized that Fhit-substrate complexes are the active, signaling form of Fhit. Which substrates are most important for Fhit signaling remain unknown. Results Here we demonstrate that dinucleoside polyphosphate levels increase 500-fold to hundreds of micromolar in strains devoid of the Saccharomyces cerevisiae homolog of Fhit, Hnt2. Accumulation of dinucleoside polyphosphates is reversed by re-expression of Hnt2 and is active site-dependent. Dinucleoside polyphosphate levels depend on an intact adenine biosynthetic pathway and time in liquid culture, and are induced by heat shock to greater than 0.1 millimolar even in Hnt2+ cells. Conclusions The data indicate that Hnt2 hydrolyzes both ApppN and AppppN in vivo and that, in heat-shocked, adenine prototrophic yeast strains, dinucleoside polyphosphates accumulate to levels in which they may saturate Hnt2.

  18. 拟南芥中myo-肌醇-多磷酸合成与代谢及其信号%Myo-inositol Polyphosphate Metabolism and Signaling in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    吴俐; 王若仲; 徐文忠

    2013-01-01

    在酵母、真菌、动物和植物等真核生物中,以myo-肌醇为基石通过不同位点的磷酸化形成各种myo-肌醇-多磷酸及其衍生物.过去10年的研究发现这些肌醇多磷酸参与了膜脂定向转运、蛋白结构稳定、离子通道调控、RNA转运以及DNA修复和染色质重塑等细胞生物学的基本进程.近些年在模式植物拟南芥(Arabidopsis thaliana)的研究中,许多调控植物生长发育和环境胁迫应答的重要基因被发现,并证实这些基因参与myo-肌醇-多磷酸的合成与代谢.该文概述了拟南芥中myo-肌醇-多磷酸合成与代谢的基因调控机理,综述了不同肌醇多磷酸作为信号分子的功能,提出肌醇多磷酸如同一类信息代码传递着植物细胞有序进程的基本指令.%In eukaryotes, including yeasts, fungi, animals and plants, myo-inositol is used as a building block to generate derivatives by attaching multiple combinations of mono- and pyrophosphate groups to each of the hydroxyl moieties. During the past decade, genetic and cell biological advances have indicated that these inositol polyphosphates are involved in regulating fundamental cellular processes such as directed membrane trafficking, protein structure maintenance, ion channel regulation, mRNA transportation, DNA repair, and chromatin remodeling. In recent years, many genes involved in inositol phosphate metabolism have been identified to play important roles in Arabidopsis development and stress responses. This review describes the known Arabidopsis inositol polyphosphate kinases and phosphatases, the emerging roles of these small molecules as signaling codes to regulate the fundamental cellular processes in plants, and the research trends.

  19. Identification and quantification of diadenosine polyphosphate concentrations in human plasma

    DEFF Research Database (Denmark)

    Jankowski, Joachim; Jankowski, Vera; Laufer, Udo;

    2003-01-01

    Diadenosine polyphosphates have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. In this study we investigated the question of whether diadenosine polyphosphates are present in human plasm...

  20. Neuroendocrine control of metabolism.

    Science.gov (United States)

    Kuliczkowska-Plaksej, J; Milewicz, A; Jakubowska, J

    2012-03-01

    Metabolism is controlled through homeostatic system consisting of central centers, gut hormones, hormones from adipose tissue and the other hormonal axes. This cooperation is based on cross-talk between central and peripheral signals. Among them the hypothalamus plays a crucial role, with interconnected nuclei forming neuronal circuits. Other regions in the brain, such as the brain stem, the endocannabinoid system, the vagal afferents, are also involved in energy balance. The second component is peripheral source of signals--the gastrointestinal tract hormones. Additionally, adipokines from adipose tissue, thyrotropic, gonadotropic and somatotropic axes play a role in energy homeostasis. Knowledge about all components of this neuroendocrine circuit will be helpful in developing novel therapeutic approaches against the metabolic syndrome and its components.

  1. Progress in Polyphosphate and Related Metabolizing Enzymes%多聚磷酸盐及其代谢酶的研究进展

    Institute of Scientific and Technical Information of China (English)

    石廷玉; 王怀林; 谢建平

    2011-01-01

    Inorganic polyphosphate ( Poly P) is a polymer consisting of ten to hundreds of phosphate residues linked by "high-energy" phosphoanhydride bonds, which is abundantly found in all organisms and nature. Here the basic facts of Polyp are summarized: genes regulated by polyP, role in DNA uptake,motility of microorganism, function in stress response, the virulence of pathogens, as well as the proliferation of mammary cancer cells, blood coagulation, cell calcification and the modulation of mitochondrial activity. Enzymes with activities requiring polyP, such as endopolyphosphatase, glucokinase, NAD kinase, AMP phosphotransferase are outlined too. The structure and activity of enzymes regulating polyp level such as polyphosphate kinase and exopolyphosphatase are noted. A thorough analysis of the mycobacterium tuberculosis PPX protein homologs and their biochemical activity is presented.%多聚磷酸盐(polyP)是由几个到几百个无机磷酸盐单体通过高能磷酸键聚合而成的线性多聚体,广泛分布于自然界和生物体.本文总结了polyP在生物体中的重要功能,包括基因表达和调控、DNA的摄取、微生物的运动性、对胁迫和饥饿的应答、病原菌的毒性以及对细胞凋亡、血液凝固、细胞钙化、线粒体功能的调节,需要polyP的酶有内切酶、葡萄糖激酶、NAD激酶和AMP磷酸转移酶等.本文对调控polyP的多聚磷酸盐激酶(polyphosphate kinase,ppk)和外切聚磷酸酶(exopolyphosphatase,PPX )的生化性质和结构也进行了总结.同时,结合我们的研究工作,重点分析了结核分枝杆菌中PPX的同源蛋白和可能的生物化学活性.

  2. Structural control of metabolic flux.

    Directory of Open Access Journals (Sweden)

    Max Sajitz-Hermstein

    Full Text Available Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA. We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC. This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign "share of control" to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions.

  3. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition.

    Science.gov (United States)

    Shao, Jun-Hua; Deng, Ya-Min; Jia, Na; Li, Ru-Ren; Cao, Jin-Xuan; Liu, Deng-Yong; Li, Jian-Rong

    2016-06-01

    The objective was to elucidate the influence of NaCl and polyphosphates in the stage of protein swelling on the water-holding capacity (WHC) of meat batter. The meat batters were formulated with salt in different ways by adding established amounts of only NaCl, only polyphosphates, jointly adding NaCl and polyphosphates, and a control without any salt. An increase (pbatter qualities were differentiated.

  4. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and (31) P NMR spectroscopy study.

    Science.gov (United States)

    Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude

    2017-02-01

    Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used (32) P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced (32) P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.

  5. Metabolic control of renin secretion.

    Science.gov (United States)

    Peti-Peterdi, János; Gevorgyan, Haykanush; Lam, Lisa; Riquier-Brison, Anne

    2013-01-01

    One emerging topic in renin-angiotensin system (RAS) research is the direct local control of renin synthesis and release by endogenous metabolic intermediates. During the past few years, our laboratory has characterized the localization and signaling of the novel metabolic receptor GPR91 in the normal and diabetic kidney and established GPR91 as a new, direct link between high glucose and RAS activation in diabetes. GPR91 (also called SUCNR1) binds tricarboxylic acid (TCA) cycle intermediate succinate which can rapidly accumulate in the local tissue environment when energy supply and demand are out of balance. In a variety of physiological and pathological conditions associated with metabolic stress, succinate signaling via GPR91 appears to be an important mediator or modulator of renin secretion. This review summarizes our current knowledge on the control of renin release by molecules of endogenous metabolic pathways with the main focus on succinate/GPR91.

  6. Amino acids involved in polyphosphate synthesis and its mobilization are distinct in polyphosphate kinase-1 from Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Payal Mittal

    Full Text Available BACKGROUND: In bacteria polyphosphates (poly-P are involved in cellular metabolism and development especially during stress. The enzyme, principally involved in polyphosphate biosynthesis and its mobilization leading to generation of NTPs, is known as polyphosphate kinase (PPK. PRINCIPAL FINDINGS: Among two genes of polyphosphate kinases present in Mycobacterium tuberculosis, we cloned and expressed PPK1 in Escherichia coli as histidine-tagged protein. This ∼86 kDa protein is capable of autophosphorylation and synthesis of poly-P as well as NTP. Among 22 conserved histidine residues, we found only His-491 is autophosphorylated and crucial for any enzymatic activity. Substitution of His-510 caused mPPK1 protein deficient but not defective in autophosphorylation, thereby contrary to earlier reports negating any role of this residue in the process. However, mutation of His-510 with either Ala or Gln affected ATP or poly-P synthesis depending on the substitution; while such effects were severe with H510A but mild with H510Q. Furthermore, mPPK1 also renders auxiliary nucleotide diphosphate kinase function by synthesizing virtually all NTPs/dNTPs from their cognate NDPs/dNDPs by utilizing poly-P as the phosphate donor albeit with varied efficiency. To assess the influence of other catalytic domain residues of mPPK1 towards its functionality, we designed mutations based on E. coli PPK1 crystal structure since it owes 68% amino acid sequence similarity with mPPK1. Interestingly, our results revealed that mutations in mPPK1 affecting poly-P synthesis always affected its ATP synthesizing ability; however, the reverse may not be true. CONCLUSIONS/SIGNIFICANCE: We conclude that amino acid residues involved in poly-P and ATP synthesizing activities of mPPK1 are distinct. Considering conserved nature of PPK1, it seems our observations have broader implications and not solely restricted to M. tuberculosis only.

  7. SYNTHESIS AND DRUG RELEASE OF CROSSLINKING POLYPHOSPHATES

    Institute of Scientific and Technical Information of China (English)

    LuoYi; ZhuoRenxi; 等

    1995-01-01

    A new class of crosslinking polyphosphates were synthesized and characterized by IR 1HNMR,31PNMR spectroscopy as well as elemental analysis.In vitro degradation of the polyphosphates obtained and the release of antineoplastic drug Methotrexate(MTX) and contraceptive Levonorgestrel(LNG) by using these polymers as matrix were studied.Zero order release rate was observed in the case of LNG release.

  8. Towards a luxury uptake process via microalgae--defining the polyphosphate dynamics.

    Science.gov (United States)

    Powell, Nicola; Shilton, Andy; Chisti, Yusuf; Pratt, Steven

    2009-09-01

    Microalgae in waste stabilization ponds (WSP) have been shown to accumulate polyphosphate. This luxury uptake of phosphorus is influenced by the wastewater phosphate concentration, light intensity and temperature, but the dynamics of how these factors affect luxury uptake with respect to time are not understood. With improved understanding of the dynamics of this mechanism and how it could be manipulated, a phosphorus removal process utilizing luxury uptake by microalgae might be developed. In this work, luxury uptake was investigated by chemical extraction of the acid-soluble and acid-insoluble fractions of polyphosphate in the microalgae. The results showed that the initial accumulation and subsequent utilization of both acid-soluble polyphosphate (ASP) and acid-insoluble polyphosphate (AISP) is a function of the wastewater phosphate concentration. It was found that light intensity influenced both the accumulation and utilization of ASP. The temperature influenced the accumulation of AISP. AISP is believed to be a form of phosphorus storage and ASP is involved in metabolism however, the results of this work show that ASP can also act as a short term form of phosphorus storage. To optimize luxury uptake by microalgae a 'luxury uptake pond' is proposed where the conditions the microalgae are exposed to can be manipulated. This 'luxury uptake pond' would be designed to expose the microalgae to a high phosphate concentration and high light intensity for a short period of time in order to achieve optimal polyphosphate accumulation. Subsequent harvesting would then remove the phosphorus rich microalgae from the system.

  9. Process optimization by decoupled control of key microbial populations: distribution of activity and abundance of polyphosphate-accumulating organisms and nitrifying populations in a full-scale IFAS-EBPR plant

    DEFF Research Database (Denmark)

    Onnis-Hayden, Annalisa; Majed, Nehreen; Schramm, Andreas

    2011-01-01

    This study investigated the abundance and distribution of key functional microbial populations and their activities in a full-scale integrated fixed film activated sludgeeenhanced biological phosphorus removal (IFAS-EBPR) process. Polyphosphate accumulating organisms (PAOs) including Accumulibacter...

  10. Polyphosphate metabolism in Acinetobacter johnsonii 210A.

    NARCIS (Netherlands)

    Bonting, C.F.C.

    1993-01-01

    Since the seventies, there is a growing interest in the process of biological phosphate removal in which microorganisms able to accumulate large amounts of phosphate play a central role. Over the years many bacteria have been isolated from sludge systems showing enhanced biological phosphate removal

  11. Polyphosphate metabolism in Acinetobacter johnsonii 210A

    NARCIS (Netherlands)

    Bonting, C.F.C.

    1993-01-01

    Since the seventies, there is a growing interest in the process of biological phosphate removal in which microorganisms able to accumulate large amounts of phosphate play a central role. Over the years many bacteria have been isolated from sludge systems showing enhanced biological

  12. In vivo gene delivery with L-tyrosine polyphosphate nanoparticles.

    Science.gov (United States)

    Ditto, Andrew J; Reho, John J; Shah, Kush N; Smolen, Justin A; Holda, James H; Ramirez, Rolando J; Yun, Yang H

    2013-05-01

    The concept of gene therapy is promising; however, the perceived risks and side effects associated with this technology have severely dampened the researchers' enthusiasm. Thus, the development of a nonviral gene vector without immunological effects and with high transfection efficiency is necessary. Currently, most nonviral vectors have failed to achieve the in vivo transfection efficiencies of viral vectors due to their toxicity, rapid clearance, and/or inappropriate release rates. Although our previous studies have successfully demonstrated the controlled-release of plasmid DNA (pDNA) polyplexes encapsulated into nanoparticles formulated with l-tyrosine polyphosphate (LTP-pDNA nanoparticles), the in vivo transfection capabilities and immunogenicity of this delivery system have yet to be examined. Thus, we evaluate LTP-pDNA nanoparticles in an in vivo setting via injection into rodent uterine tissue. Our results demonstrate through X-gal staining and immunohistochemistry of uterine tissue that transfection has successfully occurred after a nine-day incubation. In contrast, the results for the control nanoparticles show results similar to those of shams. Furthermore, reverse transcriptase polymerase chain reaction (RT-PCR) from the injected tissues confirms the transfection in vivo. To examine the immunogenicity, the l-tyrosine polyphosphate (LTP) nanoparticles have been evaluated in a mouse model. No significant differences in the activation of the innate immune system are observed. These data provide the first report for the potential use of controlled-release nanoparticles formulated from an amino acid based polymer as an in vivo nonviral vector for gene therapy.

  13. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes

    OpenAIRE

    Docampo, Roberto; Ulrich, Paul; Moreno, Silvia N.J.

    2010-01-01

    Acidocalcisomes are acidic electron-dense organelles, rich in polyphosphate (poly P) complexed with calcium and other cations. While its matrix contains enzymes related to poly P metabolism, the membrane of the acidocalcisomes has a number of pumps (Ca2+-ATPase, V-H+-ATPase, H+-PPase), exchangers (Na+/H+, Ca2+/H+), and at least one channel (aquaporin). Acidocalcisomes are present in both prokaryotes and eukaryotes and are an important storage of cations and phosphorus. They also play an impor...

  14. Purification and properties of recombinant exopolyphosphatase PPN1 and effects of its overexpression on polyphosphate in Saccharomyces cerevisiae.

    Science.gov (United States)

    Andreeva, Nadeshda; Trilisenko, Ludmila; Kulakovskaya, Tatiana; Dumina, Maria; Eldarov, Michail

    2015-01-01

    Inorganic polyphosphate performs many regulatory functions in living cells. The yeast exopolyphosphatase PPN1 is an enzyme with multiple cellular localization and probably variable functions. The Saccharomyces cerevisiae strain with overexpressed PPN1 was constructed for large-scale production of the enzyme and for studying the effect of overproduction on polyphosphate metabolism. The ΔPPN1 strain was transformed by the vector containing this gene under a strong constitutive promoter of glycerol aldehyde-triphosphate dehydrogenase of S. cerevisiae. Exopolyphosphatase activity in the transformant increased 28- and 11-fold compared to the ΔPPN1 and parent strains, respectively. The content of acid-soluble polyphosphate decreased ∼6-fold and the content of acid-insoluble polyphosphate decreased ∼2.5-fold in the cells of the transformant compared to the ΔPPN1 strain. The recombinant enzyme was purified. The substrate specificity, cation requirement, and inhibition by heparin were found to be similar to native PPN1. The molecular mass of a subunit (∼33 kD) and the amino acid sequence of the recombinant enzyme were the same as in mature PPN1. The recombinant enzyme was localized mainly in the cytoplasm (40%) and vacuoles (20%). The overproducer strain had no growths defects under phosphate deficiency or phosphate excess. In contrast to the parent strains accumulating polyphosphate, the transformant accumulated orthophosphate under phosphate surplus. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. [Metabolic control of seed germination].

    Science.gov (United States)

    Catusse, Julie; Strub, Jean-Marc; Job, Claudette; Van Dorsselaer, Alain; Job, Dominique

    2008-01-01

    We have used proteomics to better characterize germination and early seedling vigor in sugarbeet. Our strategy includes (1) construction of proteome reference maps for dry and germinating seeds of a high-vigor reference seed lot; (2) investigation of the specific tissue accumulation of proteins (root, cotyledon, perisperm); (3) investigation of changes in protein expression profiles detected in the reference seed lot subjected to different vigor-modifying treatments, e.g. aging and/or priming. More than 1 000 sugarbeet seed proteins have been identified by LC/MS-MS mass spectrometry (albumins, globulins and glutelins have been analyzed separately). Due to the conservation of protein sequences and the quality of MS sequencing (more than 10 000 peptide sequences have been obtained), the success rate of protein identification was on the average of 80%. This is to our knowledge the best detailed proteome analysis ever carried out in seeds. The data allowed us to build a detailed metabolic chart of the sugarbeet seed, generating new insights into the molecular mechanisms determining the development of a new seedling. Also, the proteome of a seed-storage tissue as the perisperm is described for the first time.

  16. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  17. Metabolic gene polymorphism frequencies in control populations

    DEFF Research Database (Denmark)

    Garte, Seymour; Gaspari, Laura; Alexandrie, Anna-Karin

    2001-01-01

    Using the International Project on Genetic Susceptibility to Environmental Carcinogens (GSEC) database containing information on over 15,000 control (noncancer) subjects, the allele and genotype frequencies for many of the more commonly studied metabolic genes (CYP1A1, CYP2E1, CYP2D6, GSTM1, GSTT...

  18. Depletion of Inositol Polyphosphate 4-Phosphatase II Suppresses Callosal Axon Formation in the Developing Mice.

    Science.gov (United States)

    Ji, Liting; Kim, Nam-Ho; Huh, Sung-Oh; Rhee, Hae Jin

    2016-06-30

    The corpus callosum is a bundle of nerve fibers that connects the two cerebral hemispheres and is essential for coordinated transmission of information between them. Disruption of early stages of callosal development can cause agenesis of the corpus callosum (AgCC), including both complete and partial callosal absence, causing mild to severe cognitive impairment. Despite extensive studies, the etiology of AgCC remains to be clarified due to the complicated mechanism involved in generating AgCC. The biological function of PI3K signaling including phosphatidylinositol-3,4,5-trisphosphate is well established in diverse biochemical processes including axon and dendrite morphogenesis, but the function of the closely related phosphatidylinositol-3,4,-bisphosphate (PI(3,4)P2) signaling, particularly in the nervous system, is largely unknown. Here, we provide the first report on the role of inositol polyphosphate 4-phosphatase II (INPP4B), a PI(3,4)P2 metabolizing 4-phosphatase in the regulation of callosal axon formation. Depleting INPP4B by in utero electroporation suppressed medially directed callosal axon formation. Moreover, depletion of INPP4B significantly attenuated formation of Satb2-positive pyramidal neurons and axon polarization in cortical neurons during cortical development. Taken together, these data suggest that INPP4B plays a role in the regulating callosal axon formation by controlling axon polarization and the Satb2-positive pyramidal neuron population. Dysregulation of INPP4B during cortical development may be implicated in the generation of partial AgCC.

  19. Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni.

    Science.gov (United States)

    Kumar, Anand; Gangaiah, Dharanesh; Torrelles, Jordi B; Rajashekara, Gireesh

    2016-09-07

    Campylobacter jejuni (C. jejuni), a Gram-negative microaerophilic bacterium, is a predominant cause of bacterial foodborne gastroenteritis in humans worldwide. Despite its importance as a major foodborne pathogen, our understanding of the molecular mechanisms underlying C. jejuni stress survival and pathogenesis is limited. Inorganic polyphosphate (poly P) has been shown to play significant roles in bacterial resistance to stress and virulence in many pathogenic bacteria. C. jejuni contains the complete repertoire of enzymes required for poly P metabolism. Recent work in our laboratory and others have demonstrated that poly P controls a plethora of C. jejuni properties that impact its ability to survive in the environment as well as to colonize/infect mammalian hosts. This review article summarizes the current literature on the role of poly P in C. jejuni stress survival and virulence and discusses on how poly P-related enzymes can be exploited for therapeutic/prevention purposes. Additionally, the review article identifies potential areas for future investigation that would enhance our understanding of the role of poly P in C. jejuni and other bacteria, which ultimately would facilitate design of effective therapeutic/preventive strategies to reduce not only the burden of C. jejuni-caused foodborne infections but also of other bacterial infections in humans.

  20. Role of metabolic control on diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Macedo Célia Sperandéo

    2002-01-01

    Full Text Available OBJECTIVE: The aim of this investigation was studying the influence of glucose metabolic control on diabetic nephropathy. The authors observed the effect of acarbose, insulin, and both drugs on the metabolic control and development of mesangial enlargement of kidney glomeruli in alloxan-diabetic rats. METHODS: Five groups of Wistar rats were used: normal rats (N, non-treated alloxan-diabetic rats (D, alloxan-diabetic rats treated with acarbose (AD, alloxan-diabetic rats treated with insulin (ID, and alloxan-diabetic rats treated with insulin plus acarbose (IAD. The following parameters were evaluated: body weight; water and food intake; diuresis; blood and urine glucose levels; and the kidney lesions: mesangial enlargement and tubule cell vacuolization. Renal lesions were analysed using a semi-quantitative score 1, 3, 6, 9, and 12 months after diabetes induction. RESULTS: Diabetic rats showed a marked increase of glycemia, urinary glucose levels, diuresis, water and food intake, and weight loss, while the treated diabetic rats showed significant decreased levels of these parameters. The most satisfactory metabolic control was that of diabetic rats treated with acarbose + insulin. There was a significant mesangial enlargement in diabetic rats compared to normal rats from the third up to the 12th month after diabetes induction, with a significant difference between the animals treated with acarbose + insulin and non-treated diabetic rats. A difference between the animals treated with acarbose or insulin alone and non-treated diabetics rats was not seen. CONCLUSIONS: The authors discuss the results stressing the role of diabetic metabolic control in the prevention of diabetic nephropathy.

  1. Hyperbranched polyphosphates: synthesis, functionalization and biomedical applications.

    Science.gov (United States)

    Liu, Jinyao; Huang, Wei; Pang, Yan; Yan, Deyue

    2015-06-21

    Hyperbranched polyphosphates (HBPPs) are newly emerged polymeric biomaterials with repeating phosphate bonds in a highly branched framework over the past 5 years. Due to the integration of the advantages of both hyperbranched polymers and polyphosphates, HBPPs are versatile in chemical structure, flexible in physicochemical properties, water soluble, biocompatible and biodegradable in biological features. On the basis of their excellent water solubility, biocompatibility, biodegradability and potential functionalization as well as their simple preparation in one-pot synthesis, HBPPs have fascinating biomedical applications, especially for drug delivery. In this tutorial review, the recent advances of HBPPs are summarized. HBPPs with different topological structures and various functionalities were synthesized via adjusting the side group of cyclic phosphate monomers, which have shown promising biomedical applications, for example, using as a macromolecular anticancer agent and constructing advanced drug delivery systems, including site-specific delivery systems, self-delivery systems, and stimuli-responsive delivery systems. Such progress may promote the further development of interdisciplinary research between polymer chemistry, material science and biomedicine.

  2. Polyphosphate during the Regreening of Chlorella vulgaris under Nitrogen Deficiency.

    Science.gov (United States)

    Chu, Fei-Fei; Shen, Xiao-Fei; Lam, Paul K S; Zeng, Raymond J

    2015-09-28

    Polyphosphate (Poly-P) accumulation has been reported in Chlorella vulgaris under nitrogen deficiency conditions with sufficient P supply, and the process has been demonstrated to have great impact on lipid productivity. In this article, the utilization of polyphosphates and the regreening process under N resupplying conditions, especially for lipid production reviving, were investigated. This regreening process was completed within approximately 3-5 days. Polyphosphates were first degraded within 3 days in the regreening process, with and without an external P supply, and the degradation preceded the assimilation of phosphate in the media with an external P offering. Nitrate assimilation was markedly influenced by the starvation of P after polyphosphates were exhausted in the medium without external phosphates, and then the reviving process of biomass and lipid production was strictly impeded. It is, thus, reasonable to assume that simultaneous provision of external N and P is essential for overall biodiesel production revival during the regreening process.

  3. Polyphosphate during the Regreening of Chlorella vulgaris under Nitrogen Deficiency

    Directory of Open Access Journals (Sweden)

    Fei-Fei Chu

    2015-09-01

    Full Text Available Polyphosphate (Poly-P accumulation has been reported in Chlorella vulgaris under nitrogen deficiency conditions with sufficient P supply, and the process has been demonstrated to have great impact on lipid productivity. In this article, the utilization of polyphosphates and the regreening process under N resupplying conditions, especially for lipid production reviving, were investigated. This regreening process was completed within approximately 3–5 days. Polyphosphates were first degraded within 3 days in the regreening process, with and without an external P supply, and the degradation preceded the assimilation of phosphate in the media with an external P offering. Nitrate assimilation was markedly influenced by the starvation of P after polyphosphates were exhausted in the medium without external phosphates, and then the reviving process of biomass and lipid production was strictly impeded. It is, thus, reasonable to assume that simultaneous provision of external N and P is essential for overall biodiesel production revival during the regreening process.

  4. Polyphosphate during the Regreening of Chlorella vulgaris under Nitrogen Deficiency

    National Research Council Canada - National Science Library

    Chu, Fei-Fei; Shen, Xiao-Fei; Lam, Paul K S; Zeng, Raymond J

    2015-01-01

    Polyphosphate (Poly-P) accumulation has been reported in Chlorella vulgaris under nitrogen deficiency conditions with sufficient P supply, and the process has been demonstrated to have great impact on lipid productivity...

  5. Bilateral Diabetic Papillopathy and Metabolic Control

    DEFF Research Database (Denmark)

    Ostri, Christoffer; Lund-Andersen, Henrik; Sander, Birgit;

    2010-01-01

    OBJECTIVE: The pathogenesis of diabetic papillopathy largely is unknown, but case reports suggest that it may follow rapidly improved metabolic control. The present study was designed to investigate this hypothesis. DESIGN: Retrospective case-control study. PARTICIPANTS: Two thousand sixty......-six patients with type 1 diabetes. METHODS: Review of clinical, photographic, and clinical chemistry records from a large diabetology and ophthalmology unit between 2001 and 2008. MAIN OUTCOME MEASURES: Simultaneous, bilateral diabetic papillopathy. RESULTS: The mean follow-up was 4.9 years. During 10 020...... patient-years of observation, bilateral diabetic papillopathy developed in 5 patients. During the year preceding this incident, all 5 patients had experienced a decrease in glycosylated hemoglobin A(1c) (HbA(1C)) at a maximum rate of -2.5 (mean) percentage points per quarter year, which was significantly...

  6. Metabolic Control Analysis: Separable Matrices and Interdependence of Control Coefficients.

    Science.gov (United States)

    Elsner; Giersch

    1998-08-21

    A central quantity for the analysis of the interdependence of control coefficients is the Jacobian H of the pathway. For a simple metabolic chain, H is known to be tridiagonal. Its inverse H-1, which is required to calculate control coefficients, is semi-separable. A semi-separable nxn matrix (aij) has the characteristic property that it is decomposable into two triangles for each of which there are vectors r=(r1, . . . ,rn) and t=(t1, . . . ,tn) with aij=ritj. The exact definitions of semi-separability and the related separability of matrices are given in Appendix B. Owing to the semi-separability of H-1, the determinants of all 2x2 sub-matrices of elements located within one of the triangles are zero. Therefore, these triangles are regions of vanishing two-minors. The flux control coefficient matrix CJ is hown to be separable and the concentration control coefficient matrix Cs to be semi separable. Cs has, in addition, the peculiarity that the row vector is the same for both its upper and lower triangle. A feedback loop gives rise to a new sub-region of vanishing two-minors, thereby disturbing the semi-separability of the upper triangle of Cs. A recipe is given to graphically construct the regions of vanishing two-minors of concentration control coefficients. The notion of (semi-)separability allows assessment of all dependences of control coefficients for metabolic pathways.Copyright 1998 Academic Press

  7. Exercising for metabolic control: is timing important?

    Science.gov (United States)

    Haxhi, Jonida; Scotto di Palumbo, Alessandro; Sacchetti, Massimo

    2013-01-01

    Atherosclerosis-related cardiovascular disease and diabetes mellitus are leading causes of mortality in the world and both disorders are closely related to the postprandial phenomena. Regular exercise is being strongly advocated as a precious tool in easing the global burden of chronic disease. Although exercise intensity, duration and frequency are well established in current guidelines for healthy and diabetic individuals, there is still no consensus on the optimal timing of exercise in relation to the last meal. The present paper reviews the existing literature on the 'when?' of aerobic exercise for metabolic control in healthy and diabetic individuals. Effective control of postprandial phenomena might prove to be a useful tool in the prevention of chronic disease. Exercise appears to influence glycemic and triglyceridemic responses differently depending on the meal composition and time lapse from meals. In healthy individuals, fasted-state exercise favors postprandial triglyceridemic control and the insulin sensitivity related to it. However, there is a lack of data on this matter in diabetic patients. On the other hand, when postprandial glycemia is of concern, aerobic exercise works better when performed after a meal, both in healthy and in diabetic patients.

  8. It must be my metabolism: Metabolic control of mind

    Directory of Open Access Journals (Sweden)

    Dana M Small

    2014-07-01

    relationship between the reinforcing potency of sugared solutions and the metabolic effects that follow their consumption (16, also see the abstract of I. de Araujo. We therefore hypothesized that metabolic response provides the critical signal necessary to condition preference. To test this prediction in humans we designed a flavor nutrient conditioning study in which participants first rated their liking for novel flavored beverages and then, over a three week-long conditioning protocol, alternately ingested one of the flavored beverages with 112.5 kcal from maltodextrin, a tasteless and odorless polysaccharide that breaks down into glucose, and another flavored beverage with no calories added. Plasma glucose was measured before and after each of the drinks’ consumption as a proxy measure of metabolic response, assuming that glucose oxidation depends upon the level of circulating glucose. For each participant flavor-calorie pairings were held constant but the identity of the conditioned flavors were counterbalanced across participants. Following the exposure phase, participants’ liking of, and brain responses to, non-caloric versions of the flavors were assessed. We predicted that change in plasma glucose produced by beverage consumption during the exposure sessions would be associated with neural responses in dopamine source and target regions to the calorie predictive flavor. As predicted, response in the ventral striatum and hypothalamus to the calorie-predictive flavor (CS+ vs. non the noncaloric-predictive flavor (CS- was strongly associated with the changes in plasma glucose levels produced by ingestion of these same beverages when consumed previously either with (CS+ or without (CS- calories (17. Specifically, the greater the increase in circulating glucose occurring post ingestion of the beverage containing 112.5 kcal from maltodextrin versus the noncaloric drink, the stronger was the brain response to the CS+ compared to the CS- flavor. Importantly, because each

  9. Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa.

    Science.gov (United States)

    Acharya, Celin; Apte, Shree Kumar

    2013-12-01

    A filamentous, heterocystous, nitrogen-fixing marine cyanobacterium, Anabaena torulosa, has been shown to harbour surface associated, acid soluble polyphosphate bodies. Uranium immobilization by such polyphosphate bodies, reported in cyanobacteria for the first time, demonstrates a novel uranium sequestration phenomenon.

  10. New Functions of the Inositol Polyphosphate 5-Phosphatases in Cancer.

    Science.gov (United States)

    Erneux, Christophe; Ghosh, Somadri; Ramos, Ana Raquel; Edimo, William's Elong

    2016-01-01

    Inositol polyphosphate 5-phosphatases act on inositol phosphates and phosphoinositides as substrates. They are 10 different isoenzymes and several splice variants in the human genome that are involved in a series of human pathologies such as the Lowe syndrome, the Joubert and MORM syndromes, breast cancer, glioblastoma, gastric cancer and several other type of cancers. Inositol 5-phosphatases can be amplified in human cancer cells, whereas the 3- and 4- phosphatase tumor suppressor PTEN and INPP4B, repectively are often repressed or deleted. The inositol 5-phosphatases are critically involved in a complex network of higly regulated phosphoinositides, affecting the lipid content of PI(3, 4, 5)P3, PI(4, 5)P2 and PI(3, 4)P2. This has an impact on the normal behavior of many intracellular target proteins e.g. protein kinase B (PKB/Akt) or actin binding proteins and final biological responses. The production of PI(3, 4P)2 by dephosphorylation of the substrate PI(3, 4, 5)P3 is particularly important as it produces a new signal messenger in the control of cell migration, invasion and endocytosis. New inhibitors/activators of inositol 5- phosphatases have recently been identified for the possible control of their activity in several human pathologies such as inflamation and cancer.

  11. Optimization of polyphosphate production by Bacillus megaterium strain G11

    Directory of Open Access Journals (Sweden)

    Giti Emtiazi

    2013-01-01

    Full Text Available Introduction: Polyphosphates, also called volutin granules, are linear polymers from orthophosphates linked by energy-rich phosphoanhydride bands that have been seen in bacteria, yeasts, fungi, plants and animals. These polymers are completely safe and nontoxic, and have numerous applications in food and drug industries.Materials and methods: Due to the great importance and wide range of the utilization of these polymers in various industries, several factors such as various carbon sources, carbon source concentration and phosphorus concentration were studied and optimized. In order to increase polyphosphate production in Bacillus megaterium strain G11. The optimization process was carried out with determination of the amount of polyphosphate accumulated in cell and phosphorus removed from the medium. One-way ANOVA and Tukey tests were used in order to determine whether there was a significant difference between data obtained in this research.Results: Growth of B. megaterium in the presence of sucrose (OD=3.026 was better than glucose (OD=2.616 whereas polyphosphate production and phosphorus removal from medium were higher in the presence of glucose (0.033 g g-1 dry cell weight and 1.61 g l-1, respectively. On the other hand, polyphosphate production and phosphorus removal from medium coordinately were decreased with increasing glucose concentration. Furthermore, in studying the effects of phosphorus, we faced two phases of rising and falling. Actually, the increase of phosphorus concentration (0.25-1 g l-1 in medium caused an increase in polyphosphate production and phosphorus removal from medium whereas both of them were decreased with a more increase in amount of phosphorus (1-4 g l-1. One-way ANOVA and Tukey tests showed that there was a significant difference (P<0.01 between data obtained at each optimization step and the best glucose and dipotassium phosphate concentrations for polyphosphate production were 5 and 0.5 g l-1 respectively

  12. Central nervous system control of triglyceride metabolism

    NARCIS (Netherlands)

    Geerling, Johanna Janetta (Janine)

    2013-01-01

    This thesis describes the role of the brain in the regulation of peripheral triglyceride metabolism, in the context of the metabolic syndrome. Based on various pharmacological studies we described the role of two hormones, insulin and glucagon-like peptide-1, in the production and clearance of

  13. Central nervous system control of triglyceride metabolism

    NARCIS (Netherlands)

    Geerling, Johanna Janetta (Janine)

    2013-01-01

    This thesis describes the role of the brain in the regulation of peripheral triglyceride metabolism, in the context of the metabolic syndrome. Based on various pharmacological studies we described the role of two hormones, insulin and glucagon-like peptide-1, in the production and clearance of trigl

  14. Central nervous system control of triglyceride metabolism

    OpenAIRE

    Geerling, Johanna Janetta (Janine)

    2013-01-01

    This thesis describes the role of the brain in the regulation of peripheral triglyceride metabolism, in the context of the metabolic syndrome. Based on various pharmacological studies we described the role of two hormones, insulin and glucagon-like peptide-1, in the production and clearance of triglycerides. We showed that insulin stimulates the uptake of (triglyceride-derived) fatty acids and that the brain plays an essential role in this process. Additionally, we showed that the glucagon-li...

  15. Antibacterial action of polyphosphate on Porphyromonas gingivalis.

    Science.gov (United States)

    Moon, Ji-Hoi; Park, Jae-Hong; Lee, Jin-Yong

    2011-02-01

    Polyphosphate [poly(P)] has antibacterial activity against various Gram-positive bacteria. In contrast, Gram-negative bacteria are generally resistant to poly(P). Here, we describe the antibacterial characterization of poly(P) against a Gram-negative periodontopathogen, Porphyromonas gingivalis. The MICs of pyrophosphate (Na(4)P(2)O(7)) and all poly(P) (Na(n + 2)P(n)O(3n + 1); n = 3 to 75) tested for the bacterium by the agar dilution method were 0.24% and 0.06%, respectively. Orthophosphate (Na(2)HPO(4)) failed to inhibit bacterial growth. Poly-P75 was chosen for further study. In liquid medium, 0.03% poly-P75 was bactericidal against P. gingivalis irrespective of the growth phase and inoculum size, ranging from 10(5) to 10(9) cells/ml. UV-visible spectra of the pigments from P. gingivalis grown on blood agar with or without poly-P75 showed that poly-P75 reduced the formation of μ-oxo bisheme by the bacterium. Poly-P75 increased hemin accumulation on the P. gingivalis surface and decreased energy-driven uptake of hemin by the bacterium. The expression of the genes encoding hemagglutinins, gingipains, hemin uptake loci, chromosome replication, and energy production was downregulated, while that of the genes related to iron storage and oxidative stress was upregulated by poly-P75. The transmission electron microscope showed morphologically atypical cells with electron-dense granules and condensed nucleoid in the cytoplasm. Collectively, poly(P) is bactericidal against P. gingivalis, in which hemin/heme utilization is disturbed and oxidative stress is increased by poly(P).

  16. Knowledge, attitudes and metabolic control of diabetic and cardiac patients

    Directory of Open Access Journals (Sweden)

    Bruna Emy Ono

    2016-01-01

    Full Text Available Objective: to verify the relationship between knowledge, attitudes and metabolic control in diabetic and cardiac patients. Methods: descriptive, exploratory and cross-sectional study exploring the knowledge, attitudes and diabetes metabolic control in 46 participants with heart disease. Results: participants were predominantly male with incomplete secondary education who demonstrated poor knowledge and unfavorable attitudes towards the disease. There was no difference between participants with and without knowledge on variables of metabolic and clinical control of diabetes, neither with respect to attitudes towards the disease. Conclusion: knowledge about diabetes was unsatisfactory in patients with heart disease and unrelated to favorable actions and better disease control.

  17. Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates.

    Science.gov (United States)

    Andreeva, Nadezhda; Ryazanova, Lubov; Dmitriev, Vladimir; Kulakovskaya, Tatiana; Kulaev, Igor

    2013-08-01

    The ability of Saccharomyces cerevisiae to adapt to toxic Mn(2+) concentration (4 mM) after an unusually long lag phase has been demonstrated for the first time. The mutants lacking exopolyphosphatase PPX1 did not change the adaptation time, whereas the mutants lacking exopolyphosphatase PPN1 reduced the lag period compared with the wild-type strains. The cell populations of WT and ΔPPN1 in the stationary phase at cultivation with Mn(2+) contained a substantial number of enlarged cells with a giant vacuole. The adaptation correlated with the triggering of polyphosphate metabolism: the drastic increase in the rate and chain length of acid-soluble polyphosphate. The share of this fraction, which is believed to be localized in the cytoplasm, increased to 76%. Its average chain length increased to 200 phosphate residues compared with 15 at the cultivation in the absence of manganese. DAPI-stained inclusions in the cytoplasm were accumulated in the lag phase during the cultivation with Mn(2+).

  18. Metabolic syndrome in migraine headache: A case-control study

    Directory of Open Access Journals (Sweden)

    Mehrzad Salmasi

    2014-01-01

    Full Text Available Background: The correlation of metabolic syndrome and migraine headache was evaluated in some previous studies. However there is no study that compared the prevalence of metabolic syndrome in the patients with and without migraine. Control of coincidental factors such as metabolic syndrome reduces therapeutic resistance in migrainous patients. The aim of this study was to compare prevalence of metabolic syndrome in patients with and without migraine headache. Materials and Methods: 200 migrainous patients diagnosed according to International Headache Society and 200 healthy controls without migraine enrolled in this study. Metabolic syndrome was diagnosed according to ATP III criteria in these two groups and compared with each other. Results: In this study, 17% (34 of migrainous patients and 15% (30 of healthy control without migraine had metabolic syndrome. (P = 0.585. Of the metabolic syndrome components, body mass index (P = 0.05 and waist circumference in migrainous (P = 0.03 were significantly more frequent. Conclusion: Our results demonstrate that metabolic syndrome and migraine headache had not significant correlation; however, higher body mass index and waist circumference as metabolic syndrome components had correlated with migraine headache.

  19. A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster.

    Science.gov (United States)

    Seeds, Andrew M; Sandquist, Joshua C; Spana, Eric P; York, John D

    2004-11-05

    Metabolism of inositol 1,4,5-trisphosphate (I(1,4,5)P3) results in the production of diverse arrays of inositol polyphosphates (IPs), such as IP4, IP5, IP6) and PP-IP5. Insights into their synthesis in metazoans are reported here through molecular studies in the fruit fly, Drosophila melanogaster. Two I(1,4,5)P3 kinase gene products are implicated in initiating catabolism of these important IP regulators. We find dmIpk2 is a nucleocytoplasmic 6-/3-kinase that converts I(1,4,5)P3 to I(1,3,4,5,6)P5, and harbors 5-kinase activity toward I(1,3,4,6)P4, and dmIP3K is a 3-kinase that converts I(1,4,5)P3 to I(1,3,4,5)P4. To assess their relative roles in the cellular production of IPs we utilized complementation analysis, RNA interference, and overexpression studies. Heterologous expression of dmIpk2, but not dmIP3K, in ipk2 mutant yeast recapitulates phospholipase C-dependent cellular synthesis of IP6. Knockdown of dmIpk2 in Drosophila S2 cells and transgenic flies results in a significant reduction of IP6 levels; whereas depletion of dmIP3K, either alpha or beta isoforms or both, does not decrease IP6 synthesis but instead increases its production, possibly by expanding I(1,4,5)P3 pools. Similarly, knockdown of an I(1,4,5)P3 5-phosphatase results in significant increase in dmIpk2/dmIpk1-dependent IP6 synthesis. IP6 production depends on the I(1,3,4,5,6)P5 2-kinase activity of dmIpk1 and is increased in transgenic flies overexpressing dmIpk2. Our studies reveal that phosphatase and kinase regulation of I(1,4,5)P3 metabolic pools directly impinge on higher IP synthesis, and that the major route of IP6 synthesis depends on the activities of dmIpk2 and dmIpk1, but not dmIP3K, thereby challenging the role of IP3K in the genesis of higher IP messengers.

  20. Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations.

    Science.gov (United States)

    Ryazanova, Lubov; Zvonarev, Anton; Rusakova, Tatiana; Dmitriev, Vladimir; Kulakovskaya, Tatiana

    2016-07-01

    Basidiomycetous and ascomycetous yeast species were tested for manganese tolerance. Basidiomycetous Cryptococcus humicola, Cryptococcus terricola, Cryptococcus curvatus and ascomycetous Candida maltosa, Kluyveromyces marxianus, Kuraishia capsulata, Lindnera fabianii and Sacharomyces cerevisiae were able to grow at manganese excess (2.5 mmol/L), while the growth of basidiomycetous Rhodotorula bogoriensis was completely suppressed. The lag phase duration increased and the exponential growth rate decreased at manganese excess. The increase of cell size and enlargement of vacuoles were characteristics for the cells grown at manganese excess. The alterations in inorganic polyphosphate content and cellular localization were studied. L. fabianii, K. capsulata, C. maltosa, and Cr. humicola accumulated the higher amounts of inorganic polyphosphates, while Cr. terricola and Cr. curvatus demonstrated no such accumulation. The polyphosphate content in the cell wall tested by DAPI staining increased in all species under the study; however, this effect was more pronounced in Cr. terricola and Cr. curvatus. The accumulation of Mg(2+) in the cell wall under Mn(2+) excess was observed in Cr. humicola, Cr. curvatus and Cr. terricola. The accumulation of polyphosphate and magnesium in the cell wall was supposed to be a factor of manganese tolerance in yeasts.

  1. Observation of polyphosphate granules in cable bacteria

    Science.gov (United States)

    Yang, T.; Nielsen, L. P.; Risgaard-Petersen, N.

    2015-12-01

    Cable bacteria are long filamentous bacteria that capable for long distance electron transport: transporting electrons derived from oxidizing sulfide in anoxic layers, to oxygen at the sediment surface, over a distance of centimeters. Cable bacteria are found in many types of freshwater and marine sediment all over the world, with density of approximately thousands of kilometers per square meter. These long filaments are composed by individual cells closely related to Desulfobulbaceae, connected with a shared outer membrane inside which the strings structure are presumed to be highly conductive. The observed doubling time of cells within the filament is about 20 min, which is among the shortest compare to other bacteria. In these cable cells, we constantly observed polyphosphate granules (poly-P), regardless of cell dimension and shape. This is very interesting since it has long been recognized that the microbial polyP content is low during rapid growth and increases under unfavorable conditions, for example, increasing sulfide concentration and anoxia resulted in a decomposition of poly-P in Beggiatoa. Here, we investigated marine cable bacteria from Netherland and Aarhus Bay, focusing on the poly-P dynamics under various redox conditions. In poly-P stained cells, typically there are two big poly-P granules locate at each polar. In dividing cells, however, the morphology of poly-P changed to six small granules precisely arranged to two row. Moreover, the cells seem be able to continuously divide more than one time without elongation step. These varied poly-P morphologies demonstrate that poly-P is closely related to the cell growth and cell division, by an unknown mechanism. Individual cable filaments were picked up and were exposed to different redox conditions; our primary data indicated the cable cells could suffer anoxic condition better than oxic condition. We also detected decomposition of poly-P under anoxia. These results call for an in-depth examination

  2. Metabolic Derangements in Lichen Planus - A Case Control Study

    Science.gov (United States)

    Kar, Bikash Ranjan; Panda, Maitreyee

    2016-01-01

    Introduction An association between psoriasis and metabolic syndrome has been established in previous studies. Lichen Planus (LP) is also a chronic inflammatory disease morphologically related to psoriasis and few studies have shown association of metabolic derangements in LP. Aim To study the association of metabolic derangements in LP. Materials and Methods A prospective case control study was undertaken for a period of one year. Age and sex matched patients of LP and other non-inflammatory diseases were taken as cases and controls respectively. Data on height, weight, lipid profile and fasting blood glucose levels were collected for all the patients. Body Mass Index (BMI) was calculated. Results A total of 80 patients were recruited, 40 cases and 40 controls. The mean values for all the lipid and glucose parameters were high in cases as compared to controls with significant p-values. Conclusion In the present study metabolic derangements were seen in patients with LP. PMID:28050485

  3. Cellular metabolic and autophagic pathways: traffic control by redox signaling.

    Science.gov (United States)

    Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2013-10-01

    It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.

  4. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  5. Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network.

    Science.gov (United States)

    Pacheco, Maria Pires; John, Elisabeth; Kaoma, Tony; Heinäniemi, Merja; Nicot, Nathalie; Vallar, Laurent; Bueb, Jean-Luc; Sinkkonen, Lasse; Sauter, Thomas

    2015-10-19

    The reconstruction of context-specific metabolic models from easily and reliably measurable features such as transcriptomics data will be increasingly important in research and medicine. Current reconstruction methods suffer from high computational effort and arbitrary threshold setting. Moreover, understanding the underlying epigenetic regulation might allow the identification of putative intervention points within metabolic networks. Genes under high regulatory load from multiple enhancers or super-enhancers are known key genes for disease and cell identity. However, their role in regulation of metabolism and their placement within the metabolic networks has not been studied. Here we present FASTCORMICS, a fast and robust workflow for the creation of high-quality metabolic models from transcriptomics data. FASTCORMICS is devoid of arbitrary parameter settings and due to its low computational demand allows cross-validation assays. Applying FASTCORMICS, we have generated models for 63 primary human cell types from microarray data, revealing significant differences in their metabolic networks. To understand the cell type-specific regulation of the alternative metabolic pathways we built multiple models during differentiation of primary human monocytes to macrophages and performed ChIP-Seq experiments for histone H3 K27 acetylation (H3K27ac) to map the active enhancers in macrophages. Focusing on the metabolic genes under high regulatory load from multiple enhancers or super-enhancers, we found these genes to show the most cell type-restricted and abundant expression profiles within their respective pathways. Importantly, the high regulatory load genes are associated to reactions enriched for transport reactions and other pathway entry points, suggesting that they are critical regulatory control points for cell type-specific metabolism. By integrating metabolic modelling and epigenomic analysis we have identified high regulatory load as a common feature of metabolic

  6. Chromosome replication and segregation govern the biogenesis and inheritance of inorganic polyphosphate granules.

    Science.gov (United States)

    Henry, Jonathan T; Crosson, Sean

    2013-10-01

    Prokaryotes and eukaryotes synthesize long chains of orthophosphate, known as polyphosphate (polyP), which form dense granules within the cell. PolyP regulates myriad cellular functions and is often localized to specific subcellular addresses through mechanisms that remain undefined. In this study, we present a molecular-level analysis of polyP subcellular localization in the model bacterium Caulobacter crescentus. We demonstrate that biogenesis and localization of polyP is controlled as a function of the cell cycle, which ensures regular partitioning of granules between mother and daughter. The enzyme polyphosphate kinase 1 (Ppk1) is required for granule production, colocalizes with granules, and dynamically localizes to the sites of new granule synthesis in nascent daughter cells. Localization of Ppk1 within the cell requires an intact catalytic active site and a short, positively charged tail at the C-terminus of the protein. The processes of chromosome replication and segregation govern both the number and position of Ppk1/polyP complexes within the cell. We propose a multistep model in which the chromosome establishes sites of polyP coalescence, which recruit Ppk1 to promote the in situ synthesis of large granules. These findings underscore the importance of both chromosome dynamics and discrete protein localization as organizing factors in bacterial cell biology.

  7. Slave nodes and the controllability of metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hee; Motter, Adilson E [Department of Physics and Astronomy and Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL 60208 (United States)], E-mail: dong.kim@tkk.fi, E-mail: motter@northwestern.edu

    2009-11-15

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  8. The metabolic control of schistosome egg production

    Science.gov (United States)

    Pearce, Edward J.; Huang, Stanley Ching-Cheng

    2015-01-01

    Schistosomiasis is a Neglected Tropical Disease caused by infection with trematode parasites of the genus Schistosoma. Despite ongoing treatment programs, the prevalence of schistosomiasis has failed to decline and the disease remains a cause of severe morbidity in millions of people. Understanding the biology of egg production by schistosomes is critical since eggs allow transmission of the infection, and when trapped in host tissues induce the immune responses that are responsible for the pathologic changes that underlie disease development. Unusually among trematodes, adult schistosomes exhibit sexual dimorphism and display a fascinating codependency in that the female is dependent on the male to grow and sexually mature. Thus virgin females are developmentally stunted compared to females from mixed-sex infections and are unable to lay eggs. Moreover, fecund female schistosomes rapidly lose the ability to produce eggs when placed in tissue culture. Here we discuss the metabolic regulation of egg production in schistosomes, and in particular the critical role played by fatty acid oxidation in this process. PMID:25850569

  9. [Nitrogen metabolism and its control mechanisms].

    Science.gov (United States)

    Bergner, H

    1989-01-01

    N intake in the form of protein has neither got an upper nor a lower limit for agricultural working animals within a diet and there is no control mechanism for it. A high surplus of certain amino acids results in a reduction of feed intake. N excretion in faeces depends on 1) the excretion of N containing indigestible feedstuffs, 2) bacterial nitrogen synthesis in the large intestine and 3) the excretion of true endogenous N containing substances (digestion enzymes, intestinal epithelium, N containing endogenous secretion). There are no other control mechanisms for N excretion in faeces. N excretion in urine mainly comprises the nitrogen from the degeneration of amino acids and nucleic acids. The interrelations between urea, NH3, allantoin, creatine and creatinine, uric acid and hippuric acid depend on the species (monogastric or ruminants), on the nitrogen and N amount consumed and on the recycling ratio of the amino acids. The absolute amount of N excretion is not subject to any control mechanism, it depends on the intake of protein and NPN substances, the interim stages, however, which lead to the formation of excretory products, are intermediately controlled. The most important interim stage is protein biosynthesis, which is a fixed, intermediately controlled value in maintenance level. Under growth conditions only, the protein synthesis quota can exceed the protein degradation quota of the total organism (positive N balance). The control mechanisms of protein biosynthesis have, according to current knowledge, the following structure: Stimulation: 1) growth hormone (STH) stimulates protein synthesis by means of somatomedins; 2) hormones of the thyroid gland (T4 and T3) are controlled by the hormone stimulating the thyroid gland (TSH); 3) insulin. Inhibition: 1) somatostatin inhibits STH, TSH and insulin; 2) cortisol directly inhibits protein synthesis and stimulates protein degradation. The control mechanisms of protein turnover in addition to genetic coding

  10. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.

    Science.gov (United States)

    Whitehead, Michael P; Hooley, Paul; W Brown, Michael R

    2013-06-05

    Studies of online database(s) showed that convincing examples of eukaryote PPKs derived from bacteria type PPK1 and PPK2 enzymes are rare and currently confined to a few simple eukaryotes. These enzymes probably represent several separate horizontal transfer events. Retention of such sequences may be an advantage for tolerance to stresses such as desiccation or nutrient depletion for simple eukaryotes that lack more sophisticated adaptations available to multicellular organisms. We propose that the acquisition of encoding sequences for these enzymes by horizontal transfer enhanced the ability of early plants to colonise the land. The improved ability to sequester and release inorganic phosphate for carbon fixation by photosynthetic algae in the ocean may have accelerated or even triggered global glaciation events. There is some evidence for DNA sequences encoding PPKs in a wider range of eukaryotes, notably some invertebrates, though it is unclear that these represent functional genes.Polyphosphate (poly P) is found in all cells, carrying out a wide range of essential roles. Studied mainly in prokaryotes, the enzymes responsible for synthesis of poly P in eukaryotes (polyphosphate kinases PPKs) are not well understood. The best characterised enzyme from bacteria known to catalyse the formation of high molecular weight polyphosphate from ATP is PPK1 which shows some structural similarity to phospholipase D. A second bacterial PPK (PPK2) resembles thymidylate kinase. Recent reports have suggested a widespread distribution of these bacteria type enzymes in eukaryotes. On - line databases show evidence for the presence of genes encoding PPK1 in only a limited number of eukaryotes. These include the photosynthetic eukaryotes Ostreococcus tauri, O. lucimarinus, Porphyra yezoensis, Cyanidioschyzon merolae and the moss Physcomitrella patens, as well as the amoeboid symbiont Capsaspora owczarzaki and the non-photosynthetic eukaryotes Dictyostelium (3 species

  11. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    Science.gov (United States)

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia.

  12. Metabolism

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Metabolism KidsHealth > For Teens > Metabolism Print A A A ... food through a process called metabolism. What Is Metabolism? Metabolism (pronounced: meh-TAB-uh-lih-zem) is ...

  13. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control

    NARCIS (Netherlands)

    Kuipers, Folkert; Stroeve, Johanna H. M.; Caron, Sandrine; Staels, Bart

    2007-01-01

    Purpose of review Bile acids are amphiphilic molecules synthesized from cholesterol exclusively in the liver that are essential for effective absorption of dietary fat. In addition to this classical role', bile acids act as signalling molecules that control their own metabolism by activating the nuc

  14. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    -arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering......, and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside...... at the enzyme following the intermediate with the highest concentration, L-arabitol, but is distributed over the first three steps in the pathway, preceding and following L-arabitol. Flux control appeared to be strongly dependent on the intracellular L-arabinose concentration. At 5 mM intracellular L...

  15. Survival of Campylobacter species after cryogenic freezing in ground turkey patties treated with polyphosphates

    Science.gov (United States)

    The use of polyphosphate-based marinades in the processing of poultry has been previously shown to increase the survival of Campylobacter species present in the exudates derived from these products. This study investigates the effects that some of the same polyphosphates have on the survival of Cam...

  16. All1371 is a polyphosphate-dependent glucokinase in Anabaena sp. PCC 7120.

    Science.gov (United States)

    Klemke, Friederike; Beyer, Gabriele; Sawade, Linda; Saitov, Ali; Korte, Thomas; Maldener, Iris; Lockau, Wolfgang; Nürnberg, Dennis J; Volkmer, Thomas

    2014-12-01

    The polyphosphate glucokinases can phosphorylate glucose to glucose 6-phosphate using polyphosphate as the substrate. ORF all1371 encodes a putative polyphosphate glucokinase in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Here, ORF all1371 was heterologously expressed in Escherichia coli, and its purified product was characterized. Enzyme activity assays revealed that All1371 is an active polyphosphate glucokinase that can phosphorylate both glucose and mannose in the presence of divalent cations in vitro. Unlike many other polyphosphate glucokinases, for which nucleoside triphosphates (e.g. ATP or GTP) act as phosphoryl group donors, All1371 required polyphosphate to confer its enzymic activity. The enzymic reaction catalysed by All1371 followed classical Michaelis-Menten kinetics, with kcat = 48.2 s(-1) at pH 7.5 and 28 °C and KM = 1.76 µM and 0.118 mM for polyphosphate and glucose, respectively. Its reaction mechanism was identified as a particular multi-substrate mechanism called the 'bi-bi ping-pong mechanism'. Bioinformatic analyses revealed numerous polyphosphate-dependent glucokinases in heterocyst-forming cyanobacteria. Viability of an Anabaena sp. PCC 7120 mutant strain lacking all1371 was impaired under nitrogen-fixing conditions. GFP promoter studies indicate expression of all1371 under combined nitrogen deprivation. All1371 might play a substantial role in Anabaena sp. PCC 7120 under these conditions.

  17. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation.

    Science.gov (United States)

    Jhun, JooYeon; Kwon, Jeong-Eun; Kim, Se-Young; Jeong, Jeong-Hee; Na, Hyun Sik; Kim, Eun-Kyung; Lee, Seung Hoon; Jung, KyungAh; Min, Jun-Ki; Cho, Mi-La

    2017-01-01

    The oral administration of rebamipide decreased plaque formation in atherosclerotic lesions as well as the markers of metabolic disorder in ApoE-deficient mice with atherosclerosis. Pro-inflammatory cytokines were also suppressed by rebamapide. In addition, the population of Th17 was decreased, whereas Treg was increased in the spleen of rebamipide-treated ApoE deficient mice. Rebamipide also ameliorated the severity of obese arthritis and has the capability to reduce the development of atherosclerosis by controlling the balance between Th17 and Treg cells. Thus, rebamipide could be a therapeutic agent to improve the progression of inflammation in metabolic diseases.

  18. Polyphosphates inhibit extracellular matrix mineralization in MC3T3-E1 osteoblast cultures.

    Science.gov (United States)

    Hoac, Betty; Kiffer-Moreira, Tina; Millán, José Luis; McKee, Marc D

    2013-04-01

    Studies on various compounds of inorganic phosphate, as well as on organic phosphate added by post-translational phosphorylation of proteins, all demonstrate a central role for phosphate in biomineralization processes. Inorganic polyphosphates are chains of orthophosphates linked by phosphoanhydride bonds that can be up to hundreds of orthophosphates in length. The role of polyphosphates in mammalian systems, where they are ubiquitous in cells, tissues and bodily fluids, and are at particularly high levels in osteoblasts, is not well understood. In cell-free systems, polyphosphates inhibit hydroxyapatite nucleation, crystal formation and growth, and solubility. In animal studies, polyphosphate injections inhibit induced ectopic calcification. While recent work has proposed an integrated view of polyphosphate function in bone, little experimental data for bone are available. Here we demonstrate in osteoblast cultures producing an abundant collagenous matrix that normally show robust mineralization, that two polyphosphates (PolyP5 and PolyP65, polyphosphates of 5 and 65 phosphate residues in length) are potent mineralization inhibitors. Twelve-day MC3T3-E1 osteoblast cultures with added ascorbic acid (for collagen matrix assembly) and β-glycerophosphate (a source of phosphate for mineralization) were treated with either PolyP5 or PolyP65. Von Kossa staining and calcium quantification revealed that mineralization was inhibited in a dose-dependent manner by both polyphosphates, with complete mineralization inhibition at 10μM. Cell proliferation and collagen assembly were unaffected by polyphosphate treatment, indicating that polyphosphate inhibition of mineralization results not from cell and matrix effects but from direct inhibition of mineralization. This was confirmed by showing that PolyP5 and PolyP65 bound to synthetic hydroxyapatite in a concentration-dependent manner. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) efficiently hydrolyzed the two PolyPs as

  19. Spectroscopic studies on glassy Ni(II) and Co(II) polyphosphate coacervates

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauricio A.P., E-mail: mauricio.silva@ufjf.edu.br [Nucleo de Espectroscopia e Estrutura Molecular, Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario Martelos, 36036-900 Juiz de Fora, MG (Brazil); Franco, Douglas F.; Brandao, Adilson R. [Nucleo de Espectroscopia e Estrutura Molecular, Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario Martelos, 36036-900 Juiz de Fora, MG (Brazil); Barud, Hernane [Instituto de Quimica, Universidade Estadual Paulista, C.P. 355, 14801-970 Araraquara, SP (Brazil); Dias Filho, Francisco A. [Departamento de Quimica Organica e Inorganica, Centro de Ciencias, Universidade Federal do Ceara, Campus do Pici, C.P. 12200, 60455-760 Fortaleza, CE (Brazil); Ribeiro, Sidney J.L.; Messaddeq, Younes [Instituto de Quimica, Universidade Estadual Paulista, C.P. 355, 14801-970 Araraquara, SP (Brazil); Oliveira, Luiz F.C. de [Nucleo de Espectroscopia e Estrutura Molecular, Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario Martelos, 36036-900 Juiz de Fora, MG (Brazil)

    2010-11-01

    Transparent amorphous bulk materials have been prepared through the coacervation process of sodium polyphosphate and Ni{sup 2+} and Co{sup 2+} chloride solutions. Structural and spectroscopic properties were analyzed by X-ray diffraction, thermogravimetric analysis, UV-vis, infrared and Raman spectroscopic techniques. Different optical properties and water absorption tendencies were observed for the polyphosphate coacervates. The symmetric P-O{sub b} and P-O{sub t} stretching modes on the Raman spectra for the coacervates and the sodium polyphosphate revealed the coordination processes of the polyphosphate chains to the metal ions, including the effects of the water coordination outside the polyphosphate cages, connecting the adjacent chains. Based on data collected from the electronic spectra, these materials can present important technological applicability. Being transparent materials, these glasses can be used as absorption filters with pass-band between 600 and 500 nm for the Ni coacervate, and above 600 nm for the Co coacervate.

  20. Control of mitochondrial volume by mitochondrial metabolic water.

    Science.gov (United States)

    Casteilla, Louis; Devin, Anne; Carriere, Audrey; Salin, Bénédicte; Schaeffer, Jacques; Rigoulet, Michel

    2011-11-01

    It is well-known that mitochondrial volume largely controls mitochondrial functioning. We investigate whether metabolic water produced by oxidative phosphorylation could be involved in mitochondrial volume regulation. We modulated the generation of this water in liver mitochondria and assess their volume by two independent techniques. In liver mitochondria, the mitochondrial volume was specifically decreased when no water was produced independently of energetic parameters and uncoupling activity. In all other conditions associated with water generation, there was no significant change in mitochondrial metabolic volume. Altogether these data demonstrate that mitochondrial volume is regulated, independently of energetic status, by the mitochondrial metabolic water that acts as a signal. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  1. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria

    Directory of Open Access Journals (Sweden)

    Jerez Carlos A

    2009-03-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by an exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies are impaired in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence. Knockout mutants of the ppk1 gene have been the most frequent strategy employed to generate polyP deficient cells. Results As an alternative method to construct polyP-deficient bacteria we developed constitutive and regulated broad-host-range vectors for depleting the cellular polyP content. This was achieved by the overexpression of yeast exopolyphosphatase (PPX1. Using this approach in a polyphosphate accumulating bacteria (Pseudomonas sp. B4, we were able to eliminate most of the cellular polyP (>95%. Furthermore, the effect of overexpression of PPX1 resembled the functional defects found in motility and biofilm formation in a ppk1 mutant from Pseudomonas aeruginosa PAO1. The plasmids constructed were also successfully replicated in other bacteria such as Escherichia coli, Burkholderia and Salmonella. Conclusion To deplete polyP contents in bacteria broad-host-range expression vectors can be used as an alternative and more efficient method compared with the deletion of ppk genes. It is of great importance to understand why polyP deficiency affects vital cellular processes in bacteria. The construction reported in this work will be of great relevance to study the role of polyP in microorganisms with non-sequenced genomes or those in which orthologs to ppk genes have not been identified.

  2. Degradation and drug release in calcium polyphosphate bioceramics: an MRI-based characterization.

    Science.gov (United States)

    Bray, J M; Filiaggi, M J; Bowen, C V; Beyea, S D

    2012-10-01

    Degradable, bioceramic bone implants made of calcium polyphosphate (CPP) hold potential for controlled release of therapeutic agents in the treatment of localized bone disease. Magnetic resonance imaging techniques for non-invasively mapping fluid distribution, T(1) and T(2) relaxation times and the apparent diffusion coefficient were performed in conjunction with a drug elution protocol to resolve free and bound water components within the material microstructure in two CPP formulations (G1 and G2). The T(2) maps provided the most accurate estimates of free and bound water, and showed that G1 disks contained a detectable free water component at all times, with drug release dominated by a Fickian diffusion mechanism. Drug release from G2 disks was characterized by a combined diffusional/structural relaxation mechanism, which may be related to the gradual infiltration of a free water component associated with swelling and/or chemical degradation.

  3. Sodium samarium tetrakis(polyphosphate, NaSm(PO34

    Directory of Open Access Journals (Sweden)

    Dan Zhao

    2010-07-01

    Full Text Available NaSm(PO34 has been prepared by solid state reactions. It belongs to type II of the structural family of MILnIII(PO34 compounds (MI = alkali metal and LnIII = rare earth metal and is composed of ∞(PO3n]n− polyphosphate chains with a repeating unit of four PO4 tetrahedra. The chains extend parallel to [100] and share O atoms with irregular SmO8 polyhedra, forming a three-dimensional framework which delimits tunnels occupied by Na+ cations in a distorted octahedral environment.

  4. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  5. [Metabolic control in children and adolescents with type 1 diabetes].

    Science.gov (United States)

    Díaz-Cárdenas, Claudia; Wong, Carolina; Vargas Catalán, Nelson A

    2016-01-01

    Type 1 diabetes mellitus (T1D) is an important disease in children and adolescent being a major risk factor for early morbidity and mortality. To know the degree of metabolic control and prevalence of cardiovascular risk factors in T1D patients. Retrospective study including patients under 19 years of age with T1D controlled at a Chilean hospital in 2011. 94 patients were evaluated (average age at diagnosis: 7.3 years; current age: 11,9 years; evolution time: 4.5 years). Seventy-nine percent (79.8%) of patients presented glycated hemoglobin (HbA1c) over the recommended level with an average of 8.9%. The group between 13 and 19 years of age exhibited the worst metabolic control (86% with HbA1c abnormal levels). Overweight or obesity occurred in 26.6% of patients, 20.3% had LDL >100mg/dl and 4.2% had hypertension. Only about twenty percent of patients had adequate metabolic control as measured by HbA1c, although cardiovascular risk profile was acceptable. Therapeutic and educational efforts must be reinforced mainly in adolescents, emphasizing the importance of adequate nutritional management as a primary method to treat this entity. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Effect of Polyphosphate-accumulating Organisms on Phosphorus Mobility in Variably Saturated Sand Columns

    Science.gov (United States)

    Stockton, M.; Rojas, C.; Regan, J. M.; Saia, S. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.

    2016-12-01

    Excessive application of phosphorus-containing fertilizer along with incomplete knowledge about the factors affecting phosphorus transport and mobility has allowed for a growing number of cases of eutrophication in water bodies. Previous research on enhanced biological phosphorus removal (EBPR) systems used in wastewater treatment plants (WWTPs) has identified polyphosphate-accumulating organisms (PAOs) that are known to accumulate and release phosphorus depending on aerobic/anaerobic conditions. Under anaerobic conditions, intracellular polyphosphate (poly-P) bodies are hydrolyzed releasing phosphate, while under aerobic conditions phosphate is taken up and poly-P inclusions are reformed. The presence of PAOs outside of WWTPs has been shown, but their potential impact on phosphorus mobility in other contexts is not as well known. To study that potential impact, sand columns were subjected to alternating cycles of saturation and unsaturation to mimic variably saturated soils and the resultant anaerobic and aerobic conditions that select for PAOs in a WWTP. Pore water samples collected from sterile control columns and columns inoculated with PAOs from a WWTP were compared during each cycle to monitor changes in dissolved inorganic phosphate and total phosphorus concentrations. In addition, continuous redox data were collected to confirm reducing conditions developed during periods of saturation. Sand particles will be subjected to FISH and DAPI staining to visualize PAOs using probes developed for PAOs in EBPR processes and to determine if changes in intracellular poly-P are detectable between the two cycles in the inoculated columns. Studying the effects of PAOs on phosphorus mobility in these controlled column experiments can contribute to understanding phosphorus retention and release by naturally occurring PAOs in terrestrial system, which ultimately can improve the development of management practices that mitigate phosphorus pollution of water bodies.

  7. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.

    Science.gov (United States)

    Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui

    2011-02-08

    Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways.

  8. Overexpression of polyphosphate kinase gene (ppk) increases bioinsecticide production by Bacillus thuringiensis.

    Science.gov (United States)

    Doruk, Tugrul; Avican, Ummehan; Camci, Irem Yalim; Gedik, Sedef Tunca

    2013-05-06

    Polyphosphate (polyP), synthesized by polyP kinase (PPK) using the terminal phosphate of ATP as substrate, performs important functions in every living cell. The present work reports on the relationship between polyP metabolism and bioinsecticide production in Bacillus thuringiensis subsp. israelensis (Bti). The ppk gene of Bti was cloned into vector pHT315 and the effect of its overexpression on endotoxin production was determined. Endotoxin production by the recombinant strain was found to be consistently higher than that by the wild type strain and the strain that carried the empty plasmid. The toxicity of the recombinant mutant strain (LC50 5.8±0.6ngml(-1)) against late 2nd instar Culex quinquefasciatus was about 7.7 times higher than that of Bti (LC50 44.9±7ngml(-1)). To our knowledge this is the first reported study which relates polyP metabolism with bioinsecticide biosynthesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Integration and control of metabolic systems: Pure and applied aspects

    Energy Technology Data Exchange (ETDEWEB)

    Wong, P.T.H.; Kon, O.L.; Chung, M.C.M.; Hwang, P.L.H.; Leong, S.F.; Loke, K.H.; Thiyagarajah, P.

    1987-01-01

    This volume brings together recent findings in many growing areas of biochemical research including molecular mechanisms of disease, drug design, gene structure and function, chemical signaling, metabolic control mechanisms, neurochemistry, immunology, the molecular biology of plants, marine biochemistry, oncogenes, growth factors, membrane functions, novel enzymes, applied biochemistry, and molecular engineering. It also contains contributions on powerful research techniques such as pulsed field gel electrophoresis, automated DNA sequencing, photoaffinity labeling, recent advances in plant cell culture, and high performance liquid chromatography.

  10. Leptin and the CNS Control of Glucose Metabolism

    Science.gov (United States)

    Morton, Gregory J.; Schwartz, Michael W.

    2012-01-01

    The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system (CNS) plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders. PMID:21527729

  11. Naturally Ocurring Polyphosphate-accumulating Bacteria in Benthic Biofilms

    Science.gov (United States)

    Locke, N. A.; Saia, S. M.; Walter, M. T.; Carrick, H. J.; Buda, A. R.; Regan, J. M.

    2014-12-01

    Polyphosphate accumulating organisms (PAOs), known to store excess phosphorus (P) as polyphosphate (poly-P), influence P transport in the environment. Enhanced biological phosphorus removal (EBPR) from wastewater has long served as a basis to study bacterial PAOs, yet little research has genetically identified similar organisms in natural settings. Aerobic/anaerobic cycles, used to select for PAOs in EBPR, can result from changing environmental conditions such as night/day cycles for benthic biofilms. Benthic biofilms from eight Pennsylvanian streams were studied for naturally-occurring bacterial PAOs similar to those typically found in EBPR systems. PAOs were confirmed in the benthic biofilms by a characteristic yellow fluorescent emission from DAPI staining. Cells containing yellow fluorescence were separated from the rest of the sample using a flow cytometer, resulting in a physically enriched culture of PAOs from the benthic biofilms. Amplicon-based metagenomic sequencing will reveal the phylogeny of bacteria responsible for poly-P accumulation in these benthic biofilms. Sequencing data will be used to develop fluorescent in-situ hybridization (FISH) probes, and hybridizations will be performed on DAPI-stained cells to confirm poly-P accumulation by targeted phylotypes. Identifying PAOs in natural settings is a critical step towards studying environments that support high concentrations of PAOs, serving as significant factors in the P cycle. PAOs can then be connected to P transport models to help understand and mitigate P pollution in agricultural watersheds.

  12. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  13. Survival after cryogenic freezing of Campylobacter species in ground Turkey patties treated with polyphosphates.

    Science.gov (United States)

    Gunther Iv, Nereus W; Rajkowski, Kathleen T; Sommers, Christopher

    2015-02-01

    The use of polyphosphate-based marinades in the processing of poultry has been previously shown to increase the survival of Campylobacter species present in the exudates derived from these products. This study investigates the effects that some of the same polyphosphates have on the survival of Campylobacter species within a ground turkey product subjected to cryogenic freezing. Ground turkey patties with two different polyphosphate formulations added in two different concentrations were artificially contaminated with known concentrations of Campylobacter jejuni or Campylobacter coli. The patties were cryogenically frozen at -80°F (-62.2°C) with liquid nitrogen vapor and held at -20°C for 7 or 33 days, after which the number of Campylobacter surviving in the patties was determined. On average the cryogenic freezing resulted in a 2.5-log decrease in the survival of C. jejuni cells and a 2.9-log decrease in C. coli cells present in the turkey patties. Additionally, the presence of polyphosphates in the turkey patties had no effect on Campylobacter survival up to the maximum allowed concentration (0.5%) for polyphosphates in poultry marinades. Finally, it was determined that the added polyphosphates had little effect on the pH of the ground turkey meat; an effect which previously had been implicated in the enhancement of Campylobacter survival due to the presence of polyphosphates.

  14. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces

    Science.gov (United States)

    Wan, Shanhong; Tieu, A. Kiet; Zhu, Qiang; Zhu, Hongtao; Cui, Shaogang; Mitchell, David R. G.; Kong, Charlie; Cowie, Bruce; Denman, John A.; Liu, Rong

    2016-05-01

    Alkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing. The chemical composition and fine structure of polyphosphate lubricating film is not well understood as well as the role of alkaline elements within the reaction film at hot rubbing surface. This work makes use of the coupling surface analytical techniques on the alkaline polyphosphate tribofilm, XANES, TOF-SIMS and FIB/TEM. The data show the composition in gradient distribution and trilaminar structure of tribofilm: a shorter chain phosphate overlying a long chain polyphosphate that adheres onto oxide steel base through a short chain phosphate. The chemical hardness model well explains the anti-abrasive mechanism of alkaline polyphosphate at elevated temperatures and also predicts a depolymerisation and simultaneous cross-linking of the polyphosphate glass. The role of alkaline elements in the lubrication mechanism is especially explained. This work firstly serves as a basis for a detailed study of alkaline polyphosphate tribofilm at temperature over 600 °C.

  15. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although

  16. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...

  17. [Review on periodontal disease and metabolic control of diabetes mellitus].

    Science.gov (United States)

    Steffens, João Paulo; Glaci Reinke, Stella Maria; Angel Muñoz, Miguel; Santos, Fábio André dos; Luiz Pilatti, Gibson

    2010-09-01

    There may be an interaction between periodontal disease and some systemic diseases such as diabetes mellitus. The objective of this review was to verify, by means of a review of clinical trials, if there is a positive association between periodontal disease and the glycemic control of type 2 diabetes mellitus (DM-2) patients. Eleven articles that fi t the study criteria were revised. It was concluded that periodontal disease may influence the metabolic control of DM-2. Additional studies with larger sample sizes and longer follow up are necessary for a better clarification of this issue.

  18. Role of Autophagy in the Control of Body Metabolism

    Directory of Open Access Journals (Sweden)

    Wenying Quan

    2013-03-01

    Full Text Available Autophagy plays a crucial role in the maintenance of cellular nutrient balance and the function of organelles such as mitochondria or the endoplasmic reticulum, which are important in intracellular metabolism, insulin release, and insulin sensitivity. In the insulin-producing pancreatic β-cells, autophagy is important in the maintenance of β-cell mass, structure, and function. Mice with deficiencies in β-cell-specific autophagy show reduced β-cell mass and defects in insulin secretion that lead to hypoinsulinemia and hyperglycemia but not diabetes. However, these mice developed diabetes when bred with ob/ob mice, suggesting that autophagy-deficient β-cells have defects in dealing with the increased metabolic stress imposed by obesity. These results also imply that autophagy deficiency in β-cells could be a factor in the progression from obesity to diabetes. Another important function of autophagy is in hypothalamic neurons for the central control of energy expenditure, appetite, and body weight. In addition, mice with autophagy deficiencies in the target tissues of insulin have yielded diverse phenotypes. Taken together, these results suggest that autophagy is important in the control of whole body energy and nutrient homeostasis, and its dysregulation could play a role in the development of metabolic disorders and diabetes.

  19. Sense and Nonsense in Metabolic Control of Reproduction

    Directory of Open Access Journals (Sweden)

    Jill eSchneider

    2012-03-01

    Full Text Available An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis, and bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because 1 metabolic energy is the most important factor that controls reproductive success, 2 gonadal hormones affect energy intake, storage and expenditure, 3 reproductive hormone secretion changes during development, and 4 reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis.This review emphasizes the metabolic hypothesis: A sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.

  20. Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Zhong, Lirong; Oostrom, Martinus; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.

    2012-09-30

    The primary objective of this study is to summarize the laboratory investigations performed to evaluate short- and long-term effects of phosphate treatment on uranium leaching from 300 area smear zone sediments. Column studies were used to compare uranium leaching in phosphate-treated to untreated sediments over a year with multiple stop flow events to evaluate longevity of the uranium leaching rate and mass. A secondary objective was to compare polyphosphate injection, polyphosphate/xanthan injection, and polyphosphate infiltration technologies that deliver phosphate to sediment.

  1. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out......, and flux control was shown to be dependent on the metabolite levels. Due to thermodynamic constraints, flux control may reside at the first step in the pathway, i.e., at the xylose reductase, even when the intracellular xylitol concentration is high. On the basis of the kinetic analysis, the general dogma...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...

  2. Control of immune response by amino acid metabolism.

    Science.gov (United States)

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  3. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis.

    Science.gov (United States)

    Hoefnagel, Marcel H N; Starrenburg, Marjo J C; Martens, Dirk E; Hugenholtz, Jeroen; Kleerebezem, Michiel; Van Swam, Iris I; Bongers, Roger; Westerhoff, Hans V; Snoep, Jacky L

    2002-04-01

    Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches 'bottle-necks' are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected 'rate-limiting' steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds. The model presented here (available at http://jjj.biochem.sun.ac.za/wcfs.html) showed that the enzymes with the greatest effect on this flux resided outside the acetolactate synthase branch itself. Experiments confirmed the predictions of the model, i.e. knocking out lactate dehydrogenase and overexpressing NADH oxidase increased the flux through the acetolactate synthase branch from 0 to 75% of measured product formation rates.

  4. Space Station CMIF extended duration metabolic control test

    Science.gov (United States)

    Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathryn Y.; Wieland, Paul O.

    1989-01-01

    The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included.

  5. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  6. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  7. Local cerebral glucose metabolism during controlled hypoxemia in rats.

    Science.gov (United States)

    Pulsinelli, W A; Duffy, T E

    1979-05-11

    2-Deoxy-[14C]glucose metabolism was examined in brains of hypoxic, normotensive rats by autoradiography, which revealed alternating cortical columns of high and low metabolism. Activity in white matter was increased severalfold over that in adjacent gray matter. The columns were anatomically related to penetrating cortical arteries with areas between arteries demonstrating higher rates of metabolism. The results suggest the presence of interarterial tissue oxygen gradients that influence regional glucose metabolism. The relatively greater sensitivity of white matter metabolism to hypoxia may lead to an understanding of white matter damage in postanoxic leukoencephalopathy.

  8. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    Energy Technology Data Exchange (ETDEWEB)

    Bond, P.L.; Keller, J.; Blackall, L.L. [Univ. of Queensland, Brisbane (Australia)

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  9. Metabolic control of resting hemispheric cerebral blood flow is oxidative, not glycolytic

    OpenAIRE

    Powers, William. J.; Videen, Tom O.; Markham, Joanne; Walter, Vonn; Perlmutter, Joel S.

    2011-01-01

    Although the close regional coupling of resting cerebral blood flow (CBF) with both cerebral metabolic rate of oxygen (CMRO2) and cerebral metabolic rate of glucose (CMRglc) within individuals is well documented, there are few data regarding the coupling between whole brain flow and metabolism among different subjects. To investigate the metabolic control of resting whole brain CBF, we performed multivariate analysis of hemispheric CMRO2, CMRglc, and other covariates as predictors of resting ...

  10. The ZONE Diet and Metabolic Control in Type 2 Diabetes.

    Science.gov (United States)

    Stulnig, Thomas M

    2015-01-01

    Obesity is associated with chronic inflammation of the adipose tissue, which contributes to obesity-associated complications such as insulin resistance and type 2 diabetes. The increased inflammatory response seems to be directly related to modern nutrition, particularly aspects of fat quality and macronutrient composition. We have recently published an observational study investigating the practicability and effects of a combined dietary intervention with increased relative protein content and low-glycemic-index carbohydrates, supplemented with omega-3 polyunsaturated fatty acids (PUFAs), on metabolic control and inflammatory parameters in real-life situations in patients with type 2 diabetes. The primary efficacy parameter was the change in HbA1c, and secondary parameters included change in systemic inflammation (measured by ultrasensitive C-reactive protein), body weight, waist circumference, fat mass, and homeostasis model assessment-insulin resistance. Counseling a protein-enriched and low-glycemic-index diet supplemented with long-chain omega-3 PUFAs in a real-life clinical setting improved glycemic control, waist circumference, and silent inflammation in overweight or obese patients with type 2 diabetes.

  11. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    Science.gov (United States)

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  12. Influence of long-chain polyphosphate and heat treatment on Clostridium cochlearium and Clostridium sporogenes isolated from processed cheese spread.

    Science.gov (United States)

    Borch, Elisabeth; Lycken, Lena

    2007-03-01

    The outgrowth of Clostridium spp. spores causes spoilage in processed cheese products due to gas and off-odor formation. The present study focuses on the response of spores of Clostridium sporogenes and Clostridium cochlearium at 25 degrees C to polyphosphate, both alone and in combination with heat treatment. The two strains used were isolated from spoiled cheese spread. The addition of 1.5% polyphosphate but not 0.75% polyphosphate totally inhibited the growth of C. sporogenes SIK4.3; in contrast, 0.75% polyphosphate was sufficient to totally inhibit C. cochlearium CCUG 45978. The highest polyphosphate concentration tested (1.5%) was sporicidal for C. sporogenes SIK4.3 but not for C. cochlearium CCUG 45978. When 0.75% polyphosphate Bekaplus FS was combined with a holding time of 5 min at 98 degrees C, no survival or growth of C. sporogenes SIK4.3 was detected; however, the same effect was not achieved through heating alone or through application of polyphosphate alone. C. cochlearium CCUG 45978 was more heat tolerant, as shown by higher D-values. In conclusion, the results strongly suggest that polyphosphate Bekaplus FS has the potential to restrict the growth of C. sporogenes and C. cochlearium in cheese spread stored at ambient storage temperature. Experiments with cheese are needed in order to verify this effect.

  13. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels.

    Science.gov (United States)

    Ghosh, Somadri; Shukla, Dhananjay; Suman, Komjeti; Lakshmi, B Jyothi; Manorama, R; Kumar, Satish; Bhandari, Rashna

    2013-08-22

    Polyphosphate (polyP), a polymer of orthophosphate moieties released from the dense granules of activated platelets, is a procoagulant agent. Inositol pyrophosphates, another group of phosphate-rich molecules, consist of mono- and diphosphates substituted on an inositol ring. Diphosphoinositol pentakisphosphate (IP7), the most abundant inositol pyrophosphate, is synthesized on phosphorylation of inositol hexakisphosphate (IP6) by IP6 kinases, of which there are 3 mammalian isoforms (IP6K1/2/3) and a single yeast isoform. Yeast lacking IP6 kinase are devoid of polyP, suggesting a role for IP6 kinase in maintaining polyP levels. We theorized that the molecular link between IP6 kinase and polyP is conserved in mammals and investigated whether polyP-dependent platelet function is altered in IP6K1 knockout (Ip6k1(-/-)) mice. We observe a significant reduction in platelet polyP levels in Ip6k1(-/-) mice, along with slower platelet aggregation and lengthened plasma clotting time. Incorporation of polyP into fibrin clots was reduced in Ip6k1(-/-) mice, thereby altering clot ultrastructure, which was rescued on the addition of exogenous polyP. In vivo assays revealed longer tail bleeding time and resistance to thromboembolism in Ip6k1(-/-) mice. Taken together, our data suggest a novel role for IP6K1 in regulation of mammalian hemostasis via its control of platelet polyP levels.

  14. Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis

    Directory of Open Access Journals (Sweden)

    Freimoser Florian M

    2007-09-01

    Full Text Available Abstract Background Inorganic polyphosphate (poly P, linear chains of phosphate residues linked by energy rich phosphoanhydride bonds, is found in every cell and organelle and is abundant in algae. Depending on its localization and concentration, poly P is involved in various biological functions. It serves, for example, as a phosphate store and buffer against alkali, is involved in energy metabolism and regulates the activity of enzymes. Bacteria defective in poly P synthesis are impaired in biofilm development, motility and pathogenicity. PolyP has also been found in fungal cell walls and bacterial envelopes, but has so far not been measured directly or stained specifically in the cell wall of any plant or alga. Results Here, we demonstrate the presence of poly P in the cell wall of Chlamydomonas reinhardtii by staining with specific poly P binding proteins. The specificity of the poly P signal was verified by various competition experiments, by staining with different poly P binding proteins and by correlation with biochemical quantification. Microscopical investigation at different time-points during growth revealed fluctuations of the poly P signal synchronous with the cell cycle: The poly P staining peaked during late cytokinesis and was independent of the high intracellular poly P content, which fluctuated only slightly during the cell cycle. Conclusion The presented staining method provides a specific and sensitive tool for the study of poly P in the extracellular matrices of algae and could be used to describe the dynamic behaviour of cell wall poly P during the cell cycle. We assume that cell wall poly P and intracellular poly P are regulated by distinct mechanisms and it is suggested that cell wall bound poly P might have important protective functions against toxic compounds or pathogens during cytokinesis, when cells are more vulnerable.

  15. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    During muscle contraction, several mechanisms regulate blood flow to ensure a close coupling between muscle oxygen delivery and metabolic demand. No single factor has been identified to constitute the primary metabolic regulator, yet there are signal transduction pathways between skeletal muscle...

  16. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  17. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase.

    Science.gov (United States)

    Tsujishita, Y; Guo, S; Stolz, L E; York, J D; Hurley, J H

    2001-05-04

    Inositol polyphosphate 5-phosphatases are central to intracellular processes ranging from membrane trafficking to Ca(2+) signaling, and defects in this activity result in the human disease Lowe syndrome. The 1.8 resolution structure of the inositol polyphosphate 5-phosphatase domain of SPsynaptojanin bound to Ca(2+) and inositol (1,4)-bisphosphate reveals a fold and an active site His and Asp pair resembling those of several Mg(2+)-dependent nucleases. Additional loops mediate specific inositol polyphosphate contacts. The 4-phosphate of inositol (1,4)-bisphosphate is misoriented by 4.6 compared to the reactive geometry observed in the apurinic/apyrimidinic endonuclease 1, explaining the dephosphorylation site selectivity of the 5-phosphatases. Based on the structure, a series of mutants are described that exhibit altered substrate specificity providing general determinants for substrate recognition.

  18. Factors controlling carbon metabolism and humification in different soil agroecosystems.

    Science.gov (United States)

    Doni, S; Macci, C; Peruzzi, E; Ceccanti, B; Masciandaro, G

    2014-01-01

    The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i) Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii) Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii) Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf.) and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L.) showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E(3)s), and metabolic potential (dehydrogenase activity/water soluble carbon) if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon) and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential.

  19. Factors Controlling Carbon Metabolism and Humification in Different Soil Agroecosystems

    Directory of Open Access Journals (Sweden)

    S. Doni

    2014-01-01

    Full Text Available The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf. and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L. showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E3s, and metabolic potential (dehydrogenase activity/water soluble carbon if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential.

  20. Antibacterial effect of phosphates and polyphosphates with different chain length.

    Science.gov (United States)

    Lorencová, Eva; Vltavská, Pavlína; Budinský, Pavel; Koutný, Marek

    2012-01-01

    The aim of this study was to monitor the antibacterial effect of seven phosphate salts on selected strains of Gram-negative and Gram-positive bacteria, which could be considered responsible for food-borne diseases (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Citrobacter freundii, Escherichia coli, Proteus mirabilis, Salmonella enterica ser. Enteritidis and Pseudomonas aeruginosa). For these purposes, phosphates differing in chain length were used. The tested concentrations were in the range of 0.1-2.0% (wt v(-1)) applied at the model conditions. In the majority of cases the visible inhibitory effect on the growth of observed microorganisms could be seen. Due to the chemical structure of salts and their dissociation both the pH values of cultivation broth and similarly the growth characteristics of bacterial strains were affected. The inhibition of above mentioned bacteria was apparently supported by this dissociation. Phosphates obviously made the development of most Gram-positive bacteria impossible. Especially Micrococcus luteus was extremely sensitive to the presence of these substances. On the other hand, Gram-negative bacteria seemed to be resistant to the phosphate incidence. The exemption clause from the tested salts was represented by a high alkaline trisodium phosphate. It should be pointed out that generally the most significant antibacterial effects were shown by polyphosphates HEXA68 and HEXA70, trisodium phosphate undecahydrate, tetrasodium pyrophosphate and finally trisodium phosphate. By comparing the inhibitory effects of various phosphate salts can be concluded that the antibacterial activity was not determined only by the condensation degree but there was also proved the dependence on pH values.

  1. Modulation of inositol polyphosphate levels regulates neuronal differentiation

    Science.gov (United States)

    Loss, Omar; Wu, Chun Ting; Riccio, Antonella; Saiardi, Adolfo

    2013-01-01

    The binding of neurotrophins to tropomyosin receptor kinase receptors initiates several signaling pathways, including the activation of phospholipase C-γ, which promotes the release of diacylglycerol and inositol 1,4,5-trisphosphate (IP3). In addition to recycling back to inositol, IP3 serves as a precursor for the synthesis of higher phosphorylated inositols, such as inositol 1,3,4,5,6-pentakisphosphate (IP5) and inositol hexakisphosphate (IP6). Previous studies on the effect of neurotrophins on inositol signaling were limited to the analysis of IP3 and its dephosphorylation products. Here we demonstrate that nerve growth factor (NGF) regulates the levels of IP5 and IP6 during PC12 differentiation. Furthermore, both NGF and brain-derived neurotrophic factor alter IP5 and IP6 intracellular ratio in differentiated PC12 cells and primary neurons. Neurotrophins specifically regulate the expression of IP5-2 kinase (IP5-2K), which phosphorylates IP5 into IP6. IP5-2K is rapidly induced after NGF treatment, but its transcriptional levels sharply decrease in fully differentiated PC12 cells. Reduction of IP5-2K protein levels by small interfering RNA has an effect on the early stages of PC12 cell differentiation, whereas fully differentiated cells are not affected. Conversely, perturbation of IP5-2K levels by overexpression suggests that both differentiated PC12 cells and sympathetic neurons require low levels of the enzyme for survival. Therefore maintaining appropriate intracellular levels of inositol polyphosphates is necessary for neuronal survival and differentiation. PMID:23864704

  2. Inorganic polyphosphates enhances nucleus pulposus tissue formation in vitro.

    Science.gov (United States)

    Gawri, Rahul; Shiba, Toshikazu; Pilliar, Robert; Kandel, Rita

    2017-01-01

    Disc degeneration is associated with low back pain for which currently there is no optimal therapy so there is a great need to identify new treatment approaches. Inorganic polyphosphates (polyP) are linear polymers of orthophosphate units varying in chain length and present in many cell types. As polyP has anabolic effects on chondrocytes, we hypothesized that polyP treatment would enhance matrix accumulation by nucleus pulposus (NP) cells. NP cells isolated from bovine caudal discs were grown in 3D culture under normoxic or in select experiments under hypoxic conditions, in the presence or absence of various concentrations and sizes of polyP. Gene expression was determined using RT-PCR. Matrix accumulation was quantified by measuring proteoglycan and collagen contents. DAPI fluorescence shift was used to stain for polyP in tissue. DAPI staining showed polyP present predominantly in the pericellular region of in vitro formed tissue. PolyP treatment enhanced matrix accumulation in a concentration and chain length dependant manner. NP cells exposed to polyP-22 (22 phosphate units length) showed an increase in gene expression of aggrecan, Collagen II, Sox 9, and MMP-13 which was maintained for the 14 days of culture. This suggests that polyP may enhance NP tissue formation in vitro by upregulating the expression of matrix genes. As polyP enhances proteoglycan accumulation even under hypoxic conditions, this raises the possibility that polyP may be a novel treatment to induce NP regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:41-50, 2017.

  3. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    Science.gov (United States)

    McMahon, Katherine D.; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria known to be associated with sludges carrying out EBPR. These organisms comprised approximately 80% of total bacteria in the sludge, as assessed by FISH. Degenerate PCR primers were designed to retrieve fragments of putative ppk genes from a pure culture of Rhodocyclus tenuis and from organisms in the sludge. Four novel ppk homologs were found in the sludge, and two of these (types I and II) shared a high degree of amino acid similarity with R. tenuis PPK (86 and 87% similarity, respectively). Dot blot analysis of total RNA extracted from sludge demonstrated that the Type I ppk mRNA was present, indicating that this gene is expressed during EBPR. Inverse PCR was used to obtain the full Type I sequence from sludge DNA, and a full-length PPK was cloned, overexpressed, and purified to near homogeneity. The purified PPK has a specific activity comparable to that of other PPKs, has a requirement for Mg2+, and does not appear to operate in reverse. PPK activity was found mainly in the particulate fraction of lysed sludge microorganisms. PMID:12324346

  4. You Are What You Eat: Metabolic Control of Bacterial Division.

    Science.gov (United States)

    Monahan, Leigh G; Harry, Elizabeth J

    2016-03-01

    Fluctuations in nutrient availability are a fact of life for bacterial cells in the 'wild'. To survive and compete, bacteria must rapidly modulate cell-cycle processes to accommodate changing nutritional conditions and concomitant changes in cell growth. Our understanding of how this is achieved has been transformed in recent years, with cellular metabolism emerging as a central player. Several metabolic enzymes, in addition to their normal catalytic functions, have been shown to directly modulate cell-cycle processes in response to changing nutrient levels. Here we focus on cell division, the final event in the bacterial cell cycle, and discuss recent compelling evidence connecting division regulation to nutritional status and metabolic activity.

  5. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  6. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism

    Science.gov (United States)

    Zhang, Eric E.; Chapeau, Emilie; Hagihara, Kazuki; Feng, Gen-Sheng

    2004-01-01

    Shp2, a Src homology 2-containing tyrosine phosphatase, has been implicated in a variety of growth factor or cytokine signaling pathways. However, it is conceivable that this enzyme acts predominantly in one pathway versus the others in a cell, depending on the cellular context. To determine the putative functions of Shp2 in the adult brain, we selectively deleted Shp2 in postmitotic forebrain neurons by crossing CaMKIIα-Cre transgenic mice with a conditional Shp2 mutant (Shp2flox) strain. Surprisingly, a prominent phenotype of the mutant (CaMKIIα-Cre:Shp2flox/flox or CaSKO) mice was the development of early-onset obesity, with increased serum levels of leptin, insulin, glucose, and triglycerides. The mutant mice were not hyperphagic but developed enlarged and steatotic liver. Consistent with previous in vitro data, we found that Shp2 down-regulates Jak2/Stat3 (signal transducer and activator of transcription 3) activation by leptin in the hypothalamus. However, Jak2/Stat3 down-regulation is offset by a dominant Shp2 promotion of the leptin-stimulated Erk pathway, leading to induction rather than suppression of leptin resistance upon Shp2 deletion in the brain. Collectively, these results suggest that a primary function of Shp2 in postmitotic forebrain neurons is to control energy balance and metabolism, and that this phosphatase is a critical signaling component of leptin receptor ObRb in the hypothalamus. Shp2 shows potential as a neuronal target for pharmaceutical sensitization of obese patients to leptin action. PMID:15520383

  7. Socio-economic characteristics and quality of life in diabetes mellitus--relation to metabolic control.

    Science.gov (United States)

    Larsson, D; Lager, I; Nilsson, P M

    1999-06-01

    Diabetes mellitus is a chronic metabolic disease with wide implications for well-being and social life. The aim of this cross-sectional, observational study was to describe possible differences in clinical characteristics, socio-economic factors and quality of life between diabetes patients in poor and good/acceptable metabolic control, as defined by levels of glycated haemoglobin A1c. From a population-based register of diabetes patients at a clinical chemistry department, we selected 96 subjects in poor metabolic control (HbA1c > 10%), and 96 subjects in good/acceptable (HbA1c 6.5-7.5%) metabolic control, matched for sex, age and duration of diabetes. Each participant was sent a self-administered questionnaire regarding medical history, family situation and socio-economic background, as well as self-rated health based on a validated instrument (SF-36). The diabetes patients in poor metabolic control reported more retinopathy, vascular complications and nervous problems than did the patients in acceptable metabolic control. Furthermore, the group in poor metabolic control was also characterized by a lower educational level, a higher number of sick leave days or disability pension and a lower degree of physical activity. Both of the diabetic groups reported lower scorings for physical functioning, general health, vitality and mental health, than did a comparable non-diabetic group from another study. In summary, diabetic patients in poor metabolic control have a lower educational level and report more complications, nervous problems, sick leave days and disability pensions than patients in good/acceptable metabolic control. The lower degree of physical activity adds to the problems of the first group and should be the target for intervention to achieve better metabolic control.

  8. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  9. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    Directory of Open Access Journals (Sweden)

    Rudd Pauline M

    2011-10-01

    Full Text Available Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  10. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays.

    Science.gov (United States)

    Weissbrodt, David G; Maillard, Julien; Brovelli, Alessandro; Chabrelie, Alexandre; May, Jonathan; Holliger, Christof

    2014-12-01

    Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC. © 2014 Wiley Periodicals, Inc.

  11. Estrogen-related receptor α, the molecular clock, and transcriptional control of metabolic outputs.

    Science.gov (United States)

    Giguère, V; Dufour, C R; Eichner, L J; Deblois, G; Cermakian, N

    2011-01-01

    Metabolism and circadian rhythms must be closely integrated to support the energetic needs of the organism linked to the daily timing of physiological and behavioral processes. Although components of the molecular clock can directly target some metabolic genes, the control of metabolic clock output is believed to be mediated mostly through the action of transcription factors whose patterns of expression are rhythmic in metabolic tissues. Our recent work has identified the orphan nuclear receptor estrogen-related receptor α (ERRα), a potent effector of metabolic gene networks, as a direct regulator of the molecular clock. Thus, by acting both upstream of and downstream from the molecular clock, ERRα serves as a key transcription factor linking the clock with metabolic control.

  12. Systems mapping of metabolic genes through control theory.

    Science.gov (United States)

    Liu, Guodong; Kong, Lan; Wang, Zhong; Wang, Chenguang; Wu, Rongling

    2013-06-30

    The formation of any complex phenotype involves a web of metabolic pathways in which one chemical is transformed through the catalysis of enzymes into another. Traditional approaches for mapping quantitative trait loci (QTLs) are based on a direct association analysis between DNA marker genotypes and end-point phenotypes, neglecting the mechanistic processes of how a phenotype is formed biochemically. Here, we propose a new dynamic framework for mapping metabolic QTLs (mQTLs) responsible for phenotypic formation. By treating metabolic pathways as a biological system, robust differential equations have proven to be a powerful means of studying and predicting the dynamic behavior of biochemical reactions that cause a high-order phenotype. The new framework integrates these differential equations into a statistical mixture model for QTL mapping. Since the mathematical parameters that define the emergent properties of the metabolic system can be estimated and tested for different mQTL genotypes, the framework allows the dynamic pattern of genetic effects to be quantified on metabolic capacity and efficacy across a time-space scale. Based on a recent study of glycolysis in Saccharomyces cerevisiae, we design and perform a series of simulation studies to investigate the statistical properties of the framework and validate its usefulness and utilization in practice. This framework can be generalized to mapping QTLs for any other dynamic systems and may stimulate pharmacogenetic research toward personalized drug and treatment intervention.

  13. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  14. Calcium-binding capacity of organic and inorganic ortho- and polyphosphates

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2009-01-01

    The aim of this research was to determine the calcium-binding capacity of inorganic and organic ortho- and polyphosphates. This calcium-binding capacity can be used to influence the stability of, for example, casein micelles in dairy systems. Four phosphates were selected: disodium uridine

  15. Use of sodium polyphosphates with different linear lengths in the production of spreadable processed cheese.

    Science.gov (United States)

    Nagyová, G; Buňka, F; Salek, R N; Černíková, M; Mančík, P; Grůber, T; Kuchař, D

    2014-01-01

    The objective of this study was to describe the dependence of textural properties (hardness, cohesiveness, and relative adhesiveness) of processed cheese spreads on the proportion of disodium phosphate (DSP), tetrasodium diphosphate (TSPP), and sodium salts of polyphosphate in ternary mixtures of emulsifying salts. Sodium salts of polyphosphate with different mean lengths (n ≈ 5, 9, 13, 20, and 28) were used. Pentasodium triphosphate (PSTP) was used instead of TSPP in the second part of the study. Products with and without pH adjustment were tested (the target pH value was 5.60-5.80). Textural properties of the processed cheese were observed after 2, 9, and 30 d of storage at 6°C. Hardness of the processed cheese with a low content of polyphosphate increased at a specific DSP:TSPP ratio (~1:1 to 3:4). This trend was the same for all the polyphosphates used; only the absolute values of texture parameters were different. The same trends were observed in the ternary mixtures with PSTP, showing lower final values of hardness compared with samples containing TSPP. Hardness and cohesiveness decreased and relative adhesiveness increased in the samples with increased pH values and vice versa; the main trend remained unchanged.

  16. Caesium europium(III) polyphosphate, CsEu(PO3)4

    OpenAIRE

    Jing Zhu; Wen-Dan Cheng; Hao Zhang

    2009-01-01

    Caesium europium polyphosphate, CsEu(PO3)4, was synthesized by a high-temperature solution reaction. Its structure is charaterized by a three-dimensional framework made up of double PO4 spiral chains and EuO8 and CsO11 polyhedra.

  17. Interim Report: Uranium Stabilization Through Polyphosphate Injection - 300 Area Uranium Plume Treatability Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Richards, Emily L.; Butler, Bart C.; Parker, Kent E.; Glovack, Julia N.; Burton, Sarah D.; Baum, Steven R.; Clayton, Eric T.; Rodriguez, Elsa A.

    2007-07-31

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to treat aqueous uranium within the 300 Area aquifer of the Hanford site. The general treatability testing approach consists of conducting studies with site sediment and under site conditions, in order to develop an effective chemical formulation for the polyphosphate amendments and evaluate the transport properties of these amendments under site conditions. Phosphorus-31 (31P) NMR was utilized to determine the effects of Hanford groundwater and sediment on the degradation of inorganic phosphates. Static batch tests were conducted to optimize the composition of the polyphosphate formulation for the precipitation of apatite and autunite, as well as to quantify the kinetics, loading and stability of apatite as a long-term sorbent for uranium. Dynamic column tests were used to further optimize the polyphosphate formulation for emplacement within the subsurface and the formation of autunite and apatite. In addition, dynamic testing quantified the stability of autunite and apatite under relevant site conditions. Results of this investigation provide valuable information for designing a full-scale remediation of uranium in the 300 aquifer.

  18. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    Plants produce a wide variety of specialized (or secondary) metabolites that function as chemical defence compounds and provide protection against microbial pathogens or herbivores. This chapter focuses on the metabolic engineering of biosynthetic pathways for plant chemical defence compounds...... with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews...

  19. Cerebral vascular control and metabolism in heat stress

    DEFF Research Database (Denmark)

    Bain, Anthony R; Nybo, Lars; Ainslie, Philip N

    2015-01-01

    implications and pathologies known to confound cerebral functioning during hyperthermia. A reduction in cerebral blood flow (CBF), derived primarily from a respiratory-induced alkalosis, underscores the cerebrovascular changes to hyperthermia. Arterial pressures may also become compromised because of reduced...... is in turn the primary mechanism for impaired tolerance to orthostatic challenges. Any reduction in CBF attenuates the brain's convective heat loss, while the hyperthermic-induced increase in metabolic rate increases the cerebral heat gain. This paradoxical uncoupling of CBF to metabolism increases brain...

  20. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  1. Circadian control of metabolism and pathological consequences of clock perturbations.

    Science.gov (United States)

    Mayeuf-Louchart, Alicia; Zecchin, Mathilde; Staels, Bart; Duez, Hélène

    2017-08-02

    Most organisms have developed an autonomous time-keeping system that generates self-sustained daily fluctuations in behavior and physiological processes. These biological clocks are reset every day by light to adjust physiology to the day/night cycle generated by the rotation of the Earth. Clocks present in organs involved in glucose and lipid metabolism such as the liver, muscle, adipose tissue and pancreas are also reset by feeding cues which permits the local integration of systemic and nutritional signals to switch fuel production and utilization according to the feeding/fasting cycle. However, derangements in this finely tuned system can be induced by extended light exposure, 24/7 food availability and altered food intake patterns, repeated jet-lag and shift-working, promoting metabolic imbalances ranging from body weight gain to the development of insulin resistance and liver diseases. Here, we review recent findings on the link between the clock and metabolic fluxes to maintain whole-body homeostasis, and what clock disruption in mice has revealed about the role of the clock in metabolic regulation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. PGC-1 coactivators in the control of energy metabolism

    Institute of Scientific and Technical Information of China (English)

    Chang Liu; Jiandie D.Lin

    2011-01-01

    Chronic disruption of energy balance, where energy intake exceeds expenditure, is a major risk factor for the development of metabolic syndrome. The latter is characterized by a constellation of symptoms including obesity, dyslipidemia, insulin resistance, hypertension, and nonalcoholic fatty liver disease. Altered expression of genes involved in glucose and lipid metabolism as well as mitochondrial oxidative phosphorylation has been implicated in the pathogenesis of these disorders. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators is emerging as a hub linking nutritional and hormonal signals and energy metabolism. PGC-1а and PGC-1β are highly responsive to environmental cues and coordinate metabolic gene pro- grams through interaction with transcription factors and chromatin-remodeling proteins. PGC-1а has been implicated in the pathogenic conditions including obesity, type 2 diabetes, neurodegeneration, and cardiomyopathy, whereas PGC-1β plays an important role in plasma iipoprotein homeostasis and serves as a hepatic target for niacin, a potent hypotriglyceridemic drug. Here, we review recent advances in the identification of physiological and pathophysiological contexts involving PGC-1 coactivators, and also discuss their implications for therapeutic development.

  3. Undercover: Gene control by metabolites and metabolic enzymes

    NARCIS (Netherlands)

    J.A. van der Knaap (Jan); C.P. Verrijzer (Peter)

    2016-01-01

    textabstractTo make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expressio

  4. Metabolic Design and Control for Production in Prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil R.; Keasling, J.D.

    2010-11-10

    Prokaryotic life on earth is manifested by its diversity and omnipresence. These microbes serve as natural sources of a large variety of compounds with the potential to serve the ever growing, medicinal, chemical and transportation needs of the human population. However, commercially viable production of these compounds can be realized only through significant improvement of the native production capacity of natural isolates. The most favorable way to achieve this goal is through the genetic manipulation of metabolic pathways that direct the production of these molecules. While random mutagenesis and screening have dominated the industrial production of such compounds in the past our increased understanding of microbial physiology over the last five decades has shifted this trend towards rational approaches for metabolic design. Major drivers of this trend include recombinant DNA technology, high throughput characterization of macromolecular cellular components, quantitative modeling for metabolic engine ring, targeted combinatorial engineering and synthetic biology. In this chapter we track the evolution of microbial engineering technologies from the black box era of random mutagenesis to the science and engineering-driven era of metabolic design.

  5. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression

    Science.gov (United States)

    Shackelford, David B.; Shaw, Reuben J.

    2009-01-01

    In the past decade, studies of the human tumor suppressor LKB1 have uncovered a novel signaling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues such as liver, muscle, and adipose, a function that has made it a key therapeutic target in patients with diabetes. The connection of AMPK with several tumor suppressors suggests that therapeutic manipulation of this pathway with established diabetes drugs warrants further investigation in patients with cancer. PMID:19629071

  6. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression.

    Science.gov (United States)

    Shackelford, David B; Shaw, Reuben J

    2009-08-01

    In the past decade, studies of the human tumour suppressor LKB1 have uncovered a novel signalling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine-threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues, such as liver, muscle and adipose tissue. This function has made AMPK a key therapeutic target in patients with diabetes. The connection of AMPK with several tumour suppressors suggests that therapeutic manipulation of this pathway using established diabetes drugs warrants further investigation in patients with cancer.

  7. Polyphosphate Kinase Mediates Antibiotic Tolerance in Extraintestinal Pathogenic Escherichia coli PCN033

    Directory of Open Access Journals (Sweden)

    Jing eChen

    2016-05-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC causes a variety of acute infections in its hosts, and multidrug-resistant strains present significant challenges to public health and animal husbandry. Therefore, it is necessary to explore new drug targets to control E. coli epidemics. Previous studies have reported that ppk mutants of Burkholderia pseudomallei and Mycobacterium tuberculosis are more susceptible than the wild types (WTs to stress. Therefore, we investigated the stress response to antibiotics mediated by polyphosphate kinase (PPK in ExPEC strain PCN033. We observed that planktonic cells of a ppk knockout strain (Δppk were more susceptible to antibiotics than was WT. However, biofilm-grown Δppk cells showed similar susceptibility to that of the WT and were more tolerant than the planktonic cells. During the planktonic lifestyle, the expression of genes involved in antibiotic tolerance (including resistance-conferring genes,and antibiotic influx and efflux genes did not change in the Δppk mutant without antibiotic treatment. However, the resistance-conferring gene bla and efflux genes were upregulated more in the WT than in the Δppk mutant by treatment with tazobactam. After treatment with gentamycin, the efflux genes and influx genes were upregulated and downregulated, respectively, more in the WT than in the Δppk mutant. The expression of genes involved in biofilm regulation also changed after treatment with tazobactam or gentamycin, and which is consistent with the results of the biofilm formation. Together, these observations indicate that PPK is important for the antibiotic stress response during the planktonic growth of ExPEC and might be a potential drug target in bacteria.

  8. Neutrophil cathepsin G increases calcium flux and inositol polyphosphate production in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.W.; Gruenhaupt, D.; Shasby, D.M. (Univ. of Iowa, Iowa City (USA))

    1989-07-15

    Exposure of endothelial cells (ENDO) to human neutrophil cathepsin G (CG) increases albumin flux across the endothelial monolayer. Since calcium influences cell shape and barrier function of ENDO monolayers, the current study was designed to determine if CG acted through alterations in Ca2+ homeostasis in ENDO. The role of Ca2+ in the increased permeability of ENDO monolayers to albumin after exposure to CG was studied by using ENDO monolayers cultured on polycarbonate filters. Exposure of ENDO monolayers to CG in the presence of the Ca2+-antagonist lanthanum partially prevented the increase in albumin flux, but exposure in the presence of agents that block voltage-regulated calcium channels did not block the increase in albumin flux. To monitor the effect of CG on Ca2+-flux, ENDO were labeled with {sup 45}Ca2+ and changes in Ca2+ flux were monitored by the release of {sup 45}Ca2+. From 1 to 15 minutes after exposure of ENDO to CG, there was increased release of {sup 45}Ca2+ compared with control cells. Calcium channel blocking agents did not inhibit the increased release of {sup 45}Ca2+, but lanthanum partially blocked the increase. The increased release of Ca2+ appeared to be due, at least in part, to activation of phospholipase C because there was an increase both in inositol polyphosphate species and in diglycerides after incubation of ENDO with CG. These studies support the hypothesis that CG increases the flux of calcium in ENDO, that this increase in Ca2+ flux may result from activation of phospholipase C, and that this system may be involved in the decreased barrier properties of the ENDO after CG exposure.

  9. A role for rat inositol polyphosphate kinases rIPK2 and rIPK1 in inositol pentakisphosphate and inositol hexakisphosphate production in rat-1 cells.

    Science.gov (United States)

    Fujii, Makoto; York, John D

    2005-01-14

    Over 30 inositol polyphosphates are known to exist in mammalian cells; however, the majority of them have uncharacterized functions. In this study we investigated the molecular basis of synthesis of highly phosphorylated inositol polyphosphates (such as inositol tetrakisphosphate, inositol pentakisphosphate (IP5), and inositol hexakisphosphate (IP6)) in rat cells. We report that heterologous expression of rat inositol polyphosphate kinases rIPK2, a dual specificity inositol trisphosphate/inositol tetrakisphosphate kinase, and rIPK1, an IP5 2-kinase, were sufficient to recapitulate IP6 synthesis from inositol 1,4,5-trisphosphate in mutant yeast cells. Overexpression of rIPK2 in Rat-1 cells increased inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) levels about 2-3-fold compared with control. Likewise in Rat-1 cells, overexpression of rIPK1 was capable of completely converting I(1,3,4,5,6)P5 to IP6. Simultaneous overexpression of both rIPK2 and rIPK1 in Rat-1 cells increased both IP5 and IP6 levels. To reduce IPK2 activity in Rat-1 cells, we introduced vector-based short interference RNA against rIPK2. Cells harboring the short interference RNA had a 90% reduction of mRNA levels and a 75% decrease of I(1,3,4,5,6)P5. These data confirm the involvement of IPK2 and IPK1 in the conversion of inositol 1,4,5-trisphosphate to IP6 in rat cells. Furthermore these data suggest that rIPK2 and rIPK1 act as key determining steps in production of IP5 and IP6, respectively. The ability to modulate the intracellular inositol polyphosphate levels by altering IPK2 and IPK1 expression in rat cells will provide powerful tools to study the roles of I(1,3,4,5,6)P5 and IP6 in cell signaling.

  10. Metabolic syndrome and atypical antipsychotics: Possibility of prediction and control.

    Science.gov (United States)

    Franch Pato, Clara M; Molina Rodríguez, Vicente; Franch Valverde, Juan I

    Schizophrenia and other psychotic disorders are associated with high morbidity and mortality, due to inherent health factors, genetic factors, and factors related to psychopharmacological treatment. Antipsychotics, like other drugs, have side-effects that can substantially affect the physical health of patients, with substantive differences in the side-effect profile and in the patients in which these side-effects occur. To understand and identify these risk groups could help to prevent the occurrence of the undesired effects. A prospective study, with 24 months follow-up, was conducted in order to analyse the physical health of severe mental patients under maintenance treatment with atypical antipsychotics, as well as to determine any predictive parameters at anthropometric and/or analytical level for good/bad outcome of metabolic syndrome in these patients. There were no significant changes in the physical and biochemical parameters individually analysed throughout the different visits. The baseline abdominal circumference (lambda Wilks P=.013) and baseline HDL-cholesterol levels (lambda Wilks P=.000) were the parameters that seem to be more relevant above the rest of the metabolic syndrome constituents diagnosis criteria as predictors in the long-term. In the search for predictive factors of metabolic syndrome, HDL-cholesterol and abdominal circumference at the time of inclusion were selected, as such that the worst the baseline results were, the higher probability of long-term improvement. Copyright © 2016 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Hypoglycemia in pregnant women with type 1 diabetes: predictors and role of metabolic control

    DEFF Research Database (Denmark)

    Nielsen, Lene Ringholm; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger;

    2008-01-01

    In pregnancy with type 1 diabetes, we evaluated occurrence of mild and severe hypoglycemia and analyzed the influence of strict metabolic control, nausea, vomiting, and other potential predictors of occurrence of severe hypoglycemia.......In pregnancy with type 1 diabetes, we evaluated occurrence of mild and severe hypoglycemia and analyzed the influence of strict metabolic control, nausea, vomiting, and other potential predictors of occurrence of severe hypoglycemia....

  12. Metabolic Control and Academic Achievement over Time among Adolescents with Type 1 Diabetes

    Science.gov (United States)

    Winnick, Joel B.; Berg, Cynthia A.; Wiebe, Deborah J.; Schaefer, Barbara A.; Lei, Pui-Wa; Butner, Jonathan E.

    2017-01-01

    The relation between metabolic control (HbA1c) and achievement (grade point average [GPA]) was examined over a period of 2.5 years (every 6 months) employing a dynamical systems approach that allowed for the examination of whether HbA1c was associated with change in subsequent GPA and vice versa. Metabolic control tends to deteriorate (i.e., with…

  13. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum

    OpenAIRE

    2010-01-01

    The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a w...

  14. Metabolic Response of “Candidatus Accumulibacter Phosphatis” Clade II C to Changes in Influent P/C Ratio

    Science.gov (United States)

    Welles, Laurens; Abbas, Ben; Sorokin, Dimitry Y.; Lopez-Vazquez, Carlos M.; Hooijmans, Christine M.; van Loosdrecht, Mark C. M.; Brdjanovic, Damir

    2017-01-01

    The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, “Candidatus Accumulibacter phosphatis” clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels. PMID:28111570

  15. Borehole Data Package for Nine CY 2006 Polyphosphate Treatability Testing Wells, 300-FF-5 Operable Unit, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bruce A.

    2007-04-12

    Nine new CERCLA groundwater monitoring wells were installed in the 300-FF-5 Operable Unit in calendar year 2006 to fulfill commitments for the EM-20 funded polyphosphate treatability test. Nine new performance monitoring wells were drilled into the uppermost unconfined aquifer, to the Hanford formation - Ringold Formation contact boundary, and completed within the permeable Hanford fm. unit 1 gravel-dominated sequence. The overall objective of the polyphosphate treatability test is to evaluate the efficacy of using polyphosphate injections to treat 300 Area uranium contaminated groundwater in situ. The objective of this work was to install the performance monitoring network surrounding the existing treatability injection well C5000 (399-1-23) in support of the implementation of a field scale demonstration of the polyphosphate technology.

  16. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in Drosophila melanogaster.

    Science.gov (United States)

    Matsuoka, Shinya; Armstrong, Alissa R; Sampson, Leesa L; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2017-06-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems. Copyright © 2017 by the Genetics Society of America.

  17. Effect of long-term cyanide exposure on cyanide-sensitive respiration and phosphate metabolism in the fungus Phycomyces blakesleeanus

    Directory of Open Access Journals (Sweden)

    Stanić Marina

    2014-01-01

    Full Text Available The effects of long-term exposure (5 h of Phycomyces blakesleeanus mycelium to 5 mM KCN on respiration and phosphate metabolites were tested. Exposure to cyanide, antimycin A and azide lead to a decrease in the activity of cyanide-sensitive respiration (CSR, and the ratio of core polyphosphates (PPc and inorganic phosphates (Pi, which is a good indicator of the metabolic state of a cell. After 5 h of incubation, the activity of CSR returned to control values. For this, the recovery of cytochrome c oxidase (COX was required. In addition, the PPc/Pi ratio started to recover shortly after initiation of COX recovery, but never reached control values. This led us to conclude that the regulation of polyphosphate (PPn levels in the cell is tightly coupled to respiratory chain functioning. In addition, acutely applied cyanide caused two different responses, observed by 31P NMR spectroscopy, that were probably mediated through the mechanism of glycolytic oscillations, triggered by the effect of cyanide on mitochondria. [Projekat Ministarstva nauke Republike Srbije, br. 173040

  18. Metabolic control of resting hemispheric cerebral blood flow is oxidative, not glycolytic.

    Science.gov (United States)

    Powers, William J; Videen, Tom O; Markham, Joanne; Walter, Vonn; Perlmutter, Joel S

    2011-05-01

    Although the close regional coupling of resting cerebral blood flow (CBF) with both cerebral metabolic rate of oxygen (CMRO(2)) and cerebral metabolic rate of glucose (CMRglc) within individuals is well documented, there are few data regarding the coupling between whole brain flow and metabolism among different subjects. To investigate the metabolic control of resting whole brain CBF, we performed multivariate analysis of hemispheric CMRO(2), CMRglc, and other covariates as predictors of resting CBF among 23 normal humans. The univariate analysis showed that only CMRO(2) was a significant predictor of CBF. The final multivariate model contained two additional terms in addition to CMRO(2): arterial oxygen content and oxygen extraction fraction. Notably, arterial plasma glucose concentration and CMRglc were not included in the final model. Our data demonstrate that the metabolic factor controlling hemispheric CBF in the normal resting brain is CMRO(2) and that CMRglc does not make a contribution. Our findings provide evidence for compartmentalization of brain metabolism into a basal component in which CBF is coupled to oxygen metabolism and an activation component in which CBF is controlled by another mechanism.

  19. Controllability in cancer metabolic networks according to drug targets as driver nodes.

    Science.gov (United States)

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

  20. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Eliasson Lantz, Anna; Nielsen, Jacob

    2004-01-01

    Yield improvements in antibiotic-producing strains have classically been obtained through random mutagenesis and screening. An attractive alternative to this strategy is the rational design of producer strains via metabolic engineering, an approach that offers the possibility to increase yields...... while avoiding the problems of by-product formation and altered morphological properties, which frequently arise in mutagenized strains. An important aspect in the design of strains with improved yields by metabolic engineering is the identification of rate-controlling enzymatic reactions...... in the metabolic network. Here we describe and discuss available methods for identification of these steps, both in antibiotic biosynthesis pathways and in the primary metabolism, which serves as the supplier of precursors and cofactors for the secondary metabolism. Finally, the importance of precursor...

  1. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance.

    Science.gov (United States)

    Chance, B; Leigh, J S; Kent, J; McCully, K; Nioka, S; Clark, B J; Maris, J M; Graham, T

    1986-12-01

    Three types of metabolic control of oxidative metabolism are observed in the various tissues that have been studied by phosphorous magnetic resonance spectroscopy. The principal control of oxidative metabolism in skeletal muscle is by ADP (or Pi/phosphocreatine). This conclusion is based upon studies of arm muscles of humans during steady-state exercise. A work-cost (Vm vs. Pi/phosphocreatine) relationship follows a Michaelis-Menten rectangular hyperbola, where Km values from 0.5 to 0.6 and Vmax values from 50 to 200 (at nearly constant pH) are found in linearized plots of the equation V/Vmax = 1/(1 + 0.6 phosphocreatine/Pi) where V is work level (which is equal to the velocity of the enzymatic reaction) and Vmax is the maximal work capacity that is a measure of the enzyme activity (E) of oxidative metabolism. Adaptation to exercise enhances the slope of the work-cost relationship and causes large changes in Vmax or E. A second metabolic control may enhance the slope of the work-cost relationship but not Vmax. For example, the initiation of exercise can lead to an improved characteristic that can be explained by 2-fold increased substrate delivery, for example, increased oxygen delivery by microcirculatory control. Cardiac tissue of the adult dog affords an example of optimal endurance performance adaptation and exhibits the steepest work-cost relationship observed and is attributed to a coordinated control of substrate delivery that may involve Ca2+ and inorganic phosphate control of NADH; control of O2 delivery may also be involved. The calculated work-cost relationship is similar to that observed in the beagle heart. The theoretical curve illustrates that the liability of multiple controls is a sharp break point in metabolic control at the end of the multiple control range--a possible cause of instability of cardiac performance at high V/Vmax.

  2. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  3. Weight control and prevention of metabolic syndrome by green tea.

    Science.gov (United States)

    Sae-tan, Sudathip; Grove, Kimberly A; Lambert, Joshua D

    2011-08-01

    Green tea (Camellia sinensis, Theaceace) is the second most popular beverage in the world and has been extensively studied for its putative disease preventive effects. Green tea is characterized by the presence of a high concentrations of polyphenolic compounds known as catechins, with (-)-epigallocatechin-3-gallate (EGCG) being the most abundant and most well-studied. Metabolic syndrome (MetS) is a complex condition that is defined by the presence of elevated waist circumference, dysglycemia, elevated blood pressure, decrease serum high-density lipoprotein-associated cholesterol, and increased serum triglycerides. Studies in both in vitro and laboratory animal models have examined the preventive effects of green tea and EGCG against the symptoms of MetS. Overall, the results of these studies have been promising and demonstrate that green tea and EGCG have preventive effects in both genetic and dietary models of obesity, insulin resistance, hypertension, and hypercholesterolemia. Various mechanisms have been proposed based on these studies and include: modulation of dietary fat absorption and metabolism, increased glucose utilization, decreased de novo lipogenesis, enhanced vascular responsiveness, and antioxidative effects. In the present review, we discuss the current state of the science with regard to laboratory studies on green tea and MetS. We attempt to critically evaluate the available data and point out areas for future research. Although there is a considerable amount of data available, questions remain in terms of the primary mechanism(s) of action, the dose-response relationships involved, and the best way to translate the results to human intervention studies.

  4. Carbonate buffering and metabolic controls on carbon dioxide in rivers

    Science.gov (United States)

    Stets, Edward; Butman, David; McDonald, Cory P.; Stackpoole, Sarah M.; DeGrandpre, Michael D.; Striegl, Rob

    2017-01-01

    Multiple processes support the significant efflux of carbon dioxide (CO2) from rivers and streams. Attribution of CO2 oversaturation will lead to better quantification of the freshwater carbon cycle and provide insights into the net cycling of nutrients and pollutants. CO2 production is closely related to O2consumption because of the metabolic linkage of these gases. However, this relationship can be weakened due to dissolved inorganic carbon inputs from groundwater, carbonate buffering, calcification, and anaerobic metabolism. CO2and O2 concentrations and other water quality parameters were analyzed in two data sets: a synoptic field study and nationwide water quality monitoring data. CO2 and O2 concentrations were strongly negatively correlated in both data sets (ρ = −0.67 and ρ = −0.63, respectively), although the correlations were weaker in high-alkalinity environments. In nearly all samples, the molar oversaturation of CO2 was a larger magnitude than molar O2 undersaturation. We used a dynamically coupled O2CO2 model to show that lags in CO2 air-water equilibration are a likely cause of this phenomenon. Lags in CO2 equilibration also impart landscape-scale differences in the behavior of CO2 between high- and low-alkalinity watersheds. Although the concept of carbonate buffering and how it creates lags in CO2 equilibration with the atmosphere is well understood, it has not been sufficiently integrated into our understanding of CO2 dynamics in freshwaters. We argue that the consideration of carbonate equilibria and its effects on CO2 dynamics are primary steps in understanding the sources and magnitude of CO2 oversaturation in rivers and streams.

  5. Carbonate buffering and metabolic controls on carbon dioxide in rivers

    Science.gov (United States)

    Stets, Edward G.; Butman, David; McDonald, Cory P.; Stackpoole, Sarah M.; DeGrandpre, Michael D.; Striegl, Robert G.

    2017-04-01

    Multiple processes support the significant efflux of carbon dioxide (CO2) from rivers and streams. Attribution of CO2 oversaturation will lead to better quantification of the freshwater carbon cycle and provide insights into the net cycling of nutrients and pollutants. CO2 production is closely related to O2 consumption because of the metabolic linkage of these gases. However, this relationship can be weakened due to dissolved inorganic carbon inputs from groundwater, carbonate buffering, calcification, and anaerobic metabolism. CO2 and O2 concentrations and other water quality parameters were analyzed in two data sets: a synoptic field study and nationwide water quality monitoring data. CO2 and O2 concentrations were strongly negatively correlated in both data sets (ρ = -0.67 and ρ = -0.63, respectively), although the correlations were weaker in high-alkalinity environments. In nearly all samples, the molar oversaturation of CO2 was a larger magnitude than molar O2 undersaturation. We used a dynamically coupled O2CO2 model to show that lags in CO2 air-water equilibration are a likely cause of this phenomenon. Lags in CO2 equilibration also impart landscape-scale differences in the behavior of CO2 between high- and low-alkalinity watersheds. Although the concept of carbonate buffering and how it creates lags in CO2 equilibration with the atmosphere is well understood, it has not been sufficiently integrated into our understanding of CO2 dynamics in freshwaters. We argue that the consideration of carbonate equilibria and its effects on CO2 dynamics are primary steps in understanding the sources and magnitude of CO2 oversaturation in rivers and streams.

  6. Neuroendocrinology: Electromagnetogenetic Control over Feeding and Glucose Metabolism.

    Science.gov (United States)

    Ruud, Johan; Brüning, Jens C

    2016-06-06

    Cutting-edge experiments show a new means to control the activity of specifically genetically targeted neurons in the hypothalamus using electromagnetic force. At the flip of a switch, the system bidirectionally regulates feeding behavior and glucose homeostasis, demonstrating wireless control over deep brain regions and their strong influence over energy balance.

  7. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    OpenAIRE

    Gonzalez-Ruiz Gloriene; Alvarez Derry; Ruiz Oscar N; Torres Cesar

    2011-01-01

    Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury r...

  8. Polifosfatos em detergentes em pó comerciais Polyphosphates in commercial powder detergents

    Directory of Open Access Journals (Sweden)

    Viktoria Klara Lakatos Osorio

    2001-10-01

    Full Text Available A didactic experiment is proposed in order to identify inorganic phosphates in home laundry detergents by ascending paper chromatography. Chemical principles related with hard water are also investigated. The role of polyphosphates in detergent formulations is discussed and the softening of hard water by sodium tripolyphosphate is illustrated. Several chemical concepts, related to the daily experience of the students, can be explored in post-lab discussions.

  9. Herbal Medicines for Treating Metabolic Syndrome: A Systematic Review of Randomized Controlled Trials

    OpenAIRE

    Soobin Jang; Bo-Hyoung Jang; Youme Ko; Yui Sasaki; Jeong-Su Park; Eui-Hyoung Hwang; Yun-Kyung Song; Yong-Cheol Shin; Seong-Gyu Ko

    2016-01-01

    Objective. The aim of this systematic review is to evaluate the efficacy and safety of herbal medicines in the management of metabolic syndrome. Materials and Methods. On December 9, 2015, we searched PubMed, EMBASE, Cochrane Library, SCOPUS, AMED, CNKI, KoreaMed, KMBASE, OASIS, and J-STAGE with no restriction on language or published year. We selected randomized controlled trials that involved patients with metabolic syndrome being treated with herbal medicines as intervention. The main keyw...

  10. [Barometer of type 2 diabetes in primary care. Metabolic control, styles of life and morbidity profile].

    Science.gov (United States)

    Pérez-Manchón, David; Rodríguez-Álvarez, María Lorena; Alcívar-Arteaga, Claudia; Redondo-Pico, Mercedes; Ramos-Quirós, Elena

    2016-12-28

    Knowing the profile of cardiovascular morbidity, degree of control and lifestyles in type 2 diabetes. Randomized multicenter cross-sectional study conducted in 2015 in primary care with 129 diabetics. It included sociodemographic variables, microvascular and macrovascular complications, organic damage, comorbidity and lifestyles of smoking, exercise and adherence to Mediterranean diet. Metabolic control was assessed with the latest annual glycosylated haemoglobin. 57% were men and 43% women. Metabolic control was acceptable (HbAc1%, 7.15%) without differences by town. 74.4% had cardiovascular comorbidity and the 99.2% risk factors. 23% were smokers and 41% sedentary with a 56% adherence to Mediterranean diet. The cardiometabolic profile of diabetes includes retinopathy, peripheral arterial disease, comorbidity of hypertension and cardiovascular risk factors. Individual or group health education in self-care and healthy lifestyles can improve metabolic control. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  11. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease

    Directory of Open Access Journals (Sweden)

    Elena N. Dedkova

    2014-07-01

    Full Text Available We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB, its linear polymer poly-β-hydroxybutyrate (PHB and inorganic polyphosphate (polyP in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g. diabetic ketoacidosis in type-1 diabetes mellitus, it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-hydroxybutyrate dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca2+ which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial

  12. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling.

  13. Metabolic disorders and the risk of nasopharyngeal carcinoma: a case-control study in Italy.

    Science.gov (United States)

    Zucchetto, Antonella; Taborelli, Martina; Bosetti, Cristina; Montella, Maurizio; La Vecchia, Carlo; Franchin, Gianni; Libra, Massimo; Serraino, Diego; Polesel, Jerry

    2016-07-29

    The aim of this study is to evaluate the association between metabolic disorders and the risk of nasopharyngeal carcinoma, considering different histological subtypes. Between 1992 and 2008, we carried out a multicentre case-control study in Italy. One-hundred and ninety-seven White patients with histologically confirmed nasopharyngeal carcinoma were enrolled as cases. The control group included 592 cancer-free patients, frequency matched by study centre, area of residence, sex, age and period of interview. Odds ratios (OR) and corresponding 95% confidence intervals (CI), for nasopharyngeal carcinoma according to obesity and self-reported history of other metabolic disorders, were calculated through logistic regression models adjusted for matching variables and tobacco smoking and drinking habits. Obesity (OR=1.44; 95% CI: 0.88-2.36), diabetes mellitus (OR=0.91; 95% CI: 0.42-1.98), hypertension (OR=0.79; 95% CI: 0.48-1.32), hypercholesterolaemia (OR=1.41; 95% CI: 0.84-2.35) and metabolic syndrome (i.e. at least three among the four previously cited metabolic disorders; OR=1.11; 95% CI: 0.86-1.43) were not significantly associated with the overall risk of nasopharyngeal carcinoma. However, the associations observed for diabetes mellitus, hypercholesterolaemia and metabolic syndrome were stronger among differentiated nasopharyngeal carcinomas than among undifferentiated ones. In particular, 21.7% of differentiated nasopharyngeal carcinoma cases and 7.8% of controls reported a history of metabolic syndrome (OR=3.37; 95% CI: 1.05-10.81). The results of the study indicated no overall association between metabolic disorders and nasopharyngeal carcinoma. Nonetheless, although the small sample size calls for caution in interpretation, metabolic disorders could increase the risk of differentiated nasopharyngeal carcinoma. This finding further supports a different aetiology of the two histological subtypes.

  14. Application of a controllable degron strategy for metabolic engineering

    DEFF Research Database (Denmark)

    Knuf, Christoph; Maury, Jerome; Jacobsen, Simo Abdessamad;

    2014-01-01

    , as the existing enzyme will still be active. We present a strategy for down-regulation that acts on the protein level and which can therefore be controlled in a more precise manner than the hitherto reported strategies. As a case study we show the action of the degron strategy for controlling the pools...... terpenoids, can be produced from intermediates of this pathway. Different strategies have been applied in order to down-regulate the expression of enzymes involved in the mevalonate pathway. All these strategies work on the transcriptional level. This leads to a delay of the actual regulation...

  15. Diabetes in children and adolescents from ethnic minorities: barriers to education, treatment and good metabolic control

    DEFF Research Database (Denmark)

    Povlsen, Lene; Olsen, Birthe; Ladelund, Steen

    2005-01-01

    AIM: This paper reports an investigation to establish whether metabolic control is different in children and adolescents from ethnic minorities with type 1 diabetes compared with young Danish patients, and to learn about factors affecting their opportunities to achieve good metabolic control....... BACKGROUND: The prevalence of diabetes in children and adolescents from ethnic minorities in Denmark is increasing. Having a different ethnic background has frequently been described as a risk factor for poor metabolic control, but whether the risk is represented by the ethnicity and immigration itself...... or in combination with other factors is unclear. METHODS: The study included data (gender, age, diabetes duration HbA(1c), number of incidents of severe hypoglycaemia and ketoacidosis) from a national register including 919 Danish and 58 children and adolescents from ethnic minorities, questionnaires to all 20...

  16. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor t

  17. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor

  18. Behavioural factors related to metabolic control in patients with phenylketonuria

    NARCIS (Netherlands)

    Crone, MR; van Spronsen, FJ; Oudshoorn, K; Bekhof, J; van Rijn, G; Verkerk, PH

    2005-01-01

    Background. The objective of this study was to determine the importance of parental factors possibly related to dietary control in early and continuously treated patients with phenylketonuria (PKU). Methods. A questionnaire was disseminated among parents of 238 patients with PKU born after the natio

  19. Metabolic Control with Insulin Pump Therapy: Preliminary Experience

    Directory of Open Access Journals (Sweden)

    Shang-Ren Hsu

    2008-07-01

    Conclusion: Our preliminary experience demonstrated the effectiveness of insulin pump therapy for both type 1 and type 2 diabetic patients. The reduction in their HbA1C values was both statistically and clinically significant. This treatment should be considered for patients poorly controlled by subcutaneous insulin injection therapy.

  20. Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways.

    Science.gov (United States)

    Stevens, Jason T; Carothers, James M

    2015-02-20

    Engineered metabolic pathways can be augmented with dynamic regulatory controllers to increase production titers by minimizing toxicity and helping cells maintain homeostasis. We investigated the potential for dynamic RNA-based genetic control systems to increase production through simulation analysis of an engineered p-aminostyrene (p-AS) pathway in E. coli. To map the entire design space, we formulated 729 unique mechanistic models corresponding to all of the possible control topologies and mechanistic implementations in the system under study. Two thousand sampled simulations were performed for each of the 729 system designs to relate the potential effects of dynamic control to increases in p-AS production (total of 3 × 10(6) simulations). Our analysis indicates that dynamic control strategies employing aptazyme-regulated expression devices (aREDs) can yield >10-fold improvements over static control. We uncovered generalizable trends in successful control architectures and found that highly performing RNA-based control systems are experimentally tractable. Analyzing the metabolic control state space to predict optimal genetic control strategies promises to enhance the design of metabolic pathways.

  1. Depression, disturbed eating behavior, and metabolic control in teenage girls with type 1 diabetes.

    Science.gov (United States)

    Colton, Patricia A; Olmsted, Marion P; Daneman, Denis; Rodin, Gary M

    2013-08-01

    Depression and disturbed eating behavior (DEB) are more common in girls with type 1 diabetes (T1D) than in the general population, and may negatively affect metabolic control. To examine the relationship among depression, DEB, and metabolic control in teenage girls with T1D. Metabolic control, body mass index and interview-ascertained symptoms of depression, and DEB were assessed twice in 98 girls with T1D, 9-14 y at baseline and 5 yr later at 14-18 yr. At year 5, 12.2% of girls reported current depressive symptoms, 49.0% reported current DEB, and 13.3% had a full or subthreshold eating disorder (ED). Eating Disorder Examination score was higher in girls with depression (1.4 ± 1.3 vs. 0.5 ± 0.7; p = 0.03), and 75.0% of girls with depression also endorsed DEB vs. 45.3% of girls without depression (p = 0.05). Girls with an ED were at high risk for depressive symptoms; 69.2% reported depressive symptoms vs. 22.0% of girls with no DEB (p = 0.004). Metabolic control was not significantly associated with either depression or DEB in this cohort. A regression model using baseline and year 5 depression and DEB to predict year 5 hemoglobin A1c was not significant overall. Depression and DEB were common and frequently concurrent in this cohort. It was encouraging that poor metabolic control was not yet strongly associated with either depression or DEB. Early detection and treatment may help to prevent the development of entrenched difficulties in this triad of mood, eating behavior, and metabolic control in a vulnerable population. © 2013 John Wiley & Sons A/S.

  2. Metabolic Control and Illness Perceptions in Adolescents with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Line Wisting

    2016-01-01

    Full Text Available Background. Disturbed eating behavior and psychosocial variables have been found to influence metabolic control, but little is known about how these variables interact or how they influence metabolic control, separately and combined. Objective. To explore associations between metabolic control (measured by HbA1c and eating disorder psychopathology, coping strategies, illness perceptions, and insulin beliefs in adolescents with type 1 diabetes. Methods. A total of 105 patients (41.9% males with type 1 diabetes (12–20 years were interviewed with the Child Eating Disorder Examination. In addition, self-report psychosocial questionnaires were completed. Clinical data, including HbA1c, was obtained from the Norwegian Childhood Diabetes Registry. Results. Significant gender differences were demonstrated. Among females, HbA1c correlated significantly with eating restriction (.29, p < .05, the illness perception dimensions consequences, personal control, coherence, and concern (ranging from .33 to .48, and the coping strategy ventilating negative feelings (−.26, p < .05. Illness perception personal control contributed significantly to HbA1c in a regression model, explaining 23% of the variance among females (β .48, p < .001. None of the variables were significantly associated with HbA1c among males. Conclusions. Illness perceptions appear to be important contributors to metabolic control in females, but not males, with type 1 diabetes.

  3. Synthetic control of a fitness tradeoff in yeast nitrogen metabolism

    OpenAIRE

    Lee Jack J; Beisel Chase L; Hoff Kevin G; Bayer Travis S; Smolke Christina D

    2009-01-01

    Abstract Background Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology. Results Here, we explored how synthetic control of an endogeno...

  4. Investigating Metabolic Control of Persister Formation in Biofilms

    Science.gov (United States)

    2013-10-01

    consumed substrate) and output (cyto- chrome activity). However, the network between input and out- put in persisters is not delineated with this assay...Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health...sorting. As controls, 1-ml samples were first incubated with car- bonyl cyanide m-chlorophenylhydrazone (CCCP) or potassium cyanide (KCN) at 10 M or 1 mM

  5. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    4.1 Nutrition imbalance 2006024 Effect of multiple micronutrients supplementation on anti - oxidative activity and oxidized DNA damage of lymphocytes in children ZHANG Ming ( 张明), Nutrit Dept, Weifang People Hosp, Weifang 261041. Chin J Epidemiol 2005 ;26(4) :268 -272. Objective:To examine the effect of multiple micronutrients supplementation on anti - oxidative activity and decreasing oxidized DNA damage of lymphocytes in Chinese children. Methods:82 healthy children in rural areas, aged 9-11 years, were selected and randomized into group receiving supplements and control group with 41 in

  6. Role of glycolytic intermediate in regulation: Improving lycopene production in Escherichia coli by engineering metabolic control

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, W.R.; Liao, J.C.

    2001-06-01

    Metabolic engineering in the postgenomic era is expected to benefit from a full understanding of the biosynthetic capability of microorganisms as a result of the progress being made in bioinformatics and functional genomics. The immediate advantage of such information is to allow the rational design of novel pathways and the elimination of native reactions that are detrimental or unnecessary for the desired purpose. However, with the ability to manipulate metabolic pathways becoming more effective, metabolic engineering will need to face a new challenge: the reengineering of the regulatory hierarchy that controls gene expression in those pathways. In addition to constructing the genetic composition of a metabolic pathway, they propose that it will become just as important to consider the dynamics of pathways gene expression. It has been widely observed that high-level induction of a recombinant protein or pathway leads to growth retardation and reduced metabolic activity. These phenotypic characteristics result from the fact that the constant demands of production placed upon the cell interfere with its changing requirements for growth. They believe that this common situation in metabolic engineering can be alleviated by designing a dynamic controller that is able to sense the metabolic state of the cell and regulate the expression of the recombinant pathway accordingly. This approach, which is termed metabolic control engineering, involves redesigning the native regulatory circuits and applying them to the recombinant pathway. The general goal of such an effort will be to control the flux to the recombinant pathway adaptively according to the cell's metabolic state. The dynamically controlled recombinant pathway can potentially lead to enhanced production, minimized growth retardation, and reduced toxic by-product formation. The regulation of gene expression in response to the physiological state is also essential to the success of gene therapy. Here they

  7. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal.

    Science.gov (United States)

    Kristiansen, Rikke; Nguyen, Hien Thi Thu; Saunders, Aaron Marc; Nielsen, Jeppe Lund; Wimmer, Reinhard; Le, Vang Quy; McIlroy, Simon Jon; Petrovski, Steve; Seviour, Robert J; Calteau, Alexandra; Nielsen, Kåre Lehmann; Nielsen, Per Halkjær

    2013-03-01

    Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to 'Candidatus Accumulibacter phosphatis' is unclear, although they may occupy different ecological niches in EBPR communities. The genomes of four Tetrasphaera isolates (T. australiensis, T. japonica, T. elongata and T. jenkinsii) were sequenced and annotated, and the data used to construct metabolic models. These models incorporate central aspects of carbon and phosphorus metabolism critical to understanding their behavior under the alternating anaerobic/aerobic conditions encountered in EBPR systems. Key features of these metabolic pathways were investigated in pure cultures, although poor growth limited their analyses to T. japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaera-related PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate and substrate fermentation. During the aerobic phase, the stored glycogen is catabolized to provide energy for growth and to replenish the intracellular polyphosphate reserves needed for subsequent anaerobic metabolism. They are also able to denitrify. This physiology is markedly different to that displayed by 'Candidatus Accumulibacter phosphatis', and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation.

  8. Synthetic control of a fitness tradeoff in yeast nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Lee Jack J

    2009-01-01

    Full Text Available Abstract Background Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology. Results Here, we explored how synthetic control of an endogenous circuit can be used to regulate a tradeoff between fitness in resource abundant and resource limited environments in a population of Saccharomyces cerevisiae. We found that noise in the expression of a key enzyme in ammonia assimilation, Gdh1p, mediated a tradeoff between growth in low nitrogen environments and stress resistance in high ammonia environments. We implemented synthetic control of an endogenous Gdh1p regulatory network to construct an engineered strain in which the fitness of the population was tunable in response to an exogenously-added small molecule across a range of ammonia environments. Conclusion The ability to tune fitness and biological tradeoffs will be important components of future efforts to engineer microbial communities.

  9. [Stages of grief in diabetes and metabolic control].

    Science.gov (United States)

    Rodríguez-Moctezuma, José Raymundo; López-Delgado, María Elisa; Ortiz-Aguirre, Alma Rosa; Jiménez-Luna, Jorge; López-Ocaña, Luis Rafael; Chacón-Sánchez, Jesús

    2015-01-01

    Introducción: el objetivo de este artículo es identificar las etapas del duelo y su asociación con el control metabólico en pacientes diabéticos tipo 2. Métodos: se incluyeron 186 sujetos diabéticos, de ambos sexos, sin pérdida reciente de un ser querido ni enfermedades terminales. Se les aplicó un instrumento validado que exploró las etapas del duelo (negación, ira/incredulidad, negociación, depresión, y aceptación). Se midió: IMC, perímetro de cintura, niveles promedio de glucosa, colesterol y triglicéridos en los últimos 6 meses. Resultados: las asociaciones entre las etapas del duelo y las variables clínicas mostraron que en la negación, el IMC es mayor 33.1 ± 6.2 contra 28.9 ± 4.6 con p = 0.001; en etapa de incredulidad, la glucemia es mayor 190 ± 67 frente a 16 ± 51 con p tiempo de diagnóstico 13.3 ± 8.9 frente a 9.4 ± 7.1 años, con p < 0.05 y con el nivel de glucemia de 198.9 ± 60 frente a 164 ± 51 mg/dL con p = 0.001. Conclusiones: existen asociaciones lógicas entre variables clínicas y etapas del duelo. Se debe identificar el duelo como un elemento adicional en la evaluación de pacientes con diabetes y establecer estrategias que mejoren la adherencia al tratamiento y el control metabólico.

  10. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.

    Science.gov (United States)

    Weiner, I David; Mitch, William E; Sands, Jeff M

    2015-08-07

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.

  11. 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Bacon, Diana H.; Oostrom, Martinus; Gunderson, Katie M.; Webb, Samuel M.; Bovaird, Chase C.; Cordova, Elsa A.; Clayton, Eric T.; Parker, Kent E.; Ermi, Ruby M.; Baum, Steven R.; Vermeul, Vincent R.; Fruchter, Jonathan S.

    2008-09-30

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to stabilize uranium within the 300 Area vadose and smear zones of the Hanford Site. The general treatability testing approach consisted of conducting studies with site sediment and under site conditions, to develop an effective chemical formulation and infiltration approach for the polyphosphate amendment under site conditions. Laboratory-scale dynamic column tests were used to 1) quantify the retardation of polyphosphate and its degradation products as a function of water content, 2) determine the rate of polyphosphate degradation under unsaturated conditions, 3) develop an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) develop an understanding of the transformation mechanism, the identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and -silicate minerals with the polyphosphate remedy under solubility-limiting conditions, and 5) quantify the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and smear zone.

  12. GENERATION OF A PROTON MOTIVE FORCE BY THE EXCRETION OF METAL-PHOSPHATE IN THE POLYPHOSPHATE-ACCUMULATING ACINETOBACTER-JOHNSONII STRAIN 210A

    NARCIS (Netherlands)

    VANVEEN, HW; ABEE, T; KORTSTEE, GJJ; PEREIRA, H; KONINGS, WN; ZEHNDER, AJB

    1994-01-01

    The strictly aerobic, polyphosphate-accumulating Acinetobacter johnsonii strain 210A degrades its polyphosphate when oxidative phosphorylation is impaired. The endproducts of this degradation, divalent metal ions and inorganic phosphate, are excreted as a neutral metal-phosphate (MeHPO(4)) chelate v

  13. Emerging roles of the intestine in control of cholesterol metabolism

    Institute of Scientific and Technical Information of China (English)

    Janine K Kruit; Albert K Groen; Theo J van Berkel; Folkert Kuipers

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis,clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor to high density lipoprotein (HDL; good cholesterol) formation. The liver has a central position in the classical definition of the reverse cholesterol transport pathway by taking up peripheryderived cholesterol from lipoprotein particles followed by conversion into bile acids or its direct secretion into bile for eventual removal via the feces. During the past couple of years, however, an additional important role of the intestine in maintenance of cholesterol homeostasis and regulation of plasma cholesterol levels has become apparent. Firstly, molecular mechanisms of cholesterol absorption have been elucidated and novel pharmacological compounds have been identified that interfere with the process and positively impact plasma cholesterol levels. Secondly, it is now evident that the intestine itself contributes to fecal neutral sterol loss as a cholesterol-secreting organ. Finally, very recent work has unequivocally demonstrated that the intestine contributes significantly to plasma HDL cholesterol levels.Thus, the intestine is a potential target for novel antiatherosclerotic treatment strategies that, in addition to interference with cholesterol absorption, modulate direct cholesterol excretion and plasma HDL cholesterol levels.

  14. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz.

    Directory of Open Access Journals (Sweden)

    Julie Hull-Thompson

    2009-04-01

    Full Text Available Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS activity. Stress and inflammatory signaling pathways--such as Jun-N-terminal Kinase (JNK signaling--repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz, a homologue of vertebrate Apolipoprotein D (ApoD and Retinol Binding Protein 4 (RBP4. Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan--phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.

  15. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz.

    Science.gov (United States)

    Hull-Thompson, Julie; Muffat, Julien; Sanchez, Diego; Walker, David W; Benzer, Seymour; Ganfornina, Maria D; Jasper, Heinrich

    2009-04-01

    Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS) activity. Stress and inflammatory signaling pathways--such as Jun-N-terminal Kinase (JNK) signaling--repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz), a homologue of vertebrate Apolipoprotein D (ApoD) and Retinol Binding Protein 4 (RBP4). Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan--phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.

  16. Cognitive Maturity, Stressful Events and Metabolic Control in Adolescents with Diabetes.

    Science.gov (United States)

    Ingersoll, Gary M.; And Others

    Management of insulin dependent diabetes mellitus (IDDM) is a complex task that requires the adolescent with IDDM recognize the interaction between diet, exercise, stress, emotions, and insulin dosage. With regularity, however, adolescents with IDDM are shown to be in less good metabolic control than younger children or young adults. The study…

  17. Low triglyceride levels are associated with a better metabolic control in patients with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Alcantara Leticia M

    2011-09-01

    Full Text Available Abstract Background Although it is well known in the literature that high triglyceride serum (TG levels can jeopardize the metabolic control, little is known about the influence of low TG on type 1 diabetes patients (T1D. The aim of this study is to investigate the distribution of TG serum levels in individuals with T1D and its relationship with metabolic control. Findings We reviewed the medical charts of 180 patients with T1D, who were classified in groups according to TG levels: 1 low (below 50 mg/dL; 2 normal (50-150 mg/dL; 3 high (above 150 mg/dL. TG were low in 21.1% (n = 38; group 1, normal in 68.6% (n = 123; group 2 and high in 10.6% (n = 19; group 3. High TG was associated with a poor metabolic control (p Conclusion TG lower than 50 mg/dL was common and might be associated with a better metabolic control in patients with T1D, although it is not clear whether the former is the cause or consequence for the latter.

  18. Herbal Medicines for Treating Metabolic Syndrome: A Systematic Review of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Soobin Jang

    2016-01-01

    Full Text Available Objective. The aim of this systematic review is to evaluate the efficacy and safety of herbal medicines in the management of metabolic syndrome. Materials and Methods. On December 9, 2015, we searched PubMed, EMBASE, Cochrane Library, SCOPUS, AMED, CNKI, KoreaMed, KMBASE, OASIS, and J-STAGE with no restriction on language or published year. We selected randomized controlled trials that involved patients with metabolic syndrome being treated with herbal medicines as intervention. The main keywords were “Chinese herbal medicines”, “metabolic syndrome”, and “randomized controlled trials”. Herbal substances which were not based on East Asian medical theory, combination therapy with western medicines, and concurrent diseases other than metabolic syndrome were excluded. The risk of bias was assessed by Cochrane’s “Risk of Bias” tool. The protocol or review was registered in PROSPERO (an international prospective register of systematic reviews (CRD42014006842. Results. From 1,098 articles, 12 RCTs were included in this review: five trials studied herbal medicines versus a placebo or no treatment, and seven trials studied herbal medicines versus western medicines. Herbal medicines were effective on decreasing waist circumference, blood glucose, blood lipids, and blood pressure. Conclusion. This study suggests the possibility that herbal medicines can be complementary and alternative medicines for metabolic syndrome.

  19. Herbal Medicines for Treating Metabolic Syndrome: A Systematic Review of Randomized Controlled Trials.

    Science.gov (United States)

    Jang, Soobin; Jang, Bo-Hyoung; Ko, Youme; Sasaki, Yui; Park, Jeong-Su; Hwang, Eui-Hyoung; Song, Yun-Kyung; Shin, Yong-Cheol; Ko, Seong-Gyu

    2016-01-01

    Objective. The aim of this systematic review is to evaluate the efficacy and safety of herbal medicines in the management of metabolic syndrome. Materials and Methods. On December 9, 2015, we searched PubMed, EMBASE, Cochrane Library, SCOPUS, AMED, CNKI, KoreaMed, KMBASE, OASIS, and J-STAGE with no restriction on language or published year. We selected randomized controlled trials that involved patients with metabolic syndrome being treated with herbal medicines as intervention. The main keywords were "Chinese herbal medicines", "metabolic syndrome", and "randomized controlled trials". Herbal substances which were not based on East Asian medical theory, combination therapy with western medicines, and concurrent diseases other than metabolic syndrome were excluded. The risk of bias was assessed by Cochrane's "Risk of Bias" tool. The protocol or review was registered in PROSPERO (an international prospective register of systematic reviews) (CRD42014006842). Results. From 1,098 articles, 12 RCTs were included in this review: five trials studied herbal medicines versus a placebo or no treatment, and seven trials studied herbal medicines versus western medicines. Herbal medicines were effective on decreasing waist circumference, blood glucose, blood lipids, and blood pressure. Conclusion. This study suggests the possibility that herbal medicines can be complementary and alternative medicines for metabolic syndrome.

  20. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    Science.gov (United States)

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  1. [Dynamic variance of intracellular metabolic energies under rhythmical control for dissolved oxygen in PHB mixed cultivation].

    Science.gov (United States)

    Qian, Z W; Tohyama, M; Hua, Q; Shimizu, K

    2001-07-01

    The mixed cultivation using cheaper carbon source-wasted food material contained glucose and lactate at the same time was conducted in 5L fermentor, within which glucose was converted to lactate by L. delbrueckii in anaerobic condition and the lactate was converted to PHB by R. eutropha in aerobic condition. Considering dissolved oxygen concentration may affect the level of intracellular ATP and NADPH of the metabolic pathways for R. eutropha in lactate under autotrophy or heterotrophy, rhythmical oscillated control for DO based on chaos control method was consequently presented. This method was employed to satisfy two strains for opposite oxygen preferences, moreover, excite the intracellular metabolic energy simultaneously. The values examined through spectrophotofluorimetry represented that both ATP and NADPH exhibited fluctuations in accordance with the DO rhythm. By means of this control design, the concentration of PHB can be doubled than the usual under stable DO control.

  2. Periodontal disease and its influence on the metabolic control of diabetes

    OpenAIRE

    Marcia Maehler; Tatiana Miranda Deliberador; Geisla Mary Silva Soares; Ricardo Luiz Grein; Gastão Valle Nicolau

    2011-01-01

    Introduction: Currently, it is accepted that the periodontal disease is more prevalent and severe in people with diabetes mellitus compared to non-diabetic people. On the other hand, patients with severe periodontitis may present difficulty in performing glycemic control. Objective: The objective of the present study is to determine, through a literature review, the influence of the periodontal disease on the metabolic control of diabetic patients. Literature review: PubMed database was sear...

  3. Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase.

    Science.gov (United States)

    Beaufay, François; De Bolle, Xavier; Hallez, Régis

    2016-01-01

    Prior to initiate energy-consuming processes, such as DNA replication or cell division, cells need to evaluate their metabolic status. We have recently identified and characterized a new connection between metabolism and cell division in the α-proteobacterium Caulobacter crescentus. We showed that an NAD-dependent glutamate dehydrogenase (GdhZ) coordinates growth with cell division according to its enzymatic activity. Here we report the conserved role of GdhZ in controlling cell division in another α-proteobacterium, the facultative intracellular pathogen Brucella abortus. We also discuss the importance of amino acids as a main carbon source for α-proteobacteria.

  4. Subclinical peripheral neuropathy in type 1 diabetic adolescents and its relationship with metabolic control

    Directory of Open Access Journals (Sweden)

    Sajić Silvija

    2005-01-01

    Full Text Available Professional management of paediatric diabetology, according to consensus guidelines, involves the screening of micro-vascular complications at puberty. The subclinical form of peripheral neural dysfunction in diabetic teenagers is reported with a frequency of 50-88%, by different authors. The purpose of this study was to evaluate the frequency of subclinical distal neuropathy (DSMN in type 1 diabetic pediatric patients during the second decade of life, and its relationship with metabolic control. The Endocrinology Department and the Neurology-Physiology Laboratory of the Pediatric Clinic in Belgrade carried out a longitudinal follow-up study (lasting 18 months, beginning in November 2000 on a selection of patients with poor metabolic control. During routine clinical treatment, patients were evaluated using the electrophysiological diagnostic method on peripheral neural dysfunction, a subclinical form of neuropathy. Metabolic control was manifested through HbA1c levels, measured every 3 months, using ion-exchange chromatography. Finally, here is the data collected from the clinical follow-up investigation of 60 children, aged 13-19 (median 1S.S±2.2, with duration of diabetes from 2-16 years (median b.3±3.b, and on the following therapies: 43 CT-conventional and 17 IIT-intensive, and insulin dose/day, median 1.02 (0.6-2.1 U/kg. Detected DSMN parameters at the beginning and at the end of the study were also noted. DSMN frequency was positive, at 64% for HbA1c of 9.44; DSMN dysfunction was reversed in 5% of the patients, for HbA1c of 10.17; the worst result was the progression of DSMN at 6.7% for HbA1c of 10.52; 6.7% had negative DSMN, with improved metabolic control, for HbA1c of 8.4; 15% of the examinations were unfinished (+/*. ANOVA statistical analysis showed a significant statistical relationship between metabolic control (HbA1c levels and DSMN neuropathy (sig. 0.043, p<0.05. There was no significant relationship between the reversion of

  5. Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism.

    Science.gov (United States)

    Lou, Xiaoyi; Fang, Changling; Geng, Zhuning; Jin, Yuming; Xiao, Dongxue; Wang, Zhaohui; Liu, Jianshe; Guo, Yaoguang

    2017-04-01

    Base activation of peroxydisulfate (PDS) is a common process aiming for water treatment, but requires high doses of PDS and strongly basic solutions. Peroxymonosulfate (PMS), another peroxygen of sulfurate derived from PDS, may also be activated by a less basic solution. However, enhancing the base-PMS reactivity is still challenging. Here it is reported that pyrophosphate (PA) and tripolyphosphate (PB) can efficiently enhance PMS activation under weakly alkaline conditions (pH 9.5) via the formation of superoxide anion radical (O2(•-)) and singlet oxygen ((1)O2). The rate constant of Acid Orange 7 (AO7) degradation in PA/PMS system (kPA/PMS) was nearly 4.4-15.9 fold higher than that in PMS/base system (kPMS/base) without any polyphosphates. Increases in PA (or PB) concentration, PMS dose and pH favored the rapid dye degradation. Gas chromatograph-mass spectrometer (GC-MS) data confirmed AO7 and 2,4,6-trichlorophenol (2,4,6-TCP) were decomposed to a series of organic intermediates. The radical quenching and probe oxidation experiments indicate the degradation of organic compounds in the PA/PMS and PB/PMS processes was not reliant on sulfate radical (SO4(•-)) and hydroxyl radical (OH) species but on O2(-) and (1)O2 reactive species. Comparison experiments show that the polyphosphate/PMS process was much more favorable than PDS/base process. The present work provides a novel way to activate PMS for contaminant removal using industrial polyphosphate wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  7. Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation.

    Science.gov (United States)

    MacLean, R C

    2010-03-01

    Epistatic interactions between mutations are thought to play a crucial role in a number of evolutionary processes, including adaptation and sex. Evidence for epistasis is abundant, but tests of general theoretical models that can predict epistasis are lacking. In this study, I test the ability of metabolic control theory to predict epistasis using a novel experimental approach that combines phenotypic and genetic perturbations of enzymes involved in gene expression and protein synthesis in the bacterium Pseudomonas aeruginosa. These experiments provide experimental support for two key predictions of metabolic control theory: (i) epistasis between genes involved in the same pathway is antagonistic; (ii) epistasis becomes increasingly antagonistic as mutational severity increases. Metabolic control theory is a general theory that applies to any set of genes that are involved in the same linear processing chain, not just metabolic pathways, and I argue that this theory is likely to have important implications for predicting epistasis between functionally coupled genes, such as those involved in antibiotic resistance. Finally, this study highlights the fact that phenotypic manipulations of gene activity provide a powerful method for studying epistasis that complements existing genetic methods.

  8. Lifestyle Intervention on Metabolic Syndrome and its Impact on Quality of Life: A Randomized Controlled Trial

    Science.gov (United States)

    Saboya, Patrícia Pozas; Bodanese, Luiz Carlos; Zimmermann, Paulo Roberto; Gustavo, Andreia da Silva; Macagnan, Fabricio Edler; Feoli, Ana Pandolfo; Oliveira, Margareth da Silva

    2017-01-01

    Background Lifestyle intervention programs can reduce the prevalence of metabolic syndrome (MetS) and, therefore, reduce the risk for cardiac disease, one of the main public health problems nowadays. Objective The aim of this study was to compare the effects of three types of approach for lifestyle change programs in the reduction of metabolic parameters, and to identify its impact on the quality of life (QOL) of individuals with MetS. Methods A randomized controlled trial included 72 individuals with MetS aged 30-59 years. Individuals were randomized into three groups of multidisciplinary intervention [Standard Intervention (SI) - control group; Group Intervention (GI); and Individual Intervention (II)] during 12 weeks. The primary outcome was change in the metabolic parameters, and secondarily, the improvement in QOL measures at three moments: baseline, 3 and 9 months. Results Group and individual interventions resulted in a significant reduction in body mass index, waist circumference, systolic blood pressure at 3 months and the improvement of QOL, although it was significantly associated with the physical functioning domain. However, these changes did not remain 6 months after the end of intervention. Depression and anxiety were significantly associated with worse QOL, although they showed no effect on the response to intervention. Conclusion Multidisciplinary intervention, especially in a group, might be an effective and economically feasible strategy in the control of metabolic parameters of MetS and improvement of QOL compared to SI, even in a dose-effect relationship. PMID:27982160

  9. AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis.

    Science.gov (United States)

    Theret, Marine; Gsaier, Linda; Schaffer, Bethany; Juban, Gaëtan; Ben Larbi, Sabrina; Weiss-Gayet, Michèle; Bultot, Laurent; Collodet, Caterina; Foretz, Marc; Desplanches, Dominique; Sanz, Pascual; Zang, Zizhao; Yang, Lin; Vial, Guillaume; Viollet, Benoit; Sakamoto, Kei; Brunet, Anne; Chazaud, Bénédicte; Mounier, Rémi

    2017-07-03

    Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1(-/-) MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1(-/-) MuSCs showed a Warburg-like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non-limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1(-/-) phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1(-/-) MuSC self-renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate. © 2017 The Authors.

  10. Aluminium trihydroxide in combination with ammonium polyphosphate as flame retardants for unsaturated polyester resin

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available The thermal and reaction to fire characteristics of a flame retardant unsaturated polyester (UP ternary system are presented here. Thermal gravimetric analysis showed an improved thermal stability between 200–600°C with the addition of ammonium polyphosphate (APP and aluminium trihydroxide (ATH formulation. Cone calorimetry tests indicated that ATH is more efficient than calcium carbonate at delaying the ignition time, lowering the carbon monoxide yield and lowering the peak heat release (PHRR. However the addition of APP and ATH to the formulation failed to demonstrate any significant synergistic effect at reducing the PHRR.

  11. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  12. [Biological activities of exogenous polysaccharides via controlling endogenous proteoglycan metabolism in vascular endothelial cells].

    Science.gov (United States)

    Sato, Tomoko; Yamamoto, Chika; Fujiwara, Yasuyuki; Kaji, Toshiyuki

    2008-05-01

    Proteoglycan contains glycosmainoglycans, which are endogenous sulfated polysaccharides, in the molecule. The metabolism of proteoglycans regulates cell behavior and cellular events. It is possible that exogenous polysaccharide-related molecules exhibit their biological activities by two mechanisms. One is the interaction with cells and the other is the interaction with growth factors/cytokines that regulate proteoglycans. In this review, we describe sodium spirulan, a sulfated polysaccharide obtained from a hot-water extract of the blue-green alga Spirulina platensis, as an exogenous polysaccharide that stimulates the release of proteoglycans from vascular endothelial cells. Factors that regulate endothelial proteoglycan metabolism are also being described as possible target molecules of exogenous polysaccharides. Further research is required to obtain exogenous polysaccharide-related molecules that exhibit useful biological activities through controlling endothelial proteoglycan metabolism for protection against vascular lesions such as atheroslcerosis.

  13. Successful control of dyslipidemia in patients with metabolic syndrome: focus on lifestyle changes.

    Science.gov (United States)

    Stone, Neil J

    2006-01-01

    Approaches to controlling dyslipidemia in patients with metabolic syndrome must take into consideration a patient's individual characteristics and underlying lipid disorder. Some patients will require pharmacologic therapy, whereas others can be controlled with lifestyle changes alone. The National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) guidelines recommend that patients with at least 3 of the following clinical variables be designated as having metabolic syndrome: abdominal obesity as reflected in increased waist circumference; a low high-density lipoprotein cholesterol (HDL-C) level; an elevated triglyceride level; elevated blood pressure or treatment with antihypertensive medications; and/or elevated fasting plasma glucose or treatment with antidiabetic medications. Unless patients with metabolic syndrome change their lifestyle, existing cardiovascular and metabolic risk factors will worsen or new risk factors will develop. This helps explain why these patients are at increased risk for developing type 2 diabetes mellitus (DM) and coronary heart disease (CHD). The lifestyle changes recommended by NCEP ATP III for controlling dyslipidemia (i.e., elevated levels of triglycerides and decreased levels of HDL-C) in patients with metabolic syndrome or type 2 DM include (1) reduced intake of saturated fats and dietary cholesterol, (2) intake of dietary options to enhance lowering of low-density lipoprotein cholesterol, (3) weight control, and (4) increased physical activity. If lifestyle changes are not successful for individuals at high risk of developing CHD, or for those who currently have CHD, a CHD risk equivalent, or persistent atherogenic dyslipidemia, then pharmacotherapy may be necessary as defined by NCEP ATP III guidelines.

  14. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  15. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  16. [Quality of carbohydrates in the diet and their effect on metabolic control of type 2 diabetes].

    Science.gov (United States)

    Pincheira, Daniela; Morgado, Romina; Alviña, Marcela; Vega, Claudia

    2014-12-01

    The objective of this study was to determine the relationship between the parameters of metabolic control and quality of carbohydrates (CHO) of the diet in individuals with type 2 diabetes, controlled with diet and/or Metformin. In 108 men and women aged between 18 and 60 years, glycosylated hemoglobin A (HbA1c) between 6% and 10%, without sulfonylureas or insulin theraphy; were examined through two separate surveys of 24-hour recall. The CHO intake, GI, GL of diet was analyzed. Values of HbA1c were collected from medical records. Data was tabulated in SPSS version 17 software. The Pearson correlation test was used to analyze the degree of association between variables, considering significant at p diet and HbA1c levels in the individuals. In conclusion the study showed that the quality of CHO, mainly GI, are strongly associated with metabolic control of DM 2.

  17. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  18. The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development.

    Science.gov (United States)

    Lendvai, Ágnes; Deutsch, Manuel J; Plösch, Torsten; Ensenauer, Regina

    2016-05-15

    The placental metabolism can adapt to the environment throughout pregnancy to both the demands of the fetus and the signals from the mother. Such adaption processes include epigenetic mechanisms, which alter gene expression and may influence the offspring's health. These mechanisms are linked to the diversity of prenatal environmental exposures, including maternal under- or overnutrition or gestational diabetes. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that contribute to the developmental plasticity of the placenta by regulating lipid and glucose metabolism pathways, including lipogenesis, steroidogenesis, glucose transporters, and placental signaling pathways, thus representing a link between energy metabolism and reproduction. Among the PPAR isoforms, PPARγ appears to be the main modulator of mammalian placentation. Certain fatty acids and lipid-derived moieties are the natural activating PPAR ligands. By controlling the amounts of maternal nutrients that go across to the fetus, the PPARs play an important regulatory role in placenta metabolism, thereby adapting to the maternal nutritional status. As demonstrated in animal studies, maternal nutrition during gestation can exert long-term influences on the PPAR methylation pattern in offspring organs. This review underlines the current state of knowledge on the relationship between environmental factors and the epigenetic regulation of the PPARs in placenta metabolism and offspring development. Copyright © 2016 the American Physiological Society.

  19. Adolescents with type 1 diabetes: parental perceptions of child health and family functioning and their relationship to adolescent metabolic control

    National Research Council Canada - National Science Library

    Moore, Susan M; Hackworth, Naomi J; Hamilton, Victoria E; Northam, Elisabeth P; Cameron, Fergus J

    2013-01-01

    Adolescents with Type 1 diabetes (T1D) show less effective metabolic control than other age groups, partly because of biological changes beyond their control and partly because in this period of developmental transition, psychosocial...

  20. Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686.

    Science.gov (United States)

    Ke, Wei; Chang, Shu; Chen, Xiaoju; Luo, Shuizhong; Jiang, Shaotong; Yang, Peizhou; Wu, Xuefeng; Zheng, Zhi

    2015-11-01

    The relationship between the metabolic flux and the activities of the pyruvate branching enzymes of Rhizopus oryzae As 3.2686 during L-lactate fermentation was investigated using the perturbation method of aeration. The control coefficients for five enzymes, pyruvate dehydrogenase (PDH), pyruvate carboxylase (PC), pyruvate decarboxylase (PDC), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH), were calculated. Our results indicated significant correlations between PDH and PC, PDC and LDH, PDC and ADH, LDH and ADH, and PDC and PC. It also appeared that PDH, PC, and LDH strongly controlled the L-lactate flux; PDH and ADH strongly controlled the ethanol flux; while PDH and PC strongly controlled the acetyl coenzyme A flux and the oxaloacetate flux. Further, the flux control coefficient curves indicated that the control of the system gradually transferred from PDC to PC during the steady state. Therefore, PC was the key rate-limiting enzyme that controls the flux distribution.

  1. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.

  2. The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-08-01

    Full Text Available Hormones control various metabolic traits comprising fat deposition or starvation resistance. Here we show that two invertebrate neurohormones, octopamine (OA and tyramine (TA as well as their associated receptors, had a major impact on these metabolic traits. Animals devoid of the monoamine OA develop a severe obesity phenotype. Using flies defective in the expression of receptors for OA and TA, we aimed to decipher the contributions of single receptors for these metabolic phenotypes. Whereas those animals impaired in octß1r, octß2r and tar1 share the obesity phenotype of OA-deficient (tβh-deficient animals, the octß1r, octß2r deficient flies showed reduced insulin release, which is opposed to the situation found in tβh-deficient animals. On the other hand, OAMB deficient flies were leaner than controls, implying that the regulation of this phenotype is more complex than anticipated. Other phenotypes seen in tβh-deficient animals, such as the reduced ability to perform complex movements tasks can mainly be attributed to the octß2r. Tissue-specific RNAi experiments revealed a very complex interorgan communication leading to the different metabolic phenotypes observed in OA or OA and TA-deficient flies.

  3. The effect of 12 weeks Anethum graveolens (dill on metabolic markers in patients with metabolic syndrome; a randomized double blind controlled trial

    Directory of Open Access Journals (Sweden)

    Mansouri Masoume

    2012-10-01

    Full Text Available Abstract Background The clustering of metabolic abnormalities defined as metabolic syndrome is now both a public health and a clinical problem .While interest in herbal medicine has greatly increased, lack of human evidence to support efficacies shown in animals does exist. This clinical trial study designed to investigate whether herbal medicine, Anethum graveolens (dill extract, could improve metabolic components in patients with metabolic syndrome. Methods A double-blind, randomized, placebo-controlled trial using a parallel design was conducted. 24 subjects who had metabolic syndrome diagnostic criteria (update of ATP III were randomly assigned to either dill extract (n = 12 or placebo (n = 12 for 3 months. Results Across lipid component of metabolic syndrome, no significant differences in triglyceride (TG concentration and high density lipoprotein cholesterol were seen between the two groups. However TG improved significantly from baseline (257.0 vs. 201.5p = 0.01 with dill treatment but such a significant effect was not observed in placebo group. Moreover, no significant differences in waist circumference, blood pressure and fasting blood sugar were seen between two groups after 3 months follow up period. Conclusion In this small clinical trial in patients with metabolic syndrome, 12 weeks of dill extract treatment had a beneficial effect in terms of reducing TG from baseline. However dill treatment was not associated with a significant improvement in metabolic syndrome related markers compared to control group. Larger studies might be required to prove the efficacy and safety of long-term administration of dill to resolve metabolic syndrome components.

  4. The effect of 12 weeks Anethum graveolens (dill on metabolic markers in patients with metabolic syndrome; a randomized double blind controlled trial

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2012-10-01

    Full Text Available The clustering of metabolic abnormalities defined as metabolic syndrome is now both a public health and a clinical problem .While interest in herbal medicine has greatly increased, lack of human evidence to support efficacies shown in animals does exist. This clinical trial study designed to investigate whether herbal medicine, Anethum graveolens (dill extract, could improve metabolic components in patients with metabolic syndrome.MethodsA double-blind, randomized, placebo-controlled trial using a parallel design was conducted. 24 subjects who had metabolic syndrome diagnostic criteria (update of ATP III were randomly assigned to either dill extract (n = 12 or placebo (n = 12 for 3 months.ResultsAcross lipid component of metabolic syndrome, no significant differences in triglyceride (TG concentration and high density lipoprotein cholesterol were seen between the two groups. However TG improved significantly from baseline (257.0 vs. 201.5p = 0.01 with dill treatment but such a significant effect was not observed in placebo group. Moreover, no significant differences in waist circumference, blood pressure and fasting blood sugar were seen between two groups after 3 months follow up period.ConclusionIn this small clinical trial in patients with metabolic syndrome, 12 weeks of dill extract treatment had a beneficial effect in terms of reducing TG from baseline. However dill treatment was not associated with a significant improvement in metabolic syndrome related markers compared to control group. Larger studies might be required to prove the efficacy and safety of long-term administration of dill to resolve metabolic syndrome components.

  5. Effect of an intensive metabolic control lifestyle intervention in type-2 diabetes patients.

    Science.gov (United States)

    Gamiochipi, Mireya; Cruz, Miguel; Kumate, Jesús; Wacher, Niels H

    2016-07-01

    To evaluate the effectiveness of an intensive lifestyle intervention on metabolic control in patients with type 2 diabetes. 199 patients recently diagnosed with type 2 diabetes, with lack of metabolic control and overweight/obesity, were randomly assigned to intensive lifestyle intervention or collaborative educational program alone, with 6 months of follow-up. Intervention included 150min of physical activity a week to reduce body weight by 7%. Both groups received 16 sessions on behavior modification over the course of the 6 months. Measurements were taken at baseline, 3 and 6 months. Results were analyzed and compared. Significant weight loss was achieved by both groups, with greater loss in the intervention group. Those with lower baseline A1c appeared to benefit more from the educational program than intensive intervention over time. Both interventions produced positive if modest changes in metabolic control. These results suggest that, for weight loss and control of A1c, an intensive intervention may be more effective. The current study demonstrates the value of a systematic application of behavior modification and self-care techniques in the treatment of type 2 diabetes. It demonstrates the importance of intensive, all-inclusive treatment, and of attention to individual concerns. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli.

    Science.gov (United States)

    Wu, Hui; Tuli, Leepika; Bennett, George N; San, Ka-Yiu

    2015-03-01

    A novel strategy to finely control a large metabolic flux by using a "metabolic transistor" approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its biosynthetic pathway. The change of the basal level of the essential component, considered as a base current in a transistor, has a large effect on the flux through the major pathway. In this way, the fine-tuning of a large flux can be accomplished. The "metabolic transistor" strategy was applied to control electron transfer chain function by manipulation of the quinone synthesis pathway in Escherichia coli. The achievement of a theoretical yield of lactate production under aerobic conditions via this strategy upon manipulation of the biosynthetic pathway of the key participant, ubiquinone-8 (Q8), in an E. coli strain provides an in vivo, genetically tunable means to control the activity of the electron transfer chain and manipulate the production of reduced products while limiting consumption of oxygen to a defined amount.

  7. Enhancing disinfection by advanced oxidation under UV irradiation in polyphosphate-containing wastewater flocs.

    Science.gov (United States)

    Azimi, Y; Allen, D G; Farnood, R R

    2014-05-01

    In this paper, the role of naturally occurring polyphosphate in enhancing the ultraviolet disinfection of wastewater flocs is examined. It was found that polyphosphate, which accumulates naturally within the wastewater flocs in the enhanced biological phosphorus removal process, is capable of producing hydroxyl radicals under UV irradiation and hence causing the photoreactive disinfection of microorganisms embedded within flocs. This phenomenon is likely responsible for the improved UV disinfection of the biological nutrient removal (BNR) effluent compared to that of conventional activated sludge effluent by as much as 1 log. A mathematical model is developed that combines the chemical disinfection by hydroxyl radical formation within flocs, together with the direct inactivation of microorganisms by UV irradiation. The proposed model is able to quantitatively explain the observed improvement in the UV disinfection of the BNR effluents. This study shows that the chemical composition of wastewater flocs could have a significant positive impact on their UV disinfection by inducing the production of oxidative species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Calcium polyphosphate as an additive to zinc-silicate glass ionomer cements.

    Science.gov (United States)

    Valliant, Esther Mae; Gagnier, David; Dickey, Brett Thomas; Boyd, Daniel; Filiaggi, Mark Joseph

    2015-07-01

    Aluminum-free glass ionomer cements (GICs) are under development for orthopedic applications, but are limited by their insufficient handling properties. Here, the addition of calcium polyphosphate (CPP) was investigated as an additive to an experimental zinc-silicate glass ionomer cement. A 50% maximum increase in working time was observed with CPP addition, though this was not clinically significant due to the short working times of the starting zinc-silicate GIC. Surprisingly, CPP also improved the mechanical properties, especially the tensile strength which increased by ∼33% after 30 days in TRIS buffer solution upon CPP addition up to 37.5 wt%. This strengthening may have been due to the formation of ionic crosslinks between the polyphosphate chains and polyacrylic acid. Thus, CPP is a potential additive to future GIC compositions as it has been shown to improve handling and mechanical properties. In addition, CPP may stimulate new bone growth and provide the ability for drug delivery, which are desirable modifications for an orthopedic cement.

  9. Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles.

    Science.gov (United States)

    Wan, Biao; Yan, Yupeng; Tang, Yuanzhi; Bai, Yuge; Liu, Fan; Tan, Wenfeng; Huang, Qiaoyun; Feng, Xionghan

    2017-02-27

    The fate and toxicity of zinc oxide nanoparticles (ZnO NPs) in nature are affected by solution chemistry such as pH, anions, and natural organic matter (NOM). Inorganic polyphosphates are environmentally ubiquitous phosphorus (P) species that may change the speciation and environmental fate of ZnO NPs. In this study, the interactions of polyphosphates with ZnO NPs and the impacts on ZnO NP dissolution and transformation were investigated and compared with orthophosphate (P1). The results revealed that pyrophosphate (P2), tripolyphosphate (P3), and hexametaphosphate (P6) enhanced whereas P1 inhibited the dissolution of ZnO NPs. In addition, P1, P2, and P3 promoted the transformation of ZnO NPs into zinc phosphate (Zn-P) precipitates via interactions with dissolved Zn(2+). However, P6-promoted ZnO NP dissolution was through the formation of soluble Zn-P complexes due to the strong capability of P6 to chelate with Zn(2+). The transformation of ZnO NPs in the presence of P3 was affected by reaction time, pH, and P/Zn molar ratio. P3 first formed inner-sphere surface complexes on ZnO NPs, which gradually transformed into crystalline Zn2HP3O10(H2O)6 precipitates. This study provided a new perspective for understanding the reactivity of various forms of inorganic phosphate species with ZnO NPs in the natural environment.

  10. Experimental Plan: Uranium Stabilization Through Polyphosphate Injection 300 Area Uranium Plume Treatability Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vince R.

    2006-09-20

    This Test Plan describes a laboratory-testing program to be performed at Pacific Northwest National Laboratory (PNNL) in support of the 300-FF-5 Feasibility Study (FS). The objective of the proposed treatability test is to evaluate the efficacy of using polyphosphate injections to treat uranium contaminated groundwater in situ. This study will be used to: (1) Develop implementation cost estimates; (2) Identify implementation challenges; and (3) Investigate the technology's ability to meet remedial objectives These activities will be conducted in parallel with a limited field investigation, which is currently underway to more accurately define the vertical extent of uranium in the vadose zone, and in the capillary fringe zone laterally throughout the plume. The treatability test will establish the viability of the method and, along with characterization data from the limited field investigation, will provide the means for determining how best to implement the technology in the field. By conducting the treatability work in parallel with the ongoing Limited Field Investigation, the resulting Feasibility Study (FS) will provide proven, site-specific information for evaluating polyphosphate addition and selecting a suitable remediation strategy for the uranium plume within the FS time frame at an overall cost savings.

  11. Crystal structure and infrared spectrum of thallium holmium polyphosphate, TIHo(PO3)4

    Institute of Scientific and Technical Information of China (English)

    Karima Horchani-Naifer; Jaouher Amami; Mokhtar Ferid

    2008-01-01

    Crystals of thallium-holmium polyphosphate TIHo(PO3)4 were grown by flux method technique and characterized by single crystal X-ray diffraction. Structure of TIHo(PO3)4 was solved for the first time, and it crystallized in the monoclinic P21/n space group with the following unit-cell dimensions: a=1.02225(3) nm, b=0.88536(2) nm, c=1.09541(4) nm, β=105.888(1)°, V=0.95354(5) nm3 and Z=4. The crystal structure was solved from 2174 independent reflections with final R1(F2)=0.0442 and Rw(F<2)=0.0861 refined with 164 parameters. The atomic arrangement could be described as a long chain polyphosphate organization. Holmium atoms had eighffold coordination. The structure of T1Ho(PO3)4 consisted of HoO8 polyhedra sharing oxygen atoms with phosphoric group PO4. Infrared spectrum was investigated at room temperature in the frequencies range, 350-4000 cm-1, showing some characteristic vibration bands of infinite chain structure of PO4 tetrahedra linked by bridging oxygen.

  12. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach.

    Science.gov (United States)

    Aschar-Sobbi, Roozbeh; Abramov, Andrey Y; Diao, Catherine; Kargacin, Margaret E; Kargacin, Gary J; French, Robert J; Pavlov, Evgeny

    2008-09-01

    Polyphosphate (poly-P) is an important metabolite and signaling molecule in prokaryotes and eukaryotes. DAPI (4',6-diamidino-2-phenylindole), a widely used fluorescent label for DNA, also interacts with polyphosphate. Binding of poly-P to DAPI, shifts its peak emission wavelength from 475 to 525 nm (excitation at 360 nm), allowing use of DAPI for detection of poly-P in vitro, and in live poly-P accumulating organisms. This approach, which relies on detection of a shift in fluorescence emission, allows use of DAPI only for qualitative detection of relatively high concentrations of poly-P, in the microg/ml range. Here, we report that long-wavelength excitation (> or = 400 nm) of the DAPI-poly-P complex provides a dramatic increase in the sensitivity of poly-P detection. Using excitation at 415 nm, fluorescence of the DAPI-poly-P complex can be detected at a higher wavelength (550 nm) for as little as 25 ng/ml of poly-P. Fluorescence emission from free DAPI and DAPI-DNA are minimal at this wavelength, making the DAPI-poly-P signal highly specific and essentially independent of the presence of DNA. In addition, we demonstrate the use of this protocol to measure the activity of poly-P hydrolyzing enzyme, polyphosphatase and demonstrate a similar signal from the mitochondrial region of cultured neurons.

  13. Preparation, characterization of microencapsulated ammonium polyphosphate and its flame retardancy in polyurethane composites

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ming-Yuan; Chen, Wei-Jen [Department of Aviation Mechanical Engineering, China University of Science and Technology, Hsinchu County, 303, Taiwan (China); Kuan, Chen-Feng; Kuan, Hsu-Chiang [Department of Computer Application Engineering, Far East University, Tainan, 744, Taiwan (China); Yang, Jia-Ming [Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung, 433, Taiwan (China); Chiang, Chin-Lung, E-mail: dragon@sunrise.hk.edu.tw [Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung, 433, Taiwan (China)

    2016-04-15

    In this study, a novel microencapsulated flame retardant containing ammonium polyphosphate (APP) and an 4,4′-oxydianiline-formaldehyde (OF) resin as the core and shell material was synthesized using in situ polymerization technology. The structure and performance of OF microencapsulated APP (OFAPP) were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of OFAPP were systematically analyzed through thermogravimetric analysis. Flame retardancy tests, such as limiting oxygen index (LOI) and UL-94, were conducted to evaluate the effect of varying the composition of APP and OFAPP in silanol-terminated polyurethane (Si-PU) composites. The results indicated that the microencapsulation of APP with the OF resin resulted in improved hydrophobicity. The results also revealed that the flame retardancy of the Si-PU/OFAPP composite (LOI = 37%) was higher than that of the Si-PU/APP composite (LOI = 23%) at the same additive loading. - Highlights: • A novel microencapsulated flame retardant was synthesized using in situ polymerization technology. • The microencapsulation of ammonium polyphosphate with the polymer resin resulted in improved hydrophobicity. • Polyurethane composites have excellent thermal stability and flame retardance.

  14. Fluorometric quantification of polyphosphate in environmental plankton samples: extraction protocols, matrix effects, and nucleic acid interference.

    Science.gov (United States)

    Martin, Patrick; Van Mooy, Benjamin A S

    2013-01-01

    Polyphosphate (polyP) is a ubiquitous biochemical with many cellular functions and comprises an important environmental phosphorus pool. However, methodological challenges have hampered routine quantification of polyP in environmental samples. We tested 15 protocols to extract inorganic polyphosphate from natural marine samples and cultured cyanobacteria for fluorometric quantification with 4',6-diamidino-2-phenylindole (DAPI) without prior purification. A combination of brief boiling and digestion with proteinase K was superior to all other protocols, including other enzymatic digestions and neutral or alkaline leaches. However, three successive extractions were required to extract all polyP. Standard addition revealed matrix effects that differed between sample types, causing polyP to be over- or underestimated by up to 50% in the samples tested here. Although previous studies judged that the presence of DNA would not complicate fluorometric quantification of polyP with DAPI, we show that RNA can cause significant interference at the wavelengths used to measure polyP. Importantly, treating samples with DNase and RNase before proteinase K digestion reduced fluorescence by up to 57%. We measured particulate polyP along a North Pacific coastal-to-open ocean transect and show that particulate polyP concentrations increased toward the open ocean. While our final method is optimized for marine particulate matter, different environmental sample types may need to be assessed for matrix effects, extraction efficiency, and nucleic acid interference.

  15. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    Science.gov (United States)

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P.

  16. Role of parenting style in achieving metabolic control in adolescents with type 1 diabetes.

    Science.gov (United States)

    Shorer, Maayan; David, Ravit; Schoenberg-Taz, Michal; Levavi-Lavi, Ifat; Phillip, Moshe; Meyerovitch, Joseph

    2011-08-01

    To examine the role of parenting style in achieving metabolic control and treatment adherence in adolescents with type 1 diabetes. Parents of 100 adolescents with type 1 diabetes completed assessments of their parenting style and sense of helplessness. Parents and patients rated patient adherence to the treatment regimen. Glycemic control was evaluated by HbA(1c) values. An authoritative paternal parenting style predicted better glycemic control and adherence in the child; a permissive maternal parenting style predicted poor adherence. A higher sense of helplessness in both parents predicted worse glycemic control and lesser adherence to treatment. Parental sense of helplessness was a significant predictor of diabetes control after correcting for other confounders (patient age, sex, and treatment method). An authoritative nonhelpless parenting style is associated with better diabetes control in adolescents. Paternal involvement is important in adolescent diabetes management. These results have implications for psychological interventions.

  17. Arginase 1 is an innate lymphoid cell-intrinsic metabolic checkpoint controlling type 2 inflammation

    Science.gov (United States)

    Monticelli, Laurel A; Buck, Michael D; Flamar, Anne-Laure; Saenz, Steven A; Wojno, Elia D Tait; Yudanin, Naomi A; Osborne, Lisa C; Hepworth, Matthew R; Tran, Sara V; Rodewald, Hans-Reimer; Shah, Hardik; Cross, Justin R; Diamond, Joshua M; Cantu, Edward; Christie, Jason D; Pearce, Erika L; Artis, David

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair following activation by cell-extrinsic factors including host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme Arginase 1 (Arg1) is a conserved trait of murine and human ILC2s during acute or chronic lung inflammation. Deletion of murine ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics, controlling proliferative capacity and pro-inflammatory functions that promote type 2 inflammation. PMID:27043409

  18. Gastrointestinal function and metabolic control after construction of an orthotopic ileal neobladder in bladder cancer

    DEFF Research Database (Denmark)

    Thorstenson, Andreas; Jacobsson, Hans; Onelöv, Erik

    2007-01-01

    OBJECTIVE: To investigate the effects of ileum resection in orthotopic neobladder construction on gastrointestinal function and metabolic control. MATERIAL AND METHODS: We included 28 patients who underwent radical cystectomy and construction of an orthotopic neobladder or continent ileal reservoir...... were unchanged. CONCLUSIONS: Using the distal ileum for orthotopic neobladder construction causes bowel disorders in a quarter of cystectomy patients. Diarrhoea and faecal urgency are probably caused by decreased reabsorption of bile and are not due to changes in gastrointestinal hormones. A sizeable...

  19. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    Science.gov (United States)

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.

  20. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  1. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways.

  2. Modelling ion composition in simulated milk ultrafiltrate (SMUF) II. Influence of pH, ionic strength and polyphosphates.

    NARCIS (Netherlands)

    Gao, R.; Halsema, van F.E.D.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.

    2010-01-01

    This study aims to determine whether the dynamic ion speciation (DIS) model, as introduced in part I, can predict the ion composition in freshly prepared simulated milk ultrafiltrate (SMUF) under various conditions, e.g. pH, ionic strength and presence of various polyphosphates. Experiments were

  3. The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives.

    Science.gov (United States)

    Gunther, Nereus W; Sites, Joseph; Sommers, Christopher

    2015-09-01

    Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately.

  4. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process

    DEFF Research Database (Denmark)

    Liu, W.-T.; Nielsen, Alex Toftgaard; Wu, JH

    2001-01-01

    Polyphosphate- and polyhydroxyalkanoate (PHA)- accumulating traits of predominant microorganisms in an efficient enhanced biological phosphorus removal (EBPR) process were investigated systematically using a suite of non-culture-dependent methods. Results of 16S rDNA clone library and fluorescence...

  5. Structural analysis of a melaminium polyphosphate from X-ray powder diffraction and solid-state NMR data

    NARCIS (Netherlands)

    Brodski, V.; Peschar, R.; Schenk, H.; Brinkmann, A.; Bloemberg, T.G.; Eck, E.R.H. van; Kentgens, A.P.M.

    2005-01-01

    The crystal structure of the environmentally friendly flame retardant melaminium polyphosphate (MPoly) (2,4,6-triamino-1,3,5-triazinium-PO3)(n) was determined by a direct-space global optimization technique from X-ray powder diffraction data. Solid-state NMR was used to corroborate the proposed

  6. Risk of metabolic syndrome among children living in metropolitan Kuala Lumpur: a case control study.

    Science.gov (United States)

    Wee, Bee S; Poh, Bee K; Bulgiba, Awang; Ismail, Mohd N; Ruzita, Abdul T; Hills, Andrew P

    2011-05-18

    With the increasing prevalence of childhood obesity, the metabolic syndrome has been studied among children in many countries but not in Malaysia. Hence, this study aimed to compare metabolic risk factors between overweight/obese and normal weight children and to determine the influence of gender and ethnicity on the metabolic syndrome among school children aged 9-12 years in Kuala Lumpur and its metropolitan suburbs. A case control study was conducted among 402 children, comprising 193 normal-weight and 209 overweight/obese. Weight, height, waist circumference (WC) and body composition were measured, and WHO (2007) growth reference was used to categorise children into the two weight groups. Blood pressure (BP) was taken, and blood was drawn after an overnight fast to determine fasting blood glucose (FBG) and full lipid profile, including triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). International Diabetes Federation (2007) criteria for children were used to identify metabolic syndrome. Participants comprised 60.9% (n = 245) Malay, 30.9% (n = 124) Chinese and 8.2% (n = 33) Indian. Overweight/obese children showed significantly poorer biochemical profile, higher body fat percentage and anthropometric characteristics compared to the normal-weight group. Among the metabolic risk factors, WC ≥90th percentile was found to have the highest odds (OR = 189.0; 95%CI 70.8, 504.8), followed by HDL-C≤1.03 mmol/L (OR = 5.0; 95%CI 2.4, 11.1) and high BP (OR = 4.2; 95%CI 1.3, 18.7). Metabolic syndrome was found in 5.3% of the overweight/obese children but none of the normal-weight children (p family history of communicable diseases with the metabolic syndrome. However, for ethnicity, Indians were found to have higher odds (OR = 5.5; 95%CI 1.5, 20.5) compared to Malays, with Chinese children (OR = 0.3; 95%CI 0.0, 2.7) having the lowest odds. We conclude that being overweight or obese

  7. Cholesterol Metabolism and Weight Reduction in Subjects with Mild Obstructive Sleep Apnoea: A Randomised, Controlled Study

    Directory of Open Access Journals (Sweden)

    Maarit Hallikainen

    2013-01-01

    Full Text Available To evaluate whether parameters of obstructive sleep apnoea (OSA associate with cholesterol metabolism before and after weight reduction, 42 middle-aged overweight subjects with mild OSA were randomised to intensive lifestyle intervention (N=23 or to control group (N=18 with routine lifestyle counselling only. Cholesterol metabolism was evaluated with serum noncholesterol sterol ratios to cholesterol, surrogate markers of cholesterol absorption (cholestanol and plant sterols and synthesis (cholestenol, desmosterol, and lathosterol at baseline and after 1-year intervention. At baseline, arterial oxygen saturation (SaO2 was associated with serum campesterol (P<0.05 and inversely with desmosterol ratios (P<0.001 independently of gender, BMI, and homeostasis model assessment index of insulin resistance (HOMA-IR. Apnoea-hypopnoea index (AHI was not associated with cholesterol metabolism. Weight reduction significantly increased SaO2and serum cholestanol and decreased AHI and serum cholestenol ratios. In the groups combined, the changes in AHI were inversely associated with changes of cholestanol and positively with cholestenol ratios independent of gender and the changes of BMI and HOMA-IR (P<0.05. In conclusion, mild OSA seemed to be associated with cholesterol metabolism independent of BMI and HOMA-IR. Weight reduction increased the markers of cholesterol absorption and decreased those of cholesterol synthesis in the overweight subjects with mild OSA.

  8. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  9. Effects of hyperlipidaemia on glucocorticoid metabolism: results of a randomized controlled trial in healthy young women.

    Science.gov (United States)

    Mai, K; Reinecke, F; Andres, J; Bobbert, T; Kraatz, J; Wudy, S A; Hartmann, M F; Maser-Gluth, C; Pfeiffer, A F H; Spranger, J

    2011-05-01

    It is well established that the hypothalamic-pituitary-adrenal (HPA) axis is altered in obese individuals. Hyperlipidaemia with elevated levels of free fatty acids (FFAs) is also frequently seen in obesity and in the metabolic syndrome. We hypothesized, therefore, that hyperlipidaemia may alter the activity of the HPA axis. The effects of hyperlipidaemia, including increased circulating FFAs, on ACTH secretion and cortisol metabolism were analysed in 13 healthy young women during the early follicular phase of two subsequent cycles. We administered a 20% lipid/heparin (LHI) or a saline/heparin infusion (SHI) using a crossover design in random order for 330 min. A detailed characterization of glucocorticoid metabolism was performed by measurement of plasma ACTH, cortisol and urinary excretion rates of adrenal glucocorticoids and the glucocorticoid metabolites. We observed that LHI-induced hyperlipidaemia elevated serum cortisol levels compared to SHI. No changes in plasma ACTH levels, daily urinary excretion rates of adrenal glucocorticoids, glucocorticoid precursors/metabolites and the calculated activities of the 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 11-, 17-, 21-hydroxylase and 11β-HSD 1 or 2 were found. Our randomized controlled trial suggests that the adrenal sensitivity to ACTH may be enhanced by LHI-induced hyperlipidaemia in normal-weight healthy young women. This effect might contribute to the disturbances of the HPA axis described in women with abdominal obesity and impaired lipid metabolism. © 2011 Blackwell Publishing Ltd.

  10. Visceral adiposity influences glucose and glycogen metabolism in control and hyperlipidic-fed animals

    Directory of Open Access Journals (Sweden)

    Danielle Kaiser de Souza

    2013-04-01

    Full Text Available Introduction: Evidences suggest that fat intake, visceral obesity and intracellular lipids are related to insulin impairment. Objective: The objective of the present paper was correlate visceral obesity and metabolic alterations in control (CTR and hyperlipidic cafeteria diet (CFT fed animals. Methods: After 6 months of diet treatment, liver and muscle of the male rats were utilized to determined glucose uptake and glycogen metabolism after administration of 0.4I U/kg insulin in vivo, and correlate the visceral adiposity to these two parameters. Results: Ample range of physiologic answers to body composition in metabolic profile of the both diets was found. No differences were found in glycemia and triacylglycerol after insulin action in both groups, however CFT group accumulated higher adiposity, mostly visceral fat, and showed lower glycogen content in the liver. We also found an inverse correlation between visceral adiposity and glucose uptake and a decrease of the glycogen synthase active form in the liver. CTR animals demonstrated an inverse correlation between glucose uptake and visceral adiposity in the muscle. Discussion and conclusion: It was observed a variability of metabolic alterations in animals which can be related to degree of accumulation of abdominal adiposity and ingestion of diet fats. Further studies will be required to clarify the reasons for the observed liver alterations in CFT and muscle alterations in CTR animals.

  11. Metabolic responses of upper-body accelerometer-controlled video games in adults.

    Science.gov (United States)

    Stroud, Leah C; Amonette, William E; Dupler, Terry L

    2010-10-01

    Historically, video games required little physical exertion, but new systems utilize handheld accelerometers that require upper-body movement. It is not fully understood if the metabolic workload while playing these games is sufficient to replace routine physical activity. The purpose of this study was to quantify metabolic workloads and estimate caloric expenditure while playing upper-body accelerometer-controlled and classic seated video games. Nineteen adults completed a peak oxygen consumption treadmill test followed by an experimental session where exercising metabolism and ventilation were measured while playing 3 video games: control (CON), low activity (LOW) and high activity (HI). Resting metabolic measures (REST) were also acquired. Caloric expenditure was estimated using the Weir equation. Mean oxygen consumption normalized to body weight for HI condition was greater than LOW, CON, and REST. Mean oxygen consumption normalized to body weight for LOW condition was also greater than CON and REST. Mean exercise intensities of oxygen consumption reserve for HI, LOW, and CON were 25.8% ± 5.1%, 6.4% ± 4.8%, and 0.8% ± 2.4%, respectively. Estimated caloric expenditure during the HI was significantly related to aerobic fitness, but not during other conditions. An active video game significantly elevated oxygen consumption and heart rate, but the increase was dependent on the type of game. The mean oxygen consumption reserve during the HI video game was below recommended international standards for moderate and vigorous activity. Although upper-body accelerometer-controlled video games provided a greater exercising stimulus than classic seated video games, these data suggest they should not replace routine moderate or vigorous exercise.

  12. T-cell Metabolism as a Target to Control Autoreactive T Cells in β-Cell Autoimmunity.

    Science.gov (United States)

    Bordignon, Carlotta; Canu, Adriana; Dyczko, Aleksandra; Leone, Serena; Monti, Paolo

    2017-05-01

    An increasing body of evidence indicates that bio-energetic metabolism of activated T cells is a potential target to control the autoimmune response in type 1 diabetes (T1D). T-cell activation and proliferation is linked to the cell capacity to provide sufficient energy and biosynthesis molecules to support T-cell growth and division. This makes T cells susceptible to metabolic inhibition for the control of the T-cell response. There is a wide therapeutic arsenal of metabolic inhibitors, including novel classes of drugs that have become recently available. With the current knowledge and availability of metabolic inhibitors, we are now in the position to design a metabolic inhibition strategy to determine whether targeting of autoreactive T cells is an effective strategy to control the process of β-cell destruction in T1D.

  13. A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals

    Directory of Open Access Journals (Sweden)

    Dan Paulsson

    2014-09-01

    Full Text Available Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.

  14. [Evaluation of metabolic control in a summer camp for diabetic children (Villarcayo 1991)].

    Science.gov (United States)

    Fuertes Alija, J J; Ruiz Pérez, E; Galindo Jimeno, M; Ergueta Martín, P; González Sarmiento, E

    1993-04-01

    The relevance of the diabetological education in the treatment of diabetis mellitus must be a prioritary goal in order to reach a proper metabolic control and to avoid as much as possible both acute metabolic complications and long-term vascular and neurological complications, achieving thus a total integration of the diabetic patient in the society. We have monitored during 15 days a group of diabetic children with IDDM in a summer camp, assessing in all of them several clinical and biochemical parameters. The results have been statistically analyzed using the Student's test. After the stay in the summer camp, we observed a significant reduction in the total dose of insulin (p < 0.001) and in the number of hypoglycemias (p < 0.001) and an increase in the average levels of capillary glycemia at the end of the study period when compared with the beginning, with p < 0.001 (breakfast preprandial), p < 0.05 (lunch preprandial) and p < 0.01 (dinner and night preprandial). We did not observe any significant differences in the other parameters studied. In inclusion, the stay in the summer camp of this group had a positive effect, achieving a better metabolic control with lower doses of insulin.

  15. Should antioxidant vitamin supplementation be applied in patients with metabolic syndrome? A case-control study

    Directory of Open Access Journals (Sweden)

    Małgorzata Godala

    2016-03-01

    Full Text Available Introduction : All cells in the human body are exposed to reactive oxygen species (ROS, which disturb the metabolic reactions in the organism. The antioxidant system in the human body consists of enzymatic and non-enzymatic mechanisms, among which vitamins A, C, and E play a major role. The aim of the study was to evaluate the supply of vitamins A, C, and E from daily food rations (DFR in postmenopausal women with metabolic syndrome (MS in relation to current nutrition standards. Material and methods: The study involved 184 women with MS, aged 45-68 years (mean 57.38 ±8.17 years. The control group comprised 90 women, aged 41-65 years (mean 57.48 ±5.79 years without MS. The food intake was assessed using 24-hour dietary recalls. Results: The evaluation of intake of vitamins measured with daily food rations (DFR demonstrated that the optimal level of 90-110% according to standards was achieved only in 3.62% of women with metabolic syndrome for vitamin A, in 8.88% for vitamin C, and in 11.41% for vitamin E, which was significantly less often found than in the control group (p < 0.001. Conclusions : Women with MS are characterised by diversified intake of vitamins A, C and E, and a subgroup of this patients present low level of antioxidant vitamins intake. Supplementation with antioxidant vitamins should be prescribed individually to postmenopausal women with MS.

  16. Risk of metabolic syndrome among children living in metropolitan Kuala Lumpur: A case control study

    Directory of Open Access Journals (Sweden)

    Ismail Mohd N

    2011-05-01

    Full Text Available Abstract Background With the increasing prevalence of childhood obesity, the metabolic syndrome has been studied among children in many countries but not in Malaysia. Hence, this study aimed to compare metabolic risk factors between overweight/obese and normal weight children and to determine the influence of gender and ethnicity on the metabolic syndrome among school children aged 9-12 years in Kuala Lumpur and its metropolitan suburbs. Methods A case control study was conducted among 402 children, comprising 193 normal-weight and 209 overweight/obese. Weight, height, waist circumference (WC and body composition were measured, and WHO (2007 growth reference was used to categorise children into the two weight groups. Blood pressure (BP was taken, and blood was drawn after an overnight fast to determine fasting blood glucose (FBG and full lipid profile, including triglycerides (TG, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C and total cholesterol (TC. International Diabetes Federation (2007 criteria for children were used to identify metabolic syndrome. Results Participants comprised 60.9% (n = 245 Malay, 30.9% (n = 124 Chinese and 8.2% (n = 33 Indian. Overweight/obese children showed significantly poorer biochemical profile, higher body fat percentage and anthropometric characteristics compared to the normal-weight group. Among the metabolic risk factors, WC ≥90th percentile was found to have the highest odds (OR = 189.0; 95%CI 70.8, 504.8, followed by HDL-C≤1.03 mmol/L (OR = 5.0; 95%CI 2.4, 11.1 and high BP (OR = 4.2; 95%CI 1.3, 18.7. Metabolic syndrome was found in 5.3% of the overweight/obese children but none of the normal-weight children (p Conclusions We conclude that being overweight or obese poses a greater risk of developing the metabolic syndrome among children. Indian ethnicity is at higher risk compared to their counterparts of the same age. Hence, primary intervention strategies are

  17. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors.

    Science.gov (United States)

    Weissbrodt, David G; Schneiter, Guillaume S; Fürbringer, Jean-Marie; Holliger, Christof

    2013-12-01

    Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.

  18. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria.

    Science.gov (United States)

    Anashkin, Viktor A; Salminen, Anu; Tuominen, Heidi K; Orlov, Victor N; Lahti, Reijo; Baykov, Alexander A

    2015-11-13

    Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P(1),P(n)-diadenosine 5'-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ~10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Potentiation of the cytotoxic activity of copper by polyphosphate on biofilm-producing bacteria: a bioinspired approach.

    Science.gov (United States)

    Müller, Werner E G; Wang, Xiaohong; Guo, Yue-Wei; Schröder, Heinz C

    2012-10-25

    Adhesion and accumulation of organic molecules represent an ecologically and economically massive problem. Adhesion of organic molecules is followed by microorganisms, unicellular organisms and plants together with their secreted soluble and structure-associated byproducts, which damage unprotected surfaces of submerged marine structures, including ship hulls and heat exchangers of power plants. This is termed biofouling. The search for less toxic anti-biofilm strategies has intensified since the ban of efficient and cost-effective anti-fouling paints, enriched with the organotin compound tributyltin, not least because of our finding of the ubiquitous toxic/pro-apoptotic effects displayed by this compound. Our proposed bio-inspired approach for controlling, suppressing and interfluencing the dynamic biofouling complex uses copper as one component in an alternative anti-fouling system. In order to avoid and overcome the potential resistance against copper acquired by microorganisms we are using the biopolymer polyphosphate (polyP) as a further component. Prior to being functionally active, polyP has to be hydrolyzed to ortho-phosphate which in turn can bind to copper and export the toxic compound out of the cell. It is shown here that inhibition of the hydrolysis of polyP by the bisphosphonate DMDP strongly increases the toxic effect of copper towards the biofilm-producing Streptococcus mutans in a synergistic manner. This bisphosphonate not only increases the copper-caused inhibition of cell growth but also of biofilm production by the bacteria. The defensin-related ASABF, a marine toxin produced by the sponge Suberites domuncula, caused only an additive inhibitory effect in combination with copper. We conclude that the new strategy, described here, has a superior anti-biofilm potential and can be considered as a novel principle for developing bio-inspired antifouling compounds, or cocktails of different compounds, in the future.

  20. Potentiation of the Cytotoxic Activity of Copper by Polyphosphate on Biofilm-Producing Bacteria: A Bioinspired Approach

    Directory of Open Access Journals (Sweden)

    Heinz C. Schröder

    2012-10-01

    Full Text Available Adhesion and accumulation of organic molecules represent an ecologically and economically massive problem. Adhesion of organic molecules is followed by microorganisms, unicellular organisms and plants together with their secreted soluble and structure-associated byproducts, which damage unprotected surfaces of submerged marine structures, including ship hulls and heat exchangers of power plants. This is termed biofouling. The search for less toxic anti-biofilm strategies has intensified since the ban of efficient and cost-effective anti-fouling paints, enriched with the organotin compound tributyltin, not least because of our finding of the ubiquitous toxic/pro-apoptotic effects displayed by this compound [1]. Our proposed bio-inspired approach for controlling, suppressing and interfluencing the dynamic biofouling complex uses copper as one component in an alternative anti-fouling system. In order to avoid and overcome the potential resistance against copper acquired by microorganisms we are using the biopolymer polyphosphate (polyP as a further component. Prior to being functionally active, polyP has to be hydrolyzed to ortho-phosphate which in turn can bind to copper and export the toxic compound out of the cell. It is shown here that inhibition of the hydrolysis of polyP by the bisphosphonate DMDP strongly increases the toxic effect of copper towards the biofilm-producing Streptococcus mutans in a synergistic manner. This bisphosphonate not only increases the copper-caused inhibition of cell growth but also of biofilm production by the bacteria. The defensin-related ASABF, a marine toxin produced by the sponge Suberites domuncula, caused only an additive inhibitory effect in combination with copper. We conclude that the new strategy, described here, has a superior anti-biofilm potential and can be considered as a novel principle for developing bio-inspired antifouling compounds, or cocktails of different compounds, in the future.

  1. Spatial control of the energy metabolism of yeast cells through electrolytic generation of oxygen.

    Science.gov (United States)

    Warnke, Christian; Mair, Thomas; Witte, Hartmut; Reiher, Antje; Hauser, Marcus J B; Krost, Alois

    2009-11-03

    The metabolic dynamics of yeast cells is controlled by electric pulses delivered through a spatially extended yeast cell/Au electrode interface. Concomitant with voltage pulses, oxygen is generated electrolytically at the electrode surface and delivered to the cells. The generation of oxygen was investigated in dependence of the applied voltage, width of the voltage pulses and temperature of the electrolytic solution. The local oxygen pulses at the electrodes lead to a transient activation of the aerobic energy metabolism of the yeast cells causing a perturbation in their energy balance. The effect of these local perturbations on the temporal dynamics of glycolysis in yeast cells is quantified in dependence of the energy state of cells.

  2. Selenium, zinc and copper in plasma of patients with type 1 diabetes mellitus in different metabolic control states

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C.; Alegria, A.; Barbera, R.; Farre, R.; Lagarda, M.J. [Valencia Univ. (Spain). Lab. of Nutrition and Food Chemistry

    1998-07-01

    The Studies of selenium (Se), zinc (Zn) and copper (Cu) levels in diabetic patients have led to contradictory findings as to the possible relationship between the degree of diabetic control and the changes in mineral contents. In the present study the plasma Cu, Se and Zn contents of diabetic patients and healthy people were measured and the relationship between these contents and diabetic metabolic control, as determined by glycosylated hemoglobin (HbA{sub 1c}), was studied. The mean plasma Se content in diabetic patients was significantly lower than in controls (p<0.01) and a negative correlation between the plasma contents of Se and HbA{sub 1c} was found. No statistically significant differences in plasma Zn contents, either between patients with type 1 diabetes mellitus and controls, or between patients with type 1 diabetes mellitus but different degrees of metabolic control, were found. A statistically significant sex difference in plasma Cu contents was observed in the control population. In females, statistically significant differences were found in plasma Cu contents between the control subjects and the diabetic patients with medium or poor metabolic control, as well as between diabetic patients with good and poor metabolic control. In males, the only statistically significant differences were between the control subjects and diabetic patients with poor metabolic control. The correlation between plasma contents of Cu and HbA{sub 1c} is not significant. (orig.)

  3. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion.

    Directory of Open Access Journals (Sweden)

    Su-Jin Kwak

    Full Text Available Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application.

  4. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion.

    Science.gov (United States)

    Kwak, Su-Jin; Hong, Seung-Hyun; Bajracharya, Rijan; Yang, Se-Yeol; Lee, Kyu-Sun; Yu, Kweon

    2013-01-01

    Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps) regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs) by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR) has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri) showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application.

  5. Control of methionine metabolism by the SahR transcriptional regulator in Proteobacteria.

    Science.gov (United States)

    Novichkov, Pavel S; Li, Xiaoqing; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Price, Morgan N; Rodionov, Dmitry A

    2014-01-01

    Sulphur is an essential element in the metabolism. The sulphur-containing amino acid methionine is a metabolic precursor for S-adenosylmethionine (SAM), which serves as a coenzyme for ubiquitous methyltrtansferases. Recycling of organic sulphur compounds, e.g. via the SAM cycle, is an important metabolic process that needs to be tightly regulated. Knowledge about transcriptional regulation of these processes is still limited for many free-living bacteria. We identified a novel transcription factor SahR from the ArsR family that controls the SAM cycle genes in diverse microorganisms from soil and aquatic ecosystems. By using comparative genomics, we predicted SahR-binding DNA motifs and reconstructed SahR regulons in the genomes of 62 Proteobacteria. The conserved core of SahR regulons includes all enzymes required for the SAM cycle: the SAH hydrolase AhcY, the methionine biosynthesis enzymes MetE/MetH and MetF, and the SAM synthetase MetK. By using a combination of experimental techniques, we validated the SahR regulon in the sulphate-reducing Deltaproteobacterium Desulfovibrio alaskensis. SahR functions as a negative regulator that responds to the S-adenosylhomocysteine (SAH). The elevated SAH level in the cell dissociates SahR from its DNA operators and induces the expression of SAM cycle genes. The effector-sensing domain in SahR is related to SAM-dependent methylases that are able to tightly bind SAH. SahR represents a novel type of transcriptional regulators for the control of sulphur amino acid metabolism.

  6. Social Competence and Parental Support as Mediators of the Link between Stress and Metabolic Control in Adolescents with Insulin-Dependent Diabetes Mellitus.

    Science.gov (United States)

    Hanson, Cindy L.; And Others

    1987-01-01

    Measured metabolic control, adherence, life stress, social competence, and parental support in adolescents (N=104) with insulin-dependent diabetes mellitus. Found that stress was directly associated with metabolic control, independent of the link between adherence and metabolic control. Social competence buffered negative association between…

  7. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhou, Li-Bang; Zeng, An-Ping

    2015-06-19

    Riboswitch, a regulatory part of an mRNA molecule that can specifically bind a metabolite and regulate gene expression, is attractive for engineering biological systems, especially for the control of metabolic fluxes in industrial microorganisms. Here, we demonstrate the use of lysine riboswitch and intracellular l-lysine as a signal to control the competing but essential metabolic by-pathways of lysine biosynthesis. To this end, we first examined the natural lysine riboswitches of Eschericia coli (ECRS) and Bacillus subtilis (BSRS) to control the expression of citrate synthase (gltA) and thus the metabolic flux in the tricarboxylic acid (TCA) cycle in E. coli. ECRS and BSRS were then successfully used to control the gltA gene and TCA cycle activity in a lysine producing strain Corynebacterium glutamicum LP917, respectively. Compared with the strain LP917, the growth of both lysine riboswitch-gltA mutants was slower, suggesting a reduced TCA cycle activity. The lysine production was 63% higher in the mutant ECRS-gltA and 38% higher in the mutant BSRS-gltA, indicating a higher metabolic flux into the lysine synthesis pathway. This is the first report on using an amino acid riboswitch for improvement of lysine biosynthesis. The lysine riboswitches can be easily adapted to dynamically control other essential but competing metabolic pathways or even be engineered as an "on-switch" to enhance the metabolic fluxes of desired metabolic pathways.

  8. [Plasma fructosamine to evaluate metabolic control among women with gestational diabetes].

    Science.gov (United States)

    Delgado M, Raúl; Novik A, Victoria; Cardemil M, Felipe; Santander A, Diego

    2011-11-01

    Metabolic control of diabetic pregnant women is assessed using glycated hemoglobin (HbAlc) levels and fasting blood sugar. Another glycated protein, namely fructosamine, can be an indicator of average glucose levels during the last three weeks. To evaluate plasma fructosamine as an indicator of glycemic control in women with gestational diabetes. Prospective cohort study of 41 pregnant women aged 30 to 37 years, with gestational and pre-gestational diabetes. Blood glucose, HbAlc, fructosamine were measured. Newborn weight, and other prenatal and postnatal variables, were used to evaluate the correlation between metabolic control and the presence or absence of macrosomia. The correlation observed between fructosamine and fasting blood glucose (r = 0.627, p < 0.001) was superior to that of HbA1c and blood glucose (r = 0.516, p < 0.001). No association was observed between macrosomia and levels of fructosamine, nor between the other studied variables. Fructosamine levels were not associated with macrosomia, but it could be better for the evaluation of glycemic control in patients with gestational diabetes since it allows short-term monitoring.

  9. A CONTROLLED METABOLIC DIET REDUCES CALCIUM OXALATE SUPERSATURATION BUT NOT OXALATE EXCRETION AFTER BARIATRIC SURGERY

    Science.gov (United States)

    Pang, Ran; Linnes, Michael; O’Connor, Helen M.; Li, Xujian; Bergstralh, Eric; Lieske, John C.

    2012-01-01

    Objective To identify the effect of controlled metabolic diet on reducing urinary calcium oxalate supersaturation in subjects with hyperoxaluric nephrolithiasis after potentially malabsorptive forms of bariatric surgery. Materials and Methods Subjects with a history of CaOx kidney stones and mild hyperoxaluria after bariatric surgery (n=9) collected baseline 24-hour urine samples while on a free choice diet. They were then placed on a controlled diet low in oxalate (70 – 80 mg/day), normal in calcium (1000 mg/day), and moderate in protein prior to 2 final 24-hour urine collections. Results Overall urinary CaOx supersaturation fell from 1.97 ± 0.49 delta Gibbs (DG) on the free choice diet to 1.13 ± 0.75 DG on the controlled diet (P0.05), contributing to the significant CaOx supersaturation change. Conclusions A controlled metabolic diet normal in calcium, moderate in protein and reduced in oxalate can positively impact urinary CaOx supersaturation after bariatric surgery. However, this diet did not appear to decrease urinary oxalate excretion. Therefore, restriction of dietary oxalate alone may not be enough to reduce urinary oxalate excretion to normal levels in this group of known enteric hyperoxaluric patients. Additional strategies may be necessary, such as use of oral calcium supplements as oxalate binders and a lower fat diet. PMID:22554593

  10. Controlled metabolic diet reduces calcium oxalate supersaturation but not oxalate excretion after bariatric surgery.

    Science.gov (United States)

    Pang, Ran; Linnes, Michael P; O'Connor, Helen M; Li, Xujian; Bergstralh, Eric; Lieske, John C

    2012-08-01

    To identify the effect of a controlled metabolic diet on reducing urinary calcium oxalate (CaOx) supersaturation in subjects with hyperoxaluric nephrolithiasis after potentially malabsorptive forms of bariatric surgery. Subjects with a history of CaOx kidney stones and mild hyperoxaluria after bariatric surgery (n = 9) collected baseline 24-hour urine samples while consuming a free choice diet. They were then instructed to consume a controlled diet low in oxalate (70-80 mg/d), normal in calcium (1000 mg/d), and moderate in protein before 2 final 24-hour urine collections. Overall, the urinary CaOx supersaturation decreased from 1.97 ± 0.49 delta Gibbs (DG) with the free choice diet to 1.13 ± 0.75 DG with the controlled diet (P .05), contributing to the significant CaOx supersaturation change. A controlled metabolic diet normal in calcium, moderate in protein, and reduced in oxalate can positively affect urinary CaOx supersaturation after bariatric surgery. However, this diet did not appear to decrease urinary oxalate excretion. Therefore, restriction of dietary oxalate alone might not be enough to reduce urinary oxalate excretion to normal levels in this group of patients with known enteric hyperoxaluria. Additional strategies could be necessary, such as the use of oral calcium supplements as oxalate binders and a lower fat diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh;

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  12. Thyroid peroxidase antibodies in pregnant women with type 1 diabetes: impact on thyroid function, metabolic control and pregnancy outcome

    DEFF Research Database (Denmark)

    Vestgaard, Marianne; Nielsen, Lene Ringholm; Rasmussen, Åse Krogh

    2008-01-01

    In pregnant women with type 1 diabetes, we evaluated whether the presence of thyroid peroxidase autoantibodies (anti-TPO) was associated with changes in thyroid function, metabolic control and pregnancy outcome....

  13. Contribution of family social support to the metabolic control of people with diabetes mellitus: A randomized controlled clinical trial.

    Science.gov (United States)

    Gomes, Lilian Cristiane; Coelho, Anna Claudia Martins; Gomides, Danielle Dos Santos; Foss-Freitas, Maria Cristina; Foss, Milton César; Pace, Ana Emilia

    2017-08-01

    This randomized controlled clinical trial aimed to evaluate the contribution of family social support to the clinical/metabolic control of people with type 2 diabetes mellitus. Diabetes mellitus is a chronic disease that requires continuous care in order for individuals to reach glycemic control, the primordial goal of treatment. Family social support is essential to the development of care skills and their maintenance. However, there are few studies that investigate the contribution of family social support to diabetes control. The study was developed between June 2011 and May 2013, and included 164 people who were randomized using simple randomization. The intervention group differed from the control group in that it included a family caregiver, who was recognized by the patient as a source of social support. The educational interventions received by people with diabetes mellitus were used as the basis of the education provided through telephone calls to patients' family members and caregivers, and their purpose was to encourage dialogue between the patients and their relatives about the topics related to diabetes. Regarding the clinical impact, the results showed that there was a greater reduction in blood pressure and glycated hemoglobin in the intervention group than in the control group, showing a positive effect on the control of the disease. Families should be incorporated into the care of people with diabetes mellitus and especially in health care programs, in particular those that can promote different forms of social support to strengthen the bond between family members. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction.

    Science.gov (United States)

    Xu, Risheng; Paul, Bindu D; Smith, Dani R; Tyagi, Richa; Rao, Feng; Khan, A Basit; Blech, Daniel J; Vandiver, M Scott; Harraz, Maged M; Guha, Prasun; Ahmed, Ishrat; Sen, Nilkantha; Gallagher, Michela; Snyder, Solomon H

    2013-10-01

    Profound induction of immediate early genes (IEGs) by neural activation is a critical determinant for plasticity in the brain, but intervening molecular signals are not well characterized. We demonstrate that inositol polyphosphate multikinase (IPMK) acts noncatalytically as a transcriptional coactivator to mediate induction of numerous IEGs. IEG induction by electroconvulsive stimulation is virtually abolished in the brains of IPMK-deleted mice, which also display deficits in spatial memory. Neural activity stimulates binding of IPMK to the histone acetyltransferase CBP and enhances its recruitment to IEG promoters. Interestingly, IPMK regulation of CBP recruitment and IEG induction does not require its catalytic activities. Dominant-negative constructs, which prevent IPMK-CBP binding, substantially decrease IEG induction. As IPMK is ubiquitously expressed, its epigenetic regulation of IEGs may influence diverse nonneural and neural biologic processes.

  15. ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.

    Science.gov (United States)

    Boutte, Cara C; Henry, Jonathan T; Crosson, Sean

    2012-01-01

    Caulobacter crescentus differentiates from a motile, foraging swarmer cell into a sessile, replication-competent stalked cell during its cell cycle. This developmental transition is inhibited by nutrient deprivation to favor the motile swarmer state. We identify two cell cycle regulatory signals, ppGpp and polyphosphate (polyP), that inhibit the swarmer-to-stalked transition in both complex and glucose-exhausted media, thereby increasing the proportion of swarmer cells in mixed culture. Upon depletion of available carbon, swarmer cells lacking the ability to synthesize ppGpp or polyP improperly initiate chromosome replication, proteolyze the replication inhibitor CtrA, localize the cell fate determinant DivJ, and develop polar stalks. Furthermore, we show that swarmer cells produce more ppGpp than stalked cells upon starvation. These results provide evidence that ppGpp and polyP are cell-type-specific developmental regulators.

  16. Fabrication, in vitro Degradation and Cytotoxic Assay of Different Cystalline Phases Calcium Polyphosphate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Fabrication, in vitro degradation and cytotoxic assay of different crystalline phases calcium polyphosphate (CPP) were reported. The CPP ceramics were fabricated by crystallizing the amorphous frits , and sintered at 550 ℃ ,875 ℃ ,1000 ℃ for 1 h to obtain the γ-CPP, β-CPP anda-CPP respectively. The effects of the different crystalline phases on their weight loss and released PO4 3- were investigated during the degradation.And the surface change was observed by the SEM. The osteoblastic ROS17/2.8 cell line was used to estimate the cytotoxicity of CPP. The effects of CPP on cells' proliferation were evaluated by using MTT assay. The experimental results showed that γ-CPP, β- CPP and α-CPP did not exert cytotoxic effect on the cells. In addition, the proliferation of the growth of ROS17/2.8 cells on β-CPP was optimal.

  17. Morphogenetic study on the maturation of osteoblastic cell as induced by inorganic polyphosphate.

    Directory of Open Access Journals (Sweden)

    Kaori Tsutsumi

    Full Text Available Since inorganic polyphosphates [poly(P] have an activity to induce bone differenciation in vitro and in vivo, we examined an effect of poly(P on organelle by light microscopy and electron microscopy in Murine MC3T3-E1 osteoblastic cells. The MC3T3-E1 cells were ultrastructurally observed to possess morphological characteristics of osteoblasts. Cells cultured with poly(P were strongly stained with an anti-collagen type I antibody but not in those cultured without poly(P. Ultrastructural analysis of cells cultured with poly(P revealed a well-developed Golgi apparatus, swollen and elongated rough endoplasmic reticulum, large mitochondria and many coated pits. Since MC3T3-E1 cells can be transformed from a resting phase to an active blastic cell phase after supplementation with poly(P, it implies that poly(P can be an effective material for bone regeneration.

  18. phoU inactivation in Pseudomonas aeruginosa enhances accumulation of ppGpp and polyphosphate.

    Science.gov (United States)

    de Almeida, Luiz Gustavo; Ortiz, Julia Helena; Schneider, René P; Spira, Beny

    2015-05-01

    Inorganic polyphosphate (polyP) is a linear polymer composed of several molecules of orthophosphate (Pi) linked by energy-rich phosphoanhydride bonds. In Pseudomonas aeruginosa, Pi is taken up by the ABC transporter Pst, encoded by an operon consisting of five genes. The first four genes encode proteins involved in the transport of Pi and the last gene of the operon, phoU, codes for a protein which exact function is unknown. We show here that the inactivation of phoU in P. aeruginosa enhanced Pi removal from the medium and polyP accumulation. The phoU mutant also accumulated high levels of the alarmone guanosine tetraphosphate (ppGpp), which in turn increased the buildup of polyP. In addition, phoU inactivation had several pleiotropic effects, such as reduced growth rate and yield and increased sensitivity to antibiotics and stresses. However, biofilm formation was not affected by the phoU mutation.

  19. Positively-charged semi-tunnel is a structural and surface characteristic of polyphosphate-binding proteins: an in-silico study.

    Directory of Open Access Journals (Sweden)

    Zheng Zachory Wei

    Full Text Available Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP, linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST, identified by surface electrostatics analyses in polyP kinases (PPKs and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.

  20. Inhibition of cereulide toxin synthesis by emetic Bacillus cereus via long-chain polyphosphates.

    Science.gov (United States)

    Frenzel, Elrike; Letzel, Thomas; Scherer, Siegfried; Ehling-Schulz, Monika

    2011-02-01

    Severe intoxications caused by the Bacillus cereus emetic toxin cereulide can hardly be prevented due to the ubiquitous distribution and heat resistance of spores and the extreme thermal and chemical stability of cereulide. It would therefore be desirable to inhibit cereulide synthesis during food manufacturing processes or in prepared foods, which are stored under time-temperature abuse conditions. Toward this end, the impacts of three long-chain polyphosphate (polyP) formulations on growth and cereulide production were examined. The inhibition was dependent on the concentration and the type of the polyP blend, indicating that polyPs and not the orthophosphates were effective. Quantitative PCR (qPCR) monitoring at sublethal concentrations revealed that polyPs reduced the transcription of ces nonribosomal peptide synthetase (NRPS) genes by 3- to 4-fold along with a significantly reduced toxin production level. At lower concentrations, toxin synthesis was decreased, although the growth rate was not affected. These data indicate a differential effect on toxin synthesis independent of growth inhibition. The inhibition of toxin synthesis in food was also observed. Despite the growth of B. cereus, toxin synthesis was reduced by 70 to 100% in two model food systems (reconstituted infant food and oat milk), which were analyzed with HEp-2 cell culture assays and high-performance liquid chromatography (HPLC)/electrospray ionization-time of flight mass spectrometry (ESI-TOF-MS). Accordingly, ces promoter activity was strongly downregulated, as visualized by using a lux-based reporter strain. These data illustrate the potential of polyphosphate formulations to reduce the risk of cereulide synthesis in food and may contribute to targeted hurdle concepts.

  1. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  2. Effect of fruit and vegetable concentrates on endothelial function in metabolic syndrome: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ma Yingying

    2011-06-01

    Full Text Available Abstract Background and Objective Dehydrated fruit and vegetable concentrates provide an accessible form of phytonutrient supplementation that may offer cardioprotective effects. This study assessed the effects of two blends of encapsulated juice powder concentrates (with and without added berry powders on endothelial function in persons with metabolic syndrome, a risk factor for type 2 diabetes and cardiovascular disease. Methods Randomized, double blind, placebo controlled crossover clinical trial with three treatment arms. 64 adults with metabolic syndrome were enrolled and received 8-week sequences of each blend of the concentrates and placebo. The primary outcome measure was change in endothelial function (assessed as flow-mediated dilatation of the brachial artery 2 hr after consuming a 75 g glucose load, after 8-weeks of daily consumption (sustained or 2 hr after consumption of a single dose (acute. Secondary outcome measures included plasma glucose, serum insulin, serum lipids, and body weight. Results No significant between-group differences in endothelial function with daily treatment for 8 weeks were seen. No other significant treatment effects were discerned in glucose, insulin, lipids, and weight. Conclusion Encapsulated fruit and vegetable juice powder concentrates did not alter insulin or glucose measures in this sample of adults with metabolic syndrome. Trial Registration clinicaltrials.gov NCT01224743

  3. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  4. Environmental control of biological rhythms: effects on development, fertility and metabolism.

    Science.gov (United States)

    Amaral, F G; Castrucci, A M; Cipolla-Neto, J; Poletini, M O; Mendez, N; Richter, H G; Sellix, M T

    2014-09-01

    Internal temporal organisation properly synchronised to the environment is crucial for health maintenance. This organisation is provided at the cellular level by the molecular clock, a macromolecular transcription-based oscillator formed by the clock and the clock-controlled genes that is present in both central and peripheral tissues. In mammals, melanopsin in light-sensitive retinal ganglion cells plays a considerable role in the synchronisation of the circadian timing system to the daily light/dark cycle. Melatonin, a hormone synthesised in the pineal gland exclusively at night and an output of the central clock, has a fundamental role in regulating/timing several physiological functions, including glucose homeostasis, insulin secretion and energy metabolism. As such, metabolism is severely impaired after a reduction in melatonin production. Furthermore, light pollution during the night and shift work schedules can abrogate melatonin synthesis and impair homeostasis. Chronodisruption during pregnancy has deleterious effects on the health of progeny, including metabolic, cardiovascular and cognitive dysfunction. Developmental programming by steroids or steroid-mimetic compounds also produces internal circadian disorganisation that may be a significant factor in the aetiology of fertility disorders such as polycystic ovary syndrome. Thus, both early and late in life, pernicious alterations of the endogenous temporal order by environmental factors can disrupt the homeostatic function of the circadian timing system, leading to pathophysiology and/or disease. © 2014 British Society for Neuroendocrinology.

  5. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    Science.gov (United States)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  6. CHEMOTHERAPEUTIC POLYMERS ⅩⅩⅢ SYNTHESIS AND ANTITUMOR ACTIVITY OF POLYPHOSPHATES CONTAINING BOTH NUCLEIC ACID BASE AND PHOSPHONOACETIC ACID ETHYL ESTER

    Institute of Scientific and Technical Information of China (English)

    ZHUO Renxi; LIU Zhenghua; LI Li

    1989-01-01

    Eight new polyphosphates containing both nucleic acid base and phosphonoacetic acid ethyl ester were synthesized by the polycondensation of P, P- dichloride of phosphonoacetic acid ethyl ester with 1, 3-dihydroxyalkyl - 5 - fluorouracil, 1,3 - dihydroxyalkyl - uracil and 1, 3 - dihydroxyalkylthymine. These polyphosphates were tested against Ehrlich Ascites Carcinoma in mice. Polymer Ⅱa and Ⅱc exhibited excellent antitumor activity. Ⅱc also showed lower toxicity.

  7. Hypoxic regulation of hand1 controls the fetal-neonatal switch in cardiac metabolism.

    Directory of Open Access Journals (Sweden)

    Ross A Breckenridge

    2013-09-01

    Full Text Available Cardiomyocytes are vulnerable to hypoxia in the adult, but adapted to hypoxia in utero. Current understanding of endogenous cardiac oxygen sensing pathways is limited. Myocardial oxygen consumption is determined by regulation of energy metabolism, which shifts from glycolysis to lipid oxidation soon after birth, and is reversed in failing adult hearts, accompanying re-expression of several "fetal" genes whose role in disease phenotypes remains unknown. Here we show that hypoxia-controlled expression of the transcription factor Hand1 determines oxygen consumption by inhibition of lipid metabolism in the fetal and adult cardiomyocyte, leading to downregulation of mitochondrial energy generation. Hand1 is under direct transcriptional control by HIF1α. Transgenic mice prolonging cardiac Hand1 expression die immediately following birth, failing to activate the neonatal lipid metabolising gene expression programme. Deletion of Hand1 in embryonic cardiomyocytes results in premature expression of these genes. Using metabolic flux analysis, we show that Hand1 expression controls cardiomyocyte oxygen consumption by direct transcriptional repression of lipid metabolising genes. This leads, in turn, to increased production of lactate from glucose, decreased lipid oxidation, reduced inner mitochondrial membrane potential, and mitochondrial ATP generation. We found that this pathway is active in adult cardiomyocytes. Up-regulation of Hand1 is protective in a mouse model of myocardial ischaemia. We propose that Hand1 is part of a novel regulatory pathway linking cardiac oxygen levels with oxygen consumption. Understanding hypoxia adaptation in the fetal heart may allow development of strategies to protect cardiomyocytes vulnerable to ischaemia, for example during cardiac ischaemia or surgery.

  8. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... affinity. This parameter can often be determined from experiments in vitro. The methodology is applicable only to the analysis of simple two-step pathways, but in many cases larger pathways can be lumped into two overall conversions. In cases where this cannot be done it is necessary to apply an extension...... be much more widely applied, although it was originally based on linearized kinetics. The methodology of determining elasticity coefficients directly from pool levels is illustrated with an analysis of the first two steps of the biosynthetic pathway of penicillin. The results compare well with previous...

  9. Disease and the family: differences in metabolic control of diabetes mellitus between men and women.

    Science.gov (United States)

    Mercado, F J; Vargas, P N

    1989-01-01

    This study shows differences between males and females in metabolic control of diabetes mellitus. The 30 subjects studied (15 men and 15 women) were type II diabetics, peasants, ages 40-62, all residents of Cihuatlan, Jalisco, Mexico. Fifty percent (50%) of the diabetics were found to have poor control (as defined by elevated fasting blood sugar levels). The percentage varied greatly according to sex: 86.6% of the females have poor control compared to 13.3% of the males. Compliance or non-compliance to a prescribed diet was found to be related to whether or not members of the family participate in the preparation of diet and support the diabetic subject in following the therapeutic plan. One hundred percent of the males have their food prepared specially for them by a family member while only 13% of the females receive this type of support.

  10. Effect of growth regulators on 'Brookfield' apple gas diffusion and metabolism under controlled atmosphere storage

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2014-05-01

    Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

  11. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Mario eChiong

    2014-12-01

    Full Text Available Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs are essential processes of vascular development. VSMCs have biosynthetic, proliferative and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMCs play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e. mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER. Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial-ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.

  12. Metabolic control and bone health in adolescents with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Mohan Subburaman

    2011-10-01

    Full Text Available Abstract Background Adults with type 1 diabetes (T1D have decreased bone mineral density (BMD and increased fracture risk, yet the etiologies remain elusive. Early detection of derangements in bone biomarkers during adolescence could lead to timely recognition. In adolescents with T1D, we evaluated the relationships between metabolic control, BMD, and bone anabolic and turnover markers. Methods Cross-sectional study of 57 adolescent subjects with T1D who had HbA1c consistently ≥ 9% (Poor Control, PC n = 27 or Results There were no differences between HbA1c groups in BMD, components of the IGF system, or 25-hydroxyvitamin D status. The prevalence of 25-hydroxyvitamin D abnormalities was similar to that seen in the general adolescent population. Few patients met the recommended dietary allowance (RDA for vitamin D or calcium. Conclusions These data provide no evidence of association between degree of metabolic control and BMD in adolescents with T1D. Adolescents with T1D have a high prevalence of serum 25-hydroxyvitamin D abnormalities. Longitudinal studies are needed to evaluate the predictive value of vitamin D abnormalities on fracture risk.

  13. Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Rodríguez-Mañas, L; Angulo, J; Peiró, C; Llergo, J L; Sánchez-Ferrer, A; López-Dóriga, P; Sánchez-Ferrer, C F

    1998-04-01

    1. The aim of this work was to study the influence of the metabolic control, estimated by the levels of glycosylated haemoglobin in total blood samples (HbA1c), in developing vascular endothelial dysfunction in streptozotocin-induced diabetic rats. Four groups of animals with different levels of insulin treatment were established, by determining HbA1c values in 5.5 to 7.4%, 7.5 to 9.4%, 9.5 to 12% and > 12%, respectively. 2. The parameters analysed were: (1) the endothelium-dependent relaxations to acetylcholine (ACh) in isolated aorta and mesenteric microvessels; (2) the vasodilator responses to exogenous nitric oxide (NO) in aorta: and (3) the existence of oxidative stress by studying the influence of the free radical scavenger superoxide dismutase (SOD) on the vasodilator responses to both ACh and NO. 3. In both isolated aortic segments and mesenteric microvessels, the endothelium-mediated concentration-dependent relaxant responses elicited by ACh were significantly decreased when the vessels were obtained from diabetic animals but only with HbA1c values higher than 7.5%. There was a high correlation between HbA1c levels and the impairment of ACh-induced relaxations, measured by pD2 values. 4. The concentration-dependent vasorelaxant responses to NO in endothelium-denuded aortic segments were significantly reduced only in vessels from diabetic animals with HbA1c values higher than 7.5%. Again, a very high correlation was found between the HbA1c values and pD2 for NO-evoked responses. 5. In the presence of SOD, the responses to ACh or NO were only increased in the segments from diabetic rats with HbA1c levels higher than 7.5%, but not in those from non-diabetic or diabetic rats with a good metabolic control (HbA1c levels metabolic control of diabetes, estimated by the levels of HbA1c; and (2) an increased production of superoxide anions in the vascular wall of the diabetic rats, which is also related to the metabolic control of the disease.

  14. [Risk factors for metabolic syndrome in a case control study in Temuco, Chile].

    Science.gov (United States)

    Philco L, Patricia; Serón S, Pamela; Muñoz N, Sergio; Navia B, Pilar; Lanas Z, Fernando

    2012-03-01

    Metabolic syndrome is becoming an important public health problem in affluent societies. To identify factors associated to metabolic syndrome in a Southern Chilean city. Using a case control design, 200 participants, aged 35 to 70 years with at least three criteria for metabolic syndrome according to the National Cholesterol Education Program (NCEP_ATPIII) and 200 subjects with less than three criteria, were studied. Both groups were compared in terms of ethnic background, educational level, family history of diabetes and coronary artery disease, menopausal status, smoking, stress and depression, physical activity, changes in body mass index in the last five years and diet. Among subjects aged more than 54 years, among males and among overweight individuals, having a Mapuche origin was a risk factor with odds ratios (OR) of 7.2; 88 and 3.9 respectively. Among subjects aged more than 54 years, among women and among overweight individuals, a family history of diabetes was a risk factor with OR of 17.7; 3.2 and 3.9 respectively. Among subjects aged more than 54 years and among women a change in body mass index of more than three points was a risk factor with OR of 12.5 and 7.4, respectively. Depression also was a risk factor among subjects aged more than 54 years (OR 3.3). Regular consumption of wine was a protective factor among participants of more than 54 years, with an OR of 0.17. The risk factors for metabolic syndrome detected in this group of participants, were having a Mapuche origin, a family history of diabetes mellitus and depression. Wine consumption was associated with a lower risk.

  15. Dynamics of Polyphosphate-Accumulating Bacteria in Wastewater Treatment Plant Microbial Communities Detected via DAPI (4′,6′-Diamidino-2-Phenylindole) and Tetracycline Labeling▿ †

    Science.gov (United States)

    Günther, S.; Trutnau, M.; Kleinsteuber, S.; Hause, G.; Bley, T.; Röske, I.; Harms, H.; Müller, S.

    2009-01-01

    Wastewater treatment plants with enhanced biological phosphorus removal represent a state-of-the-art technology. Nevertheless, the process of phosphate removal is prone to occasional failure. One reason is the lack of knowledge about the structure and function of the bacterial communities involved. Most of the bacteria are still not cultivable, and their functions during the wastewater treatment process are therefore unknown or subject of speculation. Here, flow cytometry was used to identify bacteria capable of polyphosphate accumulation within highly diverse communities. A novel fluorescent staining technique for the quantitative detection of polyphosphate granules on the cellular level was developed. It uses the bright green fluorescence of the antibiotic tetracycline when it complexes the divalent cations acting as a countercharge in polyphosphate granules. The dynamics of cellular DNA contents and cell sizes as growth indicators were determined in parallel to detect the most active polyphosphate-accumulating individuals/subcommunities and to determine their phylogenetic affiliation upon cell sorting. Phylotypes known as polyphosphate-accumulating organisms, such as a “Candidatus Accumulibacter”-like phylotype, were found, as well as members of the genera Pseudomonas and Tetrasphaera. The new method allows fast and convenient monitoring of the growth and polyphosphate accumulation dynamics of not-yet-cultivated bacteria in wastewater bacterial communities. PMID:19181836

  16. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4',6'-diamidino-2-phenylindole) and tetracycline labeling.

    Science.gov (United States)

    Günther, S; Trutnau, M; Kleinsteuber, S; Hause, G; Bley, T; Röske, I; Harms, H; Müller, S

    2009-04-01

    Wastewater treatment plants with enhanced biological phosphorus removal represent a state-of-the-art technology. Nevertheless, the process of phosphate removal is prone to occasional failure. One reason is the lack of knowledge about the structure and function of the bacterial communities involved. Most of the bacteria are still not cultivable, and their functions during the wastewater treatment process are therefore unknown or subject of speculation. Here, flow cytometry was used to identify bacteria capable of polyphosphate accumulation within highly diverse communities. A novel fluorescent staining technique for the quantitative detection of polyphosphate granules on the cellular level was developed. It uses the bright green fluorescence of the antibiotic tetracycline when it complexes the divalent cations acting as a countercharge in polyphosphate granules. The dynamics of cellular DNA contents and cell sizes as growth indicators were determined in parallel to detect the most active polyphosphate-accumulating individuals/subcommunities and to determine their phylogenetic affiliation upon cell sorting. Phylotypes known as polyphosphate-accumulating organisms, such as a "Candidatus Accumulibacter"-like phylotype, were found, as well as members of the genera Pseudomonas and Tetrasphaera. The new method allows fast and convenient monitoring of the growth and polyphosphate accumulation dynamics of not-yet-cultivated bacteria in wastewater bacterial communities.

  17. Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B₂) Biosynthesis in Bacteria.

    Science.gov (United States)

    Birkenmeier, Markus; Mack, Matthias; Röder, Thorsten

    2015-10-01

    In this study, we applied a coupled in silico thermodynamic and probabilistic metabolic control analysis methodology to investigate the control mechanisms of the commercially relevant riboflavin biosynthetic pathway in bacteria. Under the investigated steady-state conditions, we found that several enzyme reactions of the pathway operate far from thermodynamic equilibrium (transformed Gibbs energies of reaction below about -17 kJ mol(-1)). Using the obtained thermodynamic information and applying enzyme elasticity sampling, we calculated the distributions of the scaled concentration control coefficients (CCCs) and scaled flux control coefficients (FCCs). From the statistical analysis of the calculated distributions, we inferred that the control over the riboflavin producing flux is shared among several enzyme activities and mostly resides in the initial reactions of the pathway. More precisely, the guanosine triphosphate (GTP) cyclohydrolase II activity, and therefore the bifunctional RibA protein of Bacillus subtilis because it catalyzes this activity, appears to mainly control the riboflavin producing flux (mean FCCs = 0.45 and 0.55, respectively). The GTP cyclohydrolase II activity and RibA also exert a high positive control over the riboflavin concentration (mean CCCs = 2.43 and 2.91, respectively). This prediction is consistent with previous findings for microbial riboflavin overproducing strains.

  18. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhou, Li-Bang; Zeng, An-Ping

    2015-12-18

    Riboswitches are natural RNA elements that regulate gene expression by binding a ligand. Here, we demonstrate the possibility of altering a natural lysine-OFF riboswitch from Eschericia coli (ECRS) to a synthetic lysine-ON riboswitch and using it for metabolic control. To this end, a lysine-ON riboswitch library was constructed using tetA-based dual genetic selection. After screening the library, the functionality of the selected lysine-ON riboswitches was examined using a report gene, lacZ. Selected lysine-ON riboswitches were introduced into the lysE gene (encoding a lysine transport protein) of Corynebacterium glutamicum and used to achieve dynamic control of lysine transport in a recombinant lysine-producing strain, C. glutamicum LPECRS, which bears a deregulated aspartokinase and a lysine-OFF riboswitch for dynamic control of the enzyme citrate synthase. Batch fermentation results of the strains showed that the C. glutamicum LPECRS strain with an additional lysine-ON riboswitch for the control of lysE achieved a 21% increase in the yield of lysine compared to that of the C. glutamicum LPECRS strain and even a 89% increase in yield compared to that of the strain with deregulated aspartokinase. This work provides a useful approach to generate lysine-ON riboswitches for C. glutamicum metabolic engineering and demonstrates for the first time a synergetic effect of lysine-ON and -OFF riboswitches for improving lysine production in this industrially important microorganism. The approach can be used to dynamically control other genes and can be applied to other microorganisms.

  20. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria.

    Science.gov (United States)

    Hodgson, D A

    2000-01-01

    Streptomycetes are Gram-positive bacteria with a unique capacity for the production of a multitude of varied and complex secondary metabolites. They also have a complex life cycle including differentiation into at least three distinct cell types. Whilst much attention has been paid to the pathways and regulation of secondary metabolism, less has been paid to the pathways and the regulation of primary metabolism, which supplies the precursors. With the imminent completion of the total genome sequence of Streptomyces coelicolor A3(2), we need to understand the pathways of primary metabolism if we are to understand the role of newly discovered genes. This review is written as a contribution to supplying these wants. Streptomycetes inhabit soil, which, because of the high numbers of microbial competitors, is an oligotrophic environment. Soil nutrient levels reflect the fact that plant-derived material is the main nutrient input; i.e. it is carbon-rich and nitrogen- and phosphate-poor. Control of streptomycete primary metabolism reflects the nutrient availability. The variety and multiplicity of carbohydrate catabolic pathways reflects the variety and multiplicity of carbohydrates in the soil. This multiplicity of pathways has led to investment by streptomycetes in pathway-specific and global regulatory networks such as glucose repression. The mechanism of glucose repression is clearly different from that in other bacteria. Streptomycetes feed by secreting complexes of extracellular enzymes that break down plant cell walls to release nutrients. The induction of these enzyme complexes is often coordinated by inducers that bear no structural relation to the substrate or product of any particular enzyme in the complex; e.g. a product of xylan breakdown may induce cellulase production. Control of amino acid catabolism reflects the relative absence of nitrogen catabolites in soil. The cognate amino acid induces about half of the catabolic pathways and half are constitutive

  1. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  2. In vivo identification of the steps that control energy metabolism and survival of Entamoeba histolytica.

    Science.gov (United States)

    Pineda, Erika; Encalada, Rusely; Vázquez, Citlali; Néquiz, Mario; Olivos-García, Alfonso; Moreno-Sánchez, Rafael; Saavedra, Emma

    2015-01-01

    The steps that control the Entamoeba histolytica glycolytic flux were here identified by elasticity analysis, an experimental approach of metabolic control analysis. The concentrations of glycolytic metabolites were gradually varied in live trophozoites by (a) feeding with different glucose concentrations and (b) inhibiting the final pathway steps; in parallel, the changes in the pathway flux were determined. From the metabolite concentration-flux relationship, the elasticity coefficients of individual or groups of pathway reactions were determined and used to calculate their respective degrees of control on the glycolytic flux (flux control coefficients). The results indicated that the pathway flux was mainly controlled (72-86%) by the glucose transport/hexokinase/glycogen degradation group of reactions and by bifunctional aldehyde-alcohol dehydrogenase (ADHE; 18%). Further, inhibition of the first pathway reactions with 2-deoxyglucose (2DOG) decreased the glycolytic flux and ATP content by 75% and 50%, respectively. Cell viability was also decreased by 2DOG (25%) and more potently (50%) by 2DOG plus the ADHE inhibitor tetraethylthiuram disulfide (disulfiram). Biosate as an alternative carbon (amino acid) source was unable to replace glucose for ATP supply, which indicated that glucose was the main nutrient for amoebal ATP synthesis and survival. These results indicated that glycolysis in the parasite is mainly controlled by the initial pathway reactions and that their inhibition can decrease the parasite energy load and survival.

  3. Temporal and fluoride control of secondary metabolism regulates cellular organofluorine biosynthesis.

    Science.gov (United States)

    Walker, Mark C; Wen, Miao; Weeks, Amy M; Chang, Michelle C Y

    2012-09-21

    Elucidating mechanisms of natural organofluorine biosynthesis is essential for a basic understanding of fluorine biochemistry in living systems as well as for expanding biological methods for fluorine incorporation into small molecules of interest. To meet this goal we have combined massively parallel sequencing technologies, genetic knockout, and in vitro biochemical approaches to investigate the fluoride response of the only known genetic host of an organofluorine-producing pathway, Streptomyces cattleya. Interestingly, we have discovered that the major mode of S. cattleya's resistance to the fluorinated toxin it produces, fluoroacetate, may be due to temporal control of production rather than the ability of the host's metabolic machinery to discriminate between fluorinated and non-fluorinated molecules. Indeed, neither the acetate kinase/phosphotransacetylase acetate assimilation pathway nor the TCA cycle enzymes (citrate synthase and aconitase) exclude fluorinated substrates based on in vitro biochemical characterization. Furthermore, disruption of the fluoroacetate resistance gene encoding a fluoroacetyl-CoA thioesterase (FlK) does not appear to lead to an observable growth defect related to organofluorine production. By showing that a switch in central metabolism can mediate and control molecular fluorine incorporation, our findings reveal a new potential strategy toward diversifying simple fluorinated building blocks into more complex products.

  4. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum.

    Science.gov (United States)

    Busi, R; Vila-Aiub, M M; Powles, S B

    2011-05-01

    The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a well-characterized Lolium rigidum biotype. The phenotypic resistance segregation in herbicide resistant and susceptible parents, F1, F2 and backcross (BC) families was analyzed as plant survival following treatment with the chemically unrelated herbicides diclofop-methyl or chlorsulfuron. Dominance and nuclear gene inheritance was observed in F1 families when treated at the recommended field doses of both herbicides. The segregation values of P450 herbicide resistance phenotypic traits observed in F2 and BC families was consistent with resistance endowed by two additive genes in most cases. In obligate out-crossing species such as L. rigidum, herbicide selection can easily result in accumulation of resistance genes within individuals.

  5. Zinc Status Biomarkers and Cardiometabolic Risk Factors in Metabolic Syndrome: A Case Control Study

    Directory of Open Access Journals (Sweden)

    Erika P. S. Freitas

    2017-02-01

    Full Text Available Metabolic syndrome (MS involves pathophysiological alterations that might compromise zinc status. The aim of this study was to evaluate zinc status biomarkers and their associations with cardiometabolic factors in patients with MS. Our case control study included 88 patients with MS and 37 controls. We performed clinical and anthropometric assessments and obtained lipid, glycemic, and inflammatory profiles. We also evaluated zinc intake, plasma zinc, erythrocyte zinc, and 24-h urinary zinc excretion. The average zinc intake was significantly lower in the MS group (p < 0.001. Regression models indicated no significant differences in plasma zinc concentration (all p > 0.05 between the two groups. We found significantly higher erythrocyte zinc concentration in the MS group (p < 0.001 independent from co-variable adjustments. Twenty-four hour urinary zinc excretion was significantly higher in the MS group (p = 0.008, and adjustments for age and sex explained 21% of the difference (R2 = 0.21, p < 0.001. There were significant associations between zincuria and fasting blood glucose concentration (r = 0.479, waist circumference (r = 0.253, triglyceride concentration (r = 0.360, glycated hemoglobin concentration (r = 0.250, homeostatic model assessment—insulin resistance (r = 0.223, and high-sensitivity C-reactive protein concentration (r = 0.427 (all p < 0.05 in the MS group. Patients with MS had alterations in zinc metabolism mainly characterized by an increase in erythrocyte zinc and higher zincuria.

  6. Fetal hemoglobin levels are related to metabolic control in diabetic subjects

    Directory of Open Access Journals (Sweden)

    Pardini V.C.

    1999-01-01

    Full Text Available We have investigated the relationship between fetal hemoglobin (HbF levels and metabolic control in subjects with insulin-dependent (N = 79 and non-insulin-dependent diabetes mellitus (N = 242. HbF and hemoglobin A1c (HbA1c levels were increased in subjects with type 1 and type 2 diabetes as compared to levels in nondiabetic individuals (P<0.0001, and were significantly higher in type 1 than in type 2 diabetes subjects. Lower levels of HbA1c and HbF were observed in type 2 diabetes subjects treated by diet, intermediate levels in those treated with oral hypoglycemic agents, and higher levels in those treated with insulin. HbF and HbA1c levels were correlated in type 1 diabetes (R2 = 0.57, P<0.0001 and type 2 diabetes (R2 = 0.58, P<0.0001 subjects. Following intense treatment, twelve diabetic patients showed significant improvement both in HbA1c and HbF values. We conclude that increased HbF levels reflect poor metabolic control in subjects with diabetes mellitus.

  7. Embryonic MicroRNA-369 Controls Metabolic Splicing Factors and Urges Cellular Reprograming.

    Directory of Open Access Journals (Sweden)

    Masamitsu Konno

    Full Text Available Noncoding microRNAs inhibit translation and lower the transcript stability of coding mRNA, however miR-369 s, in aberrant silencing genomic regions, stabilizes target proteins under cellular stress. We found that in vitro differentiation of embryonic stem cells led to chromatin methylation of histone H3K4 at the miR-369 region on chromosome 12qF in mice, which is expressed in embryonic cells and is critical for pluripotency. Proteomic analyses revealed that miR-369 stabilized translation of pyruvate kinase (Pkm2 splicing factors such as HNRNPA2B1. Overexpression of miR-369 stimulated Pkm2 splicing and enhanced induction of cellular reprogramming by induced pluripotent stem cell factors, whereas miR-369 knockdown resulted in suppression. Furthermore, immunoprecipitation analysis showed that the Argonaute complex contained the fragile X mental retardation-related protein 1 and HNRNPA2B1 in a miR-369-depedent manner. Our findings demonstrate a unique role of the embryonic miR-369-HNRNPA2B1 axis in controlling metabolic enzyme function, and suggest a novel pathway linking epigenetic, transcriptional, and metabolic control in cell reprogramming.

  8. Hypoglycemia in pregnant women with type 1 diabetes - Predictors and role of metabolic control

    DEFF Research Database (Denmark)

    Nielsen, L.R.; Johansen, M.; Pedersen-Bjergaard, U.;

    2008-01-01

    OBJECTIVE- In pregnancy with type 1 diabetes, we evaluated occurrence of mild and severe hypoglycemia and analyzed the influence of strict metabolic control, nausea, Vomiting, and other potential predictors of occurrence of severe hypoglycemia. RESEARCH DESIGN AND METHODS- A prospective observati......OBJECTIVE- In pregnancy with type 1 diabetes, we evaluated occurrence of mild and severe hypoglycemia and analyzed the influence of strict metabolic control, nausea, Vomiting, and other potential predictors of occurrence of severe hypoglycemia. RESEARCH DESIGN AND METHODS- A prospective...... (managed by the patient) and severe (requiring assistance from others) hypoglycemia. RESULTS- Forty-nine (45%) women experienced 178 severe hypoglycemic events, corresponding to 5.3, 2.4, and 0.5 events/patient-year in the first, second, and third trimesters, respectively. The incidence of mild...... hypoglycemia. A1C, median SMPG, and fluctuations in SMPG decreased during pregnancy, with no differences between women with and without severe hypoglycemia. Logistic regression analysis identified history of severe hypoglycemia the year preceding pregnancy (odds ratio 3.3 [95% CI 1.2-9.2]) and impaired...

  9. Suboptimal metabolic control and decompensation in children and adolescents with diabetes mellitus type 1

    Directory of Open Access Journals (Sweden)

    N. Ya. Filina

    2016-01-01

    Full Text Available Aim of the study is identifying the causes of decompensation of metabolism in children with different levels of HbA1c by studying daily glycemic profiles using a continuous monitoring system (CGMS, Medtronic MiniMed, USA.Materials and methods. Blood glucose of 207 type 1 diabetes children with different compensation level was researched by continuous glucose monitoring system (СGMS. Statistical processing of the results was carried out using XLSTATS 4.0 program.Results. The causes of diabetes suboptimal control were deficit of bolus insulin doses in 53%, «dawn phenomenon» in 23%, hidden night hypoglycemia in 26%. Patients with HbA1c level higher than 9% have deficit short acting and basal insulin that was the cause of bad metabolic control. The compare of selfcontrol results and CGMS data was preformed and pointed the importance of glucose monitoring system for decompensation causes identification.

  10. Zinc Status Biomarkers and Cardiometabolic Risk Factors in Metabolic Syndrome: A Case Control Study

    Science.gov (United States)

    Freitas, Erika P. S.; Cunha, Aline T. O.; Aquino, Sephora L. S.; Pedrosa, Lucia F. C.; Lima, Severina C. V. C.; Lima, Josivan G.; Almeida, Maria G.; Sena-Evangelista, Karine C. M.

    2017-01-01

    Metabolic syndrome (MS) involves pathophysiological alterations that might compromise zinc status. The aim of this study was to evaluate zinc status biomarkers and their associations with cardiometabolic factors in patients with MS. Our case control study included 88 patients with MS and 37 controls. We performed clinical and anthropometric assessments and obtained lipid, glycemic, and inflammatory profiles. We also evaluated zinc intake, plasma zinc, erythrocyte zinc, and 24-h urinary zinc excretion. The average zinc intake was significantly lower in the MS group (p 0.05) between the two groups. We found significantly higher erythrocyte zinc concentration in the MS group (p waist circumference (r = 0.253), triglyceride concentration (r = 0.360), glycated hemoglobin concentration (r = 0.250), homeostatic model assessment—insulin resistance (r = 0.223), and high-sensitivity C-reactive protein concentration (r = 0.427) (all p < 0.05) in the MS group. Patients with MS had alterations in zinc metabolism mainly characterized by an increase in erythrocyte zinc and higher zincuria. PMID:28241426

  11. Flux analysis and control of the central metabolic pathways in Escherichia coli.

    Science.gov (United States)

    Holms, H

    1996-12-01

    The growth of the bacterial cell involves the co-ordination of the fluxes of carbon into a considerable diversity of products that are the components of the cell. Fortunately the monomers from which the cell's polymers are made are themselves synthesised from a relatively small group of precursors that are the products of the central metabolic pathways. This simplification renders cell metabolism accessible to flux analysis, a method for handling experimental data to derive metabolic fluxes. Through such analysis of the growth of Escherichia coli ML308 on 11 single carbon sources in batch, turbidostat or chemostat culture general patterns are discernible. Most significant among these are that growth on different carbon sources is achieved without any obvious enzyme acting as a regulator of metabolic flux, except when acetate is the sole source of carbon. In this case a junction is created at which iso citrate dehydrogenase (ICDH) and isocitrate lyase (ICL) compete for their common substrate and this competition is resolved by partial inactivation of ICDH to match flux through ICL and this balance limits growth rate. In this sense, flux through ICDH and ICL is 'rate-limiting'. Uptake of six of the remaining carbon inputs exceeds the capacity of the central metabolic pathways (CMPs) to sustain flux to the precursors required for growth and the CMPs are balanced by excretion of acetate. Restriction of carbon uptake by chemostat progressively diminishes growth rate and acetate excretion until acetate excretion is prevented. For the four remaining carbon sources, uptake is apparently restricted and the products are biomass, carbon dioxide and water. Carbon sources feeding the phosphorylated parts of the CMPs flux relatively more carbon to precursors (Pre-C) than CO2 when compared with carbon sources which feed into the non-phosphorylated pathways. Pre-C/CO2 ratios for the former are 1.73-3.91 and for the latter are 0.46-0.78. Flux analysis of all 11 carbon sources shows

  12. Postpartum metabolic control in a cohort of women with type 1 diabetes.

    Science.gov (United States)

    Quirós, Carmen; Patrascioiu, Ioana; Perea, Verónica; Bellart, Jordi; Conget, Ignacio; Vinagre, Irene

    2015-03-01

    Pregnancy in women with type 1 diabetes (T1D) involves greater risks as compared to non-diabetic women, but less information is available about blood glucose and weight control after delivery. Our aim was to evaluate the postpartum metabolic profile (blood glucose and weight control) of women with T1D and the factors related to those metabolic outcomes. A retrospective, observational study of 36 women with T1D during pregnancy and for up to one year after delivery. Fifty percent of patients attended a preconceptional planning program (PPP), and 44.4% of women were treated with continuous subcutaneous insulin infusion. Mean preconceptional HbA1c and body mass index (BMI) were 7.2±1.2% and 23.8±5.0 respectively. In the total cohort, blood glucose control significantly worsened one year after delivery (HbA1c: 7.2±1.2 vs 7.6±1.2%, P<0.001). Lower preconceptional HbA1c values were found in patients who attended PPP (6.6±0.5 vs. 7.8±1.4%; P=0.02), and were maintained for one year after delivery. No differences were found in body mass index (BMI) from the pregestational period to one year after delivery in any of two groups (No PPP 22.5±4.6 vs 23.2±4.8, P=0.078; PPP 25.4±3.4 vs 25.5±3.4 kg/m(2), P=0.947). Preconceptional HbA1c was shown to be the most important determinant of metabolic control (β=0.962, p<0.001) and weight one year after delivery (β=0.524, p=0.025) and weight gain during pregnancy (β=0.633, p=0.004). Pregnant women with T1D return to prepregnancy body weight one year after delivery, especially those with lower HbA1c levels and BMI before pregnancy. However, blood glucose control deteriorates after delivery, suggesting the need for changes in clinical practice after delivery. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  13. Metabolic markers or conditions preceding Parkinson's disease: a case-control study.

    Science.gov (United States)

    Savica, Rodolfo; Grossardt, Brandon R; Ahlskog, J Eric; Rocca, Walter A

    2012-07-01

    Several metabolic markers or conditions have been explored as possible risk or protective factors for Parkinson's disease (PD); however, results remain conflicting. We further investigated these associations using a case-control study design. We used the medical records-linkage system of the Rochester Epidemiology Project to identify 196 subjects who developed PD in Olmsted County, Minnesota, from 1976 through 1995. Each incident case was matched by age (±1 year) and sex to a general population control. We reviewed the complete medical records of cases and controls in the medical records-linkage system to abstract information about body mass index (BMI), cholesterol level, hypertension, and diabetes mellitus preceding the onset of PD (or the index year). There were no significant differences between cases and controls for the metabolic markers or conditions investigated. No significant associations were found using 2 cutoffs for BMI level (BMI ≥ 25 or BMI ≥ 30 kg/m(2) ) and 3 cutoffs for cholesterol levels (>200, >250, or >300 mg/dL). Neither a diagnosis of hypertension or the documented use of antihypertensive medications was significantly associated with the subsequent risk of PD (odds ratio [OR], 1.00; 95% confidence interval [CI], 0.65-1.54; P = .99) nor was a diagnosis of diabetes mellitus or the use of glucose-lowering medications (OR, 0.77; 95% CI, 0.37-1.57; P = .47). Our study, based on historical information from a records-linkage system, does not support an association between BMI, cholesterol level, hypertension, or diabetes mellitus with later development of PD.

  14. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial.

    Science.gov (United States)

    Dehghan, Parvin; Gargari, Bahram Pourghassem; Jafar-Abadi, Mohammad Asghari; Aliasgharzadeh, Akbar

    2014-02-01

    There is limited evidence on the effects of prebiotics on inflammation. Therefore, the aim of this study was to evaluate the effects of inulin supplementation on inflammatory indices and metabolic endotoxemia in patients with type 2 diabetes mellitus. The participants included diabetic females (n = 49). They were divided into an intervention group (n = 24) as well as a control group (n = 25) and received 10 g/d inulin or maltodextrin for 8 weeks, respectively. Fasting blood sugar (FBS), HbA1c, insulin, high-sensitive C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and plasma lipopolysaccharide (LPS) were measured pre and post intervention. Inulin-supplemented patients exhibited a significant decrease in FBS (8.5%), HbA1c (10.4%), fasting insulin (34.3%), homeostasis model assessment of insulin resistance (HOMA-IR) (39.5%), hs-CRP (35.6%), TNF-α (23.1%), and LPS (27.9%) compared with the maltodextrin group (p inulin compared with the maltodextrin group. It can be concluded that inulin supplementation seems to be able to modulate inflammation and metabolic endotoxemia in women with type 2 diabetes.

  15. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls

    Science.gov (United States)

    Knecht, Carolin; Fretter, Christoph; Rosenstiel, Philip; Krawczak, Michael; Hütt, Marc-Thorsten

    2016-09-01

    Information on biological networks can greatly facilitate the function-orientated interpretation of high-throughput molecular data. Genome-wide metabolic network models of human cells, in particular, can be employed to contextualize gene expression profiles of patients with the goal of both, a better understanding of individual etiologies and an educated reclassification of (clinically defined) phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of ‘coherence’, we quantified how well individual patterns of expression changes matched the metabolic network. We observed a bimodal distribution of metabolic network coherence in both patients and controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed a bisectional pattern as well that overlapped widely with the metabolic network-based results. Expression differences driving the observed bimodality were related to cellular transport of thiamine and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital pathways. We demonstrated how classical data mining and network analysis can jointly identify biologically meaningful patterns in gene expression data.

  16. Errors associated with metabolic control analysis. Application Of Monte-Carlo simulation of experimental data.

    Science.gov (United States)

    Ainscow, E K; Brand, M D

    1998-09-21

    The errors associated with experimental application of metabolic control analysis are difficult to assess. In this paper, we give examples where Monte-Carlo simulations of published experimental data are used in error analysis. Data was simulated according to the mean and error obtained from experimental measurements and the simulated data was used to calculate control coefficients. Repeating the simulation 500 times allowed an estimate to be made of the error implicit in the calculated control coefficients. In the first example, state 4 respiration of isolated mitochondria, Monte-Carlo simulations based on the system elasticities were performed. The simulations gave error estimates similar to the values reported within the original paper and those derived from a sensitivity analysis of the elasticities. This demonstrated the validity of the method. In the second example, state 3 respiration of isolated mitochondria, Monte-Carlo simulations were based on measurements of intermediates and fluxes. A key feature of this simulation was that the distribution of the simulated control coefficients did not follow a normal distribution, despite simulation of the original data being based on normal distributions. Consequently, the error calculated using simulation was greater and more realistic than the error calculated directly by averaging the original results. The Monte-Carlo simulations are also demonstrated to be useful in experimental design. The individual data points that should be repeated in order to reduce the error in the control coefficients can be highlighted.

  17. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    Science.gov (United States)

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed.

  18. The polyphosphate/factor XII pathway in cancer-associated thrombosis: novel perspectives for safe anticoagulation in patients with malignancies.

    Science.gov (United States)

    Nickel, Katrin F; Labberton, Linda; Long, Andrew T; Langer, Florian; Fuchs, Tobias A; Stavrou, Evi X; Butler, Lynn M; Renné, Thomas

    2016-05-01

    Cancer is an established risk factor for venous thromboembolism (VTE) and VTE is the second leading cause of death in patients with cancer. The incidence of cancer-related thrombosis is rising and is associated with worse outcomes. Despite our growing understanding on tumor-driven procoagulant mechanisms including cancer-released procoagulant proteases, expression of tissue factor on cancer cells and derived microvesicles, as well as alterations in the extracellular matrix of the cancer cell milieu, anticoagulation therapy in cancer patients has remained challenging. This review comments on a newly discovered cancer-associated procoagulant pathway. Experimental VTE models in mice and studies on patient cancer material revealed that prostate cancer cells and associated exosomes display the inorganic polymer polyphosphate on their plasma membrane. Polyphosphate activates blood coagulation factor XII and initiates thrombus formation via the intrinsic pathway of coagulation. Pharmacologic inhibition of factor XII activity protects mice from VTE and reduces thrombin coagulant activity in plasma of prostate cancer patients. Factor XII inhibitors provide thrombo-protection without impairing hemostatic mechanisms and thus, unlike currently used anticoagulants, do not increase bleeding risk. Interference with the polyphosphate/factor XII pathway may provide the novel opportunity for safe anticoagulation therapy in patients with malignancies.

  19. Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases.

    Science.gov (United States)

    Eramo, Matthew J; Mitchell, Christina A

    2016-02-01

    The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.

  20. Diet quality in obese/overweight individuals with/without metabolic syndrome compared to normal weight controls

    OpenAIRE

    Yosaee, Somaye; Esteghamati, Alireza; Nazari Nasab, Mahdiyeh; Khosravi, Ahmad; Alinavaz, Mina; Hosseini, Banafshe; Djafarian, Kurosh

    2016-01-01

    Background: Metabolic syndrome (MetS) is a serious public health concern worldwide; however, the pathogenesis of this disease has not been yet cleared. This study aimed to compare diet quality in obese/overweight participants with/without metabolic syndrome with normal weight controls. Methods: This was a comparative study on 147 Iranian adults under treatment at the Endocrinology Center of Tehran University of Medical Sciences. They were assigned into three groups (normal weight, obese weigh...

  1. Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    Full Text Available OBJECTIVE: Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved. METHOD: To test this we compared brain metabolism (using PET and ¹⁸FDG between female (n = 10 and male (n = 16 active cocaine abusers when they watched a neutral video (nature scenes versus a cocaine-cues video. RESULTS: Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05; females significantly decreased metabolism (-8.6%±10 whereas males tended to increase it (+5.5%±18. SPM analysis (Cocaine-cues vs Neutral in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001 whereas males showed increases in right inferior frontal gyrus (BA 44/45 (only at p<0.005. The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001 in frontal (BA 8, 9, 10, anterior cingulate (BA 24, 32, posterior cingulate (BA 23, 31, inferior parietal (BA 40 and thalamus (dorsomedial nucleus. CONCLUSIONS: Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from "control networks" (prefrontal, cingulate, inferior parietal, thalamus in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition. This highlights the importance of gender tailored interventions for cocaine addiction.

  2. Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Romero, Damian G; Hall, John E

    2017-06-01

    Interactions of hypothalamic signaling pathways that control body temperature (BT), blood pressure (BP), and energy balance are poorly understood. We investigated whether the chronic BP and metabolic actions of leptin are differentially modulated by changes in ambient temperature (TA ). Mean arterial pressure (MAP), heart rate (HR), BT, motor activity (MA), and oxygen consumption (Vo2) were measured 24 h/d at normal laboratory TA (23°C), at thermoneutral zone (TNZ, 30°C) for mice or during cold exposure (15°C) in male wild-type mice. After control measurements, leptin (4 μg/kg/min) or saline vehicle was infused for 7 d. At TNZ, leptin reduced food intake (-11.0 ± 0.5 g cumulative deficit) and body weight by 6% but caused no changes in MAP or HR. At 15°C, leptin infusion did not alter food intake but increased MAP and HR (8 ± 1 mmHg and 33 ± 7 bpm), while Vo2 increased by ∼10%. Leptin reduced plasma glucose and insulin levels at 15°C but not at 30°C. These results demonstrate that the chronic anorexic effects of leptin are enhanced at TNZ, while its effects on insulin and glucose levels are attenuated and its effects on BP and HR are abolished. Conversely, cold TA caused resistance to leptin's anorexic effects but amplified its effects to raise BP and reduce insulin and glucose levels. Thus, the brain circuits by which leptin regulates food intake and cardiovascular function are differentially influenced by changes in TA -Do Carmo, J. M., da Silva, A. A., Romero, D. G., Hall, J. E. Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin. © FASEB.

  3. Impact of probiotics in women with gestational diabetes mellitus on metabolic health: a randomized controlled trial.

    Science.gov (United States)

    Lindsay, Karen L; Brennan, Lorraine; Kennelly, Maria A; Maguire, Orla C; Smith, Thomas; Curran, Sinead; Coffey, Mary; Foley, Michael E; Hatunic, Mensud; Shanahan, Fergus; McAuliffe, Fionnuala M

    2015-04-01

    Probiotics are live microorganisms that may confer health benefits on the host. Recent trials of probiotic use among healthy pregnant women demonstrate potential for improved glycemic control. The aim of this study was to investigate the effects of a probiotic capsule intervention on maternal metabolic parameters and pregnancy outcome among women with gestational diabetes. This double-blind placebo-controlled randomized trial recruited pregnant women with a new diagnosis of gestational diabetes or impaired glucose tolerance following a 3-hour 100-g glucose tolerance test. Women were randomized to a daily probiotic (Lactobacillus salivarius UCC118) or placebo capsule from diagnosis until delivery. Fasting blood samples were collected at baseline and 4-6 weeks after capsule commencement for analysis of glucose, insulin, c-peptide, and lipids. The primary outcome was difference in fasting glucose postintervention, first analyzed on an intention-to-treat basis and followed by per-protocol analysis that excluded women commenced on pharmacological therapy (insulin or metformin). Secondary outcomes were changes in insulin, c-peptide, homeostasis model assessment and lipids, requirement for pharmacological therapy, and neonatal anthropometry. Of 149 women recruited and randomized, there were no differences between the probiotic and placebo groups in postintervention fasting glucose (4.65 ± 0.49 vs 4.65 ± 0.53 mmol/L; P = 373), requirement for pharmacological therapy (17% vs 14%; P = .643), or birthweight (3.57 ± 0.64 vs 3.60 ± 0.57 kg; P = .845). Among 100 women managed with diet and exercise alone, fasting plasma glucose decreased significantly within both the probiotic (4.76 ± 0.45 to 4.57 ± 0.42 mmol/L; P metabolic parameters or pregnancy outcome. A probiotic capsule intervention among women with abnormal glucose tolerance had no impact on glycemic control. The observed attenuation of the normal pregnancy-induced rise in total and LDL cholesterol following

  4. Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny.

    Science.gov (United States)

    Munoz-Garcia, Agusti; Williams, Joseph B

    2005-01-01

    Studies of basal metabolic rate (BMR), the minimum metabolic rate of postabsorptive, inactive endotherms while in their rest phase and thermal neutral zone, have contributed significantly to our understanding of animal energetics. Besides body mass, the main determinant of BMR, researchers have invoked diet and phylogenetic history as important factors that influence BMR, although their relative importance has been controversial. For 58 species within the Carnivora, we tested the hypothesis that BMR is correlated with home range size, a proxy for level of activity, and diet, using conventional least squares regression (CLSR) and regression based on phylogenetic independent contrasts (PIC). Results showed that BMR of Carnivora was positively correlated with home range size after controlling for body mass, regardless of the statistical method employed. We also found that diet and mass-adjusted home range size were correlated. When we simultaneously tested the effect of diet and mass-adjusted home range on mass-adjusted BMR, home range size was insignificant because of its colinearity with diet. Then we eliminated home range size from our model, and diet proved to be significant with both CLSR and PIC. We concluded that species that eat meat have larger home ranges and higher BMR than species that eat vegetable matter. To advance our understanding of the potential mechanisms that might explain our results, we propose the "muscle performance hypothesis," which suggests that selection for different muscle fiber types can account for the differences in BMR observed between meat eaters and vegetarian species within the Carnivora.

  5. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  6. Diet liberalization and metabolic control in type I diabetic outpatients treated by continuous subcutaneous insulin infusion.

    Science.gov (United States)

    Chantelau, E; Sonnenberg, G E; Stanitzek-Schmidt, I; Best, F; Altenähr, H; Berger, M

    1982-01-01

    In 10 type I diabetic outpatients treated by continuous subcutaneous insulin infusion (CSII), dietary habits and metabolic control were investigated. Under conditions of a conventional diabetes diet (including 5-6 meals per day and a strictly planned meal intake) as well as under a "less restricted diabetes diet" (e.g., free choice of number, timing, and amount of carbohydrate intake) near normoglycemia could be achieved. Mean daily blood glucose levels did not change significantly when the patients' nutrition was alternated between both diets. During the "less restricted diabetes diet," the patients opted for a rather high fat intake (51 +/- 5% fat, 34 +/- 5% carbohydrate, and 15 +/- 2% protein). Despite this unintended dietary behavior, serum lipids and body weight remained normal after an observation period of 4-6 mo. It is concluded that during permanent near normoglycemia achieved by CSII a partial liberalization of the diabetes diet does not introduce any short-term or long-term metabolic risk factors for cardiovascular diseases.

  7. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.

  8. Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS.

    Science.gov (United States)

    Gika, Helen G; Zisi, Chrysostomi; Theodoridis, Georgios; Wilson, Ian D

    2016-01-01

    The process of untargeted metabolic profiling/phenotyping of complex biological matrices, i.e., biological fluids such as blood plasma/serum, saliva, bile, and tissue extracts, provides the analyst with a wide range of challenges. Not the least of these challenges is demonstrating that the acquired data are of "good" quality and provide the basis for more detailed multivariate, and other, statistical analysis necessary to detect, and identify, potential biomarkers that might provide insight into the process under study. Here straightforward and pragmatic "quality control (QC)" procedures are described that allow investigators to monitor the analytical processes employed for global, untargeted, metabolic profiling. The use of this methodology is illustrated with an example from the analysis of human urine where an excel spreadsheet of the preprocessed LC-MS output is provided with embedded macros, calculations and visualization plots that can be used to explore the data. Whilst the use of these procedures is exemplified on human urine samples, this protocol is generally applicable to metabonomic/metabolomic profiling of biofluids, tissue and cell extracts from many sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Experimental Plan: 300 Area Treatability Test: In Situ Treatment of the Vadose Zone and Smear Zone Uranium Contamination by Polyphosphate Infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Dawn M.; Pierce, Eric M.; Oostrom, Mart; Fruchter, Jonathan S.

    2007-08-31

    The overall objectives of the treatability test is to evaluate and optimize polyphosphate remediation technology for infiltration either from ground surface, or some depth of excavation, providing direct stabilization of uranium within the deep vadose and capillary fringe above the 300 Area aquifer. Expected result from this experimental plan is a data package that includes: 1) quantification of the retardation of polyphosphate, 2) the rate of degradation and the retardation of degradation products as a function of water content, 3) an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) an understanding of the transformation mechanism, identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and –silicate minerals with the polyphosphate remedy under solubility-limiting conditions, 5) quantification of the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and capillary fringe, and 6) quantification of reliable equilibrium solubility values for autunite under hydraulically unsaturated conditions allowing accurate prediction of the long-term stability of autunite. Moreover, results of intermediate scale testing will quantify the transport of polyphosphate and degradation products, and yield degradation rates, at a scale that is bridging the gap between the small-scale UFA studies and the field scale. These results will be used to test and verify a site-specific, variable saturation, reactive transport model and to aid in the design of a pilot-scale field test of this technology. In particular, the infiltration approach and monitoring strategy of the pilot test would be primarily based on results from intermediate-scale testing. Results from this

  10. [Metabolism-related risk factors of cholelithiasis among Beijing residents: a case-control study].

    Science.gov (United States)

    Gu, Ying-Chao; He, Xiao-Dong; Yu, Jian-Chun; Kang, Wei-Ming; Tao, Lian-Yuan; Wu, Qiao

    2012-02-01

    To explore the metabolism-related risk factors of cholelithiasis among residents in Beijing. The clinical data including previous disease history, findings of physical examination, and results of cholecystosonography of 2270 patients with cholelithiasis identified in the Health Screening Center of Peking Union Medical College Hospital between August 2007 and August 2010 were retrospectively reviewed (the case group). Meanwhile, 4336 healthy individuals during the same period were randomly chosen as the control group. Total cholesterol, triglyceride, low-density lipoprotein cholesterol, fasting blood glucose, body mass index, and systolic blood pressure were positively correlated with the incidence of cholelithiasis (P cholelithiasis (P > 0.05). Cholelithiasis is resulted from multiple factors including elevated blood lipids, blood glucose, and systolic blood pressure among residents in Beijing.

  11. Recent insights into the role of hypothalamic AMPK signaling cascade upon metabolic control

    Directory of Open Access Journals (Sweden)

    Marc eClaret

    2012-12-01

    Full Text Available In 2004, two seminal papers focused on the role of AMP-activated protein kinase (AMPK in the hypothalamus opened new avenues of research in the field of the central regulation of energy homeostasis. Over the following 8 years, hundreds of studies have firmly established hypothalamic AMPK as a key sensor and integrator of hormonal and nutritional signals with neurochemical and neurophysiological responses to regulate whole-body energy balance. In this review article we aim to discuss the most recent findings in this particular area of research, highlighting the function of hypothalamic AMPK in appetite, thermogenesis and peripheral glucose metabolism. The diversity of mechanisms by which hypothalamic AMPK regulates energy homeostasis illustrates the importance of this evolutionary-conserved energy signaling cascade in the control of this complex and fundamental biological process.

  12. Metabolic control in patients with type 1 diabetes mellitus at the onset of primary adrenal insufficiency

    Directory of Open Access Journals (Sweden)

    A A Larina

    2013-06-01

    Full Text Available Primary adrenal insufficiency is a rare disorder but it is more common in patients with type 1 diabetes mellitus (T1DM or autoimmune thyroid diseases than in the general population. T1DM may precede the development of adrenocortical insufficiency. Addison’s disease can influence the glycemic control in patients with T1DM worsening glucose metabolism. It causes the decrease of gluconeogenesis, reduction in total insulin requirement and rather often «unexplained» recurrent hypoglycemia. Glucocorticoid replacement therapy in patients with primary adrenal insufficiency and T1DM increases the insulin requirement. The article presents the development of primary adrenal insufficiency in a patient with type 1 DM and autoimmune hypothyroidism, accompanied with incidents of recurrent hypoglycemia.

  13. Microbiological changes after periodontal therapy in diabetic patients with inadequate metabolic control

    Directory of Open Access Journals (Sweden)

    Carina Maciel Silva-Boghossian

    2014-05-01

    Full Text Available The present study investigated the effect of non-surgical periodontal treatment (SRP on the composition of the subgingival microbiota of chronic periodontitis (CP in individuals with type 2 diabetes (DM2 with inadequate metabolic control and in systemically healthy (SH individuals. Forty individuals (20 DM2 and 20 SH with CP underwent full-mouth periodontal examination. Subgingival plaque was sampled from 4 deep sites of each individual and tested for mean prevalence and counts of 45 bacterial taxa by the checkerboard method. Clinical and microbiological assessments were performed before and 3 months after SRP. At baseline, those in the DM2 group presented a significantly higher percentage of sites with visible plaque and bleeding on probing compared with those in the SH group (p < 0.01. Those in the DM2 group presented significantly higher levels of C. rectus and P. gingivalis, and lower prevalence of P. micra and S. anginosus, compared with those in the SH group (p ≤ 0.001. At the 3-month visit, both groups showed a significant improvement in all clinical parameters (p < 0.01. Those in the DM2 group showed significantly higher prevalence and/or levels of A. gerencseriae, A. naeslundii I, A. oris, A. odontolyticus, C. sputigena, F. periodonticum, and G. morbillorum compared with those in the SH group (p ≤ 0.001. However, those in the DM2 group showed a significant reduction in the levels of P. intermedia, P. gingivalis, T. forsythia, and T. denticola (p ≤ 0.001 over time. Those in the SRP group showed improved periodontal status and reduced levels of putative periodontal pathogens at 3 months’ evaluation compared with those in the DM2 group with inadequate metabolic control.

  14. [Impact of physical activity on metabolic control and the development of chronic complications in patients with type 1 diabetes mellitus].

    Science.gov (United States)

    Carral San Laureano, Florentino; Gutiérrez Manzanedo, José Vicente; Ayala Ortega, Carmen; García Calzado, Concepción; Silva Rodríguez, Juan José; Aguilar Diosdado, Manuel

    2010-01-01

    Together with a balanced diet, regular physical activity is one of the pillars of diabetes mellitus (DM) management. Physical activity theoretically provides the same advantages in people with DM as in the general population and also has some beneficial effects in controlling metabolic factors, such as improving blood glucose levels and insulin sensitivity. In this article, we analyze the main clinical studies published to date that evaluate the impact of physical activity on metabolic control or the development of chronic complications in patients with type 1 diabetes mellitus. In conclusion, most of the evaluated studies show that regular physical activity favorably affects metabolic control in DM (or at least does not have adverse effects). However, there is insufficient information about the impact of physical activity on the development and progression of chronic complications.

  15. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.

    Science.gov (United States)

    Fukushima, Arata; Lopaschuk, Gary D

    2016-12-01

    Alterations in cardiac energy metabolism are an important contributor to the cardiac pathology associated with obesity, diabetes, and heart failure. High rates of fatty acid β-oxidation with cardiac insulin resistance represent a cardiac metabolic hallmark of diabetes and obesity, while a marginal decrease in fatty acid oxidation and a prominent decrease in insulin-stimulated glucose oxidation are commonly seen in the early stages of heart failure. Alterations in post-translational control of energy metabolic processes have recently been identified as an important contributor to these metabolic changes. In particular, lysine acetylation of non-histone proteins, which controls a diverse family of mitochondrial metabolic pathways, contributes to the cardiac energy derangements seen in obesity, diabetes, and heart failure. Lysine acetylation is controlled both via acetyltransferases and deacetylases (sirtuins), as well as by non-enzymatic lysine acetylation due to increased acetyl CoA pool size or dysregulated nicotinamide adenine dinucleotide (NAD(+)) metabolism (which stimulates sirtuin activity). One of the important mitochondrial acetylation targets are the fatty acid β-oxidation enzymes, which contributes to alterations in cardiac substrate preference during the course of obesity, diabetes, and heart failure, and can ultimately lead to cardiac dysfunction in these disease states. This review will summarize the role of lysine acetylation and its regulatory control in the context of mitochondrial fatty acid β-oxidation. The functional contribution of cardiac protein lysine acetylation to the shift in cardiac energy substrate preference that occurs in obesity, diabetes, and especially in the early stages of heart failure will also be reviewed. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.

  16. Metabolic Syndrome Increases the Risk of Sudden Sensorineural Hearing Loss in Taiwan: A Case-Control Study.

    Science.gov (United States)

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wu, Ming-Tsang; Ho, Kuen-Yao

    2015-07-01

    Sudden sensorineural hearing loss has been reported to be associated with diabetes mellitus, hypertension, and hyperlipidemia in previous studies. The aim of this study was to examine whether metabolic syndrome increases the risk of sudden sensorineural hearing loss in Taiwan. A case-control study. Tertiary university hospital. We retrospectively investigated 181 cases of sudden sensorineural hearing loss and 181 controls from the Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, in southern Taiwan from 2010 to 2012, comparing their clinical variables. We analyzed the relationship between metabolic syndrome and sudden sensorineural hearing loss. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III with Asian modifications. The demographic and clinical characteristics, audiometry results, and outcome were reviewed. Subjects with metabolic syndrome had a 3.54-fold increased risk (95% confidence interval [CI] = 2.00-6.43, P sudden sensorineural hearing loss compared with those without metabolic syndrome, after adjusting for age, sex, smoking, diabetes mellitus, hypertension, and hyperlipidemia. With increases in the number of metabolic syndrome components, the risk of sudden sensorineural hearing loss increased (P for trend hearing loss pattern may influence the outcome of sudden sensorineural hearing loss (P sudden sensorineural hearing loss in Taiwan. Vertigo and total hearing loss were indicators of a poor outcome in sudden sensorineural hearing loss. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  17. The Serum Antioxidant Status in Chinese Subjects with Metabolic Syndrome:a Case-Control Study

    Institute of Scientific and Technical Information of China (English)

    Yan-rong LI; Kun XUE; Hong-wei GUO; Min WU; Ming LIU

    2014-01-01

    Objective To investigate serum antioxidant status in subjects with metabolic syndrome (MS) and analyze the association between serum antioxidant status and MS components.MethodsA case-control study was conducted with 221 MS cases and 329 controls aged 18-70 years. Weight, height, body mass index, waist circumference, blood pressure, fasting blood glucose and lipids, as well as serum superoxide dismutase (SOD), glutathione peroxidase(GSH-Px), malondialdehyde (MDA), vitamin E,β-carotene and lycopene were examined.Results Mean serum SOD activity,β-carotene level were significantly lower, and MDA higher (P<0.05) in MS subjects than in controls after adjusting for age and gender. Serum SOD, GSH-Px andβ-carotene level were also decreased significantly (P<0.05) with increased number of MS components.Conclusion Serum antioxidant status was negatively correlated with risks of MS and lower SOD activity andβ-carotene level appeared to be associated with more MS components. Serum oxidative status is useful in assessing the severity of MS.

  18. Methotrexate Increases Skeletal Muscle GLUT4 Expression and Improves Metabolic Control in Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    Giuseppina T. Russo

    2012-01-01

    Full Text Available Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue concentrations can be increased, in vivo, by low doses of methotrexate (MTX through the inhibition of the enzyme AICAR transformylase. We report here the first evidence that, in experimental type 2 diabetes, chronic treatment with low doses of MTX increases skeletal muscle GLUT4 expression and improves metabolic control. MTX (0.5 mg/kg body weight or vehicle was administered intraperitoneally, once a week for 4 weeks, to genetically diabetic female C57BL/KsJ-m+/+Leptdb mice (db+/db+ and their normoglycemic littermates (db+/+m. In the db+/db+ mice, MTX treatment was associated with a ∼2-fold increase in skeletal muscle GLUT4 protein concentration and a >4-fold increase in GLUT4 mRNA expression (P<0.01, all, as compared to vehicle-treated mice; no significant differences were noted in controls. MTX treatment was also associated with a significant reduction of glucose and insulin serum concentrations in diabetic mice (P<0.001, and glucose levels only (P<0.05 in controls. These data indicate a different route to increase skeletal muscle GLUT4 expression, through the potential inhibition of the enzyme AICAR transformylase.

  19. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.

    Science.gov (United States)

    Geurts, L; Neyrinck, A M; Delzenne, N M; Knauf, C; Cani, P D

    2014-03-01

    Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and

  20. Effect of sintering time on the microstructure and properties of inorganic polyphosphate bioceramics

    Directory of Open Access Journals (Sweden)

    Wang Q.B.

    2010-01-01

    Full Text Available Sintering is an important step in the fabrication process of ceramic bodies, which can significantly affect the microstructure and properties of materials. In this article, calcium based inorganic polyphosphate (CPP bioceramics were synthesized by gravity sintering. Effects of the sintering time (30 minutes, 1 hour, 3 hours and 5 hours on the microstructure, physicochemical degradation and mechanical property were investigated. It was found that all prepared CPP samples for various sintering times showed a β-CPP phase at the temperature of 800ºC. The sample morphology changed to more compact with extending the sintering time from 30 minutes to 5 hours. Moreover, the grain size increased with the increase of sintering time, from 1.59 μm for 30 minutes to 3.40 μm for 5 hours. The in vitro degradation test revealed that the degradation velocity had an inverse relationship with the sintering time. The CPP samples sintering for 30 minutes showed the fastest degradation, while CPP sintering for 5 hours was the slowest one. Compression test results showed that longer sintering times led to improved mechanical properties.

  1. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    Science.gov (United States)

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  2. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity

    Science.gov (United States)

    Osbourne, Devon O; Soo, Valerie WC; Konieczny, Igor; Wood, Thomas K

    2014-01-01

    Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease. PMID:24874800

  3. Discovery and Characterization of Iron Sulfide and Polyphosphate Bodies Coexisting in Archaeoglobus fulgidus Cells

    Directory of Open Access Journals (Sweden)

    Daniel B. Toso

    2016-01-01

    Full Text Available Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidus strain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent in A. fulgidus cells imaged by cryo electron microscopy (cryoEM but not so by negative stain electron microscopy. Cryo electron tomography (cryoET revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX spectroscopy and scanning transmission electron microscopy (STEM show that, surprisingly, each cell contains not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB, is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB, is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.

  4. Polyphosphate-mediated modulation of Campylobacter jejuni biofilm growth and stability.

    Science.gov (United States)

    Drozd, Mary; Chandrashekhar, Kshipra; Rajashekara, Gireesh

    2014-08-15

    Biofilms increase C. jejuni's resilience to detergents, antibiotics, and environmental stressors. In these investigations, we studied the modulation of biofilm in response to phosphate related stressors. We found that the deletion of ppk1, phoX, and ppk2 (polyphosphate associated [poly P] genes) in C. jejuni modulated different stages of biofilm formation such as attached microcolonies, air-liquid biofilms, and biofilm shedding. Additionally, inorganic phosphate also modulated attached microcolonies, air-liquid biofilms, and biofilm shedding both independently of and additively in the poly P associated mutants. Furthermore, we observed that these different biofilm stages were affected by biofilm age: for example, the adherent microcolonies were maximum on day 2, while biofilm growth at the air-liquid interface and shedding was highest on day 3. Also, we observed altered calcofluor white reactive polysaccharides in poly P-associated mutants, as well as increased secretion of autoinducer-2 (AI-2) quorum sensing molecules in the ∆ppk2 mutant. Further, the polysaccharide and flagellar biosynthesis genes, that are associated with biofilm formation, were altered in these poly P-associated mutants. We conclude that the phosphate limiting condition modulates C. jejuni biofilm formation.

  5. Fire Performance of Plywood Treated with Ammonium Polyphosphate and 4A Zeolite

    Directory of Open Access Journals (Sweden)

    Mingzhi Wang

    2014-07-01

    Full Text Available Plywood samples treated with ammonium polyphosphate (APP and 4A zeolite were prepared to investigate the effect of zeolite on wood’s burning behavior using a cone calorimeter under a heat flux of 35 kW/m2. Results showed that APP decreased the heat release rate (HRR, total heat release (THR, and mass loss rate (MLR of treated plywood. However, APP significantly increased the total smoke release (TSR and carbon monoxide (CO yield. The addition of 4A zeolite reduced the HRR, peak HRR, and THR of the plywood treated with only APP. The second HRR peak in a typical plywood curve diminished with the addition of as little as 2% 4A zeolite. The average specific extinction area (ASEA and CO yield decreased significantly with the presence of zeolite in the APP. The ignition time did not change significantly and the TSR increased when zeolite was present. Thus, a suitable amount of 4A zeolite works synergistically with APP in promoting flame retardancy in flame retardant plywood.

  6. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xilei; Jiang, Yufeng; Jiao, Chuanmei, E-mail: jiaochm@qust.edu.cn

    2014-02-15

    Highlights: • Smoke suppression of FeOOH on flame retardant TPU composites has been investigated. • FeOOH has excellent smoke suppression abilities for flame retardant TPU composites. • FeOOH has good ability of char formation, hence improved smoke suppression property. -- Abstract: This article mainly studies smoke suppression properties and synergistic flame retardant effect of ferrite yellow (FeOOH) on flame retardant thermoplastic polyurethane (TPU) composites using ammonium polyphosphate (APP) as a flame retardant agent. Smoke suppression properties and synergistic flame retardant effect of FeOOH on flame retardant TPU composites were intensively investigated by smoke density test (SDT), cone calorimeter test (CCT), scanning electron microscopy (SEM), and thermal-gravimetric analysis (TGA). Remarkably, the SDT results show that FeOOH can effectively decrease the amount of smoke production with or without flame. On the other hand, the CCT data reveal that the addition of FeOOH can apparently reduce heat release rate (HRR), total heat release (THR), and total smoke release (TSR), etc. Here, FeOOH is considered to be an effective smoke suppression agent and a good synergism with APP in flame retardant TPU composites, which can greatly improve the structure of char residue realized by TGA and SEM results.

  7. Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma

    Science.gov (United States)

    Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.

    2017-02-01

    Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10–200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.

  8. Inorganic polyphosphate suppresses lipopolysaccharide-induced inducible nitric oxide synthase (iNOS expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Kana Harada

    Full Text Available In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO, to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS expression induced by lipopolysaccharide (LPS, a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P decreased LPS-induced NO release. Moreover, poly(P suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages.

  9. Monitoring intracellular polyphosphate accumulation in enhanced biological phosphorus removal systems by quantitative image analysis.

    Science.gov (United States)

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Carvalheira, Mónica; Cunha, Jorge R; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2014-01-01

    A rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy. Due to contradictory literature regarding DAPI concentrations used for poly-P detection, the present work assessed the optimal DAPI concentration for samples acquired at the end of the EBPR aerobic stage when the accumulation occurred. Digital images were then acquired and processed by means of image processing and analysis. A correlation was found between average poly-P intensity values and the analytical determination. The proposed methodology can be seen as a promising alternative procedure for quantifying intracellular poly-P accumulation in a faster and less labour-intensive way.

  10. Discovery and Characterization of Iron Sulfide and Polyphosphate Bodies Coexisting in Archaeoglobus fulgidus Cells.

    Science.gov (United States)

    Toso, Daniel B; Javed, Muhammad Mohsin; Czornyj, Elizabeth; Gunsalus, Robert P; Zhou, Z Hong

    2016-01-01

    Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidus strain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent in A. fulgidus cells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell contains not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.

  11. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwoo [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 (Korea, Republic of); Lee, Suyeon [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Bae, Jong-Sup, E-mail: baejs@knu.ac.kr [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2016-06-10

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  12. Flame Retardancy of PA6 Using a Guanidine Sulfamate/Melamine Polyphosphate Mixture

    Directory of Open Access Journals (Sweden)

    Mathieu Coquelle

    2015-02-01

    Full Text Available Polyamide 6 (PA6 is a widely-used polymer that could find applications in various sectors, including home textiles, transportation or construction. However, due to its organic nature, PA6 is flammable, and flame-retardant formulations have to be developed to comply with fire safety standards. Recently, it was proposed to use ammonium sulfamate as an effective flame retardant for PA6, even at low loading content. However, processing issues could occur with this additive considering large-scale production. This paper thus studies the use of another sulfamate salt—guanidine sulfamate (GAS—and evidences its high efficiency when combined with melamine polyphosphate (MPP as a flame retardant for PA6. A decrease of the peak of the heat release rate by 30% compared to pure PA6 was obtained using only 5 wt% of a GAS/MPP mixture in a microscale calorimeter. Moreover, PA6 containing the mixture GAS/MPP exhibits a Limiting Oxygen Index (LOI of 37 vol% and is rated V0 for the UL 94 test (Vertical Burning Test; ASTM D 3801. The mechanisms of degradation were investigated analyzing the gas phase and solid phase when the material degrades. It was proposed that MPP and GAS modify the degradation pathway of PA6, leading to the formation of nitrile end-group-containing molecules. Moreover, the formation of a polyaromatic structure by the reaction of MPP and PA6 was also shown.

  13. PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile

    Directory of Open Access Journals (Sweden)

    Aurélie Cayla

    2016-09-01

    Full Text Available Using bio-based polymers to replace of polymers from petrochemicals in the manufacture of textile fibers is a possible way to improve sustainable development for the textile industry. Polylactic acid (PLA is one of the available bio-based polymers. One way to improve the fire behavior of this bio-based polymer is to add an intumescent formulation mainly composed of acid and carbon sources. In order to optimize the amount of bio-based product in the final material composition, lignin from wood waste was selected as the carbon source. Different formulations of and/or ammonium polyphosphate (AP were prepared by melt extrusion and then hot-pressed into sheets. The thermal properties (thermogravimetric analyses (TGA and differential scanning calorimetry (DSC and fire properties (UL-94 were measured. The spinnability of the various composites was evaluated. The mechanical properties and physical aspect (microscopy of PLA multifilaments with lignin (LK were checked. A PLA multifilament with up to 10 wt % of intumescent formulation was processed, and the fire behavior of PLA fabrics with lignin/AP formulation was studied by cone calorimeter.

  14. A novel surface modification on calcium polyphosphate scaffold for articular cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lien, S.-M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300 (China); Liu, C.-K. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300 (China); Huang, T.-J. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300 (China)]. E-mail: tjhuang@che.nthu.edu.tw

    2007-01-15

    The surface of porous three-dimensional (3D) calcium polyphosphate (CPP) scaffold was modified by treatment of quenching-after-sintering in the fabrication process. Scanning electron microscopic examination and degradation tests confirmed a new type of surface modification. A rotary-shaking culture was compared to that of a stationary culture and the results showed that rotary shaking led to enhanced extracellular matrices (ECM) secretion of both proteoglycans and collagen. Rotary-shaking cultured results showed that the quenching-treated CPP scaffold produced a better cartilage tissue, with both proteoglycans and collagen secretions enhanced, than the air-cooled-after-sintering scaffolds. Moreover, {beta}-CPP scaffolds were better for the ECM secretion of both proteoglycans and collagen than the {beta}-CPP + {gamma}-CPP multiphase scaffold. However, the multiphase scaffold led to higher growth rate than that of {beta}-CPP scaffold; the quenching-after-sintering treatment reversed this. In addition, the ECM secretions of both proteoglycans and collagen in the quenching-treated {beta}-CPP scaffold were higher than those in the air-cooled one. Thus, the novel treatment of quenching-after-sintering has shown merits to the porous 3D CPP scaffolds for articular cartilage tissue engineering.

  15. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity.

    Science.gov (United States)

    Osbourne, Devon O; Soo, Valerie W C; Konieczny, Igor; Wood, Thomas K

    2014-01-01

    Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease.

  16. Correlation between metabolic controls and changes in retina in patients having diabetes

    Directory of Open Access Journals (Sweden)

    Janićijević-Petrović Mirjana A.

    2014-01-01

    Full Text Available Introduction. Diabetes mellitus is as old as the human race. Retinopathy, being one of complications of diabetes mellitus, is the most common cause of blindness. This study was aimed at analyzing the correlation between retinopathy and duration of disease, metabolic control, and obesity. Material and Methods. The study sample consisted of 135 patients divided into the experimental group of 90 patients with retinopathy and the control group of 45 patients without retinopathy. The patients were examined according to standard protocols: anamneses, endocrinology, ophthalmology exams, biochemical analyses, and anthropometric measurements. Results. The average age of patients was 60.13 ± 9.29 in the experimental group, while it was 57.55 ± 4.85 in the control group. The average duration of disease was 11.71 ± 5.8 and 14.40 ± 7.68 in the control group experimental group, respectively. The following statistically essential differences between the control and experimental group were found: in duration of disease (11.71 ± 5.85; 14.40 ± 7.68; r = 0.000, in glycemia (7.02 ± 2.20; 8.34 ± 3.18; p = 0.000, in glycosylated hemoglobin A1C (HbA1C (7.16 ± 1.37; 8.22 ± 2.05; r = 0.000, in triglycerides (1.92 ± 0.72; 2.63 ± 1.60; r = 0.001, and in body mass index (23.94 ± 2.65; 27.66 ± 15.13; r = 0.000. Conclusion. There is a positive correlation between duration of disease, glycosylated hemoglobin A1C, triglycerides, body mass index - obesity and retinopathy. A significant statistical correlation among those parameters has been found in patients with diabetic retinopathy.

  17. Influence of the metabolic control on latency values of visual evoked potentials (VEP) in patients with diabetes mellitus type 1.

    Science.gov (United States)

    Matanovic, Dragana; Popovic, Srdjan; Parapid, Biljana; Petronic, Ivana; Cirovic, Dragana; Nikolic, Dejan

    2012-12-01

    The aim of our study was to investigate the relationship between the metabolic control parameters of diabetes mellitus (glycemia and HbA1c) and visual evoked potentials (VEP) latency values. The study included 61 patients with diabetes mellitus type 1 that were hospitalized at the Clinic for Endocrinology, Diabetes and Metabolic Diseases due to the poor metabolic control. All patients were divided into 3 groups. Group 1 consisted of patients on conventional insulin therapy (CT); Group 2 included patients on CT at the moment of hospitalization, with a change towards intensified insulin therapy (IIT); and Group 3 consisted of patients on IIT. Patients with diabetic retinopathy (DR) were excluded from the study. Metabolic control (glycemia and HbA1c) and VEP parameters were compared at the beginning of the study and six months later. After six months of strict glycoregulation, significant improvement in VEP parameters was followed by significant improvement of evaluated parameters of metabolic control. We found statistically significant reduction in frequency of pathological VEP findings, prolonged P100 latency and low amplitude potentials in Group 2, while in Groups 1 and 3 we found that these parameters did not significantly changed but the frequencies were lower. The VEP testing is a noninvasive diagnostic procedure which may help in early diagnosis of DR, prognosis during the metabolic control and treatment. If changes in the retina could be detected before DR is noticed using this noninvasive diagnostic procedure and include patients in a strict glycoregulation, we could be in the position to prevent serious complications that may cause blindness.

  18. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding%Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In a recent issue of PNAS, Professor Wu Donghai of Guangzhou Institutes of Biomedicine and Health (GIBH) and his colleagues published a paper titled "Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding". Prof. Wu has receivedsustained support from NSFC since 2006.

  19. Antinociceptive effects, metabolism and disposition of ketamine in ponies under target-controlled drug infusion

    Science.gov (United States)

    Knobloch, M.; Portier, C.J.; Levionnois, O.L.; Theurillat, R.; Thormann, W.; Spadavecchia, C.; Mevissen, M.

    2007-01-01

    Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 μg/ml S-ketamine over 120 min under isoflurane anesthesia was performed in Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses). PMID:16919695

  20. TFE3 controls lipid metabolism in adipose tissue of male mice by suppressing lipolysis and thermogenesis.

    Science.gov (United States)

    Fujimoto, Yuri; Nakagawa, Yoshimi; Satoh, Aoi; Okuda, Kanako; Shingyouchi, Akiko; Naka, Ayano; Matsuzaka, Takashi; Iwasaki, Hitoshi; Kobayashi, Kazuto; Yahagi, Naoya; Shimada, Masako; Yatoh, Shigeru; Suzuki, Hiroaki; Yogosawa, Satomi; Izumi, Tetsuro; Sone, Hirohito; Urayama, Osamu; Yamada, Nobuhiro; Shimano, Hitoshi

    2013-10-01

    Transcription factor E3 (TFE3) is a transcription factor that binds to E-box motifs and promotes energy metabolism-related genes. We previously reported that TFE3 directly binds to the insulin receptor substrate-2 promoter in the liver, resulting in increased insulin response. However, the role of TFE3 in other tissues remains unclear. In this study, we generated adipose-specific TFE3 transgenic (aP2-TFE3 Tg) mice. These mice had a higher weight of white adipose tissue (WAT) and brown adipose tissue than wild-type (WT) mice under fasting conditions. Lipase activity in the WAT in these mice was lower than that in the WT mice. The mRNA level of adipose triglyceride lipase (ATGL), the rate-limiting enzyme for adipocyte lipolysis, was significantly decreased in aP2-TFE3 Tg mice. The expression of Foxo1, which directly activates ATGL expression, was also suppressed in transgenic mice. Promoter analysis confirmed that TFE3 suppressed promoter activities of the ATGL gene. In contrast, G0S2 and Perilipin1, which attenuate ATGL activity, were higher in transgenic mice than in WT mice. These results indicated that the decrease in lipase activity in adipose tissues was due to a decrease in ATGL expression and suppression of ATGL activity. We also showed that thermogenesis was suppressed in aP2-TFE3 Tg mice. The decrease in lipolysis in WAT of aP2-TFE3 Tg mice inhibited the supply of fatty acids to brown adipose tissue, resulting in the inhibition of the expression of thermogenesis-related genes such as UCP1. Our data provide new evidence that TFE3 regulates lipid metabolism by controlling the gene expression related to lipolysis and thermogenesis in adipose tissue.

  1. Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism

    Directory of Open Access Journals (Sweden)

    Kalhan Satish C

    2005-11-01

    Full Text Available Abstract Background The metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function. Methods The gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP (EC 4.1.1.32 (PEPCK-C was deleted in mice by homologous recombination (PEPCK-C-/- mice and the metabolic consequences assessed. Results PEPCK-C-/- mice became severely hypoglycemic by day two after birth and then died with profound hypoglycemia (12 mg/dl. The mice had milk in their stomachs at day two after birth and the administration of glucose raised the concentration of blood glucose in the mice but did not result in an increased survival. PEPCK-C-/- mice have two to three times the hepatic triglyceride content as control littermates on the second day after birth. These mice also had an elevation of lactate (2.5 times, β-hydroxybutyrate (3 times and triglyceride (50% in their blood, as compared to control animals. On day two after birth, alanine, glycine, glutamine, glutamate, aspartate and asparagine were elevated in the blood of the PEPCK-C-/- mice and the blood urea nitrogen concentration was increased by 2-fold. The rate of oxidation of [2-14C]-acetate, and [5-14C]-glutamate to 14CO2 by liver slices from PEPCK-C-/- mice at two days of age was greatly reduced, as was the rate of fatty acid synthesis from acetate and glucose. As predicted by the lack of PEPCK-C, the concentration of malate in the livers of the PEPCK-C-/- mice was 10 times that of controls. Conclusion We conclude that PEPCK-C is required not only for gluconeogenesis and glyceroneogenesis but also for cataplerosis (i.e. the removal of citric acid cycle anions and that the failure of this process in the livers of PEPCK-C-/- mice results in a marked reduction in citric acid cycle flux and the shunting of hepatic lipid into triglyceride, resulting in a fatty liver.

  2. Effect of Acarbose on Control of Metabolic Parameters in Patients with Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    A. Ziaee

    2012-07-01

    Full Text Available Introduction & Objective: Acarbose is an intestinal alpha-glucosidase inhibitor that delays absorption of carbohydrates. Findings of some studies show that it has been effective in better control of blood glucose in patients with diabetes type 1. The goal of this study is to investigate the effect of administration of acarbose on glycemic & lipid parameters and daily insulin requirements and tolerability in type 1 diabetic patient.Materials & Methods: This was a clinical trial randomized double blind placebo controlled study. Performed on patients with history of at least 1 year diabetes type 1 and had HbA1c≥7.5%. Patients with Cr≥2, partial GI obstruction or IBD were excluded from the study. 45 patients were randomized to be administered acarbose or placebo for 12 weeks. Initial dose of acarbose was 25 mg T.D.S for 2 weeks, and then it was increased to 50 mg T.D.S for 10 weeks. BMI, FBS, 2hpp, HbA1c, Total cholesterol, HDL, LDL, TG and Insulin dosage were investigated monthly.Results: The values of BMI, FBS, 2hpp, HbA1c, Total cholesterol, and TG & Insulin requirements decreased significantly in the case group compared to the controls (P=0.003, P=0.005, P<0.001, P=0.001, P=0.003, P<0.001, P<0.001, respectively; but no significant changes were observed in HDL &LDL levels. Conclusion: Administration of acarbose together with insulin to type 1 diabetic patient can be valuable in improving metabolic control (BMI, FBS, 2hpp, HbA1c, Total cholesterol and TG.(Sci J Hamadan Univ Med Sci 2012;19(2:5-10

  3. Physical activity, sedentary behaviour and metabolic control following stroke: a cross-sectional and longitudinal study.

    Directory of Open Access Journals (Sweden)

    Sarah A Moore

    Full Text Available BACKGROUND: Physical activity and sedentary behaviour are key moderators of cardiovascular disease risk and metabolic control. Despite the importance of a physically active lifestyle, little is known about the effects of stroke on physical activity. We assessed physical activity and sedentary behaviour at three time points following stroke compared to a healthy control group. METHODS: Physical activity and sedentary behaviour were objectively measured using a portable multi-sensor array in 31 stroke participants (73±9 years, National Institute of Health Stroke Scale 2±2, mobile 10 metres with/without aid within seven days and at three and six months. Stroke data were compared with an age, sex and body mass index matched healthy control group (n = 31. RESULTS: Within seven days of stroke, total energy expenditure and physical activity were significantly lower and sedentary time higher in the stroke group compared to controls (total energy expenditure 1840±354 vs. 2220±489 kcal, physical activity 28±32 vs. 79±46 min/day, steps 3111±2290 vs. 7996±2649, sedentary time 1383±42 vs. 1339±44 min/day, p<0.01. At three months physical activity levels had increased (64±58 min/day but plateaued by six months (66±68 min/day. CONCLUSIONS: Physical activity levels are reduced immediately post-stroke and remain below recommended levels for health and wellbeing at the three and six month time points. Clinicians should explore methods to increase physical activity and reduce sedentary behaviour in both the acute and later stages following stroke.

  4. Liver enzymes and metabolic syndrome: a large-scale case-control study.

    Science.gov (United States)

    Zhang, Lu; Ma, Xiangyu; Jiang, Zhi; Zhang, Kejun; Zhang, Mengxuan; Li, Yafei; Zhao, Xiaolan; Xiong, Hongyan

    2015-09-29

    Previous studies suggested that elevated liver enzymes could be used as potential novel biomarkers of Metabolic syndrome (MetS) and its clinical outcomes, although the results were inconsistent and the conclusions were underpowered. A case-control study with 6,268 MetS subjects and 6,330 frequency-matched healthy controls was conducted to systematically evaluated levels of four liver enzymes (ALT, AST, GGT and ALP), both in overall populations and in subjects with normal liver enzymes, with MetS risk using both quartiles and continuous unit of liver enzymes. We found significant associations were detected for all above analyses. Compared with quartile 1 (Q1), other quartiles have significant higher MetS risk, with ORs ranging from 1.15 to 18.15. The highest effected was detected for GGT, for which the OR value for the highest versus lowest quartile was 18.15 (95% CI: 15.7-20.9). Mutual adjustment proved the independence of the relations for all four liver enzymes. Sensitivity analyses didn't materially changed the trend. To the best of our knowledge, this study should be the largest, which aimed at evaluating the association between liver enzymes measures and MetS risk. The results can better support that liver enzyme levels could be used as clinical predictors of MetS.

  5. A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals.

    Science.gov (United States)

    Schuster, Christoph; Gaillochet, Christophe; Medzihradszky, Anna; Busch, Wolfgang; Daum, Gabor; Krebs, Melanie; Kehle, Andreas; Lohmann, Jan U

    2014-02-24

    Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Purine-Metabolizing Ectoenzymes Control IL-8 Production in Human Colon HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Fariborz Bahrami

    2014-01-01

    Full Text Available Interleukin-8 (IL-8 plays key roles in both chronic inflammatory diseases and tumor modulation. We previously observed that IL-8 secretion and function can be modulated by nucleotide (P2 receptors. Here we investigated whether IL-8 release by intestinal epithelial HT-29 cells, a cancer cell line, is modulated by extracellular nucleotide metabolism. We first identified that HT-29 cells regulated adenosine and adenine nucleotide concentration at their surface by the expression of the ectoenzymes NTPDase2, ecto-5′-nucleotidase, and adenylate kinase. The expression of the ectoenzymes was evaluated by RT-PCR, qPCR, and immunoblotting, and their activity was analyzed by RP-HPLC of the products and by detection of Pi produced from the hydrolysis of ATP, ADP, and AMP. In response to poly (I:C, with or without ATP and/or ADP, HT-29 cells released IL-8 and this secretion was modulated by the presence of NTPDase2 and adenylate kinase. Taken together, these results demonstrate the presence of 3 ectoenzymes at the surface of HT-29 cells that control nucleotide levels and adenosine production (NTPDase2, ecto-5′-nucleotidase and adenylate kinase and that P2 receptor-mediated signaling controls IL-8 release in HT-29 cells which is modulated by the presence of NTPDase2 and adenylate kinase.

  7. PANSYM: a symbolic equation generator for mathematical modelling, analysis and control of metabolic and pharmacokinetic systems.

    Science.gov (United States)

    Thomaseth, K

    1994-02-14

    Software is presented for automatic generation of first-order ordinary differential equations (ODE) that arise from lumped parameter representations of metabolic and pharmacokinetic systems. The definition of system structures is accomplished by fractional transfer rates between state variables, together with input/output equations and initial conditions of state variables. General non-linear mathematical expressions can be assigned to all structure definition items. The software parses and interprets the system definitions and generates symbolically the mathematical expression of the model's set of ODE. In addition, symbolic derivatives of state equations are determined with respect to model parameters, state variables and external inputs. These derivatives represent the constituents of systems of sensitivity-differential and adjoint-differential equations that arise in identification and optimal control problems. Finally, output routines generate source code that, once compiled and linked to simulation programs, allows efficient numerical integration of the system of ODE. This software has been developed in PROLOG on Macintosh computers and has been extensively used with the programming environment MATLAB. Possible applications of this software include model building, sensitivity analysis, identification, optimal experiment design and numerical solution of optimal control problems.

  8. Protein Kinase B Controls Transcriptional Programs that Direct Cytotoxic T Cell Fate but Is Dispensable for T Cell Metabolism

    Science.gov (United States)

    Macintyre, Andrew N.; Finlay, David; Preston, Gavin; Sinclair, Linda V.; Waugh, Caryll M.; Tamas, Peter; Feijoo, Carmen; Okkenhaug, Klaus; Cantrell, Doreen A.

    2011-01-01

    Summary In cytotoxic T cells (CTL), Akt, also known as protein kinase B, is activated by the T cell antigen receptor (TCR) and the cytokine interleukin 2 (IL-2). Akt can control cell metabolism in many cell types but whether this role is important for CTL function has not been determined. Here we have shown that Akt does not mediate IL-2- or TCR-induced cell metabolic responses; rather, this role is assumed by other Akt-related kinases. There is, however, a nonredundant role for sustained and strong activation of Akt in CTL to coordinate the TCR- and IL-2-induced transcriptional programs that control expression of key cytolytic effector molecules, adhesion molecules, and cytokine and chemokine receptors that distinguish effector versus memory and naive T cells. Akt is thus dispensable for metabolism, but the strength and duration of Akt activity dictates the CTL transcriptional program and determines CTL fate. PMID:21295499

  9. Effect of fruits and vegetables on metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Shin, Jin Young; Kim, Ji Young; Kang, Hee Tak; Han, Kyung Hwa; Shim, Jae Yong

    2015-01-01

    Evidence regarding the effect of fruit and vegetable consumption on metabolic syndrome remains inconclusive. Using MEDLINE, EMBASE, and Cochrane, we searched for relevant studies published before 10 December 2013. Of the 383 articles identified, eight randomized controlled trials with 396 participants (205 in intervention groups and 191 in control groups) were included in the final analyses. Fruit and vegetable intake was associated with a reduction in diastolic blood pressure (standardized mean difference: -0.29; 95% confidence interval: -0.57 to -0.02; p = 0.04); however, such intake did not affect waist circumference, systolic blood pressure, fasting glucose, high-density lipoprotein cholesterol, and triglyceride levels in metabolic syndrome patients. In a subgroup analysis, there were no statistically significant differences found according to the intervention period and provision type. Our results suggest an inverse association between fruit and vegetable consumption and diastolic blood pressure in metabolic syndrome patients.

  10. Lifestyle modification and weight reduction among low-income patients with the metabolic syndrome: the CHARMS randomized controlled trial.

    Science.gov (United States)

    Chirinos, Diana A; Goldberg, Ronald B; Llabre, Maria M; Gellman, Marc; Gutt, Miriam; McCalla, Judith; Mendez, Armando; Schneiderman, Neil

    2016-06-01

    Although weight is an important intervention target among patients with metabolic syndrome, few trials have recruited low-income minority populations. The Community Health and Risk-reduction for Metabolic Syndrome randomized controlled trial aimed to examine the effects of a lifestyle intervention on weight and metabolic syndrome components among low-income minority adults. We randomized 120 adults with metabolic syndrome to standard medical care (N = 60) or a lifestyle intervention (N = 60). Using an intent-to-treat approach, we found significant intervention effects on weight [B = -0.452; SE = 0.122; 95 % confidence intervals (CI) -0.653 to -0.251) and glucose levels at 6-months (B = -0.522, SE = 0.234, 95 % CI -0.907 to -0.138). These changes were maintained through the 12-month assessment. No significant effects were observed on insulin resistance or other metabolic syndrome components. Our intervention was successful in achieving modest but significant weight loss and reduction in fasting glucose among low-income minority subjects with metabolic syndrome.

  11. Design and rationale of a randomized controlled trial of melatonin supplementation in men and women with the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Terry PD

    2013-03-01

    Full Text Available Paul D Terry,1 Abhinav Goyal,2,3 Lawrence S Phillips,3 Hillary M Superak,4 Michael H Kutner4 1Departments of Public Health and Surgery, University of Tennessee, Knoxville, TN, 2Department of Epidemiology, Emory Rollins School of Public Health, 3Department of Medicine, Emory School of Medicine, 4Department of Biostatistics and Bioinformatics, Emory Rollins School of Public Health, Atlanta, GA, USA Background: The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to increase the risk of atherosclerotic cardiovascular disease, type 2 diabetes mellitus, and possibly some cancers. Animal studies and observational clinical data in humans suggest that supplemental melatonin may ameliorate a number of components of the metabolic syndrome, including elevated glucose, elevated blood pressure, dyslipidemia, and obesity. The primary objective of this clinical trial was to determine the feasibility, efficacy, and safety of melatonin supplementation in men and women with the metabolic syndrome. Methods: Thirty-nine men and women of mixed race/ethnicity were enrolled into a randomized, double-blind, placebo-controlled clinical trial with two arms: placebo for 10 weeks followed by melatonin for 10 weeks, or vice versa, with an interval 6-week washout period, in a crossover trial design. Outcome measures include metabolic syndrome components (blood pressure, glucose, triglycerides, high-density lipoprotein cholesterol, waist circumference, oxidative stress, and inflammation biomarkers. These biomarkers, along with sleep duration and quality and pretreatment endogenous melatonin levels, were measured to explore possible underlying biologic mechanisms. Discussion: This trial will provide knowledge of the effects of melatonin in metabolic syndrome subjects, and lay the groundwork for future clinical trials of melatonin in metabolic syndrome subjects. Keywords: melatonin, metabolic syndrome, diabetes, blood pressure, sleep

  12. Teenage girls with type 1 diabetes have poorer metabolic control than boys and face more complications in early adulthood

    DEFF Research Database (Denmark)

    Samuelsson, Ulf; Anderzén, Johan; Gudbjörnsdottir, Soffia

    2016-01-01

    AIMS: To compare metabolic control between males and females with type 1 diabetes during adolescence and as young adults, and relate it to microvascular complications. METHODS: Data concerning 4000 adolescents with type 1 diabetes registered in the Swedish paediatric diabetes quality registry, an...

  13. Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, R; Kok, J; Kuipers, OP

    2005-01-01

    The expression of arginine metabolism in Lactococcus lactis is controlled by the two homologous transcriptional regulators ArgR and AhrC. Genome sequence analyses have shown that the occurrence of multiple homologues of the ArgR family of transcriptional regulators is a common feature of many low-G

  14. Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens.

    Science.gov (United States)

    Takeuchi, Kasumi; Kiefer, Patrick; Reimmann, Cornelia; Keel, Christoph; Dubuis, Christophe; Rolli, Joëlle; Vorholt, Julia A; Haas, Dieter

    2009-12-11

    Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.

  15. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Novichkov, Pavel; Stavrovskaya, Elena D.; Rodionova, Irina A.; Li, Xiaoqing; Kazanov, Marat D.; Ravcheev, Dmitry A.; Gerasimova, Anna V.; Kazakov, Alexey E.; Kovaleva, Galina Y.; Permina, Elizabeth A.; Laikova, Olga N.; Overbeek, Ross; Romine, Margaret F.; Fredrickson, Jim K.; Arkin, Adam P.; Dubchak, Inna; Osterman, Andrei L.; Gelfand, Mikhail S.

    2011-06-15

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. Despite the growing number of genome-scale gene expression studies, our abilities to convert the results of these studies into accurate regulatory annotations and to project them from model to other organisms are extremely limited. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. However, even orthologous regulators with conserved DNA-binding motifs may control substantially different gene sets, revealing striking differences in regulatory strategies between the Shewanella spp. and E. coli. Multiple examples of regulatory network rewiring include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), and numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. NagR for N-acetylglucosamine catabolism and PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp).

  16. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  17. Effects of Periodontal Therapy on Metabolic Control in Patients With Type 2 Diabetes Mellitus and Periodontal Disease

    OpenAIRE

    Wang, Tze-Fang; Jen, I-An; Chou, Chyuan; Lei, Yen-Ping

    2014-01-01

    Abstract Epidemiologic studies have reported increased incidence, prevalence and acuity of periodontitis in adults with diabetes and some have also suggested that treating periodontal disease may improve glycemic control in diabetic patients. This meta-analysis was conducted to evaluate the effects of different periodontal therapies on metabolic control in patients with type 2 diabetes mellitus (T2DM) and periodontal disease. We searched the Medline, EMBASE and Cochrane Library (Central) data...

  18. The relation between awareness of personal resources and metabolic control in children and adolescents with type 1 diabetes.

    Science.gov (United States)

    Blicke, Maren; Körner, Ulrike; Nixon, Patricia; Salgin, Burak; Meissner, Thomas; Pollok, Bettina

    2015-09-01

    The study aims to elucidate whether awareness of personal resources, such as positive attributions and beliefs or social support, affects metabolic control in children and adolescents with type 1 diabetes. In addition, it will be determined to what extent metabolic control is influenced by concordance between children and parents regarding awareness of resources and the parents' ability to adopt their children's perspective. Also, the children's wishes particularly in relation to their illness will be investigated, as well as the kind of advice they would offer to fellow patients. Seventy-eight children/adolescents with type 1 diabetes completed the Essen Resource Inventory for Children and Adolescents including personal, social, structural, and migration-specific resources. In addition, children/adolescents and their parents completed a systemic-oriented, diabetes-specific resource questionnaire in order to explore the parents' ability to adopt their children's perspective. Resources such as body awareness and open-minded attitude to the disease were associated with metabolic control. Particularly, resources associated to a migration background were found to be inversely correlated with hemoglobin A1c (HbA1c) value. Moreover, it was shown that the parents' ability to adopt their children's perspective was associated with improved metabolic control. Children advising fellow patients to accept the disease showed the best HbA1c value. This data identified specific modifiable factors related to metabolic control that can be addressed during counseling of pediatric patients. Also the parents' ability for adopting their child's perspective was identified as a relevant factor which should be considered during clinical counseling of young type 1 diabetes patients. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain.

    Science.gov (United States)

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie

    2017-09-05

    A new metal polyphosphate, α-CsBa2(PO3)5, exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO3)∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa2(PO3)5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa2(PO3)5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  20. Syntheses and Structures of Alkali Metal Rare Earth Polyphosphates CsLn(PO3)4 (Ln = La, Ce)

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; CHENG Wen-Dan; ZHANG Hao; WU Dong-Sheng; ZHAO Dan

    2008-01-01

    Alkali metal-rare earth polyphosphates, CsLn(PO3)4 (Ln = La, Ce), were synthesized by the high temperature solution reaction and studied by single-crystal X-ray diffraction technique. They crystallize in the monoclinic space group P21 (Z = 2) and feature infinite PO4 spiral chains linked with neighboring CsO10 and LnO8 polyhedra. In addition, theoretically calculated energy band structure and density of states (DOS) by the density functional theory(DFT) predict that the solid-state compound CsLa(PO3)4 possesses insulative character.

  1. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as chol

  2. Association of metabolic gene polymorphisms with tobacco consumption in healthy controls.

    NARCIS (Netherlands)

    Smits, K.M.; Benhamou, S.; Garte, S.; Weijenberg, M.P.; Alamanos, Y.; Ambrosone, C.; Autrup, H.; Autrup, J.L.; Baranova, H.; Bathum, L.; Boffetta, P.; Bouchardy, C.; Brockmoller, J.; Butkiewicz, D.; Cascorbi, I.; Clapper, M.L.; Coutelle, C.; Daly, A.; Muzi, G.; Dolzan, V.; Duzhak, T.G.; Farker, K.; Golka, K.; Haugen, A.; Hein, D.W.; Hildesheim, A.; Hirvonen, A.; Hsieh, L.L.; Ingelman-Sundberg, M.; Kalina, I.; Kang, D.; Katoh, T.; Kihara, M.; Ono-Kihara, M.; Kim, H.L.; Kiyohara, C.; Kremers, P.; Lazarus, P.; Marchand, L. le; Lechner, M.C.; London, S.; Manni, J.J.; Maugard, C.M.; Morgan, G.J.; Morita, S.; Nazar-Stewart, V.; Kristensen, V.N.; Oda, Y.; Parl, F.F.; Peters, W.H.M.; Rannug, A.; Rebbeck, T.; Pinto, L.F.; Risch, A.; Romkes, M.; Salagovic, J.; Schoket, B.; Seidegard, J.; Shields, P.G.; Sim, E.; Sinnett, D.; Strange, R.C.; Stucker, I.; Sugimura, H.; To-Figueras, J.; Vineis, P.; Yu, M.C.; Zheng, W.; Pedotti, P.; Taioli, E.

    2004-01-01

    Polymorphisms in genes that encode for metabolic enzymes have been associated with variations in enzyme activity between individuals. Such variations could be associated with differences in individual exposure to carcinogens that are metabolized by these genes. In this study, we examine the associat

  3. Osteogenic cell cultures cannot utilize exogenous sources of synthetic polyphosphate for mineralization.

    Science.gov (United States)

    Ariganello, Marianne B; Omelon, Sidney; Variola, Fabio; Wazen, Rima M; Moffatt, Pierre; Nanci, Antonio

    2014-12-01

    Phosphate is critical for mineralization and deficiencies in the regulation of free phosphate lead to disease. Inorganic polyphosphates (polyPs) may represent a physiological source of phosphate because they can be hydrolyzed by biological phosphatases. To investigate whether exogenous polyP could be utilized for mineral formation, mineralization was evaluated in two osteogenic cell lines, Saos-2 and MC3T3, expressing different levels of tissue non-specific alkaline phosphatase (tnALP). The role of tnALP was further explored by lentiviral-mediated overexpression in MC3T3 cells. When cells were cultured in the presence of three different phosphate sources, there was a strong mineralization response with β-glycerophosphate (βGP) and orthophosphate (Pi) but none of the cultures sustained mineralization in the presence of polyP (neither chain length 17-Pi nor 42-Pi). Even in the presence of mineralizing levels of phosphate, low concentrations of polyP (50 μM) were sufficient to inhibit mineral formation. Energy-dispersive X-ray spectroscopy confirmed the presence of apatite-like mineral deposits in MC3T3 cultures supplemented with βGP, but not in those with polyP. While von Kossa staining was consistent with the presence or absence of mineral, an unusual Alizarin staining was obtained in polyP-treated MC3T3 cultures. This staining pattern combined with low Ca:P ratios suggests the persistence of Ca-polyP complexes, even with high residual ALP activity. In conclusion, under standard culture conditions, exogenous polyP does not promote mineral deposition. This is not due to a lack of active ALP, and unless conditions that favor significant processing of polyP are achieved, its mineral inhibitory capacity predominates.

  4. SODIUM POLYPHOSPHATE-MODIFIED CLASS C/CLASS F FLY ASH BLEND CEMENTS FOR GEOTHERMAL WELLS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.; BROTHERS, L.E.; KASPEREIT, D.

    2006-02-01

    The authors investigated the usefulness of the coal combustion by-products, Class C fly ash (C) and Class F fly ash (F), in developing cost-effective acid-resistant phosphate-based cements for geothermal wells. In the temperature range of 20-100 C, sodium polyphosphate (NaP) as the acidic cement-forming solution preferentially reacted with calcium sulfate and lime in the C as the base solid reactant through the exothermic acid-base reaction route, rather than with the tricalcium aluminate in C. This reaction led to the formation of hydroxyapatite (HOAp). In contrast, there was no acid-base reaction between the F as the acidic solid reactant and NaP. After autoclaving the cements at 250 C, a well-crystallized HOAp phase was formed in the NaP-modified C cement that was responsible for densifying the cement's structure, thereby conferring low water permeability and good compressive strength on the cement. however, the HOAp was susceptible to hot CO{sub 2}-laden H{sub 2}SO{sub 4} solution (pH 1.1), allowing some acid erosion of the cement. On the other hand, the mullite in F hydrothermally reacted with the Na from NaP to form the analcime phase. Although this phase played a pivotal role in abating acid erosion, its generation created an undesirable porous structure in the cement. They demonstrated that blending fly ash with a C/F ratio of 70/30 resulted in the most suitable properties for acid-resistant phosphate-based cement systems.

  5. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Huang Guobo, E-mail: huangguobo@tzc.edu.cn [School of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000 (China); Liang Huading; Wang Yong [School of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000 (China); Wang Xu; Gao Jianrong; Fei Zhengdong [State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer PVA/graphene/MPP composites were prepared by solvent blending. Black-Right-Pointing-Pointer PVA/graphene systems improved the flame retardancy of the nanocomposites. Black-Right-Pointing-Pointer Flame retardation mechanism was explained by SEM, FT-IR and XPS. - Abstract: A novel flame retardant poly(vinyl alcohol) (PVA)/melamine polyphosphate (MPP)-graphene nanocomposite has been prepared by solvent blending. Results from X-ray diffraction (XRD) and transmission electron microscopy (TEM) suggest that an excellent dispersion of exfoliated graphene and MPP in the PVA matrix was achieved. The thermal and flammability properties of the nanocomposite were investigated using thermogravimetry, cone calorimetry, and flammability tests (UL 94 and LOI). The presence of both MPP and graphene in the polymer matrix led to an enhanced thermal stability and significantly reduced flammability for the nanocomposite. PVA composites filled with 10 wt% MPP and 1 wt% graphene (PVA/G1/MPP10) achieved the LOI value of 29.6 and UL-94 V0 grade. Compared to pure PVA, the peak heat release rate (PHRR) of PVA/G1/MPP10 is reduced by about 60%. Meanwhile, the mechanical properties of PVA/G1/MPP10 composites exhibit almost no deterioration compared with pure PVA. The morphology and composition of residues generated after cone calorimeter tests were investigated by scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The SEM images showed the compact and dense intumescent char jammed with graphene sheets was formed for PVA/G1/MPP10 during combustion. The results of XPS confirmed that carbon content of the char for PVA/G1/MPP10 is increased obviously by the combination effect of the flame retardant MPP and graphene.

  6. Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Dharanesh Gangaiah

    Full Text Available BACKGROUND: Inorganic polyphosphate (poly P plays an important role in stress tolerance and virulence in many bacteria. PPK1 is the principal enzyme involved in poly P synthesis, while PPK2 uses poly P to generate GTP, a signaling molecule that serves as an alternative energy source and a precursor for various physiological processes. Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans, possesses homologs of both ppk1 and ppk2. ppk1 has been previously shown to impact the pathobiology of C. jejuni. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate for the first time that the deletion of ppk2 in C. jejuni resulted in a significant decrease in poly P-dependent GTP synthesis, while displaying an increased intracellular ATP:GTP ratio. The Deltappk2 mutant exhibited a significant survival defect under osmotic, nutrient, aerobic, and antimicrobial stresses and displayed an enhanced ability to form static biofilms. However, the Deltappk2 mutant was not defective in poly P and ppGpp synthesis suggesting that PPK2-mediated stress tolerance is not ppGpp-mediated. Importantly, the Deltappk2 mutant was significantly attenuated in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. CONCLUSIONS/SIGNIFICANCE: Taken together, we have highlighted the role of PPK2 as a novel pathogenicity determinant that is critical for C. jejuni survival, adaptation, and persistence in the host environments. PPK2 is absent in humans and animals; therefore, can serve as a novel target for therapeutic intervention of C. jejuni infections.

  7. Control of insulin secretion by cytochrome C and calcium signaling in islets with impaired metabolism.

    Science.gov (United States)

    Rountree, Austin M; Neal, Adam S; Lisowski, Mark; Rizzo, Norma; Radtke, Jared; White, Sarah; Luciani, Dan S; Kim, Francis; Hampe, Christiane S; Sweet, Ian R

    2014-07-01

    The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.

  8. Salvaging diabetic foot through debridement, pressure alleviation, metabolic control, and antibiotics.

    Science.gov (United States)

    Cabeza de Vaca, Francisco G; Macias, Alejandro E; Ramirez, Welsy A; Munoz, Juan M; Alvarez, Jose A; Mosqueda, Juan L; Medina, Humberto; Sifuentes-Osornio, Jose

    2010-01-01

    There is a fatalist perception of diabetic foot because the argument of "small-vessel disease" prevails. This is the report of a cohort study of patients facing a formal recommendation for major foot amputation to assess how many can be saved with a conventional treatment, defined as debridement, pressure alleviation, metabolic control, and antibiotics. The primary efficacy measurement was the salvage of the limb at the follow-up visit between 25 and 35 days after the first consultation. The secondary efficacy measurement was the subsequent epithelization of the ulcerative lesions, following patients for up to 270 days. The cohort consisted of 105 type 2 diabetic patients; 87 (83%) had severe lesions. A total of 71 patients (68%) required hospitalization. By the intention-to-treat analysis, 89 patients (85%) avoided major amputation. A total of 88 patients were evaluated for complete epithelization, reaching median success by day 120. Overall, 51 patients (49%) underwent minor amputations. It was concluded that there is a high rate of unnecessary major foot amputations, because a diabetic foot can be salvaged across the continuum of severity when patients receive care in a multidisciplinary wound clinic. © 2010 by the Wound Healing Society.

  9. Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes

    Directory of Open Access Journals (Sweden)

    Irene M. Brockman Reizman

    2015-12-01

    Full Text Available D-glucaric acid can be used as a building block for biopolymers as well as in the formulation of detergents and corrosion inhibitors. A biosynthetic route for production in Escherichia coli has been developed (Moon et al., 2009, but previous work with the glucaric acid pathway has indicated that competition with endogenous metabolism may limit carbon flux into the pathway. Our group has recently developed an E. coli strain where phosphofructokinase (Pfk activity can be dynamically controlled and demonstrated its use for improving yields and titers of the glucaric acid precursor myo-inositol on glucose minimal medium. In this work, we have explored the further applicability of this strain for glucaric acid production in a supplemented medium more relevant for scale-up studies, both under batch conditions and with glucose feeding via in situ enzymatic starch hydrolysis. It was found that glucaric acid titers could be improved by up to 42% with appropriately timed knockdown of Pfk activity during glucose feeding. The glucose feeding protocol could also be used for reduction of acetate production in the wild type and modified E. coli strains.

  10. Pterostilbene on metabolic parameters: a randomized, double-blind, and placebo-controlled trial.

    Science.gov (United States)

    Riche, Daniel M; Riche, Krista D; Blackshear, Chad T; McEwen, Corey L; Sherman, Justin J; Wofford, Marion R; Griswold, Michael E

    2014-01-01

    Introduction. The purpose of this trial was to evaluate the effect of pterostilbene on metabolic parameters. Methods. A prospective, randomized, double-blind, and placebo-controlled study that enrolled 80 patients with a total cholesterol ≥200 mg/dL and/or LDL ≥ 100 mg/dL. Subjects were divided into four groups: (1) pterostilbene 125 mg twice daily; (2) pterostilbene 50 mg twice daily; (3) pterostilbene 50 mg + grape extract (GE) 100 mg twice daily; (4) matching placebo twice daily for 6-8 weeks. Endpoints included lipids, blood pressure, and weight. Linear mixed models were used to examine and compare changes in parameters over time. Models were adjusted for age, gender, and race. Results. LDL increased with pterostilbene monotherapy (17.1 mg/dL; P = 0.001) which was not seen with GE combination (P = 0.47). Presence of a baseline cholesterol medication appeared to attenuate LDL effects. Both systolic (-7.8 mmHg; P < 0.01) and diastolic blood pressure (-7.3 mmHg; P < 0.001) were reduced with high dose pterostilbene. Patients not on cholesterol medication (n = 51) exhibited minor weight loss with pterostilbene (-0.62 kg/m(2); P = 0.012). Conclusion. Pterostilbene increases LDL and reduces blood pressure in adults. This trial is registered with Clinicaltrials.gov NCT01267227.

  11. Pterostilbene on Metabolic Parameters: A Randomized, Double-Blind, and Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    Daniel M. Riche

    2014-01-01

    Full Text Available Introduction. The purpose of this trial was to evaluate the effect of pterostilbene on metabolic parameters. Methods. A prospective, randomized, double-blind, and placebo-controlled study that enrolled 80 patients with a total cholesterol ≥200 mg/dL and/or LDL≥100 mg/dL. Subjects were divided into four groups: (1 pterostilbene 125 mg twice daily; (2 pterostilbene 50 mg twice daily; (3 pterostilbene 50 mg + grape extract (GE 100 mg twice daily; (4 matching placebo twice daily for 6–8 weeks. Endpoints included lipids, blood pressure, and weight. Linear mixed models were used to examine and compare changes in parameters over time. Models were adjusted for age, gender, and race. Results. LDL increased with pterostilbene monotherapy (17.1 mg/dL; P=0.001 which was not seen with GE combination (P=0.47. Presence of a baseline cholesterol medication appeared to attenuate LDL effects. Both systolic (−7.8 mmHg; P<0.01 and diastolic blood pressure (−7.3 mmHg; P<0.001 were reduced with high dose pterostilbene. Patients not on cholesterol medication (n=51 exhibited minor weight loss with pterostilbene (−0.62 kg/m2; P=0.012. Conclusion. Pterostilbene increases LDL and reduces blood pressure in adults. This trial is registered with Clinicaltrials.gov NCT01267227.

  12. Treatment patterns and risk factor control in patients with and without metabolic syndrome in cardiac rehabilitation

    Directory of Open Access Journals (Sweden)

    Gitt A

    2012-04-01

    Full Text Available Anselm Gitt1, Christina Jannowitz2, Marthin Karoff3, Barbara Karmann2, Martin Horack1, Heinz Völler4,51Institut für Herzinfarktforschung an der Universität Heidelberg, Ludwigshafen,2Medical Affairs, MSD Sharp and Dohme GmbH, Haar, 3Klinik Königsfeld der Deutschen Rentenversicherung Westfalen in Ennepetal (NRW, Klinik der Universität Witten-Herdecke, 4Kardiologie, Klinik am See, Rüdersdorf, 5Center of Rehabilitation Research, University Potsdam, GermanyAim: Metabolic syndrome (MetS is a clustering of factors that are associated with increased cardiovascular risk. We aimed to investigate the proportion of patients with MetS in patients undergoing cardiac rehabilitation (CR, and to describe differences between patients with MetS compared to those without MetS with regard to (1 patient characteristics including demographics, risk factors, and comorbidities, (2 risk factor management including drug treatment, and (3 control status of risk factors at entry to CR and discharge from CR.Methods: Post-hoc analysis of data from 27,904 inpatients (Transparency Registry to Objectify Guideline-Oriented Risk Factor Management registry that underwent a CR period of about 3 weeks were analyzed descriptively in total and compared by their MetS status.Results: In the total cohort, mean age was 64.3 years, (71.7% male, with no major differences between groups. Patients had been referred after a ST elevation of myocardial infarction event in 41.1% of cases, non-ST elevation of myocardial infarction in 21.8%, or angina pectoris in 16.7%. They had received a percutaneous coronary intervention in 55.1% and bypass surgery (coronary artery bypass graft in 39.5%. Patients with MetS (n = 15,819 compared to those without MetS (n = 12,085 were less frequently males, and in terms of cardiac interventions, more often received coronary artery bypass surgery. Overall, statin use increased from 79.9% at entry to 95.0% at discharge (MetS: 79.7% to 95.2%. Patients with Met

  13. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  14. L-carnitine ameliorated fasting-induced fatigue, hunger, and metabolic abnormalities in patients with metabolic syndrome: a randomized controlled study

    OpenAIRE

    Zhang, Jun-Jie; Wu, Zhi-bing; Cai, You-jin; Ke, Bin; Huang, Ying-juan; Qiu, Chao-ping; Yang, Yu-bing; Shi, Lan-Ying; QIN, JIAN

    2014-01-01

    Background The present study aimed to determine that whether L-carnitine infusion could ameliorate fasting-induced adverse effects and improve outcomes. Method In this 7-day, randomized, single-blind, placebo-controlled, pilot study, 15 metabolic syndrome (MetS) patients (11/4 F/M; age 46.9 ± 9.14 years; body mass index [BMI] 28.2 ± 1.8 kg/m2) were in the L-carnitine group (LC) and 15 (10/5 F/M; age 46.8 ± 10.9 years; BMI 27.1 ± 2.3 kg/m2) were in the control group (CT). All participants unde...

  15. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls.

    Directory of Open Access Journals (Sweden)

    Patricia Kuzaj

    Full Text Available Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE, a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.

  16. Hypovitaminosis D in type 2 diabetes: relation with features of the metabolic syndrome and glycemic control.

    Science.gov (United States)

    Miñambres, Inka; Sánchez-Quesada, Jose Luis; Vinagre, Irene; Sánchez-Hernández, Joan; Urgell, Eulalia; de Leiva, Alberto; Pérez, Antonio

    2015-01-01

    To assess the association of hypovitaminosis D with clinical and biochemical characteristics of type 2 diabetic patients and to determine the effect of glycemic control optimization on 25-hydroxyvitamin D (25(OH)D) concentrations. Cross-sectional study of 63 patients with type 2 diabetes (mean age 60 ± 9.8 years, 69.8% men). Twenty of the 63 patients were also studied before and after glycemic control optimization. Mean 25(OH)D concentrations were 63.64 ± 25.51 nmol/L and 74.6% of patients had hypovitaminosis D. Compared with patients with vitamin D sufficiency, patients with hypovitaminosis D had higher prevalence of overweight or obesity (72.3% versus 37.5%; p = 0.012) and higher VLDL cholesterol (VLDL-c) (0.71 (0.24-3.59) versus 0.45 (0.13-1.6) mmol/L; p = 0.011) and C-reactive protein (3.28 (0.36-17.69) versus 1.87 (0.18-17.47) mg/L; p = 0.033) concentrations. The composition of HDL particles also differed in both groups, with higher relative content of triglycerides and lower of cholesterol in patients with hypovitaminosis D. After adjustment for age, seasonality and BMI, differences remained significant for VLDL-c and triglyceride content of HDL. No differences were found regarding other diabetes characteristics. Improvement of glycemic control (HbA1c 9.4 (7.6-14.8) versus 7.3 (6.2-8.7)%; p = 0.000) was accompanied by a decrease in 25(OH)D concentrations (72.7 ± 33.3 to 59.0 ± 21.0 nmol/L; p = 0.035). Correlation analysis revealed that changes in 25(OH)D concentrations were negatively associated to changes in HbA1c (r - 0.482; p = 0.032). Hypovitaminosis D is associated with features of the metabolic syndrome in type 2 diabetes and improvement of glycemic control decreases 25(OH)D concentrations.

  17. Does Telephone Follow-Up and Education Affect Self-Care and Metabolic Control in Diabetic Patients?

    Science.gov (United States)

    Aytekin Kanadli, Keriman; Ovayolu, Nimet; Ovayolu, Özlem

    2016-01-01

    The major goal of diabetes control is to assist patients to perform self-care and metabolic control. One possible way to achieve this goal is education and regular monitoring of patients by telephone. Thus, the present study was conducted with the aim of investigating the impact of education and telephone follow-up on self-care and metabolic control in diabetic patients. This experimental study was conducted at a hospital in the Central Anatolia region of Turkey, with 88 diabetic patients including 44 intervention subjects and 44 control subjects. After an initial discussion, patients in the intervention group received education and telephone follow-up for 3 months. Required approvals were obtained before initiation of the study. Data were collected using a questionnaire form and the Diabetes Self-Care Scale. The Diabetes Self-Care Scale scores ranged between 140 and 210, where higher scores indicated increased self-care activities of patients. At the end of the study, the self-care score was found to increase from 61.3 ± 10.9 to 89.9 ± 12.3 in the intervention group (P self-care scores and had a positive impact on metabolic control variables. In light of these findings, we suggest that education and tele-health home monitoring may be provided on a continuous basis to help patients sustain self-care behaviors that they have adopted during the study period.

  18. Relationship between chronic periodontitis and metabolic syndrome: a case-control study

    Directory of Open Access Journals (Sweden)

    Manovijay Balagangadharan

    2015-05-01

    Results: The results of the present study showed that the periodontal condition of group one patients were poor compared to group two patients. The periodontal conditioned worsened with an increase in the metabolic components. Conclusion: Based on the results of our study, it can be concluded that that periodontitis and metabolic syndrome were confounding the systemic effects of each other. Dentists should counsel their patients regarding the health hazards of metabolic syndrome and periodontitis and motivate them to maintain good oral hygiene and follow healthy life-style. [Int J Res Med Sci 2015; 3(5.000: 1257-1261

  19. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments

    Directory of Open Access Journals (Sweden)

    Milene L. Brownlow

    2017-05-01

    Full Text Available Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a augment cognitive outcomes in healthy subjects; and (b prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD, ketone supplemented (KS, or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the

  20. Metabolic syndrome, its components and risk of age-related cataract extraction: a case-control study in Italy.

    Science.gov (United States)

    Galeone, Carlotta; Petracci, Elisabetta; Pelucchi, Claudio; Zucchetto, Antonella; La Vecchia, Carlo; Tavani, Alessandra

    2010-05-01

    We sought to explore the relationship between age-related cataract extraction and the metabolic syndrome or its various components separately and in various combinations in an Italian case-control study. A total of 761 cases and 1,522 controls in hospital for acute, non-neoplastic, non-ophthalmologic, non-metabolic diseases were interviewed between 1991 and 2003. Odds ratios (ORs), and their 95% confidence intervals (CIs), were computed from multiple logistic regression models, conditioned on sex, age, and study center and adjusted for education and smoking. The ORs were 1.41 for a history of central obesity, 1.42 for hypertension, 1.25 for hyperlipidemia, and 1.16 for diabetes. Patients with the metabolic syndrome (defined as the simultaneous presence of central obesity and at least two other factors among hypertension, hyperlipidemia, diabetes) had an increased risk of cataract, with an OR of 2.01 (95% CI: 1.43-2.83). The ORs were 1.75 for the presence of any of two components and 2.50 for three to four components, with a linear trend in risk. This study indicates that the metabolic syndrome, its components, and their combination are associated with an increased risk of cataract extraction in this Italian population. 2010 Elsevier Inc. All rights reserved.

  1. Control of Nutrient Stress-Induced Metabolic Reprogramming by PKCζ in Tumorigenesis

    Science.gov (United States)

    Ma, Li; Tao, Yongzhen; Duran, Angeles; Llado, Victoria; Galvez, Anita; Barger, Jennifer F.; Castilla, Elias A.; Chen, Jing; Yajima, Tomoko; Porollo, Aleksey; Medvedovic, Mario; Brill, Laurence M.; Plas, David R.; Riedl, Stefan J.; Leitges, Michael; Diaz-Meco, Maria T.; Richardson, Adam D.; Moscat, Jorge

    2013-01-01

    SUMMARY Tumor cells have high-energetic and anabolic needs and are known to adapt their metabolism to be able to survive and keep proliferating under conditions of nutrient stress. We show that PKCζ deficiency promotes the plasticity necessary for cancer cells to reprogram their metabolism to utilize glutamine through the serine biosynthetic pathway in the absence of glucose. PKCζ represses the expression of two key enzymes of the pathway, PHGDH and PSAT1, and phosphorylates PHGDH at key residues to inhibit its enzymatic activity. Interestingly, the loss of PKCζ in mice results in enhanced intestinal tumorigenesis and increased levels of these two metabolic enzymes, whereas patients with low levels of PKCζ have a poor prognosis. Furthermore, PKCζ and caspase-3 activities are correlated with PHGDH levels in human intestinal tumors. Taken together, this demonstrates that PKCζ is a critical metabolic tumor suppressor in mouse and human cancer. PMID:23374352

  2. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon dioxide...

  3. Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream.

    Science.gov (United States)

    Ecosystem metabolism is an important mechanism for nutrient retention in streams, yet few high studies have investigated temporal patterns in gross primary production (GPP) and ecosystem respiration (ER) using high frequency measurements. This is a potentially important oversig...

  4. Early life origins of metabolic disease: Developmental programming of hypothalamic pathways controlling energy homeostasis.

    Science.gov (United States)

    Dearden, Laura; Ozanne, Susan E

    2015-10-01

    A wealth of animal and human studies demonstrate that perinatal exposure to adverse metabolic conditions - be it maternal obesity, diabetes or under-nutrition - results in predisposition of offspring to develop obesity later in life. This mechanism is a contributing factor to the exponential rise in obesity rates. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of energy homeostasis as an underlying cause. Perinatal development of the hypothalamus (a brain region key to metabolic regulation) is plastic and sensitive to metabolic signals during this critical time window. Recent research in non-human primate and rodent models has demonstrated that exposure to adverse maternal environments impairs the development of hypothalamic structure and consequently function, potentially underpinning metabolic phenotypes in later life. This review summarizes our current knowledge of how adverse perinatal environments program hypothalamic development and explores the mechanisms that could mediate these effects.

  5. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI

    Science.gov (United States)

    Puy, Cristina; Tucker, Erik I.; Ivanov, Ivan S.; Gailani, David; Smith, Stephanie A.; Morrissey, James H.; Gruber, András; McCarty, Owen J. T.

    2016-01-01

    Introduction Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Methods and Results Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Conclusions Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP. PMID:27764259

  6. Tuning the Phosphoryl Donor Specificity of Dihydroxyacetone Kinase from ATP to Inorganic Polyphosphate. An Insight from Computational Studies

    Directory of Open Access Journals (Sweden)

    Israel Sánchez-Moreno

    2015-11-01

    Full Text Available Dihydroxyacetone (DHA kinase from Citrobacter freundii provides an easy entry for the preparation of DHA phosphate; a very important C3 building block in nature. To modify the phosphoryl donor specificity of this enzyme from ATP to inorganic polyphosphate (poly-P; a directed evolution program has been initiated. In the first cycle of evolution, the native enzyme was subjected to one round of error-prone PCR (EP-PCR followed directly (without selection by a round of DNA shuffling. Although the wild-type DHAK did not show activity with poly-P, after screening, sixteen mutant clones showed an activity with poly-phosphate as phosphoryl donor statistically significant. The most active mutant presented a single mutation (Glu526Lys located in a flexible loop near of the active center. Interestingly, our theoretical studies, based on molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics (QM/MM optimizations, suggest that this mutation has an effect on the binding of the poly-P favoring a more adequate position in the active center for the reaction to take place.

  7. Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria – a step to phosphorus security in agriculture

    Directory of Open Access Journals (Sweden)

    Chandan eMukherjee

    2015-12-01

    Full Text Available Phosphorus (P, an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp. and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale.

  8. Activities of genes controlling sphingolipid metabolism in human fibroblasts treated with flavonoids

    OpenAIRE

    Moskot, Marta; Jakóbkiewicz-Banecka, Joanna; Smolińska, Elwira; Banecki, Bogdan; Węgrzyn, Grzegorz; Gabig-Cimińska, Magdalena

    2015-01-01

    Natural flavonoids such as genistein, kaempferol and daidzein were previously found to be able to reduce efficiency of glycosaminoglycan synthesis in cells of patients suffering from mucopolysaccharidoses, inherited metabolic diseases with often brain disease symptoms. This feature was employed to test these compounds as potential drugs for treatment other neuronopathic lysosomal storage disorders, in which errors in sphingolipid metabolism occur. In this report, on the basis of DNA microarra...

  9. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    Science.gov (United States)

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism.

  10. Adolescents with type 1 diabetes: parental perceptions of child health and family functioning and their relationship to adolescent metabolic control.

    Science.gov (United States)

    Moore, Susan M; Hackworth, Naomi J; Hamilton, Victoria E; Northam, Elisabeth P; Cameron, Fergus J

    2013-03-22

    Adolescents with Type 1 diabetes (T1D) show less effective metabolic control than other age groups, partly because of biological changes beyond their control and partly because in this period of developmental transition, psychosocial factors can militate against young people upholding their lifestyle and medical regimens. Parents have an important role to play in supporting adolescents to self-manage their disease, but resultant family tensions can be high. In this study, we aimed to assess family functioning and adolescent behaviour/ adjustment and examine the relationships between these parent-reported variables and adolescent metabolic control (HbA1c), self-reported health and diabetes self-care. A sample of 76 parents of Australian adolescents with T1D completed the Child Health Questionnaire -Parent form. Their adolescent child with T1D provided their HbA1c level from their most recent clinic visit, their self-reported general health, and completed a measure of diabetes self-care. Parent-reported family conflict was high, as was disease impact on family dynamics and parental stress. Higher HbA1c (poorer metabolic control) and less adequate adolescent self-care were associated with lower levels of family functioning, more adolescent behavioural difficulties and poorer adolescent mental health. The implication of these findings was discussed in relation to needs for information and support among Australian families with an adolescent with T1D, acknowledging the important dimension of family functioning and relationships in adolescent chronic disease management.

  11. Soft sensor control of metabolic fluxes in a recombinant Escherichia coli fed-batch cultivation producing green fluorescence protein.

    Science.gov (United States)

    Gustavsson, Robert; Mandenius, Carl-Fredrik

    2013-10-01

    A soft sensor approach is described for controlling metabolic overflow from mixed-acid fermentation and glucose overflow metabolism in a fed-batch cultivation for production of recombinant green fluorescence protein (GFP) in Escherichia coli. The hardware part of the sensor consisted of a near-infrared in situ probe that monitored the E. coli biomass and an HPLC analyzer equipped with a filtration unit that measured the overflow metabolites. The computational part of the soft sensor used basic kinetic equations and summations for estimation of specific rates and total metabolite concentrations. Two control strategies for media feeding of the fed-batch cultivation were evaluated: (1) controlling the specific rates of overflow metabolism and mixed-acid fermentation metabolites at a fixed pre-set target values, and (2) controlling the concentration of the sum of these metabolites at a set level. The results indicate that the latter strategy was more efficient for maintaining a high titer and low variability of the produced recombinant GFP protein.

  12. LA Sprouts Randomized Controlled Nutrition, Cooking and Gardening Program Reduces Obesity and Metabolic Risk in Latino Youth

    Science.gov (United States)

    Gatto, Nicole M.; Martinez, Lauren C.; Spruijt-Metz, Donna; Davis, Jaimie N.

    2015-01-01

    Objective To assess the effects of a 12-week gardening, nutrition, and cooking intervention (“LA Sprouts”) on dietary intake, obesity parameters and metabolic disease risk among low-income, primarily Hispanic/Latino youth in Los Angeles. Methods Randomized control trial involving four elementary schools [2 schools randomized to intervention (172, 3rd–5th grade students); 2 schools randomized to control (147, 3rd–5th grade students)]. Classes were taught in 90-minute sessions once a week to each grade level for 12 weeks. Data collected at pre- and post-intervention included dietary intake via food frequency questionnaire (FFQ), anthropometric measures [BMI, waist circumference (WC)], body fat, and fasting blood samples. Results LA Sprouts participants had significantly greater reductions in BMI z-scores (0.1 versus 0.04 point decrease, respectively; p=0.01) and WC (−1.2 cm vs. no change; p<0.001). Fewer LA Sprouts participants had the metabolic syndrome (MetSyn) after the intervention than before, while the number of controls with MetSyn increased. LA Sprouts participants had improvements in dietary fiber intake (+3.5% vs. −15.5%; p=0.04) and less decreases in vegetable intake (−3.6% vs. −26.4%; p=0.04). Change in fruit intake before and after the intervention did not significantly differ between LAS and control subjects. Conclusions LA Sprouts was effective in reducing obesity and metabolic risk. PMID:25960146

  13. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer.

    Science.gov (United States)

    Seyfried, T N; Sanderson, T M; El-Abbadi, M M; McGowan, R; Mukherjee, P

    2003-10-06

    Brain tumours lack metabolic versatility and are dependent largely on glucose for energy. This contrasts with normal brain tissue that can derive energy from both glucose and ketone bodies. We examined for the first time the potential efficacy of dietary therapies that reduce plasma glucose and elevate ketone bodies in the CT-2A syngeneic malignant mouse astrocytoma. C57BL/6J mice were fed either a standard diet unrestricted (SD-UR), a ketogenic diet unrestricted (KD-UR), the SD restricted to 40% (SD-R), or the KD restricted to 40% of the control standard diet (KD-R). Body weights, tumour weights, plasma glucose, beta-hydroxybutyrate (beta-OHB), and insulin-like growth factor 1 (IGF-1) were measured 13 days after tumour implantation. CT-2A growth was rapid in both the SD-UR and KD-UR groups, but was significantly reduced in both the SD-R and KD-R groups by about 80%. The results indicate that plasma glucose predicts CT-2A growth and that growth is dependent more on the amount than on the origin of dietary calories. Also, restriction of either diet significantly reduced the plasma levels of IGF-1, a biomarker for angiogenesis and tumour progression. Owing to a dependence on plasma glucose, IGF-1 was also predictive of CT-2A growth. Ketone bodies are proposed to reduce stromal inflammatory activities, while providing normal brain cells with a nonglycolytic high-energy substrate. Our results in a mouse astrocytoma suggest that malignant brain tumours are potentially manageable with dietary therapies that reduce glucose and elevate ketone bodies.

  14. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape.

    Directory of Open Access Journals (Sweden)

    Mirjam Ochsner

    Full Text Available BACKGROUND: Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D. METHODOLOGY/PRINCIPAL FINDINGS: Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant. CONCLUSION/SIGNIFICANCE: These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell

  15. Interactions of glucagon and free fatty acids with insulin in control of glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Chambrier, C.; Picard, S.; Vidal, H.; Cohen, R.; Riou, J.P.; Beylot, M. (Faculte de Medecine Alexis Carrel, Lyon (France))

    1990-09-01

    To study the interactions of physiological glucagon and free fatty acids (FFA) concentrations with insulin in the control of glucose metabolism, we determined in normal subjects the response of endogenous glucose production (EGP) and glucose utilization (Rd) to a progressive and moderate increase of insulinemia in the presence of glucagon and FFA levels either decreased (somatostatin (SRIF) and insulin infusion, C test) or maintained to normal postabsorptive values isolated (SRIF + insulin + glucagon infusion, G test; SRIF + insulin + Intralipid infusion, IL test) or in association (SRIF + insulin + glucagon + Intralipid infusion, IL + G test). Compared with the C test, maintenance of glucagon level had only small and inconsistent effects on glucose Rd, but induced a shift to the right of the dose-response curve to insulin of EGP (apparent ED50: C test, 10.9 mU.L-1; G test, 15.2 mU.L-1). Intralipid infusion resulted, whether glucagon was substituted or not, in a near total suppression of the insulin-induced increase of glucose Rd (Rd at the end of the tests: C test, 6.13 +/- 0.85 mg.kg-1.min-1; G test, 7.29 +/- 0.87 mg.kg-1.min-1; IL test, 3.30 +/- 0.65 mg.kg-1.min-1; IL + G test, 3.57 +/- 0.42 mg.kg-1.min-1). In the absence of glucagon, substitution Intralipid infusion also antagonized the action of insulin on EGP. However, this effect was no longer apparent when glucagon was replaced (dose-response curve to insulin of EGP during the G and the IL + G test were comparable).

  16. Transitions in insect respiratory patterns are controlled by changes in metabolic rate.

    Science.gov (United States)

    Contreras, H L; Bradley, T J

    2010-05-01

    We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.

  17. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available BACKGROUND: Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1 whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group, (2 Whole grain enriched diet (WGED group, which includes principally the same grain products as group (1, but with no change in fish or berry consumption, and (3 refined wheat breads (Control. Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3 long-chain PUFAs increased (False Discovery Rate p-values <0.05. Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3 PUFA. CONCLUSIONS/SIGNIFICANCE: The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a

  18. Evidence for polyphosphate accumulating organism (PAO)-mediated phosphorus cycling in stream biofilms under alternating aerobic/anaerobic conditions

    Science.gov (United States)

    Phosphorus (P) is often a limiting nutrient in freshwater ecosystems and excessive inputs can lead to eutrophication. In-stream cycling of P involves complex biological, chemical, and physical processes that are not fully understood. Microbial metabolisms are suspected to control oxygen-dependent up...

  19. Effects of supportive telephone counseling in the metabolic control of elderly people with diabetes mellitus.

    Science.gov (United States)

    Becker, Tânia Alves Canata; Teixeira, Carla Regina de Souza; Zanetti, Maria Lúcia; Pace, Ana Emília; Almeida, Fábio Araújo; Torquato, Maria Teresa da Costa Gonçalves

    2017-01-01

    the purpose of this study was to evaluate the efficacy of telephone-based support for the metabolic control of elderly patients with diabetes mellitus. a pragmatic study was conducted in two groups, called G1 (n=36) and G2 (n=27), at a health unit from the countryside of São Paulo state. Patients in G1 group received telephone support over four months, through 16 telephone contacts with educational material; for the G2 group the educational material was mailed. significant differences were found. The G1 group showed a reduction of the parameters of fasting glucose, as well as systolic and diastolic blood pressure. In G2 group a modest reduction was noted in some parameters, with no significant difference. telephone support was effective to deliver patient education to the diabetic elderly, leading to the reduction of fasting blood glucose. This, combined with other strategies, can contribute to reduce glycated hemoglobin (NCT 01972412). avaliar a efetividade do suporte telefônico no controle metabólico de idosos com diabetes mellitus. estudo pragmático com 63 participantes, alocados em dois grupos, denominados G1(n=36) e G2(n=27), em uma unidade de saúde do interior paulista. O suporte telefônico foi oferecido, durante quatro meses, para o G1, por meio de 16 ligações telefônicas com conteúdo educativo, e, para o G2, foram enviadas correspondências por via postal. no G1 houve significância estatística na redução dos parâmetros das variáveis glicemia de jejum, pressão arterial sistólica e diastólica. No G2, houve redução discreta de algumas variáveis, mas sem significância estatística. o suporte telefônico foi considerado uma estratégia educativa efetiva para idosos com diabetes mellitus e favoreceu a redução da glicemia de jejum e, em conjunto com outras estratégias, pode agregar valor na redução da hemoglobina glicada (NCT 01972412).

  20. Biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composites for osteosynthesis applications

    Science.gov (United States)

    Ramsay, Scott Desmond

    The formation of biodegradable implants for use in osteosynthesis has been a major goal of biomaterials research for the past two to three decades. Self-reinforced polylactide systems represent the most significant success of this research to date, however with elastic constants of, at most, 12--15 GPa, they fail to provide the necessary initial stiffness required of devices designed for stabilizing fractures of major load-bearing bones. One objective of this study has been the development of a biodegradable composite suitable for fabrication of implants for the repair of fractures of major load-bearing bones. Specifically, this research has focussed on the use of calcium polyphosphate (CPP), an uiorganic polymer in combination with polyvinyl-urethane carbonate (PVUC) organic polymers. Composite samples were formed as interpenetrating phase composites (IPC), particle-reinforced composites (PRC), and fibre-reinforced composites (FRC). Additionally, the IPCs were produced as both monolithic and laminated specimens. PRC samples exhibit too low asmade elastic constant for fracture fixation applications, while the IPC and FRC samples exhibit desired as-made strength and bending stiffness but lose these properties too rapidly when exposed to aqueous-based in vitro aging, simulating in vivo conditions. An investigation to determine the mechanism of the rapid in vitro degradation was undertaken using a model IPC system to study the effect of the interfacial strength on the mechanical properties of the composite. In addition, these studies provided further support for a hypothesis to explain the observed high mechanical properties of the as-made CPP-PVUC interpenetrating phase composites. It was found that strong interfacial strength is very significant in obtaining appropriate mechanical properties in the IPC system. Results support the conclusion that a rapid loss of the CPP-PVUC interface through exposure to an aqueous environment, as well as stresses imposed on the CPP

  1. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming.

  2. Prenatal malnutrition leads to deficits in attentional set shifting and decreases metabolic activity in prefrontal subregions that control executive function.

    Science.gov (United States)

    McGaughy, Jill A; Amaral, Ana C; Rushmore, R Jarrett; Mokler, David J; Morgane, Peter J; Rosene, Douglas L; Galler, Janina R

    2014-01-01

    Globally, over 25% of all children under the age of 5 years experience malnutrition leading to cognitive and emotional impairments that can persist into adulthood and beyond. We use a rodent model to determine the impact of prenatal protein malnutrition on executive functions in an attentional set-shifting task and metabolic activity in prefrontal cortex (PFC) subregions critical to these behaviors. Long-Evans dams were provided with a low (6% casein) or adequate (25% casein) protein diet 5 weeks before mating and during pregnancy. At birth, the litters were culled to 8 pups and fostered to control dams on the 25% casein diet. At postnatal day 90, prenatally malnourished rats were less able to shift attentional set and reverse reward contingencies than controls, demonstrating cognitive rigidity. Naive same-sexed littermates were assessed for regional brain activity using the metabolic marker (14)C-2-deoxyglucose (2DG). The prenatally malnourished rats had lower metabolic activity than controls in prelimbic, infralimbic, anterior cingulate, and orbitofrontal cortices, but had comparable activity in the nearby piriform cortex and superior colliculus. This study demonstrates that prenatal protein malnutrition in a well-described animal model produces cognitive deficits in tests of attentional set shifting and reversal learning, similar to findings of cognitive inflexibility reported in humans exposed to early childhood malnutrition. © 2014 S. Karger AG, Basel.

  3. Effect of strict metabolic control on regulation of subcutaneous blood flow in insulin-dependent diabetic patients

    DEFF Research Database (Denmark)

    Kastrup, J; Mathiesen, E R; Saurbrey, Nina

    1987-01-01

    washout technique. Mean arterial blood pressure was reduced by a maximum of 23 mmHg by elevating the limb above heart level and elevated to a maximum of 65 mmHg by head-up tilt; in the latter position venous pressure was kept constantly low by activation of the leg muscle vein pump (heel raising......The effect of 10 weeks of improved metabolic control on the impaired autoregulation of the subcutaneous blood flow was studied at the level of the lateral malleolus in eight long-term insulin-dependent diabetic patients with clinical microangiopathy. Blood flow was measured by the local 133-Xenon......). Improved metabolic control was achieved using either continuous subcutaneous insulin infusion or multiple insulin injections. The blood glucose concentration declined from (median) 12.7 to 6.8 mmol/l and the HbA1C level from 10.1 to 7.5% during strict metabolic control (p less than 0.01 and p less than 0...

  4. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    cultures. We first reconstructed a genome-scale metabolic model and used this for integrative analysis of multilevel omics data. Metabolite profiling and lipidomics was used to quantify the cellular physiology, while regulatory changes were measured using RNAseq. Analysis of the data showed that lipid......Yarrowia lipolytica is a promising microbial cell factory for the production of lipids to be used as fuels and chemicals, but there are few studies on regulation of its metabolism. Here we performed the first integrated data analysis of Y. lipolytica grown in carbon and nitrogen limited chemostat...... accumulation in Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation...

  5. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    Science.gov (United States)

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  6. Control of lipid metabolism by adipocyte FGFR1-mediated adipohepatic communication during hepatic stress

    Directory of Open Access Journals (Sweden)

    Yang Chaofeng

    2012-10-01

    Full Text Available Abstract Background Endocrine FGF19 and FGF21 exert their effects on metabolic homeostasis through fibroblast growth factor receptor (FGFR and co-factor betaKlotho (KLB. Ileal FGF19 regulates bile acid metabolism through specifically FGFR4-KLB in hepatocytes where FGFR1 is not significant. Both FGF19 and FGF21 activate FGFR1-KLB whose function predominates in adipocytes. Recent studies using administration of FGF19 and FGF21 and genetic ablation of KLB or adipocyte FGFR1 indicate that FGFR1-KLB mediates the response of adipocytes to both FGF21 and FGF19. Here we show that adipose FGFR1 regulates lipid metabolism through direct effect on adipose tissue and indirect effects on liver under starvation conditions that cause hepatic stress. Methods We employed adipocyte-specific ablations of FGFR1 and FGFR2 genes in mice, and analyzed metabolic consequences in adipose tissue, liver and systemic parameters under normal, fasting and starvation conditions. Results Under normal conditions, the ablation of adipose FGFR1 had little effect on adipocytes, but caused shifts in expression of hepatic genes involved in lipid metabolism. Starvation conditions precipitated a concurrent elevation of serum triglycerides and non-esterified fatty acids, and increased hepatic steatosis and adipose lipolysis in the FGFR1-deficient mice. Little effect on glucose or ketone bodies due to the FGFR1 deficiency was observed. Conclusions Our results suggest an adipocyte-hepatocyte communication network mediated by adipocyte FGFR1 that concurrently dampens hepatic lipogenesis and adipocyte lipolysis. We propose that this serves overall to mete out and extend lipid reserves for neural fuels (glucose and ketone bodies, while at the same time governing extent of hepatosteatosis during metabolic extremes and other conditions causing hepatic stress.

  7. A Prophage-Encoded Small RNA Controls Metabolism and Cell Division in Escherichia coli.

    Science.gov (United States)

    Balasubramanian, Divya; Ragunathan, Preethi T; Fei, Jingyi; Vanderpool, Carin K

    2016-01-01

    Hundreds of small RNAs (sRNAs) have been identified in diverse bacterial species, and while the functions of most remain unknown, some regulate key processes, particularly stress responses. The sRNA DicF was identified over 25 years ago as an inhibitor of cell division but since then has remained uncharacterized. DicF consists of 53 nucleotides and is encoded by a gene carried on a prophage (Qin) in the genomes of many Escherichia coli strains. We demonstrated that DicF inhibits cell division via direct base pairing with ftsZ mRNA to repress translation and prevent new synthesis of the bacterial tubulin homolog FtsZ. Systems analysis using computational and experimental methods identified additional mRNA targets of DicF: xylR and pykA mRNAs, encoding the xylose uptake and catabolism regulator and pyruvate kinase, respectively. Genetic analyses showed that DicF directly base pairs with and represses translation of these targets. Phenotypes of cells expressing DicF variants demonstrated that DicF-associated growth inhibition is not solely due to repression of ftsZ, indicating that the physiological consequences of DicF-mediated regulation extend beyond effects on cell division caused by reduced FtsZ synthesis. IMPORTANCE sRNAs are ubiquitous and versatile regulators of bacterial gene expression. A number of well-characterized examples in E. coli are highly conserved and present in the E. coli core genome. In contrast, the sRNA DicF (identified over 20 years ago but remaining poorly characterized) is encoded by a gene carried on a defective prophage element in many E. coli genomes. Here, we characterize DicF in order to better understand how horizontally acquired sRNA regulators impact bacterial gene expression and physiology. Our data confirm the long-hypothesized DicF-mediated regulation of ftsZ, encoding the bacterial tubulin homolog required for cell division. We further uncover DicF-mediated posttranscriptional control of metabolic gene expression. Ectopic

  8. Effects on Metabolic Health after a 1-Year-Lifestyle Intervention in Overweight and Obese Children: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Maria Waling

    2012-01-01

    Results. BMI z-scores decreased in both groups, 0.22 (P = 0.002 and 0.23 (P = 0.003 in intervention and control group, respectively, during the 1-year study, but there was no difference in BMI between the groups at 1-year measurement (P = 0.338. After 1 year, there was a significant difference in waist circumference, waist/hip ratio, and apolipoprotein B/A1 ratio between intervention and control group. Conclusions. The intervention had limited effects on anthropometrics and metabolic markers, which emphasizes the need of preventing childhood overweight and obesity.

  9. Elements of metabolic control in children with type 1 diabetes before and after introduction to insulin analogues

    OpenAIRE

    Baloš Ljiljana; Sajić Silvija; Zdravković Vera

    2011-01-01

    Introduction. Diabetes mellitus type 1 (T1DM) in children is characterized by unstable course. A significant number of studies shows that introduction to insulin analogues treatment aims towards better control of the disease. Objective. The assessment of metabolic control in children with T1DM that were introduced to insulin analogue treatment after many years of treatment with classic (human) insulin. Methods. The study included 59 patients 2-19 years old (12.9±3.8) with T1DM, transfer...

  10. Improved Glycemic Control with Colesevelam Treatment in Patients with Type 2 Diabetes Is Not Directly Associated with Changes in Bile Acid Metabolism

    NARCIS (Netherlands)

    Brufau Dones, Gemma; Stellaard, Frans; Prado, Kris; Bloks, Vincent W.; Jonkers, Elles; Boverhof, Renze; Kuipers, Folkert; Murphy, Elizabeth J.

    2010-01-01

    Bile acids (BAs) are essential for fat absorption and appear to modulate glucose and energy metabolism. Colesevelam, a BA sequestrant, improves glycemic control in type 2 diabetes mellitus (T2DM). We aimed to characterize the alterations in BA metabolism associated with T2DM and colesevelam treatmen

  11. Improved Hypertension Control with the Imidazoline Agonist Moxonidine in a Multinational Metabolic Syndrome Population: Principal Results of the MERSY Study.

    Science.gov (United States)

    Chazova, Irina; Schlaich, Markus P

    2013-01-01

    This study was designed to assess the effects of moxonidine on blood pressure and aspects of the metabolic syndrome in racially diverse population of patients encountered in routine medical practice. Physicians collected data on a minimum of three consecutive patients with uncontrolled essential hypertension and criteria for metabolic syndrome, eligible to receive moxonidine (0.2-0.4 mg once daily) for 6 months, either as monotherapy or as adjunct therapy to current antihypertensive treatment. Systolic and diastolic blood pressure (BP) declined by an average of 24.5 + 14.3 mmHg and 12.6 + 9.1 mmHg, respectively. BP responder rates defined as attaining BP < 140/90 mmHg were significantly (P < 0.001) and substantially higher among younger patients, nonpostmenopausal women, and patients receiving monotherapy. While potentially relevant improvements in the entire cohort were observed in regard to body weight (-2.1 ± 5.4 kg), fasting plasma glucose (from 6.8 to 6.2 mmol/L), and triglycerides (2.4 to 2.0 mmol/L), statistically significant changes in metabolic parameters could only be detected in subgroup analyses. Moxonidine therapy reduced blood pressure and improved rates of blood pressure control in this group of patients. While the observed trend towards improvement in various metabolic parameters merits further investigation, the overall effect of moxonidine treatment is consistent with a reduction of total cardiovascular risk in this hypertensive metabolic syndrome cohort.

  12. Improved Hypertension Control with the Imidazoline Agonist Moxonidine in a Multinational Metabolic Syndrome Population: Principal Results of the MERSY Study

    Directory of Open Access Journals (Sweden)

    Irina Chazova

    2013-01-01

    Full Text Available This study was designed to assess the effects of moxonidine on blood pressure and aspects of the metabolic syndrome in racially diverse population of patients encountered in routine medical practice. Physicians collected data on a minimum of three consecutive patients with uncontrolled essential hypertension and criteria for metabolic syndrome, eligible to receive moxonidine (0.2–0.4 mg once daily for 6 months, either as monotherapy or as adjunct therapy to current antihypertensive treatment. Systolic and diastolic blood pressure (BP declined by an average of 24.5+14.3 mmHg and 12.6+9.1 mmHg, respectively. BP responder rates defined as attaining BP < 140/90 mmHg were significantly (P<0.001 and substantially higher among younger patients, nonpostmenopausal women, and patients receiving monotherapy. While potentially relevant improvements in the entire cohort were observed in regard to body weight (-2.1±5.4 kg, fasting plasma glucose (from 6.8 to 6.2 mmol/L, and triglycerides (2.4 to 2.0 mmol/L, statistically significant changes in metabolic parameters could only be detected in subgroup analyses. Moxonidine therapy reduced blood pressure and improved rates of blood pressure control in this group of patients. While the observed trend towards improvement in various metabolic parameters merits further investigation, the overall effect of moxonidine treatment is consistent with a reduction of total cardiovascular risk in this hypertensive metabolic syndrome cohort.

  13. Fatty liver associated with metabolic derangement in patients with chronic kidney disease: A controlled attenuation parameter study

    Directory of Open Access Journals (Sweden)

    Chang-Yun Yoon

    2017-03-01

    Full Text Available Background: Hepatic steatosis measured with controlled attenuation parameter (CAP using transient elastography predicts metabolic syndrome in the general population. We investigated whether CAP predicted metabolic syndrome in chronic kidney disease patients. Methods: CAP was measured with transient elastography in 465 predialysis chronic kidney disease patients (mean age, 57.5 years. Results: The median CAP value was 239 (202–274 dB/m. In 195 (41.9% patients with metabolic syndrome, diabetes mellitus was more prevalent (105 [53.8%] vs. 71 [26.3%], P < 0.001, with significantly increased urine albumin-to-creatinine ratio (184 [38–706] vs. 56 [16–408] mg/g Cr, P = 0.003, high sensitivity C-reactive protein levels (5.4 [1.4–28.2] vs. 1.7 [0.6–9.9] mg/L, P < 0.001, and CAP (248 [210–302] vs. 226 [196–259] dB/m, P < 0.001. In multiple linear regression analysis, CAP was independently related to body mass index (β = 0.742, P < 0.001, triglyceride levels (β = 2.034, P < 0.001, estimated glomerular filtration rate (β = 0.316, P = 0.001, serum albumin (β = 1.386, P < 0.001, alanine aminotransferase (β = 0.064, P = 0.029, and total bilirubin (β = −0.881, P = 0.009. In multiple logistic regression analysis, increased CAP was independently associated with increased metabolic syndrome risk (per 10 dB/m increase; odds ratio, 1.093; 95% confidence interval, 1.009–1.183; P = 0.029 even after adjusting for multiple confounding factors. Conclusion: Increased CAP measured with transient elastography significantly correlated with and could predict increased metabolic syndrome risk in chronic kidney disease patients.

  14. Role of gut microbiota in the control of energy and carbohydrate metabolism

    NARCIS (Netherlands)

    Venema, K.

    2010-01-01

    Purpose of review: To describe the recent developments and insights gained in the role played by the colonic microbiota in energy and carbohydrate metabolism related to obesity in humans. Recent findings: Previous findings that the ratio of Firmicutes and Bacteriodetes is important in energy harvest

  15. Role of gut microbiota in the control of energy and carbohydrate metabolism

    NARCIS (Netherlands)

    Venema, K.

    2010-01-01

    Purpose of review: To describe the recent developments and insights gained in the role played by the colonic microbiota in energy and carbohydrate metabolism related to obesity in humans. Recent findings: Previous findings that the ratio of Firmicutes and Bacteriodetes is important in energy harvest

  16. Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKIIa

    Science.gov (United States)

    Santos, Gustavo Jorge dos; Ferreira, Sandra Mara; Ortis, Fernanda; Rezende, Luiz Fernando; Li, Chengyang; Naji, Ali; Carneiro, Everardo Magalhães; Kaestner, Klaus H.; Boschero, Antonio Carlos

    2014-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) functions both in regulation of insulin secretion and neurotransmitter release through common downstream mediators. Therefore, we hypothesized that pancreatic ß-cells acquire and store the information contained in calcium pulses as a form of “metabolic memory”, just as neurons store cognitive information. To test this hypothesis, we developed a novel paradigm of pulsed exposure of ß-cells to intervals of high glucose, followed by a 24-h consolidation period to eliminate any acute metabolic effects. Strikingly, ß-cells exposed to this high-glucose pulse paradigm exhibited significantly stronger insulin secretion. This metabolic memory was entirely dependent on CaMKII. Metabolic memory was reflected on the protein level by increased expression of proteins involved in glucose sensing and Ca2+-dependent vesicle secretion, and by elevated levels of the key ß-cell transcription factor MAFA. In summary, like neurons, human and mouse ß-cells are able to acquire and retrieve information. PMID:24944908

  17. Carbon catabolite repression and global control of the carbohydrate metabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Luesink, E.J.

    1998-01-01

    In view of the economic importance of fermented dairy products considerable scientific attention has been given to various steps of fermentation processes, including the L-lactate formation of lactic acid bacteria (de Vos, 1996). In particular, the carbohydrate metabolism of L. lactis has been the s

  18. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature

    Science.gov (United States)

    Kéraval, Benoit; Lehours, Anne Catherine; Colombet, Jonathan; Amblard, Christian; Alvarez, Gaël; Fontaine, Sébastien

    2016-11-01

    Soil heterotrophic respiration is a major determinant of the carbon (C) cycle and its interactions with climate. Given the complexity of the respiratory machinery, it is traditionally considered that oxidation of organic C into carbon dioxide (CO2) strictly results from intracellular metabolic processes. Here we show that C mineralization can operate in soils deprived of all observable cellular forms. Moreover, the process responsible for CO2 emissions in sterilized soils induced a strong C isotope fractionation (up to 50 ‰) incompatible with respiration of cellular origin. The supply of 13C glucose in sterilized soil led to the release of 13CO2 suggesting the presence of respiratory-like metabolism (glycolysis, decarboxylation reaction, chain of electron transfer) carried out by soil-stabilized enzymes, and by soil mineral and metal catalysts. These findings indicate that CO2 emissions from soils can have two origins: (1) from the well-known respiration of soil heterotrophic microorganisms and (2) from an extracellular oxidative metabolism (EXOMET) or, at least, catabolism. These two metabolisms should be considered separately when studying effects of environmental factors on the C cycle because the likelihood is that they do not obey the same laws and they respond differently to abiotic factors.

  19. Sympathetic nervous system control of triglyceride metabolism: Novel concepts derived from recent studies

    NARCIS (Netherlands)

    Geerling, J.J.; Boon, M.R.; Kooijman, S.; Parlevliet, E.T.; Havekes, L.M.; Romijn, J.A.; Meurs, I.M.; Rensen, P.C.N.

    2014-01-01

    Abstract Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels.

  20. Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes.

    Science.gov (United States)

    Gancheva, Sofiya; Bierwagen, Alessandra; Kaul, Kirti; Herder, Christian; Nowotny, Peter; Kahl, Sabine; Giani, Guido; Klueppelholz, Birgit; Knebel, Birgit; Begovatz, Paul; Strassburger, Klaus; Al-Hasani, Hadi; Lundbom, Jesper; Szendroedi, Julia; Roden, Michael

    2016-07-01

    Type 1 diabetes has been recently linked to nonalcoholic fatty liver disease (NAFLD), which is known to associate with insulin resistance, obesity, and type 2 diabetes. However, the role of insulin resistance and hyperglycemia for hepatic energy metabolism is yet unclear. To analyze early abnormalities in hepatic energy metabolism, we examined 55 patients with recently diagnosed type 1 diabetes. They underwent hyperinsulinemic-normoglycemic clamps with [6,6-(2)H2]glucose to assess whole-body and hepatic insulin sensitivity. Hepatic γATP, inorganic phosphate (Pi), and triglyceride concentrations (hepatocellular lipid content [HCL]) were measured with multinuclei magnetic resonance spectroscopy ((31)P/(1)H-MRS). Glucose-tolerant humans served as control (CON) (n = 57). Whole-body insulin sensitivity was 44% lower in patients than in age- and BMI-matched CON. Hepatic γATP was 15% reduced (2.3 ± 0.6 vs. 2.7 ± 0.6 mmol/L, P < 0.001), whereas hepatic Pi and HCL were similar in patients when compared with CON. Across all participants, hepatic γATP correlated negatively with glycemia and oxidized LDL. Carriers of the PPARG G allele (rs1801282) and noncarriers of PPARGC1A A allele (rs8192678) had 21 and 13% lower hepatic ATP concentrations. Variations in genes controlling oxidative metabolism contribute to a reduction in hepatic ATP in the absence of NAFLD, suggesting that alterations in hepatic mitochondrial function may precede diabetes-related liver diseases.

  1. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.

    Science.gov (United States)

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A K; Dickschat, Jeroen S; Fleißner, André

    2015-06-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi.

  2. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis.

    Science.gov (United States)

    Gaca, Anthony O; Colomer-Winter, Cristina; Lemos, José A

    2015-04-01

    In nearly all bacterial species examined so far, amino acid starvation triggers the rapid accumulation of the nucleotide second messenger (p)ppGpp, the effector of the stringent response. While for years the enzymes involved in (p)ppGpp metabolism and the significance of (p)ppGpp accumulation to stress survival were considered well defined, a recent surge of interest in the field has uncovered an unanticipated level of diversity in how bacteria metabolize and utilize (p)ppGpp to rapidly synchronize a variety of biological processes important for growth and stress survival. In addition to the classic activation of the stringent response, it has become evident that (p)ppGpp exerts differential effects on cell physiology in an incremental manner rather than simply acting as a biphasic switch that controls growth or stasis. Of particular interest is the intimate relationship of (p)ppGpp with persister cell formation and virulence, which has spurred the pursuit of (p)ppGpp inhibitors as a means to control recalcitrant infections. Here, we present an overview of the enzymes responsible for (p)ppGpp metabolism, elaborate on the intricacies that link basal production of (p)ppGpp to bacterial homeostasis, and discuss the implications of targeting (p)ppGpp synthesis as a means to disrupt long-term bacterial survival strategies.

  3. A double blind, placebo-controlled, randomized crossover study of the acute metabolic effects of olanzapine in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Vance L Albaugh

    Full Text Available Atypical antipsychotics exhibit metabolic side effects including diabetes mellitus and obesity. The adverse events are preceded by acute worsening of oral glucose tolerance (oGTT along with reduced plasma free fatty acids (FFA and leptin in animal models. It is unclear whether the same acute effects occur in humans.A double blind, randomized, placebo-controlled crossover trial was conducted to examine the potential metabolic effects of olanzapine in healthy volunteers. Participants included male (8 and female (7 subjects [18-30 years old, BMI 18.5-25]. Subjects received placebo or olanzapine (10 mg/day for three days prior to oGTT testing. Primary endpoints included measurement of plasma leptin, oral glucose tolerance, and plasma free fatty acids (FFA. Secondary metabolic endpoints included: triglycerides, total cholesterol, high- and low-density lipoprotein cholesterol, heart rate, blood pressure, body weight and BMI. Olanzapine increased glucose Area Under the Curve (AUC by 42% (2808±474 vs. 3984±444 mg/dl·min; P = 0.0105 during an oGTT. Fasting plasma leptin and triglycerides were elevated 24% (Leptin: 6.8±1.3 vs. 8.4±1.7 ng/ml; P = 0.0203 and 22% (Triglycerides: 88.9±10.1 vs. 108.2±11.6 mg/dl; P = 0.0170, whereas FFA and HDL declined by 32% (FFA: 0.38±0.06 vs. 0.26±0.04 mM; P = 0.0166 and 11% (54.2±4.7 vs. 48.9±4.3 mg/dl; P = 0.0184, respectively after olanzapine. Other measures were unchanged.Olanzapine exerts some but not all of the early endocrine/metabolic changes observed in rodent models of the metabolic side effects, and this suggest that antipsychotic effects are not limited to perturbations in glucose metabolism alone. Future prospective clinical studies should focus on identifying which reliable metabolic alterations might be useful as potential screening tools in assessing patient susceptibility to weight gain and diabetes caused by atypical antipsychotics.ClinicalTrials.gov NCT00741026.

  4. The Mitochondrial Rhomboid Protease PARL Is Regulated by PDK2 to Integrate Mitochondrial Quality Control and Metabolism

    Directory of Open Access Journals (Sweden)

    Guang Shi

    2017-02-01

    Full Text Available Mitochondrial quality control (MQC systems are essential for mitochondrial health and normal cellular function. Dysfunction of MQC is emerging as a central mechanism for the pathogenesis of various diseases, including Parkinson’s disease. The mammalian mitochondrial rhomboid protease, PARL, has been proposed as a regulator of PINK1/PARKIN-mediated mitophagy, which is an essential component of MQC. PARL undergoes an N-terminal autocatalytic cleavage (β cleavage, which is required for efficient mitophagy. We demonstrate that β cleavage responds to mitochondrial stress, triggered by the depletion of mitochondrial ATP. Furthermore, we show that PDK2, a key regulator in metabolic plasticity, phosphorylates PARL and regulates β cleavage. Through regulating β cleavage and the production of a less active enzyme, PACT, PDK2 negatively regulates PINK1/PARKIN-mediated mitophagy. Taken together, we propose that PDK2/PARL senses defects in mitochondrial bioenergetics, integrating mitochondrial metabolism to mitophagy and MQC in human health and disease.

  5. Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry

    Directory of Open Access Journals (Sweden)

    Ellis C. O’Neill

    2015-12-01

    Full Text Available Euglena gracilis is a eukaryotic microalgae that has been the subject of scientific study for hundreds of years. It has a complex evolutionary history, with traces of at least four endosymbiotic genomes and extensive horizontal gene transfer. Given the importance of Euglena in terms of evolutionary cell biology and its unique taxonomic position, we initiated a de novo transcriptome sequencing project in order to understand this intriguing organism. By analysing the proteins encoded in this transcriptome, we can identify an extremely complex metabolic capacity, rivalling that of multicellular organisms. Many genes have been acquired from what are now very distantly related species. Herein we consider the biology of Euglena in different time frames, from evolution through control of cell biology to metabolic processes associated with carbohydrate and natural products biochemistry.

  6. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  7. Regulating yeast flavor metabolism by controlling saccharification reaction rate in simultaneous saccharification and fermentation of Chinese Maotai-flavor liquor.

    Science.gov (United States)

    Wu, Qun; Chen, Bi; Xu, Yan

    2015-05-04

    Maotai-flavor liquor is produced by simultaneous saccharification and fermentation (SSF), in which filamentous fungi produce hydrolases to degrade the starch into fermentable sugar. Saccharomyces cerevisiae simultaneously transforms the sugars to ethanol and flavor compounds. The saccharification rate plays an important role in regulating the liquor yield and flavor profile. This work investigated the effect of saccharification rate on fermentation by regulating the inoculation ratio (1:0.1, 1:0.5, 1:1, 1:5, 1:10) of S. cerevisiae and Aspergillus oryzae, the main saccharification agent. We found no significant difference in reducing sugar content among the mixed cultures with different ratios. This indicated a balance of the saccharification rate and the sugar consumption rate, in which the former was controlled by the interaction between A. oryzae and S. cerevisiae, and the latter controlled the metabolism of the two species. The ethanol yield was the highest in ratios of 1:0.5, 1:1, and 1:5, while the total production of flavor compounds was the highest for the ratio of 1:0.5, which was mainly attributed to the vigorous metabolism of S. cerevisiae. The inoculum ratio of 1:10 produced the second highest content of flavor compounds in which a large number of alcohols and esters were derived from the vigorous metabolism of A. oryzae. This indicated that the saccharification rate significantly influenced the flavor metabolism. This study improves understanding of the interaction and cooperation between A. oryzae and S. cerevisiae in co-culture fermentation for Chinese liquor making. Copyright © 2015. Published by Elsevier B.V.

  8. Improved metabolic control after 12-week dietary intervention with low glycaemic isomalt in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Holub, I; Gostner, A; Hessdörfer, S; Theis, S; Bender, G; Willinger, B; Schauber, J; Melcher, R; Allolio, B; Scheppach, W

    2009-12-01

    The polyol isomalt (Palatinit) is a very low glycaemic sugar replacer. The effect of food supplemented with isomalt instead of higher glycaemic ingredients like sucrose and/or starch hydrolysates on metabolic control in patients with type 2 diabetes was examined in this open study. Thirty-three patients with type 2 diabetes received a diet with foods containing 30 g/d isomalt instead of higher-glycaemic carbohydrates for 12 weeks. Metformin and/or thiazolidindiones were the only concomitant oral antidiabetics allowed during the study. Otherwise, the participants maintained their usual diet during the test phase, but were instructed to refrain from additional sweetened foods. Before start, after 6 weeks and 12 weeks (completion of the study), blood samples were taken and analysed for clinical routine parameters, metabolic, and risk markers. Thirty-one patients completed the study. The test diet was well accepted and tolerated. After 12 weeks, significant reductions were observed for: glycosylated haemoglobin, fructosamine, fasting blood glucose, insulin, proinsulin, C-peptide, insulin resistance (HOMA-IR), and oxidised LDL (an atherosclerosis risk factor). In addition, significant lower nonesterified fatty acid concentrations were found in female participants. Routine blood measurements and blood lipids remained unchanged. The substitution of glycaemic ingredients by isomalt and the consequent on reduction of the glycaemic load within otherwise unchanged diet was accompanied by significant improvement in the metabolic control of diabetes. The present study is in agreement with findings of previous reported studies in human subjects demonstrating beneficial effects of low glycaemic diets on glucose metabolism in patients with diabetes mellitus type 2.

  9. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism.

    Science.gov (United States)

    Min, Cheol Woo; Lee, Seo Hyun; Cheon, Ye Eun; Han, Won Young; Ko, Jong Min; Kang, Hang Won; Kim, Yong Chul; Agrawal, Ganesh Kumar; Rakwal, Randeep; Gupta, Ravi; Kim, Sun Tae

    2017-06-29

    Seed aging is one of the major events, affecting the overall quality of agricultural seeds. To analyze the effect of seed aging, soybean seeds were exposed to controlled deterioration treatment (CDT) for 3 and 7days, followed by their physiological, biochemical, and proteomic analyses. Seed proteins were subjected to protamine sulfate precipitation for the enrichment of low-abundance proteins and utilized for proteome analysis. A total of 14 differential proteins were identified on 2-DE, whereas label-free quantification resulted in the identification of 1626 non-redundant proteins. Of these identified proteins, 146 showed significant changes in protein abundance, where 5 and 141 had increased and decreased abundances, respectively while 352 proteins were completely degraded during CDT. Gene ontology and KEGG analyses suggested the association of differential proteins with primary metabolism, ROS detoxification, translation elongation and initiation, protein folding, and proteolysis, where most, if not all, had decreased abundance during CDT. Western blotting confirmed reduced level of antioxidant enzymes (DHAR, APx1, MDAR, and SOD) upon CDT. This in-depth integrated study reveals a major downshift in seed metabolism upon CDT. Reported data here serve as a resource for its exploitation to metabolic engineering of seeds for multiple purposes, including increased seed viability, vigor, and quality. Controlled deterioration treatment (CDT) is one of the major events that negatively affects the quality and nutrient composition of agricultural seeds. However, the molecular mechanism of CDT is largely unknown. A combination of gel-based and gel-free proteomic approach was utilized to investigate the effects of CDT in soybean seeds. Moreover, we utilized protamine sulfate precipitation method for enrichment of low-abundance proteins, which are generally masked due to the presence of high-abundance seed storage proteins. Reported data here serve as resource for its

  10. Use of metabolic control analysis to give quantitative information on control of lipid biosynthesis in the important oil crop, Elaeis guineensis (oilpalm).

    Science.gov (United States)

    Ramli, Umi S; Salas, Joaquin J; Quant, Patti A; Harwood, John L

    2009-10-01

    * Oil crops are a very important commodity. Although many genes and enzymes involved in lipid accumulation have been identified, much less is known of regulation of the overall process. To address the latter we have applied metabolic control analysis to lipid synthesis in the important crop, oilpalm (Elaeis guineensis). * Top-down metabolic control analysis (TDCA) was applied to callus cultures capable of accumulating appreciable triacylglycerol. The biosynthetic pathway was divided into two blocks, connected by the intermediate acyl-CoAs. Block A comprised enzymes for fatty acid synthesis and Block B comprised enzymes of lipid assembly. * Double manipulation TDCA used diflufenican and bromooctanoate to inhibit Block A and Block B, respectively, giving Block flux control coefficients of 0.61 and 0.39. Monte Carlo simulations provided extra information from previously-reported single manipulation TDCA data, giving Block flux control coefficients of 0.65 and 0.35 for A and B. * These experiments are the first time that double manipulation TDCA has been applied to lipid biosynthesis in any organism. The data show that approaching two-thirds of the total control of carbon flux to lipids in oilpalm cultures lies with the fatty acid synthesis block of reactions. This quantitative information will assist future, informed, genetic manipulation of oilpalm.

  11. Bone healing in rabbits after compression osteosynthesis, studied by Tc-99m(Sn)polyphosphate scintimetry and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Greiff, J.

    1981-08-01

    The purpose of the present study was to determine the scintimetric time course (STC) for Tc-99m(Sn) polyphosphate in rabbit tibias after various osteosynthetic procedures, and to correlate the findings with those from serial radiographs and with autoradiographic and histologic evaluation of the bone. The STC was similar for all treatment groups, with a peak value within the second week after surgery. Significantly different levels of the STC were found after subperiosteal exploration, plate insertion, osteotomy and compression plating, or osteotomy and medullary nailing. The radiological, autoradiographic, and histological findings revealed that Tc-99m scintimetry monitors callus formation. The STC thus appears to be a valuable tool for the quantitative study of bone healing.

  12. All-Inorganic Intumescent Nanocoating Containing Montmorillonite Nanoplatelets in Ammonium Polyphosphate Matrix Capable of Preventing Cotton Ignition

    Directory of Open Access Journals (Sweden)

    Jenny Alongi

    2016-12-01

    Full Text Available In the present manuscript a new concept of completely inorganic intumescent flame retardant nanocoating comprised of sodium montmorillonite nanoplatelets embedded in an ammonium polyphosphate matrix has been investigated using cotton as model substrate. The coating, deposited by multistep adsorption from diluted water-based suspensions/solutions, homogenously cover each cotton fibers with average thicknesses below 50 nm and add-on up to 5% in weight. Combustion characterization evidences the interesting properties: indeed, the so-treated fabrics reached self-extinguishing during horizontal flame spread tests. Furthermore, when the coating add-on reaches 5%, no ignition has been observed during cone calorimetry tests under 35 kW/m2 heat flux. Residue analyses pointed out the formation of an expanded all-inorganic coating capable of greatly improving char formation by exerting barrier function towards volatile release and heat transfer.

  13. Microscopic Examination of Chitosan Polyphosphate Beads with Entrapped Spores of the Biocontrol Agent, Streptomyces melanosporofaciens EF-76

    Science.gov (United States)

    Jobin, Guy; Grondin, Gilles; Couture, Geneviève; Beaulieu, Carole

    2005-04-01

    Spores of the biocontrol agent, Streptomyces melanosporofaciens EF-76, were entrapped by complex coacervation in beads composed of a macromolecular complex (MC) of chitosan and polyphosphate. A proportion of spores entrapped in beads survived the entrapment procedure as shown by treating spores from chitosan beads with a dye allowing the differentiation of live and dead cells. The spore-loaded chitosan beads could be digested by a chitosanase, suggesting that, once introduced in soil, the beads would be degraded to release the biocontrol agent. Spore-loaded beads were examined by optical and scanning electron microscopy because the release of the biological agent depends on the spore distribution in the chitosan beads. The microscopic examination revealed that the beads had a porous surface and contained a network of inner microfibrils. Spores were entrapped in both the chitosan microfibrils and the bead lacuna.

  14. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial.

    Science.gov (United States)

    Tessari, Paolo; Lante, Anna

    2017-03-17

    Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed 'functional' bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values (p = 0.028), and by ~0.6% vs. the control group (p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes.

  15. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial

    Science.gov (United States)

    Tessari, Paolo; Lante, Anna

    2017-01-01

    Design: Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed ‘functional’ bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Results: Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values (p = 0.028), and by ~0.6% vs. the control group (p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. Conclusions: A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes. PMID:28304350

  16. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: A meta-analysis of randomized, controlled trials.

    Science.gov (United States)

    Li, Caifeng; Li, Xin; Han, Hongqiu; Cui, Hailong; Peng, Min; Wang, Guolin; Wang, Zhiqiang

    2016-06-01

    Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease which is imposing heavy burden on global health and economy. Recent studies indicate gut microbiota play important role on the pathogenesis and metabolic disturbance of T2DM. As an effective mean of regulating gut microbiota, probiotics are live micro-organisms that are believed to provide a specific health benefit on the host. Whether probiotic supplementation could improve metabolic profiles by modifying gut microbiota in T2DM or not is still in controversy.The aim of the study is to assess the effect of probiotic supplementation on metabolic profiles in T2DM.We searched PubMed, EMBASE, and Cochrane Library up to 12 April 2016. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Data were pooled by using the random-effect model and expressed as standardized mean difference (SMD) with 95% confidence interval (CI). Heterogeneity was assessed and quantified (I).A total of 12 randomized controlled trials (RCTs) were included. Lipid profiles (n = 508) and fasting blood glucose (FBG) (n = 520) were reported in 9 trials; the homeostasis model of assessment for insulin resistance index (HOMA-IR) (n = 368) and glycosylated hemoglobin (HbA1c) (n = 380) were reported in 6 trials. Probiotics could alleviate FBG (SMD -0.61 mmol/L, 95% CI [-0.92, -0.30], P = 0.0001). Probiotics could increase high-density lipoprotein-cholesterol (HDL-C) (SMD 0.42 mmol/L, 95% CI [0.08, 0.76], P = 0.01). There were no significant differences in low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), HbA1c and HOMA-IR between the treatment group and the control group.Probiotics may improve glycemic control and lipid metabolism in T2DM. Application of probiotic agents might become a new method for glucose management in T2DM.

  17. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion.

    Science.gov (United States)

    Maechler, Pierre; Carobbio, Stefania; Rubi, Blanca

    2006-01-01

    Pancreatic beta-cells are unique neuroendocrine cells displaying the peculiar feature of responding to nutrients, principally glucose, as primary stimulus. This requires translation of a metabolic substrate into intracellular messengers recognized by the exocytotic machinery. Central to this signal transduction mechanism, mitochondria integrate and generate metabolic signals, thereby coupling glucose recognition to insulin secretion. In response to a glucose rise, nucleotides and metabolites are generated by mitochondria and participate, together with cytosolic calcium, to the stimulation of insulin exocytosis. This review describes the mitochondrion-dependent pathways of regulated insulin secretion. In particular, importance of cataplerotic and anaplerotic processes is discussed, with special attention to the mitochondrial enzyme glutamate dehydrogenase. Mitochondrial defects, such as mutations and reactive oxygen species production, are presented in the context of beta-cell failure in the course of type 2 diabetes.

  18. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism

    DEFF Research Database (Denmark)

    Feng, Dan; Liu, Tao; Sun, Zheng;

    2011-01-01

    Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when...... HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbα. Rev-erbα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes...... hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis....

  19. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  20. Cloning and characterisation of hAps1 and hAps2, human diadenosine polyphosphate-metabolising Nudix hydrolases

    Directory of Open Access Journals (Sweden)

    Safrany Stephen T

    2002-07-01

    Full Text Available Abstract Background The human genome contains at least 18 genes for Nudix hydrolase enzymes. Many have similar functions to one another. In order to understand their roles in cell physiology, these proteins must be characterised. Results We have characterised two novel human gene products, hAps1, encoded by the NUDT11 gene, and hAps2, encoded by the NUDT10 gene. These cytoplasmic proteins are members of the DIPP subfamily of Nudix hydrolases, and differ from each other by a single amino acid. Both metabolise diadenosine-polyphosphates and, weakly, diphosphoinositol polyphosphates. An apparent polymorphism of hAps1 has also been identified, which leads to the point mutation S39N. This has also been characterised. The favoured nucleotides were diadenosine 5',5"'-pentaphosphate (kcat/Km = 11, 8 and 16 × 103M-1s-1 respectively for hAps1, hAps1-39N and hAps2 and diadenosine 5',5"'-hexaphosphate (kcat/Km = 13, 14 and 11 × 103M-1s-1 respectively for hAps1, hAps1-39N and hAps2. Both hAps1 and hAps2 had pH optima of 8.5 and an absolute requirement for divalent cations, with manganese (II being favoured. Magnesium was not able to activate the enzymes. Therefore, these enzymes could be acutely regulated by manganese fluxes within the cell. Conclusions Recent gene duplication has generated the two Nudix genes, NUDT11 and NUDT10. We have characterised their gene products as the closely related Nudix hydrolases, hAps1 and hAps2. These two gene products complement the activity of previously described members of the DIPP family, and reinforce the concept that Ap5A and Ap6A act as intracellular messengers.

  1. Microautoradiographic Study of Rhodocyclus-Related Polyphosphate-Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants

    Science.gov (United States)

    Kong, Yunhong; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2004-01-01

    The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants. PMID:15345424

  2. Determining the control circuitry of redox metabolism at the genome-scale.

    Directory of Open Access Journals (Sweden)

    Stephen Federowicz

    2014-04-01

    Full Text Available Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs, ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2 (p<1e-6 correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.

  3. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension.

    Science.gov (United States)

    Stenmark, Kurt R; Tuder, Rubin M; El Kasmi, Karim C

    2015-11-15

    Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH shares key features with cancer, recent work centers on the idea that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (Mϕ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated Mϕ (hereafter, termed FAMϕ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and I1lb, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial Mϕ phenotype in the remodeled PA closely resembles the Mϕ phenotype induced by fibroblasts in vitro (FAMϕ), suggesting that FAMϕ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and Mϕ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH.

  4. The Pivotal Role of Protein Phosphorylation in the Control of Yeast Central Metabolism

    Directory of Open Access Journals (Sweden)

    Panayotis Vlastaridis

    2017-04-01

    Full Text Available Protein phosphorylation is the most frequent eukaryotic post-translational modification and can act as either a molecular switch or rheostat for protein functions. The deliberate manipulation of protein phosphorylation has great potential for regulating specific protein functions with surgical precision, rather than the gross effects gained by the over/underexpression or complete deletion of a protein-encoding gene. In order to assess the impact of phosphorylation on central metabolism, and thus its potential for biotechnological and medical exploitation, a compendium of highly confident protein phosphorylation sites (p-sites for the model organism Saccharomyces cerevisiae has been analyzed together with two more datasets from the fungal pathogen Candida albicans. Our analysis highlights the global properties of the regulation of yeast central metabolism by protein phosphorylation, where almost half of the enzymes involved are subject to this sort of post-translational modification. These phosphorylated enzymes, compared to the nonphosphorylated ones, are more abundant, regulate more reactions, have more protein–protein interactions, and a higher fraction of them are ubiquitinated. The p-sites of metabolic enzymes are also more conserved than the background p-sites, and hundreds of them have the potential for regulating metabolite production. All this integrated information has allowed us to prioritize thousands of p-sites in terms of their potential phenotypic impact. This multi-source compendium should enable the design of future high-throughput (HTP mutation studies to identify key molecular switches/rheostats for the manipulation of not only the metabolism of yeast, but also that of many other biotechnologically and medically important fungi and eukaryotes.

  5. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells

    OpenAIRE

    Ratajczak, Joanna; Joffraud, Magali; Trammell, Samuel A.J.; Ras, Rosa; Canela, Nuria; Boutant, Marie; Kulkarni, Sameer S; Rodrigues,Marcelo; Redpath, Philip; Migaud, Marie E.; Auwerx, Johan; Yanes, Oscar; Brenner, Charles; Cantó, Carles

    2016-01-01

    NAD+ is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN...

  6. Regulation of Genes Controlling Carbohydrate Metabolism in the Heart of a Hibernating Mammal

    Science.gov (United States)

    2006-05-31

    concludes in mid-March. PTL is expressed in addition to hormone-sensitive lipase, the enzyme typically responsible for hydrolysis of triacylglycerols...same enzyme found in humans. 4 Figure 1. Model showing the metabolic involvement of pyruvate dehydrogenase kinase isozyme 4 (PDK- 4) and pancreatic...Gluconeogenesis TG HEART glucose ffa TG glycerol ffa acetyl-CoA TCA Cycle Oxidationβ- net 2 ATP Triglyceride Synthesis G-3-P ATP + CO2 + H2O PDK-4 PTL lactate

  7. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

  8. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.

    Science.gov (United States)

    Ratajczak, Joanna; Joffraud, Magali; Trammell, Samuel A J; Ras, Rosa; Canela, Núria; Boutant, Marie; Kulkarni, Sameer S; Rodrigues, Marcelo; Redpath, Philip; Migaud, Marie E; Auwerx, Johan; Yanes, Oscar; Brenner, Charles; Cantó, Carles

    2016-10-11

    NAD(+) is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD(+) precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD(+) synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD(+) synthesis from other NAD(+) precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD(+). Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD(+) synthesis, explaining the overlapping metabolic effects observed with the two compounds.

  9. Systematic Sensitivity Analysis of Metabolic Controllers During Reductions in Skeletal Muscle Blood Flow

    Science.gov (United States)

    Radhakrishnan, Krishnan; Cabrera, Marco

    2000-01-01

    An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.

  10. Dietary cystine level affects metabolic rate and glycaemic control in adult mice.

    Science.gov (United States)

    Elshorbagy, Amany K; Church, Chris; Valdivia-Garcia, Maria; Smith, A David; Refsum, Helga; Cox, Roger

    2012-04-01

    Plasma total cysteine (tCys) is strongly and independently associated with obesity in large human cohorts, but whether the association is causal is unknown. Dietary cyst(e)ine increases weight gain in some rodent models. We investigated the body composition, metabolic rate and metabolic phenotype of mature C3H/HeH mice assigned to low-cystine (LC) or high-cystine (HC) diets for 12 weeks. Compared to LC mice, HC mice gained more weight (P=.004 for 12-week weight gain %), with increased fat mass and lean mass, and lowered O₂ consumption and CO₂ production by calorimetry. The HC mice had 30% increase in intestinal fat/body weight % (P=.003) and ∼twofold elevated hepatic triglycerides (P=.046), with increased expression of hepatic lipogenic factors, peroxisome proliferator-activated receptor-γ and sterol regulatory element binding protein-1. Gene expression of both basal and catecholamine-stimulated lipolytic enzymes, adipose triglyceride lipase and hormone-sensitive lipase was inhibited in HC mice adipose tissue. The HC mice also had elevated fasting glucose (7.0 vs. 4.5 mmol/L, Pcystine intake promotes adiposity and an adverse metabolic phenotype in mice, indicating that the positive association of plasma tCys with obesity in humans may be causal.

  11. Transcription factor Ctip2 controls epidermal lipid metabolism and regulates expression of genes involved in sphingolipid biosynthesis during skin development

    Science.gov (United States)

    Wang, Zhixing; Kirkwood, Jay S.; Taylor, Alan W.; Stevens, Jan F.; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K.

    2012-01-01

    The stratum corneum is composed of protein-enriched corneocytes embedded in an intercellular matrix of nonpolar lipids organized as lamellar layers and give rise to epidermal permeability barrier (EPB). EPB defects play an important role in the pathophysiology of skin diseases such as eczema. The transcriptional control of skin lipid metabolism is poorly understood. We have discovered that mouse lacking a transcription factor COUP-TF interacting protein 2 (Ctip2) exhibit EPB defects including altered keratinocyte terminal differentiation, delayed skin barrier development and interrupted neutral lipid distribution in the epidermis. We adapted herein a targeted lipidomic approach using mass spectrometry, and have determined that Ctip2−/− mice (germline deletion of Ctip2 gene) display altered composition of major epidermal lipids such as ceramides and sphingomyelins compared to wildtype at different stages of skin development. Interestingly, expressions of several genes involved in skin sphingolipid biosynthesis and metabolism were altered in mutant skin. Ctip2 was found to be recruited to the promoter region of a subset of those genes, suggesting their possible direct regulation by Ctip2. Our results confirm an important role of Ctip2 in regulating skin lipid metabolism and indicate that profiling of epidermal sphingolipid could be useful for designing effective strategies to improve barrier dysfunctions. PMID:23096701

  12. Controlling the feed rate of glucose and propanol for the enhancement of erythromycin production and exploration of propanol metabolism fate by quantitative metabolic flux analysis.

    Science.gov (United States)

    Chen, Yong; Huang, Mingzhi; Wang, Zejian; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2013-10-01

    In this paper, several different fermentation experiments were designed to address whether modulating glucose and propanol feeds could benefit the production level of erythromycin during pilot plant (30 L) fermentation. Results showed that glucose feed rate (determined by a set high or low culture pH) had no effect on erythromycin production, indicating that glucose was not the limiting factor for erythromycin biosynthesis under these conditions. It was found that decreasing glucose feed could stimulate the consumption of propanol, and the high erythromycin production (12.49 ± 0.50 mg ml⁻¹) was achieved by controlling the feed rates of glucose and propanol. The quantitative metabolic flux analysis disclosed that high propanol consumption increased the pool size of propionyl-CoA (~2.147 mmol g⁻¹ day⁻¹) and methylmalonyl-CoA (~1.708 mmol g⁻¹ day⁻¹). It was also found that 45-77 % of the propanol went into the TCA cycle which strengthened the conclusion that blocking the propionate pathway to TCA cycle could lead to a significant increase in erythromycin production in carbohydrate-based media (Reeves et al. Ind Microbiol Biotechnol 7:600-609, 2006). In addition, the results also suggested that a relative low intracellular ATP level resulting from low glucose feed did not limit the erythromycin biosynthesis, and a relatively high NADPH should be beneficial for erythromycin biosynthesis.

  13. Effect of grape seed extract on postprandial oxidative status and metabolic responses in men and women with the metabolic syndrome - randomized, cross-over, placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Indika Edirisinghe

    2012-12-01

    Full Text Available Objective: This investigation was undertaken to determine whether a grape seed extract (GSE that is rich in mono-, oligo- and poly- meric polyphenols would modify postprandial oxidative stress and inflammation in individuals with the metabolic syndrome (MetS.Background: MetS is known to be associated with impaired glucose tolerance and poor glycemic control. Consumption of a meal high in readily available carbohydrates and fat causes postprandial increases in glycemia and lipidemia and markers of oxidative stress, inflammation and insulin resistance. Materials/methods: After an overnight fast, twelve subjects with MetS (5 men and 7 women consumed a breakfast meal high in fat and carbohydrate in a cross-over design. A GSE (300 mg or placebo capsule was administrated 1 hr before the meal (-1 hr. Changes in plasma insulin, glucose, oxidative stress and inflammatory markers were measured hourly for 6 hr. Results: Plasma hydrophilic oxygen radical absorbance capacity (ORAC measured as the positive incremental area under the curve (-1 to 5 hr was significantly increased when the meal was preceded by GSE compared with placebo (P0.05. No changes in inflammatory markers were evident. Conclusion: These data suggest that GSE enhances postprandial plasma antioxidant status and reduces the glycemic response to a meal, high in fat and carbohydrate in subjects with the MetS.

  14. Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed-batch cultivations

    DEFF Research Database (Denmark)

    Pissarra, Pedro de N.; Nielsen, Jens Bredal; Bazin, M. J.

    1996-01-01

    on the rate of the reaction catalyzed by this enzyme, and consequently as an enhancer of the specific rate of penicillin production. Using the kinetic model, metabolic control analysis (MCA) of the pathway was performed. The determined flux control coefficients suggested that, during the production phase......A kinetic model representing the pathway for the biosynthesis of penicillin by P. chrysogenum has been developed. The model is capable of describing the flux through the biosynthetic pathway, and model simulations correspond well with measurements of intermediates and end products. One feature......, the flux is controlled by IPNS as this enzyme becomes saturated with tripeptide delta-(L-alpha-amino-adipyl)-L-cysteinyl-D-valine (LLD-ACV). In the simulations, oxygen was shown to be a bottleneck alleviator by stimulating the rate of IPNS which prevents the accumulation of LLD-ACV. As a consequence...

  15. The relation between family empowerment and metabolic control and adherence to treatment plans in children with phenylketonuria

    Directory of Open Access Journals (Sweden)

    Maliheh Khalvati

    2014-11-01

    Full Text Available Background: Nowadays, parents remarkably contribute to the education, training and treatment of their children with advanced disabilities. Considering the financial restrictions, changing the values and the social norms governing the society, it can be argued that besides their major roles, parents are also responsible for fulfilling their children’s specific needs. The joining of these different roles is called empowerment which reflects the parents’ active role as well as a sense of control over themselves, the child and the family. The current research studied the impact of family empowerment on controlling the phenyl level and adherence to treatment plans in children with phenylketonuria in Fars province. Methods: This research was a correlational study. The research tools included Koren family empowerment scale, demographic data inventory, blood phe level check-list, and adherence to treatment programs which were filled in by 80 families. The data was analysed by means of SPSS20 software and correlation test. Results: the findings of the study showed a significant relationship (P<0.01between family’s empowerment and metabolic control (r=0.724, and commitment to treatment programs (r=0.527. Moreover, a 45-percent empowerment variation was explained by the mothers’ education. Conclusion: Family empowerment explained the family attitude, knowledge and behaviour in the domain of family’s relation with children, services and society, which can be considered as a psychological source to support the children with metabolic deficiencies and advanced disabilities.

  16. Endocannabinoids and related N-acylethanolamines in the control of appetite and energy metabolism: emergence of new molecular players.

    Science.gov (United States)

    Lambert, Didier M; Muccioli, Giulio G

    2007-11-01

    Endocannabinoids (anandamide and 2-arachidonoylgycerol) and related N-acylethanolamines (N-oleoylethanolamine) exhibit opposite effects in the control of appetite. The purpose of this review is to highlight the similarities and differences of three major lipid-signaling molecules by focusing on their mode of action and the proteins involved in the control of food intake and energy metabolism. Anandamide and 2-arachidonoylglycerol promote food intake and are the main endogenous ligands of the cannabinoid receptors. One of them, the cannabinoid receptor 1, is responsible for the control of food intake and energy expenditure both at a central and a peripheral level, affecting numerous anorexigenic and orexigenic mediators (leptin, neuropeptide Y, ghrelin, orexin, endogenous opioids, corticotropin-releasing hormone, alpha-melanocyte stimulating hormone, cocaine and amphetamine-related transcript). In the gut, N-oleoylethanolamine plays an opposite role in food regulation, by interacting with two molecular targets different from the cannabinoid receptors: the nuclear receptor peroxisome proliferator-activated receptor alpha and a G-protein coupled receptor GPR119. Recent findings on the molecular mechanisms underlying the promotion of food intake or, in contrast, the suppression of food intake by anandamide and N-oleoylethanolamine, are summarized. Potential strategies for treating overweight, metabolic syndrome, and type II diabetes are briefly outlined.

  17. Finite-time Lyapunov exponents and metabolic control coefficients for threshold detection of stimulus-response curves.

    Science.gov (United States)

    Duc, Luu Hoang; Chávez, Joseph Páez; Son, Doan Thai; Siegmund, Stefan

    2016-01-01

    In biochemical networks transient dynamics plays a fundamental role, since the activation of signalling pathways is determined by thresholds encountered during the transition from an initial state (e.g. an initial concentration of a certain protein) to a steady-state. These thresholds can be defined in terms of the inflection points of the stimulus-response curves associated to the activation processes in the biochemical network. In the present work, we present a rigorous discussion as to the suitability of finite-time Lyapunov exponents and metabolic control coefficients for the detection of inflection points of stimulus-response curves with sigmoidal shape.

  18. Metabolic risk management, physical exercise and lifestyle counselling in low-active adults: controlled randomized trial (BELLUGAT).

    Science.gov (United States)

    Ensenyat, Assumpta; Espigares-Tribo, Gemma; Machado, Leonardo; Verdejo, Francisco José; Rodriguez-Arregui, Rosa; Serrano, José; Miret, Marta; Galindo, Gisela; Blanco, Alfonso; Marsal, Josep-Ramon; Sarriegui, Susana; Sinfreu-Bergues, Xenia; Serra-Paya, Noemi

    2017-03-14

    The primary aim of this study is to evaluate the effectiveness of different doses (intensity) of supervised exercise training - concomitant with lifestyle counselling - as a primary care intervention tool for the management of metabolic syndrome risk factors in low-active adults with one or more such factors (programme name in Catalan: Bellugat de CAP a peus). Three-arm, randomized controlled clinical trial implemented in the primary care setting, with a duration of 40 weeks (16 weeks intervention and 24-week follow-up). Adults aged 30 to 55 years with metabolic risk factors will be randomized into three intervention groups: 1) aerobic interval training (16 supervised training lessons) plus a healthy lifestyle counselling programme (6 group and 3 individual meetings); 2) low-to-moderate intensity continuous training (16 supervised training lessons) plus the same counselling programme; or 3) the counselling- programme without any supervised physical exercise. The main output variables assessed will be risk factors for metabolic syndrome (waist circumference, blood pressure, and levels of plasma triglycerides, high-density lipoproteins and glucose), systemic inflammation, cardiorespiratory fitness, physical activity and sedentary behaviour, dietary habits, health-related quality of life, self-efficacy and empowerment. Economic factors will also be analysed in order to determine the cost-effectiveness of the programme. These variables will be assessed three times during the study: at baseline, at the end of the intervention, and at follow-up. We estimate to recruit 35 participants per group. The results of this study will provide insight into the immediate and medium-term effects on metabolic risk and lifestyle of a combined approach involving aerobic interval training and a multidisciplinary behavioural intervention. If effective, the proposed intervention would provide both researchers and practitioners in this field with a platform on which to develop similar

  19. Metabolic effects of resistance or high-intensity interval training among glycemic control-nonresponsive children with insulin resistance.

    Science.gov (United States)

    Álvarez, C; Ramírez-Campillo, R; Ramírez-Vélez, R; Martínez, C; Castro-Sepúlveda, M; Alonso-Martínez, A; Izquierdo, M

    2017-07-31

    Little evidence exists on which variables of body composition or muscular strength mediates more glucose control improvements taking into account inter-individual metabolic variability to different modes of exercise training. We examined 'mediators' to the effects of 6-weeks of resistance training (RT) or high-intensity interval training (HIT) on glucose control parameters in physically inactive schoolchildren with insulin resistance (IR). Second, we also determined both training-induce changes and the prevalence of responders (R) and non-responders (NR) to decrease the IR level. Fifty-six physically inactive children diagnosed with IR followed a RT or supervised HIT program for 6 weeks. Participants were classified based on ΔHOMA-IR into glycemic control R (decrease in homeostasis model assessment-IR (HOMA-IR) training-induced changes to glucose control parameters; and third the report of R and NR to improve body composition, cardiovascular, metabolic and performance variables. Mediation analysis revealed that improvements (decreases) in abdominal fat by the waist circumference can explain more the effects (decreases) of HOMA-IR in physically inactive schoolchildren under RT or HIT regimes. The same analysis showed that increased one-maximum repetition leg-extension was correlated with the change in HOMA-IR (β=-0.058; P=0.049). Furthermore, a change in the waist circumference fully mediated the dose-response relationship between changes in the leg-extension strength and HOMA-IR (β'=-0.004; P=0.178). RT or HIT were associated with significant improvements in body composition, muscular strength, blood pressure and cardiometabolic parameters irrespective of improvement in glycemic control response. Both glucose control RT-R and HIT-R (respectively), had significant improvements in mean HOMA-IR, mean muscular strength leg-extension and mean measures of adiposity. The improvements in the lower body strength and the decreases in waist circumference can explain more

  20. Enhanced Biological Phosphorus Removal: Metabolic Insights and Salinity Effects

    NARCIS (Netherlands)

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison

  1. A Nested Case-Control Study of Metabolically Defined Body Size Phenotypes and Risk of Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC.

    Directory of Open Access Journals (Sweden)

    Neil Murphy

    2016-04-01

    Full Text Available Obesity is positively associated with colorectal cancer. Recently, body size subtypes categorised by the prevalence of hyperinsulinaemia have been defined, and metabolically healthy overweight/obese individuals (without hyperinsulinaemia have been suggested to be at lower risk of cardiovascular disease than their metabolically unhealthy (hyperinsulinaemic overweight/obese counterparts. Whether similarly variable relationships exist for metabolically defined body size phenotypes and colorectal cancer risk is unknown.The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI measurements to create four metabolic health/body size phenotype categories: (1 metabolically healthy/normal weight (BMI < 25 kg/m2, (2 metabolically