WorldWideScience

Sample records for control cnc machining

  1. Distributed Control System Design for Portable PC Based CNC Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2014-07-01

    Full Text Available The demand on automated machining has been increased and emerges improvement research to achieve many goals such as portability, low cost manufacturability, interoperability, and simplicity in machine usage. These improvements are conducted without ignoring the performance analysis and usability evaluation. This research has designed a distributed control system in purpose to control a portable CNC machine. The design consists of main processing unit, secondary processing unit, motor control, and motor driver. A preliminary simulation has been conducted for performance analysis including linear accuracy and circular accuracy. The results achieved in the simulation provide linear accuracy up to 2 μm with total cost for the whole processing unit is up to 5 million IDR.

  2. Intellectual Control System of Processing on CNC Machines

    OpenAIRE

    Nekrasov, R. Y.; Lasukov, Aleksandr Aleksandrovich; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-01-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of cr...

  3. Singer CNC sewing and embroidery machine

    Directory of Open Access Journals (Sweden)

    Lokodi Zsolt

    2011-12-01

    Full Text Available This paper presents the adaptation of a classic foot pedal operated Singer sewing machine to a computerized numerical control (CNC sewing and embroidery machine. This machine is composed of a Singer sewing machine and a two-degrees-of-freedom XY stage designed specifically for this application. The whole system is controlled from a PC using adequate CNC control software.

  4. VIRTUAL MACHINES IN EDUCATION – CNC MILLING MACHINE WITH SINUMERIK 840D CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2014-11-01

    Full Text Available Machining process nowadays could not be conducted without its inseparable element: cutting edge and frequently numerically controlled milling machines. Milling and lathe machining centres comprise standard equipment in many companies of the machinery industry, e.g. automotive or aircraft. It is for that reason that tertiary education should account for this rising demand. This entails the introduction into the curricula the forms which enable visualisation of machining, milling process and virtual production as well as virtual machining centres simulation. Siemens Virtual Machine (Virtual Workshop sets an example of such software, whose high functionality offers a range of learning experience, such as: learning the design of machine tools, their configuration, basic operation functions as well as basics of CNC.

  5. Intellectual Control System of Processing on CNC Machines

    Science.gov (United States)

    Nekrasov, R. Y.; Lasukov, A. A.; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-04-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of creation of mathematical models of processes behavior in an automated technological system operations (OATS). Based on the research, authors have proposed a generalized diagram of diagnosis and input operative correction and approximate mathematical models of individual processes of diagnosis.

  6. Constant Cutting Force Control for CNC Machining Using Dynamic Characteristic-Based Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2015-01-01

    Full Text Available This paper presents a dynamic characteristic-based fuzzy adaptive control algorithm (DCbFACA to avoid the influence of cutting force changing rapidly on the machining stability and precision. The cutting force is indirectly obtained in real time by monitoring and extraction of the motorized spindle current, the feed speed is fuzzy adjusted online, and the current was used as a feedback to control cutting force and maintain the machining process stable. Different from the traditional fuzzy control methods using the experience-based control rules, and according to the complex nonlinear characteristics of CNC machining, the power bond graph method is implemented to describe the dynamic characteristics of process, and then the appropriate variation relations are achieved between current and feed speed, and the control rules are optimized and established based on it. The numerical results indicated that DCbFACA can make the CNC machining process more stable and improve the machining precision.

  7. Mini lathe machine converted to CNC

    Directory of Open Access Journals (Sweden)

    Alexandru Morar

    2012-06-01

    Full Text Available This paper presents the adaptation of a mechanical mini-lathing machine to a computerized numerical control (CNC lathing machine. This machine is composed of a ASIST mini-lathe and a two-degrees-of-freedom XZ stage designed specifically for this application. The whole system is controlled from a PC using adequate CNC control software.

  8. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    Science.gov (United States)

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  9. Learning Control: Sense-Making, CNC Machines, and Changes in Vocational Training for Industrial Work

    Science.gov (United States)

    Berner, Boel

    2009-01-01

    The paper explores how novices in school-based vocational training make sense of computerized numerical control (CNC) machines. Based on two ethnographic studies in Swedish schools, one from the early 1980s and one from 2006, it analyses change and continuity in the cognitive, social, and emotional processes of learning how to become a machine…

  10. 5-axes modular CNC machining center

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available The paper presents the development of a 5-axes CNC machining center. The main goal of the machine was to provide the students a practical layout for training in advanced CAM techniques. The mechanical structure of the machine was built in a modular way by a specialized company, which also implemented the CNC controller. The authors of this paper developed the geometric and kinematic model of the CNC machining center and the post-processor, in order to use the machine in a CAM environment.

  11. Using the modern CNC controllers capabilities for estimating the machining forces during the milling process

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available Machining forces can nowadays be measured by using 3D dynamometers, which are usually very expensive devices and hardly available for most of the CNC machine-tools users. On the other hand, modern CNC controllers have nowadays the ability to display and save many outputs within the machining process, such as the currents or even the torques at the shaft's level for the feed motors on each axis. These outputs can be used for estimating the machining forces, but it is to be noticed that the above-mentioned currents and torques are proportional with the overall resistant forces, which includes not only technological forces, but also friction, inertial and pre-tensioning forces. This paper presents an approach for estimating the machining forces during a milling process, by using the outputs stored in the CNC controller and separating the effects of technological forces from the other forces involved in the process. The separation was made by running two sets of experiments, one set for dry-run regime and the other one for machining regime.

  12. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  13. Torque-Controlled Adaptive Speed Control on a CNC Marble Saw Machine

    Directory of Open Access Journals (Sweden)

    Ugur Simsir

    2015-02-01

    Full Text Available Although CNC marble saw machines can automatically cut marble slabs to desired dimensions, saw speed and feed rate are selected by operator according to stone parameters, features of the saw, and its immersion depth. If the feed rate is selected lower than the optimal value, there will be time-loss and capacity deficiencies or if it is selected faster, cutting quality will decrease, spindle motor will draw more current, and saw blade will corrode faster. While cutting especially thick materials, saw may be stacked in the stone, cutting quality may be impaired, saw blade may be abraded earlier, precision quality may go down because of increase in measurement errors, and machine may be damaged with the increase in vibrations when improper feed rates are selected. Because of nonhomogeneity of the slabs and deterioration of the saw blade, operator cannot determine a persistent feed rate. This study is targeted to find saw speeds according to saw diameter and optimum feed rate by means of limiting vibrations and current drawn from saw motor and torque accordingly in order to increase working performance of CNC marble saw machines. Thanks to adaptive adjustment of feed rate, one can save on material as well as time, labour, and cost by making use of optimum energy.

  14. Fully automatic CNC machining production system

    Directory of Open Access Journals (Sweden)

    Lee Jeng-Dao

    2017-01-01

    Full Text Available Customized manufacturing is increasing years by years. The consumption habits change has been cause the shorter of product life cycle. Therefore, many countries view industry 4.0 as a target to achieve more efficient and more flexible automated production. To develop an automatic loading and unloading CNC machining system via vision inspection is the first step in industrial upgrading. CNC controller is adopted as the main controller to command to the robot, conveyor, and other equipment in this study. Moreover, machine vision systems are used to detect position of material on the conveyor and the edge of the machining material. In addition, Open CNC and SCADA software will be utilized to make real-time monitor, remote system of control, alarm email notification, and parameters collection. Furthermore, RFID has been added to employee classification and management. The machine handshaking has been successfully proposed to achieve automatic vision detect, edge tracing measurement, machining and system parameters collection for data analysis to accomplish industrial automation system integration with real-time monitor.

  15. Preliminary Test of Upgraded Conventional Milling Machine into PC Based CNC Milling Machine

    International Nuclear Information System (INIS)

    Abdul Hafid

    2008-01-01

    CNC (Computerized Numerical Control) milling machine yields a challenge to make an innovation in the field of machining. With an action job is machining quality equivalent to CNC milling machine, the conventional milling machine ability was improved to be based on PC CNC milling machine. Mechanically and instrumentally change. As a control replacing was conducted by servo drive and proximity were used. Computer programme was constructed to give instruction into milling machine. The program structure of consists GUI model and ladder diagram. Program was put on programming systems called RTX software. The result of up-grade is computer programming and CNC instruction job. The result was beginning step and it will be continued in next time. With upgrading ability milling machine becomes user can be done safe and optimal from accident risk. By improving performance of milling machine, the user will be more working optimal and safely against accident risk. (author)

  16. Self-Improving CNC Milling Machine

    OpenAIRE

    Spilling, Torjus

    2014-01-01

    This thesis is a study of the ability of a CNC milling machine to create parts for itself, and an evaluation of whether or not the machine is able to improve itself by creating new machine parts. This will be explored by using off-the-shelf parts to build an initial machine, using 3D printing/rapid prototyping to create any special parts needed for the initial build. After an initial working machine is completed, the design of the machine parts will be adjusted so that the machine can start p...

  17. Program Design Report of the CNC Machine Tool(II)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H

    2007-06-15

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology.

  18. Program Design Report of the CNC Machine Tool(II)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H.

    2007-06-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  19. Program Design Report of the CNC Machine Tool(III)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H.

    2008-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  20. Program Design Report of the CNC Machine Tool(IV)

    International Nuclear Information System (INIS)

    Youm, Ki Un; Lee, I. B.; Youm, J. H.

    2009-09-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  1. Program Design Report of the CNC Machine Tool (I)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.

    2006-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  2. Understanding and Writing G & M Code for CNC Machines

    Science.gov (United States)

    Loveland, Thomas

    2012-01-01

    In modern CAD and CAM manufacturing companies, engineers design parts for machines and consumable goods. Many of these parts are cut on CNC machines. Whether using a CNC lathe, milling machine, or router, the ideas and designs of engineers must be translated into a machine-readable form called G & M Code that can be used to cut parts to precise…

  3. Generation of gear tooth surfaces by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  4. Tool path in torus tool CNC machining

    Directory of Open Access Journals (Sweden)

    XU Ying

    2016-10-01

    Full Text Available This paper is about tool path in torus tool CNC machining.The mathematical model of torus tool is established.The tool path planning algorithm is determined through calculation of the cutter location,boundary discretization,calculation of adjacent tool path and so on,according to the conversion formula,the cutter contact point will be converted to the cutter location point and then these points fit a toolpath.Lastly,the path planning algorithm is implemented by using Matlab programming.The cutter location points for torus tool are calculated by Matlab,and then fit these points to a toolpath.While using UG software,another tool path of free surface is simulated of the same data.It is drew compared the two tool paths that using torus tool is more efficient.

  5. Keyboard with Universal Communication Protocol Applied to CNC Machine

    Directory of Open Access Journals (Sweden)

    Mejía-Ugalde Mario

    2014-04-01

    Full Text Available This article describes the use of a universal communication protocol for industrial keyboard based microcontroller applied to computer numerically controlled (CNC machine. The main difference among the keyboard manufacturers is that each manufacturer has its own programming of source code, producing a different communication protocol, generating an improper interpretation of the function established. The above results in commercial industrial keyboards which are expensive and incompatible in their connection with different machines. In the present work the protocol allows to connect the designed universal keyboard and the standard keyboard of the PC at the same time, it is compatible with all the computers through the communications USB, AT or PS/2, to use in CNC machines, with extension to other machines such as robots, blowing, injection molding machines and others. The advantages of this design include its easy reprogramming, decreased costs, manipulation of various machine functions and easy expansion of entry and exit signals. The results obtained of performance tests were satisfactory, because each key has the programmed and reprogrammed facility in different ways, generating codes for different functions, depending on the application where it is required to be used.

  6. Implementation of the geometrical problem in CNC metal cutting machine

    Directory of Open Access Journals (Sweden)

    Erokhin V.V.

    2017-06-01

    Full Text Available The article deals with the tasks of managing the production process (technological process and technological equip-ment, the most detailed analysis of the implementation of the geometric problem in CNC machines. The influence of the solution of the geometric CNC problem on the accuracy of workpiece machining is analyzed by implementing a certain interpolation algorithm and the values of the discreteness of the movements of the working bodies of the CNC machine. The technique of forming a given trajectory of motion of the machine's executive organ is given, by means of which it is required to ensure the coordinated movement of the shaping coordinates according to a certain law, depend-ing on the specified trajectory of the cutting edge of the tool. The advantages and disadvantages of the implementation of interpolation in CNC systems by various methods are considered, and particular attention is paid to combined meth-ods of realizing interpolation.

  7. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    Science.gov (United States)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.

  8. Optimization of machining parameters of hard porcelain on a CNC ...

    African Journals Online (AJOL)

    Optimization of machining parameters of hard porcelain on a CNC machine by Taguchi-and RSM method. ... Journal Home > Vol 10, No 1 (2018) > ... The conduct of experiments was made by employing the Taguchi's L27 Orthogonal array to ...

  9. Technical and Symbolic Knowledge in CNC Machining: A Study of Technical Workers of Different Backgrounds.

    Science.gov (United States)

    Martin, Laura M. W.; Beach, King

    Performances of 45 individuals with varying degrees of formal and informal training in machining and programming were compared on tasks designed to tap intellectual changes that may occur with the introduction of computer numerical control (CNC). Participants--30 machinists, 8 machine operators, and 7 engineers--were asked background questions and…

  10. Case study of virtual reality in CNC machine tool exhibition

    Directory of Open Access Journals (Sweden)

    Kao Yung-Chou

    2017-01-01

    Full Text Available Exhibition and demonstration are generally used in the promotion and sale-assistance of manufactured products. However, the transportation cost of the real goods from the vender factory to the exposition venue is generally expensive for huge and heavy commodity. With the advancement of computing, graphics, mobile apps, and mobile hardware the 3D visibility technology is getting more and more popular to be adopted in visual-assisted communication such as amusement games. Virtual reality (VR technology has therefore being paid great attention in emulating expensive small and/or huge and heavy equipment. Virtual reality can be characterized as 3D extension with Immersion, Interaction and Imagination. This paper was then be focused on the study of virtual reality in the assistance of CNC machine tool demonstration and exhibition. A commercial CNC machine tool was used in this study to illustrate the effectiveness and usability of using virtual reality for an exhibition. The adopted CNC machine tool is a large and heavy mill-turn machine with the width up to eleven meters and weighted about 35 tons. A head-mounted display (HMD was attached to the developed VR CNC machine tool for the immersion viewing. A user can see around the 3D scene of the large mill-turn machine and the operation of the virtual CNC machine can be actuated by bare hand. Coolant was added to demonstrate more realistic operation while collision detection function was also added to remind the operator. The developed VR demonstration system has been presented in the 2017 Taipei International Machine Tool Show (TIMTOS 2017. This case study has shown that young engineers and/or students are very impressed by the VR-based demonstration while elder persons could not adapt themselves easily to the VR-based scene because of eyesight issues. However, virtual reality has successfully being adopted and integrated with the CNC machine tool in an international show. Another machine tool on

  11. CNC LATHE MACHINE PRODUCING NC CODE BY USING DIALOG METHOD

    Directory of Open Access Journals (Sweden)

    Yakup TURGUT

    2004-03-01

    Full Text Available In this study, an NC code generation program utilising Dialog Method was developed for turning centres. Initially, CNC lathes turning methods and tool path development techniques were reviewed briefly. By using geometric definition methods, tool path was generated and CNC part program was developed for FANUC control unit. The developed program made CNC part program generation process easy. The program was developed using BASIC 6.0 programming language while the material and cutting tool database were and supported with the help of ACCESS 7.0.

  12. Modeling of tool path for the CNC sheet cutting machines

    Science.gov (United States)

    Petunin, Aleksandr A.

    2015-11-01

    In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.

  13. Developing Parametric Models for the Assembly of Machine Fixtures for Virtual Multiaxial CNC Machining Centers

    Science.gov (United States)

    Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.

    2018-01-01

    This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.

  14. Program Design Report of the CNC Machine Tool(V-1)

    International Nuclear Information System (INIS)

    Youm, Ki Un; Moon, J. S.; Lee, I. B.; Youn, J. H.

    2010-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  15. Behavioral study of cnc-retrofitting kits for lathe machine

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    The aim of this project is to develop a Computerized Numerical Controlled (CNC) retrofitting kit for a lathe machine, study its behavior and compare its performance with the retrofitting kit already designed and fabricated at (Pakistan Institute of Engineering and Applied Sciences (PIEAS). Design calculations were performed assuming 100 mm work piece diameter and 800 mm length of stock using tool materials HSS, uncoated carbide, coated carbide, ceramic and cermet tools for different materials. Also cutting, thrust and radial forces on a single point cutting tool were determined. Stepper motors of torque 972 oz-in were selected to drive the carriage and cross-slide in Z and X-directions respectively. Power screws were replaced with ball screws of 0.63 inch dia. (x-direction) and 1.26 in. dia. (Z-direction) which were locally manufactured in the workshop. Deep groove and Angular contact ball bearings were used to support the ball screw shafts against axial and radial loads. Flexible and plain couplings were developed to couple encoders and motors to the ball screw shafts respectively. Panel mount optical rotary encoders are being used for feedback control. Mechanical assembly is complete but due to unavailability of wiring diagram for motors, control electronics could not be accomplished. Therefore, machine could not be evaluated in terms of accuracy, repeatability and resolution using computer software. (author)

  16. ANN Based Tool Condition Monitoring System for CNC Milling Machines

    Directory of Open Access Journals (Sweden)

    Mota-Valtierra G.C.

    2011-10-01

    Full Text Available Most of the companies have as objective to manufacture high-quality products, then by optimizing costs, reducing and controlling the variations in its production processes it is possible. Within manufacturing industries a very important issue is the tool condition monitoring, since the tool state will determine the quality of products. Besides, a good monitoring system will protect the machinery from severe damages. For determining the state of the cutting tools in a milling machine, there is a great variety of models in the industrial market, however these systems are not available to all companies because of their high costs and the requirements of modifying the machining tool in order to attach the system sensors. This paper presents an intelligent classification system which determines the status of cutt ers in a Computer Numerical Control (CNC milling machine. This tool state is mainly detected through the analysis of the cutting forces drawn from the spindle motors currents. This monitoring system does not need sensors so it is no necessary to modify the machine. The correct classification is made by advanced digital signal processing techniques. Just after acquiring a signal, a FIR digital filter is applied to the data to eliminate the undesired noisy components and to extract the embedded force components. A Wavelet Transformation is applied to the filtered signal in order to compress the data amount and to optimize the classifier structure. Then a multilayer perceptron- type neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.

  17. Complex Ornament Machining Process on a CNC Router

    Directory of Open Access Journals (Sweden)

    Camelia COŞEREANU

    2014-03-01

    Full Text Available The paper investigates the CNC routering possibilities for three species of wood, namely ash (Fraxinus Excelsior, lime wood (Tilia cordata and fir wood (Abies Alba, in order to obtain right surfaces of Art Nouveau sculptured ornaments. Given the complexity of the CNC tool path for getting wavy shapes of Art Nouveau decorations, the choice of processing parameters for each processed species of wood requires a laborious research work to correlate these parameters. Two Art Nouveau ornaments are proposed for the investigation. They are CNC routered using two types of cutting tools. The processed parameters namely the spindle speed, feed speed and depth of cut were the three variables of the machining process for the three species of wood, which were combined so, to provide good surface finish as a quality attribute. There were totally forty six variants of combining the processing parameter which were applied for CNC routering the samples made of the three species of wood. At the end, an optimum combination of the processed parameters is recommended for each species of wood.

  18. A Multiple Model Prediction Algorithm for CNC Machine Wear PHM

    Directory of Open Access Journals (Sweden)

    Huimin Chen

    2011-01-01

    Full Text Available The 2010 PHM data challenge focuses on the remaining useful life (RUL estimation for cutters of a high speed CNC milling machine using measurements from dynamometer, accelerometer, and acoustic emission sensors. We present a multiple model approach for wear depth estimation of milling machine cutters using the provided data. The feature selection, initial wear estimation and multiple model fusion components of the proposed algorithm are explained in details and compared with several alternative methods using the training data. The final submission ranked #2 among professional and student participants and the method is applicable to other data driven PHM problems.

  19. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    OpenAIRE

    Zhongqi Sheng; Lei Zhang; Hualong Xie; Changchun Liu

    2014-01-01

    Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to as...

  20. Comparative study for different statistical models to optimize cutting parameters of CNC end milling machines

    International Nuclear Information System (INIS)

    El-Berry, A.; El-Berry, A.; Al-Bossly, A.

    2010-01-01

    In machining operation, the quality of surface finish is an important requirement for many work pieces. Thus, that is very important to optimize cutting parameters for controlling the required manufacturing quality. Surface roughness parameter (Ra) in mechanical parts depends on turning parameters during the turning process. In the development of predictive models, cutting parameters of feed, cutting speed, depth of cut, are considered as model variables. For this purpose, this study focuses on comparing various machining experiments which using CNC vertical machining center, work pieces was aluminum 6061. Multiple regression models are used to predict the surface roughness at different experiments.

  1. Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

    OpenAIRE

    Bo P.; Bartoň M.; Pottmann H.

    2017-01-01

    We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral) method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in...

  2. Researches Regarding The Circular Interpolation Algorithms At CNC Laser Cutting Machines

    Science.gov (United States)

    Tîrnovean, Mircea Sorin

    2015-09-01

    This paper presents an integrated simulation approach for studying the circular interpolation regime of CNC laser cutting machines. The circular interpolation algorithm is studied, taking into consideration the numerical character of the system. A simulation diagram, which is able to generate the kinematic inputs for the feed drives of the CNC laser cutting machine is also presented.

  3. Open architecture CNC system

    Energy Technology Data Exchange (ETDEWEB)

    Tal, J. [Galil Motion Control Inc., Sunnyvale, CA (United States); Lopez, A.; Edwards, J.M. [Los Alamos National Lab., NM (United States)

    1995-04-01

    In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool in a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.

  4. Desain dan Implementasi Sistem Kendali CNC Router Menggunakan PC untuk Flame Cutting Machine

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2012-03-01

    Full Text Available This paper focuses on design of router control systems based on computer numerical control (CNC using personal computer (PC implemented in flame cutting machine (FCM. NC-Code entered into the computer translated to be a command signal sent by the PC to a microcontroller to control the end effector’s movement alongthe X and Y axis simultaneously based on linear and circular interpolations calculation on the PC. This control system is implemented on FCM by connecting the output control of the microcontroller with the driver actuator of the FCM in the form of a DC motor. The obtained result is in the form of a CNC router control system prototype to be implemented in the FCM which is capable to perform linear interpolation and circular interpolation. 

  5. Development of Client-Server Application by Using UDP Socket Programming for Remotely Monitoring CNC Machine Environment in Fixture Process

    Directory of Open Access Journals (Sweden)

    Darmawan Darmawan

    2016-08-01

    Full Text Available The use of computer technology in manufacturing industries can improve manufacturing flexibility significantly, especially in manufacturing processes; many software applications have been utilized to improve machining performance. However, none of them has discussed the abilities to perform direct machining. In this paper, an integrated system for remote operation and monitoring of Computer Numerical Control (CNC machines is put into consideration. The integrated system includes computerization, network technology, and improved holding mechanism. The work proposed by this research is mainly on the software development for such integrated system. It uses Java three-dimensional (3D programming and Virtual Reality Modeling Language (VRML at the client side for visualization of machining environment. This research is aimed at developing a control system to remotely operate and monitor a self-reconfiguration fixture mechanism of a CNC milling machine through internet connection and integration of Personal Computer (PC-based CNC controller, a server side, a client side and CNC milling. The performance of the developed system was evaluated by testing with one type of common protocols particularly User Datagram Protocol (UDP.  Using UDP, the developed system requires 3.9 seconds to complete the close clamping, less than 1 second to release the clamping and it can deliver 463 KiloByte.

  6. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    Science.gov (United States)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  7. The Use of Open Source Software for Open Architecture System on CNC Milling Machine

    Directory of Open Access Journals (Sweden)

    Dalmasius Ganjar Subagio

    2012-03-01

    Full Text Available Computer numerical control (CNC milling machine system cannot be separated from the software required to follow the provisions of the Open Architecture capabilities that have portability, extend ability, interoperability, and scalability. When a prescribed period of a CNC milling machine has passed and the manufacturer decided to discontinue it, then the user will have problems for maintaining the performance of the machine. This paper aims to show that the using of open source software (OSS is the way out to maintain engine performance. With the use of OSS, users no longer depend on the software built by the manufacturer because OSS is open and can be developed independently. In this paper, USBCNC V.3.42 is used as an alternative OSS. The test result shows that the work piece is in match with the desired pattern. The test result shows that the performance of machines using OSS has similar performance with the machine using software from the manufacturer. 

  8. An innovation on high-grade CNC machines tools for B-spline curve method of high-speed interpolation arithmetic

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    A novel on high-grade CNC machines tools for B Spline curve method of High-speed interpolation arithmetic is introduced. In the high-grade CNC machines tools CNC system existed the type value points is more trouble, the control precision is not strong and so on, In order to solve this problem. Through specific examples in matlab7.0 simulation result showed that that the interpolation error significantly reduced, the control precision is improved markedly, and satisfy the real-time interpolation of high speed, high accuracy requirements.

  9. Step-and-Repeat Nanoimprint-, Photo- and Laser Lithography from One Customised CNC Machine.

    Science.gov (United States)

    Greer, Andrew Im; Della-Rosa, Benoit; Khokhar, Ali Z; Gadegaard, Nikolaj

    2016-12-01

    The conversion of a computer numerical control machine into a nanoimprint step-and-repeat tool with additional laser- and photolithography capacity is documented here. All three processes, each demonstrated on a variety of photoresists, are performed successfully and analysed so as to enable the reader to relate their known lithography process(es) to the findings. Using the converted tool, 1 cm(2) of nanopattern may be exposed in 6 s, over 3300 times faster than the electron beam equivalent. Nanoimprint tools are commercially available, but these can cost around 1000 times more than this customised computer numerical control (CNC) machine. The converted equipment facilitates rapid production and large area micro- and nanoscale research on small grants, ultimately enabling faster and more diverse growth in this field of science. In comparison to commercial tools, this converted CNC also boasts capacity to handle larger substrates, temperature control and active force control, up to ten times more curing dose and compactness. Actual devices are fabricated using the machine including an expanded nanotopographic array and microfluidic PDMS Y-channel mixers.

  10. Preliminary Development of Real Time Usage-Phase Monitoring System for CNC Machine Tools with a Case Study on CNC Machine VMC 250

    Science.gov (United States)

    Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah

    2018-03-01

    The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.

  11. Design of General SCP Servo Controller for Track Model CNC Cutting Machine Based on IPC Bus%基于工控机总线的单片机通用数控伺服控制器设计

    Institute of Scientific and Technical Information of China (English)

    周永鹏; 何顶新; 万淑芸

    2001-01-01

    为解决工控机结构的轨道式切割机数控系统与交流伺服和步进电机驱动系统的联结与精插补控制问题,提出一种基于IPC的80C196KC单片机控制系统,使系统的可靠性得到有效保证。%A control system based on 80C196KC single chip computer of IPC is proposed,the reliability of the system can be guaranteed validly.It can be used for solving couple problem between the track model CNC cutting machine based on a IPC and AC servo or stepping driving as well as elaborate interpolation control problem.

  12. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    Science.gov (United States)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  13. Statistical analysis of surface roughness of machined graphite by means of CNC milling

    Directory of Open Access Journals (Sweden)

    Orquídea Sánchez López

    2016-09-01

    Full Text Available The aim of this research is to analyze the influence of cutting speed, feed rate and cutting depth on the surface finish of grade GSP-70 graphite specimens for use in electrical discharge machining (EDM for material removal by means of Computer Numerical Control (CNC milling with low-speed machining (LSM. A two-level factorial design for each of the three established factors was used for the statistical analysis. The analysis of variance (ANOVA indicates that cutting speed and feed rate are the two most significant factors with regard to the roughness obtained with grade GSP-70 graphite by means of CNC milling. A second order regression analysis was also conducted to estimate the roughness average (Ra in terms of the cutting speed, feed rate and cutting depth. Finally, the comparison between predicted roughness by means of a second order regression model and the roughness obtained by machined specimens considering the combinations of low and high levels of roughness is also presented.

  14. Investigation of influence of errors of cutting machines with CNC on displacement trajectory accuracy of their actuating devices

    Science.gov (United States)

    Fedonin, O. N.; Petreshin, D. I.; Ageenko, A. V.

    2018-03-01

    In the article, the issue of increasing a CNC lathe accuracy by compensating for the static and dynamic errors of the machine is investigated. An algorithm and a diagnostic system for a CNC machine tool are considered, which allows determining the errors of the machine for their compensation. The results of experimental studies on diagnosing and improving the accuracy of a CNC lathe are presented.

  15. Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-01-01

    Full Text Available An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example.

  16. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    Science.gov (United States)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  17. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2014-01-01

    Full Text Available Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to assembly connection strength to depict the assembling difficulty level. The transmissibility based on trust relationship was applied on the assembly connection strength. Assembly unit partition based on assembly connection strength was conducted, and interferential assembly units were identified and revised. The assembly sequence planning and optimization of parts in each assembly unit and between assembly units was conducted using genetic algorithm. With certain type of high speed CNC turning center, as an example, this paper explored into the assembly modeling, assembly unit partition, and assembly sequence planning and optimization and realized the optimized assembly sequence of headstock of CNC machine tool.

  18. Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution

    OpenAIRE

    Bo P.; Bartoň M.; Plakhotnik D.; Pottmann H.

    2016-01-01

    We introduce a new method that approximates free-form surfaces by envelopes of one-parameter motions of surfaces of revolution. In the context of 5-axis computer numerically controlled (CNC) machining, we propose a flank machining methodology which is a preferable scallop-free scenario when the milling tool and the machined free-form surface meet tangentially along a smooth curve. We seek both an optimal shape of the milling tool as well as its optimal path in 3D space and propose an optimiza...

  19. Increase efficiency CNC lathe with the help of fuzzy logic controller (FLC

    Directory of Open Access Journals (Sweden)

    Mošorinski Predrag R.

    2016-01-01

    Full Text Available This paper discusses the process of increasing the effectiveness of CNC lathe for carrying out the appropriate experiments. Experiments are related to the plastics processing machine and programming fuzzy logic controller (FLC for the requirements of machining. Input parameters of the FLCare obtained as a result of previous experimental parameters set by experience and with a great subjective impact of technologists. Expected results of FLC's settings are based on the complete autonomy of the process and eliminating subjective errors.

  20. 3D Printing device adaptable to Computer Numerical Control (CNC)

    OpenAIRE

    GARDAN , Julien; Danesi , F.; Roucoules , Lionel; Schneider , A.

    2014-01-01

    This article presents the development of a 3D printing device for the additive manufacturing adapted to a CNC machining. The application involves the integration of a specific printing head. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. A global review and analysis of technologies show the additive manufacturing presents little independent solutions [6][9]. The problem studied especially the additive manu...

  1. CAE Analysis of Secondary Shaft Systems in Great Five-axis Turning-Milling Complex CNC Machine

    Directory of Open Access Journals (Sweden)

    Chih-Chiang Hong

    2018-01-01

    Full Text Available The commercial computer aided engineering (CAE software is used to analyze the linear-static construction, stress and deformation for the secondary shaft systems in great five-axis turning-milling complex computer numerical control (CNC machine. It is convenient and always only three dimensional (3D graphic parts needed firstly prepared and further more detail used for the commercial CAE. It is desirable to predict a deformed position for the cut tool under external pressure loads in the working process of CNC machine. The linear results for static analysis of stresses, displacements in corresponding to the screw shaft locates at top, medium and bottom positions of the secondary shaft systems are obtained by using the simulation module of SOLIDWORKS®.

  2. Comparative study of manufacturing condyle implant using rapid prototyping and CNC machining

    Science.gov (United States)

    Bojanampati, S.; Karthikeyan, R.; Islam, MD; Venugopal, S.

    2018-04-01

    Injuries to the cranio-maxillofacial area caused by road traffic accidents (RTAs), fall from heights, birth defects, metabolic disorders and tumors affect a rising number of patients in the United Arab Emirates (UAE), and require maxillofacial surgery. Mandibular reconstruction poses a specific challenge in both functionality and aesthetics, and involves replacement of the damaged bone by a custom made implant. Due to material, design cycle time and manufacturing process time, such implants are in many instances not affordable to patients. In this paper, the feasibility of designing and manufacturing low-cost, custom made condyle implant is assessed using two different approaches, consisting of rapid prototyping and three-axis computer numerically controlled (CNC) machining. Two candidate rapid prototyping techniques are considered, namely fused deposition modeling (FDM) and three-dimensional printing followed by sand casting The feasibility of the proposed manufacturing processes is evaluated based on manufacturing time, cost, quality, and reliability.

  3. Theory and design of CNC systems

    CERN Document Server

    Suh, Suk-Hwan; Chung, Dae-Hyuk; Stroud, Ian

    2008-01-01

    Computer Numerical Control (CNC) controllers are high value-added products counting for over 30% of the price of machine tools. The development of CNC technology depends on the integration of technologies from many different industries, and requires strategic long-term support. a oeTheory and Design of CNC Systemsa covers the elements of control, the design of control systems, and modern open-architecture control systems. Topics covered include Numerical Control Kernel (NCK) design of CNC, Programmable Logic Control (PLC), and the Man-Machine Interface (MMI), as well as the major modules for t

  4. Application of Ethernet Powerlink for communication in a Linux RTAI open CNC control system

    OpenAIRE

    Erwiński, Krystian; Paprocki, Marcin; Grzesiak, Lech; Karwowski, Kazimierz; Wawrzak, Andrzej

    2013-01-01

    In computerized numerical control (CNC) systems, the communication bus between the controller and axis servo drives must offer high bandwidth, noise immunity, and time determinism. More and more CNC systems use real-time Ethernet protocols such as Ethernet Powerlink (EPL). Many modern controllers are closed costly hardware-based solutions. In this paper, the implementation of EPL communication bus in a PC-based CNC system is presented. The CNC system includes a PC, a s...

  5. Design and accuracy analysis of a metamorphic CNC flame cutting machine for ship manufacturing

    Science.gov (United States)

    Hu, Shenghai; Zhang, Manhui; Zhang, Baoping; Chen, Xi; Yu, Wei

    2016-09-01

    The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from-0.975 mm to +0.628 mm and orientation error is from-0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a `large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.

  6. Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation

    Science.gov (United States)

    Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah

    2018-04-01

    The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.

  7. STUDY OF THE VIBRATION LEVEL IN CASE OF MANUFACTURING ON A CNC MACHINE-TOOL

    Directory of Open Access Journals (Sweden)

    Ioan Călin ROȘCA

    2015-12-01

    Full Text Available The paper presents the results of an experimental research performed on a CNC machine tool type ISEL-GFV considering the vibration level developed during the manufacturing of different pieces of particleboard at six processing regimes. There were recorded signals on both time and frequency domains on the three main directions. Based on recorded data there are presented the main conclusions referring to the level of vibrations and the frequencies associated to the highest levels.

  8. Investigation and Evaluation on Influence of Machining (CNC Conditions on Surface Quality of Paulownia Wood

    Directory of Open Access Journals (Sweden)

    Mohammad Aghajani

    2012-01-01

    Full Text Available The aim of this study was to investigate the effective factors on surface quality of paulownia wood during machining by advanced computer numerical controled (CNC machine. For this aim paulownia logs were provided and were converted to proper sizes (2.5 x 10 x 15 cm and then air dried. The Variable of this study were cutting speed (8.37 and 15.07 m/s, feeding rate (6 and 12 m/min, cutting depth (1and 5 mm, cutting method (down and up-milling and cutting pattern (tangential and radial. Roughness of cut specimens edge were evaluated by profilometer method according to ISO 13565 standard. For evaluation of surface quality, average roughness (Ra, maximum roughness (R max, valley roughness (Rv and peak roughness (Rp were used. Degrees of effectiveness of the parameters were evaluated by fractional factorial design as completely random design at confidence level of 95%. The result showed that cutting speed, cutting method and feed rate are influencive factors on surface quality of machined specimens and their effects were significant. With increasing cutting speed and decreasing feeding rate the roughness decreased and surface quality improved. In up-milling cutting method, degree of roughness was higher and consequently surface quality was inferior. It is to be noted that cutting method in comparison to other factors had the high influence on surface quality. The rest variables did now have independent influence on surface quality at 95% Confidence level. This study for achieving the optimum surface quality recommends that cutting speed of 15.07 m/s, feeding rate of 6 m/min, cutting method of down-milling and cutting depth of 1 mm for tangential cross section.

  9. Static/dynamic Analysis and Optimization of Z-axis Stand of PCB CNC Drilling Machine*

    Directory of Open Access Journals (Sweden)

    Zhou Yanjun

    2016-01-01

    Full Text Available The finite element analysis is used for the static and dynamic analysis of the Z axis brace of PCB CNC drilling machine. With its results of maximum displacement deformation and von Mises stress and modal frequency, the defect of original design was found out. On such bases, a variety of optimization scheme is put forward and the best size of the Z axis brace is obtained by the performance comparison of the schemes. This method offers bases for the design and renovation of other machine tool components.

  10. Maximum Feedrate Interpolator for Multi-axis CNC Machining with Jerk Constraints

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2012-01-01

    A key role of the CNC is to perform the feedrate interpolation which means to generate the setpoints for each machine tool axis. The aim of the VPOp algorithm is to make maximum use of the machine tool respecting both tangential and axis jerk on rotary and linear axes. The developed algorithm uses an iterative constraints intersection approach. At each sampling period, all the constraints given by each axis are expressed and by intersecting all of them the allowable interval for the next poin...

  11. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    OpenAIRE

    Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen

    2014-01-01

    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other e...

  12. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines

    OpenAIRE

    Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen

    2016-01-01

    Virtual manufacturing systems can provide useful means for products to be manufactured without the need of physical testing on the shop floor. As a result, the time and cost of part production can be decreased. There are different error sources in machine tools such as tool deflection, geometrical deviations of moving axis and thermal distortions of machine tool structures. Some of these errors can be decreased by controlling the machining process and environmental parameters. However other e...

  13. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  14. Tool management in manufacturing systems equipped with CNC machines

    Directory of Open Access Journals (Sweden)

    Giovanni Tani

    1997-12-01

    Full Text Available This work has been carried out for the purpose of realizing an automated system for the integrated management of tools within a company. By integrating planning, inspection and tool-room functions, automated tool management can ensure optimum utilization of tools on the selected machines, guaranteeing their effective availability. The first stage of the work consisted of defining and developing a Tool Management System whose central nucleus is a unified Data Base for all of the tools, forming part of the company's Technological Files (files on machines, materials, equipment, methods, etc., interfaceable with all of the company departments that require information on tools. The system assigns code numbers to the individual components of the tools and file them on the basis of their morphological and functional characteristics. The system is also designed to effect assemblies of tools, from which are obtained the "Tool Cards" required for compiling working cycles (CAPP, for CAM programming and for the Tool-room where the tools are physically prepared. Methods for interfacing with suitable systems for the aforesaid functions have also been devised

  15. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    Science.gov (United States)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  16. Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steel

    Science.gov (United States)

    Nyamekye, Patricia; Leino, Maija; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to fabricate metal parts out of metal powder. The development of the technology from building prototype parts to functional parts has increased remarkably in 2000s. LAM of metals is promising technology that offers new opportunities to manufacturing and to resource efficiency. However, there is only few published articles about its sustainability. Aim in this study was to create supply chain model of LAM and CNC machining and create a methodology to carry out a life cycle inventory (LCI) data collection for these techniques. The methodology of the study was literature review and scenario modeling. The acquisition of raw material, production phase and transportations were used as basis of comparison. The modelled scenarios were fictitious and created for industries, like aviation and healthcare that often require swift delivery as well as customized parts. The results of this study showed that the use of LAM offers a possibility to reduce downtime in supply chains of spare parts and reduce part inventory more effectively than CNC machining. Also the gap between customers and business is possible to be shortened with LAM thus offering a possibility to reduce emissions due to less transportation. The results also indicated weight reduction possibility with LAM due to optimized part geometry which allow lesser amount of metallic powder to be used in making parts.

  17. Random and Systematic Errors Share in Total Error of Probes for CNC Machine Tools

    Directory of Open Access Journals (Sweden)

    Adam Wozniak

    2018-03-01

    Full Text Available Probes for CNC machine tools, as every measurement device, have accuracy limited by random errors and by systematic errors. Random errors of these probes are described by a parameter called unidirectional repeatability. Manufacturers of probes for CNC machine tools usually specify only this parameter, while parameters describing systematic errors of the probes, such as pre-travel variation or triggering radius variation, are used rarely. Systematic errors of the probes, linked to the differences in pre-travel values for different measurement directions, can be corrected or compensated, but it is not a widely used procedure. In this paper, the share of systematic errors and random errors in total error of exemplary probes are determined. In the case of simple, kinematic probes, systematic errors are much greater than random errors, so compensation would significantly reduce the probing error. Moreover, it shows that in the case of kinematic probes commonly specified unidirectional repeatability is significantly better than 2D performance. However, in the case of more precise strain-gauge probe systematic errors are of the same order as random errors, which means that errors correction or compensation, in this case, would not yield any significant benefits.

  18. Universal CNC platform motion control technology for industrial CT

    International Nuclear Information System (INIS)

    Cheng Senlin; Wang Yang

    2011-01-01

    According to the more scanning methods and the higher speed of industrial CT, the higher precision of the motion location and the data collection sync-control is required at present, a new motion control technology was proposed, which was established based on the universal CNC system with high precision of multi-axis control. Aiming at the second and the third generation of CT scanning motion, a control method was researched, and achieved the demands of the changeable parameters and network control, Through the simulation of the second and the third generation of CT scanning motion process, the control precision of the rotation axis reached 0.001° and the linear axis reached 0.002 mm, Practical tests showed this system can meet the requirements of the multi-axis motion integration and the sync signal control, it also have advantages in the control precision and the performance. (authors)

  19. Research on criticality analysis method of CNC machine tools components under fault rate correlation

    Science.gov (United States)

    Gui-xiang, Shen; Xian-zhuo, Zhao; Zhang, Ying-zhi; Chen-yu, Han

    2018-02-01

    In order to determine the key components of CNC machine tools under fault rate correlation, a system component criticality analysis method is proposed. Based on the fault mechanism analysis, the component fault relation is determined, and the adjacency matrix is introduced to describe it. Then, the fault structure relation is hierarchical by using the interpretive structure model (ISM). Assuming that the impact of the fault obeys the Markov process, the fault association matrix is described and transformed, and the Pagerank algorithm is used to determine the relative influence values, combined component fault rate under time correlation can obtain comprehensive fault rate. Based on the fault mode frequency and fault influence, the criticality of the components under the fault rate correlation is determined, and the key components are determined to provide the correct basis for equationting the reliability assurance measures. Finally, taking machining centers as an example, the effectiveness of the method is verified.

  20. Optimization of the Machining parameter of LM6 Alminium alloy in CNC Turning using Taguchi method

    Science.gov (United States)

    Arunkumar, S.; Muthuraman, V.; Baskaralal, V. P. M.

    2017-03-01

    Due to widespread use of highly automated machine tools in the industry, manufacturing requires reliable models and methods for the prediction of output performance of machining process. In machining of parts, surface quality is one of the most specified customer requirements. In order for manufactures to maximize their gains from utilizing CNC turning, accurate predictive models for surface roughness must be constructed. The prediction of optimum machining conditions for good surface finish plays an important role in process planning. This work deals with the study and development of a surface roughness prediction model for machining LM6 aluminum alloy. Two important tools used in parameter design are Taguchi orthogonal arrays and signal to noise ratio (S/N). Speed, feed, depth of cut and coolant are taken as process parameter at three levels. Taguchi’s parameters design is employed here to perform the experiments based on the various level of the chosen parameter. The statistical analysis results in optimum parameter combination of speed, feed, depth of cut and coolant as the best for obtaining good roughness for the cylindrical components. The result obtained through Taguchi is confirmed with real time experimental work.

  1. Novel CNC Grinding Process Control for Nanometric Surface Roughness for Aspheric Space Optical Surfaces

    Directory of Open Access Journals (Sweden)

    Jeong-Yeol Han

    2004-06-01

    Full Text Available Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about 20 μm rms in height and the subsurface damage of about 1 μm rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ±20 nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.

  2. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    Science.gov (United States)

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  3. Feedrate optimization in 5-axis machining based on direct trajectory interpolation on the surface using an open cnc

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; In the common machining process of free-form surfaces, CAM software generates approximated tool paths because of the input tool path format of the industrial CNC. Then, marks on finished surfaces may appear due to non smooth feedrate planning during interpolation. The Direct Trajectory Interpolation on the Surface (DTIS) method allows managing the tool path geometry and the kinematical parameters to achieve higher productivity and a better surface quality. Machining ex...

  4. Parameter identification and optimization of slide guide joint of CNC machine tools

    Science.gov (United States)

    Zhou, S.; Sun, B. B.

    2017-11-01

    The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.

  5. Computer-Numerical-Control and the EMCO Compact 5 Lathe.

    Science.gov (United States)

    Mullen, Frank M.

    This laboratory manual is intended for use in teaching computer-numerical-control (CNC) programming using the Emco Maier Compact 5 Lathe. Developed for use at the postsecondary level, this material contains a short introduction to CNC machine tools. This section covers CNC programs, CNC machine axes, and CNC coordinate systems. The following…

  6. Precise gouging-free tool orientations for 5-axis CNC machining

    KAUST Repository

    Kim, Yong-Joon

    2014-08-19

    We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank. To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOCs) (Wang et al., 1993a,b), that have third order contact with the target surface, and lead to a locally collision-free configuration between the tool and the target surface. At locations where an HOC is not possible, we aim at a double tangential contact among the tool and the target surface, and use it as a bridge between the feasible HOC tool paths. We formulate all such possible two-contact configurations as systems of algebraic constraints and solve them. For all feasible HOCs and two-contact configurations, we perform a global optimization to find the tool path that maximizes the approximation quality of the machining, while being gouge-free and possibly satisfying constraints on the tool tilt and the tool acceleration. We demonstrate the effectiveness of our approach via several experimental results.

  7. Precise gouging-free tool orientations for 5-axis CNC machining

    KAUST Repository

    Kim, Yong-Joon; Elber, Gershon; Barton, Michael; Pottmann, Helmut

    2014-01-01

    We present a precise approach to the generation of optimized collision-free and gouging-free tool paths for 5-axis CNC machining of freeform NURBS surfaces using flat-end and rounded-end (bull nose) tools having cylindrical shank. To achieve high approximation quality, we employ analysis of hyper-osculating circles (HOCs) (Wang et al., 1993a,b), that have third order contact with the target surface, and lead to a locally collision-free configuration between the tool and the target surface. At locations where an HOC is not possible, we aim at a double tangential contact among the tool and the target surface, and use it as a bridge between the feasible HOC tool paths. We formulate all such possible two-contact configurations as systems of algebraic constraints and solve them. For all feasible HOCs and two-contact configurations, we perform a global optimization to find the tool path that maximizes the approximation quality of the machining, while being gouge-free and possibly satisfying constraints on the tool tilt and the tool acceleration. We demonstrate the effectiveness of our approach via several experimental results.

  8. Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2011-06-01

    Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.

  9. Product quality management based on CNC machine fault prognostics and diagnosis

    Science.gov (United States)

    Kozlov, A. M.; Al-jonid, Kh M.; Kozlov, A. A.; Antar, Sh D.

    2018-03-01

    This paper presents a new fault classification model and an integrated approach to fault diagnosis which involves the combination of ideas of Neuro-fuzzy Networks (NF), Dynamic Bayesian Networks (DBN) and Particle Filtering (PF) algorithm on a single platform. In the new model, faults are categorized in two aspects, namely first and second degree faults. First degree faults are instantaneous in nature, and second degree faults are evolutional and appear as a developing phenomenon which starts from the initial stage, goes through the development stage and finally ends at the mature stage. These categories of faults have a lifetime which is inversely proportional to a machine tool's life according to the modified version of Taylor’s equation. For fault diagnosis, this framework consists of two phases: the first one is focusing on fault prognosis, which is done online, and the second one is concerned with fault diagnosis which depends on both off-line and on-line modules. In the first phase, a neuro-fuzzy predictor is used to take a decision on whether to embark Conditional Based Maintenance (CBM) or fault diagnosis based on the severity of a fault. The second phase only comes into action when an evolving fault goes beyond a critical threshold limit called a CBM limit for a command to be issued for fault diagnosis. During this phase, DBN and PF techniques are used as an intelligent fault diagnosis system to determine the severity, time and location of the fault. The feasibility of this approach was tested in a simulation environment using the CNC machine as a case study and the results were studied and analyzed.

  10. Advanced CNC and CAM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook [and] Student Laboratory Manual.

    Science.gov (United States)

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and student laboratory manual for a 1-year vocational training program to prepare students for entry-level positions as advanced computer numerical control (CNC) and computer-assisted manufacturing (CAM) technicians.. The program was developed through a modification of the DACUM…

  11. VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS

    Directory of Open Access Journals (Sweden)

    POPESCU Adrian

    2015-11-01

    Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.

  12. Review on CNC-Rapid Prototyping

    International Nuclear Information System (INIS)

    M Nafis O Z; Nafrizuan M Y; Munira M A; Kartina J

    2012-01-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  13. Architecture for Direct Model-to-Part CNC Manufacturing

    Directory of Open Access Journals (Sweden)

    Gilbert Poon

    2006-02-01

    Full Text Available In the traditional paradigm for Computer Numerical Control (CNC machining, tool paths are programmed offline from the CNC machine using the Computer-Aided Design (CAD model of the workpiece. The program is downloaded to the CNC controller and the part is then machined. Since a CAD model does not exist inside the CNC controller, it is unaware of the part to be machined and cannot predict or prevent errors. Not only is this paradigm labor intensive, it can lead to catastrophic damage if there are errors during machining. This paper presents a new concept for CNC machine control whereby a CAD model of the workpiece exists inside the controller and the tool positions are generated in real-time by the controller using the computer's graphics hardware without human intervention. The new concept was implemented on an experimental lathe machine specifically designed to machine complicated ornamental wood workpieces with a personal computer. An example workpiece was machined and measured using a 3D camera. The measured data was registered to the CAD model to evaluate machining accuracy.

  14. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    Science.gov (United States)

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.

  15. An integrated model for part-operation allocation and investments in CNC technology

    NARCIS (Netherlands)

    Bokhorst, J.A.C.; Slomp, J.; Suresh, N.

    2002-01-01

    This study addresses the issue of investment appraisal of new technology, specifically computer numerical control (CNC) machine tools in conjunction with optimal allocation of parts and operations on CNC machines as the investments take place. Part-operation allocation is the allocation of parts and

  16. Accuracy Enhancement with Processing Error Prediction and Compensation of a CNC Flame Cutting Machine Used in Spatial Surface Operating Conditions

    Directory of Open Access Journals (Sweden)

    Shenghai Hu

    2017-04-01

    Full Text Available This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models.

  17. An open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and industrial CAM software.

    Science.gov (United States)

    Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong

    2011-10-01

    China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.

  18. CNC Turning Center Operations and Prove Out. Computer Numerical Control Operator/Programmer. 444-334.

    Science.gov (United States)

    Skowronski, Steven D.

    This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…

  19. OPMILL - MICRO COMPUTER PROGRAMMING ENVIRONMENT FOR CNC MILLING MACHINES THREE AXIS EQUATION PLOTTING CAPABILITIES

    Science.gov (United States)

    Ray, R. B.

    1994-01-01

    OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo

  20. Low-Cost Fabrication of Hollow Microneedle Arrays Using CNC Machining and UV Lithography

    DEFF Research Database (Denmark)

    Lê Thanh, Hoà; Ta, B.Q.; Le The, H.

    2015-01-01

    In order to produce disposable microneedles for blood-collection devices in smart homecare monitoring systems, we have developed a simple low-cost scalable process for mass fabrication of sharp-tipped microneedle arrays. The key feature in this process is a design of computer numerical control......-machined aluminum sample (CAS). The inclined sidewalls on the CAS enable microfabricated traditional-shaped microneedles (TMNs) to be produced in the desired shape. This process provides significant advantages over other methods that use inclined lithography or anisotropic wet etching. TMNs with a length of 1510 mu...

  1. CNC Programming I.

    Science.gov (United States)

    Casey, Joe

    This document contains five units for a course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs manually. Each unit consists of an introduction, instructional objectives, learning materials, learning activities,…

  2. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    Science.gov (United States)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively

  3. Methods of control the machining process

    Directory of Open Access Journals (Sweden)

    Yu.V. Petrakov

    2017-12-01

    Full Text Available Presents control methods, differentiated by the time of receipt of information used: a priori, a posteriori and current. When used a priori information to determine the mode of cutting is carried out by simulation the process of cutting allowance, where the shape of the workpiece and the details are presented in the form of wireframes. The office for current information provides for a system of adaptive control and modernization of CNC machine, where in the input of the unit shall be computed by using established optimization software. For the control by a posteriori information of the proposed method of correction of shape-generating trajectory in the second pass measurement surface of the workpiece formed by the first pass. Developed programs that automatically design the adjusted file for machining.

  4. Fuzzy Linguistic Optimization on Surface Roughness for CNC Turning

    OpenAIRE

    Lan, Tian-Syung

    2010-01-01

    Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC) machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and...

  5. Performance Monitoring Of A Computer Numerically Controlled (CNC) Lathe Using Pattern Recognition Techniques

    Science.gov (United States)

    Daneshmend, L. K.; Pak, H. A.

    1984-02-01

    On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.

  6. Perancangan Coupled Fuzzy Logic Controller pada Prototipe Mesin Computer Numerical Control (CNC

    Directory of Open Access Journals (Sweden)

    Nabilla Gustiviana

    2012-09-01

    Full Text Available Tingkat ketelitian mesin CNC dalam membuat suatu kontur merupakan hal yang penting. Adanya gesekan antara mata pahat dengan benda kerja saat melakukan gerakan feeding dalam membentuk suatu kontur dapat berakibat pada kesalahan bentuk kontur yang akan dihasilkan apabila di tiap sumbunya dikontrol secara individu. Untuk mengatasi permasalahan tersebut, maka dirancang kombinasi antara Fuzzy Logic Controller sebagai kontroler individu yang mengatasi permasalahan di tiap sumbu, dengan kontroler koordinasi, yaitu Cross-Coupled Controller. Algoritma dari kontroler ini dibuat dengan menggunakan software LabView 8.6. Hasil simulasi menunjukkan bahwa dengan menambahkan kontroler koordinasi, dapat memperbaiki nilai indeks performansi sebesar 37,5% untuk kontur linier dan 2,78% untuk kontur lingkaran

  7. Development of hole inspection program using touch trigger probe on CNC machine tools

    International Nuclear Information System (INIS)

    Lee, Chan Ho; Lee, Eung Suk

    2012-01-01

    According to many customers' requests, optical measurement module (OMM) applications using automatic measuring devices to measure the machined part rapidly on a machine tool have increased steeply. Touch trigger probes are being used for job setup and feature inspection as automatic measuring devices, and this makes quality checking and machining compensation possible. Therefore, in this study, the use of touch trigger probes for accurate measurement of the machined part has been studied and a macro program for a hole measuring cycle has been developed. This hole is the most common feature to be measured, but conventional methods are still not free from measuring error. In addition, the eccentricity change of the least square circle was simulated according to the roundness error in a hole measurement. To evaluate the reliability of this study, the developed hole measuring program was executed to measure the hole plate on the machine and verify the roundness error in the eccentricity simulation result

  8. A CNC Sheetmetal Fabrication System for Production of Ships Ventilation Components and Flatwork

    National Research Council Canada - National Science Library

    Galie, Thomas R; Blais, David R

    1981-01-01

    .... By utilizing computer graphics technology and Computer Numeric Control (CNC) machine tools, it is possible to reduce the manhours required for fabrication of ventilation and flatwork by as much as 40 percent...

  9. Failure probabilistic model of CNC lathes

    International Nuclear Information System (INIS)

    Wang Yiqiang; Jia Yazhou; Yu Junyi; Zheng Yuhua; Yi Shangfeng

    1999-01-01

    A field failure analysis of computerized numerical control (CNC) lathes is described. Field failure data was collected over a period of two years on approximately 80 CNC lathes. A coding system to code failure data was devised and a failure analysis data bank of CNC lathes was established. The failure position and subsystem, failure mode and cause were analyzed to indicate the weak subsystem of a CNC lathe. Also, failure probabilistic model of CNC lathes was analyzed by fuzzy multicriteria comprehensive evaluation

  10. CAD/CAM/CNC.

    Science.gov (United States)

    Domermuth, Dave; And Others

    1996-01-01

    Includes "Quick Start CNC (computer numerical control) with a Vacuum Filter and Laminated Plastic" (Domermuth); "School and Industry Cooperate for Mutual Benefit" (Buckler); and "CAD (computer-assisted drafting) Careers--What Professionals Have to Say" (Skinner). (JOW)

  11. Performance optimization of a CNC machine through exploration of the timed state space

    NARCIS (Netherlands)

    Mota, M.A. Mujica; Piera, Miquel Angel

    2010-01-01

    Flexible production units provide very efficient mechanisms to adapt the type and production rate according to fluctuations in demand. The optimal sequence of the different manufacturing tasks in each machine is a challenging problem that can deal with important productivity benefits.

  12. Selection of Levels of Dressing Process Parameters by Using TOPSIS Technique for Surface Roughness of En-31 Work piece in CNC Cylindrical Grinding Machine

    Science.gov (United States)

    Patil, Sanjay S.; Bhalerao, Yogesh J.

    2017-02-01

    Grinding is metal cutting process used for mainly finishing the automobile components. The grinding wheel performance becomes dull by using it most of times. So it should be reshaping for consistent performance. It is necessary to remove dull grains of grinding wheel which is known as dressing process. The surface finish produced on the work piece is dependent on the dressing parameters in sub-sequent grinding operation. Multi-point diamond dresser has four important parameters such as the dressing cross feed rate, dressing depth of cut, width of the diamond dresser and drag angle of the dresser. The range of cross feed rate level is from 80-100 mm/min, depth of cut varies from 10 - 30 micron, width of diamond dresser is from 0.8 - 1.10mm and drag angle is from 40o - 500, The relative closeness to ideal levels of dressing parameters are found for surface finish produced on the En-31 work piece during sub-sequent grinding operation by using Technique of Order Preference by Similarity to Ideal Solution (TOPSIS).In the present work, closeness to ideal solution i.e. levels of dressing parameters are found for Computer Numerical Control (CNC) cylindrical angular grinding machine. After the TOPSIS technique, it is found that the value of Level I is 0.9738 which gives better surface finish on the En-31 work piece in sub-sequent grinding operation which helps the user to select the correct levels (combinations) of dressing parameters.

  13. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    Science.gov (United States)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  14. Optimizing the way kinematical feed chains with great distance between slides are chosen for CNC machine tools

    Science.gov (United States)

    Lucian, P.; Gheorghe, S.

    2017-08-01

    This paper presents a new method, based on FRISCO formula, for optimizing the choice of the best control system for kinematical feed chains with great distance between slides used in computer numerical controlled machine tools. Such machines are usually, but not limited to, used for machining large and complex parts (mostly in the aviation industry) or complex casting molds. For such machine tools the kinematic feed chains are arranged in a dual-parallel drive structure that allows the mobile element to be moved by the two kinematical branches and their related control systems. Such an arrangement allows for high speed and high rigidity (a critical requirement for precision machining) during the machining process. A significant issue for such an arrangement it’s the ability of the two parallel control systems to follow the same trajectory accurately in order to address this issue it is necessary to achieve synchronous motion control for the two kinematical branches ensuring that the correct perpendicular position it’s kept by the mobile element during its motion on the two slides.

  15. CNC Turning Technician. A Competency-Based Instructional System.

    Science.gov (United States)

    Sloan, Kelly; Hilley, Robert

    This competency-based curriculum guide for instructing students in using computer numerically controlled (CNC) turning machines is one of a series of instructional guides for the machinist field developed in Oklahoma. Although developed jointly with Baxter Technologies Corporation and oriented toward the Baxter Vo-Tec 2000 Future Builder CNC…

  16. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  17. Development of Fractal Pattern Making Application using L-System for Enhanced Machine Controller

    Directory of Open Access Journals (Sweden)

    Gunawan Alexander A S

    2014-03-01

    Full Text Available One big issue facing the industry today is an automated machine lack of flexibility for customization because it is designed by the manufacturers based on certain standards. In this research, it is developed customized application software for CNC (Computer Numerically Controlled machines using open source platform. The application is enable us to create designs by means of fractal patterns using L-System, developed by turtle geometry interpretation and Python programming languages. The result of the application is the G-Code of fractal pattern formed by the method of L-System. In the experiment on the CNC machine, the G-Code of fractal pattern which involving the branching structure has been able to run well.

  18. CNC Preparation Meets Manufacturing Opportunity

    Science.gov (United States)

    Cassola, Joel

    2006-01-01

    This article features the machining technology program at Cape Fear Community College (CFCC) of Wilmington, North Carolina. North Carolina's Cape Fear Community College is working to meet diverse industry needs through its CNC training. The school's program has gained the attention of the local manufacturing community and students when it shifted…

  19. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  20. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  1. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  2. Are computer numerical control (CNC)-manufactured patient-specific metal templates available for posterior thoracic pedicle screw insertion? Feasibility and accuracy evaluation.

    Science.gov (United States)

    Kong, Xiangxue; Tang, Lei; Ye, Qiang; Huang, Wenhua; Li, Jianyi

    2017-11-01

    Accurate and safe posterior thoracic pedicle insertion (PTPI) remains a challenge. Patient-specific drill templates (PDTs) created by rapid prototyping (RP) can assist in posterior thoracic pedicle insertion, but pose biocompatibility risks. The aims of this study were to develop alternative PDTs with computer numerical control (CNC) and assess their feasibility and accuracy in assisting PTPI. Preoperative CT images of 31 cadaveric thoracic vertebras were obtained and then the optimal pedicle screw trajectories were planned. The PDTs with optimal screw trajectories were randomly assigned to be designed and manufactured by CNC or RP in each vertebra. With the guide of the CNC- or RP-manufactured PDTs, the appropriate screws were inserted into the pedicles. Postoperative CT scans were performed to analyze any deviations at entry point and midpoint of the pedicles. The CNC group was found to be significant manufacture-time-shortening, and cost-decreasing, when compared with the RP group (P  0.05). The screw positions were grade 0 in 90.3% and grade 1 in 9.7% of the cases in the CNC group and grade 0 in 93.5% and grade 1 in 6.5% of the cases in the RP group (P = 0.641). CNC-manufactured PDTs are viable for assisting in PTPI with good feasibility and accuracy.

  3. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  4. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  5. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  6. El control numérico computarizado en el desarrollo industrial Parte 2: desarrollo y aplicaciones del C.N.C.

    OpenAIRE

    Ruiz, Lino

    2016-01-01

    En la edición anterior nuestro principal énfasis fue el de presentar el control numérico computarizado (C.N.C.) como una alternativa tecnológica que pueda potenciar nuestro desarrollo industrial, por lo que describimos sus características principales y su incidencia en el trabajador. En el presente articulo nos enfocaremos, más al manejo de la información en las máquinas CNC, las tendencias actuales del desarrollo de las MHCNC y las tendencias industriales de nuestra época.

  7. Occupational Noise Reduction in CNC Striping Process

    Science.gov (United States)

    Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad

    2018-03-01

    Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.

  8. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    International Nuclear Information System (INIS)

    Kim, Jungkwun; Allen, Mark G; Yoon, Yong-Kyu

    2016-01-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array. (paper)

  9. Study on Production Management in Programming of Computer Numerical Control Machines

    Directory of Open Access Journals (Sweden)

    Gheorghe Popovici

    2014-12-01

    Full Text Available The paper presents the results of a study regarding the need for technology in programming for machinetools with computer-aided command. Engineering is the science of making skilled things. That is why, in the "factory of the future", programming engineering will have to realise the part processing on MU-CNCs (Computer Numerical Control Machines in the optimum economic variant. There is no "recipe" when it comes to technologies. In order to select the correct variant from among several technical variants, 10 technological requirements are forwarded for the engineer to take into account in MU-CNC programming. It is the first argued synthesis of the need for technological knowledge in MU-CNC programming.

  10. Numerical Analysis of CNC Milling Chatter Using Embedded Miniature MEMS Microphone Array System

    Directory of Open Access Journals (Sweden)

    Pang-Li Wang

    2018-01-01

    Full Text Available With the increasingly common use of industrial automation for mass production, there are many computer numerical control (CNC machine tools that require the collection of data from intelligent sensors in order to analyze their processing quality. In general, for high speed rotating machines, an accelerometer can be attached on the spindle to collect the data from the detected vibration of the CNC. However, due to their cost, accelerometers have not been widely adopted for use with typical CNC machine tools. This study sought to develop an embedded miniature MEMS microphone array system (Radius 5.25 cm, 8 channels to discover the vibration source of the CNC from spatial phase array processing. The proposed method utilizes voice activity detection (VAD to distinguish between the presence and absence of abnormal noise in the pre-stage, and utilizes the traditional direction of arrival method (DOA via multiple signal classification (MUSIC to isolate the spatial orientation of the noise source in post-processing. In the numerical simulation, the non-interfering noise source location is calibrated in the anechoic chamber, and is tested with real milling processing in the milling machine. As this results in a high background noise level, the vibration sound source is more accurate in the presented energy gradation graphs as compared to the traditional MUSIC method.

  11. Controls and Machine Protection Systems

    CERN Document Server

    Carrone, E.

    2016-01-01

    Machine protection, as part of accelerator control systems, can be managed with a 'functional safety' approach, which takes into account product life cycle, processes, quality, industrial standards and cybersafety. This paper will discuss strategies to manage such complexity and the related risks, with particular attention to fail-safe design and safety integrity levels, software and hardware standards, testing, and verification philosophy. It will also discuss an implementation of a machine protection system at the SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS).

  12. RANCANG BANGUN CNC MILLING MACHINEHOME MADE UNTUK MEMBUAT PCB

    Directory of Open Access Journals (Sweden)

    Dityo Pradana

    2011-06-01

    Full Text Available Kendala yang dimiliki oleh seorang penggemar elektronik untuk membuat PCB diantaranya adalah efisiensi waktu, tenaga, dan biaya. Pembuatan CNC milling machine merupakan salah satu solusi yang tepat untuk membuat PCB. CNC milling machine adalah mesin bubut otomatis yang bekerja atas dasar perintah Numerical Code. Rancang bangun CNC Milling Machine Home Made ini dikontrol oleh komputer yang akan mengontrol IC L297 melalui parallel port. IC L297 ini kemudian memberikan empat data digital a, b, c dan d untuk mengatur phase IC L298 yang menyalurkan tegangan untuk koil motor stepper unipolar. Pada akhirnya motor stepper unipolar akan memutar baut dan dapat menggerakkan meja sumbu menggunakan prinsip kerja ulir.

  13. Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite

    Science.gov (United States)

    Gupta, Anand; Soni, P. K.; Krishna, C. M.

    2018-04-01

    The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.

  14. Development of a QFD-based expert system for CNC turning centre selection

    Science.gov (United States)

    Prasad, Kanika; Chakraborty, Shankar

    2015-12-01

    Computer numerical control (CNC) machine tools are automated devices capable of generating complicated and intricate product shapes in shorter time. Selection of the best CNC machine tool is a critical, complex and time-consuming task due to availability of a wide range of alternatives and conflicting nature of several evaluation criteria. Although, the past researchers had attempted to select the appropriate machining centres using different knowledge-based systems, mathematical models and multi-criteria decision-making methods, none of those approaches has given due importance to the voice of customers. The aforesaid limitation can be overcome using quality function deployment (QFD) technique, which is a systematic approach for integrating customers' needs and designing the product to meet those needs first time and every time. In this paper, the adopted QFD-based methodology helps in selecting CNC turning centres for a manufacturing organization, providing due importance to the voice of customers to meet their requirements. An expert system based on QFD technique is developed in Visual BASIC 6.0 to automate the CNC turning centre selection procedure for different production plans. Three illustrative examples are demonstrated to explain the real-time applicability of the developed expert system.

  15. Development process and data management of TurnSTEP, a STEP-compliant CNC system for turning

    NARCIS (Netherlands)

    Choi, I.; Suh, S.-H; Kim, K.; Song, M.S.; Jang, M.; Lee, B.-E.

    2006-01-01

    TurnSTEP is one of the earliest STEP-compliant CNC systems for turning. Based on the STEP-NC data model formalized as ISO 14649-12 and 121, it is designed to support intelligent and autonomous control of NC machines for e-manufacturing. The present paper introduces the development process and data

  16. Onderzoeksresultaten introductie CNC bij een zestal bedrijven

    NARCIS (Netherlands)

    Mal, van H.H.; Ottink, M.S.; Peters, R.B.

    1987-01-01

    In het kader van een afstudeerproject van de faculteit bedrijfskunde aan de Technische Universiteit Eindhoven is er een onderzoek gedaan naar het gebruik en de gevolgen van het gebruikvan CNC-bewerkings machines in industriële organisaties [1]. Het onderzoek werd uitgevoerd in een zestal bedrijven,

  17. Design and Implementation of 3 Axis CNC Router for Computer Aided Manufacturing Courses

    Directory of Open Access Journals (Sweden)

    Aktan Mehmet Emin

    2016-01-01

    Full Text Available In this paper, it is intended to make the mechanical design of 3 axis Computer Numerical Control (CNC router with linear joints, production of electronic control interface cards and drivers and manufacturing of CNC router system which is a combination of mechanics and electronics. At the same time, interface program has been prepared to control router via USB. The router was developed for educational purpose. In some vocational schools and universities, Computer Aided Manufacturing (CAM courses are though rather theoretical. This situation cause ineffective and temporary learning. Moreover, students at schools which have the opportunity to apply for these systems can face with various dangerous accidents. Because of this situation, these students start to get knowledge about this system for the first time. For the first steps of CNC education, using smaller and less dangerous systems will be easier. A new concept CNC machine and its user interface suitable and profitable for education have been completely designed and realized during this study. To test the validity of the hypothesis which the benefits that may exist on the educational life, enhanced traditional education method with the contribution of the designed machine has been practiced on CAM course students for a semester. At the end of the semester, the new method applied students were more successful in the rate of 27.36 percent both in terms of verbal comprehension and exam grades.

  18. Carney complex (CNC

    Directory of Open Access Journals (Sweden)

    Bertherat Jérôme

    2006-06-01

    Full Text Available Abstract The Carney complex (CNC is a dominantly inherited syndrome characterized by spotty skin pigmentation, endocrine overactivity and myxomas. Skin pigmentation anomalies include lentigines and blue naevi. The most common endocrine gland manifestations are acromegaly, thyroid and testicular tumors, and adrenocorticotropic hormone (ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD. PPNAD, a rare cause of Cushing's syndrome, is due to primary bilateral adrenal defect that can be also observed in some patients without other CNC manifestations or familial history of the disease. Myxomas can be observed in the heart, skin and breast. Cardiac myxomas can develop in any cardiac chamber and may be multiple. One of the putative CNC genes located on 17q22-24, (PRKAR1A, has been identified to encode the regulatory subunit (R1A of protein kinase A. Heterozygous inactivating mutations of PRKAR1A were reported initially in 45 to 65 % of CNC index cases, and may be present in about 80 % of the CNC families presenting mainly with Cushing's syndrome. PRKAR1A is a key component of the cAMP signaling pathway that has been implicated in endocrine tumorigenesis and could, at least partly, function as a tumor suppressor gene. Genetic analysis should be proposed to all CNC index cases. Patients with CNC or with a genetic predisposition to CNC should have regular screening for manifestations of the disease. Clinical work-up for all the manifestations of CNC should be performed at least once a year in all patients and should start in infancy. Cardiac myxomas require surgical removal. Treatment of the other manifestations of CNC should be discussed and may include follow-up, surgery, or medical treatment depending on the location of the tumor, its size, the existence of clinical signs of tumor mass or hormonal excess, and the suspicion of malignancy. Bilateral adrenalectomy is the most common treatment for Cushing

  19. Carney complex (CNC).

    Science.gov (United States)

    Bertherat, Jérôme

    2006-06-06

    The Carney complex (CNC) is a dominantly inherited syndrome characterized by spotty skin pigmentation, endocrine overactivity and myxomas. Skin pigmentation anomalies include lentigines and blue naevi. The most common endocrine gland manifestations are acromegaly, thyroid and testicular tumors, and adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). PPNAD, a rare cause of Cushing's syndrome, is due to primary bilateral adrenal defect that can be also observed in some patients without other CNC manifestations or familial history of the disease. Myxomas can be observed in the heart, skin and breast. Cardiac myxomas can develop in any cardiac chamber and may be multiple. One of the putative CNC genes located on 17q22-24, (PRKAR1A), has been identified to encode the regulatory subunit (R1A) of protein kinase A. Heterozygous inactivating mutations of PRKAR1A were reported initially in 45 to 65% of CNC index cases, and may be present in about 80% of the CNC families presenting mainly with Cushing's syndrome. PRKAR1A is a key component of the cAMP signaling pathway that has been implicated in endocrine tumorigenesis and could, at least partly, function as a tumor suppressor gene. Genetic analysis should be proposed to all CNC index cases. Patients with CNC or with a genetic predisposition to CNC should have regular screening for manifestations of the disease. Clinical work-up for all the manifestations of CNC should be performed at least once a year in all patients and should start in infancy. Cardiac myxomas require surgical removal. Treatment of the other manifestations of CNC should be discussed and may include follow-up, surgery, or medical treatment depending on the location of the tumor, its size, the existence of clinical signs of tumor mass or hormonal excess, and the suspicion of malignancy. Bilateral adrenalectomy is the most common treatment for Cushing's syndrome due to PPNAD.

  20. Fuzzy Linguistic Optimization on Surface Roughness for CNC Turning

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2010-01-01

    Full Text Available Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and high level are considered to optimize the surface roughness for finish turning based on L9(34 orthogonal array. Additionally, nine fuzzy control rules using triangle membership function with respective to five linguistic grades for surface roughness are constructed. Considering four input and twenty output intervals, the defuzzification using center of gravity is then completed. Thus, the optimum general fuzzy linguistic parameters can then be received. The confirmation experiment result showed that the surface roughness from the fuzzy linguistic optimization parameters is significantly advanced compared to that from the benchmark. This paper certainly proposes a general optimization scheme using orthogonal array fuzzy linguistic approach to the surface roughness for CNC turning with profound insight.

  1. Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep hybrid composite

    Directory of Open Access Journals (Sweden)

    J.S. Pang

    2014-08-01

    Full Text Available This paper introduces the application of Taguchi optimization methodology in optimizing the cutting parameters of end-milling process for machining the halloysite nanotubes (HNTs with aluminium reinforced epoxy hybrid composite material under dry condition. The machining parameters which are chosen to be evaluated in this study are the depth of cut (d, cutting speed (S and feed rate (f. While, the response factors to be measured are the surface roughness of the machined composite surface and the cutting force. An orthogonal array of the Taguchi method was set-up and used to analyse the effect of the milling parameters on the surface roughness and cutting force. The result from this study shows that the application of the Taguchi method can determine the best combination of machining parameters that can provide the optimal machining response conditions which are the lowest surface roughness and lowest cutting force value. For the best surface finish, A1–B3–C3 (d = 0.4 mm, S = 1500 rpm, f = 60 mmpm is found to be the optimized combination of levels for all the three control factors from the analysis. Meanwhile, the optimized combination of levels for all the three control factors from the analysis which provides the lowest cutting force was found to be A2–B2–C2 (d = 0.6 mm, S = 1000 rpm, f = 40 mmpm.

  2. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  3. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-01-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840

  4. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  5. 49 CFR 236.771 - Machine, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Machine, control. 236.771 Section 236.771..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.771 Machine, control. An assemblage of manually operated devices for controlling the functions of a traffic...

  6. ANALYSIS OF CUTTING FORCES ON CNC LATHES EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    Erdem Koç

    1996-01-01

    Full Text Available Objective of this study is to make use easy programming of CNC lathes and to achieve the optimization of part program prepared considering the limiting parameters of the machine. In the present study, a BOXFORD 250 B CNC lathe has been used for experiment and optimization process. The measurement of cutting forces exerted on the cutting tool of CNC lathe has been performed. The cutting forces occurring during the turning operation have been determined for different depth of" cut, feed rate and cutting speed as well as different cutting tools and related data base has been obtained.

  7. DIAGNOSTIC OF CNC LATHE WITH QC 20 BALLBAR SYSTEM

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2015-11-01

    Full Text Available This paper presents the evaluation of the influence of the feedmotion speed on the value of selected geometric errors of CNC lathe CTX 310 eco by DMG, indentified by QC 20 Ballbar system. Diagnostically evaluated were: the deviation of the axis squareness, reversal spike, and backlash. These errors determine the forming of the dimensional and shape accuracy of a machine tool. The article discusses the process of the CNC diagnostic test, the diagnostic evaluation and formulates guidelines on further CNC operation. The results of measurements were presented in tables and diagrams.

  8. Pemanfaatan TKKS Sebagai Pengisi Komposit Epoxy Untuk Struktur Bergerak Mesin CNC Perkayuan

    Directory of Open Access Journals (Sweden)

    Farkhan

    2017-04-01

    Full Text Available Abstract CNC machinery is widely used at various kind of industrial sector to manufacture of art products up to satellite products. Instead of its massive utilization in automotive and electronic industry which mostly use metallic component, wood working industry has been using it to produces furniture’s, merchandises, and other house ware products which apply light weight non-metallic low density material. High removal rate in wood machining process needs high speed application due to its low density material; however most of wood working CNC machine is built on heavy steel structure for both its supporting structure and moving structure. In fact, the raw material is much lighter than the carrier itself. Its wasteful dynamic movement causes energy loses and vibrations that effect on machining accuracy, live of cutting tool, and productivity. This research applied new light weight composite material base on renewable resource of oil palm empty fruit bunch (EFB natural fiber as filler material combine with polymer epoxy as it’s matrix to be constructed as moving mechanical structure of high speed 3D CNC woodworking machine to improve its dynamic performance. Comparative analysis showed that it has better dynamic performance on high speed machining process compared with traditional cast iron material. Abstrak Mesin Perkakas CNC (Computerized Numerical Control digunakan luas oleh industri untuk memproduksi mulai dari benda-benda seni kerajinan hingga untuk membuat satelit. Selain pemanfaatannya secara besar-besaran di industri otomotif dan elektronika yang umumnya menggunakan komponen logam, industri perkayuan telah banyak menggunakannya untuk memproduksi mebel, barang kerajinan, dan peralatan rumah tangga lainnya dengan mengaplikasikan bahan bukan logam seperti kayu yang berberat jenis rendah dan ringan. Tingkat pemotongan yang tinggi pada proses permesinan kayu membutuhkan permesinan cepat akibat berat jenis bahannya yang rendah tersebut

  9. Concept of a Programmable Fixture for 3-Axis CNC

    Directory of Open Access Journals (Sweden)

    Ahmad Dalloul

    2017-09-01

    Full Text Available CNC machine is the one of the major reasons for industrial advancement in recent decades for its ability of producing accurate parts. The most commen CNC machines are of 3-axis and adopted widely in the industrial sector. However, for producing more complicated parts 5-axis CNC machines are required. Although the introduction of the 5-axis machine came after the 3-axis CNC machine has established itself and many manufacturers did not make the move toward the newer model and its high pricing compared to the 3-axis model did not help either. In this time the development of a fixture or a platform to help transfer the 3-axis to a 5-axis to some degree. This paper discusses the concept of a programmable fixture that gives 3-axis CNC machine the freedom to act in similar manner as the 5-axis. The paper describes the mechanism with some initial results of the testing. Result showed that the platform moves in translation manner with an average error of 5.58 % and 7.303% average error for rotation movement.

  10. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    Science.gov (United States)

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  11. Advanced CNC Programming (EZ-CAM). 439-366.

    Science.gov (United States)

    Casey, Joe

    This document contains two units for an advanced course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs using computer software. Each unit consists of an introduction, instructional objectives, learning materials,…

  12. Migration of supervisory machine control architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Deursen, van A.; Nord, R.; Medvidovic, N.; Krikhaar, R.; Stafford, J.; Bosch, J.

    2005-01-01

    In this position paper, we discuss a first step towards an approach for the migration of supervisory machine control (SMC) architectures. This approach is based on the identification of SMC concerns and the definition of corresponding transformation rules.

  13. Construction machine control guidance implementation strategy.

    Science.gov (United States)

    2010-07-01

    Machine Controlled Guidance (MCG) technology may be used in roadway and bridge construction to improve construction efficiencies, potentially resulting in reduced project costs and accelerated schedules. The technology utilizes a Global Positioning S...

  14. Design and implementation of five-axis transformation function in CNC system

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2014-04-01

    Full Text Available To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle-tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software structure, the instructions with respect to the cutter’s position and orientation can be directly carried out in the CNC system.

  15. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  16. PENGEMBANGAN MESIN CNC VIRTUAL SEBAGAI MEDIA INTERAKTIF DALAM PEMBELAJARAN PEMROGRAMAN CNC

    OpenAIRE

    Bambang Setyo Hari Purwoko

    2013-01-01

    Penelitian ini bertujuan: (1) menghasilkan prototype tampilan lingkungan fisik sebuah mesin bubut CNC (Virtual Reality CNC) pada layar komputer yang dapat menerima masukan dan dioperasikan sebagaimana suatu mesin CNC dan (2) menguji keefektifan prototype mesin CNC Virtual tersebut sebagai media interaktif pembelajaran pemrograman CNC. Penelitian ini merupakan penelitian pengembangan. Obyek penelitian adalah rekayasa pemrograman dengan bahasa Visual Basic 6 guna menghasilkan mesin CNC Virtual....

  17. Operating System For Numerically Controlled Milling Machine

    Science.gov (United States)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  18. Grammatical Metaphor, Controlled Languageand Machine Translation

    DEFF Research Database (Denmark)

    Møller, Margrethe

    2003-01-01

    It is a general assumption that 1) the readability and clarity of LSP texts written in a controlled language are better than uncontrolled texts and 2) that controlled languages produce better results with machine translation than uncontrolled languages. Controlled languages impose lexical...

  19. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques.

    Science.gov (United States)

    Martorelli, Massimo; Gerbino, Salvatore; Giudice, Michele; Ausiello, Pietro

    2013-02-01

    Aim of the research is to compare the orthodontic appliances fabricated by using rapid prototyping (RP) systems, in particular 3D printers, with those manufactured by using computer numerical control (CNC) milling machines. 3D printing is today a well-accepted technology to fabricate orthodontic aligners by using the thermoforming process, instead the potential of CNC systems in dentistry have not yet been sufficiently explored. One patient, with mal-positioned maxillary central and lateral incisors, was initially selected. In the computer aided virtual planning was defined that, for the treatment, the patient needed to wear a series of 7 removable orthodontic appliances (ROA) over a duration of 21 weeks, with one appliance for every 3 weeks. A non-contact reverse engineering (RE) structured-light 3D scanner was used to create the 3D STL model of the impression of the patient's mouth. Numerical FEM simulations were performed varying the position of applied forces (discrete and continuous forces) on the same model, simulating, in this way, 3 models with slice thickness of 0.2 mm, 0.1 mm (RP staircase effect) and without slicing (ideal case). To define the areas of application of forces, two configuration "i" and "i-1" of the treatment were overlapped. 6 patients to which for three steps (3rd, 4th and 5th step) were made to wear aligners fabricated starting from physical models by 3D printing (3DP-ROA) and afterwards, for the next steps (6th, 7th and 8th step), aligners fabricated starting from physical models by CNC milling machine (CNC-ROA), were selected. For the 6 patients wearing the CNC-ROA, it was observed a best fitting of the aligner to the teeth and a more rapid teeth movement than the 3DP-ROA (2 weeks compared to 3 weeks for every appliance). FEM simulations showed a more uniform stress distribution for CNC-ROA than 3DP-ROA. In this research, 6 different case studies and CAD-FEM simulations showed that, to fabricate an efficient clear and removable

  20. Methods and apparatus for controlling rotary machines

    Science.gov (United States)

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Barnes, Gary R [Delanson, NY; Fric, Thomas Frank [Greer, SC; Lyons, James Patrick Francis [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Holley, William Edwin [Greer, SC; Barbu, Corneliu [Guilderland, NY

    2009-09-01

    A control system for a rotary machine is provided. The rotary machine has at least one rotating member and at least one substantially stationary member positioned such that a clearance gap is defined between a portion of the rotating member and a portion of the substantially stationary member. The control system includes at least one clearance gap dimension measurement apparatus and at least one clearance gap adjustment assembly. The adjustment assembly is coupled in electronic data communication with the measurement apparatus. The control system is configured to process a clearance gap dimension signal and modulate the clearance gap dimension.

  1. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...

  2. Development of a stereolithography (STL input and computer numerical control (CNC output algorithm for an entry-level 3-D printer

    Directory of Open Access Journals (Sweden)

    Brown, Andrew

    2014-08-01

    Full Text Available This paper presents a prototype Stereolithography (STL file format slicing and tool-path generation algorithm, which serves as a data front-end for a Rapid Prototyping (RP entry- level three-dimensional (3-D printer. Used mainly in Additive Manufacturing (AM, 3-D printers are devices that apply plastic, ceramic, and metal, layer by layer, in all three dimensions on a flat surface (X, Y, and Z axis. 3-D printers, unfortunately, cannot print an object without a special algorithm that is required to create the Computer Numerical Control (CNC instructions for printing. An STL algorithm therefore forms a critical component for Layered Manufacturing (LM, also referred to as RP. The purpose of this study was to develop an algorithm that is capable of processing and slicing an STL file or multiple files, resulting in a tool-path, and finally compiling a CNC file for an entry-level 3- D printer. The prototype algorithm was implemented for an entry-level 3-D printer that utilises the Fused Deposition Modelling (FDM process or Solid Freeform Fabrication (SFF process; an AM technology. Following an experimental method, the full data flow path for the prototype algorithm was developed, starting with STL data files, and then processing the STL data file into a G-code file format by slicing the model and creating a tool-path. This layering method is used by most 3-D printers to turn a 2-D object into a 3-D object. The STL algorithm developed in this study presents innovative opportunities for LM, since it allows engineers and architects to transform their ideas easily into a solid model in a fast, simple, and cheap way. This is accomplished by allowing STL models to be sliced rapidly, effectively, and without error, and finally to be processed and prepared into a G-code print file.

  3. Sensorless control of induction machine

    OpenAIRE

    Kılıç, Bahadır; Kilic, Bahadir

    2004-01-01

    AC drives based on fully digital control have reached the status of a maturing technology in a broad range of applications ranging from the low cost to high performance systems. Continuing research has concentrated on the removal of the sensors measuring the mechanical coordinates (e.g. tachogenerators, encoders) while maintaining the cost and performance of the control system. Speed estimation is an issue of particular interest with induction motor electrical drives as the rotor speed is gen...

  4. VVER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2002-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two Fuel Handling Machine (FHM) Control System units have been already supplied for Temelin NPP and others supply are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China.The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide.The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders).All control logic were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing and easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure of 1090 Work-stations (APMS - Advanced Plant Monitoring System, or Tenore NT) has been successfully used to interface the

  5. Parametric optimization of CNC end milling using entropy ...

    African Journals Online (AJOL)

    user

    Bayoumi,. Kopac and Krajnik (2007) had presented the robust design of flank milling parameters dealing with the ... to manufacture low cost, high quality products in short time. ... CNC machines are considered most suitable in flexible manufacturing system. ... important factor that greatly influences production rate and cost.

  6. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  7. stepping motor - hydraulic motor servo drives for an nc milling machine

    African Journals Online (AJOL)

    Dr Obe

    stepping motor Drive Assembly especially Designed for CNC systems". 13th Machine Tool Design and. Research. (MTDR) conference,. University of Birmingham, 1972. 2 Ertongur, N.A. "Investigation into the instability in an electro hydraulic control system for machine tools" Ph.D. Thesis, University of. Birmingham, UK. 1966 ...

  8. Fatigue and Model Analysis of the CNC Cylindrical Grinder

    OpenAIRE

    Lin Jui-Chang; Lin Cheng-Jen

    2016-01-01

    The purpose of this study is to lower deviation of workpiece by meeting high stability and rigidity to prevent the resonance in producing procedure of the CNC universal cylindrical grinding machine. Using finite element analysis software ABAQUS in grinder machine tools for numerical simulation of several analyses for the following: structural rigidity analysis, optimized design, vibration frequency analysis and fatigue damage analysis. This work aims on state of the transmission of outer diam...

  9. WWER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2001-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two FHM Control System units have been already supplied for Temelin NPP and others supplies are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China. The Fuel Handling Machine (FHM) Control System is an integrated system capable of a complete management of nuclear fuel assemblies. The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide. The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders). All control logic components were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing an easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure

  10. Virtual Machine Language Controls Remote Devices

    Science.gov (United States)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  11. Passivity-Based Control of Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Nicklasson, P.J.

    1996-12-31

    This doctoral thesis presents new results on the design and analysis of controllers for a class of electric machines. Nonlinear controllers are derived from a Lagrangian model representation using passivity techniques, and previous results on induction motors are improved and extended to Blondel-Park transformable machines. The relation to conventional techniques is discussed, and it is shown that the formalism introduced in this work facilitates analysis of conventional methods, so that open questions concerning these methods may be resolved. In addition, the thesis contains the following improvements of previously published results on the control of induction motors: (1) Improvement of a passivity-based speed/position controller, (2) Extension of passivity-based (observer-less and observer-based) controllers from regulation to tracking of rotor flux norm, (3) An extension of the classical indirect FOC (Field-Oriented Control) scheme to also include global rotor flux norm tracking, instead of only torque tracking and rotor flux norm regulation. The design is illustrated experimentally by applying the proposed control schemes to a squirrel-cage induction motor. The results show that the proposed methods have advantages over previous designs with respect to controller tuning, performance and robustness. 145 refs., 21 figs.

  12. A method of numerically controlled machine part programming

    Science.gov (United States)

    1970-01-01

    Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.

  13. AC machine control : robust and sensorless control by parameter independency

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, Dag Andreas Hals

    2009-06-15

    In this thesis it is first presented how robust control can be used to give AC motor drive systems competitive dynamic performance under parameter variations. These variations are common to all AC machines, and are a result of temperature change in the machine, and imperfect machine models. This robust control is, however, dependent on sensor operation in the sense that the rotor position is needed in the control loop. Elimination of this control loop has been for many years, and still is, a main research area of AC machines control systems. An integrated PWM modulator and sampler unit has been developed and tested. The sampler unit is able to give current and voltage measurements with a reduced noise component. It is further used to give the true derivative of currents and voltages in the machine and the power converter, as an average over a PWM period, and as separate values for all states of the power converter. In this way, it can give measurements of the currents as well as the derivative of the currents, at the start and at the end of a single power inverter state. This gave a large degree of freedom in parameter and state identification during uninterrupted operation of the induction machine. The special measurement scheme of the system achieved three main goals: By avoiding the time frame where the transistors commutate and the noise in the measurement of the current is large, filtering of the current measurement is no longer needed. The true derivative of the current in the machine is can be measured with far less noise components. This was extended to give any separate derivative in all three switching states of the power converter. Using the computational resources of the FPGA, more advanced information was supplied to the control system, in order to facilitate sensor less operation, with low computational demands on the DSP. As shown in the papers, this extra information was first used to estimate some of the states of the machine, in some or all of the

  14. Design of Control System for Kiwifruit Automatic Grading Machine

    Directory of Open Access Journals (Sweden)

    Xingjian Zuo

    2013-05-01

    Full Text Available The kiwifruit automatic grading machine is an important machine for postharvest processing of kiwifruit, and the control system ensures that the machine realizes intelligence. The control system for the kiwifruit automatic grading machine designed in this paper comprises a host computer and a slave microcontroller. The host computer provides a visual grading interface for the machine with a LabVIEW software, the slave microcontroller adopts an STC89C52 microcontroller as its core, and C language is used to write programs for controlling a position sensor module, push-pull type electromagnets, motor driving modules and a power supply for controlling the operation of the machine as well as the rise or descend of grading baffle plates. The ideal control effect is obtained through test, and the intelligent operation of the machine is realized.

  15. Asynchronous machines. Direct torque control; Machines asynchrones. Commande par controle direct de couple

    Energy Technology Data Exchange (ETDEWEB)

    Fornel, B. de [Institut National Polytechnique, 31 - Toulouse (France)

    2006-05-15

    The asynchronous machine, with its low cost and robustness, is today the most widely used motor to make speed variators. However, its main drawback is that the same current generates both the magnetic flux and the torque, and thus any torque variation creates a flux variation. Such a coupling gives to the asynchronous machine a nonlinear behaviour which makes its control much more complex. The direct self control (DSC) method has been developed to improve the low efficiency of the scalar control method and for the specific railway drive application. The direct torque control (DTC) method is derived from the DSC method but corresponds to other type of applications. The DSC and DTC algorithms for asynchronous motors are presented in this article: 1 - direct control of the stator flux (DSC): principle, flux control, torque control, switching frequency of the inverter, speed estimation; 2 - direct torque control (DTC): principle, electromagnetic torque derivative, signals shape and switching frequency, some results, DTC speed variator without speed sensor, DTC application to multi-machine multi-converter systems; 3 - conclusion. (J.S.)

  16. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  17. Machine function based control code algebras

    NARCIS (Netherlands)

    Bergstra, J.A.

    Machine functions have been introduced by Earley and Sturgis in [6] in order to provide a mathematical foundation of the use of the T-diagrams proposed by Bratman in [5]. Machine functions describe the operation of a machine at a very abstract level. A theory of hardware and software based on

  18. Direct Trajectory Interpolation on the Surface using an Open CNC

    OpenAIRE

    Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

    2014-01-01

    International audience; Free-form surfaces are used for many industrial applications from aeronautical parts, to molds or biomedical implants. In the common machining process, computer-aided manufacturing (CAM) software generates approximated tool paths because of the limitation induced by the input tool path format of the industrial CNC. Then, during the tool path interpolation, marks on finished surfaces can appear induced by non smooth feedrate planning. Managing the geometry of the tool p...

  19. Control System Design for Automatic Cavity Tuning Machines

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; /Fermilab; Goessel, A.; Iversen, J.; Klinke, D.; /DESY

    2009-05-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  20. Control System Design for Automatic Cavity Tuning Machines

    International Nuclear Information System (INIS)

    Carcagno, R.; Khabiboulline, T.; Kotelnikov, S.; Makulski, A.; Nehring, R.; Nogiec, J.; Ross, M.; Schappert, W.; Goessel, A.; Iversen, J.; Klinke, D.

    2009-01-01

    A series of four automatic tuning machines for 9-cell TESLA-type cavities are being developed and fabricated in a collaborative effort among DESY, FNAL, and KEK. These machines are intended to support high-throughput cavity fabrication for construction of large SRF-based accelerator projects. Two of these machines will be delivered to cavity vendors for the tuning of XFEL cavities. The control system for these machines must support a high level of automation adequate for industrial use by non-experts operators. This paper describes the control system hardware and software design for these machines.

  1. The Effectiveness of Problem-based Learning Approach on Students’ Skills in Technical Vocational Education and Training (TVET) Specifically on Programming Course Using a Computerized Numerical Control (CNC) Simulator

    DEFF Research Database (Denmark)

    Mohamad, Hasim Bin; de Graaff, Erik

    2013-01-01

    Industry has a great need for highly skilled technicians that graduate from Technical Vocational Education and Training (TVET). In a study started at Aalborg University (AAU) the purpose is to evaluate the effectiveness of the (PBL) approach on students’ skills, in particular on programming course...... using a Computerized Numerical Control (CNC) simulator. The study will use data from the German-Malaysian Institute in Malaysia. The findings of this study will provide a general guideline for educators in Technical and Vocational Education and Training (TVET) institutions in implementing Problem...

  2. Integration of CAM and CNC operation through code editing and manipulation

    International Nuclear Information System (INIS)

    Rosli Darmawan; Shalina Sheik Muhammad

    2004-01-01

    The IT technology for engineering design and manufacturing has gone through significant advancement for the last 30 years. It is widely acknowledged that IT would provide competitive advantage for engineering company in term of production cycle, productivity and efficiency. The recent development in this area is on the total system integration. While standard off-shelf CAD/CAM/CNC software and hardware packages would provide solution for system integration, more often than not users will stumble upon compatibility problems. Moreover, most of the integration deals with CAD and CAM systems. CNC integration has not been fully developed. Users always found problems in the integration of CAM and CNC machine due to the different level of technological development. CNC codes have not fundamentally progressed in the last 50 years, while CAD/CAM software packages have undergone massive evolution and improvement. This paper discusses a practical solution of CAM and CNC integration through code editing and manipulation within the CAM system in order to comply with the CNC machine requirements. (Author)

  3. Vyhodnocení CNC stroje versus konvenční stroj ve firmě

    OpenAIRE

    Kopecký, Štěpán

    2016-01-01

    Bakalářská práce se zabývá analýzou CNC stroje ve firmě a porovnáním CNC oproti konvenčnímu stroji. Analýza CNC se zaměřuje na ekonomické přínosy a přínosy pro firmu z hlediska zlepšení produktivity a přesnosti. Po prostudování odborné literatury a seznámením se s CNC frézou a jejím řídicím systémem a konvenčními stroji firmy Alubra s.r.o. je porovnán výrobek. Bachelor thesis describes analysis of CNC machine in company. The analysis of CNC machine focus on economical benefits and compare ...

  4. DEVELOPMENT OF A CNC MICRO-LATHE FOR BONE MICROIMPLANTS DESARROLLO DE UN MICROTORNO CNC PARA MICROIMPLANTES DE HUESO DESENVOLVIMENTO DE UM MICROTORNO CNC PARA MICROIMPLANTES DE OSSO

    Directory of Open Access Journals (Sweden)

    Daniel A. Rangel

    2011-06-01

    Full Text Available This paper evaluates the development of a CNC micro-lathe concept, continuing with the research in the development of machine tool prototypes by LATEMM. A micromachining center developed in 2004-2005 at Universidad de los Andes was studied, and based on the results obtained, a new prototype was proposed. The motivation behind the design and construction of this machine tool was to achieve higher precision in the machining process compared with conventional turning produced in macro machine tools. A machine, with spindle rotation speed up to 300 000 rpm was achieved, the cutting tool moves in two axes through step motors connected to worm gear reductions, thus resolution of 1µm is achieved. The interpolator was programmed based on DDA integration. The machine was set under a stereoscope to visualize the machining operations with zoom up to 30X. Micromachining was reached adopting NC control and it was possible to characterize micro-turned cortical bone samples.Este artículo evalúa el desarrollo de un concepto de microtorno CNC, siguiendo la línea de investigación en el desarrollo de prototipos de máquinas-herramientas por parte del LATEMM. Se estudió un centro de micromecanizado desarrollado en 2004-2005 en la Universidad de los Andes y con base en los resultados obtenidos se propuso un nuevo prototipo. La motivación detrás del diseño y la construcción de esta micromáquina herramienta era alcanzar mayor precisión en el mecanizado en comparación con el torneado convencional producido en máquinas-herramientas de tamaño macro. Se logró una máquina que alcanzó una velocidad de rotación de hasta 300.000 rpm en el husillo, la herramienta de corte se mueve en dos ejes a través de motores de paso conectados a sistemas de reducción sinfín-corona con lo que se logra una resolución de 1µm, además se programó interpolación basada en integración DDA. La máquina fue montada bajo un estereoscopio para visualizar las operaciones de

  5. CNC proteins in physiology and pathology

    Directory of Open Access Journals (Sweden)

    Agnieszka Gęgotek

    2015-07-01

    Full Text Available CNC proteins consist of Bach1, Bach2 and 4 homologous transcription factors: Nrf1, Nrf2, Nrf3 and p45NF-E2. Transcription factors belonging to this group of proteins play a crucial role in protection of cells against oxidative stress. Under physiological conditions, they remain in the cytoplasm in the inactive form or are degraded. However, in oxidative stress conditions, they are translocated to the nucleus, and bind to DNA in the ARE sequence. Consequently, there is transcription of genes encoding cytoprotective proteins, such as phase II enzymes, or low molecular weight antioxidant proteins (i.e., thioredoxin, ferritin, metallothionein responsible for protecting cells from reactive oxygen species (ROS action. The activity of transcriptional proteins depends directly on the redox state of the cell. ROS as second messenger signals, control inhibitors of cytoplasmic CNC proteins or potentiate the activity of kinases (MAPK, PKC, PI3K, PERK, leading to phosphorylation of transcription factors. This is conducive to translocation of these molecules into the nucleus and to formation of complexes that initiate the gene expression. Disorders of regulation of the activity of transcription factors belonging to the CNC proteins caused by gene mutations, epigenetic modifications or increased activity of p62, p21, or k-Ras, B-Raf and c-Myc oncogenes, induce changes in the level of ARE-dependent gene expression, which can lead even to the development of carcinogenesis. On the other hand, Nrf transcription factors, inducing the expression of antioxidants and enzymes responsible for the detoxification of xenobiotics, can be considered as a potential target of the action of chemopreventive factors in anticancer therapy.

  6. [CNC proteins in physiology and pathology].

    Science.gov (United States)

    Gęgotek, Agnieszka; Skrzydlewska, Elżbieta

    2015-07-06

    CNC proteins consist of Bach1, Bach2 and 4 homologous transcription factors: Nrf1, Nrf2, Nrf3 and p45NF-E2. Transcription factors belonging to this group of proteins play a crucial role in protection of cells against oxidative stress. Under physiological conditions, they remain in the cytoplasm in the inactive form or are degraded. However, in oxidative stress conditions, they are translocated to the nucleus, and bind to DNA in the ARE sequence. Consequently, there is transcription of genes encoding cytoprotective proteins, such as phase II enzymes, or low molecular weight antioxidant proteins (i.e., thioredoxin, ferritin, metallothionein) responsible for protecting cells from reactive oxygen species (ROS) action. The activity of transcriptional proteins depends directly on the redox state of the cell. ROS as second messenger signals, control inhibitors of cytoplasmic CNC proteins or potentiate the activity of kinases (MAPK, PKC, PI3K, PERK), leading to phosphorylation of transcription factors. This is conducive to translocation of these molecules into the nucleus and to formation of complexes that initiate the gene expression. Disorders of regulation of the activity of transcription factors belonging to the CNC proteins caused by gene mutations, epigenetic modifications or increased activity of p62, p21, or k-Ras, B-Raf and c-Myc oncogenes, induce changes in the level of ARE-dependent gene expression, which can lead even to the development of carcinogenesis. On the other hand, Nrf transcription factors, inducing the expression of antioxidants and enzymes responsible for the detoxification of xenobiotics, can be considered as a potential target of the action of chemopreventive factors in anticancer therapy.

  7. Using Artificial Neural Networks to Model the Surface Roughness of Massive Wooden Edge-Glued Panels Made of Scotch Pine (Pinus sylvestris L. in a Machining Process with Computer Numerical Control

    Directory of Open Access Journals (Sweden)

    Sait Dundar Sofuoglu

    2015-08-01

    Full Text Available An artificial neural network (ANN approach was employed for the prediction and control of surface roughness (Ra and Rz in a computer numerical control (CNC machine. Experiments were performed on a CNC machine to obtain data used for the training and testing of an ANN. Experimental studies were conducted, and a model based on the experimental results was set up. Five machining parameters (cutter type, tool clearance strategy, spindle speed, feed rate, and depth of cut were used. One hidden layer was used for all models, while there were five neurons in the hidden layer of the Ra and Rz models. The RMSE values were calculated as 1.05 and 3.70. The mean absolute percentage error (MAPE values were calculated as 20.18 and 15.14, which can be considered as a good prediction. The results of the ANN approach were compared with the measured values. It was shown that the ANN prediction model obtained is a useful and effective tool for modeling the Ra and Rz of wood. The results of the present research can be applied in the wood machining industry to reduce energy, time, and cost.

  8. Machine throughput improvement achieved using innovative control technique

    International Nuclear Information System (INIS)

    Sharma, V.; Acharya, S.; Mittal, K.C.

    2012-01-01

    In any type of fully or semi automatic machine the control systems plays an important role. The control system on the one hand has to consider the human psychology, intelligence requirement for an operator, and attention needed from him. On the other hand the complexity of the control has also to be understood well before designing a control system that can be handled comfortably and safely by the operator. As far as the user experience/comfort is concerned the design of control system GUI is vital. Considering these two aspects related to the user of the machine it is evident that the control system design is very important because it is has to accommodate the human behaviour and skill sets required/available as well as the capability of the machine under the control of the control system. An intelligently designed control system can enhance the productivity of the machine. (author)

  9. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  10. Fidget with Widgets: CNC Activity Introduces the Flatbed Router

    Science.gov (United States)

    Tryon, Daniel V.

    2006-01-01

    The computer numerical control (CNC) flatbed router is a powerful tool and a must-have piece of equipment for any technology education program in which students will produce a product--whether it involves Manufacturing, Materials Processing, or any of the vast array of Project Lead the Way courses. This article describes an activity--producing a…

  11. Development of CNC Program for Piston Production

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013. West African Journal of ... Surprisingly, this is not the case. Nigeria and many ... systems of machine tools, machines, electric control components ...

  12. Optimasi Parameter Permesinan Terhadap Waktu Proses Pada Pemrograman Cnc Milling Dengan Berbasis Cad/cam

    OpenAIRE

    Yudhyadi, IGNK; Rachmanto, Tri; Ramadan, Adnan Dedy

    2016-01-01

    The milling process is one of many machining processes for manufacturing component. The length of time in the process of milling machining is influenced by selection and design of machining parameters including cutting speed, feed rate and depth of cut. The purpose of this study to know the influence of cutting speed, feed rate and depth of cut as independent variables versus operation time at CNC milling process as dependent variables. Each independent variable consists of three level of fac...

  13. An industrial sewing machine variable speed controller

    Science.gov (United States)

    Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Youngner, Frank

    The apparel industry is attempting to move in a new direction in the coming decade. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from a sit down operation to a stand up operation involving modular stations. The old treadle worked well with the sitting operator, but problems have been found when trying to use the same treadle with a standing operator. This report details a new design for a treadle to operate an industrial sewing machine that has a standing operator. Emphasis is placed on the ease of use by the operator, as well as the ergonomics involved. Procedures for testing the design are included along with possible uses for the treadle in other applications besides an industrial sewing machine.

  14. Design and Construction of Wireless Control System for Drilling Machine

    Directory of Open Access Journals (Sweden)

    Nang Su Moan Hsam

    2015-06-01

    Full Text Available Abstract Drilling machine is used for boring holes in various materials and used in woodworking metalworking construction and do-it-yourself projects. When the machine operate for a long time the temperature increases and so we need to control the temperature of the machine and some lubrication system need to apply to reduce the temperature. Due to the improvement of technology the system can be controlled with wireless network. This control system use Window Communication Foundation WCF which is the latest service oriented technology to control all drilling machines in industries simultaneously. All drilling machines are start working when they received command from server. After the machine is running for a long time the temperature is gradually increased. This system used LM35 temperature sensor to measure the temperature. When the temperature is over the safely level that is programmed in host server the controller at the server will command to control the speed of motor and applying some lubrication system at the tip and edges of drill. The command from the server is received by the client and sends to PIC. In this control system PIC microcontroller is used as an interface between the client computer and the machine. The speed of motor is controlled with PWM and water pump system is used for lubrication. This control system is designed and simulated with 12V DC motor LM35 sensor LCD displayand relay which is to open the water container to spray water between drill and work piece. The host server choosing to control the drilling machine that are overheat by selecting the clients IP address that is connected with that machine.

  15. Tool set for distributed real-time machine control

    Science.gov (United States)

    Carrott, Andrew J.; Wright, Christopher D.; West, Andrew A.; Harrison, Robert; Weston, Richard H.

    1997-01-01

    Demands for increased control capabilities require next generation manufacturing machines to comprise intelligent building elements, physically located at the point where the control functionality is required. Networks of modular intelligent controllers are increasingly designed into manufacturing machines and usable standards are slowly emerging. To implement a control system using off-the-shelf intelligent devices from multi-vendor sources requires a number of well defined activities, including (a) the specification and selection of interoperable control system components, (b) device independent application programming and (c) device configuration, management, monitoring and control. This paper briefly discusses the support for the above machine lifecycle activities through the development of an integrated computing environment populated with an extendable software toolset. The toolset supports machine builder activities such as initial control logic specification, logic analysis, machine modeling, mechanical verification, application programming, automatic code generation, simulation/test, version control, distributed run-time support and documentation. The environment itself consists of system management tools and a distributed object-oriented database which provides storage for the outputs from machine lifecycle activities and specific target control solutions.

  16. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing.

    Science.gov (United States)

    Zheng, Zhifang; Liu, Yishu; Huang, Wenhua; Mo, Yunfei; Lan, Yong; Guo, Rui; Cheng, Biao

    2018-04-13

    Diabetic foot ulcers (DFUs) are a threat to human health and can lead to amputation and even death. Recently neurotensin (NT), an inflammatory modulator in wound healing, was found to be beneficial for diabetic wound healing. As we demonstrated previously, polylactide-polyglycolide (PLGA) and cellulose nanocrystals (CNCs) (PLGA/CNC) nanofiber membranes show good cytocompatibility and facilitate fibroblast adhesion, spreading and proliferation. PLGA/CNC nanofiber membranes are novel materials that have not been used previously as NT carriers in diabetic wounds. This study aims to explore the therapeutic efficacy and possible mechanisms of NT-loaded PLGA/CNC nanofiber membranes in full-thickness skin wounds in spontaneously diabetic mice. The results showed that NT could be sustained released from NT-loaded PLGA/CNC composite nanofiber membranes for 2 weeks. NT-loaded PLGA/CNC composite nanofiber membranes induced more rapid healing than other control groups. After NT exposure, the histological scores of the epidermal and dermal regeneration and the ratios of the fibrotic area to the whole area were increased. NT-loaded PLGA/CNC composite nanofiber membranes also decreased the expressions of the inflammatory cytokines IL-1β and IL-6. These results suggest that NT-loaded PLGA/CNC composite nanofiber membranes for sustained delivery of NT should effectively promote tissue regeneration for the treatment of DFUs.

  17. Virtual C Machine and Integrated Development Environment for ATMS Controllers.

    Science.gov (United States)

    2000-04-01

    The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...

  18. Design of electric control system for automatic vegetable bundling machine

    Science.gov (United States)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  19. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    OpenAIRE

    Hakan ATEŞ; Ramazan BAYINDIR

    2003-01-01

    In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control sys...

  20. Energy saving work of frequency controlled induction cage machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 8, 81-225 Gdynia (Poland)]. E-mail: piotrg@am.gdynia.pl

    2007-03-15

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor.

  1. Energy saving work of frequency controlled induction cage machine

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2007-01-01

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor

  2. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.

    Science.gov (United States)

    Dunn, Christina R; Walker, David D

    2008-11-10

    In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.

  3. Nonlinear chaos control in a permanent magnet reluctance machine

    International Nuclear Information System (INIS)

    Harb, Ahmad M.

    2004-01-01

    The dynamics of a permanent magnet synchronous machine (PMSM) is analyzed. The study shows that under certain conditions the PMSM is experiencing chaotic behavior. To control these unwanted chaotic oscillations, a nonlinear controller based on the backstepping nonlinear control theory is designed. The objective of the designed control is to stabilize the output chaotic trajectory by forcing it to the nearest constant solution in the basin of attraction. The result is compared with a nonlinear sliding mode controller. The designed controller that based on backstepping nonlinear control was able to eliminate the chaotic oscillations. Also the study shows that the designed controller is mush better than the sliding mode control

  4. Flocking small smart machines: An experiment in cooperative, multi-machine control

    International Nuclear Information System (INIS)

    Klarer, P.R.

    1998-03-01

    The intent and purpose of this work was to investigate and demonstrate cooperative behavior among a group of mobile robot machines. The specific goal of this work was to build a small swarm of identical machines and control them in such a way as to show a coordinated movement of the group in a flocking manner, similar to that observed in nature. Control of the swarm's individual members and its overall configuration is available to the human user via a graphic man-machine interface running on a base station control computer. Any robot may be designated as the nominal leader through the interface tool, which then may be commanded to proceed to a particular geographic destination. The remainder of the flock follows the leader by maintaining their relative positions in formation, as specified by the human controller through the interface. The formation's configuration can be altered manually through an interactive graphic-based tool. An alternative mode of control allows for teleoperation of one robot, with the flock following along as described above

  5. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  6. FRICTION - WELDING MACHINE AUTOMATIC CONTROL CIRCUIT DESIGN AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hakan ATEŞ

    2003-02-01

    Full Text Available In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. At the end of the experimental study it's observed that automatic control system has been worked successfully.

  7. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  8. Controlling Motion at the Nanoscale: Rise of the Molecular Machines.

    Science.gov (United States)

    Abendroth, John M; Bushuyev, Oleksandr S; Weiss, Paul S; Barrett, Christopher J

    2015-08-25

    As our understanding and control of intra- and intermolecular interactions evolve, ever more complex molecular systems are synthesized and assembled that are capable of performing work or completing sophisticated tasks at the molecular scale. Commonly referred to as molecular machines, these dynamic systems comprise an astonishingly diverse class of motifs and are designed to respond to a plethora of actuation stimuli. In this Review, we outline the conditions that distinguish simple switches and rotors from machines and draw from a variety of fields to highlight some of the most exciting recent examples of opportunities for driven molecular mechanics. Emphasis is placed on the need for controllable and hierarchical assembly of these molecular components to display measurable effects at the micro-, meso-, and macroscales. As in Nature, this strategy will lead to dramatic amplification of the work performed via the collective action of many machines organized in linear chains, on functionalized surfaces, or in three-dimensional assemblies.

  9. High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios

    Component mass production has been the backbone of industry since the second industrial revolution, and machine tools are producing parts of widely varying size and design complexity. The ever-increasing level of automation in modern manufacturing processes necessitates the use of more...... sophisticated machine tool systems that are adaptable to different workspace conditions, while at the same time being able to maintain very narrow workpiece tolerances. The main topic of this thesis is to suggest control methods that can maintain required manufacturing tolerances, despite moderate wear and tear....... The purpose is to ensure that full accuracy is maintained between service intervals and to advice when overhaul is needed. The thesis argues that quality of manufactured components is directly related to the positioning accuracy of the machine tool axes, and it shows which low level control architectures...

  10. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  11. Controls in future earth moving machines

    NARCIS (Netherlands)

    Neve, M. de; Vink, P.; Kanis, H.; Krause, F.

    2005-01-01

    This seventh chapter of the book 'Advanced cabin design : how to improve comfort and performance by progressive cabin design' explores whether a new way of steering has positive effects. Also controlling the speed of a movement versus the position of a movement is compared. The last 25 years the

  12. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

    Science.gov (United States)

    Warnatz, Hans-Jörg; Schmidt, Dominic; Manke, Thomas; Piccini, Ilaria; Sultan, Marc; Borodina, Tatiana; Balzereit, Daniela; Wruck, Wasco; Soldatov, Alexey; Vingron, Martin; Lehrach, Hans; Yaspo, Marie-Laure

    2011-07-01

    The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.

  13. Group program procedure for machining seal rings of steam turbines on digital computer controlled machines

    International Nuclear Information System (INIS)

    Glukhikh, V.K.; Skvortsov, S.B.; Sidorov, V.A.

    1982-01-01

    Developed is a group program procedure for turning machining of seal rings, including the use of new progressive high-accuracy equipment, universal device for securing of all nomenclature of treated seal rings, necessary cutting tools and program control of the process of treatment. Introduction of a new technological process permitted to improve the quality of treated seal rings; to reduce the labour consumption in 30...40% [ru

  14. A History of Computer Numerical Control.

    Science.gov (United States)

    Haggen, Gilbert L.

    Computer numerical control (CNC) has evolved from the first significant counting method--the abacus. Babbage had perhaps the greatest impact on the development of modern day computers with his analytical engine. Hollerith's functioning machine with punched cards was used in tabulating the 1890 U.S. Census. In order for computers to become a…

  15. Current control by a homopolar machine with moving brushes

    International Nuclear Information System (INIS)

    Vogel, H.

    1978-01-01

    The equation for TNS Doublet's E-coil circuit with moving brush homopolar machine is integrated in the flux of the homopolar for a monotonically increasing current function extending beyond the current reversal into the burn period. The results show that the moving brush feature is not useful for controlling the burn

  16. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    Science.gov (United States)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  17. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Mohd Idris Taib; Izhar Abu Hussin; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2010-01-01

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  18. Design of Smooth Ramp Feedrate for Machining Complex NURBS Paths

    Science.gov (United States)

    Sekar, M.; Suresha, B.; Kantharaj, I.

    2017-10-01

    The feedrate scheduling algorithms proposed in this work permit the complex NURBS tool paths to be traversed quickly in those areas not limited by dynamic constraints, but slowdown in critical areas just enough to keep the machine within its dynamic limits and the specified tolerance zone. Due to the typically improved path tracking performance, surface finish can improve greatly, reducing the need for secondary finishing operations such as polishing. This work implements the Acceleration Deceleration Before Interpolation (ADBI) approach which is desired in modern CNC controller design and high speed machining of complex micro profiles common in Aerospace applications.

  19. Parametric optimization of CNC end milling using entropy ...

    African Journals Online (AJOL)

    Parametric optimization of CNC end milling using entropy measurement technique combined with grey-Taguchi method. ... International Journal of Engineering, Science and Technology ... Keywords: CNC end milling, surface finish, material removal rate (MRR), entropy measurement technique, Taguchi method ...

  20. Splendidly blended: a machine learning set up for CDU control

    Science.gov (United States)

    Utzny, Clemens

    2017-06-01

    As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.

  1. Control processes and machine protection on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Raupp, G.; Treutterer, W.; Mertens, V.; Neu, G.; Sips, A.; Zasche, D.; Zehetbauer, Th.

    2007-01-01

    Safe operation of ASDEX Upgrade is guaranteed by a conventional hierarchy of simple and robust hard-wired systems for personnel and machine protection featuring standardized switch-off procedures. Machine protection and handling of off-normal events is further enhanced and peak and lifetime stress minimized through the plasma control system. Based on a real-time process model supporting safety critical applications with data quality tagging, process self-monitoring, watchdog monitoring and alarm propagation, processes detect complex and critical failures and reliably perform case-sensitive counter measures. Intelligent real-time failure handling is done with hardware or software redundancy and performance degradation, or modification of reference values to continue or terminate discharges with reduced machine stress. Examples implemented so far on ASDEX Upgrade are given, such as recovery from measurement failures, switch-over of redundant actuators, handling of actuator limitations, detection of plasma instabilities, plasma state dependent soft landing, or handling of failed switch-off procedures through breakers disconnecting the machine from grid

  2. A tape-controlled remote automatic diameter measurement machine

    International Nuclear Information System (INIS)

    Jennison, W.; Salmon, A.M.

    1978-01-01

    The machine is designed for the automatic measurement of fuel pins after irradiation in the fast reactors and is a modified version of a machine which has been in use for several years. These modifications consist of mechanical improvements and solid state control circuitry but the design criteria are unchanged. Irradiated fuel pins with diameters up to 0.875 in. are measured at fixed axial positions and angular intervals. Axial stepping of either 1 cm or 1 in. with a standard deviation of 5 x 10 -4 in. and angular rotation by multiples of 18 0 with a non-cumulative error of 1 0 can be selected. Data on axial position to 0.1 in. or 0.1 cm and fuel element diameter to 5 x 10 -5 in. are both punched and printed out for computer evaluation. The standard deviation of a single measurement on cylindrical specimens with an eccentricity of up to at least 0.1 in. should be no worse than 1 x 10 -4 in. No operator attention is required after the pin is positioned in the machine and 40 sets of 10 diameter readings at 36 0 intervals can be performed in an hour. Switches can be set between 1 and 99 to terminate an examination when power is switched off with the machine in its rest position. (author)

  3. Automated reasoning in man-machine control systems

    International Nuclear Information System (INIS)

    Stratton, R.C.; Lusk, E.L.

    1983-01-01

    This paper describes a project being undertaken at Argonne National Laboratory to demonstrate the usefulness of automated reasoning techniques in the implementation of a man-machine control system being designed at the EBR-II nuclear power plant. It is shown how automated reasoning influences the choice of optimal roles for both man and machine in the system control process, both for normal and off-normal operation. In addition, the requirements imposed by such a system for a rigorously formal specification of operating states, subsystem states, and transition procedures have a useful impact on the analysis phase. The definitions and rules are discussed for a prototype system which is physically simple yet illustrates some of the complexities inherent in real systems

  4. Customer requirement modeling and mapping of numerical control machine

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2015-10-01

    Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.

  5. Stator for a rotating electrical machine having multiple control windings

    Science.gov (United States)

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  6. Human-Machine Systems concepts applied to Control Engineering Education

    OpenAIRE

    Marangé , Pascale; Gellot , François; Riera , Bernard

    2008-01-01

    International audience; In this paper, we interest us to Human-Machine Systems (HMS) concepts applied to Education. It is shown how the HMS framework enables to propose original solution in matter of education in the field of control engineering. We focus on practical courses on control of manufacturing systems. The proposed solution is based on an original use of real and large-scale systems instead of simulation. The main idea is to enable the student, whatever his/her level to control the ...

  7. Man-machine communication in reactor control using AI methods

    International Nuclear Information System (INIS)

    Klebau, J.; Lindner, A.; Fiedler, U.

    1987-01-01

    In the last years the interest in process control has expecially focused on problems of man-machine communication. It depends on its great importance to process performance and user acceptance. Advanced computerized operator aids, e.g. in nuclear power plants, are as well as their man-machine interface. In the Central Institute for Nuclear Research in Rossendorf a computerized operator support system for nuclear power plants is designed, which is involved in a decentralized process automation system. A similar but simpler system, the Hierarchical Informational System (HIS) at the Rossendorf Research Reactor, works with a computer controlled man-machine interface, based on menu. In the special case of the disturbance analysis program SAAP-2, which is included in the HIS, the limits of menu techniques are obviously. Therefore it seems to be necessary and with extended hard- and software possible to realize an user controlled natural language interface using Artificial Intelligence (AI) methods. The draft of such a system is described. It should be able to learn during a teaching phase all phrases and their meanings. The system will work on the basis of a self-organizing, associative data structure. It is used to recognize a great amount of words which are used in language analysis. Error recognition and, if possible, correction is done by means of a distance function in the word set. Language analysis should be carried out with a simplified word class controlled functional analysis. With this interface it is supposed to get experience in intelligent man-machine communication to enhance operational safety in future. (author)

  8. Machine Learning Control For Highly Reconfigurable High-Order Systems

    Science.gov (United States)

    2015-01-02

    calibration and applications,” Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on, IEEE, 2010, pp. 38–43...AFRL-OSR-VA-TR-2015-0012 MACHINE LEARNING CONTROL FOR HIGHLY RECONFIGURABLE HIGH-ORDER SYSTEMS John Valasek TEXAS ENGINEERING EXPERIMENT STATION...DIMENSIONAL RECONFIGURABLE SYSTEMS FA9550-11-1-0302 Period of Performance 1 July 2011 – 29 September 2014 John Valasek Aerospace Engineering

  9. The Abstract Machine Model for Transaction-based System Control

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.

    2003-01-31

    Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.

  10. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  11. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  12. Predicting the surface roughness in the dry machining of duplex stainless steel (DSS

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2013-04-01

    Full Text Available This paper examines the influence of cutting parameters, namely cutting speed, feed and depth of cut onto surface roughness after DSS turning process. The study included developing a mathematical model to determine the surface roughness. Verification research has been carried out on CNC lathe; hence the test plan has been adjusted to the possibility of programmable machines controlling GE Fanuc Series 0-T. The comparison of results obtained by given experimental plan was performed in industrial company.

  13. Dimensional control and check of field machining parts for reactor internals installation

    International Nuclear Information System (INIS)

    Zhang Caifang

    2010-01-01

    Some key issues of dimensional control for reactor internals installation are analyzed, and important technical requirements of crucial quality control elements on the measurement, machining, and checking of reactor internals filed machining parts are discussed. Moreover, provisions on quality control and risk prevention of reactor internals filed machining parts are presented in this paper. (author)

  14. Principles of control automation of soil compacting machine operating mechanism

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  15. A microcomputer network for the control of digitising machines

    International Nuclear Information System (INIS)

    Seller, P.

    1981-01-01

    A distributed microcomputing network operates in the Bubble Chamber Research Group Scanning Laboratory at the Rutherford and Appleton Laboratories. A microcomputer at each digitising table buffers information, controls the functioning of the table and enhances the machine/operator interface. The system consists of fourteen microcomputers together with a VAX 11/780 computer used for data analysis. These are inter-connected via a packet switched network. This paper will describe the features of the combined system, including the distributed computing architecture and the packet switched method of communication. This paper will also describe in detail a high speed packet switching controller used as a central node of the network. This controller is a multiprocessor microcomputer system with eighteen central processor units, thirty-four direct memory access channels and thirty-four prioritorised and vectored interrupt channels. This microcomputer is of general interest as a communications controller due to its totally programmable nature. (orig.)

  16. Micro controller application as x-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    The micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive the stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-B051 compiler. The test results show that the stepper motor could rotate according to an input value. (author)

  17. A Design to Digitalize Hydraulic Cylinder Control of a Machine Tool ...

    African Journals Online (AJOL)

    Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC milling machine which employs a small stepping motor to digitally actuated hydraulic piston - cylinder servo drives existing on the machines Y-axis is ...

  18. Research on ARM Numerical Control System

    Science.gov (United States)

    Wei, Xu; JiHong, Chen

    Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.

  19. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Flood, Amar H.; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks' surroundings' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  20. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  1. Smart material screening machines using smart materials and controls

    Science.gov (United States)

    Allaei, Daryoush; Corradi, Gary; Waigand, Al

    2002-07-01

    The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.

  2. Probability distribution of machining center failures

    International Nuclear Information System (INIS)

    Jia Yazhou; Wang Molin; Jia Zhixin

    1995-01-01

    Through field tracing research for 24 Chinese cutter-changeable CNC machine tools (machining centers) over a period of one year, a database of operation and maintenance for machining centers was built, the failure data was fitted to the Weibull distribution and the exponential distribution, the effectiveness was tested, and the failure distribution pattern of machining centers was found. Finally, the reliability characterizations for machining centers are proposed

  3. Which Management Control System principles and aspects are relevant when deploying a learning machine?

    OpenAIRE

    Martin, Johansson; Mikael, Göthager

    2017-01-01

    How shall a business adapt its management control systems when learning machines enter the arena? Will the control system continue to focus on humans aspects and continue to consider a learning machine to be an automation tool as any other historically programmed computer? Learning machines introduces productivity capabilities that achieve very high levels of efficiency and quality. A learning machine can sort through large amounts of data and make conclusions difficult by a human mind. Howev...

  4. Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype.

    Science.gov (United States)

    Libé, Rossella; Horvath, Anelia; Vezzosi, Delphine; Fratticci, Amato; Coste, Joel; Perlemoine, Karine; Ragazzon, Bruno; Guillaud-Bataille, Marine; Groussin, Lionel; Clauser, Eric; Raffin-Sanson, Marie-Laure; Siegel, Jennifer; Moran, Jason; Drori-Herishanu, Limor; Faucz, Fabio Rueda; Lodish, Maya; Nesterova, Maria; Bertagna, Xavier; Bertherat, Jerome; Stratakis, Constantine A

    2011-01-01

    Carney complex (CNC) is an autosomal dominant multiple neoplasia, caused mostly by inactivating mutations of the regulatory subunit 1A of the protein kinase A (PRKAR1A). Primary pigmented nodular adrenocortical disease (PPNAD) is the most frequent endocrine manifestation of CNC with a great inter-individual variability. Germline, protein-truncating mutations of phosphodiesterase type 11A (PDE11A) have been described to predispose to a variety of endocrine tumors, including adrenal and testicular tumors. Our objective was to investigate the role of PDE11A as a possible gene modifier of the phenotype in a series of 150 patients with CNC. A higher frequency of PDE11A variants in patients with CNC compared with healthy controls was found (25.3 vs. 6.8%, P CNC patients, those with PPNAD were significantly more frequently carriers of PDE11A variants compared with patients without PPNAD (30.8 vs. 13%, P = 0.025). Furthermore, men with PPNAD were significantly more frequently carriers of PDE11A sequence variants (40.7%) than women with PPNAD (27.3%) (P CNC patients, a high frequency of PDE11A variants, suggesting that PDE11A is a genetic modifying factor for the development of testicular and adrenal tumors in patients with germline PRKAR1A mutation.

  5. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...

  6. Application of a 16-bit microprocessor to the digital control of machine tools

    International Nuclear Information System (INIS)

    Issaly, Alain

    1979-01-01

    After an overview of machine tools (various types, definition standardization, associated technologies for motors and position sensors), this research thesis describes the principles of computer-based digital control: classification of machine tool command systems, machining programming, programming languages, dialog function, interpolation function, servo-control function, tool compensation function. The author reports the application of a 16-bit microprocessor to the computer-based digital control of a machine tool: feasibility, selection of microprocessor, hardware presentation, software development and description, machining mode, translation-loading mode

  7. Basic CNC Operation. Training Workbook [and] Assessment and Training Guide [and] Hands-on Assessment.

    Science.gov (United States)

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This workbook is intended for students taking a course in basic computer numerical control (CNC) operation that was developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. The workbook contains daily training guides for each of the course's 13 sessions. Among…

  8. Collaborative human-machine analysis using a controlled natural language

    Science.gov (United States)

    Mott, David H.; Shemanski, Donald R.; Giammanco, Cheryl; Braines, Dave

    2015-05-01

    A key aspect of an analyst's task in providing relevant information from data is the reasoning about the implications of that data, in order to build a picture of the real world situation. This requires human cognition, based upon domain knowledge about individuals, events and environmental conditions. For a computer system to collaborate with an analyst, it must be capable of following a similar reasoning process to that of the analyst. We describe ITA Controlled English (CE), a subset of English to represent analyst's domain knowledge and reasoning, in a form that it is understandable by both analyst and machine. CE can be used to express domain rules, background data, assumptions and inferred conclusions, thus supporting human-machine interaction. A CE reasoning and modeling system can perform inferences from the data and provide the user with conclusions together with their rationale. We present a logical problem called the "Analysis Game", used for training analysts, which presents "analytic pitfalls" inherent in many problems. We explore an iterative approach to its representation in CE, where a person can develop an understanding of the problem solution by incremental construction of relevant concepts and rules. We discuss how such interactions might occur, and propose that such techniques could lead to better collaborative tools to assist the analyst and avoid the "pitfalls".

  9. Normative data for the Maryland CNC Test.

    Science.gov (United States)

    Mendel, Lisa Lucks; Mustain, William D; Magro, Jessica

    2014-09-01

    The Maryland consonant-vowel nucleus-consonant (CNC) Test is routinely used in Veterans Administration medical centers, yet there is a paucity of published normative data for this test. The purpose of this study was to provide information on the means and distribution of word-recognition scores on the Maryland CNC Test as a function of degree of hearing loss for a veteran population. A retrospective, descriptive design was conducted. The sample consisted of records from veterans who had Compensation and Pension (C&P) examinations at a Veterans Administration medical center (N = 1,760 ears). Audiometric records of veterans who had C&P examinations during a 10 yr period were reviewed, and the pure-tone averages (PTA4) at four frequencies (1000, 2000, 3000, and 4000 Hz) were documented. The maximum word-recognition score (PBmax) was determined from the performance-intensity functions obtained using the Maryland CNC Test. Correlations were made between PBmax and PTA4. A wide range of word-recognition scores were obtained at all levels of PTA4 for this population. In addition, a strong negative correlation between the PBmax and the PTA4 was observed, indicating that as PTA4 increased, PBmax decreased. Word-recognition scores decreased significantly as hearing loss increased beyond a mild hearing loss. Although threshold was influenced by age, no statistically significant relationship was found between word-recognition score and the age of the participants. RESULTS from this study provide normative data in table and figure format to assist audiologists in interpreting patient results on the Maryland CNC test for a veteran population. These results provide a quantitative method for audiologists to use to interpret word-recognition scores based on pure-tone hearing loss. American Academy of Audiology.

  10. Fuzzy Linguistic Optimization on Multi-Attribute Machining

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2010-06-01

    Full Text Available Most existing multi-attribute optimization researches for the modern CNC (computer numerical control turning industry were either accomplished within certain manufacturing circumstances, or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme proposed is deemed to be necessary for the industry. In this paper, four parameters (cutting depth, feed rate, speed, tool nose runoff with three levels (low, medium, high are considered to optimize the multi-attribute (surface roughness, tool wear, and material removal rate finish turning. Through FAHP (Fuzzy Analytic Hierarchy Process with eighty intervals for each attribute, the weight of each attribute is evaluated from the paired comparison matrix constructed by the expert judgment. Additionally, twenty-seven fuzzy control rules using trapezoid membership function with respective to seventeen linguistic grades for each attribute are constructed. Considering thirty input and eighty output intervals, the defuzzifierion using center of gravity is thus completed. The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution is moreover utilized to integrate and evaluate the multiple machining attributes for the Taguchi experiment, and thus the optimum general deduction parameters can then be received. The confirmation experiment for optimum general deduction parameters is furthermore performed on an ECOCA-3807 CNC lathe. It is shown that the attributes from the fuzzy linguistic optimization parameters are all significantly advanced comparing to those from benchmark. This paper not only proposes a general deduction optimization scheme using orthogonal array, but also contributes the satisfactory fuzzy linguistic approach for multiple CNC turning attributes with profound insight.

  11. Data-driven machine control : a feasibility study on YieldStar

    NARCIS (Netherlands)

    Mehrafrouz, M.

    2014-01-01

    Traditionally machine control software focusses on the control flow; this is also the situation within ASML and YieldStar. With the increased complexity of the machine control software more and more data is needed to accurately control a tool like YieldStar. In other software application areas, like

  12. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  13. Fatigue and Model Analysis of the CNC Cylindrical Grinder

    Directory of Open Access Journals (Sweden)

    Lin Jui-Chang

    2016-01-01

    Full Text Available The purpose of this study is to lower deviation of workpiece by meeting high stability and rigidity to prevent the resonance in producing procedure of the CNC universal cylindrical grinding machine. Using finite element analysis software ABAQUS in grinder machine tools for numerical simulation of several analyses for the following: structural rigidity analysis, optimized design, vibration frequency analysis and fatigue damage analysis. This work aims on state of the transmission of outer diameter spindle to proceed in stress and fatigue life analysis by FE-SAFE Subroutine. The max values of equivalent stress and average amount of displacement in structural rigidity analysis are 0.67(Mpa and 0.92(µm. Optimization design effectively reducing extreme value of stress, the largest decline of about 5.43%. Modal analysis compared with the experimental, the average error percentage was less than 10% of parts. The whole structure error does not exceed 3%. The fatigue life of approximately 1,193,988 times, estimates into real life time can use more than sixty years, from the viewpoint of structural strength, spindle has a good high breaking strength is designed to be safe.

  14. Optimization of machining parameters of hard porcelain on a CNC ...

    African Journals Online (AJOL)

    s (2010) focus was to calculate drilled composite's surface roughness with the application of ... instance, objective function as well as restrictions on rotor enactment. ..... to aerodynamic optimization design of helicopter rotor blade, International.

  15. Straightness measurement of large machine guideways

    Directory of Open Access Journals (Sweden)

    W. Ptaszyñski

    2011-10-01

    Full Text Available This paper shows the guideway types of large machines and describes problems with their straightness measurement. A short description of straightness measurement methods and the results of investigation in straightness of 10 meter long guideways of a CNC machine by means of the XL-10 Renishaw interferometer are also presented.

  16. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  17. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    Science.gov (United States)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  18. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    Science.gov (United States)

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  19. Novel Oversampling Technique for Improving Signal-to-Quantization Noise Ratio on Accelerometer-Based Smart Jerk Sensors in CNC Applications.

    Science.gov (United States)

    Rangel-Magdaleno, Jose J; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Cabal-Yepez, Eduardo

    2009-01-01

    Jerk monitoring, defined as the first derivative of acceleration, has become a major issue in computerized numeric controlled (CNC) machines. Several works highlight the necessity of measuring jerk in a reliable way for improving production processes. Nowadays, the computation of jerk is done by finite differences of the acceleration signal, computed at the Nyquist rate, which leads to low signal-to-quantization noise ratio (SQNR) during the estimation. The novelty of this work is the development of a smart sensor for jerk monitoring from a standard accelerometer, which has improved SQNR. The proposal is based on oversampling techniques that give a better estimation of jerk than that produced by a Nyquist-rate differentiator. Simulations and experimental results are presented to show the overall methodology performance.

  20. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    Science.gov (United States)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  1. International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines

    CERN Document Server

    Belyaev, Alexander; Krommer, Michael

    2017-01-01

    The papers in this volume present and discuss the frontiers in the mechanics of controlled machines and structures. They are based on papers presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines held in Vienna in September 2015. The workshop continues a series of international workshops held in Linz (2008) and St. Petersburg (2010).

  2. A transformational product to improve self-control strength: The Chocolate Machine

    OpenAIRE

    Kehr, Flavius; Hassenzahl, Marc; Laschke, Matthias; Diefenbach, Sarah

    2012-01-01

    Lack of self-control is at the heart of many undesirable behaviors, such as overeating, overspending, and evenoverworking. While the field of persuasive technologies explicitly searches for ways to change attitudes and behaviors, it more or less neglects the science of self-control. We present the Chocolate Machine, an interactive device to train self-control strength based upon Ego Depletion theory. A longitudinal, control-group, field study showed the machine to increase self-control str...

  3. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    Science.gov (United States)

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Adaptive control of mechatronic machine-tool equipment

    Directory of Open Access Journals (Sweden)

    R.G. Kudoyarov

    2015-09-01

    Full Text Available In this paper the method for designing a functional structure of mechatronic modules based on the developed classification of functional subsystems and the proposed turning machine modular structure is presented.

  5. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  6. Direct torque control design and experimental evaluation for the brushless doubly fed machine

    International Nuclear Information System (INIS)

    Sarasola, Izaskun; Poza, Javier; Rodriguez, Miguel A.; Abad, Gonzalo

    2011-01-01

    In this paper, a direct torque control (DTC) strategy for the brushless doubly fed machine (BDFM) is presented. After analyzing the mathematical model of this machine, the voltage vectors look-up table of classical DTC techniques is derived. Then, the behavior of the machine is studied when it is controlled by the developed DTC technique, concluding that under some specific operation conditions, a BDFM could present a time interval where the torque and the flux can not be controlled simultaneously. In these cases, two different control solutions have been defined: 'flux priority' and 'torque priority'. Finally, simulation and experimental results validate the effectiveness of the proposed control algorithms.

  7. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-11-01

    Full Text Available Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  8. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  9. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  10. Dust Creation in CNC Drilling of Wood Composites

    Directory of Open Access Journals (Sweden)

    Tomasz Rogoziński

    2015-04-01

    Full Text Available This paper presents the particle-size distribution of dust created by the drilling of selected wood composites, which was carried out using a CNC machine. The particle-size distribution was studied through two methods. Two analyses were performed: the sieve analysis of samples from the whole mass of collected dust and the laser diffraction analysis of the finest fraction isolated by sieving. The results presented general information about the particle-size distribution of the dust, as well as detailed information on the content of the finest particles. This information revealed that the particles might pose a potential risk to the health of workers employed in the woodworking industry. This potential risk is due to the possibility of their dispersion in the atmosphere surrounding the workplace and their size, which allows them to be respirable. The relationship between the fineness of the dust and the type of wood composite was also tested. Most ultrafine particles are formed during the drilling of fibreboards and are especially produced in traditional wet technology.

  11. Design Methodology of a Brushless IPM Machine for a Zero Speed Injection Based Sensorless Control

    OpenAIRE

    Godbehere, Jonathan; Wrobel, Rafal; Drury, David; Mellor, Phil

    2015-01-01

    In this paper a design approach for a sensorless controlled, brushless, interior permanent magnet machine is attained. An initial study based on established electrical machine formulas provides the machine’s basic geometrical sizing. The next design stage combines a particle swarm optimisation (PSO) search routine with a magneto-static finite element (FE) solver to provide a more in depth optimisation. The optimisation system has been formulated to derive alternative machine design variants, ...

  12. COMPARISON OF STATISTICALLY CONTROLLED MACHINING SOLUTIONS OF TITANIUM ALLOYS USING USM

    Directory of Open Access Journals (Sweden)

    R. Singh

    2010-06-01

    Full Text Available The purpose of the present investigation is to compare the statistically controlled machining solution of titanium alloys using ultrasonic machining (USM. In this study, the previously developed Taguchi model for USM of titanium and its alloys has been investigated and compared. Relationships between the material removal rate, tool wear rate, surface roughness and other controllable machining parameters (power rating, tool type, slurry concentration, slurry type, slurry temperature and slurry size have been deduced. The results of this study suggest that at the best settings of controllable machining parameters for titanium alloys (based upon the Taguchi design, the machining solution with USM is statistically controlled, which is not observed for other settings of input parameters on USM.

  13. Phase Modulation Method for Control Systems of Rotary Machine Parameters

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2014-01-01

    Full Text Available Traditionally, vibration-based diagnostics takes the main place in a large complex of technical control means of rotary machine operation. It allows us to control the onset of extreme limit states of operating construction and its elements. However, vibration-based diagnostics is incapable to provide differentiated information about the condition of particular units, type of fault and point of its occurrence.From the practical experience of optoelectronic sensors development, methods of phase coding information about the behavior of the investigated object are known. They allow us to overcome the abovementioned disadvantage of vibration-based diagnostics through the modulation of the reflected radiation from the object. This phase modulation is performed with the image analyzers, in which the modulating raster (alternating transparent and nontransparent sectors is designed so, that the carrier frequency of oscillations is absent (suppressed in frequency spectrum, and all useful information can be found in the side frequencies.Carrier frequency suppression appears for two complete turns of the modulating raster. Each time during this process oscillations have a 180° phase shift (hop relatively to the initial oscillation on the boundary of each turn. It leads to a substantial increase in signal/noise ratio and possibility to conduct high-accuracy diagnostics.The principle of the pseudo inversion is used for measurements to suppress an adverse effect of various factors in dynamic control system. For this principle the leaving and returned beams practically go on the same way with small spatial shift. This shift occurs then the leaving beam reflects from a basic surface and the reflected – from the measured surface of the object. Therefore the measurements become insensitive to any other errors of system, except relative position of system «model-object».The main advantages of such measurements are the following:- system steadiness to error

  14. Consensus Control Design for 360 MN Extrusion Machine Producing Process

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper mainly addresses the issue of 360 MN extrusion machine and focuses on the stabilization control of main table attitude. We will first introduce the problem and then model the extrusion machine. As the machine is a multi-input multioutput (MIMO and strong coupling system, it is challenging to apply existing control theory to design a controller to stabilize the main table attitude. Motivated by recent research in the field of multiagent systems, we design a consensus control protocol for our system and derive our convergence conditions based directly on Routh stability criterion. The advantages of the design are also demonstrated by numerical simulation.

  15. Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-10-04

    Composite materials were prepared by extrusion and injection molding from polybutyrate adipate terephthalate (PBAT) and high aspect ratio cellulose nanocrystals (CNCs) extracted from capim dourado fibers. Three CNC contents were used, corresponding to 0.5, 1, and 2 times the theoretical percolation threshold. Small-amplitude oscillary shear (SAOS) experiments show that as the CNC content increases, a more elastic behavior is observed but no percolating network can form within the polymeric matrix as a result of the high shear rates involved during the injection-molding process. Annealing of the samples at 170 °C was performed, and the possible reorganization of the nanofiller was investigated. This reorganization was further elucidated using 2D-SAOS and creep experiments.

  16. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  17. Effect of Stiffness of Rolling Joints on the Dynamic Characteristic of Ball Screw Feed Systems in a Milling Machine

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-01-01

    Full Text Available Dynamic characteristic of ball screw feed system in a milling machine is studied numerically in this work. In order to avoid the difficulty in determining the stiffness of rolling joints theoretically, a dynamic modeling method for analyzing the feed system is discussed, and a stiffness calculation method of the rolling joints is proposed based on the Hertz contact theory. Taking a 3-axis computer numerical control (CNC milling machine set ermined as a research object, the stiffness of its fixed joint between the column and the body together with the stiffness parameters of the rolling joints is evaluated according to the Takashi Yoshimura method. Then, a finite element (FE model is established for the machine tool. The correctness of the FE model and the stiffness calculation method of the rolling joints are validated by theoretical and experimental modal analysis results of the machine tool’s workbench. Under the two modeling methods of joints incorporating the stiffness parameters and rigid connection, a theoretical modal analysis is conducted for the CNC milling machine. The natural frequencies and modal shapes reveal that the joints’ dynamic characteristic has an important influence on the dynamic performance of a whole machine tool, especially for the case with natural frequency and higher modes.

  18. Quality control and performance evaluation of microselectron HDR machine over 30 months

    International Nuclear Information System (INIS)

    Balasubramanian, N.; Annex, E.H.; Sunderam, N.; Patel, N.P.; Kaushal, V.

    2008-01-01

    To assess the performance evaluation of Microselectron HDR machine the standard quality control and quality assurance checks were carried out after each loading of new 192 Ir brachytherapy source In the machine. Total 9 loadings were done over a period of 30 months

  19. Direct numerical control of machine tools in a nuclear research center by the CAMAC system

    International Nuclear Information System (INIS)

    Zwoll, K.; Mueller, K.D.; Becks, B.; Erven, W.; Sauer, M.

    1977-01-01

    The production of mechanical parts in research centers can be improved by connecting several numerically controlled machine tools to a central process computer via a data link. The CAMAC Serial Highway with its expandable structure yields an economic and flexible system for this purpose. The CAMAC System also facilitates the development of modular components controlling the machine tools itself. A CAMAC installation controlling three different machine tools connected to a central computer (PDP11) via the CAMAC Serial Highway is described. Besides this application, part of the CAMAC hardware and software can also be used for a great variety of scientific experiments

  20. Modeling and simulation of control system for electron beam machine (EBM) using programmable automation controller (PAC)

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Mhd Ghazali; Muhamad Zahidee Taat; Ayub Mohamed; Chong Foh Yoong

    2006-01-01

    An EBM electronic model is designed to simulate the control system of the Nissin EBM, which is located at Block 43, MINT complex of Jalan Dengkil with maximum output of 3 MeV, 30 mA using a Programmable Automation Controllers (PAC). This model operates likes a real EBM system where all the start-up, interlocking and stopping procedures are fully followed. It also involves formulating the mathematical models to relate certain output with the input parameters using data from actual operation on EB machine. The simulation involves a set of PAC system consisting of the digital and analogue input/output modules. The program code is written using Labview software (real-time version) on a PC and then downloaded into the PAC stand-alone memory. All the 23 interlocking signals required by the EB machine are manually controlled by mechanical switches and represented by LEDs. The EB parameters are manually controlled by potentiometers and displayed on analogue and digital meters. All these signals are then interfaced to the PC via a wifi wireless communication built-in at the PAC controller. The program is developed in accordance to the specifications and requirement of the original real EB system and displays them on the panel of the model and also on the PC monitor. All possible chances from human errors, hardware and software malfunctions, including the worst-case conditions will be tested, evaluated and modified. We hope that the performance of our model complies the requirements of operating the EB machine. It also hopes that this electronic model can replace the original PC interfacing being utilized in the Nissin EBM in the near future. The system can also be used to study the fault tolerance analysis and automatic re-configuration for advanced control of the EB system. (Author)

  1. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  2. Design and realization on function of pre-forming and continuous winding for HT-7U special winding machine

    International Nuclear Information System (INIS)

    Yu Jie; Gao Daming; Wen Jun; Zhu Wenhua; Cheng Leping; Tao Yuming

    2000-05-01

    The winding machine is one of the critical facilities for R and D of HT-7U construction. The machine mainly consists of five parts, CICC pay-off spool, a four-rollers straightening assembly, a four-roller forming/bending assembly, continuous winding structure and CNC control system with three-axis CNC control. The facility is needed for CICC magnet fabrication of HT-7U. The main requirements of the winding machine are: continuous winding to reduce number of joints inside the coils; pre-forming CICC conductor to avoid winding with tension; suitable for all TF and PF coils within the scope of various coil shape and dimension limit; improving the configuration tolerance, specially flatness of the CICC conductor. The author emphasizes on the design and realization on function of Pre-forming and Continuous Winding for HT-7U special winding machine. The winding machine with high accuracy has just been developed and applied to the construction of HT-7U model coils

  3. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  4. A control system for and a method of controlling a superconductive rotating electrical machine

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a method of controlling and a control system (100) for a superconductive rotating electric machine (200) comprising at least one superconductive winding (102; 103), where the control system (100) is adapted to control a power unit (101) supplying during use the at least...... or more actual values (110, 111)of one or more parameters for a given superconductive winding (102; 103), each parameter representing a physical condition of the given superconductive winding (102; 103), and to dynamically derive one or more electrical current values to be maintained in the given...... superconductive winding (102; 103) by the power unit (101) where the one or more electrical current values is/are derived taking into account the received one or more actual values (110, 111). In this way,greater flexibility and more precise control of the performance of the superconducting rotating electrical...

  5. Application of Artificial Intelligence Techniques for the Control of the Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    F. Khammar

    2016-01-01

    Full Text Available The induction machine is experiencing a growing success for two decades by gradually replacing the DC machines and synchronous in many industrial applications. This paper is devoted to the study of advanced methods applied to the command of the asynchronous machine in order to obtain a system of control of high performance. While the criteria for response time, overtaking, and static error can be assured by the techniques of conventional control, the criterion of robustness remains a challenge for researchers. This criterion can be satisfied only by applying advanced techniques of command. After mathematical modeling of the asynchronous machine, it defines the control strategies based on the orientation of the rotor flux. The results of the different simulation tests highlight the properties of robustness of algorithms proposed and suggested to compare the different control strategies.

  6. Designing CNC Knit for Hybrid Membrane And Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph

    2015-01-01

    specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...

  7. Structure and sorption properties of CNC reinforced PVA films.

    Science.gov (United States)

    Popescu, Maria-Cristina

    2017-08-01

    Bio-nanocomposite films based on cellulose nanocrystals reinforced poly(vinyl alcohol) were obtained by solvent casting method. To assess the structural features of the films, different spectral techniques (FTIR, 2D COS and XRD) have been used. Infrared and 2D correlation spectroscopy evidenced the presence of H-bond interactions between the PVA and CNC, and the variation in the conformational rearrangements, while XRD showed that the crystallite size and the crystallinity degree were affected by the incorporation of CNC. At low content of CNC in the PVA matrix, the crystallinity degree decreased to 29.9%, while at higher CNC content increased to 80.6%, comparing to PVA (35.4%). To evaluate the interaction with water, contact angle measurement, water sorption and NIR spectroscopy were used, respectively. The increase of the CNC content induced a reduction in water sorption ability from 93% for PVA to 75% for PVA/CNC films, indicating the involvement of the hydroxyl groups in new hydrogen bonded interactions. By analyzing the variation of the NIR bands from 1930, 1902 and 1985nm, was observed that the water molecules interact with the polymer matrix through moderate hydrogen bond before diffusing into the free volume of the matrix and form stronger hydrogen bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  9. A microcontroller application as X-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    A micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x-ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive a stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-8051 compiler. The test results show that the stepper motor could rotate according to an input value (author)

  10. Possibilities for Automatic Control of Hydro-Mechanical Transmission and Birotating Electric Machine

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2014-01-01

    Full Text Available The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is switched in at some operational modes.Implementation of the proposed  concept makes it possible to obtain and check the improved C-code of the control system and enhance operational parameters of the transmission and machine efficiency, reduce slippage and tire wear while using braking energy for its later beneficial use which is usually considered as a consumable element.

  11. The distribution of controlled drugs on banknotes via counting machines.

    Science.gov (United States)

    Carter, James F; Sleeman, Richard; Parry, Joanna

    2003-03-27

    Bundles of paper, similar to sterling banknotes, were counted in banks in England and Wales. Subsequent analysis showed that the counting process, both by machine and by hand, transferred nanogram amounts of cocaine to the paper. Crystalline material, similar to cocaine hydrochloride, could be observed on the surface of the paper following counting. The geographical distribution of contamination broadly followed Government statistics for cocaine usage within the UK. Diacetylmorphine, Delta(9)-tetrahydrocannabinol (THC) and 3,4-methylenedioxymethylamphetamine (MDMA) were not detected during this study.

  12. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... for assembling the same molecular machines just in time for action....

  13. A comparison of fit of CNC-milled titanium and zirconia frameworks to implants.

    Science.gov (United States)

    Abduo, Jaafar; Lyons, Karl; Waddell, Neil; Bennani, Vincent; Swain, Michael

    2012-05-01

    Computer numeric controlled (CNC) milling was proven to be predictable method to fabricate accurately fitting implant titanium frameworks. However, no data are available regarding the fit of CNC-milled implant zirconia frameworks. To compare the precision of fit of implant frameworks milled from titanium and zirconia and relate it to peri-implant strain development after framework fixation. A partially edentulous epoxy resin models received two Branemark implants in the areas of the lower left second premolar and second molar. From this model, 10 identical frameworks were fabricated by mean of CNC milling. Half of them were made from titanium and the other half from zirconia. Strain gauges were mounted close to the implants to qualitatively and quantitatively assess strain development as a result of framework fitting. In addition, the fit of the framework implant interface was measured using an optical microscope, when only one screw was tightened (passive fit) and when all screws were tightened (vertical fit). The data was statistically analyzed using the Mann-Whitney test. All frameworks produced measurable amounts of peri-implant strain. The zirconia frameworks produced significantly less strain than titanium. Combining the qualitative and quantitative information indicates that the implants were under vertical displacement rather than horizontal. The vertical fit was similar for zirconia (3.7 µm) and titanium (3.6 µm) frameworks; however, the zirconia frameworks exhibited a significantly finer passive fit (5.5 µm) than titanium frameworks (13.6 µm). CNC milling produced zirconia and titanium frameworks with high accuracy. The difference between the two materials in terms of fit is expected to be of minimal clinical significance. The strain developed around the implants was more related to the framework fit rather than framework material. © 2011 Wiley Periodicals, Inc.

  14. Application of grey fuzzy logic for the optimization of CNC milling parameters for Al–4.5%Cu–TiC MMCs with multi-performance characteristics

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2016-06-01

    Full Text Available With the major application of MMCs, it is thus necessary to develop an appropriate technology for their efficient machining. Milling is the most common and versatile technology among different machining processes, characterized by an extensive range of metal cutting capacity that places it in a central role in the manufacturing industries. In the present study an attempt has been made to find out the most optimal level of process parameters for CNC milling of Al–4.5%Cu–TiC metal matrix composites using grey-fuzzy algorithm. Taguchi's L25 orthogonal array design is used for performing CNC milling operation on the composite plates. The Grey fuzzy optimization of CNC milling parameters consist of three different output characteristics; such as, cutting force Fc, surface roughness Ra and surface roughness Rz. It was found that a cutting speed of 600 rpm, feed of 40 mm/min and a depth of cut of 0.30 mm is the optimal combination of CNC milling parameters that has produced a high value of grey fuzzy reasoning grade of 0.8191 which is close to the reference value. ANOVA analysis is carried out and it is found that among three different process parameters, the cutting speed played a major role on the determination of GFRG.

  15. Equivalent model of a dually-fed machine for electric drive control systems

    Science.gov (United States)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  16. Numerical controlled diamond fly cutting machine for grazing incidence X-ray reflection mirrors

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Moriyama, Shigeo; Seya, Eiiti

    1992-01-01

    Synchrotron radiation has reached the stage of practical use, and the application to the wide fields that support future advanced technologies such as spectroscopy, the structural analysis of matters, semiconductor lithography and medical light source is expected. For the optical system of the equipment utilizing synchrotron radiation, the total reflection mirrors of oblique incidence are used for collimating and collecting X-ray. In order to restrain their optical aberration, nonspherical shape is required, and as the manufacturing method with high precision for nonspherical mirrors, a numerically controlled diamond cutting machine was developed. As for the cutting of soft metals with diamond tools, the high precision machining of any form can be done by numerical control, the machining time can be reduced as compared with grinding, and the cooling effect is large in metals. The construction of the cutting machine, the principle of machining, the control system, the method of calculating numerical control data, the investigation of machinable forms and the result of evaluation are reported. (K.I.)

  17. New drive and control concept of the paper-board machine at the board factory "Umka"

    Directory of Open Access Journals (Sweden)

    Jeftenić Borislav

    2004-01-01

    Full Text Available This paper describes the reconstruction of the drives of a paper machine for the press and drying part of the machine during June, 2001, as well as the expansion of the paper machine with a "third coating" during July, 2002 at the board factory "Umka". The existing old drive of the press and the drying groups was realized as a 76 meter long line shaft drive. The coating section of the machine was realized with sectional drives with DC motors fed from thyristor converters. The concept of the new drive is based on standard squirrel cage induction motors, fed from frequency converters. The system is controlled by a programmable logic controller. The communication between the controller, frequency converters and control panels is realized with a profibus protocol. The Laboratory for Electric Drives, of the Faculty of Electrical Engineering, Belgrade, was contracted for the drive part of the reconstruction of the paper-board machine. The complete project, supervision of the work of the investor's own technical services and final commissioning of the drives were organized in such a way that the drives were changed during the planned periods for the repair of the machine.

  18. Computerised weld strength testing machine for PHWR fuel elements with a versatile control system

    International Nuclear Information System (INIS)

    Gupta, U.C.; Sastry, V.S.; Rasheed, Jawad; Bibawe, S.R.

    1994-01-01

    Spacer pads and bearing pads are resistance spot welded on PHWR fuel elements to ensure inter-element gap for coolant flow. These welds are subjected to destructive tests as per SQC specifications while qualifying a machine and during production. The testing machine used earlier over the years was tedious involving manual operations of clamping, tool actuation, increasing and decreasing the pressure, referring to charts and statistical calculations. To carry out the destructive testing of the welds conveniently and reliably, an automatic machine is developed in-house in which are incorporated a quartz force transducer and a computerized data-acquisition and processing system together with a very versatile electronic control system based on a single-chip microcomputer. This paper describes the salient features of the machine and the control system. (author). 4 figs

  19. The Influence of Tool Geometry towards Cutting Performance in Machining Aluminium 7075

    Directory of Open Access Journals (Sweden)

    Muhammad Syafik Jumali

    2017-01-01

    Full Text Available Aerospace industries often use Computer Numerical Control (CNC machining in manufacturing aerospace parts. Aluminium 7075 is the most common material used as aircraft components. This research aims to produce end mill with optimum geometry in terms of the helix angle, primary radial relief angle and secondary relief angle. End mills with different geometry parameters are tested on Aluminium 7075 and data on surface roughness and tool wear were collected. The results were then analysed to determine which parameters brought the optimum result with regards to surface roughness and tool wear.

  20. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  1. Design for the human-machine interface of a digitalized reactor control-room

    International Nuclear Information System (INIS)

    Qu Ronghong; Zhang Liangju; Li Duo; Yu Hui

    2005-01-01

    Digitalized technology is implemented in the instrumentation and control system of an in-construction research reactor, which advances information display in both contents and styles in a nuclear reactor control-room, and greatly improves human-machine interface. In the design for a digitalized nuclear reactor control-room there are a series of new problems and technologies should be considered seriously. This paper mainly introduces the design for the digitalized control-room of the research nuclear reactor and covered topics include design principle of human-machine interface, organization and classification of interface graphics, technologies and principles based on human factors engineering and implemented in the graphics design. (authors)

  2. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    Science.gov (United States)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  3. Simulation Research on Adaptive Control of a Six-degree-of-freedom Material-testing Machine

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-02-01

    Full Text Available This paper presents an adaptive controller equipped with a stiffness estimation method for a novel material-testing machine, in order to alleviate the performance depression caused by the stiffness variance of the tested specimen. The dynamic model of the proposed machine is built using the Kane method, and kinematic model is established with a closed-form solution. The stiffness estimation method is developed based on the recursive least-squares method and the proposed stiffness equivalent matrix. Control performances of the adaptive controller are simulated in detail. The simulation results illustrate that the proposed controller can greatly improve the control performance of the target material-testing machine by online stiffness estimation and adaptive parameter tuning, especially in low-cycle fatigue (LCF and high-cycle fatigue (HCF tests.

  4. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions

    OpenAIRE

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-01-01

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow ra...

  5. Robotic Automation in Computer Controlled Polishing

    Science.gov (United States)

    Walker, D. D.; Yu, G.; Bibby, M.; Dunn, C.; Li, H.; Wu, Y.; Zheng, X.; Zhang, P.

    2016-02-01

    We first present a Case Study - the manufacture of 1.4 m prototype mirror-segments for the European Extremely Large Telescope, undertaken by the National Facility for Ultra Precision Surfaces, at the OpTIC facility operated by Glyndwr University. Scale-up to serial-manufacture demands delivery of a 1.4 m off-axis aspheric hexagonal segment with surface precision robots and computer numerically controlled ('CNC') polishing machines for optical fabrication. The objective was not to assess which is superior. Rather, it was to understand for the first time their complementary properties, leading us to operate them together as a unit, integrated in hardware and software. Three key areas are reported. First is the novel use of robots to automate currently-manual operations on CNC polishing machines, to improve work-throughput, mitigate risk of damage to parts, and reduce dependence on highly-skilled staff. Second is the use of robots to pre-process surfaces prior to CNC polishing, to reduce total process time. The third draws the threads together, describing our vision of the automated manufacturing cell, where the operator interacts at cell rather than machine level. This promises to deliver a step-change in end-to-end manufacturing times and costs, compared with either platform used on its own or, indeed, the state-of-the-art used elsewhere.

  6. Predictive torque and flux control of an induction machine drive ...

    Indian Academy of Sciences (India)

    Finite-state model predictive control; fuzzy decision making; multi-objective optimization; predictive torque control. Abstract. Among the numerous direct torque control techniques, the finite-state predictive torque control (FS-PTC) has emerged as a powerful alternative as it offers the fast dynamic response and the flexibility to ...

  7. Multiple Property Cross Direction Control of Paper Machines

    Directory of Open Access Journals (Sweden)

    Markku Ohenoja

    2011-07-01

    Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.

  8. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    Science.gov (United States)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  10. Bio-Inspired Interaction Control of Robotic Machines for Motor Therapy

    OpenAIRE

    Zollo, Loredana; Formica, Domenico; Guglielmelli, Eugenio

    2007-01-01

    In this chapter basic criteria for the design and implementation of interaction control of robotic machines for motor therapy have been briefly introduced and two bio-inspired compliance control laws developed by the authors to address requirements coming from this specific application field have been presented. The two control laws are named the coactivation-based compliance control in the joint space and the torque-dependent compliance control in the joint space, respectively. They try to o...

  11. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  12. Vector control of three-phase AC machines system development in the practice

    CERN Document Server

    Quang, Nguyen Phung; Dittrich, J

    2015-01-01

    This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based  nonlinear

  13. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  14. Man-machine enhancements to existing FFTF control panels

    International Nuclear Information System (INIS)

    Miller, E.M.

    1984-01-01

    FFTF Project enhanced existing control panels with tape and labels to mitigate operator problems and to incorporate the guidance of NUREG-0700. The enhancements grouped displays and controls into meaningful units and labelled controls and displays to facilitate their identification and efficient use. The enhancements were inexpensive and well received by the facility's operations staff

  15. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    Science.gov (United States)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  16. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

    Directory of Open Access Journals (Sweden)

    N. V. Dhandapani

    2015-01-01

    Full Text Available This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  17. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.

    Science.gov (United States)

    Dhandapani, N V; Thangarasu, V S; Sureshkannan, G

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  18. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    International Nuclear Information System (INIS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-01-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces. (paper)

  19. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  20. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  1. Friction-resilient position control for machine tools—Adaptive and sliding-mode methods compared

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios; Blanke, Mogens; Niemann, Hans Henrik

    2018-01-01

    Robust trajectory tracking and increasing demand for high-accuracy tool positioning have motivated research in advanced control design for machine tools. State-of-the-art industry solutions employ cascades of Proportional (P) and Proportional-Integral (PI) controllers for closed-loop servo contro...

  2. Model of large scale man-machine systems with an application to vessel traffic control

    NARCIS (Netherlands)

    Wewerinke, P.H.; van der Ent, W.I.; ten Hove, D.

    1989-01-01

    Mathematical models are discussed to deal with complex large-scale man-machine systems such as vessel (air, road) traffic and process control systems. Only interrelationships between subsystems are assumed. Each subsystem is controlled by a corresponding human operator (HO). Because of the

  3. Design of conveyor type machine with numerical control for manufacturing of extrusion thermoplastic thread

    Science.gov (United States)

    Gorbunova, T. N.; Koltunov, I. I.; Tumanova, M. B.

    2018-05-01

    The article is devoted to the development of a model and control program for a 3D printer working based on extrusion technology. The article contains descriptions of all components of the machine and blocks of the interface of the control program.

  4. Possibilities and expectations for improved man-machine interface in power system control

    Energy Technology Data Exchange (ETDEWEB)

    Asal, H; Burrow, R K; Lindstrom, K; Mocenigo, M; Schellstede, G; Schaffer, G; Serrani, A

    1992-05-01

    The paper describes the hardware, equipment and functions provided to operators for supervising and controlling HVAC power systems. It analyzes the main elements of the man-machine interface (MMI) with particular attention to the recent possibilities afforded by computer technology and full graphic screens. Alarm management and remote control operation are briefly described.

  5. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-01-01

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  6. Constrained state-feedback control of an externally excited synchronous machine

    NARCIS (Netherlands)

    Carpiuc, S.C.; Lazar, M.

    2013-01-01

    State-feedback control of externally excited synchronous machines employed in applications such as hybrid electric vehicles and full electric vehicles is a challenging problem. Indeed, these applications are characterized by fast dynamics that are subject to hard physical and control constraints.

  7. a design to digitalize hydraulic cylinder control of a machine tool

    African Journals Online (AJOL)

    Dr Obe

    1995-09-01

    Sep 1, 1995 ... Department of Mechanical Engineering. FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI,. P.M.B. 1526, OWERRI. ABSTRACT. Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC ...

  8. Control of multi-machine using adaptive fuzzy

    Directory of Open Access Journals (Sweden)

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  9. Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer

    Directory of Open Access Journals (Sweden)

    Thang Diep

    2010-06-01

    Full Text Available This paper examines the optimization of production involving a tandem two-machine system producing a single part type, with each machine being subject to random breakdowns and repairs. An analytical model is formulated with a view to solving an optimal stochastic production problem of the system with machines having up-downtime non-exponential distributions. The model developed is obtained by using a dynamic programming approach and a semi-Markov process. The control problem aims to find the production rates needed by the machines to meet the demand rate, through a minimization of the inventory/shortage cost. Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation, which depends on time and system states, and ultimately, leads to a feedback control. Consequently, the new model enables us to improve the coefficient of variation (CVup/down to be less than one while it is equal to one in Markov model. Heuristics methods are used to involve the problem because of the difficulty of the analytical model using several states, and to show what control law should be used in each system state (i.e., including Kanban, feedback and CONWIP control. Numerical methods are used to solve the optimality conditions and to show how a machine should produce.

  10. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    Science.gov (United States)

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  11. Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu; Yusong Sun; Yuanzhang Sun [Tsinghua University, Beijing (China). Dept. of Electrical Engineering; Felix F Wu; Yixin Ni [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering; Yokoyama, Akihiko [University of Tokyo (Japan). Dept. of Electrical Engineering; Goto, Masuo; Konishi, Hiroo [Hitachi Ltd., Tokyo (Japan). Power System Div.

    2004-06-01

    A novel nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems is suggested in this paper. The nonelastic water hammer effect and disturbances are considered in the modeling. The advanced differential geometry theory, nonlinear robust control theory and the dynamic feedback method are combined to solve the problem. The nonlinear decentralized robust control law for the speed governor of hydroturbine-generators has been derived. The input signals to the proposed controller are all local measurements and independent to the system parameters. The derived control law guarantees the integrated system stability with disturbance attenuation, which is significant to the real power system application. Computer tests on an 8-machine, 36-bus power system show clearly the effectiveness of the new control strategy in transient stability enhancement and disturbance attenuation. The computer test results based on the suggested controller are compared favorably with those based on the conventional linear governor control. (author)

  12. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    Science.gov (United States)

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  13. Control rooms and man-machine interface in nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    The importance of man-machine interface for ensuring safe and reliable operation of nuclear power plants has always been recognized. Since the early 1970's, the concepts of operator support and human factors have been increasingly used to better define the role of control rooms. In the late 1970's, the lessons learned from experience considerably accelerated the development of recommendations and regulatory requirements governing the resources and data available to operators in nuclear power plant control rooms, and specified the expertise required to assist them in case of need. This document summarizes the steps which have been taken and are being planned around the world to improve the man-machine interface for safe and economic power generation. It intends to present to the reader useful examples on some selected control room design and man-machine interface practices for operation and surveillance of nuclear power plants. 53 refs, 94 figs, 27 tabs

  14. COSY Control Status. First results with rapid prototyped man-machine interface for accelerator control

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, U [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Haberbosch, C [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Henn, K [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Weinert, A [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany)

    1994-12-15

    The experience gained with the COSY Control System after a six month commissioning period followed by a six month production period will be presented. The COSY Control System runs approximately 300 VME and VXI target systems using a total of about 1000 CPUs, the systems are driven by the diskless operating environment RT/OS, hosted by eight workcells. Application software is implemented using Object-Orientated programming paradigms. All accelerator components become interface functions as instances of an abstract device model class. Methods defined here present an abstract picture of the accelerator giving immediate access to device states and parameters. Operator interaction is defined by building views and controllers for the model. Higher level functions, such as defining an acceleration cycle, are easily developed and modified with the accelerator connected on-line to the model. In the first year of COSY operation the object based approach for a control system, together with a rapid prototyped man-machine interface has brought to light the potential of new functions such as on-line, real time programming on a running system yielding high programming performance. The advantages of this approach have not been, until now, fully appreciated. ((orig.))

  15. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    When the mould unit is full, this drive keeps transporting filament materials without proper control. This project developed a closed loop feedback tension control system and it is to replace servo motor drive system for the transportation of filament and it demonstrated a new technological advancement and the theory of ...

  16. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    International Nuclear Information System (INIS)

    Hou, Xue Yan; Li, Shu; Li, Qing

    2011-01-01

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier

  17. Lutidine-derived Ru-CNC hydrogenation pincer catalysts with versatile coordination properties

    NARCIS (Netherlands)

    Filonenko, Georgy A.; Cosimi, Elena; Lefort, Laurent; Conley, Matthew P.; Copéret, Christophe; Lutz, Martin; Hensen, Emiel J M; Pidko, Evgeny A.

    2014-01-01

    Lutidine-derived bis-N-heterocyclic carbene (NHC) ruthenium CNC-pincer complexes (Ru-CNC's) were prepared. Depending on the synthetic procedure, normal (1, 2) or mixed normal/abnormal NHC-complexes (3) are formed. In the presence of phosphazene base, Ru-CNC complexes activate nitriles to give

  18. General man-machine interface used in accelerators controls

    International Nuclear Information System (INIS)

    Boutheon, M.; Di Maio, F.; Pace, A.

    1992-01-01

    A large community is now using Workstations as Accelerators Computer Controls Interface, through the concepts of windows - menus - synoptics - icons. Some standards were established for the CERN-PS control systems rejuvenation. The Booster-to-PS transfer and injection process is now entirely operated with these tools. This application constitutes a global environment providing the users with the controls, analysis, visualization of a part of an accelerator. Individual commands, measurements, and specialized programs including complex treatments are available in a homogeneous frame. Some months of experience in current operation have shown that this model can be extended to the whole project. (author)

  19. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  20. Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines

    Directory of Open Access Journals (Sweden)

    Per J. Nicklasson

    1997-10-01

    Full Text Available In this paper we study the viability of extending, to the general rotating electric machine's model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a "passive disturbance". In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical

  1. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  2. Lean energy analysis of CNC lathe

    Science.gov (United States)

    Liana, N. A.; Amsyar, N.; Hilmy, I.; Yusof, MD

    2018-01-01

    The industrial sector in Malaysia is one of the main sectors that have high percentage of energy demand compared to other sector and this problem may lead to the future power shortage and increasing the production cost of a company. Suitable initiatives should be implemented by the industrial sectors to solve the issues such as by improving the machining system. In the past, the majority of the energy consumption in industry focus on lighting, HVAC and office section usage. Future trend, manufacturing process is also considered to be included in the energy analysis. A study on Lean Energy Analysis in a machining process is presented. Improving the energy efficiency in a lathe machine by enhancing the cutting parameters of turning process is discussed. Energy consumption of a lathe machine was analyzed in order to identify the effect of cutting parameters towards energy consumption. It was found that the combination of parameters for third run (spindle speed: 1065 rpm, depth of cut: 1.5 mm, feed rate: 0.3 mm/rev) was the most preferred and ideal to be used during the turning machining process as it consumed less energy usage.

  3. Electric Machine with Boosted Inductance to Stabilize Current Control

    Science.gov (United States)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  4. Design And Construction Of Controller System And Data Acquisition Of Creep Test Machine

    International Nuclear Information System (INIS)

    Farokhi; Arhatari, B.D.; DT. SonyTj.. Histori; Sudarno; Haryanto, Mudi; Triyadi, Ari

    2001-01-01

    Design and construction of creep test machine have been done to get a higher performance of controller system and data acquisition of that machine. The Design and construction were made by adding an automatic power control circuit, an interface and computer program on PC. The interface circuit is made in a form of a card which applicable on the compatible ISA-IBM PC. The computer program is written in turbo C++. With that modification, the test results show reduction in measurement error from 80μm to 90μm. The modification gives also benefit semi-automatic of the creep test machine. It means decreasing on the operator dependence. Another advantages are to make easier on the result data reading, to show the result data on the real time or on file, to make easier on appearing of a test result curve and on the result data analysis

  5. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    . The transient fluctuation of the estimated rotor position error is around 20 degrees with a step load torque change from 0% to 100% of the rated torque. The position error in steady state is within ±2 electrical degrees for the best case. The proposed method may also be used for e.g. online machine parameter......The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances....... For reducing the cost and increasing the reliability of the drive system, eliminating the mechanical sensor brings a lot advantages to the PMSM drive system. Therefore, sensorless control was developed and has been increasingly used in different PMSM drive systems in the last 20 years. However, machine...

  6. Implementation of a Microcode-controlled State Machine and Simulator in AVR Microcontrollers (MICoSS

    Directory of Open Access Journals (Sweden)

    S. Korbel

    2005-01-01

    Full Text Available This paper describes the design of a microcode-controlled state machine and its software implementation in Atmel AVR microcontrollers. In particular, ATmega103 and ATmega128 microcontrollers are used. This design is closely related to the software implementation of a simulator in AVR microcontrollers. This simulator communicates with the designed state machine and presents a complete design environment for microcode development and debugging. These two devices can be interconnected by a flat cable and linked to a computer through a serial or USB interface.Both devices share the control software that allows us to create and edit microprograms and to control the whole state machine. It is possible to start, cancel or step through the execution of the microprograms. The operator can also observe the current state of the state machine. The second part of the control software enables the operator to create and compile simulating programs. The control software communicates with both devices using commands. All the results of this communication are well arranged in dialog boxes and windows. 

  7. Bridge between control science and technology. Volume 5 Manufacturing man-machine systems, computers, components, traffic control, space applications

    Energy Technology Data Exchange (ETDEWEB)

    Rembold, U; Kempf, K G; Towill, D R; Johannsen, G; Paul, M

    1985-01-01

    Among the topics discussed are: robotics; CAD/CAM applications; and man-machine systems. Consideration is also given to: tools and software for system design and integration; communication systems for real-time computer control; fail-safe design of real-time computer systems; and microcomputer-based control systems. Additional topics discussed include: programmable and intelligent components and instruments in automatic control; transportation systems; and space applications of automatic control systems.

  8. Method of control of machining accuracy of low-rigidity elastic-deformable shafts

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    Full Text Available The paper presents an analysis of the possibility of increasing the accuracy and stability of machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result of oriented change of the elastic-deformable state through the application of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. The paper also presents mathematical models describing the changes of the elastic-deformable state resulting from the application of the tensile force. It presents the results of experimental studies on the deformation of elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An estimation was made of the effectiveness of the method of control of the elastic-deformable state with the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of machining, and thus achieve a theoretically assumed level of accuracy.

  9. Allocation of functions to man and machine in the automated control room

    International Nuclear Information System (INIS)

    Pulliam, R.; Price, H.E.

    1983-01-01

    A practical framework and set of methodologic tools are discussed which could be used by a design team in allocating nuclear power plant control functions to either man or machine control. It is concluded that allocations of functions must eventually become a formal step in control system design, i.e., it will become increasingly necessary to invest in human factors analysis as an integral part of the design process

  10. Active Perturbation Rejection in Motion Control of Milling Machine Tools

    Directory of Open Access Journals (Sweden)

    Francisco Beltrán Carbajal

    2013-01-01

    Full Text Available En este artículo se aborda el problema de control robusto de los ejes de movimiento de máquinas- herramienta fresadoras sujetos a fuerzas de perturbación que se inducen durante el proceso de maquinado del metal. Se propone un esquema de control por retroalimentación de la salida de posición para el rechazo robusto de fuerzas de perturbación de fricción y de corte desconocidas, y para tareas de seguimiento robusto de trayectorias de movimiento planificadas para una máquina-herramienta fresadora de tres ejes. Se considera la fricción de Coulomb, el amortiguamiento viscoso y las fuerzas de corte como términos de una señal de entrada de perturbación variable en el tiempo desconocida, la cual afecta la dinámica de los ejes de movimiento de la máquina fresadora. En el diseño del control de movimiento, se modela la señal de perturbación mediante una familia de polinomios en el tiempo de Taylor de cuarto grado. Entonces, se diseña un observador de estado para estimar las señales de velocidad y perturbación que se requieren para la implementación del controlador de movimiento propuesto. Se incluye resultados en simulación para mostrar el desempeño robusto del esquema de control de movimiento propuesto y la estimación efectiva y rápida de las señales de perturbación y velocidad.

  11. Express quality control of chicken eggs by machine vision

    Science.gov (United States)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Peretyagin, Vladimir S.; Korotaev, Valery V.; Arbuzova, Evgeniia A.

    2017-06-01

    The urgency of the task of analyzing the foodstuffs quality is determined by the strategy for the formation of a healthy lifestyle and the rational nutrition of the world population. This applies to products, such as chicken eggs. In particular, it is necessary to control the chicken eggs quality at the farm production prior to incubation in order to eliminate the possible hereditary diseases, as well as high embryonic mortality and a sharp decrease in the quality of the bred young. Up to this day, in the market there are no objective instruments of contactless express quality control as analytical equipment that allow the high-precision quality examination of the chicken eggs, which is determined by the color parameters of the eggshell (color uniformity) and yolk of eggs, and by the presence in the eggshell of various defects (cracks, growths, wrinkles, dirty). All mentioned features are usually evaluated only visually (subjectively) with the help of normalized color standards and ovoscopes. Therefore, this work is devoted to the investigation of the application opportunities of contactless express control method with the help of technical vision to implement the chicken eggs' quality analysis. As a result of the studies, a prototype with the appropriate software was proposed. Experimental studies of this equipment on a representative sample of eggs from chickens of different breeds have been carried out (the total number of analyzed samples exceeds 300 pieces). The correctness of the color analysis was verified by spectrophotometric studies of the surface of the eggshell.

  12. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs.

    Science.gov (United States)

    Ni, Jiang; Tian, Fengchun; Dahmani, Fatima Zohra; Yang, Hui; Yue, Deren; He, Shuwang; Zhou, Jianping; Yao, Jing

    2016-11-01

    The low oral bioavailability of numerous drugs has been mostly attributed to the significant effect of P-gp-mediated efflux on intestinal drug transport. Herein, we developed mixed polymeric micelles (MPMs) comprised of curcumin-carboxymethyl chitosan (CNC) conjugate, as a potential inhibitor of P-gp-mediated efflux and gastrointestinal absorption enhancer, and low-molecular-weight heparin-all-trans-retinoid acid (LHR) conjugate, as loading material, with the aim to improve the oral absorption of P-gp substrate drugs. CNC conjugate was synthesized by chemical bonding of curcumin (Cur) and carboxymethyl chitosan (CMCS) taking advantage of the inhibition of intestinal P-gp-mediated secretion by Cur and the intestinal absorption enhancement by CMCS. The chemical structure of CNC conjugate was characterized by 1 H NMR with a degree of substitution of Cur of 4.52-10.20%. More importantly, CNC conjugate markedly improved the stability of Cur in physiological pH. Cyclosporine A-loaded CNC/LHR MPMs (CsA-CNC/LHR MPMs) were prepared by dialysis method, with high drug loading 25.45% and nanoscaled particle size (∼200 nm). In situ single-pass perfusion studies in rats showed that both CsA + CNC mixture and CsA-CNC/LHR MPMs achieved significantly higher K a and P eff than CsA suspension in the duodenum and jejunum segments (p CNC mixture and CsA-CNC/LHR MPMs significantly increased the oral bioavailability of CsA as compared to CsA suspension. These results suggest that CNC conjugate might be considered as a promising gastrointestinal absorption enhancer, while CNC/LHR MPMs had the potential to improve the oral absorption of P-gp substrate drugs.

  13. Specified international joint research. Report for fiscal 1997 on the result of `Development of Machining Supporting System`; Kokusai tokutei kyodo kenkyu. `Kikai kako shien system no kaihatsu` 1997 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    On the basis of information obtained from actually performed designing of machines with the aid of computers, researches are conducted for the development of a system that automatically designs required machine tools, machining procedures, machining conditions, and tool paths. The research and development efforts made in fiscal 1997 are enumerated below. In the development of man-machine interfaces, one that integrates a machining procedure designing system, machining condition designing system, and a tool path designing system, all of which are subsystems belonging in a machining supporting system, is developed. In a system evaluation performed through actual machining, an interface between CAD (Computer-Aided Design) technology and a machining supporting system is evaluated, when machining is actually performed for experimentation in an environment in which a machining procedure designing system, machining condition designing system, tool path designing system, and CNC (Computerized Numerical Control) technology collaborate as integrated. As the result, the performance expected to be achieved at the beginning is realized. Two scientists of Russian Academy of Sciences are invited, and researches are conducted concerning knowledge processing technology. 20 refs., 21 figs., 10 tabs.

  14. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives.

    Science.gov (United States)

    Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki

    2018-04-01

    In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Machine vision algorithms applied to dynamic traffic light control

    Directory of Open Access Journals (Sweden)

    Fabio Andrés Espinosa Valcárcel

    2013-01-01

    número de autos presentes en imágenes capturadas por un conjunto de cámaras estratégicamente ubicadas en cada intersección. Usando esta información, el sistema selecciona la secuencia de acciones que optimicen el flujo vehicular dentro de la zona de control, en un escenario simulado. Los resultados obtenidos muestran que el sistema disminuye en un 20% los tiempos de retraso para cada vehículo y que además es capaz de adaptarse rápida y eficientemente a los cambios de flujo.

  16. Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Wörgötter, Florentin

    2007-01-01

    as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional...

  17. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  18. Ultraprecise parabolic interpolator for numerically controlled machine tools. [Digital differential analyzer circuit

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, C. M.

    1977-02-01

    The mathematical basis for an ultraprecise digital differential analyzer circuit for use as a parabolic interpolator on numerically controlled machines has been established, and scaling and other error-reduction techniques have been developed. An exact computer model is included, along with typical results showing tracking to within an accuracy of one part per million.

  19. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    Science.gov (United States)

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  20. Control of a high-speed switched reluctance machine using only the DC-link measurements

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram

    2015-01-01

    In this paper we present a novel speed control strategy for a high-speed Switched Reluctance Machine that uses only the DC-link voltage and current measurements. This eliminates a number of hardware components such as position, speed, phase current and phase voltage sensors. It further lowers the

  1. Optimization of CNC end milling process parameters using PCA ...

    African Journals Online (AJOL)

    Optimization of CNC end milling process parameters using PCA-based Taguchi method. ... International Journal of Engineering, Science and Technology ... To meet the basic assumption of Taguchi method; in the present work, individual response correlations have been eliminated first by means of Principal Component ...

  2. Design and adjustment on test bed of replacing subassembly machine control system for China experimental fast reactor

    International Nuclear Information System (INIS)

    Dong Shengguo; Ma Hongsheng; Zhao Lixia

    2008-01-01

    The present research concerns in the design and adjustment of replacing sub- assembly machine control system of China Experimental Fast Reactor. The design of replacing subassembly machine control system adopts some electric equipments, such as programmable controllers, digital DC drivers. The designed control system was adjusted on the test bed. The results indicate that the operation of the control system is steady and reliable, and designed control system can meet the needs of the design specification. (authors)

  3. The effect of the model posture on the forming quality in the CNC incremental forming

    International Nuclear Information System (INIS)

    Zhu, H; Zhang, W; Bai, J L; Yu, C; Xing, Y F

    2015-01-01

    Sheet rupture caused by a sheet metal thickness non-uniformity persists in CNC (Computer Numerical Control) incremental forming. Because the forming half cone angle is determined by the orientation of the model to be formed, so is the sheet metal's uniformity. The finite element analysis models for the two kinds of the postures of the model were established, and the digital simulation was conducted by using the ANSYS/LA-DYNA software. The effect of the model's posture on the sheet thickness distribution and the sheet thickness thinning rate were studied by comparing the simulation results of two kinds of the finite elements analyzes. (paper)

  4. Pengaturan Kecepatan Motor Spindle pada Retrofit Mesin Bubut CNC Menggunakan Kontroler PID Gain Scheduling

    Directory of Open Access Journals (Sweden)

    Fikri Yoga Permana

    2013-03-01

    Full Text Available Pada mesin bubut Computerized Numerical Control (CNC, proses pemahatan benda kerja memerlukan kecepatan potong yang tetap agar hasil kerja memiliki tingkat presisi tinggi. Dalam prakteknya, ketika terjadi pemotongan, diameter benda kerja akan selalu berkurang dan tingkat kedalaman pahat berubah-ubah sesuai dengan proses yang dilakukan sehingga mempengaruhi kecepatan putar motor spindle sehingga mengakibatkan tingkat presisi hasil kerja menjadi berkurang. Pada penelitian ini, digunakan kontroler PI Gain Scheduling untuk mengatur kecapatan motor spindle. Hasil yang didapatkan berupa simulasi kontroler PI Gain Scheduling. Dari hasil simulasi didapatkan kontroler PI Gain Scheduling mampu membuat respon sistem sesuai dengan yang diinginkan.

  5. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  6. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  7. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  8. Influence of export control policy on the competitiveness of machine tool producing organizations

    Science.gov (United States)

    Ahrstrom, Jeffrey D.

    The possible influence of export control policies on producers of export controlled machine tools is examined in this quantitative study. International market competitiveness theories hold that market controlling policies such as export control regulations may influence an organization's ability to compete (Burris, 2010). Differences in domestic application of export control policy on machine tool exports may impose throttling effects on the competitiveness of participating firms (Freedenberg, 2010). Commodity shipments from Japan, Germany, and the United States to the Russian market will be examined using descriptive statistics; gravity modeling of these specific markets provides a foundation for comparison to actual shipment data; and industry participant responses to a user developed survey will provide additional data for analysis using a Kruskal-Wallis one-way analysis of variance. There is scarce academic research data on the topic of export control effects within the machine tool industry. Research results may be of interest to industry leadership in market participation decisions, advocacy arguments, and strategic planning. Industry advocates and export policy decision makers could find data of interest in supporting positions for or against modifications of export control policies.

  9. Online learning control using adaptive critic designs with sparse kernel machines.

    Science.gov (United States)

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  10. Development of a wearable measurement and control unit for personal customizing machine-supported exercise.

    Science.gov (United States)

    Wang, Zhihui; Tamura, Naoki; Kiryu, Tohru

    2005-01-01

    Wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of personal customizing machine-supported exercise that have biosignal-based controls. In this paper, we propose a new wearable unit design equipped with measurement and control functions to support the personal customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise and output workload control commands to the exercise machines. We then applied a prototype of the wearable unit to an Internet-based cycle ergometer system. The wearable unit was examined using twelve young people to check its feasibility. The results verified that the unit could successfully adapt to the control of the workload and was effective for continuously supporting gradual changes in physical activities.

  11. Very-low-speed variable-structure control of sensorless induction machine drives without signal injection

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2005-01-01

    A sensorless induction machine drive is presented, in which the principles of variable-structure control and direct torque control (DTC) are combined to ensure high-performance operation in the steady state and under transient conditions. The drive employs a new torque and flux controller......, the "linear and variable-structure control", which realizes accurate and robust control in a wide speed range. Conventional DTC transient merits are preserved, while the steady-state behavior is significantly improved. The full-order state observer is a sliding-mode one, which does not require the rotor speed...

  12. Application of machine learning and expert systems to Statistical Process Control (SPC) chart interpretation

    Science.gov (United States)

    Shewhart, Mark

    1991-01-01

    Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.

  13. Investigation on multi-variable decoupled temperature control system for enamelling machine with heated air circulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang; Qin, Le; Zou, Shipeng; Long, Shijun [School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-04-11

    A lots of problems may occur frequently when controlling the temperature of the enamelling machine oven in the real industrial process, such as multi-variable coupled problem. an experimental rig with triple inputs and triple outputs was devised and a simulation modeling was established accordingly in this study,. the temperature control system based on the feedforward compensation algorithm was proposed. Experimental results have shown that the system is of high efficiency, good stability and promising application.

  14. Automated Biometric Voice-Based Access Control in Automatic Teller Machine (ATM)

    OpenAIRE

    Yekini N.A.; Itegboje A.O.; Oyeyinka I.K.; Akinwole A.K.

    2012-01-01

    An automatic teller machine requires a user to pass an identity test before any transaction can be granted. The current method available for access control in ATM is based on smartcard. Efforts were made to conduct an interview with structured questions among the ATM users and the result proofed that a lot of problems was associated with ATM smartcard for access control. Among the problems are; it is very difficult to prevent another person from attaining and using a legitimate persons card, ...

  15. Promoting the Purchase of Low-Calorie Foods from School Vending Machines: A Cluster-Randomized Controlled Study

    Science.gov (United States)

    Kocken, Paul L.; Eeuwijk, Jennifer; van Kesteren, Nicole M.C.; Dusseldorp, Elise; Buijs, Goof; Bassa-Dafesh, Zeina; Snel, Jeltje

    2012-01-01

    Background: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. Methods: A school-based randomized controlled trial was conducted in 13 experimental schools and 15 control schools. Three strategies…

  16. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    Science.gov (United States)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  17. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II.

    Science.gov (United States)

    Jin, Ersuo; Guo, Jiaqi; Yang, Fang; Zhu, Yangyang; Song, Junlong; Jin, Yongcan; Rojas, Orlando J

    2016-06-05

    Polymorphic and morphological transformations of cellulosic materials are strongly associated to their properties and applications, especially in the case of emerging nanocelluloses. Related changes that take place upon treatment of cellulose nanocrystals (CNC) in alkaline conditions are studied here by XRD, TEM, AFM, and other techniques. The results indicate polymorphic transformation of CNC proceeds gradually in a certain range of alkali concentrations, i.e. from about 8% to 12.5% NaOH. In such transition alkali concentration, cellulose I and II allomorphs coexists. Such value and range of the transition concentration is strongly interdependent with the crystallite size of CNCs. In addition, it is distinctively lower than that for macroscopic fibers (12-15% NaOH). Transmission electron microscopy and particle sizing reveals that after mercerization CNCs tend to associate. Furthermore, TEMPO-oxidized mercerized CNC reveals the morphology of individual nanocrystal of the cellulose II type, which is composed of some interconnected granular structures. Overall, this work reveals how the polymorphism and morphology of individual CNC change in alkali conditions and sheds light onto the polymorphic transition from cellulose I to II. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  19. Discovering Pediatric Asthma Phenotypes on the Basis of Response to Controller Medication Using Machine Learning.

    Science.gov (United States)

    Ross, Mindy K; Yoon, Jinsung; van der Schaar, Auke; van der Schaar, Mihaela

    2018-01-01

    Pediatric asthma has variable underlying inflammation and symptom control. Approaches to addressing this heterogeneity, such as clustering methods to find phenotypes and predict outcomes, have been investigated. However, clustering based on the relationship between treatment and clinical outcome has not been performed, and machine learning approaches for long-term outcome prediction in pediatric asthma have not been studied in depth. Our objectives were to use our novel machine learning algorithm, predictor pursuit (PP), to discover pediatric asthma phenotypes on the basis of asthma control in response to controller medications, to predict longitudinal asthma control among children with asthma, and to identify features associated with asthma control within each discovered pediatric phenotype. We applied PP to the Childhood Asthma Management Program study data (n = 1,019) to discover phenotypes on the basis of asthma control between assigned controller therapy groups (budesonide vs. nedocromil). We confirmed PP's ability to discover phenotypes using the Asthma Clinical Research Network/Childhood Asthma Research and Education network data. We next predicted children's asthma control over time and compared PP's performance with that of traditional prediction methods. Last, we identified clinical features most correlated with asthma control in the discovered phenotypes. Four phenotypes were discovered in both datasets: allergic not obese (A + /O - ), obese not allergic (A - /O + ), allergic and obese (A + /O + ), and not allergic not obese (A - /O - ). Of the children with well-controlled asthma in the Childhood Asthma Management Program dataset, we found more nonobese children treated with budesonide than with nedocromil (P = 0.015) and more obese children treated with nedocromil than with budesonide (P = 0.008). Within the obese group, more A + /O + children's asthma was well controlled with nedocromil than with budesonide (P = 0.022) or with placebo

  20. Effect of a gelatin-based edible coating containing cellulose nanocrystals (CNC) on the quality and nutrient retention of fresh strawberries during storage

    Science.gov (United States)

    Fakhouri, F. M.; Casari, A. C. A.; Mariano, M.; Yamashita, F.; Innocnentini Mei, L. H.; Soldi, V.; Martelli, S. M.

    2014-08-01

    Strawberry is a non-climacteric fruit with a very short postharvest shelf-life. Loss of quality in this fruit is mostly due to its relatively high metabolic activity and sensitivity to fungal decay, meanly grey mold (Botrytis cinerea). In this study, the ability of gelatin coatings containing cellulose nanocrystals (CNC) to extend the shelf-life of strawberry fruit (Fragaria ananassa) over 8 days were studied. The filmogenic solution was obtained by the hydration of 5 g of gelatin (GEL) in 100 mL of distillated water containing different amounts of CNC dispersion (10 mg CNC/g of GEL or 50 mg of CNC/g of GEL) for 1 hour at room temperature. After this period, the solution was heated to 70 °C and maintained at this temperature for 10 minutes. The plasticizer (glycerol) (10g/100g of the GEL) was then added with constant, gentle stirring in order to avoid forming air bubbles and also to avoid gelatin denaturation until complete homogenization. Strawberries (purchased at the local market) were immersed in the filmogenic solution for 1 minute and after coated were dried at 15 °C by 24 hours. The strawberries were then kept under refrigeration and characterized in terms of their properties (weight loss, ascorbic acid content, titratable acidity, water content). The results have shown that samples covered with GEL/CNC had a significant improvement in its shelf- life. For instance, for the control sample (without coating) the weight loss after 8 days of storage was around 65%, while covered samples loss in the range of 31-36%. Edible coating was also effective in the retention of ascorbic acid (AA) in the strawberries, while control sample presented a fast decay in the AA content, covered samples showed a slow decay in the AA concentration. Moreover, the use of GEL/CNC edible coating had an antimicrobial effect in the fruits.

  1. Effect of a gelatin-based edible coating containing cellulose nanocrystals (CNC) on the quality and nutrient retention of fresh strawberries during storage

    International Nuclear Information System (INIS)

    Fakhouri, F M; Casari, A C A; Martelli, S M; Mariano, M; Soldi, V; Yamashita, F; Mei, L H Innocnentini

    2014-01-01

    Strawberry is a non-climacteric fruit with a very short postharvest shelf-life. Loss of quality in this fruit is mostly due to its relatively high metabolic activity and sensitivity to fungal decay, meanly grey mold (Botrytis cinerea). In this study, the ability of gelatin coatings containing cellulose nanocrystals (CNC) to extend the shelf-life of strawberry fruit (Fragaria ananassa) over 8 days were studied. The filmogenic solution was obtained by the hydration of 5 g of gelatin (GEL) in 100 mL of distillated water containing different amounts of CNC dispersion (10 mg CNC/g of GEL or 50 mg of CNC/g of GEL) for 1 hour at room temperature. After this period, the solution was heated to 70 °C and maintained at this temperature for 10 minutes. The plasticizer (glycerol) (10g/100g of the GEL) was then added with constant, gentle stirring in order to avoid forming air bubbles and also to avoid gelatin denaturation until complete homogenization. Strawberries (purchased at the local market) were immersed in the filmogenic solution for 1 minute and after coated were dried at 15 °C by 24 hours. The strawberries were then kept under refrigeration and characterized in terms of their properties (weight loss, ascorbic acid content, titratable acidity, water content). The results have shown that samples covered with GEL/CNC had a significant improvement in its shelf- life. For instance, for the control sample (without coating) the weight loss after 8 days of storage was around 65%, while covered samples loss in the range of 31-36%. Edible coating was also effective in the retention of ascorbic acid (AA) in the strawberries, while control sample presented a fast decay in the AA content, covered samples showed a slow decay in the AA concentration. Moreover, the use of GEL/CNC edible coating had an antimicrobial effect in the fruits

  2. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    Science.gov (United States)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  3. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions

    Directory of Open Access Journals (Sweden)

    Sébastien Soulet

    2017-10-01

    Full Text Available The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV, dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate. Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR, European Committee for Standardization (CEN and International Standards Organisation (ISO as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.

  4. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions.

    Science.gov (United States)

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-10-14

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.

  5. Advanced stability control of multi-machine power system by vips apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, A [Tokyo Univ., Tokyo (Japan). Dept. of Electrical Engineering; Sekine, Y [Science Univ. of Tokyo, Tokyo (Japan). Dept. of Electrical Engineering

    1994-12-31

    New technology such as synchronized switching and power electronics will make it possible to change the configuration of transmission network, the impedances of transmission lines and the phase angles of voltage in the future power systems. This paper presents a comprehensive power system damping control by power electronics based variable impedance apparatus such as variable series capacitor and high speed phase shifter and also shows a novel switching-over control of transmission lines by synchronized switching for the first awing stability and damping enhancement. The control scheme discussed in this paper is based on an energy function of multi-machine power system and its time derivative. Its effectiveness is demonstrated by digital simulations and eigenvalue analysis in multi-machine test systems. It is demonstrated that multiple switching of transmission lines improves damping in the post-fault conditions. (author) 13 refs., 24 figs., 5 tabs.

  6. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    Science.gov (United States)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  7. A foundation for allocating control functions to humans and machines in future CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Lipsett, J.J.; Davey, E.C.; Olmstead, R.A.

    1990-06-01

    Since the control room for the Atomic Energy of Canada Limited CANDU 6 plant was designed in the 1970s, requirements for control rooms have changed dramatically as a result of new licensing requirements, evolution of major new standards for control centre design and technological advances. The role of the human operator has become prominent in the design and operation of industrial and, in particular, nuclear plants. Major industrial accidents in the last decade have highlighted the need for paying significantly more attention to the requirements of the human as an integral part of the plant control system. A Functional Design Methodology has been defined that addresses the issues related to maximizing the strengths of the human and the machine in the next generation of CANDU plants. This method is based, in part, on the recently issued international standard IEC 964. The application of this method will lead to the definition of the requirements for detailed design of the control room, including man-machine interfaces, preliminary operating procedures, staffing and training. Further, it provides a basis for the verification and validation of the allocation of functions to the operator and the machine

  8. Aspects of input processing in the numerical control of electron beam machines

    International Nuclear Information System (INIS)

    Chowdhury, A.K.

    1981-01-01

    A high-performance Numerical Control has been developed for an Electron Beam Machine. The system is structured into 3 hierarchial levels: Input Processing, Realtime Processing (such as Geometry Interpolation) and the Interfaces to the Electron Beam Machine. The author considers the Input Processing. In conventional Numerical Controls the Interfaces to the control is given by the control language as defined in DIN 66025. State of the art in NC-technology offers programming systems of differing competence covering the spectra between manual programming in the control language to highly sophisticated systems such as APT. This software interface has been used to define an Input Processor that in cooperation with the Hostcomputer meets the requirements of a sophisticated NC-system but at the same time provides a modest stand-alone system with all the basic functions such as interactive program-editing, program storage, program execution simultaneous with the development of another program, etc. Software aspects such as adapting DIN 66025 for Electron Beam Machining, organisation and modularisation of Input Processor Software has been considered and solutions have been proposed. Hardware aspects considered are interconnections of the Input Processor with the Host and the Realtime Processors. Because of economical and development-time considerations, available software and hardware has been liberally used and own development has been kept to a minimum. The proposed system is modular in software and hardware and therefore very flexible and open-ended to future expansion. (Auth.)

  9. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue Yan; Li, Shu; Li, Qing [China Nuclear Power Operation Technology Co., Wuhan (China)

    2011-08-15

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier.

  10. Autotuning of PID controller by means of human machine interface device

    Directory of Open Access Journals (Sweden)

    Michał Awtoniuk

    2017-06-01

    Full Text Available More and more control systems are based on industry microprocessors like PLC controllers (Programmable Logic Controller. The most commonly used control algorithm is PID (Proportional-Integral-Derivative algorithm. Autotuning procedure is not available in every PLC. These controllers are typically used in cooperation with HMI (Human Machine Interface devices. In the study two procedures of autotuning of the PID controller were implemented in the HMI device: step method and relay method. Six tuning rules for step methods and one for relay method were chosen. The autotuning procedures on simulated controlled object and PLC controller without build-in autotuning were tested. The object of control was first order system plus time delay.

  11. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  12. Base for a remote quality control system for magnetic resonance images machines

    International Nuclear Information System (INIS)

    Gonzalez Dalmau, Evelio R; Cabal Mirabal, Carlos; Noda Guerra, Manuel

    2014-01-01

    The medical images systems convert characteristic of the tissues in gray levels or color, using a physical method and a specific mathematical transformation. In Magnetic Resonance Images (MRI) these levels have a multi-parametric dependence, this a reason of their strong presence in the daily clinical practice. This technological complexity, the high costs and the importance that have these study for the patient's life, confer to the Quality Control (QC) human, technological, economic and juridical implications. Several international groups dedicated to the QC in MRI and diversity of approaches to carry out the tests of acceptance and periodic control of the quality exist. The characterization is habitually carried out, with global methods that don't allow a detailed quantitative parametric study. A novel system of quantitative control was developed based on quantitative describers by slices and temporal. This system is formed for: 1) standard methodology of acquisition of the experimental data, 2) subsystem of functions and programs developed in MatLab, 3) subsystem of graphics and reports, and 4) the expert. It is used successfully in the characterization and the periodic control of MRI machines of several magnetic fields in Cuba and in Venezuela. They were defined and established quantitative descriptors for MRI machines. The software flexibility allows carry out the QC to any machine facilitating the standardization and its use in multi-center studies. The retrospective and predictive value of the system was demonstrated. They feel the bases for the remote realization of the test

  13. Event-driven control of a speed varying digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    . The controller synthesis is carried out as a discrete optimal deterministic problem with full state feedback. Based on a linear analysis of the feedback control system, stability is proven in a pre-specified operation region. Simulation of a non-linear evaluation model with the controller implemented shows great...... be treated as a Discrete Linear Time Invariant control problem with synchronous sampling rate. To make synchronous linear control theory applicable for a variable speed digital displacement machine, a method based on event-driven control is presented. Using this method, the time domain differential equations...... are converted into the spatial (position) domain to obtain a constant sampling rate and thus allowing for use of classical control theory. The method is applied to a down scaled digital fluid power motor, where the motor speed is controlled at varying references under varying pressure and load torque conditions...

  14. Control system of mutually coupled switched reluctance motor drive of mining machines in generator mode

    Science.gov (United States)

    Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.

    2017-09-01

    One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.

  15. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  16. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  17. Connection of control circuits of machine for automatic measurement of radioactive samples

    International Nuclear Information System (INIS)

    Vorlicek, J.

    1984-01-01

    A windowless through-flow gas detector is used for measurement. The automatic machine is controlled by four flip-flops defining the following states: the dish replacement in the measuring space, washing, measurement, measured value print-out, and resetting. The first and second outputs of the first, second and third flip-flops are connected to six inputs of a block whose four outputs provide counter reset and stop-watch reset, washing, measurement, and print-out. Such machine control eliminates measurement errors by disabling sample measurement until air is removed from the measurement space, introduced on an unwashed dish or on several dishes passed under the detector. The elimination of this error is also guaranteed in manual operation. (M.D.)

  18. Pengendalian Kualitas Kertas Dengan Menggunakan Statistical Process Control di Paper Machine 3

    Directory of Open Access Journals (Sweden)

    Vera Devani

    2017-01-01

    Full Text Available Purpose of this research is to determine types and causes of defects commonly found in Paper Machine 3 by using statistical process control (SPC method.  Statistical process control (SPC is a technique for solving problems and is used to monitor, control, analyze, manage and improve products and processes using statistical methods.  Based on Pareto Diagrams, wavy defect is found as the most frequent defect, which is 81.7%.  Human factor, meanwhile, is found as the main cause of defect, primarily due to lack of understanding on machinery and lack of training both leading to errors in data input.

  19. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jian-ping Wen

    2015-01-01

    Full Text Available In order to improve energy utilization rate of battery-powered electric vehicle (EV using brushless DC machine (BLDCM, the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO to observe actual braking current and the unknown disturbances of regenerative braking system, the autodisturbances rejection controller (ADRC for controlling the braking current is developed. Experimental results show that the proposed method gives better recovery efficiency and is robust to disturbances.

  20. Development of an FPGA-Based Motion Control IC for Caving Machine

    Directory of Open Access Journals (Sweden)

    Chiu-Keng Lai

    2014-03-01

    Full Text Available Since the Field Programmable Gate Arrays (FPGAs with high density are available nowadays, systems with complex functions can thus be realized by FPGA in a single chip while they are traditionally implemented by several individual chips. In this research, the control of stepping motor drives as well as motion controller is integrated and implemented on Altera Cyclone III FPGA; the resulting system is evaluated by applying it to a 3-axis caving machine which is driven by stepping motors. Finally, the experimental results of current regulation and motion control integrated in FPGA IC are shown to prove the validness.

  1. Research on Modeling and Control of Regenerative Braking for Brushless DC Machines Driven Electric Vehicles

    OpenAIRE

    Jian-ping Wen; Chuan-wei Zhang

    2015-01-01

    In order to improve energy utilization rate of battery-powered electric vehicle (EV) using brushless DC machine (BLDCM), the model of braking current generated by regenerative braking and control method are discussed. On the basis of the equivalent circuit of BLDCM during the generative braking period, the mathematic model of braking current is established. By using an extended state observer (ESO) to observe actual braking current and the unknown disturbances of regenerative braking system, ...

  2. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    OpenAIRE

    Stephen Jackson; Richard Lemaster; Daniel E. Saloni

    2011-01-01

    Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control s...

  3. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    Science.gov (United States)

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  4. Measuring large aspherics using a commercially available 3D-coordinate measuring machine

    Science.gov (United States)

    Otto, Wolfgang; Matthes, Axel; Schiehle, Heinz

    2000-07-01

    A CNC-controlled precision measuring machine is a very powerful tool in the optical shop not only to determine the surface figure, but also to qualify the radius of curvature and conic constant of aspherics. We used a commercially available 3D-coordinate measuring machine (CMM, ZEISS UPMC 850 CARAT S-ACC) to measure the shape of the GEMINI 1-m convex secondary mirrors at different lapping and polishing stages. To determine the measuring accuracy we compared the mechanical measurements with the results achieved by means of an interferometrical test setup. The data obtained in an early stage of polishing were evaluated in Zernike polynomials which show a very good agreement. The deviation concerning long wave rotational symmetrical errors was 20 nm rms, whereas the accuracy measuring of mid spatial frequency deviations was limited to about 100 nm rms.

  5. Real-time depth monitoring and control of laser machining through scanning beam delivery system

    International Nuclear Information System (INIS)

    Ji, Yang; Grindal, Alexander W; Fraser, James M; Webster, Paul J L

    2015-01-01

    Scanning optics enable many laser applications in manufacturing because their low inertia allows rapid movement of the process beam across the sample. We describe our method of inline coherent imaging for real-time (up to 230 kHz) micron-scale (7–8 µm axial resolution) tracking and control of laser machining depth through a scanning galvo-telecentric beam delivery system. For 1 cm trench etching in stainless steel, we collect high speed intrapulse and interpulse morphology which is useful for further understanding underlying mechanisms or comparison with numerical models. We also collect overall sweep-to-sweep depth penetration which can be used for feedback depth control. For trench etching in silicon, we show the relationship of etch rate with average power and scan speed by computer processing of depth information without destructive sample post-processing. We also achieve three-dimensional infrared continuous wave (modulated) laser machining of a 3.96 × 3.96 × 0.5 mm 3 (length × width × maximum depth) pattern on steel with depth feedback. To the best of our knowledge, this is the first successful demonstration of direct real-time depth monitoring and control of laser machining with scanning optics. (paper)

  6. Application of Machine Learning in Postural Control Kinematics for the Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Luís Costa

    2016-01-01

    Full Text Available The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer’s disease (AD. In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs, Multiple Layer Perceptrons (MLPs, Radial Basis Function Neural Networks (RBNs, and Deep Belief Networks (DBNs on 72 participants (36 AD patients and 36 healthy subjects exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight, with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA score, top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%, test (40%, and validation (10%. Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.

  7. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    Directory of Open Access Journals (Sweden)

    Stephen Jackson

    2011-06-01

    Full Text Available Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control system for use in the abrasive machining of wood and wood-based products. A control system was created on LabView® to integrate the monitoring process and the actions required, depending on the abrasive machining process conditions. The system acquires information from the optical sensor to detect loading and activate the cleaning system. The system continuously monitors the condition of the abrasive belt (tool wear by using an acoustic emission sensor and alerts the operator of the status of the belt (green, yellow, and red lights indicating satisfactory, medium, and poor belt condition. The system also incorporates an additional safety device, which helps prevent permanent damage to the belt, equipment, or workpiece by alerting the operator when an excessive temperature has been reached. The process control system proved that automation permits enhancement in the consistency of the belt cleaning technique by the elimination of the human errors. Furthermore, this improvement also affects the cost by extending the life of the belt, which reduces setup time, belt cost, operation cost, as well as others.

  8. Improvement of the thickness distribution of a quartz crystal wafer by numerically controlled plasma chemical vaporization machining

    International Nuclear Information System (INIS)

    Shibahara, Masafumi; Yamamura, Kazuya; Sano, Yasuhisa; Sugiyama, Tsuyoshi; Endo, Katsuyoshi; Mori, Yuzo

    2005-01-01

    To improve the thickness uniformity of thin quartz crystal wafer, a new machining process that utilizes an atmospheric pressure plasma was developed. In an atmospheric pressure plasma process, since the kinetic energy of ions that impinge to the wafer surface is small and the density of the reactive species is large, high-efficiency machining without damage is realized, and the thickness distribution is corrected by numerically controlled scanning of the quartz wafer to the localized high-density plasma. By using our developed machining process, the thickness distribution of an AT cut wafer was improved from 174 nm [peak to valley (p-v)] to 67 nm (p-v) within 94 s. Since there are no unwanted spurious modes in the machined quartz wafer, it was proved that the developed machining method has a high machining efficiency without any damage

  9. Development of Machinable Ellipses by NURBS Curves

    OpenAIRE

    Yuan L. Lai; Jian H. Chen; Jui P. Hung

    2008-01-01

    Owning to the high-speed feed rate and ultra spindle speed have been used in modern machine tools, the tool-path generation plays a key role in the successful application of a High-Speed Machining (HSM) system. Because of its importance in both high-speed machining and tool-path generation, approximating a contour by NURBS format is a potential function in CAD/CAM/CNC systems. It is much more convenient to represent an ellipse by parametric form than to connect points lab...

  10. Balancing the roles of humans and machines in power plant control

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-05-01

    A number of factors are leading to a re-examination of the balance between the roles of the operators and the machine in controlling nuclear power plants. Some of these factors are: the advent of new and advanced computer technologies; increased plant complexity, placing heavy workloads and stress on the control room operator; and increasing concerns about the role of human reliability in industrial mishaps. In light of the changing control aspects, we examine the meaning of automation, we discuss a proposed model of the control process, the concept of control within a few defined reactor states, a decision-making sequence; and we identify some possible problem areas in implementing new control technologies. Significant benefits should come from the new control methods and these opportunities should be exploited as soon as prudence allows, taking great care that the safety of the plants is improved

  11. Promoting the purchase of low-calorie foods from school vending machines: A cluster-randomized controlled study

    NARCIS (Netherlands)

    Kocken, P.L.; Eeuwijk, J.; Kesten, N.M.C. van; Dusseldorp, E.; Buijs, G.; Bassa-Dafesh, Z.; Snel, J.

    2012-01-01

    BACKGROUND: Vending machines account for food sales and revenue in schools. We examined 3 strategies for promoting the sale of lower-calorie food products from vending machines in high schools in the Netherlands. METHODS: A school-based randomized controlled trial was conducted in 13 experimental

  12. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    Science.gov (United States)

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  13. Rossiter-McLaughlin observations of 55 Cnc e

    DEFF Research Database (Denmark)

    Lopez-Morales, Mercedes; Triaud, Amaury H. M. J.; Rodler, Florian

    2014-01-01

    We present Rossiter-McLaughlin observations of the transiting super-Earth 55 Cnc e collected during six transit events between 2012 January and 2013 November with HARPS and HARPS-N. We detect no radial velocity signal above 35 cm s–1 (3σ) and confine the stellar v sin i to 0.2 ± 0.5 km s–1. The s...

  14. A methodology for online visualization of the energy flow in a machine tool

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Züst, Simon; Mayr, Josef

    2017-01-01

    the machining process and by this increasing its energy efficiency. This study intents to propose a method which has the capability of real-time monitoring of the entire energetic flows in a CNC machine tool including motors, pumps and cooling fluid. The structure of this approach is based on categorizing...

  15. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    Science.gov (United States)

    Severson, Eric Loren

    magnetic modeling, winding design, control, and power-electronic drive implementation. While these contributions are oriented towards facilitating more optimal flywheel designs, they will also be useful in applying the bearingless ac homopolar machine in other applications. Example designs are considered through finite element analysis and experimental validation is provided from a proof-of-concept prototype that has been designed and constructed as a part of this dissertation.

  16. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

    Science.gov (United States)

    Chang, Ming-Kun

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  17. PSS and TCSC damping controller coordinated design using PSO in multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-12-15

    The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.

  18. Stability Enhancement of Multi machine AC Systems by Synchronverter HVDC control

    Directory of Open Access Journals (Sweden)

    Raouia Aouini

    2016-06-01

    Full Text Available This paper investigates the impact of the Synchronverter based HVDC control on power system stability. The study considers multi machine power systems, with realistic parameters. A specific tuning method of the parameters of the regulators is used. The proposed control scheme is based on the sensitivity of the poles of the HVDC neighbor zone to the control parameters, and next, on their placement using residues. The transient stability of the HVDC neighbor zone is a priori taken into account at the design stage. The new tuning method is evaluated in comparison with the standard vector control via simulation tests. Extensive tests are performed using Matlab/Simulink implementation of the IEEE 9 bus/3 machines test system. The results prove the superiority of the proposed control to the classic vector control. The synchronverter control allows to improve not only the local performances of the HVDC link, but also the overall transient stability of the AC zone in which the HVDC is inserted. (where

  19. An Improved Minimum Error Interpolator of CNC for General Curves Based on FPGA

    Directory of Open Access Journals (Sweden)

    Jiye HUANG

    2014-05-01

    Full Text Available This paper presents an improved minimum error interpolation algorithm for general curves generation in computer numerical control (CNC. Compared with the conventional interpolation algorithms such as the By-Point Comparison method, the Minimum- Error method and the Digital Differential Analyzer (DDA method, the proposed improved Minimum-Error interpolation algorithm can find a balance between accuracy and efficiency. The new algorithm is applicable for the curves of linear, circular, elliptical and parabolic. The proposed algorithm is realized on a field programmable gate array (FPGA with Verilog HDL language, and simulated by the ModelSim software, and finally verified on a two-axis CNC lathe. The algorithm has the following advantages: firstly, the maximum interpolation error is only half of the minimum step-size; and secondly the computing time is only two clock cycles of the FPGA. Simulations and actual tests have proved that the high accuracy and efficiency of the algorithm, which shows that it is highly suited for real-time applications.

  20. Methodology for testing a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available A laboratory system for remote monitoring and control of an asynchronous motor controlled by a soft starter and contemporary measuring and control devices has been developed and built. This laboratory system is used for research and in teaching. A study of the principles of operation, setting up and examination of intelligent energy meters, soft starters and PLC has been made as knowledge of the relevant software products is necessary. This is of great importance because systems for remote monitoring and control of energy consumption, efficiency and proper operation of the controlled objects are very often used in different spheres of industry, in building automation, transport, electricity distribution network, etc. Their implementation in electric vehicles for remote monitoring and control on auxiliary machines is also possible and very useful. In this paper, a methodology of tests is developed and some experiments are presented. Thus, an experimental verification of the developed methodology is made.

  1. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  2. Gesture-controlled interfaces for self-service machines and other applications

    Science.gov (United States)

    Cohen, Charles J. (Inventor); Beach, Glenn (Inventor); Cavell, Brook (Inventor); Foulk, Gene (Inventor); Jacobus, Charles J. (Inventor); Obermark, Jay (Inventor); Paul, George (Inventor)

    2004-01-01

    A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.

  3. Inspecting a research reactor's control rod surface for pitting using a machine vision

    International Nuclear Information System (INIS)

    Tokuhiro, Akira T.; Vadakattu, Shreekanth

    2005-01-01

    Inspection for pits on the control rod is performed to study the degradation of the control rod material which helps estimating the service life of the control rod at UMR nuclear reactor (UMRR). This inspection task is visually inspected and recorded subjectively. The conventional visual inspection to identify pits on the control rod surface can be automated using machine vision technique. Since the in-service control rods were not available to capture images and measure number of pits and size of the pits, the applicability of machine vision method was applied on SAE 1018 steel coupons immersed in oxygen saturated de-ionized water at 30deg, 50deg and 70deg. Images were captured after each test cycle at different light intensity to reveal surface topography of the coupon surface and analyzed for number of pits and pit size using EPIX XCAP-Std software. The captured and analyzed images provided quantitative results for the steel coupons and demonstrated that the method can be applied for identifying pits on control rod surface in place of conventional visual inspection. (author)

  4. Simulation of the Dynamic Behavior of an Asynchronous Machine Using Direct Self-Control

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2007-01-01

    Full Text Available The paper presents the major steps that have to be gone for the implementation of the mathematical model of the asynchronous machine in SciLab / Scicos. This implemented ASM model, will be used to check the dynamic behavior of the system, the current diagrams as well as the behavior motor speed and the torque, if the input signal has a pulsation form. This implementation’s are made in Scilab / Scicos environment, a clone of the MATLAB, which provides number-crunching power similar to MATLAB, at a much better cost/performance ratio. The implemented model offers the possibility to analyze the behaviors of the asynchronous machine in different dynamic situations: speed, torques, current in motor or generator regime and to study its behavior in different possible control schemes.

  5. Study on electromagnetism force of CARR control rod drive mechanism experimental machine

    International Nuclear Information System (INIS)

    Zhu Xuewei; Zhen Jianxiao; Wang Yulin; Jia Yueguang; Yang Kun; Yin Haozhe

    2015-01-01

    With the aim of acquiring electromagnetic force and electromagnetic field distributions of control rod drive mechanism (CRDM) in China Advanced Research Reactor (CARR), the force analysis on the CRDM was taken. Manufacturing the experimental machine, the electromagnetic force experiment was taken on it. The electromagnetic field and electromagnetic force simulation analyses of experimental machine were taken, working out distribution data of electromagnetic force and magnetic induction intensity distribution curve, and the effects of permanent magnetic field on electromagnetic field and structure parameters on electromagnetic force. The simulation value is accord with experiment value, the research results provide a reference to electromagnetic force study on CRDM in CARR, and also provide a reference to design of the same type CRDM. (authors)

  6. A generic finite state machine framework for the ACNET control system

    International Nuclear Information System (INIS)

    Carmichael, L.; Warner, A.

    2009-01-01

    A significant level of automation and flexibility has been added to the ACNET control system through the development of a Java-based Finite State Machine (FSM) infrastructure. These FSMs are integrated into ACNET and allow users to easily build, test and execute scripts that have full access to ACNET's functionality. In this paper, a description will be given of the FSM design and its ties to the Java-based Data Acquisition Engine (DAE) framework. Each FSM is part of a client-server model with FSM display clients using Remote Method Invocation (RMI) to communicate with DAE servers heavily coupled to ACNET. A web-based monitoring system that allows users to utilize browsers to observe persistent FSMs will also be discussed. Finally, some key implementations such as the crash recovery FSM developed for the Electron Cooling machine protection system will be presented.

  7. Method for providing slip energy control in permanent magnet electrical machines

    Science.gov (United States)

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  8. An Artificial Neural Network Modeling for Force Control System of a Robotic Pruning Machine

    Directory of Open Access Journals (Sweden)

    Ali Hashemi

    2014-06-01

    Full Text Available Nowadays, there has been an increasing application of pruning robots for planted forests due to the growing concern on the efficiency and safety issues. Power consumption and working time of agricultural machines have become important issues due to the high value of energy in modern world. In this study, different multi-layer back-propagation networks were utilized for mapping the complex and highly interactive of pruning process parameters and to predict power consumption and cutting time of a force control equipped robotic pruning machine by knowing input parameters such as: rotation speed, stalk diameter, and sensitivity coefficient. Results showed significant effects of all input parameters on output parameters except rotational speed on cutting time. Therefore, for reducing the wear of cutting system, a less rotational speed in every sensitivity coefficient should be selected.

  9. A modern automatic Carriage-Trolley Position Control System for Dhruva fuelling machine

    International Nuclear Information System (INIS)

    Agrawal, Ankit; Hari Balakrishna; Narvekar, J.P.; Sanadhya, Vivek

    2014-01-01

    A fully automatic absolute encoder based position control system has been designed developed implemented and commissioned for the Dhruva Fuelling Machine A (FM/A). This supports both the coarse and fine positioning modes. Provision for fully manual positioning as a standby system has been retained. This system replaces the ageing peg counting based incremental positioner used briefly during the early period after the Dhruva FM/A was commissioned. The older system suffered from peg detection skipping problems; hence it was not being used. Only full manual positioning was being carried out. This paper describes the automatic Carriage Trolley Position Control System (CTPCS). (author)

  10. Direct Torque Control System for Permanent Magnet Synchronous Machine with Fuzzy Speed Pi Regulator

    Science.gov (United States)

    Nabti, K.; Abed, K.; Benalla, H.

    2008-06-01

    The Permanent Magnet Synchronous Machine (PMSM) speed regulation with a conventional PI regulator reduces the speed control precision, increase the torque fluctuation, and consequentially low performances of the whole system. With utilisation of fuzzy logic method, this paper presents the self adaptation of conventional PI regulator parameters Kp and Ki (proportional and integral coefficients respectively), using to regulate the speed in Direct Torque Control strategy (DTC). The ripples of both torque and flux are reduced remarkable, small overshooting and good dynamic of the speed and torque. Simulation results verify the proposed method validity.

  11. An overview on STEP-NC compliant controller development

    Science.gov (United States)

    Othman, M. A.; Minhat, M.; Jamaludin, Z.

    2017-10-01

    The capabilities of conventional Computer Numerical Control (CNC) machine tools as termination organiser to fabricate high-quality parts promptly, economically and precisely are undeniable. To date, most CNCs follow the programming standard of ISO 6983, also called G & M code. However, in fluctuating shop floor environment, flexibility and interoperability of current CNC system to react dynamically and adaptively are believed still limited. This outdated programming language does not explicitly relate to each other to have control of arbitrary locations other than the motion of the block-by-block. To address this limitation, new standard known as STEP-NC was developed in late 1990s and is formalized as an ISO 14649. It adds intelligence to the CNC in term of interoperability, flexibility, adaptability and openness. This paper presents an overview of the research work that have been done in developing a STEP-NC controller standard and the capabilities of STEP-NC to overcome modern manufacturing demands. Reviews stated that most existing STEP-NC controller prototypes are based on type 1 and type 2 implementation levels. There are still lack of effort being done to develop type 3 and type 4 STEP-NC compliant controller.

  12. Man-machine considerations in nuclear power plant control room design

    International Nuclear Information System (INIS)

    Tennant, D.V.

    1987-01-01

    Although human factors is a subject that has been around for a number of years, this area of design has only recently become known to the power industry. As power plants have grown in size and complexity, the instrumentation required to control and monitor plant processes has increased tremendously. This has been especially true in nuclear power facilities. Although operators are better trained and qualified, very little consideration has been devoted to man-machine interface and the limitations of human operators. This paper explores the historic aspects and design philosophy associated with nuclear plant control rooms. Current problems and solutions are explored along with the components of a control room review. Finally, a survey of future advances in control room design are offered. This paper is concerned with instrumentation, controls, and displays

  13. Design of control system for optical fiber drawing machine driven by double motor

    Science.gov (United States)

    Yu, Yue Chen; Bo, Yu Ming; Wang, Jun

    2018-01-01

    Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.

  14. Machine for controlling band-type 'essuimatic' hand towels (1962); Machine a controler les essuie-mains en bande du type essuimatic (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cottignies, S; Ortiz, J [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1962-07-01

    This machine is designed to control the band-towels in the form of 40 meters bands equipping the 'Essuimatic' distributors. It controls automatically the {alpha} and {beta}-{gamma} activity. The towel is driven by motors and passes under Geiger-Muller counters and then between zinc sulphide scintillators in conjunction with photomultipliers. Two distinct counting systems measure the total activity deposited on the cloth and, in order to give an idea of the distribution of this activity, count also the number of marks, that is, the number of times that the counting rate of the probes is above a certain value. After the passage of the cloth it is thus possible to know whether the count corresponding to the whole band is greater than that due to just the counter movement, and also whether this counting rate has not occasionally been greater than the average rate; it is thus possible to detect weak local contamination which could have been missed in an overall measurement of the cloth. (authors) [French] Cette machine est destinee a controler les linges essuie-mains sous forme de bande de 40 metres de longueur equipant les distributeurs 'ESSUIMATIC'. Elle effectue automatiquement un controle en {alpha} et en {beta}-{gamma}. Le linge entraine par un moteur passe. sous des compteurs Geiger-Muller, puis entre des scintillateurs au sulfure de zinc associes a des photomultiplicateurs. Deux chaines de comptage distinctes comptent l'activite totale deposee sur le linge et, en outre, pour donner une idee de la repartition de cette activite, elles comptent le nombre de taches, c'est-a-dire le nombre de fois que le taux de comptage des sondes est superieur a une certaine valeur. A la fin du passage du linge, il est donc possible de connaitre si le comptage correspondant a toute la bande est superieur a celui du au mouvement propre seul des compteurs et egalement de savoir si parfois ce taux de comptage n'a pas ete superieur au taux de comptage moyen, ce qui permet de detecter de

  15. Modeling and Designing of A Nonlineartemperature-Humidity Controller Using Inmushroom-Drying Machine

    Science.gov (United States)

    Wu, Xiuhua; Luo, Haiyan; Shi, Minhui

    Drying-process of many kinds of farm produce in a close room, such as mushroom-drying machine, is generally a complicated nonlinear and timedelay cause, in which the temperature and the humidity are the main controlled elements. The accurate controlling of the temperature and humidity is always an interesting problem. It's difficult and very important to make a more accurate mathematical model about the varying of the two. A math model was put forward after considering many aspects and analyzing the actual working circumstance in this paper. Form the model it can be seen that the changes of temperature and humidity in drying machine are not simple linear but an affine nonlinear process. Controlling the process exactly is the key that influences the quality of the dried mushroom. In this paper, the differential geometry theories and methods are used to analyze and solve the model of these smallenvironment elements. And at last a kind of nonlinear controller which satisfied the optimal quadratic performance index is designed. It can be proved more feasible and practical than the conventional controlling.

  16. Neuron network application for speed control and fault detection of asynchronous machine

    Directory of Open Access Journals (Sweden)

    Kheira MENDAZ

    2017-12-01

    Full Text Available The induction machine will play a role very important in the industry, but the existence of a certain defect returns their use limited as the defects rotor (broken bar. This article presents a study of Controller neuronal with the existence of a rotor defect on the one hand and another hand of a defect of switch of the five levels inverter to see the influence of these two defects on the physical parameters of the machine. The application of neural control with the existence of a broken bar in the motor allows us to see the effect of this fault on the motor parameters (speed, electromagnetic torque and current, to control itself is also used in existence of five-level inverter fault (delay of blocking the switch to give the results shown the swelling of this fault on the engine. With this controller, each fault influenced the parameters of Engine and can notice it from the simulation results. The results, simulations are done using Matlab/Simulink. Simulation results show clearly and robustness of neural controller.

  17. EPICS IOC module development and implementation for the ISTTOK machine subsystem operation and control

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo, E-mail: pricardofc@ipfn.ist.utl.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, Andre; Pereira, Tiago; Carvalho, Bernardo; Sousa, Jorge; Fernandes, Horacio [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Correia, Carlos [Grupo de Electronica e Instrumentacao-Centro de Instrumentacao, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Goncalves, Bruno; Varandas, Carlos [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal)

    2011-10-15

    This paper presents a developed, tested and integrated EPICS IOC (I/O controller) module solution for the ISTTOK tokamak machine operation and control for the vacuum and gas injection systems. The work is organized in two software layers which communicate through a serial RS-232 communication protocol. The first software layer is an EPICS IOC module running as a computer server application capable of receiving requests from remote or local clients providing driver interface to the system by forwarding requested commands and receiving system and control operation status. The second software layer is the firmware running in Microchip dsPIC microcontroller modules which performs the interface from RS-232 optical fiber serial protocol to EPICS IOC module. The dsPIC module communicates to the ISTTOK tokamak sensors and actuators via RS-485 and is programmed with a new protocol developed for this purpose that allows EPICS IOC module command sending/receiving, machine operation control and monitoring and system status information. Communication between EPICS IOC module and clients is achieved via a TCP/IP and UDP protocol referred as Channel Access. In addition, the EPICS IOC module provides user client applications access allowing operators to perform remote or local monitoring, operation and control.

  18. Assisting the Tooling and Machining Industry to Become Energy Efficient

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Bennett [Arizona Commerce Authority, Phoenix, AZ (United States)

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  19. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  20. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  1. A Virtual Inertia Control Strategy for DC Microgrids Analogized with Virtual Synchronous Machines

    DEFF Research Database (Denmark)

    Wu, Wenhua; Chen, Yandong; Luo, An

    2017-01-01

    In a DC microgrid (DC-MG), the dc bus voltage is vulnerable to power fluctuation derived from the intermittent distributed energy or local loads variation. In this paper, a virtual inertia control strategy for DC-MG through bidirectional grid-connected converters (BGCs) analogized with virtual...... synchronous machine (VSM) is proposed to enhance the inertia of the DC-MG, and to restrain the dc bus voltage fluctuation. The small-signal model of the BGC system is established, and the small-signal transfer function between the dc bus voltage and the dc output current of the BGC is deduced. The dynamic...... for the BGC is introduced to smooth the dynamic response of the dc bus voltage. By analyzing the control system stability, the appropriate virtual inertia control parameters are selected. Finally, simulations and experiments verified the validity of the proposed control strategy....

  2. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    International Nuclear Information System (INIS)

    Spencer, B.B.; Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs

  3. New proposal on the development of machine protection functions for ITER diagnostics control

    International Nuclear Information System (INIS)

    Yamamoto, Tsuyoshi; Yatsuka, Eiichi; Hatae, Takaki; Takeuchi, Masaki; Kitazawa, Sin-iti; Ogawa, Hiroaki; Kawano, Yasunori; Itami, Kiyoshi; Ota, Kazuya; Hashimoto, Yasunori; Nakamura, Kitaru; Sugie, Tatsuo

    2016-01-01

    There is a need to develop ITER instrumentation and control (I and C) systems with high reliabilities. Interlock systems that activate machine protection functions are implemented on robust wired-logic systems such as programmable logic controllers (PLCs). We herein propose a software tool that generates program code templates for the control systems using PLC logic. This tool decreases careless mistakes by developers and increases reliability of the program codes. A large-scale engineering database has been implemented in the ITER project. To derive useful information from this database, we propose adding semantic data to it using the Resource Description Framework format. In our novel proposal for the ITER diagnostic control system, a guide words generator that analyzes the engineering data by inference is applied to the hazard and operability study. We validated the methods proposed in this paper by applying them to the preliminary design for the I and C system of the ITER edge Thomson scattering system. (author)

  4. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  5. Machine takeover the growing threat to human freedom in a computer-controlled society

    CERN Document Server

    George, Frank Honywill

    1977-01-01

    Machine Takeover: The Growing Threat to Human Freedom in a Computer-Controlled Society discusses the implications of technological advancement. The title identifies the changes in society that no one is aware of, along with what this changes entails. The text first covers the information science, particularly the aspect of an automated system for information processing. Next, the selection deals with social implications of information science, such as information pollution. The text also tackles the concerns in the utilization of technology in order to manipulate the lives of people without th

  6. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  7. Control of soft machines using actuators operated by a Braille display.

    Science.gov (United States)

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  8. Enhanced Quality Control in Pharmaceutical Applications by Combining Raman Spectroscopy and Machine Learning Techniques

    Science.gov (United States)

    Martinez, J. C.; Guzmán-Sepúlveda, J. R.; Bolañoz Evia, G. R.; Córdova, T.; Guzmán-Cabrera, R.

    2018-06-01

    In this work, we applied machine learning techniques to Raman spectra for the characterization and classification of manufactured pharmaceutical products. Our measurements were taken with commercial equipment, for accurate assessment of variations with respect to one calibrated control sample. Unlike the typical use of Raman spectroscopy in pharmaceutical applications, in our approach the principal components of the Raman spectrum are used concurrently as attributes in machine learning algorithms. This permits an efficient comparison and classification of the spectra measured from the samples under study. This also allows for accurate quality control as all relevant spectral components are considered simultaneously. We demonstrate our approach with respect to the specific case of acetaminophen, which is one of the most widely used analgesics in the market. In the experiments, commercial samples from thirteen different laboratories were analyzed and compared against a control sample. The raw data were analyzed based on an arithmetic difference between the nominal active substance and the measured values in each commercial sample. The principal component analysis was applied to the data for quantitative verification (i.e., without considering the actual concentration of the active substance) of the difference in the calibrated sample. Our results show that by following this approach adulterations in pharmaceutical compositions can be clearly identified and accurately quantified.

  9. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  10. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    Science.gov (United States)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  11. Improved Fuzzy Logic based DTC of Induction machine for wide range of speed control using AI based controllers

    Directory of Open Access Journals (Sweden)

    H. Sudheer

    2016-06-01

    Full Text Available This paper presents improvements in Direct Torque control of induction motor using Fuzzy logic switching controller (FDTC. The conventional DTC (CDTC and FDTC drive performance is compared using Conventional PI, Fuzzy controller and Neural Network controllers. The major disadvantages of CDTC are high torque and flux ripples in steady state operation of the drive, inferior performance at low speed operation and variable switching frequency. The presence of hysteresis bands is the major reason for high torque and flux ripples in CDTC. In FDTC the hysteresis band and switching table are replaced by Fuzzy logic switching controller. Using fuzzy logic torque, stator flux space are divided into smaller subsections which results in precise and optimal selection of switching state to meet load torque. In high performance drives accurate tuning of PI speed controller is required. The conventional PI controller cannot adapt to the variation in model parameters. Artificial intelligence based fuzzy controller and neural network controller are compared with PI controller for both CDTC and FDTC of Induction machine. The proposed schemes are developed in Matlab/Simulink environment. Simulation results shows reduction in torque and flux ripples in FDTC and dynamic performance of the drive at low speeds and sudden change in load torque can be improved using Fuzzy logic controller compared to PI and neural network controller.

  12. Intelligent Control of UPFC for Enhancing Transient Stability on Multi-Machine Power Systems

    Directory of Open Access Journals (Sweden)

    Hassan Barati

    2010-01-01

    Full Text Available One of the benefit of FACTS devices is increase of stability in power systems with control active and reactive power at during the fault in power system. Although, the power system stabilizers (PSSs have been one of the most common controls used to damp out oscillations, this device may not produce enough damping especially to inter-area mode and therefore, there is an increasing interest in using FACTS devices to aid in damping of these oscillations. In This paper, UPFC is used for damping oscillations and to enhance the transient stability performance of power systems. The controller parameters are designed using an efficient version of the Takagi-Sugeno fuzzy control scheme. The function based Takagi-Sugeno-Kang (TSK fuzzy controller uses. For optimization parameters of fuzzy PI controller, the GA, PSO and HGAPSO algorithms are used. The computer simulation results, the effect of UPFC with conventional PI controller, fuzzy PI controller and intelligent controllers (GA, PSO and HGAPSO for damping the local-mode and inter-area mode of under large and small disturbances in the four-machine two-area power system evaluated and compared.

  13. ON THE APPLICATION OF PARTIAL BARRIERS FOR SPINNING MACHINE NOISE CONTROL: A THEORETICAL AND EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam, A. Nezafat

    2007-04-01

    Full Text Available Noise is one of the most serious challenges in modern community. In some specific industries, according to the nature of process, this challenge is more threatening. This paper describes a means of noise control for spinning machine based on experimental measurements. Also advantages and disadvantages of the control procedure are added. Different factors which may affect the performance of the barrier in this situation are also mentioned. To provide a good estimation of the control measure, a theoretical formula is also described and it is compared with the field data. Good agreement between the results of filed measurements and theoretical presented model was achieved. No obvious noise reduction was seen by partial indoor barriers in low absorbent enclosed spaces, since the reflection from multiple hard surfaces is the main dominated factor in the tested environment. At the end, the situation of the environment and standards, which are necessary in attaining the ideal results, are explained.

  14. A discussion on practicable scheme for machine control system of HL-2A tokamak

    International Nuclear Information System (INIS)

    Li Qiang; Song Xianming; Jiang Chao

    2001-01-01

    This is the modified version of The Preliminary Design on the Hardware and Nets of HL-2A Tokamak. In this version, centralized control as well as the field bus communication on HL-2A Tokamak is used. The hardware components and the operational theory are introduced. The questions of practice program, extensibility, centralized control, cooperation with other subsystems and the continuous adaptation of present device are all discussed. The budget of the system is detailed. To keep the step with the overall engineering constructions of HL-2A, suggestions of the time program are presented for the system design, instrument purchases, installation, construction, user program development and the final operation processes for the machine control system of HL-2A Tokamak

  15. Conversion economics of forest biomaterials: risk and financial analysis of CNC manufacturing

    Science.gov (United States)

    Camilla Abbati de Assis; Carl Houtman; Richard Phillips; E.M. Ted Bilek; Orlando J. Rojas; Lokendra Pal; Maria Soledad Peresin; Hasan Jameel; Ronalds Gonzalez

    2017-01-01

    Commercialization of cellulose nanocrystals (CNC) presents opportunities for a wide range of new products. Techno-economic assessments can provide insightful information for the effi cient design of conversion processes, drive cost-saving efforts, and reduce fi nancial risks. In this study, we conducted techno-economic assessments for CNC production using information...

  16. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis

    Science.gov (United States)

    Liheng Chen; Qianqian Wang; Kolby Hirth; Carlos Baez; Umesh P. Agarwal; J. Y. Zhu

    2015-01-01

    Cellulose nanocrystals (CNC) have recently received much attention in the global scientific community for their unique mechanical and optical properties. Here, we conducted the first detailed exploration of the basic properties of CNC, such as morphology, crystallinity, degree of sulfation and yield, as a function of production condition variables. The rapid cellulose...

  17. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Mohamad, Abu Bakar; M Zain, M F; Awang, Nor Asikin; Mohd Hir, Zul Adlan

    2017-02-10

    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H 2 SO 4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. In vitro biological characterization of macroporous 3D Bonelike structures prepared through a 3D machining technique

    International Nuclear Information System (INIS)

    Laranjeira, M.S.; Dias, A.G.; Santos, J.D.; Fernandes, M.H.

    2009-01-01

    3D bioactive macroporous structures were prepared using a 3D machining technique. A virtual 3D structure model was created and a computer numerically controlled (CNC) milling device machined Bonelike samples. The resulting structures showed a reproducible macroporosity and interconnective structure. Macropores size after sintering was approximately 2000 μm. In vitro testing using human bone marrow stroma showed that cells were able to adhere and proliferate on 3D structures surface and migrate into all macropore channels. In addition, these cells were able to differentiate, since mineralized globular structures associated with cell layer were identified. Results obtained showed that 3D structures of Bonelike successfully allow cell migration into all macropores, and allow human bone marrow stromal cells to proliferate and differentiate. This innovative technique may be considered as a step-forward preparation for 3D interconnective macroporous structures that allow bone ingrowth while maintaining mechanical integrity.

  19. The application of state machine based on labview for solid target transfer control system at BATAN’s cyclotron

    International Nuclear Information System (INIS)

    Heranudin; Rajiman; Parwanto; Edy Slamet R

    2015-01-01

    Software programming for the new solid target transfer control system referred to the working principle of the whole each sub system. System modeling with state machine diagram was chosen because this simplified a complex design of the control system. State machine implementation of this system was performed by creating basic state drawn from the working system of each sub system. All states with their described inputs, outputs and algorithms were compiled in the sequential state machine diagram. In order to ease the operation, three modes namely automatic, major states and micro states were created. Testing of the system has been conducted and as a result, the system worked properly. The implementation of State machine based on LabView has several advantages such as faster, easier programming and the capability for further developments. (author)

  20. Methods and means for improving the man-machine systems for NPP control

    International Nuclear Information System (INIS)

    Konstantinov, L.V.; Rakitin, I.D.

    1984-01-01

    Consideration is being given to the role of ''human factors'' and the ways of improving the man-machine interaction in NPP control and safety systems (CSS). Simulators and tAaining equipment on the basis of dynamic power unit models used for training and improving skill of NPP operatoAs, as well as for mastering collective actions of personnel under accidental conditions are considered in detail. The most perfect program complexes for fast NPP diagnostics and theiA pealization in the Federal Republic of Germany, Japan, Canada, the USA and other countries are described. A special attention is paid to the means and methods of videoterminal dialogue operator interaction with an object both in normal and extreme situations. It is noted that the problems of the man-machine interaction have become the subject of study only in the end of 70s after analyzing the causes of the Three-Mile-Island accident (USA). Publications dealing with the development of perspective control rooms for NPP were analyzed. It was concluded that radical changes both in equipment and principles of organizing the personnel activity will take place in the nearest future. They will be based on the progress in creating dialogue means and computers of the fourth and fifth generations as well as on engineering and psychological and technical aspects of designing

  1. On the use of peripheral autonomic signals for binary control of body–machine interfaces

    International Nuclear Information System (INIS)

    Falk, Tiago H; Guirgis, Mirna; Power, Sarah; Blain, Stefanie; Chau, Tom

    2010-01-01

    In this work, the potential of using peripheral autonomic (PA) responses as control signals for body–machine interfaces that require no physical movement was investigated. Electrodermal activity, skin temperature, heart rate and respiration rate were collected from six participants and hidden Markov models (HMMs) were used to automatically detect when a subject was performing music imagery as opposed to being at rest. Experiments were performed under controlled silent conditions as well as in the presence of continuous and startle (e.g. door slamming) ambient noise. By developing subject-specific HMMs, music imagery was detected under silent conditions with the average sensitivity and specificity of 94.2% and 93.3%, respectively. In the presence of startle noise stimuli, the system sensitivity and specificity levels of 78.8% and 80.2% were attained, respectively. In environments corrupted by continuous ambient and startle noise, the system specificity further decreased to 75.9%. To improve the system robustness against environmental noise, a startle noise detection and compensation strategy were proposed. Once in place, performance levels were shown to be comparable to those observed in silence. The obtained results suggest that PA signals, combined with HMMs, can be useful tools for the development of body–machine interfaces that allow individuals with severe motor impairments to communicate and/or to interact with their environment

  2. Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology

  3. Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.

    Science.gov (United States)

    Gao, Wei; Kwong, Sam; Jia, Yuheng

    2017-08-25

    In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.

  4. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    Science.gov (United States)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  5. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    Science.gov (United States)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-01-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices. PMID:27046771

  6. An Investigation of the Potential Antifungal Properties of CNC-2 in Caenorhabditis elegans.

    Science.gov (United States)

    Zehrbach, Angelina M D; Rogers, Alexandra R; Tarr, D Ellen K

    2017-12-01

    Caenorhabditis elegans responds to infections by upregulating specific antimicrobial peptides. The caenacin-2 ( cnc-2 ) gene is consistently upregulated in C. elegans by infection with the filamentous fungus Drechmeria coniospora , but there have been no direct studies of the CNC-2 peptide's in vivo or in vitro role in defending the nematode against this pathogen. We compared infection of wild-type and cnc-2 knockout nematode strains with four potential pathogens: D. coniospora , Candida albicans , Staphylococcus aureus , and Bacillus subtilis . There was no significant difference in survival between strains for any of the pathogens or on the maintenance strain of Escherichia coli . While we were unable to demonstrate definitively that CNC-2 is integral to fungal defenses in C. elegans , we identified possible explanations for these results as well as future work that is needed to investigate CNC-2's potential as a new antifungal treatment.

  7. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2018-05-01

    Full Text Available Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth–Pareto optimization of an artificial neural network (ANN is presented in this paper for surface roughness (Ra prediction of one component in computer numerical control (CNC turning over minimal machining time (Tm and at prime machining costs (C. An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP, to predict Ra, Tm, and C, in relation to cutting speed, vc, depth of cut, ap, and feed per revolution, fr. For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values vc, ap, and fr. The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, Tm = 0.358 min/cm3, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed vc = 250 m/min, cutting depth ap = 1.0 mm, and feed per revolution fr = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.

  8. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs.

    Science.gov (United States)

    Abbas, Adel Taha; Pimenov, Danil Yurievich; Erdakov, Ivan Nikolaevich; Taha, Mohamed Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa

    2018-05-16

    Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth⁻Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness ( Ra ) prediction of one component in computer numerical control (CNC) turning over minimal machining time ( T m ) and at prime machining costs ( C ). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra , T m , and C , in relation to cutting speed, v c , depth of cut, a p , and feed per revolution, f r . For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values v c , a p , and f r . The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, T m = 0.358 min/cm³, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed v c = 250 m/min, cutting depth a p = 1.0 mm, and feed per revolution f r = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.

  9. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  10. Collaborative machining solution extends the operating life of a nuclear power plant

    International Nuclear Information System (INIS)

    Gilmore, Geoff; Becker, Andrew; Vandenberg, James

    2007-01-01

    Examination of a CANDU 6 nuclear power plant's steam generators during a scheduled maintenance outage revealed that the manway ports, part of the ASME Section III, Class 1 pressure boundary, needed repair. The port's inner cover gasket was not seating properly. Integrity was at risk. It was determined that this operation would required a specialized machine to successfully repair the manway port. The solution included the modification of a standard portable boring machine with a custom mounting option to enlarge the counterbore in the primary head shell from a round shape to an obround shape (76 mm of shell thickness, 16 mm radially). The shape change was needed to accommodate the new obround cover and gasket seal design. Once the new major shape was machined, the repair was finished with a Computer Numerically Controlled (CNC) machine developed by the service team to achieve the necessary gasket face location and sizing. The final result met all of the plant's expectations and was completed well within the time allotted during the maintenance shut down. This success was due to the positive partnership and collaboration of the service team and the machine tool manufacture working together to successfully extend the operating life of the nuclear power plant. (author)

  11. A Parallel Strategy for High-speed Interpolation of CNC Using Data Space Constraint Method

    Directory of Open Access Journals (Sweden)

    Shuan-qiang Yang

    2013-12-01

    Full Text Available A high-speed interpolation scheme using parallel computing is proposed in this paper. The interpolation method is divided into two tasks, namely, the rough task executing in PC and the fine task in the I/O card. During the interpolation procedure, the double buffers are constructed to exchange the interpolation data between the two tasks. Then, the data space constraint method is adapted to ensure the reliable and continuous data communication between the two buffers. Therefore, the proposed scheme can be realized in the common distribution of the operation systems without real-time performance. The high-speed and high-precision motion control can be achieved as well. Finally, an experiment is conducted on the self-developed CNC platform, the test results are shown to verify the proposed method.

  12. PERFORMANCE STUDY ON AISI316 AND AISI410 USING DIFFERENT LAYERED COATED CUTTING TOOLS IN CNC TURNING

    Directory of Open Access Journals (Sweden)

    K. RAJA

    2015-01-01

    Full Text Available Stainless steel (SS is used for many commercial and industrial applications owing to its high resistance to corrosion. It is too hard to machine due to its high strength and high work hardening property. A surface property such as surface roughness (SR is critical to the function-ability of machined components. SS is generally regarded as more difficult to machine material and poor SR is obtained during machining. In this paper an attempt has been made to investigate the SR produced by CNC turning on austenitic stainless steel (AISI316 and martensitic stainless steel (AISI410 by different cases of coated cutting tool used at dry conditions. Multilayered coated with TiCN/Al2O3, multilayered coated with Ti(C, N, B and single layered coated with TiAlN coated cutting tools are used. Experiments were carried out by using Taguchi’s L27 orthogonal array. The effect of cutting parameters on SR is evaluated and optimum cutting conditions for minimizing the SR are determined. Analysis of variance (ANOVA is used for identifying the significant parameters affecting the responses. Confirmation experiments are conducted to validate the results obtained from optimization.

  13. Neural control of finger movement via intracortical brain-machine interface

    Science.gov (United States)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe

  14. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    Science.gov (United States)

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001).

  15. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  16. Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls

    Directory of Open Access Journals (Sweden)

    Deanna eGreenstein

    2012-06-01

    Full Text Available Introduction: Multivariate machine learning methods can be used to classify groups of schizophrenia patients and controls using structural magnetic resonance imaging (MRI. However, machine learning methods to date have not been extended beyond classification and contemporaneously applied in a meaningful way to clinical measures. We hypothesized that brain measures would classify groups, and that increased likelihood of being classified as a patient using regional brain measures would be positively related to illness severity, developmental delays and genetic risk. Methods: Using 74 anatomic brain MRI sub regions and Random Forest, we classified 98 COS patients and 99 age, sex, and ethnicity-matched healthy controls. We also used Random Forest to determine the likelihood of being classified as a schizophrenia patient based on MRI measures. We then explored relationships between brain-based probability of illness and symptoms, premorbid development, and presence of copy number variation associated with schizophrenia. Results: Brain regions jointly classified COS and control groups with 73.7% accuracy. Greater brain-based probability of illness was associated with worse functioning (p= 0.0004 and fewer developmental delays (p=0.02. Presence of copy number variation (CNV was associated with lower probability of being classified as schizophrenia (p=0.001. The regions that were most important in classifying groups included left temporal lobes, bilateral dorsolateral prefrontal regions, and left medial parietal lobes. Conclusions: Schizophrenia and control groups can be well classified using Random Forest and anatomic brain measures, and brain-based probability of illness has a positive relationship with illness severity and a negative relationship with developmental delays/problems and CNV-based risk.

  17. Sensor guided control and navigation with intelligent machines. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bijoy K.

    2001-03-26

    This item constitutes the final report on ''Visionics: An integrated approach to analysis and design of intelligent machines.'' The report discusses dynamical systems approach to problems in robust control of possibly time-varying linear systems, problems in vision and visually guided control, and, finally, applications of these control techniques to intelligent navigation with a mobile platform. Robust design of a controller for a time-varying system essentially deals with the problem of synthesizing a controller that can adapt to sudden changes in the parameters of the plant and can maintain stability. The approach presented is to design a compensator that simultaneously stabilizes each and every possible mode of the plant as the parameters undergo sudden and unexpected changes. Such changes can in fact be detected by a visual sensor and, hence, visually guided control problems are studied as a natural consequence. The problem here is to detect parameters of the plant and maintain st ability in the closed loop using a ccd camera as a sensor. The main result discussed in the report is the role of perspective systems theory that was developed in order to analyze such a detection and control problem. The robust control algorithms and the visually guided control algorithms are applied in the context of a PUMA 560 robot arm control where the goal is to visually locate a moving part on a mobile turntable. Such problems are of paramount importance in manufacturing with a certain lack of structure. Sensor guided control problems are extended to problems in robot navigation using a NOMADIC mobile platform with a ccd and a laser range finder as sensors. The localization and map building problems are studied with the objective of navigation in an unstructured terrain.

  18. Modeling and control of PEMFC based on least squares support vector machines

    International Nuclear Information System (INIS)

    Li Xi; Cao Guangyi; Zhu Xinjian

    2006-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most important power supplies. The operating temperature of the stack is an important controlled variable, which impacts the performance of the PEMFC. In order to improve the generating performance of the PEMFC, prolong its life and guarantee safety, credibility and low cost of the PEMFC system, it must be controlled efficiently. A nonlinear predictive control algorithm based on a least squares support vector machine (LS-SVM) model is presented for a family of complex systems with severe nonlinearity, such as the PEMFC, in this paper. The nonlinear off line model of the PEMFC is built by a LS-SVM model with radial basis function (RBF) kernel so as to implement nonlinear predictive control of the plant. During PEMFC operation, the off line model is linearized at each sampling instant, and the generalized predictive control (GPC) algorithm is applied to the predictive control of the plant. Experimental results demonstrate the effectiveness and advantages of this approach

  19. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    Science.gov (United States)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  20. Conventional control and fuzzy control of a dc-dc converter for machine drive

    Energy Technology Data Exchange (ETDEWEB)

    Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)

    1997-12-31

    Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.

  1. Modernity Evaluation of the Machines Used During Production Process of Metal Products

    OpenAIRE

    Ingaldi, Manuela; Dziuba, Szymon T.

    2015-01-01

    Most manufacturing companies realize its technologies, implemented through concrete machinery parts. They differ in terms of importance, the relevance of their selection and the level of their modernity. Modernity and efficiency of the machine are also very important during production process of the metal products. They have an influence on the quality of these products. The purpose of this article is to analyse the chosen production machine (CNC machine AFE-3D8-T) used during pro...

  2. WIDE-AREA BASED ON COORDINATED TUNING OF FUZZY PSS AND FACTS CONTROLLER IN MULTI-MACHINE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Homayoun Ebrahimian

    2016-03-01

    Full Text Available In this paper coordination of fuzzy power system stabilizer (FPSS and flexible ac transmission systems (FACTS have been considered in a multi-machine power system. The proposed model, has been applied for a wide-area power system. The proposed FPSS presented with local, nonlinear feedbacks, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs. For this model, in fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Also, the parameters of FACTS controller have been evaluated by improved honey bee mating optimization (IHBMO. The effectiveness of the proposed method has been applied over two case studies of single-machine infinite-bus (SMIB and two areas four machine (TAFM Kundur’s power system. The obtained results demonstrate the superiority of proposed strategy.

  3. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    Science.gov (United States)

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning

  4. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    Science.gov (United States)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  5. Finite element analysis of dovetail joint made with the use of CNC technology

    Directory of Open Access Journals (Sweden)

    Václav Sebera

    2010-01-01

    Full Text Available The objective of the paper is the parametrization and the finite element analysis of mechanical pro­per­ties of a through dovetail joint made with the use of a specific procedure by a 3-axis CNC machine. This corner joint was used for the simulation of the bending load of the joint in the angle plane – by compression, i.e. by pressing the joint together. The deformation fields, the stress distribution, the stiffness and the bending moment of the joints were evaluated. The finite element system ANSYS was used to create two parametric numerical models of the joint. The first one represents an ideal­ly stiff joint – both joint parts have been glued together. The second model includes the contact between the joined parts. This numerical model was used to monitor the response of the joint stiffness to the change of the static friction coefficient. The results of both models were compared both with each other and with similar analyses conducted within the research into ready-to-assemble furniture joints. The results can be employed in the designing of more complex furniture products with higher demands concerning stiffness characteristics, such as furniture for sitting. However, this assumption depends on the correction of the created parametric models by experimental testing.

  6. Experimental investigation of Surface Roughness and Cutting force in CNC Turning - A Review

    Directory of Open Access Journals (Sweden)

    Dhiraj Patel

    2014-08-01

    Full Text Available The main purpose of this review paper is to check whether quality lies within desired tolerance level which can be accepted by the customers. So, experimental investigation surface roughness and cutting force using various CNC machining parameters including spindle speed (N, feed rate (f, and depth of cut (d,flow rate (Q and insert nose radius (r. As such, a solemn attempt is made in this paper to investigate the response parameters, viz., Cutting force and Surface Roughness (Ra a by experimentation on EN 19 turning process. The Design of experiments is carried-out considering Taguchi Technique with four input parameters, namely, spindle speed, feed rate, and depth of cut, flow rate and insert nose radius .The experiments are conducted considering the above materials for L16 and then the impact of each parameter is estimated by ANOAVA. Then the regression analysis is carried-out to find the trend of the response of each material. This experimental study aims at taguchi method has been applied for finding the effect on surface roughness and cutting force by various process parameters. And after that we can easily find out that which parameter will be more affect.

  7. Single-Electrical-Port Control of Cascaded Doubly-Fed Induction Machine for EV/HEV Applications

    DEFF Research Database (Denmark)

    Han, Peng; Cheng, Ming; Chen, Zhe

    2017-01-01

    A single-electrical-port control scheme, for four-quadrant operation of cascaded doubly-fed induction machine (CDFIM), which has long been conceived as a motor or generator only suitable for limited two-quadrant operation, is proposed and theoretically demonstrated. The drive system is configured...... as slave inverter. With this configuration, the control emphasis is placed on the slave inverter, yielding reduced control complexity and cost, and the inaccuracy of flux estimation in conventional FOC for singly-fed induction machines is avoided at very low or even zero speed. It is found that the doubly...

  8. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  9. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  10. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  11. CNC-milled titanium frameworks supported by implants in the edentulous jaw: a 10-year comparative clinical study.

    Science.gov (United States)

    Örtorp, Anders; Jemt, Torsten

    2012-03-01

    No long-term clinical studies covering more than 5 years are available on Computer Numeric Controlled (CNC) milled titanium frameworks. To evaluate and compare the clinical and radiographic performance of implant-supported prostheses provided with CNC titanium frameworks in the edentulous jaw with prostheses with cast gold-alloy frameworks during the first 10 years of function. Altogether, 126 edentulous patients were by random provided with 67 prostheses with titanium frameworks (test) in 23 maxillas and 44 mandibles, and with 62 prostheses with gold-alloy castings (control) in 31 maxillas and 31 mandibles. Clinical and radiographic 10-year data were collected for the groups and statistically compared on patient level. The 10-year prosthesis and implant cumulative survival rate was 95.6% compared with 98.3%, and 95.0% compared with 97.9% for test and control groups, respectively (p > .05). No implants were lost after 5 years of follow-up. Smokers lost more implants than nonsmokers after 5 years of follow-up (p .05), respectively. One prosthesis was lost in each group due to loss of implants, and one prosthesis failed due to framework fracture in the test group. Two metal fractures were registered in each group. More appointments of maintenance were needed for the prostheses in the maxilla compared with those in the mandible (p CNC-milled titanium frameworks are a viable alternative to gold-alloy castings for restoring patients with implant-supported prostheses in the edentulous jaw. © 2009 Wiley Periodicals, Inc.

  12. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    Energy Technology Data Exchange (ETDEWEB)

    Seiz, Julie Burger [Union College, Schenectady, NY (United States)

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  13. Desenvolvimento e avaliação de uma tecnologia de baixo custo para programação CNC em pequenas empresas Development and evaluation of a low cost technology for CNC programming in small companies

    Directory of Open Access Journals (Sweden)

    Dalberto Dias da Costa

    2006-04-01

    Full Text Available Apesar do grande desenvolvimento e disseminação da tecnologia de Comando Numérico (CN, a programação de máquinas-ferrramenta ainda é uma tarefa difícil em algumas empresas. Este fato é confirmado pela baixa usabilidade de algumas interfaces CN e pela dificuldade de integrá-las aos sistemas a montante, por exemplo o CAD. Neste artigo, esse problema é tratado tendo como cenário pequenas empresas que ainda empregam a programação manual na fabricação de peças de baixa complexidade. Um protótipo de um software de baixo custo foi desenvolvido para possibilitar a programação CN baseada em microcomputadores. A implementação foi fundamentada em features de programação e dedicada à sintaxe de um comando comercial. Demonstrou-se que essa alternativa propicia uma grande redução de tempo quando comparada à programação manual. Além disso, sua curva de aprendizagem é extremamente reduzida em relação às tecnologias de ponta para manufatura, como por exemplo os sistemas CAM.Despite of the high development and dissemination of Numerical Control (NC, the programming of machine tools remains a hard task in some companies. This fact is confirmed by a low usability of some NC interfaces and the difficulty to integrate them to an upstream system, such a CAD one. In this paper we address this problem, taking with scenario small companies which still use manual programming and supply low complexity geometrical parts. For this group was developed a low cost software that allows a PC-based programming, instead of a direct one. This software was based on programming features and directed to a specific CNC syntax. It was demonstrated that the proposed alternative leads to a significant time reduction when compared to manual programming. Furthermore, its learning curve is smaller than that observed in high-end CAM's.

  14. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  15. Study on on-Line Measurement and Controlling System of the Foundation Trench-Leveling Machine

    International Nuclear Information System (INIS)

    Yi, J G; Jiang, H Y; Xing, Y Z; Chen, J; Liu, J T

    2006-01-01

    Research the system software and hardware composing, the control mode, the online measurement and control principle based on the laser receiver and the inclination sensor as the signal source. After the laser receiver accepts the laser signal, the laser signal is carried through the light filter treatment so as to reduce the sunlight interference, and then amplified and modulated, last transmitted to the control unit. The inclination sensor adapts XWQJ02-01S, measure the slope angle the x and y verticality direction. The error adjusting range is ±0.05 0 . The separate time treatment avoids simultaneously adjusting the laser and inclination signal to each other interfere. The on-line measurement and control system realizes the parts to work on the plane that parallels with the datum plane of the laser beam scan. The trench-leveling machine must retain ±0.05 0 with the datum plane. Adapting the least square method to fit the linear curve, the movement trend of the work parts on the work plane is judged through the slope number. The test result shows that thought the combination measurement and control of the laser and slope angle the leveling precision are ±5mm/100. Its can satisfy with the construction criterion request

  16. Semiconductor-machine system for controlling excitation of synchronous medium power generators

    Energy Technology Data Exchange (ETDEWEB)

    Vrtikapa, G

    1982-01-01

    A system for controlling excitation (ARP-29/1) is described which was developed at the ''Nikola Tesla'' institute (Czechoslavakia) for rebuilding the Zvornik hydroelectric plant with 30 MV X A units. The system corresponds to the modern level of automation and considers positive characteristics of existing equipment, it is easily included in a technological process, has small dimensions and is easily installed during overhaul of a electric generating plant, and it allows one to obtain good economic results. Two years of use have confirmed the high reliability and quality of the excitation. The excitation control system consists of synchronous motor, excitation system, automatic control of voltage, manual control of excitation unit, unit for automatic following and switching, relay automatic device with protection and warning. The excitation system of the generator has: thyristor rectifier, thyristor converter, a bridge with thyristor control unit, machine excitation generator, switch for demagnetization. The excitation system is supplied from an electric power network or from a three phase generator with permanent magnets.

  17. Integrated digital control and man-machine interface for complex remote handing systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1987-01-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer systems control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  18. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  19. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.

    Science.gov (United States)

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline; Sanchez, Justin C

    2012-01-01

    Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortext to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94%) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals.

  20. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)