Stoffenmanager : a web-based control banding tool using an exposure process model
Marquart, H.; Heussen, H.; Feber, M. Le; Noy, D.; Tielemans, E.; Schinkel, J.; West, J.; Schaaf, D. van der
2008-01-01
In the scope of a Dutch programme to reinforce the working conditions policy on hazardous substances, an internet-based tool was developed to help small- and medium-sized companies to handle hazardous substances with more care. The heart of this tool, called the Stoffenmanager, is a risk banding
Statistically motivated model of mechanisms controlling evolution of deformation band substructure
Czech Academy of Sciences Publication Activity Database
Kratochvíl, J.; Kružík, Martin
2016-01-01
Roč. 81, č. 1 (2016), s. 196-208 ISSN 0749-6419 Grant - others:GA ČR(CZ) GAP107/12/0121 Institutional support: RVO:67985556 Keywords : Crystal plastic ity * Microstructures * Deformation bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.702, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kruzik-0457407.pdf
Control Banding and Nanotechnology Synergist
Energy Technology Data Exchange (ETDEWEB)
Zalk, D; Paik, S
2009-12-15
The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with
SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS
ESKES, H; SAWATZKY, GA
1991-01-01
The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following
Multi-band Modelling of Appearance
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Larsen, Rasmus
2003-01-01
the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...
Multi-band Modelling of Appearance
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Larsen, Rasmus
2002-01-01
the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...
Energy Technology Data Exchange (ETDEWEB)
Zalk, D; Kamerzell, R; Paik, S; Kapp, J; Harrington, D; Swuste, P
2009-05-27
The Risk Level Based Management System (RLBMS) is an occupational risk management (ORM) model that focuses occupational safety, hygeiene, and health (OSHH) resources on the highest risk procedures at work. This article demonstrates the model's simplicity through an implementation within a heavily regulated research institution. The model utilizes control banding strategies with a stratification of four risk levels (RLs) for many commonly performed maintenance and support activities, characterizing risk consistently for comparable tasks. RLBMS creates an auditable tracking of activities, maximizes OSHH professional field time, and standardizes documentation and control commensurate to a given task's RL. Validation of RLs and their exposure control effectiveness is collected in a traditional quantitative collection regime for regulatory auditing. However, qualitative risk assessment methods are also used within this validation process. Participatory approaches are used throughout the RLBMS process. Workers are involved in all phases of building, maintaining, and improving this model. This work participation also improves the implementation of established controls.
Absorption band Q model for the earth
International Nuclear Information System (INIS)
Anderson, D.L.; Given, J.W.
1982-01-01
Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. With a simple absorption band model it is possible to satisfy the shear sensitive data over a broad frequency range. The quality factor Q/sub s/(ω) is proportional to ω/sup α/ in the band and to ω and ω -1 at higher and lower frequencies, respectively, as appropriate for a relaxation mechanism with a spectrum of relaxation time. The parameters of the band are Q(min) = 80, α = 0.15, and width, 5 decades. The center of the band varies from 10 1 seconds in the upper mantle, to 1.6 x 10 3 seconds in the lower mantle. The shift of the band with depth is consistent with the expected effects of temperature, pressure and stress. High Q, regions of the mantle are attributed to a shift of the absorption band to longer periods. To satisfy the gravest fundamental spheroidal modes and the ScS data, the absorption band must shift back into the short-period seismic band at the base of the mantle. This may be due to a high temperature gradient or high shear stresses. A preliminary attempt is also made to specify bulk dissipation in the mantle and core. Specific features of the absorption band model are low Q in the body wave band at both the top and the base of the mantle, low Q for long-period body waves in the outer core, an inner core Q 2 that increases with period, and low Q/sub p//Q/sub s/ at short periods in the middle mantel. The short-period Q/sub s/ increases rapidly at 400 km and is relatively constant from this depth to 2400 km. The deformational Q of the earth at a period of 14 months is predicted to be 463
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
Microbial control of Asian longhorned beetles - what are fungal bands?
Ann E. Hajek; Thomas Dubois; Jennifer Lund; Ryan Shanley; Leah Bauer; Michael Smith; Peng Fan; Huang Bo; Hu Jiafu; Zengzhi Li
2007-01-01
In Japan, the entomopathogenic fungus Beauveria brongniartii is grown in nonwoven fiber bands that are placed around trunks of orchard trees for control of numerous cerambycid pests, including Anoplophora chinensis (= A. malasiaca). The Japanese company producing bands, Nitto Denko in Osaka, markets bands...
Development of a Control Banding Tool for Nanomaterials
Riediker, M.; Ostiguy, C.; Triolet, J.; Troisfontaine, P.; Vernez, D.; Bourdel, G.; Thieriet, N.; Cadène, A.
2012-01-01
Control banding (CB) can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial t...
Two band model for the cuprates
Liu, Shiu; White, Steven
2009-03-01
We use a numerical canonical transformation approach to derive an effective two-band model for the hole-doped cuprates, which keeps both oxygen and copper orbitals but removes double occupancy from each. A similar model was considered previously by Frenkel, Gooding, Shraiman, and Siggia (PRB 41, number 1, page 350). We compare the numerically derived model with previously obtained analytical results. In addition to the usual hopping terms between oxygens tpp and Cu-Cu exchange terms Jdd, the model also includes a strong copper-oxygen exchange interaction Jpd and a Kondo-like spin-flip oxygen-oxygen hopping term Kpdp. We use the density matrix renormalization group to study the charge, spin, and pairing properties of the derived model on ladder systems.
History and Evolution of Control Banding: A Review
Energy Technology Data Exchange (ETDEWEB)
Zalk, D; Nelson, D
2006-07-19
Control Banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents often encountered in the workplace. The original CB model was developed within the pharmaceutical industry; however, the modern movement involves models developed for non-experts to input hazard and exposure potential information for bulk chemical processes, receiving control advice as a result. The CB approach utilizes these models for the dissemination of qualitative and semi-quantitative risk assessment tools being developed to complement the traditional industrial hygiene model of air sampling and analysis. It is being applied and tested in small and medium size enterprises (SMEs) within developed countries and industrially developing countries; however, large enterprises (LEs) have also incorporated these strategies within chemical safety programs. Existing research of the components of the most available CB model, the Control of Substances Hazardous to Health (COSHH) Essentials, has shown that exposure bands do not always provide adequate margins of safety, that there is a high rate of under-control errors, that it works better with dusts than with vapors, that there is an inherent inaccuracy in estimating variability, and that when taken together the outcomes of this model may lead to potentially inappropriate workplace confidence in chemical exposure reduction in some operations. Alternatively, large-scale comparisons of industry exposure data to this CB model's outcomes have indicated more promising results with a high correlation seen internationally. With the accuracy of the toxicological ratings and hazard band classification currently in question, their proper reevaluation will be of great benefit to the reliability of existing and future CB models. The need for a more complete analysis of CB model components and, most importantly, a more comprehensive prospective research process remains and will be important in understanding implications
Zalk, David M; Heussen, Ga Henri
2011-12-01
Control Banding (CB) strategies to prevent work-related illness and injury for 2.5 billion workers without access to health and safety professionals has grown exponentially this last decade. CB originates from the pharmaceutical industry to control active pharmaceutical ingredients without a complete toxicological basis and therefore no occupational exposure limits. CB applications have broadened into chemicals in general - including new emerging risks like nanomaterials and recently into ergonomics and injury prevention. CB is an action-oriented qualitative risk assessment strategy offering solutions and control measures to users through "toolkits". Chemical CB toolkits are user-friendly approaches used to achieve workplace controls in the absence of firm toxicological and quantitative exposure information. The model (technical) validation of these toolkits is well described, however firm operational analyses (implementation aspects) are lacking. Consequentially, it is often not known if toolkit use leads to successful interventions at individual workplaces. This might lead to virtual safe workplaces without knowing if workers are truly protected. Upcoming international strategies from the World Health Organization Collaborating Centers request assistance in developing and evaluating action-oriented procedures for workplace risk assessment and control. It is expected that to fulfill this strategy's goals, CB approaches will continue its important growth in protecting workers.
Directory of Open Access Journals (Sweden)
David M. Zalk
2011-12-01
Full Text Available Control Banding (CB strategies to prevent work-related illness and injury for 2.5 billion workers without access to health and safety professionals has grown exponentially this last decade. CB originates from the pharmaceutical industry to control active pharmaceutical ingredients without a complete toxicological basis and therefore no occupational exposure limits. CB applications have broadened into chemicals in general - including new emerging risks like nanomaterials and recently into ergonomics and injury prevention. CB is an action-oriented qualitative risk assessment strategy offering solutions and control measures to users through “toolkits”. Chemical CB toolkits are user-friendly approaches used to achieve workplace controls in the absence of firm toxicological and quantitative exposure information. The model (technical validation of these toolkits is well described, however firm operational analyses (implementation aspects are lacking. Consequentially, it is often not known if toolkit use leads to successful interventions at individual workplaces. This might lead to virtual safe workplaces without knowing if workers are truly protected. Upcoming international strategies from the World Health Organization Collaborating Centers request assistance in developing and evaluating action-oriented procedures for workplace risk assessment and control. It is expected that to fulfill this strategy’s goals, CB approaches will continue its important growth in protecting workers.
Modelling band-to-band tunneling current in InP-based heterostructure photonic devices
van Engelen, J.P.; Shen, L.; van der Tol, J.J.G.M.; Smit, M.K.; Kockaert, P.; Emplit, P.; Gorza, S.-P.; Massar, S.
2015-01-01
Some semiconductor photonic devices show large discontinuities in the band structure. Short tunnel paths caused by this band structure may lead to an excessive tunneling current, especially in highly doped layers. Modelling of this tunnelling current is therefore important when designing photonic
Comparison of band-to-band tunneling models in Si and Si—Ge junctions
International Nuclear Information System (INIS)
Jiao Yipeng; Wang Taihuan; Wei Kangliang; Du Gang; Liu Xiaoyan
2013-01-01
We compared several different band-to-band tunneling (BTBT) models with both Sentaurus and the two-dimensional full-band Monte Carlo simulator in Si homo-junctions and Si—Ge hetero-junctions. It was shown that in Si homo-junctions, different models could achieve similar results. However, in the Si—Ge hetero-junctions, there were significant differences among these models at high reverse biases (over 2 V). Compared to the nonlocal model, the local models in Sentaurus underrated the BTBT rate distinctly, and the Monte Carlo method was shown to give a better approximation. Additionally, it was found that in the Si region near the interface of the Si—Ge hetero-junctions, the direct tunneling rates increased largely due to the interaction of the band structures of Si and Ge. (semiconductor physics)
Zalk, David M; Heussen, Ga Henri
2011-01-01
Control Banding (CB) strategies to prevent work-related illness and injury for 2.5 billion workers without access to health and safety professionals has grown exponentially this last decade. CB originates from the pharmaceutical industry to control active pharmaceutical ingredients without a complete toxicological basis and therefore no occupational exposure limits. CB applications have broadened into chemicals in general - including new emerging risks like nanomaterials and recently into erg...
Development of a Control Banding Tool for Nanomaterials
Directory of Open Access Journals (Sweden)
M. Riediker
2012-01-01
Full Text Available Control banding (CB can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial toxicology: translocation across biological barriers, fibrous nature, solubility, and reactivity. Already existing classifications specific to the nanomaterial can be used “as is.” Otherwise, the toxicity of bulk or analogous substances gives an initial hazard band, which is increased if the substance is not easily soluble or if it has a higher reactivity than the substance. The emission potential bands are defined by the nanomaterials' physical form and process characteristics. Quantities, frequencies, and existing control measures are taken into account during the definition of the action plan. Control strategies range from room ventilation to full containment with expert advice. This CB approach, once validated, can be easily embedded in risk management systems. It allows integrating new toxicity data and needs no exposure data.
A Shear Banding Model for Penetration Calculations
2000-04-01
mechanism of strength reduction to zero within a shear band in three different steels, includ- ing AISI 4340 with RHC 44, which is reasonably similar to RHA...TECH LIB CHINA LAKE CA 93555-6001 CDR NAVAL SUR WAR CTR C S COFFEY PPARK FZERILLI CODE 4140 R K GARRET JR JMCKIRGAN TECH LIB 101 STRAUSS AVE
Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control
Kim, Gi-Woo; Wang, K. W.
2007-04-01
The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.
Planar Ultrawideband Antenna with Photonically Controlled Notched Bands
Directory of Open Access Journals (Sweden)
Drasko Draskovic
2013-01-01
Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.
Shell model description of band structure in 48Cr
International Nuclear Information System (INIS)
Vargas, Carlos E.; Velazquez, Victor M.
2007-01-01
The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements
Arnone, Mario; Koppisch, Dorothea; Smola, Thomas; Gabriel, Stefan; Verbist, Koen; Visser, Remco
2015-10-01
Many control banding tools use hazard banding in risk assessments for the occupational handling of hazardous substances. The outcome of these assessments can be combined with advice for the required risk management measures (RMMs). The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has resulted in a change in the hazard communication elements, i.e. Hazard (H) statements instead of Risk-phrases. Hazard banding schemes that depend on the old form of safety information have to be adapted to the new rules. The purpose of this publication is to outline the rationales for the assignment of hazard bands to H statements under the GHS. Based on this, this publication proposes a hazard banding scheme that uses the information from the safety data sheets as the basis for assignment. The assignment of hazard bands tiered according to the severity of the underlying hazards supports the important principle of substitution. Additionally, the set of assignment rules permits an exposure-route-specific assignment of hazard bands, which is necessary for the proposed route-specific RMMs. Ideally, all control banding tools should apply the same assignment rules. This GHS-compliant hazard banding scheme can hopefully help to establish a unified hazard banding strategy in the various control banding tools. Copyright © 2015 Elsevier Inc. All rights reserved.
Modelling and design of complete photonic band gaps in two ...
Indian Academy of Sciences (India)
Photonic crystal; complete photonic band gap; plane-wave expansion method. ... lies in the possibility of the substantial control of the radiation field by means of ... research. To prevent the propagation of the waves, whatever its direction is, the.
Model Development for MODIS Thermal Band Electronic Crosstalk
Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong
2016-01-01
MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation
Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices
Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.
2015-06-01
A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the "CVBs interaction" that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.
Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices
International Nuclear Information System (INIS)
Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.
2015-01-01
A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices
Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices
Energy Technology Data Exchange (ETDEWEB)
Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland)
2015-06-21
A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.
Cranking model interpretation of weakly coupled bands in Hg isotopes
International Nuclear Information System (INIS)
Guttormsen, M.; Huebel, H.
1982-01-01
The positive-parity yrast states of the transitional sup(189-198)Hg isotopes are interpreted within the Bengtsson and Frauendorf version of the cranking model. The very sharp backbendings can be explained by small interaction matrix elements between the ground and s-bands. The experimentally observed large aligned angular momenta and the low band-crossing frequencies are well reproduced in the calculations. (orig.)
Optical model with multiple band couplings using soft rotator structure
Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi
2017-09-01
A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.
Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)
2010-04-28
We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)
Modeling charged defects inside density functional theory band gaps
International Nuclear Information System (INIS)
Schultz, Peter A.; Edwards, Arthur H.
2014-01-01
Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem
All-optical photonic band control in a quantum metamaterial
Energy Technology Data Exchange (ETDEWEB)
Felbacq, D.; Rousseau, E. [University of Montpellier, Laboratory Charles Coulomb UMR CNRS-UM 5221, Montpellier (France)
2017-09-15
Metamaterials made of periodic collections of dielectric nanorods are considered theoretically. When quantum resonators are embedded within the nanorods, one obtains a quantum metamaterial, whose electromagnetic properties depend upon the state of the quantum resonators. The theoretical model predicts that when the resonators are pumped and reach the inversion regime, the quantum metamaterial exhibits an all-optical switchable conduction band. The phenomenon can be described by considering the pole stucture of the scattering matrix of the metamaterial. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Modeling of Wide-Band-Gap Semiconductor Alloys
National Research Council Canada - National Science Library
Lambrecht, W
1998-01-01
.... The band structure and the total energy properties of LiGaO2 were studied in relation to its possible role as a substrate for GaN growth and as a model system for cation ordering on wurtzite based lattices...
Coherent control of spontaneous emission near a photonic band edge
International Nuclear Information System (INIS)
Woldeyohannes, Mesfin; John, Sajeev
2003-01-01
We demonstrate the coherent control of spontaneous emission for a three-level atom located within a photonic band gap (PBG) material, with one resonant frequency near the edge of the PBG. Spontaneous emission from the three-level atom can be totally suppressed or strongly enhanced depending on the relative phase between the steady-state control laser coupling the two upper levels and the pump laser pulse used to create an excited state of the atom in the form of a coherent superposition of the two upper levels. Unlike the free-space case, the steady-state inversion of the atomic system is strongly dependent on the externally prescribed initial conditions. This non-zero steady-state population is achieved by virtue of the localization of light in the vicinity of the emitting atom. It is robust to decoherence effects provided that the Rabi frequency of the control laser field exceeds the rate of dephasing interactions. As a result, such a system may be relevant for a single-atom, phase-sensitive optical memory device on the atomic scale. The protected electric dipole within the PBG provides a basis for a qubit to encode information for quantum computations. A detailed literature survey on the nature, fabrication and applications of PBG materials is presented to provide context for this research. (phd tutorial)
Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors
International Nuclear Information System (INIS)
Shih, Chun-Hsing; Dang Chien, Nguyen
2014-01-01
Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors
Electron correlations in narrow energy bands: modified polar model approach
Directory of Open Access Journals (Sweden)
L. Didukh
2008-09-01
Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.
Band gap control in a line-defect magnonic crystal waveguide
Energy Technology Data Exchange (ETDEWEB)
Morozova, M. A., E-mail: mamorozovama@yandex.ru; Grishin, S. V.; Sadovnikov, A. V.; Romanenko, D. V.; Sharaevskii, Yu. P.; Nikitov, S. A. [Laboratory ' Metamaterials,' Saratov State University, Astrakhanskaya 83, Saratov 410012 (Russian Federation)
2015-12-14
We report on the experimental observation of the spin wave spectrum control in a line-defect magnonic crystal (MC) waveguide. We demonstrate the possibility to control the forbidden frequency band (band gap) for spin waves tuning the line-defect width. In particular, this frequency may be greater or lower than the one of 1D MC waveguide without line-defect. By means of space-resolved Brillouin light scattering technique, we study the localization of magnetization amplitude in the line-defect area. We show that the length of this localization region depends on the line-defect width. These results agree well with theoretical calculations of spin wave spectrum using the proposed model of two coupled magnonic crystal waveguides. The proposed simple geometry of MC with line-defect can be used as a logic and multiplexing block for application in the novel field of magnonic devices.
DEFF Research Database (Denmark)
Liguori, Biase; Hansen, Steffen Foss; Baun, Anders
2016-01-01
area of concern. Therefore, a number of Control Banding (CB)-based tools have been developed in order to assess and manage the potential risks associated with occupational exposure to nanomaterials. In this paper we provide a comparative analysis of different nanomaterial-specific types of control-banding/risk...... developed for different purposes, with different application domains and inclusion criteria. The exposure assessments and derived risk levels are based on different concepts and assumptions and outputs in different formats. The use of requested input parameters for exposure assessment differ greatly among...... the tools. Therefore, direct inter-comparison and combination of the different models into a larger holistic framework is not immediately possible. Harmonization of input parameters and output could allow establishment of an exposure assessment framework with different levels of information requirements....
Can Control Banding be better than traditional Industrial Hygiene?
International Nuclear Information System (INIS)
Zalk, D.
2009-01-01
The answer to this question should be 'no' if you can afford it and 'yes' if you cannot. However, Control Banding (CB) is proving itself in areas with uncertainties. This could be either a lack of knowledge--as with nanomaterials or when lacking an OEL--or with the lack or expertise, as can be seen with SMEs and in Economically Developing Countries (EDCs). Over 90% of the world's workers do not have access to occupational safety, health, and hygiene (OSHH) professionals and traditional quantitative risk assessment methods to achieve prevention from acquiring work-related illness and injury. Although risk factors for work-related illness and disease are well known, until the recent growth of CB there had yet to be designed and implemented a comprehensive OSHH process that focuses on achieving minimization of these occupational risk factors for the vast majority of the global workforce. This problem exists for three primary reasons: (1) There are not a sufficient number of trained and qualified OSHH professionals worldwide to attempt to offer comparable levels of traditional services necessary to achieve prevention; (2) The vast majority of OSHH professionals, and the funds to afford their conventional approaches, are concentrated in Developed Countries, such as those in the EU and the US, whereas the greatest need for work-related disease, illness, and injury prevention lies within EDCs; and (3) Even within Developed Countries, the funding to acquire the services of OSHH professionals sits primarily within the largest of industries and governmental institutions. This problem renders a void of occupational risk management for the professions and trades within EDCs and similarly the SMEs within even the richest of Developed Countries. Further, conventional means to achieve such prevention rely heavily on exposure assessment sampling strategies that, although proven successful, are cost-prohibitive in these arenas
Study of band structure in 78,80Sr using Triaxial Projected Shell Model
International Nuclear Information System (INIS)
Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.
2017-01-01
The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally
Model of coupled bands in even-even nuclei
Energy Technology Data Exchange (ETDEWEB)
Nadzhakov, E G; Nozharov, R M; Myankova, G Z; Antonova, V A [Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika
1979-01-01
The model is derived in a natural way from the theory of coupled modes. It is based on an expansion of the Hamiltonian in terms of elementary transition operators, including direct rotation-vibration coupling with phonons. The treatment is limited to three types of phonons: ( I = K = 0), S (I = K = 1) and (I = K = 2). The basis of the operators, acting on the ground state is truncated by an inclusion of a reasonable number of phonon states. In the framework of this approximation one may evaluate the matrix elements of the model Hamiltonian and diagonalize it by standard numerical methods to fit the experimental spectrum. The well known picture of band hybridization is obtained as a special case of the model under consideration.
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
Planar C-Band Antenna with Electronically Controllable Switched Beams
Directory of Open Access Journals (Sweden)
Mariano Barba
2009-01-01
Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.
International Nuclear Information System (INIS)
Qi, Jingshan; Li, Xiao; Qian, Xiaofeng
2016-01-01
Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z_2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.
Modeling and design of an X-band rf photoinjector
Directory of Open Access Journals (Sweden)
R. A. Marsh
2012-10-01
Full Text Available A design for an X-band rf photoinjector that was developed jointly by SLAC National Accelerator Laboratory (SLAC and Lawrence Livermore National Laboratory (LLNL is presented. The photoinjector is based around a 5.59 cell rf gun that has state-of-the-art features including: elliptical contoured irises; improved mode separation; an optimized initial half cell length; a racetrack input coupler; and coupling that balances pulsed heating with cavity fill time. Radio-frequency and beam dynamics modeling have been done using a combination of codes including PARMELA, HFSS, IMPACT-T, ASTRA, and the ACE3P suite of codes developed at SLAC. The impact of lower gradient operation, magnet misalignment, solenoid multipole errors, beam offset, mode beating, wakefields, and beam line symmetry have been analyzed and are described. Fabrication and testing plans at both LLNL and SLAC are discussed.
Modeling of Photonic Band Gap Crystals and Applications
Energy Technology Data Exchange (ETDEWEB)
El-Kady, Ihab Fathy [Iowa State Univ., Ames, IA (United States)
2002-01-01
In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal
Wide frequency independently controlled dual-band inkjet-printed antenna
AbuTarboush, Hattan F.; Shamim, Atif
2014-01-01
.2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications
Anomalies in the 1D Anderson model: Beyond the band-centre and band-edge cases
Tessieri, L.; Izrailev, F. M.
2018-03-01
We consider the one-dimensional Anderson model with weak disorder. Using the Hamiltonian map approach, we analyse the validity of the random-phase approximation for resonant values of the energy, E = 2 cos(πr) , with r a rational number. We expand the invariant measure of the phase variable in powers of the disorder strength and we show that, contrary to what happens at the centre and at the edges of the band, for all other resonant energies the leading term of the invariant measure is uniform. When higher-order terms are taken into account, a modulation of the invariant measure appears for all resonant values of the energy. This implies that, when the localisation length is computed within the second-order approximation in the disorder strength, the Thouless formula is valid everywhere except at the band centre and at the band edges.
Evaluation of Model Microphysics Within Precipitation Bands of Extratropical Cyclones
Colle, Brian A.; Molthan, Andrew; Yu, Ruyi; Stark, David; Yuter, Sandra; Nesbitt, Steven
2013-01-01
Recent studies evaluating the bulk microphysical schemes (BMPs) within cloud resolving models (CRMs) have indicated large uncertainties and errors in the amount and size distributions of snow and cloud ice aloft. The snow prediction is sensitive to the snow densities, habits, and degree of riming within the BMPs. Improving these BMPs is a crucial step toward improving both weather forecasting and climate predictions. Several microphysical schemes in the Weather Research and Forecasting (WRF) model down to 1.33-km grid spacing are evaluated using aircraft, radar, and ground in situ data from the Global Precipitation Mission Coldseason Precipitation Experiment (GCPEx) experiment, as well as a few years (15 winter storms) of surface measurements of riming, crystal habit, snow density, and radar measurements at Stony Brook, NY (SBNY on north shore of Long Island) during the 2009-2012 winter seasons. Surface microphysical measurements at SBNY were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. For the 15 cases at SBNY, the WSM6, Morrison (MORR), Thompson (THOM2), and Stony Brook (SBU-YLIN) BMPs were validated. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. The MORR, WSM6, and SBU-YLIN schemes are comparable to the observed velocity distribution in light and moderate riming periods. The THOM2 is 0.25 meters per second too slow with its velocity distribution in these periods. In heavier riming, the vertical Doppler velocities in the WSM6, THOM2, and MORR schemes were 0.25 meters per second too
Active halo control through narrow-band excitation with the ADT at injection
Wagner, Joschka; Garcia Morales, Hector; Redaelli, Stefano; Valentino, Gianluca; Valuch, Daniel; CERN. Geneva. ATS Department
2016-01-01
During this MD (MD1388), the capabilities of an active halo control for beam tail depletion in the LHC were tested. The studied method relies on using the Transverse Damper (ADT) to perform a narrow-band excitation.
Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model
Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad
2018-02-01
In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.
Paik, Samuel Y; Zalk, David M; Swuste, Paul
2008-08-01
Control banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents that are found in the workplace in the absence of firm toxicological and exposure data. These strategies may be particularly useful in nanotechnology applications, considering the overwhelming level of uncertainty over what nanomaterials and nanotechnologies present as potential work-related health risks, what about these materials might lead to adverse toxicological activity, how risk related to these might be assessed and how to manage these issues in the absence of this information. This study introduces a pilot CB tool or 'CB Nanotool' that was developed specifically for characterizing the health aspects of working with engineered nanoparticles and determining the level of risk and associated controls for five ongoing nanotechnology-related operations being conducted at two Department of Energy research laboratories. Based on the application of the CB Nanotool, four of the five operations evaluated in this study were found to have implemented controls consistent with what was recommended by the CB Nanotool, with one operation even exceeding the required controls for that activity. The one remaining operation was determined to require an upgrade in controls. By developing this dynamic CB Nanotool within the realm of the scientific information available, this application of CB appears to be a useful approach for assessing the risk of nanomaterial operations, providing recommendations for appropriate engineering controls and facilitating the allocation of resources to the activities that most need them.
DEFF Research Database (Denmark)
Guo, Yougui; Zeng, Ping; Li, Lijuan
2011-01-01
Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....
Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model
International Nuclear Information System (INIS)
Arai, T.; Cohen, M.H.
1980-01-01
By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state
On a business cycle model with fractional derivative under narrow-band random excitation
International Nuclear Information System (INIS)
Lin, Zifei; Li, Jiaorui; Li, Shuang
2016-01-01
This paper analyzes the dynamics of a business cycle model with fractional derivative of order α (0 < α < 1) subject to narrow-band random excitation, in which fractional derivative describes the memory property of the economic variables. Stochastic dynamical system concepts are integrated into the business cycle model for understanding the economic fluctuation. Firstly, the method of multiple scales is applied to derive the model to obtain the approximate analytical solution. Secondly, the effect of economic policy with fractional derivative on the amplitude of the economic fluctuation and the effect on stationary probability density are studied. The results show macroeconomic regulation and control can lower the stable amplitude of economic fluctuation. While in the process of equilibrium state, the amplitude is magnified. Also, the macroeconomic regulation and control improves the stability of the equilibrium state. Thirdly, how externally stochastic perturbation affects the dynamics of the economy system is investigated.
A New Model of Multiphonon Excitation Trap-Assisted Band-to-Band Tunneling
Directory of Open Access Journals (Sweden)
J. Racko
2012-04-01
Full Text Available The paper describes a new approach to calculating the currents in a pn-diode based on the extension of the Shockley-Read-Hall recombination-generation model. The presented theory is an alternative to Schenk’s model of trap-assisted tunneling. The new approach takes into account generation and recombination as well as tunneling processes in pn-junctions. Using this model, the real “soft” I-V curve usually observed in the case of switching diodes and transistors was modeled as a result of the high concentration of traps that assist in the process of tunneling.
Wide-band polarization controller for Si photonic integrated circuits.
Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M
2016-12-15
A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.
International Nuclear Information System (INIS)
Weissman, Y.
1975-10-01
The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)
Energy Technology Data Exchange (ETDEWEB)
Cottignies, S; Ortiz, J [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires
1962-07-01
This machine is designed to control the band-towels in the form of 40 meters bands equipping the 'Essuimatic' distributors. It controls automatically the {alpha} and {beta}-{gamma} activity. The towel is driven by motors and passes under Geiger-Muller counters and then between zinc sulphide scintillators in conjunction with photomultipliers. Two distinct counting systems measure the total activity deposited on the cloth and, in order to give an idea of the distribution of this activity, count also the number of marks, that is, the number of times that the counting rate of the probes is above a certain value. After the passage of the cloth it is thus possible to know whether the count corresponding to the whole band is greater than that due to just the counter movement, and also whether this counting rate has not occasionally been greater than the average rate; it is thus possible to detect weak local contamination which could have been missed in an overall measurement of the cloth. (authors) [French] Cette machine est destinee a controler les linges essuie-mains sous forme de bande de 40 metres de longueur equipant les distributeurs 'ESSUIMATIC'. Elle effectue automatiquement un controle en {alpha} et en {beta}-{gamma}. Le linge entraine par un moteur passe. sous des compteurs Geiger-Muller, puis entre des scintillateurs au sulfure de zinc associes a des photomultiplicateurs. Deux chaines de comptage distinctes comptent l'activite totale deposee sur le linge et, en outre, pour donner une idee de la repartition de cette activite, elles comptent le nombre de taches, c'est-a-dire le nombre de fois que le taux de comptage des sondes est superieur a une certaine valeur. A la fin du passage du linge, il est donc possible de connaitre si le comptage correspondant a toute la bande est superieur a celui du au mouvement propre seul des compteurs et egalement de savoir si parfois ce taux de comptage n'a pas ete superieur au taux de comptage moyen, ce qui permet de detecter de
Modelling and design of complete photonic band gaps in two ...
Indian Academy of Sciences (India)
In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods ...
Model validity and frequency band selection in operational modal analysis
Au, Siu-Kui
2016-12-01
Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.
Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters
DEFF Research Database (Denmark)
Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael
2009-01-01
Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well....
Band model for d- and f-metals
International Nuclear Information System (INIS)
Koelling, D.D.
1982-01-01
The application of band theory to metallic systems with d- and f-orbitals in the valence and conduction bands is discussed. Because such an application pushes theory and technique to their limits, several important features are briefly recapitulated. Within the transition metal systems, the elemental systems are used to discuss the fundamental formalism being applied and the newer directions into more complex systems are mentioned. Here we focus more on anisotropic properties and Fermi surface properties. Within the f-orbital systems, the focus is more on Ce and its compounds because of current interest with a relatively brief discussion of the actinides. the point of view advanced, however, has its origins in actinide research
Superconducting correlations in the one- and two-band Hubbard models
International Nuclear Information System (INIS)
Jain, K.P.; Ramakumar, R.; Chancey, C.C.
1989-01-01
An approximate expression is derived for the generalized energy gap function Δ kμ for a system of interacting electrons in a narrow s-band. This function has the virtue that it interpolates between the weak interaction limit (BCS) and the intermediate coupling regime. Starting from the Cooper pairing state, the authors investigate the build-up of pairing correlations and study the properties of the generalized gap in these two regimes as a function of the band filling. The coupled equations for the gap and the band filling define the self-consistency conditions. A recent extension of this analysis to the two-band model is also discussed
The two bands model for the high temperature conductivity of the binary rare earth alloys
International Nuclear Information System (INIS)
Borgiel, W.
1983-09-01
The formula for the high temperature spin disorder resistivity for the concentrated Asub(1-x)Bsub(x)C alloys where A,B is an element of Rare Earth (RE) is determined on the basis of two bands model and the coherent potential approximation (CPA). The conductivity given by the 5d bands coming from the RE compounds has been taken into account
Directory of Open Access Journals (Sweden)
Mustapha El Halaoui
2017-01-01
Full Text Available A new compact multiband PIFA (Planar Inverted-F Antenna for mobile handset is proposed in this article. The proposed PIFA has a simple geometry with four slots integrated in the radiating patch and ground plane. The PIFA occupies a small volume of 51 × 14 × 7.2 mm3 and is placed on the top portion of mobile phone. The optimized PIFA is worked in the 790 MHz band (737–831 MHz, the 1870 MHz band (1794–1977 MHz, the 2550 MHz band (2507–2615 MHz, and the 3400 MHz band (3341–3545 MHz, to cover LTE700, LTE800, DCS1800, PCS1900, LTE1800, LTE1900, LTE2500, and WIMAX3400 bands. Each of the four operating bands can be controlled independently by the variation of a single parameter of the proposed design, with a wide control range. An omnidirectional radiation pattern to each resonant frequency is obtained with a maximum gain of 2.15 dBi at 790 MHz, 3.99 dBi at 1870 MHz, 4.57 dBi at 2550 MHz, and 6.43 dBi at 3400 MHz. The proposed PIFA is studied in the free space and in the presence of other mobile phone components such as the battery, LCD (liquid crystal display, camera, microphone, speaker, buttons, and a plastic housing. The distribution of specific absorption rate for both European and American standards for each operating band and at various distances between the antenna and the human head is also studied.
The modified turning bands (MTB) model for space-time rainfall. I. Model definition and properties
Mellor, Dale
1996-02-01
A new stochastic model of space-time rainfall, the Modified Turning Bands (MTB) model, is proposed which reproduces, in particular, the movements and developments of rainbands, cluster potential regions and raincells, as well as their respective interactions. The ensemble correlation structure is unsuitable for practical estimation of the model parameters because the model is not ergodic in this statistic, and hence it cannot easily be measured from a single real storm. Thus, some general theory on the internal covariance structure of a class of stochastic models is presented, of which the MTB model is an example. It is noted that, for the MTB model, the internal covariance structure may be measured from a single storm, and can thus be used for model identification.
Seven-parameter statistical model for BRDF in the UV band.
Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua
2012-05-21
A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.
International Nuclear Information System (INIS)
Ding Chunling; Li Jiahua; Yang Xiaoxue
2011-01-01
The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Wide frequency independently controlled dual-band inkjet-printed antenna
AbuTarboush, Hattan F.
2014-01-08
A low-cost inkjet-printed multiband monopole antenna is presented. The unique advantage of the proposed antenna is the freedom to adjust and set the dual-band of the antenna independently over a wide range (148.83%). To demonstrate the independent control feature, the 2.4 and 3.4 GHz bands for the wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications are selected as an example. The measured impedance bandwidths for the 2.4 and 3.4 GHz are 15.2 and 23.7%, respectively. These dual-bands have the ability to be controlled independently between 1.1 and 7.5 GHz without affecting the other band. In addition, the proposed antenna can be assigned for different mobile and wireless applications such as GPS, PCS, GSM 1800, 1900, UMTS, and up to 5-GHz WLAN and WiMAX applications. The mechanism of independent control of each radiator through dimensional variation is discussed in detail. The antenna has a compact size of 10 × 37.3 × 0.44 mm3, leaving enough space for the driving electronics on the paper substrate. The measured results from the prototype are in good agreement with the simulated results. Owing to inkjet printing on an ordinary paper, the design is extremely light weight and highly suitable for low cost and large volume manufacturing. © The Institution of Engineering and Technology 2013.
DEFF Research Database (Denmark)
Tatomirescu, Alexandru; Buskgaard, Emil Feldborg; Pedersen, Gert Frølund
2014-01-01
. The MIMO performance is investigated in two different channel models through efficiency, branch power imbalance and envelope correlation. The proposed antennas have acceptable levels of isolation between them, even in the low-bands, while having a good efficiency. Furthermore, the correlation coefficient...
Monte Carlo study of superconductivity in the three-band Emery model
International Nuclear Information System (INIS)
Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.
1990-01-01
We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity
Spin alignment and collective moment of inertia of the basic rotational band in the cranking model
International Nuclear Information System (INIS)
Tanaka, Yoshihide
1982-01-01
By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)
Kuznetsova, T. A.
2018-05-01
The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.
Bracker, Anne L; Morse, Timothy F; Simcox, Nancy J
2009-05-01
Control banding (CB) is a control-focused risk management model that has received international attention. CB strategies are designed to control workplace chemical exposures after the completion of a qualitative risk assessment. Connecticut was one of the first states to provide training on how to use this control-focused tool. Joint labor/management teams and individuals from 34 workplaces attended a control banding workshop and learned how to use one CB model, the United Kingdom (UK) Health and Safety Executive's Control of Substances Hazardous to Health (COSHH) Essentials Toolkit. After the initial training program the investigators used follow-up workshops, questionnaires, site visit data, and case studies to evaluate the training curriculum and assess the utility and effectiveness of this CB strategy. We found that the model is easily learned, although several areas for improvement were identified. Participants from 10 workplaces used COSHH Essentials to evaluate at least one task. The training curriculum was effective in that the agreement between the exposure variables coded by these workplaces and one of the workshop instructors, a certified industrial hygienist (CIH), were highly concordant. The training curriculum and the model promoted a discussion of risk between workers and managers and resulted in the implementation of improvements in the work environment. The model agreed with both the CIH's and the worksites' qualitative risk assessments 65% of the time, and likely over-controlled for 71% (5/7) of the cases of nonagreement. Feedback from workshop participants benefits the current dialogue on the implications of implementing CB in the United States.
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ –bands
International Nuclear Information System (INIS)
Sheikh, Javid A; Bhat, Gowhar H; Dar, Waheed A; Jehangir, Sheikh; Ganai, Prince A
2016-01-01
A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ -bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ -bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ -bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ -band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ -bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135 Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties. (invited comment)
Madelung and Hubbard interactions in polaron band model of doped organic semiconductors
Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.
2016-01-01
The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355
Electrical equivalent model of intermediate band solar cell using ...
Indian Academy of Sciences (India)
presents a structure of IBSC based on ZnTe:O. The proposed model uses irradiance and temperature as ... of solar cells. They are based on different processes and properties such as photon recycling, ... The MATLAB interface was used .... ioral model of an arbitrary solar cell to amend the PSPICE simulation performance.
Intensity profiles of superdeformed bands in Pb isotopes in a two-level mixing model
International Nuclear Information System (INIS)
Wilson, A. N.; Szigeti, S. S.; Rogers, J. I.; Davidson, P. M.; Cardamone, D. M.
2009-01-01
A recently developed two-level mixing model of the decay out of superdeformed bands is applied to examine the loss of flux from the yrast superdeformed bands in 192 Pb, 194 Pb, and 196 Pb. Probability distributions for decay to states at normal deformations are calculated at each level. The sensitivity of the results to parameters describing the levels at normal deformation and their coupling to levels in the superdeformed well is explored. It is found that except for narrow ranges of the interaction strength coupling the states, the amount of intensity lost is primarily determined by the ratio of γ decay widths in the normal and superdeformed wells. It is also found that while the model can accommodate the observed fractional intensity loss profiles for decay from bands at relatively high excitation, it cannot accommodate the similarly abrupt decay from bands at lower energies if standard estimates of the properties of the states in the first minimum are employed
Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei
International Nuclear Information System (INIS)
Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.
2000-01-01
A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values
International Nuclear Information System (INIS)
Gürkan, Gül; Langestraat, Romeo
2014-01-01
In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO 2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy. - Highlights: • We model and analyze three renewable obligation policies in a mathematical framework. • We provide revenue adequate pricing schemes for the three policies. • We carry out a simulation study via sampling. • The UK policy cannot guarantee that the original obligation target is met. • Cost reductions can lead to more pollution or higher prices under banding policies
Model Process Control Language
National Aeronautics and Space Administration — The MPC (Model Process Control) language enables the capture, communication and preservation of a simulation instance, with sufficient detail that it can be...
Arbitrary Chern number generation in the three-band model from momentum space
International Nuclear Information System (INIS)
Lee, Soo-Yong; Go, Gyungchoon; Han, Jung Hoon; Park, Jin-Hong
2015-01-01
A simple, general rule for generating a three-band model with arbitrary Chern numbers is given. The rule is based on the idea of monopole charge-changing unitary operations and can be realized by two types of simple unitary operations on the original Hamiltonian. A pair of monopole charges are required to produce desired topological numbers in the three-band model. The set of rules presented here offers a way to produce lattice models of any desired Chern numbers for three-sublattice situations. (author)
Control of fibre laser mode-locking by narrow-band Bragg gratings
International Nuclear Information System (INIS)
Laegsgaard, J
2008-01-01
The use of narrow-band high-reflectivity fibre Bragg gratings (FBGs) as end mirrors in a fibre laser cavity with passive mode-locking provided by a semiconductor saturable absorber mirror (SESAM) is investigated numerically. The FBG is found to control the energy range of stable mode-locking, which may be shifted far outside the regime of SESAM saturation by a suitable choice of FBG and cavity length. The pulse shape is controlled by the combined effects of FBG dispersion and self-phase modulation in the fibres, and a few ps pulses can be obtained with standard uniform FBGs
Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing
2018-01-01
The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.
Dual Band Magnonic Crystals: Model System and Basic Spin Wave Dynamics
Directory of Open Access Journals (Sweden)
Federico Montoncello
2016-01-01
Full Text Available We investigate a special design of two-dimensional magnonic crystal, consisting of two superimposed lattices with different lattice constants, such that spin waves (SWs can propagate either in one or the other sublattice, depending on which of the two frequency bands they belong to. The SW bands are separated by a very large bandgap (in our model system, 6 GHz, easily tunable by changing the direction of an applied magnetic field, and the overlap of their spatial distribution, for any frequency of their bands, is always negligible. These properties make the designed system an ideal test system for a magnonic dual band waveguide, where the simultaneous excitation and subsequent propagation of two independent SW signals are allowed, with no mutual interference.
Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus
Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.
2018-02-01
Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.
Cognitive control during audiovisual working memory engages frontotemporal theta-band interactions.
Daume, Jonathan; Graetz, Sebastian; Gruber, Thomas; Engel, Andreas K; Friese, Uwe
2017-10-03
Working memory (WM) maintenance of sensory information has been associated with enhanced cross-frequency coupling between the phase of low frequencies and the amplitude of high frequencies, particularly in medial temporal lobe (MTL) regions. It has been suggested that these WM maintenance processes are controlled by areas of the prefrontal cortex (PFC) via frontotemporal phase synchronisation in low frequency bands. Here, we investigated whether enhanced cognitive control during audiovisual WM as compared to visual WM alone is associated with increased low-frequency phase synchronisation between sensory areas maintaining WM content and areas from PFC. Using magnetoencephalography, we recorded neural oscillatory activity from healthy human participants engaged in an audiovisual delayed-match-to-sample task. We observed that regions from MTL, which showed enhanced theta-beta phase-amplitude coupling (PAC) during the WM delay window, exhibited stronger phase synchronisation within the theta-band (4-7 Hz) to areas from lateral PFC during audiovisual WM as compared to visual WM alone. Moreover, MTL areas also showed enhanced phase synchronisation to temporooccipital areas in the beta-band (20-32 Hz). Our results provide further evidence that a combination of long-range phase synchronisation and local PAC might constitute a mechanism for neuronal communication between distant brain regions and across frequencies during WM maintenance.
Surface origin and control of resonance Raman scattering and surface band gap in indium nitride
International Nuclear Information System (INIS)
Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W
2016-01-01
Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the ( E 1 , A 1 ) longitudinal optical (LO) near 590 cm −1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap ( E g = 0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer. (paper)
Surface origin and control of resonance Raman scattering and surface band gap in indium nitride
Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.
2016-06-01
Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm-1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g = 0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.
A model for calculating expected performance of the Apollo unified S-band (USB) communication system
Schroeder, N. W.
1971-01-01
A model for calculating the expected performance of the Apollo unified S-band (USB) communication system is presented. The general organization of the Apollo USB is described. The mathematical model is reviewed and the computer program for implementation of the calculations is included.
Bondwire array modeling for the design of hybrid high power amplifiers above C-band
DEFF Research Database (Denmark)
Hernández, Carlos Cilla; Jónasson, Sævar Þór; Hanberg, Jesper
2012-01-01
This paper presents a bondwire array model obtained using a software based on the finite elements method and validated up to 15 GHz by measurements over a purpose-build array structure. This work addresses the limits of the inductor-based bondwire model when used at frequencies above C-band to si...
Stochastic Control - External Models
DEFF Research Database (Denmark)
Poulsen, Niels Kjølstad
2005-01-01
This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...
Aeroservoelasticity modeling and control
Tewari, Ashish
2015-01-01
This monograph presents the state of the art in aeroservoelastic (ASE) modeling and analysis and develops a systematic theoretical and computational framework for use by researchers and practicing engineers. It is the first book to focus on the mathematical modeling of structural dynamics, unsteady aerodynamics, and control systems to evolve a generic procedure to be applied for ASE synthesis. Existing robust, nonlinear, and adaptive control methodology is applied and extended to some interesting ASE problems, such as transonic flutter and buffet, post-stall buffet and maneuvers, and flapping flexible wing. The author derives a general aeroservoelastic plant via the finite-element structural dynamic model, unsteady aerodynamic models for various regimes in the frequency domain, and the associated state-space model by rational function approximations. For more advanced models, the full-potential, Euler, and Navier-Stokes methods for treating transonic and separated flows are also briefly addressed. Essential A...
Directory of Open Access Journals (Sweden)
Klaus-Dietrich Kramer
2016-05-01
Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.
International Nuclear Information System (INIS)
Lynch, Holley E; Shane Hutson, M; Veldhuis, Jim; Wayne Brodland, G
2014-01-01
The morphogenetic process of germ band retraction in Drosophila embryos involves coordinated movements of two epithelial tissues—germ band and amnioserosa. The germ band shortens along its rostral–caudal or head-to-tail axis, widens along its perpendicular dorsal-ventral axis, and uncurls from an initial ‘U’ shape. The amnioserosa mechanically assists this process by pulling on the crook of the U-shaped germ band. The amnioserosa may also provide biochemical signals that drive germ band cells to change shape in a mechanically autonomous fashion. Here, we use a finite-element model to investigate how these two contributions reshape the germ band. We do so by modeling the response to laser-induced wounds in each of the germ band’s spatially distinct segments (T1–T3, A1–A9) during the middle of retraction when segments T1–A3 form the ventral arm of the ‘U’, A4–A7 form its crook, and A8–A9 complete the dorsal arm. We explore these responses under a range of externally applied stresses and internal anisotropy of cell edge tensions—akin to a planar cell polarity that can drive elongation of cells in a direction parallel to the minimum edge tension—and identify regions of parameter space (edge-tension anisotropy versus stress anisotropy) that best match previous experiments for each germ band segment. All but three germ band segments are best fit when the applied stress anisotropy and the edge-tension anisotropy work against one another—i.e., when the isolated effects would elongate cells in perpendicular directions. Segments in the crook of the germ band (A4–A7) have cells that elongate in the direction of maximum external stress, i.e., external stress anisotropy is dominant. In most other segments, the dominant factor is internal edge-tension anisotropy. These results are consistent with models in which the amnioserosa pulls on the crook of the germ band to mechanically assist retraction. In addition, they suggest a mechanical cue for
Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.
Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue
2014-12-15
We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.
Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell
International Nuclear Information System (INIS)
Dong, Juan; Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Meng, Qingbo
2015-01-01
The mechanism of charge recombination at the interface of n-type electron transport layer (n-ETL) and perovskite absorber on the carrier properties in the perovskite solar cell is theoretically studied. By solving the one dimensional diffusion equation with different boundary conditions, it reveals that the interface charge recombination in the perovskite solar cell can be suppressed by adjusting the conduction band offset (ΔE C ) at ZnO ETL/perovskite absorber interface, thus leading to improvements in cell performance. Furthermore, Mg doped ZnO nanorods ETL has been designed to control the energy band levels. By optimizing the doping amount of Mg, the conduction band minimum of the Mg doped ZnO ETL has been raised up by 0.29 eV and a positive ΔE C of about 0.1 eV is obtained. The photovoltage of the cell is thus significantly increased due to the relatively low charge recombination
Fliess, Michel; Join, Cédric
2013-12-01
'Model-free control'and the corresponding 'intelligent' PID controllers (iPIDs), which already had many successful concrete applications, are presented here for the first time in an unified manner, where the new advances are taken into account. The basics of model-free control is now employing some old functional analysis and some elementary differential algebra. The estimation techniques become quite straightforward via a recent online parameter identification approach. The importance of iPIs and especially of iPs is deduced from the presence of friction. The strange industrial ubiquity of classic PIDs and the great difficulty for tuning them in complex situations is deduced, via an elementary sampling, from their connections with iPIDs. Several numerical simulations are presented which include some infinite-dimensional systems. They demonstrate not only the power of our intelligent controllers but also the great simplicity for tuning them.
Blueshift of the silver plasmon band using controlled nanoparticle dissolution in aqueous solution
DEFF Research Database (Denmark)
Mogensen, Klaus Bo; Kneipp, Katrin
2014-01-01
In this work, we report the size-dependent blue shift of the silver nanoparticle plasmon band in aqueous solution by means of UV/VIS spectroscopy. An oxidative dissolution scheme allows a gradual decrease in the particle sizes by controlled oxidation during recording of the optical spectra. Hence......-dependence of the plasmon peak energy is seen, which is interpreted as an increase in the free electron density of the nanoparticles. Utilization of the size-dependent electronic contribution to the optical response in nanoplasmonic sensors is shown to be a promising extension to improve the sensitivity and specificity...
Human vision model in relation to characteristics of shapes for the Mach band effect.
Wu, Bo-Wen; Fang, Yi-Chin
2015-10-01
For human vision to recognize the contours of objects means that, as the contrast variation at the object's edges increases, so will the Mach band effect of human vision. This paper more deeply investigates the relationship between changes in the contours of an object and the Mach band effect of human vision. Based on lateral inhibition and the Mach band effect, we studied subjects' eyes as they watched images of different shapes under a fixed brightness at 34 cd/m2, with changes of contrast and spatial frequency. Three types of display were used: a television, a computer monitor, and a projector. For each display used, we conducted a separate experiment for each shape. Although the maximum values for the contrast sensitivity function curves of the displays were different, their variations were minimal. As the spatial frequency changed, the diminishing effect of the different lines also was minimal. However, as the shapes at the contour intersections were modified by the Mach band effect, a greater degree of variation occurred. In addition, as the spatial frequency at a contour intersection increased, the Mach band effect became lower, along with changes in the corresponding contrast sensitivity function curve. Our experimental results on the characteristics of human vision have led to what we believe is a new vision model based on tests with different shapes. This new model may be used for future development and implementation of an artificial vision system.
Design and development of low level S-Band RF control system for IRFEL injector LINAC
International Nuclear Information System (INIS)
Mohania, Praveen; Mahawar, Ashish; Singh, Adarsh Pratap; Namdeo, Rajkumar; Baxy, Deodatta; Shrivastava, Purushottam
2015-01-01
A low level RF system has been designed and developed for phase and amplitude stabilization of S- Band microwave power being fed to fundamental buncher cavity and the injector LINAC structure of the Infra Red Free Electron Laser being developed at RRCAT Indore. The system uses analog phase shifters and voltage variable attenuators to control the phase and amplitude respectively, the control voltages for phase shifters and attenuators are generated using a 12 Bit ADC and is software controlled. The system has a slow feedback to correct phase and amplitude drifts occurring due to thermal variations and a fast feed forward mechanism to vary amplitude and phase of the output pulse to compensate beam loading and to shape the klystron output power. The present paper describes the design aspects of the LLRF system. (author)
A model for the direct-to-indirect band-gap transition in monolayer ...
Indian Academy of Sciences (India)
Abstract. A monolayer of MoSe2 is found to be a direct band-gap semiconductor. We show, ... In order to determine appropriate basis for the tight-binding model, the Mo and Se ..... RD thanks the Council of Scientific and Industrial Research.
International Nuclear Information System (INIS)
Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.
2016-01-01
The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)
Thermann, Florian; Ukkat, Jörg; Wollert, Ulrich; Dralle, Henning; Brauckhoff, Michael
2007-11-01
Dialysis shunt-associated steal syndrome (DASS) is a rare complication of hemodialysis access (HA) which preferably occurs in brachial fistulas. Treatment options are discussed controversially. Aim of this study was to evaluate flow-controlled fistula banding. Patients treated between 2002 and 2006 were included in this prospective survey. According to a classification we established, patients were typed DASS I-III (I: short history, no dermal lesions; II: long history, skin lesions; III: long history, gangrene). Surgical therapy was HA banding including controlled reduction (about 50% of initial flow) of HA blood flow (patients type I and II). Patients with type III underwent closure of the HA. In 15 patients with relevant DASS, blood-flow-controlled banding was performed. In ten patients (all type I), banding led to restitution of the hand function while preserving the HA. In five patients (all type II), banding was not successful; in two patients, closure of the HA was performed eventually. In five patients (type III), primary closure of the HA was performed. Four patients with DASS type II but only two with DASS type I had diabetes mellitus (p = 0.006). Banding under blood flow control resulting in an approximately 50% reduction in the initial blood flow is an adequate therapeutic option in patients with brachial HA and type I-DASS. In type II-DASS, banding does not lead to satisfying results, more complex surgical options might be more successful. Diabetes is associated with poor HA outcome in case of DASS.
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study
International Nuclear Information System (INIS)
Rout, G C; Panda, Saswati; Behera, S N
2011-01-01
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e g band. The relaxation time of the e g electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e g electron band splitting and its effect on magnetoresistivity is reported here. (paper)
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study
Energy Technology Data Exchange (ETDEWEB)
Rout, G C [Condensed Matter Physics Group, P G Department of Applied Physics and Ballistics, F M University, Balasore 756 019 (India); Panda, Saswati [Trident Academy of Technology, F2/A, Chandaka Industrial Estate, Bhubaneswar 751 024 (India); Behera, S N, E-mail: gcr@iopb.res.in, E-mail: saswatip7@gmail.com [National Institute of Science and Technology, Palur Hills, Berhampur 761 008 (India)
2011-10-05
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e{sub g} band. The relaxation time of the e{sub g} electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e{sub g} electron band splitting and its effect on magnetoresistivity is reported here. (paper)
Topological model of composite fermions in the cyclotron band generator picture: New insights
Staśkiewicz, Beata
2018-03-01
A combinatorial group theory in the braid groups is correlated with the unusual "anyon" statistic of particles in 2D Hall system in the fractional quantum regime well. On this background has been derived cyclotron band generator as a modification and generalization band generator, first established to solve the word and conjugacy problems in the braid group terms. Topological commensurability condition has been embraced by canonical factors - like, based on the concept of parallel descending cycles. Owing to this we can mathematically capture the general hierarchy of correlated states in the lowest Landau level, describing the fractional quantum Hall effect hierarchy, in terms of cyclotron band generators, especially for those being beyond conventional composite fermions model. It has been also shown that cyclotron braid subgroups, developed for interpretation of Laughlin correlations, are a special case of the right-angled Artin groups.
Two-band model with off-diagonal occupation dependent hopping rate
International Nuclear Information System (INIS)
Zawadowski, A.
1989-01-01
In this paper two-band hopping model is treated on a two-dimensional square lattice. The atoms are located at the corners and the middles of the edges of the squares. In addition to the strongly overlapping orbitals of the atoms, there are extra orbitals at the corners, which are weakly hybridized. The assumption is made that the Fermi level is inside the broad band and is every near to the narrow band formed by the extra orbitals. The hamiltonian is Hubbard type, but the off-diagonal part of the two-site interaction t is kept also where one creation or annihilation operator acts on the extra orbital and the others on one of its neighbors. The weak coupling t is enhanced by the on-site Coulomb repulsion at the corners, which enhancement is a power function of the ratio of the broad band width and the narrow bank position measured from the Fermi level. That enhancement is obtained by summation of logarithmic Kondo-type corrections of orbital origin, which reflects the formation of a ground state of new type with strong orbital and spin correlations. Interaction between the particles of the broad band is generated by processes with one heavy and one light particle in the intermediate state
Modeling and experimental studies of a side band power re-injection locked magnetron
Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang
2016-12-01
A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).
Directory of Open Access Journals (Sweden)
D. P. Samajdar
2014-01-01
Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.
Analysis and control of wakefields in X-band crab cavities for Compact Linear Collider
Energy Technology Data Exchange (ETDEWEB)
Ambattu, P.K., E-mail: praveen-kumar.ambattu@stfc.ac.uk [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Lancaster University, Lancaster LA1 4 YW (United Kingdom); Burt, G. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Lancaster University, Lancaster LA1 4 YW (United Kingdom); Khan, V.F.; Jones, R.M. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Dexter, A. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Lancaster University, Lancaster LA1 4 YW (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States)
2011-11-21
The Compact Linear Collider requires a crab cavity on each beamline prior to the interaction point to rotate the bunches before collision. The cavities are X-band travelling wave type and are located close to the final doublet of the beam delivery system. This makes the beam very sensitive to transverse momentum imparted by wakefields; hence the wakefields must be tightly controlled. Of special concerns are the orthogonal polarisation of the operating mode and the fundamental monopole mode of the crab cavity. The former mode is at the same frequency as the operating mode of a cylindrically symmetric cavity and the latter one is at a lower frequency and hence is difficult to damp using a single means. In this paper major problematic modes of the crab cavity are investigated and damping requirements for them are calculated. Possibility of meeting the required wakefield control using waveguide damping and choke damping is thoroughly investigated. As a comparison, damped-detuning is also investigated.
A mathematical model for the deformation of the eyeball by an elastic band.
Keeling, Stephen L; Propst, Georg; Stadler, Georg; Wackernagel, Werner
2009-06-01
In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic band. This article presents a mathematical model for the mechanics of the combined eye/band structure along with an algorithm to compute the model solutions. These predict the immediate and the lasting indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-value problem for a non-linear second-order ordinary differential equation that describes the minimizing static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.
Can control banding be useful for the safe handling of nanomaterials? A systematic review
International Nuclear Information System (INIS)
Eastlake, Adrienne; Zumwalde, Ralph; Geraci, Charles
2016-01-01
Control banding (CB) is a risk management strategy that has been used to identify and recommend exposure control measures to potentially hazardous substances for which toxicological information is limited. The application of CB and level of expertise required for implementation and management can differ depending on knowledge of the hazard potential, the likelihood of exposure, and the ability to verify the effectiveness of exposure control measures. A number of different strategies have been proposed for using CB in workplaces where exposure to engineered nanomaterials (ENMs) can occur. However, it is unclear if the use of CB can effectively reduce worker exposure to nanomaterials. A systematic review of studies was conducted to answer the question “can control banding be useful to ensure adequate controls for the safe handling of nanomaterials.” A variety of databases were searched to identify relevant studies pertaining to CB. Database search terms included ‘control,’ ‘hazard,’ ‘exposure,’ and ‘risk’ banding as well as the use of these terms in the context of nanotechnology or nanomaterials. Other potentially relevant studies were identified during the review of articles obtained in the systematic review process. Identification of studies and the extraction of data were independently conducted by the reviewers. Quality of the studies was assessed using the methodological index for nonrandomized studies. The quality of the evidence was evaluated using grading of recommendations assessment, development and evaluation (GRADE). A total of 235 records were identified in the database search in which 70 records were determined to be eligible for full-text review. Only two studies were identified that met the inclusion criteria. These studies evaluated the application of the CB Nanotool in workplaces where ENMs were being handled. A total of 32 different nanomaterial handling activities were evaluated in these studies by comparing the recommended
Can control banding be useful for the safe handling of nanomaterials? A systematic review
Eastlake, Adrienne; Zumwalde, Ralph; Geraci, Charles
2016-06-01
Control banding (CB) is a risk management strategy that has been used to identify and recommend exposure control measures to potentially hazardous substances for which toxicological information is limited. The application of CB and level of expertise required for implementation and management can differ depending on knowledge of the hazard potential, the likelihood of exposure, and the ability to verify the effectiveness of exposure control measures. A number of different strategies have been proposed for using CB in workplaces where exposure to engineered nanomaterials (ENMs) can occur. However, it is unclear if the use of CB can effectively reduce worker exposure to nanomaterials. A systematic review of studies was conducted to answer the question "can control banding be useful to ensure adequate controls for the safe handling of nanomaterials." A variety of databases were searched to identify relevant studies pertaining to CB. Database search terms included `control,' `hazard,' `exposure,' and `risk' banding as well as the use of these terms in the context of nanotechnology or nanomaterials. Other potentially relevant studies were identified during the review of articles obtained in the systematic review process. Identification of studies and the extraction of data were independently conducted by the reviewers. Quality of the studies was assessed using the methodological index for nonrandomized studies. The quality of the evidence was evaluated using grading of recommendations assessment, development and evaluation (GRADE). A total of 235 records were identified in the database search in which 70 records were determined to be eligible for full-text review. Only two studies were identified that met the inclusion criteria. These studies evaluated the application of the CB Nanotool in workplaces where ENMs were being handled. A total of 32 different nanomaterial handling activities were evaluated in these studies by comparing the recommended exposure controls using
Can control banding be useful for the safe handling of nanomaterials? A systematic review
Energy Technology Data Exchange (ETDEWEB)
Eastlake, Adrienne, E-mail: aeastlake@cdc.gov [National Institute for Occupational Safety and Health, Nanotechnology Research Center (United States); Zumwalde, Ralph [RCS Corporation (United States); Geraci, Charles [National Institute for Occupational Safety and Health, Nanotechnology Research Center (United States)
2016-06-15
Control banding (CB) is a risk management strategy that has been used to identify and recommend exposure control measures to potentially hazardous substances for which toxicological information is limited. The application of CB and level of expertise required for implementation and management can differ depending on knowledge of the hazard potential, the likelihood of exposure, and the ability to verify the effectiveness of exposure control measures. A number of different strategies have been proposed for using CB in workplaces where exposure to engineered nanomaterials (ENMs) can occur. However, it is unclear if the use of CB can effectively reduce worker exposure to nanomaterials. A systematic review of studies was conducted to answer the question “can control banding be useful to ensure adequate controls for the safe handling of nanomaterials.” A variety of databases were searched to identify relevant studies pertaining to CB. Database search terms included ‘control,’ ‘hazard,’ ‘exposure,’ and ‘risk’ banding as well as the use of these terms in the context of nanotechnology or nanomaterials. Other potentially relevant studies were identified during the review of articles obtained in the systematic review process. Identification of studies and the extraction of data were independently conducted by the reviewers. Quality of the studies was assessed using the methodological index for nonrandomized studies. The quality of the evidence was evaluated using grading of recommendations assessment, development and evaluation (GRADE). A total of 235 records were identified in the database search in which 70 records were determined to be eligible for full-text review. Only two studies were identified that met the inclusion criteria. These studies evaluated the application of the CB Nanotool in workplaces where ENMs were being handled. A total of 32 different nanomaterial handling activities were evaluated in these studies by comparing the recommended
Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator
Directory of Open Access Journals (Sweden)
M. Konrad
2012-05-01
Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.
Anomaly in the band centre of the one-dimensional Anderson model
Kappus, M.; Wegner, F.
1981-03-01
We calculate the density of states and various characteristic lengths of the one-dimensional Anderson model in the limit of weak disorder. All these quantities show anomalous fluctuations near the band centre. This has already been observed for the density of states in a different model by Gorkov and Dorokhov, and is in close agreement with a Monte-Carlo calculation for the localization length by Czycholl, Kramer and Mac-Kinnon.
High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture
2017-11-22
High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating
Can Control Banding be Useful for the Safe Handling of Nanomaterials? A Systematic Review
Eastlake, Adrienne; Zumwalde, Ralph; Geraci, Charles
2016-01-01
Objectives Control banding (CB) is a risk management strategy that has been used to identify and recommend exposure control measures to potentially hazardous substances for which toxicological information is limited. The application of CB and level of expertise required for implementation and management can differ depending on knowledge of the hazard potential, the likelihood of exposure, and the ability to verify the effectiveness of exposure control measures. A number of different strategies have been proposed for using CB in workplaces where exposure to engineered nanomaterials (ENMs) can occur. However, it is unclear if the use of CB can effectively reduce worker exposure to nanomaterials. A systematic review of studies was conducted to answer the question “can control banding be useful to ensure adequate controls for the safe handling of nanomaterials.” Methods A variety of databases were searched to identify relevant studies pertaining to CB. Database search terms included ‘control’, ‘hazard’, ‘exposure’ and ‘risk’ banding as well as the use of these terms in the context of nanotechnology or nanomaterials. Other potentially relevant studies were identified during the review of articles obtained in the systematic review process. Identification of studies and the extraction of data were independently conducted by the reviewers. Quality of the studies was assessed using the Methodological Index for Non-Randomized Studies (MINORS). The quality of the evidence was evaluated using Grading of Recommendations Assessment, Development and Evaluation (GRADE). Results A total of 235 records were identified in the database search in which 70 records were determined to be eligible for full-text review. Only two studies were identified that met the inclusion criteria. These studies evaluated the application of the CB Nanotool in workplaces where ENMs were being handled. A total of 32 different nanomaterial handling activities were evaluated in these
Control Valve Stiction Identification, Modelling, Quantification and Control - A Review
Directory of Open Access Journals (Sweden)
Srinivasan Arumugam
2011-09-01
Full Text Available Most of the processes found in process industries exhibit undesirable nonlinearity due to backlash, saturation, hysteresis, stiction (friction, dead-zone and stuck-fault existing in control valves. The control valve is the actuator for most process control loops and, as the only moving part in the loop, its function is to implement the control action. If the control valve malfunctions, the performance of the control loop is likely to deteriorate, no matter how good the controller is. Commonly encountered control valve problems include nonlinear responses to the demand signal caused by effects such as stiction, dead-band or saturation. Because of these problems, the control loop may be oscillatory, which in turn may cause oscillations in many process variables causing a range of operational problems including increased valve wear. Understanding nonlinear behaviour of control valves in order to maintain the quality of the end products in the industry, this review article surveys the identification, modelling, estimation and design of dynamic models of stiction nonlinearity and providing appropriate controller to obtain optimum responses of the process. The primary objective of this work is to present state-of-art-review of common nonlinear problems associated with mechanical and chemical processes for encouraging researchers, practicing engineers working in this field, so that readers can invent their goals for future research work on nonlinear systems identification and control.
X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling
Directory of Open Access Journals (Sweden)
A. Montuori
2013-02-01
Full Text Available In this paper, X-band COSMO-SkyMed^{©} synthetic aperture radar (SAR wind field retrieval is investigated, and the obtained data are used to force a coastal ocean circulation model. The SAR data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR Huge Region COSMO-SkyMed^{©} SAR data, gathered in the southern Tyrrhenian Sea during the summer and winter seasons of 2010. The SAR-based wind vector field estimation is accomplished by resolving both the SAR-based wind speed and wind direction retrieval problems independently. The sea surface wind speed is retrieved by means of a SAR wind speed algorithm based on the azimuth cut-off procedure, while the sea surface wind direction is provided by means of a SAR wind direction algorithm based on the discrete wavelet transform multi-resolution analysis. The obtained wind fields are compared with ground truth data provided by both ASCAT scatterometer and ECMWF model wind fields. SAR-derived wind vector fields and ECMWF model wind data are used to construct a blended wind product regularly sampled in both space and time, which is then used to force a coastal circulation model of a southern Tyrrhenian coastal area to simulate wind-driven circulation processes. The modeling results show that X-band COSMO-SkyMed^{©} SAR data can be valuable in providing effective wind fields for coastal circulation modeling.
Energy Technology Data Exchange (ETDEWEB)
Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)
2015-08-07
The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.
Channel Model on Various Frequency Bands for Wearable Body Area Network
Katayama, Norihiko; Takizawa, Kenichi; Aoyagi, Takahiro; Takada, Jun-Ichi; Li, Huan-Bang; Kohno, Ryuji
Body Area Network (BAN) is considered as a promising technology in supporting medical and healthcare services by combining with various biological sensors. In this paper, we look at wearable BAN, which provides communication links among sensors on body surface. In order to design a BAN that manages biological information with high efficiency and high reliability, the propagation characteristics of BAN must be thoroughly investigated. As a preliminary effort, we measured the propagation characteristics of BAN at frequency bands of 400MHz, 600MHz, 900MHz and 2400MHz respectively. Channel models for wearable BAN based on the measurement were derived. Our results show that the channel model can be described by using a path loss model for all frequency bands investigated.
International Nuclear Information System (INIS)
Vukovic, N; Radovanovic, J; Milanovic, V
2014-01-01
We analyze the influence of conduction-band nonparabolicity on bound electronic states in the active region of a quantum cascade laser (QCL). Our model assumes expansion of the conduction-band dispersion relation up to a fourth order in wavevector and use of a suitable second boundary condition at the interface of two III-V semiconductor layers. Numerical results, obtained by the transfer matrix method, are presented for two mid-infrared GaAs/Al 0.33 Ga 0.67 As QCL active regions, and they are in very good agreement with experimental data found in the literature. Comparison with a different nonparabolicity model is presented for the example of a GaAs/Al 0.38 Ga 0.62 As-based mid-IR QCL. Calculations have also been carried out for one THz QCL structure to illustrate the possible application of the model in the terahertz part of the spectrum. (paper)
Band-selective shaped pulse for high fidelity quantum control in diamond
International Nuclear Information System (INIS)
Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Zhang, Fei-Hao; Gu, Chang-Zhi; Pan, Xin-Yu; Long, Gui-Lu
2014-01-01
High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host 14 N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby 13 C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.
Band-selective shaped pulse for high fidelity quantum control in diamond
Energy Technology Data Exchange (ETDEWEB)
Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Fei-Hao [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Gu, Chang-Zhi; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Long, Gui-Lu [Tsinghua National Laboratory for Information Science and Technology, Beijing 100084 (China); State Key Laboratory of Low-Dimensional Physics and Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)
2014-06-30
High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.
Controllable Synthesis of Band Gap-Tunable and Monolayer Transition Metal Dichalcogenide Alloys
Directory of Open Access Journals (Sweden)
Sheng-Han eSu
2014-07-01
Full Text Available The electronic and optical properties of transition metal dichalcogenide (TMD materials are directly governed by their energy gap; thus, the band gap engineering has become an important topic recently. Theoretical and some experimental results have indicated that these monolayer TMD alloys exhibit direct-gap properties and remain stable at room temperature, making them attractive for optoelectronic applications. Here we systematically compared the two approaches of forming MoS2xSe2(1-x monolayer alloys: selenization of MoS2 and sulfurization of MoSe2. The optical energy gap of as-grown CVD MoS2 can be continuously modulated from 1.86 eV (667 nm to 1.57 eV (790 nm controllable by the reaction temperature. Spectroscopic and microscopic evidences show that the Mo-S bonds can be replaced by the Mo-Se bonds in a random and homogeneous manner. By contrast, the replacement of Mo-Se by Mo-S does not randomly occur in the MoSe2 lattice, where the reaction preferentially occurs along the crystalline orientation of MoSe2 and thus the MoSe2/MoS2 biphases are easily observed in the alloys, which makes the optical band gap of these alloys distinctly different. Therefore, the selenization of metal disulfide is preferred and the proposed synthetic strategy opens up a simple route to control the atomic structure as well as optical properties of monolayer TMD alloys.
Energy Technology Data Exchange (ETDEWEB)
Cha, Sungsu, E-mail: sscha@kaeri.re.kr [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Kim, Yujong; Lee, Byung Cheol [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Lee, Seung Hyun [Department of Energy Science, Sungkyunkwan University(SKKU), Suwon 16419 (Korea, Republic of); Buaphad, Pikad [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Accelerator and Nuclear Fusion Physical Engineering, University of Science and Technology(UST), Daejeon 34113 (Korea, Republic of)
2017-05-21
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per
International Nuclear Information System (INIS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-01-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per
Universality for 1d Random Band Matrices: Sigma-Model Approximation
Shcherbina, Mariya; Shcherbina, Tatyana
2018-02-01
The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in (J Stat Phys 164:1233-1260, 2016; Commun Math Phys 351:1009-1044, 2017). We consider random Hermitian block band matrices consisting of W× W random Gaussian blocks (parametrized by j,k \\in Λ =[1,n]^d\\cap Z^d ) with a fixed entry's variance J_{jk}=δ _{j,k}W^{-1}+β Δ _{j,k}W^{-2} , β >0 in each block. Taking the limit W→ ∞ with fixed n and β , we derive the sigma-model approximation of the second correlation function similar to Efetov's one. Then, considering the limit β , n→ ∞, we prove that in the dimension d=1 the behaviour of the sigma-model approximation in the bulk of the spectrum, as β ≫ n , is determined by the classical Wigner-Dyson statistics.
Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet
Frisch, J; Decker, V; Hendrickson, L; Markiewicz, T W; Partridge, R; Seryi, Andrei
2004-01-01
The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.
Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet
International Nuclear Information System (INIS)
Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; SLAC
2006-01-01
The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system
True photonic band-gap mode-control in VCSEL structures
DEFF Research Database (Denmark)
Romstad, F.; Madsen, M.; Birkedal, Dan
2003-01-01
Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....
Cross-band noise model refinement for transform domain Wyner–Ziv video coding
DEFF Research Database (Denmark)
Huang, Xin; Forchhammer, Søren
2012-01-01
TDWZ video coding trails that of conventional video coding solutions, mainly due to the quality of side information, inaccurate noise modeling and loss in the final coding step. The major goal of this paper is to enhance the accuracy of the noise modeling, which is one of the most important aspects...... influencing the coding performance of DVC. A TDWZ video decoder with a novel cross-band based adaptive noise model is proposed, and a noise residue refinement scheme is introduced to successively update the estimated noise residue for noise modeling after each bit-plane. Experimental results show...... that the proposed noise model and noise residue refinement scheme can improve the rate-distortion (RD) performance of TDWZ video coding significantly. The quality of the side information modeling is also evaluated by a measure of the ideal code length....
An integrated approach to model strain localization bands in magnesium alloys
Baxevanakis, K. P.; Mo, C.; Cabal, M.; Kontsos, A.
2018-02-01
Strain localization bands (SLBs) that appear at early stages of deformation of magnesium alloys have been recently associated with heterogeneous activation of deformation twinning. Experimental evidence has demonstrated that such "Lüders-type" band formations dominate the overall mechanical behavior of these alloys resulting in sigmoidal type stress-strain curves with a distinct plateau followed by pronounced anisotropic hardening. To evaluate the role of SLB formation on the local and global mechanical behavior of magnesium alloys, an integrated experimental/computational approach is presented. The computational part is developed based on custom subroutines implemented in a finite element method that combine a plasticity model with a stiffness degradation approach. Specific inputs from the characterization and testing measurements to the computational approach are discussed while the numerical results are validated against such available experimental information, confirming the existence of load drops and the intensification of strain accumulation at the time of SLB initiation.
Magnetic Chern bands and triplon Hall effect in an extended Shastry-Sutherland model
Malki, M.; Schmidt, K. P.
2017-05-01
We study topological properties of one-triplon bands in an extended Shastry-Sutherland model relevant for the frustrated quantum magnet SrCu2(BO3)2 . To this end perturbative continuous unitary transformations are applied about the isolated dimer limit allowing us to calculate the one-triplon dispersion up to high order in various couplings including intra- and interdimer Dzyaloshinskii-Moriya interactions and a general uniform magnetic field. We determine the Berry curvature and the Chern number of the different one-triplon bands. We demonstrate the occurrence of Chern numbers ±1 and ±2 for the case that two components of the magnetic field are finite. Finally, we also calculate the triplon Hall effect arising at finite temperatures.
International Nuclear Information System (INIS)
Guo Li-Xin; Gou Xue-Yin; Zhang Lian-Bo
2014-01-01
In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values in the microwave band by using the method of moments, and the relationship between the bistatic scattering coefficient and the BRDF of a rough surface is expressed. From the theory of the parameters of the rough surface BRDF, the parameters of the BRDF are obtained using a genetic algorithm. The BRDF of a rough surface is calculated using the obtained parameter values. Further, the fitting values and theoretical calculations of the BRDF are compared, and the optimization results are in agreement with the theoretical calculation results. Finally, a reference for BRDF modeling of a Gaussian rough surface in the microwave band is provided by the proposed method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Fermi surface changes in dilute magnesium alloys: a pseudopotential band structure model
International Nuclear Information System (INIS)
Fung, W.K.
1976-01-01
The de Haas-van Alphen effect has been used to study the Fermi surface of pure magnesium and its dilute alloys containing lithium and indium. The quantum oscillations in magnetization were detected by means of a torque magnetometer in magnetic field up to 36 kilogauss and temperature range of 4.2 0 to 1.7 0 K. The results provide information on the effects of lithium and indium solutes on the Fermi surface of magnesium in changes of extremal cross sections and effective masses as well as the relaxation times associated with the orbits. The nonlocal pseudopotential model proposed by Kimball, Stark and Mueller has been fitted to the Fermi surface of magnesium and extended to include the dilute alloys, fitting all the observed de Haas-van Alphen frequencies with an accuracy of better than 1 percent. A modified rigid band interpretation including both Fermi energy and local band edge changes computed from the model, gives an overall satisfactory description of the observed frequency shifts. With the pseudo-wavefunctions provided by the nonlocal model, the relaxation times in terms of Dingle temperatures for several orbits have been predicted using Sorbello's multiple-plane-wave phase shift model. The calculation with phase shifts obtained from a model potential yields a greater anisotropy than has been observed experimentally, while a two-parameter phase shift model provides a good fit to the experimental results
Soil Moisture Estimate under Forest using a Semi-empirical Model at P-Band
Truong-Loi, M.; Saatchi, S.; Jaruwatanadilok, S.
2013-12-01
In this paper we show the potential of a semi-empirical algorithm to retrieve soil moisture under forests using P-band polarimetric SAR data. In past decades, several remote sensing techniques have been developed to estimate the surface soil moisture. In most studies associated with radar sensing of soil moisture, the proposed algorithms are focused on bare or sparsely vegetated surfaces where the effect of vegetation can be ignored. At long wavelengths such as L-band, empirical or physical models such as the Small Perturbation Model (SPM) provide reasonable estimates of surface soil moisture at depths of 0-5cm. However for densely covered vegetated surfaces such as forests, the problem becomes more challenging because the vegetation canopy is a complex scattering environment. For this reason there have been only few studies focusing on retrieving soil moisture under vegetation canopy in the literature. Moghaddam et al. developed an algorithm to estimate soil moisture under a boreal forest using L- and P-band SAR data. For their studied area, double-bounce between trunks and ground appear to be the most important scattering mechanism. Thereby, they implemented parametric models of radar backscatter for double-bounce using simulations of a numerical forest scattering model. Hajnsek et al. showed the potential of estimating the soil moisture under agricultural vegetation using L-band polarimetric SAR data and using polarimetric-decomposition techniques to remove the vegetation layer. Here we use an approach based on physical formulation of dominant scattering mechanisms and three parameters that integrates the vegetation and soil effects at long wavelengths. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the Distorted Born Approximation (DBA). The simplified model has three equations and three unknowns, preserving the three dominant scattering mechanisms of volume, double-bounce and surface for three polarized backscattering
Calculation of the band structure of 2d conducting polymers using the network model
International Nuclear Information System (INIS)
Sabra, M. K.; Suman, H.
2007-01-01
the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)
Rain effect on Aquarius L-band Emissivity and Backscatter Model Functions
Tang, W.; Yueh, S. H.; Fore, A.; Neumann, G.; Hayashi, A.
2012-12-01
Remote sensing of sea surface salinity (SSS) is being performed by Aquarius and SMOS missions, which are using L-band radiometry to sense the microwave emissions from sea surfaces. To enable accurate SSS retrieval, it is essential to correct the impact of sea surface roughness on L-band brightness temperatures. In addition, the impact of rain has to be carefully assessed and accounted for. Although the atmospheric attenuation caused by raindrops are likely negligible at 1.4GHz, other factors must be considered because they may have indirect but important contribution to the surface roughness and consequently L-band brightness temperatures. For example, the wind speed dependent roughness correction will be corrupted when rain striking the water, creating rings, stalks, and crowns from which the signal scatters. It is also unknown how long the freshwater stays at surface while through the oceanic mixing process at various regions over global oceans. We collocated the Aquarius L-band data with various wind products, including SSM/I, NCEP, ASCAT and WindSAT, as well as the SSM/I and WindSAT rain products. During the first four months of Aquarius mission, near 1.9 million pixels are identified under rain conditions by either SSM/I or WindSAT. We derived the L-band emissivity and backscatter geophysical model functions (GMF), parameterized by SSM/I and NCEP winds for rain-free conditions. However, the residual ocean surface emissivity (the Aquarius measured minus the rain-free model predictions) reveals profound resemblance with global precipitation pattern. In region dominated by rain, e.g. ITCZ, northern hemisphere storm track, and Indian Ocean partially under the influence of summer monsoon, the GMF built using rain free data underestimates excess emissivity about 0.5 to 1 K. The dependence of residual of emissivity and backscatter is shown as a function of wind speed and rain rate. A modified GMF is developed including rain rate as one of the parameters. Due to
Active control: Wind turbine model
Energy Technology Data Exchange (ETDEWEB)
Bindner, Henrik
1999-07-01
This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.
Active control: Wind turbine model
DEFF Research Database (Denmark)
Bindner, H.
1999-01-01
This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...
Modeling of a Robust Confidence Band for the Power Curve of a Wind Turbine.
Hernandez, Wilmar; Méndez, Alfredo; Maldonado-Correa, Jorge L; Balleteros, Francisco
2016-12-07
Having an accurate model of the power curve of a wind turbine allows us to better monitor its operation and planning of storage capacity. Since wind speed and direction is of a highly stochastic nature, the forecasting of the power generated by the wind turbine is of the same nature as well. In this paper, a method for obtaining a robust confidence band containing the power curve of a wind turbine under test conditions is presented. Here, the confidence band is bound by two curves which are estimated using parametric statistical inference techniques. However, the observations that are used for carrying out the statistical analysis are obtained by using the binning method, and in each bin, the outliers are eliminated by using a censorship process based on robust statistical techniques. Then, the observations that are not outliers are divided into observation sets. Finally, both the power curve of the wind turbine and the two curves that define the robust confidence band are estimated using each of the previously mentioned observation sets.
Fast integration-based prediction bands for ordinary differential equation models.
Hass, Helge; Kreutz, Clemens; Timmer, Jens; Kaschek, Daniel
2016-04-15
To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the model's parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. In this article, reliable and smooth point-wise prediction and confidence bands to assess the model's uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org helge.hass@fdm.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e
Transmission line model and fields analysis of metamaterial absorber in the terahertz band.
Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li
2009-10-26
Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.
Pattern solutions of the Klausmeier Model for banded vegetation in semi-arid environments I
International Nuclear Information System (INIS)
Sherratt, Jonathan A
2010-01-01
In many semi-arid environments, vegetation cover is sparse, and is self-organized into large-scale spatial patterns. In particular, banded vegetation is typical on hillsides. Mathematical modelling is widely used to study these banded patterns, and many models are effectively extensions of a coupled reaction–diffusion–advection system proposed by Klausmeier (1999 Science 284 1826–8). However, there is currently very little mathematical theory on pattern solutions of these equations. This paper is the first in a series whose aim is a comprehensive understanding of these solutions, which can act as a springboard both for future simulation-based studies of the Klausmeier model, and for analysis of model extensions. The author focusses on a particular part of parameter space, and derives expressions for the boundaries of the parameter region in which patterns occur. The calculations are valid to leading order at large values of the 'slope parameter', which reflects a comparison of the rate of water flow downhill with the rate of vegetation dispersal. The form of the corresponding patterns is also studied, and the author shows that the leading order equations change close to one boundary of the parameter region in which there are patterns, leading to a homoclinic solution. Conclusions are drawn on the way in which changes in mean annual rainfall affect pattern properties, including overall biomass productivity
Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB
Quartullo, D.; Shaposhnikova, E.; Timko, H.
2017-07-01
Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
International Nuclear Information System (INIS)
Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.
2007-02-01
Large scale shell model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 MeV and 5.21 MeV respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf-shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations, in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t) ∼ 70 e fm 2 up to J=10, that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed band are maximally mixed. (authors)
International Nuclear Information System (INIS)
Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.
2007-01-01
Large-scale shell-model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 and 5.21 MeV, respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations; in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t)∼170 e fm 2 up to J=10 that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed bands are maximally mixed
A linear two-layer model for flat-band shift in irradiated MOS devices
Energy Technology Data Exchange (ETDEWEB)
Churchill, J N; Holstrom, F E; Collins, T W [International Business Machines Corp., San Jose, Calif. (USA)
1976-04-01
A closed-form mathematical expression is derived for the flat-band shift as a function of gate bias during electron irradiation. The model assumes that the charge in the oxide consists of charged layers of variable thickness at each of the two interfaces, depending on voltage polarity and magnitude. The region of extreme linearity which has been observed by numerous investigators and which normally occurs for the relatively small values of gate bias voltages fits this closed-form solution. Analytical results compare favourably with data obtained from 500 to 700 A thick oxides and with other previously published data.
Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell
Imran, Ali; Jiang, Jianliang; Eric, Debora; Yousaf, Muhammad
2018-01-01
Quantum Dots (QDs) intermediate band solar cells (IBSC) are the most attractive candidates for the next generation of photovoltaic applications. In this paper, theoretical model of InAs/GaAs device has been proposed, where we have calculated the effect of variation in the thickness of intrinsic and IB layer on the efficiency of the solar cell using detailed balance theory. IB energies has been optimized for different IB layers thickness. Maximum efficiency 46.6% is calculated for IB material under maximum optical concentration.
Band-structure-based collisional model for electronic excitations in ion-surface collisions
International Nuclear Information System (INIS)
Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.
2005-01-01
Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed
Specific heat of MgB2 in a one- and a two-band model from first-principles calculations
International Nuclear Information System (INIS)
Golubov, A.A.; Dolgov, O.V.; Jepsen, O.; Kong, Y.; Andersen, O.K.; Gibson, B.J.; Ahn, K.; Kremer, R.K.; Kortus, J.
2002-01-01
The heat capacity anomaly at the transition to superconductivity of the layered superconductor MgB 2 is compared to first-principles calculations with the Coulomb repulsion, μ*, as the only parameter which is fixed to give the measured T c . We solve the Eliashberg equations for both an isotropic one-band model and a two-band model with different superconducting gaps on the π-band anσd-band Fermi surfaces. The agreement with experiments is considerably better for the two-band model than for the one-band model. (author)
SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING
International Nuclear Information System (INIS)
Vollmer, B.; Bonnarel, F.; Louys, M.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; Van Driel, W.; Sabatini, S.; MacArthur, L. A.
2013-01-01
We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg 2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ∼20% more mock LSB galaxies and ∼40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is
Controlling chaos in Internet congestion control model
International Nuclear Information System (INIS)
Chen Liang; Wang Xiaofan; Han Zhengzhi
2004-01-01
The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p max . This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic
Controlling chaos in Internet congestion control model
Energy Technology Data Exchange (ETDEWEB)
Chen Liang E-mail: chenmoon110@yahoo.com.cn; Wang Xiaofan; Han Zhengzhi
2004-07-01
The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p{sub max}. This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic.
Generalized One-Band Model Based on Zhang-Rice Singlets for Tetragonal CuO
Hamad, I. J.; Manuel, L. O.; Aligia, A. A.
2018-04-01
Tetragonal CuO (T-CuO) has attracted attention because of its structure similar to that of the cuprates. It has been recently proposed as a compound whose study can give an end to the long debate about the proper microscopic modeling for cuprates. In this work, we rigorously derive an effective one-band generalized t -J model for T-CuO, based on orthogonalized Zhang-Rice singlets, and make an estimative calculation of its parameters, based on previous ab initio calculations. By means of the self-consistent Born approximation, we then evaluate the spectral function and the quasiparticle dispersion for a single hole doped in antiferromagnetically ordered half filled T-CuO. Our predictions show very good agreement with angle-resolved photoemission spectra and with theoretical multiband results. We conclude that a generalized t -J model remains the minimal Hamiltonian for a correct description of single-hole dynamics in cuprates.
DEFF Research Database (Denmark)
Wigneron, J-P.; Pardé, M.; Waldteufel, P.
2004-01-01
To retrieve soil moisture over vegetation-covered areas from microwave radiometry, it is necessary to account for vegetation effects. At L-band, many retrieval approaches are based on a simple model that relies on two vegetation parameters: the optical depth (tau) and the single-scattering albedo......, wheat, grass, and alfalfa) based on L-band experimental datasets. The results should be useful for developing more accurate forward modeling and retrieval methods over mixed pixels including a variety of vegetation types....
Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes
International Nuclear Information System (INIS)
Vargas, Carlos E.; Hirsch, Jorge G.
2004-01-01
The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed
Application of the Tor Vergata Scattering Model to L Band Backscatter During the Corn Growth Cycle
Joseph, A. T.; vanderVelde, R.; ONeill, P. E.; Lang, R.; Gish, T.
2010-01-01
At the USDA's Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) experimental site in Beltsville, Maryland, USA) a field campaign took place throughout the 2002 corn growth cycle from May 10th (emergence of corn crops) to October 2nd (harvest). One of the microwave instruments deployed was the multi-frequency (X-, C- and L-band) quad-polarized (HH, HV, VV, VH) NASA GSFC/George Washington University (GWU) truck mounted radar. During the field campaign, this radar system provided once a week fully polarized C- and L-band (4.75 and 1.6 GHz) backscatter measurements from incidence angle of 15, 35, and 55 degrees. In support of microwave observations, an extensive ground characterization took place, which included measurements of surface roughness, soil moisture, vegetation biomass and morphology. The field conditions during the campaign are characterized by several dry downs with a period of drought in the month of August. Peak biomass the corn canopies was reached on July 24th with a total biomass of approximately 6.5 kg/sq m. This dynamic range in both soil moisture and vegetation conditions within the data set is ideal for the validation of discrete medium vegetation scattering models. In this study, we compare the L band backscatter measurements with simulations by the Tor Vergata model (ferrazzoli and Guerriero 1996). The measured soil moisture, vegetation biomass and most reliably measured vegetation morphological parameters (e.g. number of leaves, number of stems and stem height) were used as input for the Tor Vergata model. The more uncertain model parameters (e.g. surface roughness, leaf thickness) and the stem diameter were optimized using a parameter estimation routine based on the Levenberg-Marquardt algorithm. As cost function for this optimization, the HH and VV polarized backscatter measured and stimulated by the TOR Vergata model for incidence angle of 15, 35, and 55 degrees were used (6 measurements in total). The calibrated
Band alignment in organic devices: Photoemission studies of model oligomers on In2O3
International Nuclear Information System (INIS)
Blyth, R. I. R.; Duschek, R.; Koller, G.; Netzer, F. P.; Ramsey, M. G.
2001-01-01
The interfaces of In 2 O 3 , a model for indium - tin - oxide (ITO), with benzene, thiophene, and benzaldehyde, models for technologically important organic molecules, are studied using angle resolved ultraviolet photoemission and work function measurements. Band alignment diagrams for hypothetical Al/organic/ITO devices have been drawn, using values determined from this work and previously published studies of these molecules on Al(111). The similarity between the bonding of benzene and thiophene on Al(111) and In 2 O 3 , i.e., largely electrostatic, leads to near identical alignment at both metal and oxide interfaces. This indicates that clean Al and ITO will make a very poor electron/hole injecting pair. We suggest that the apparent efficiency of Al as an electron injecting contact in real devices is due to the presence of oxygen at the Al/organic interface. For benzaldehyde the interaction with In 2 O 3 is largely electrostatic, in contrast to the covalent bonds formed on Al(111). This leads to very different alignment at the Al and oxide interfaces, showing the importance of the particular organic - inorganic interaction in determining band alignment. [copyright] 2001 American Institute of Physics
Modelling and controlling hydropower plants
Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan
2013-01-01
Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance. Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales. Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...
da Silva Rocha Paz, Igor; Ichiba, Abdellah; Skouri-Plakali, Ilektra; Lee, Jisun; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2017-04-01
Climate change and global warming are expected to make precipitation events more frequent, more severe and more local. This may have serious consequences for human health, the environment, cultural heritage, economic activities, utilities and public service providers. Then precipitation risk and water management is a key challenge for densely populated urban areas. Applications derived from high (time and space) resolution observation of precipitations are to make our cities more weather-ready. Finer resolution data available from X-band dual radar measurements enhance engineering tools as used for urban planning policies as well as protection (mitigation/adaptation) strategies to tackle climate-change related weather events. For decades engineering tools have been developed to work conveniently either with very local rain gauge networks, or with mainly C-band weather radars that have gradually been set up for space-time remote sensing of precipitation. Most of the time, the C-band weather radars continue to be calibrated by the existing rain gauge networks. Inhomogeneous distributions of rain gauging networks lead to only a partial information on the rainfall fields. In fact, the statistics of measured rainfall is strongly biased by the fractality of the measuring networks. This fractality needs to be properly taken in to account to retrieve the original properties of the rainfall fields, in spite of the radar data calibration. In this presentation, with the help of multifractal analysis, we first demonstrate that the semi-distributed hydrological models statistically reduce the rainfall fields into rainfall measured by a much scarcer network of virtual rain gauges. For this purpose, we use C-band and X-band radar data. The first has a resolution of 1 km in space and 5 min in time and is in fact a product provided by RHEA SAS after treating the Météo-France C-band radar data. The latter is measured by the radar operated at Ecole des Ponts and has a resolution of
Engine Modelling for Control Applications
DEFF Research Database (Denmark)
Hendricks, Elbert
1997-01-01
In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...
Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model
Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.
2011-09-01
Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.
International Nuclear Information System (INIS)
Sharma, A.S.; Limebeer, D.J.N.; Jaimoukha, I.M.; Lister, J.B.
2001-11-01
A new approach to the modelling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modelling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modelling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalised coprime factorisation controller is developed for the TCV tokamak using the verified linear model. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models. (author)
Energy Technology Data Exchange (ETDEWEB)
Sharma, A.S.; Limebeer, D.J.N.; Jaimoukha, I.M.; Lister, J.B
2001-11-01
A new approach to the modelling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modelling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modelling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalised coprime factorisation controller is developed for the TCV tokamak using the verified linear model. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models. (author)
A simple model for conduction band states of nitride-based double heteroestructures
Energy Technology Data Exchange (ETDEWEB)
Gaggero-Sager, L M; Mora-Ramos, M E, E-mail: lgaggero@uaem.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)
2009-05-01
In this work we propose an analytical expression for the approximate modeling of the potential energy function describing conduction band bending in III-V nitride quantum wells. It is an alternative approach to the self-consistent Poisson-Schoedinger calculation. The model considers the influence of the many electron system and the built-in electric field inside the well. Hartree and exchange contributions are included along the lines of a local-density Thomas-Fermi-based theory. The effects due to the modulated doping in the barriers is also considered. We report the calculation of the energy spectrum as a function of several input parameters: alloy composition in the barriers, barrier doping concentration, and quantum well width. Our results could be of usefulness in the study of optoelectronic properties in this kind of systems.
Quantum critical behavior in three-dimensional one-band Hubbard model at half-filling
International Nuclear Information System (INIS)
Karchev, Naoum
2013-01-01
A one-band Hubbard model with hopping parameter t and Coulomb repulsion U is considered at half-filling. By means of the Schwinger bosons and slave fermions representation of the electron operators and integrating out the spin–singlet Fermi fields an effective Heisenberg model with antiferromagnetic exchange constant is obtained for vectors which identifies the local orientation of the spin of the itinerant electrons. The amplitude of the spin vectors is an effective spin of the itinerant electrons accounting for the fact that some sites, in the ground state, are doubly occupied or empty. Accounting adequately for the magnon–magnon interaction the Néel temperature is calculated. When the ratio t/U is small enough (t/U ≤0.09) the effective model describes a system of localized electrons. Increasing the ratio increases the density of doubly occupied states which in turn decreases the effective spin and Néel temperature. The phase diagram in the plane of temperature (T N )/U and parameter t/U is presented. The quantum critical point (T N =0) is reached at t/U =0.9. The magnons in the paramagnetic phase are studied and the contribution of the magnons’ fluctuations to the heat capacity is calculated. At the Néel temperature the heat capacity has a peak which is suppressed when the system approaches a quantum critical point. It is important to stress that, at half-filling, the ground state, determined by fermions, is antiferromagnetic. The magnon fluctuations drive the system to quantum criticality and when the effective spin is critically small these fluctuations suppress the magnetic order. -- Highlights: •Technique of calculation is introduced which permits us to study the magnons’ fluctuations. •Quantum critical point is obtained in the one-band 3D Hubbard model at half-filling. •The present analytical results supplement the numerical ones (see Fig. 7)
A narrow-band k-distribution model with single mixture gas assumption for radiative flows
Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon
2018-06-01
In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.
Intelligent Controller for a Compact Wide-Band Compositional Infrared Fourier Transform Spectrometer
Yiu, P.; Keymeulen, D.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.
2013-12-01
This paper presents the design and integration of an intelligent controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device that is intrinsically radiation-hard, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 μm) on planetary exploration missions. A traditional Michelson FTS passes a monochromatic light source (incident light from the sample) through a system of refractors/mirrors followed by a mirror moving linearly in the plane of the incident light. This process selectively blocks certain wavelengths and permits measurement of the sample's absorption rates as a function of the wavelengths blocked to produce an 'inteferogram.' This is subsequently processed using a Fourier transform to obtain the sample's spectrum and ascertain the sample's composition. With our prototype CIRIS instrument in development at Design and Prototype Inc. and NASA-JPL, we propose the use of a rotating refractor spinning at a constant velocity to variably phase shift incident light to the detector as an alternative to a linearly moving mirror. This design eliminates sensitivity to vibrations, minimizing path length and non-linear errors due to minor perturbations to the system, in addition to facilitating compact design critical to meeting the strict volume requirements of spacecraft. Further, this is done without sacrificing spectral resolution or throughput when compared to Michelson or diffractive designs. While Michelson designs
Modeling and Control for Microgrids
Steenis, Joel
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL
Климак, М.С.; Войтко, С.В.
2016-01-01
Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics
The diverse broad-band light-curves of Swift GRBs reproduced with the cannonball model
Dado, Shlomo; De Rújula, A
2009-01-01
Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the cannonball (CB) model of long gamma ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows. Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early time until late time and well represent the entire diversity of the broad band light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of glory light. During their fast decline phase, ICS is taken over by SR which dominates their broad band afterglow. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical `humps' in XRFs, are correctly predicted. The canonical and non-canonical X-ra...
Constitutive Modelling and Deformation Band Angle Predictions for High Porosity Sandstones
Richards, M. C.; Issen, K. A.; Ingraham, M. D.
2017-12-01
The development of a field-scale deformation model requires a constitutive framework that is capable of representing known material behavior and able to be calibrated using available mechanical response data. This work employs the principle of hyperplasticity (e.g., Houlsby and Puzrin, 2006) to develop such a constitutive framework for high porosity sandstone. Adapting the works of Zimmerman et al. (1986) and Collins and Houlsby (1997), the mechanical data set of Ingraham et al. (2013 a, b) was used to develop a specific constitutive framework for Castlegate sandstone, a high porosity fluvial-deposited reservoir analog rock. Using the mechanical data set of Ingraham et al. (2013 a, b), explicit expressions and material parameters of the elastic moduli and strain tensors were obtained. With these expressions, analytical and numerical techniques were then employed to partition the total mechanical strain into elastic, coupled, and plastic strain components. With the partitioned strain data, yield surfaces in true-stress space, coefficients of internal friction, dilatancy factors, along with the theorectical predictions of the deformation band angles were obtained. These results were also evaluated against band angle values obtained from a) measurements on specimen jackets (Ingraham et al., 2013a), b) plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b), and c) X-ray micro-computed tomography (micro-CT) calculations.
Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC
International Nuclear Information System (INIS)
Pérez-Tomás, A; Fontserè, A; Placidi, M; Jennings, M R; Gammon, P M
2013-01-01
Here we present a method to model the metal–semiconductor (M–S) band structure to an implanted ohmic contact to a wide band gap semiconductor (WBG) such as GaN and SiC. The performance and understanding of the M–S contact to a WBG semiconductor is of great importance as it influences the overall performance of a semiconductor device. In this work we explore in a numerical fashion the ohmic contact properties to a WBG semiconductor taking into account the partial ionization of impurities and analysing its dependence on the temperature, the barrier height, the impurity level band energy and carrier concentration. The effect of the M–S Schottky barrier lowering and the Schottky barrier inhomogeneities are discussed. The model is applied to a fabricated ohmic contact to GaN where the M–S band structure can be completely determined. (paper)
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... signal based on a process model, coping with constraints on inputs and ... paper, we will present an introduction to the theory and application of MPC with Matlab codes ... section 5 presents the simulation results and section 6.
Aging in autonomic control by multifractal studies of cardiac interbeat intervals in the VLF band
International Nuclear Information System (INIS)
Makowiec, Danuta; Kryszewski, Stanisław; Rynkiewicz, Andrzej; Wdowczyk-Szulc, Joanna; Żarczyńska-Buchowiecka, Marta; Gałąska, Rafał
2011-01-01
The heart rate responds dynamically to various intrinsic and environmental stimuli. The autonomic nervous system is said to play a major role in this response. Multifractal analysis offers a novel method to assess the response of cardiac interbeat intervals. Twenty-four hour ECG recordings of RR interbeat intervals (of 48 elderly volunteers (age 65–94), 40 middle-aged persons (age 45–53) and 36 young adults (age 18–26)) were investigated to study the effect of aging on autonomic regulation during normal activity in healthy adults. Heart RR-interval variability in the very low frequency (VLF) band (32–420 RR intervals) was evaluated by multifractal tools. The nocturnal and diurnal signals of 6 h duration were studied separately. For each signal, the analysis was performed twice: for a given signal and for the integrated signal. A multifractal spectrum was quantified by the h max value at which a multifractal spectrum attained its maximum, width of a spectrum, Hurst exponent, extreme events h left and distance between the maxima of a signal and its integrated counterpart. The following seven characteristics are suggested as quantifying the age-related decrease in the autonomic function ('int' refers to the integrated signal): (a) h sleep max − h max wake > 0.05 for a signal; (b) h int max > 1.15 for wake; (c) h int max − h max > 0.85 for sleep; (d) Hurst wake − Hurst sleep < 0.01; (e) width wake > 0.07; (f) width int < 0.30 for sleep; (g) h int left > 0.75. Eighty-one percent of elderly people had at least four of these properties, and ninety-two percent of young people had three or less. This shows that the multifractal approach offers a concise and reliable index of healthy aging for each individual. Additionally, the applied method yielded insights into dynamical changes in the autonomic regulation due to the circadian cycle and aging. Our observations support the hypothesis that imbalance in the autonomic control due to healthy aging could
Frequency control modelling - basics
DEFF Research Database (Denmark)
Hansen, Anca Daniela; Sørensen, Poul Ejnar; Zeni, Lorenzo
2016-01-01
The purpose of this report is to provide an introduction on how the system balance in an island system can be maintained by controlling the frequency. The power balance differential equation, which is fundamental in understanding the effect on the system frequency of the unbalance between...
Controlling emission and propagation of light with photonic band gap crystals
Yeganegi Dastgerdi, Elahe
2014-01-01
In certain three-dimensional crystals, a frequency range exist for all polarizations for which light is not allowed to propagate in any direction, called the 3D photonic band gap: a frequency range where the density of vacuum fluctuations vanishes in an ideal infinitely large and perfect system. The
McGinley, Samantha K; Armstrong, Marni J; Boulé, Normand G; Sigal, Ronald J
2015-04-01
Resistance exercise using free weights or weight machines improves glycaemic control and strength in people with type 2 diabetes. Resistance band training is potentially less expensive and more accessible, but the effects of resistance band training on glycaemic control and strength in this population are not well understood. This paper aims to systematically review and meta-analyse the effect of resistance band training on haemoglobin A1c (HbA1c) and strength in adults with type 2 diabetes. Database searches were performed in August 2013 (MEDLINE, SPORTDiscus, EMBASE, and CINAHL). Reference lists of eligible articles were hand-searched for additional studies. Randomised trials evaluating the effects of resistance band training in adults with type 2 diabetes on HbA1c or objectively measured strength were selected. Baseline and post-intervention HbA1c and strength were extracted for the intervention and control groups. Details of the exercise interventions and methodological quality were collected. Seven trials met inclusion criteria. Post-intervention-weighted mean HbA1c was nonsignificantly lower in exercise groups compared to control groups [weighted mean difference (WMD) = -0.18 percentage points (-1.91 mmol/mol); P = 0.27]. Post-intervention strength was significantly higher in the exercise groups compared to the control groups in the lower extremities (WMD = 21.90 kg; P diabetes.
Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model
Cosme, Jayson G.
2018-04-01
We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.
Directory of Open Access Journals (Sweden)
Mandeep JS
2011-06-01
Full Text Available This study has been based on understanding local propagation signal data distribution characteristics and identifying and predicting the overall impact of significant attenuating factors regarding the propagation path such as impaired propagation for a signal being transmitted. Predicting propagation impairment is important for accurate link budgeting, thereby leading to better communication network system designation. This study has thus used sample data for one year concerning beacon satellite operation in Malaysia from April 2008 to April 2009. Data concerning 12GHz frequency (Ku-band and 40° elevation angle was collected and analysed, obtaining average signal amplitude value, ÷ and also standard deviation ó which is normally measured in dB to obtain long-term scintillation intensity distribution. This analysis showed that scintillation intensity distribution followed Gaussian distribution for long-term data distribution. A prediction model was then selected based on the above; Karasawa,
ITU-R, Van de Kamp and Otung models were compared to obtain the best prediction model performance for selected data regarding specific meteorological conditions. This study showed that the Karasawa model had the best performance for predicting scintillation intensity for the selected da ta.
SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING
Energy Technology Data Exchange (ETDEWEB)
Vollmer, B.; Bonnarel, F.; Louys, M. [CDS, Observatoire Astronomique, UMR 7550, 11 rue de l' universite, F-67000 Strasbourg (France); Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch. [LSIIT, Universite de Strasbourg, 7, Rue Rene Descartes, F-67084 Strasbourg (France); Van Driel, W. [GEPI, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Sabatini, S. [INAF/IASF-Roma, via Fosso de Cavaliere 100, I-00133 Roma (Italy); MacArthur, L. A., E-mail: Bernd.Vollmer@astro.unistra.fr [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)
2013-02-01
We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings-typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg{sup 2} in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered {approx}20% more mock LSB galaxies and {approx}40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of
Blasques, F.; Koopman, S.J.; Lasak, K.A.; Lucas, A.
2016-01-01
We study the performances of alternative methods for calculating in-sample confidence and out-of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty, while the out-of-sample bands reflect not only parameter uncertainty, but also innovation
Rantala, Olavi
1992-01-01
The paper presents a model ofexchange rate movements within a specified exchange rate band enforced by central bank interventions. The model is based on the empirical observation that the exchange rate has usually been strictly inside the band, at least in Finland. In this model the distribution of the exchange rate is truncated lognormal from the edges towards the center of the band and hence quite different from the bimodal distribution of the standard target zone model. The model is estima...
Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.
2010-01-01
We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619
Westman, Walter E.; Paris, Jack F.
1987-01-01
The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.
Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos
Zhang, Pengfei
2017-11-01
The Sachdev-Ye-Kitaev (SYK) model is a concrete model for a non-Fermi liquid with maximally chaotic behavior in (0 +1 ) dimensions. In order to gain some insights into real materials in higher dimensions where fermions could hop between different sites, here we consider coupling a SYK lattice by constant hopping. We call this the dispersive SYK model. Focusing on (1 +1 ) -dimensional homogeneous hopping, by either tuning the temperature or the relative strength of the random interaction (hopping) and constant hopping, we find a crossover between a dispersive metal to an incoherent metal, where the dynamic exponent z changes from 1 to ∞ . We study the crossover by calculating the spectral function, charge density correlator, and the Lyapunov exponent. We further find the Lyapunov exponent becomes larger when the chemical potential is tuned to approach a van Hove singularity because of the large density of states near the Fermi surface. The effect of the topological nontrivial bands is also discussed.
Diabetes: Models, Signals and control
Cobelli, C.
2010-07-01
Diabetes and its complications impose significant economic consequences on individuals, families, health systems, and countries. The control of diabetes is an interdisciplinary endeavor, which includes significant components of modeling, signal processing and control. Models: first, I will discuss the minimal (coarse) models which describe the key components of the system functionality and are capable of measuring crucial processes of glucose metabolism and insulin control in health and diabetes; then, the maximal (fine-grain) models which include comprehensively all available knowledge about system functionality and are capable to simulate the glucose-insulin system in diabetes, thus making it possible to create simulation scenarios whereby cost effective experiments can be conducted in silico to assess the efficacy of various treatment strategies - in particular I will focus on the first in silico simulation model accepted by FDA as a substitute to animal trials in the quest for optimal diabetes control. Signals: I will review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the crucial role of models to enhance the interpretation of their time-series signals, and on the opportunities that they present for automation of diabetes control. Control: I will review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, I will discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers.
Directory of Open Access Journals (Sweden)
F. Richter
2018-03-01
Full Text Available Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.
Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne
2018-03-01
Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.
International Nuclear Information System (INIS)
Liu, Mingtao; Li, Yongchi; Hu, Xiuzhang; Hu, Haibo
2014-01-01
The formation of an adiabatic shear band (ASB) experiences three stages: stable plastic flow, nucleation and a fluid-like stage. For different stages, the microstructures of the material undergo great changes. The mechanical behavior of the material in each stage has its own unique characteristics. To describe these characteristics, a multi-stage model for the shear band is proposed. For the stable plastic flow stage, a modified adiabatic J–C constitutive relationship is used. For the nucleation stage, the effects of work hardening and temperature softening are described by a power function of plastic strain. A Newtonian fluid model is used for the fluid-like stage. The formation of a shear band is an instability process. Various defects in the material are perturbation sources, which change the local yield stress. To describe the disturbances, a probability factor is introduced into the macroscopic constitutive relationship. The yield stress in the material is assumed to obey a Gaussian distribution. The multi-stage model combined with a probability factor is applied to simulate the rupture of thick-walled cylinder in 304 Stainless Steel (304SS). A close agreement is found between the simulation and experimental results, such as the failure mechanism, shear band spacing and propagating velocity of the shear band. By combining the experimental results with the simulation results, the importance of the nucleation stage is emphasized. (paper)
A Mathematical Study of the One-Dimensional Keller and Rubinov Model for Liesegang Bands
Hilhorst, D.; van der Hout, R.; Mimura, M.; Ohnishi, I.
2009-01-01
Our purpose is to start understanding from a mathematical viewpoint experiments in which regularized structures with spatially distinct bands or rings of precipitated material are exhibited, with clearly visible scaling properties. Such patterns are known as Liesegang bands or rings. In this paper,
López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J
2014-04-01
We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.
Electron and hole states in quantum dot quantum wells within a spherical eight-band model
Pokatilov, E.P.; Fonoberov, V.A.; Fomin, V.; Devreese, J.T.
2001-01-01
In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach [E. P. Pokatilov [etal], Phys. Rev. B 64, 245328 (2001), (preceding paper)], which combines the spherical eight-band effective-mass
Directory of Open Access Journals (Sweden)
O. Funk
2003-03-01
Full Text Available This paper addresses the statistics underlying cloudy sky radiative transfer (RT by inspection of the distribution of the path lengths of solar photons. Recent studies indicate that this approach is promising, since it might reveal characteristics about the diffusion process underlying atmospheric radiative transfer (Pfeilsticker, 1999. Moreover, it uses an observable that is directly related to the atmospheric absorption and, therefore, of climatic relevance. However, these studies are based largely on the accuracy of the measurement of the photon path length distribution (PPD. This paper presents a refined analysis method based on high resolution spectroscopy of the oxygen A-band. The method is validated by Monte Carlo simulation atmospheric spectra. Additionally, a new method to measure the effective optical thickness of cloud layers, based on fitting the measured differential transmissions with a 1-dimensional (discrete ordinate RT model, is presented. These methods are applied to measurements conducted during the cloud radar inter-comparison campaign CLARE’98, which supplied detailed cloud structure information, required for the further analysis. For some exemplary cases, measured path length distributions and optical thicknesses are presented and backed by detailed RT model calculations. For all cases, reasonable PPDs can be retrieved and the effects of the vertical cloud structure are found. The inferred cloud optical thicknesses are in agreement with liquid water path measurements. Key words. Meteorology and atmospheric dynamics (radiative processes; instruments and techniques
Directory of Open Access Journals (Sweden)
O. Funk
Full Text Available This paper addresses the statistics underlying cloudy sky radiative transfer (RT by inspection of the distribution of the path lengths of solar photons. Recent studies indicate that this approach is promising, since it might reveal characteristics about the diffusion process underlying atmospheric radiative transfer (Pfeilsticker, 1999. Moreover, it uses an observable that is directly related to the atmospheric absorption and, therefore, of climatic relevance. However, these studies are based largely on the accuracy of the measurement of the photon path length distribution (PPD. This paper presents a refined analysis method based on high resolution spectroscopy of the oxygen A-band. The method is validated by Monte Carlo simulation atmospheric spectra. Additionally, a new method to measure the effective optical thickness of cloud layers, based on fitting the measured differential transmissions with a 1-dimensional (discrete ordinate RT model, is presented. These methods are applied to measurements conducted during the cloud radar inter-comparison campaign CLARE’98, which supplied detailed cloud structure information, required for the further analysis. For some exemplary cases, measured path length distributions and optical thicknesses are presented and backed by detailed RT model calculations. For all cases, reasonable PPDs can be retrieved and the effects of the vertical cloud structure are found. The inferred cloud optical thicknesses are in agreement with liquid water path measurements.
Key words. Meteorology and atmospheric dynamics (radiative processes; instruments and techniques
Simple Models for Process Control
Czech Academy of Sciences Publication Activity Database
Gorez, R.; Klán, Petr
2011-01-01
Roč. 22, č. 2 (2011), s. 58-62 ISSN 0929-2268 Institutional research plan: CEZ:AV0Z10300504 Keywords : process model s * PID control * second order dynamics Subject RIV: JB - Sensors, Measurment, Regulation
Optical Control of Internal Electric Fields in Band Gap-Graded InGaN Nanowires
Erhard, N.; Sarwar, A. T. M. Golam; Yang, F.; McComb, D. W.; Myers, R. C.; Holleitner, A. W.
2015-01-01
InGaN nanowires are suitable building blocks for many future optoelectronic devices. We show that a linear grading of the indium content along the nanowire axis from GaN to InN introduces an internal electric field evoking a photocurrent. Consistent with quantitative band structure simulations we observe a sign change in the measured photocurrent as a function of photon flux. This negative differential photocurrent opens the path to a new type of nanowire-based photodetector. We demonstrate that the photocurrent response of the nanowires is as fast as 1.5 ps.
Nishizuka, Takanobu; Iwatsuki, Katsuyuki; Kurimoto, Shigeru; Yamamoto, Michiro; Hirata, Hitoshi
2017-03-01
A forearm band is frequently used for lateral epicondylitis worldwide. However, evidence regarding its efficacy has been insufficient. The objective of this prospective, randomized, controlled trial was to analyze the effects of a forearm band for treatment of lateral epicondylitis at 1, 3, 6, and 12 months. Patients with lateral epicondylitis were randomly allocated into a band (n = 55) or non-band (n = 55) group. Patients in the band group were instructed to wear a forearm band for more than 6 h daily for at least 6 months. Patients in both groups were instructed to perform wrist extensor stretching exercises for 30 s, 3 times daily, for 6 months. Hand10, pain, and satisfaction scores, and proportions of positive physical examinations, including tenderness assessment, Thomsen test, and middle finger extension test, were evaluated at 1, 3, 6, and 12 months after enrollment. There were no significant differences between the band and non-band groups with regard to Hand10, pain, or satisfaction scores at 1, 3, 6, and 12 months. Likewise, there was no significant difference in proportions of positive physical examinations between groups at 1, 3, 6, and 12 months. The results of the current study suggest that a forearm band may have no more than a placebo effect, and do not support the use of a forearm band based on its effectiveness. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Decreasing patient identification band errors by standardizing processes.
Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie
2013-04-01
Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.
Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude
Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.
2018-05-01
One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.
Mathematical Modeling of Dielectric Characteristics of the Metallic Band Inclusion Composite
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
Full Text Available Among the desirable properties of functional materials used in various electrical and radio physical equipment and devices, dielectric characteristics, including relative permittivity (hereinafter, permittivity are of importance. The permittivity requirements can be met when a composite with a particular combination of its matrix characteristics and inclusions [1, 2, 3] is used as a functional material. The use of metallic inclusions extends a variation range of dielectric characteristics of the composite, and thereby enhances its application. The composite structure, form of inclusions, and their volume concentration has a significant impact on the permittivity.One of the composite structure embodiments is a dispersion system when in the dispersion medium (in this case | in the composite matrix a dispersed phase (inclusions with highly extended interface between them [4] is distributed. There can be various forms of dispersed inclusions. Band is one of the possible forms of inclusion when its dimensions in three orthogonal directions are significantly different among themselves. For such inclusion, a tri-axial ellipsoid can be taken as an acceptable geometric model to describe its form. This model can be used, in particular, to describe the form of nanostructured elements, which recently are considered as inclusions for advanced composites for various purposes [5].With raising volume concentration of metal inclusions in the dielectric matrix composite there is an increasing probability of direct contact between the inclusions resulting in continuous conductive cluster [3, 6]. In this paper, it is assumed that metal band inclusions are covered with a sufficiently thin layer of the electrically insulating material, eliminating the possibility of direct contact and precluding consideration of the so-called percolation effect [2, 7] in the entire interval of the expectedly changing volume concentration of electrically ellipsoidal inclusions. The
Directory of Open Access Journals (Sweden)
Jinyang Du
2015-07-01
Full Text Available Freeze-thaw (FT and moisture dynamics within the soil active layer are critical elements of boreal, arctic and alpine ecosystems, and environmental change assessments. We evaluated the potential for detecting dielectric changes within different soil layers using combined L- and P-band radar remote sensing as a prerequisite for detecting FT and moisture profile changes within the soil active layer. A two-layer scattering model was developed and validated for simulating radar responses from vertically inhomogeneous soil. The model simulations indicated that inhomogeneity in the soil dielectric profile contributes to both L- and P-band backscatter, but with greater P-band sensitivity at depth. The difference in L- and P-band responses to soil dielectric profile inhomogeneity appears suitable for detecting associated changes in soil active layer conditions. Additional evaluation using collocated airborne radar (AIRSAR observations and in situ soil moisture measurements over alpine tundra indicates that combined L- and P-band SAR observations are sensitive to soil dielectric profile heterogeneity associated with variations in soil moisture and FT conditions.
Nonlinear Control of Heartbeat Models
Directory of Open Access Journals (Sweden)
Witt Thanom
2011-02-01
Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.
Wind Farms: Modeling and Control
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam
2012-01-01
is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...
Reflexion and control mathematical models
Novikov, Dmitry A
2014-01-01
This book is dedicated to modern approaches to mathematical modeling of reflexive processes in control. The authors consider reflexive games that describe the gametheoretical interaction of agents making decisions based on a hierarchy of beliefs regarding (1) essential parameters (informational reflexion), (2) decision principles used by opponents (strategic reflexion), (3) beliefs about beliefs, and so on. Informational and reflexive equilibria in reflexive games generalize a series of well-known equilibrium concepts in noncooperative games and models of collective behavior. These models allow posing and solving the problems of informational and reflexive control in organizational, economic, social and other systems, in military applications, etc. (the interested reader will find in the book over 30 examples of possible applications in these fields) and describing uniformly many psychological/sociological phenomena connected with reflexion, viz., implicit control, informational control via the mass media, re...
Global nuclear material control model
International Nuclear Information System (INIS)
Dreicer, J.S.; Rutherford, D.A.
1996-01-01
The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material
Hundness versus Mottness in a three-band Hund model with relevance for iron-pnictides
Energy Technology Data Exchange (ETDEWEB)
Stadler, Katharina M.; Delft, Jan von; Weichselbaum, Andreas [Ludwig Maximilians University, Munich (Germany); Yin, Zhiping; Kotliar, Gabriel [Rutgers University, New Jersey (United States)
2016-07-01
The recently discovered iron pnictide superconductors (as well as chalcogenides, ruthenates, and other 4d transition metal oxides) show puzzling anomalous properties, like a coherence-incoherence crossover, also in the normal state. While there is consensus about strong correlation effects playing a key role in these materials, their precise origin (Coulomb repulsion or Hund's rule coupling between electrons of different orbitals) has been under debate as one of the major open questions in the field many years. In a recent detailed study of the Hund metal problem the coherence-incoherence crossover was shown to be connected to spin-orbital separation and to be clearly driven by Hund's rule coupling. In order to better understand the differences between Mott insulators and Hund metals we explore the phase diagram for a three-band model with Coulomb repulsion and Hund's rule coupling on a Bethe lattice at 1/3 filling using the numerical renormalization group to obtain a numerically exact dynamical mean-field theory solution.
Two healing lengths in a two-band GL-model with quadratic terms: Numerical results
Macias-Medri, A. E.; Rodríguez-Núñez, J. J.
2018-05-01
A two-band and quartic interaction order Ginzburg-Landau model in the presence of a single vortex is studied in this work. Interactions of second (quadratic, with coupling parameter γ) and fourth (quartic, with coupling parameter γ˜) order between the two superconducting order parameters (fi with i = 1,2) are incorporated in a functional. Terms beyond quadratic gradient contributions are neglected in the corresponding minimized free energy. The solution of the system of coupled equations is solved by numerical methods to obtain the fi-profiles, where our starting point was the calculation of the superconducting critical temperature Tc. With this at hand, we evaluate fi and the magnetic field along the z-axis, B0, as function of γ, γ˜, the radial distance r/λ1(0) and the temperature T, for T ≈ Tc. The self-consistent equations allow us to compute λ (penetration depth) and the healing lengths of fi (Lhi with i = 1,2) as functions of T, γ and γ˜. At the end, relevant discussions about type-1.5 superconductivity in the compounds we have studied are presented.
Doping and band gap control at poly(vinylidene fluoride)/graphene interface
Cai, Jia; Wang, Jian-Lu; Gao, Heng; Tian, Bobo; Gong, Shi-Jing; Duan, Chun-Gang; Chu, Jun-Hao
2018-05-01
Using the density-functional first-principles calculations, we investigate the electronic structures of poly(vinylidene fluoride) PVDF/graphene composite systems. The n- and p-doping of graphene can be flexibly switched by reversing the ferroelectric polarization of PVDF, without scarifying the intrinsic π-electron band dispersions of graphene that are usually undermined by chemical doping. The doping degree is also dependent on the thickness of PVDF layers, which will get saturated when PVDF is thick enough. In PVDF/bilayer graphene (BLG) heterostructure, the doping degree directly determines the local energy gap of the charged BLG. The sandwich structure of PVDF/BLG/PVDF can further enhance the local energy gap as well as keep the electric neutrality of BLG, which will be of great application potentials in graphene-based nanoelectronics.
De Lannoy, G.J.M.; Reichle, R.H.; Vrugt, J.A.
2014-01-01
Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation
Evaluation of Empirical Ray-Tracing Model for an Urban Outdoor Scenario at 73 GHz E-Band
DEFF Research Database (Denmark)
Nguyen, Huan Cong; R. MacCartney Jr., George; Thomas, Timothy
2014-01-01
In the summer of 2013, a wideband propagation measurement campaign using rotating directional antennas at 73 GHz was conducted at the New York University (NYU) campus, in order to collect extensive field measurements for use in a millimeter wave (mmWave) E-band statistical channel model. While...
Energy Technology Data Exchange (ETDEWEB)
Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)
2015-11-21
Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.
Huang, Shih-Wei; Ku, Jan-Wen; Lin, Li-Fong; Liao, Chun-De; Chou, Lin-Chuan; Liou, Tsan-Hon
2017-08-01
Sarcopenia involves age-related decreases in muscle strength and muscle mass, leading to frailty and disability in elderly people. When combined with obesity, it is defined as sarcopenic obesity (SO), which can result in more functional limitations and metabolic disorders than either disorder alone. The aim of this study was to investigate body composition changes after elastic band resistance training in elderly women with SO. Randomized single-blinded (assessor blinded) controlled pilot trial. Academic medical center. Thirty-five elderly (>60 years old) women with SO. This pilot randomized controlled trial focused on elderly women with SO. The study group underwent progressive elastic band resistance training for 12 weeks (3 times per week). The control group received only a 40-minute lesson about the exercise concept. Dual-energy X-ray absorptiometry was performed before and after intervention to evaluate body composition. Mann-Whitney U and Wilcoxon signed rank tests were used to analyze the differences within and between these groups. In total, 35 elderly women with SO were enrolled and divided into study (N.=18) and control groups (N.=17). No difference was observed in age, biochemical parameters, or Body Mass Index between both groups. After the intervention, the fat proportion of body composition in the right upper extremity (P=0.03), left upper extremity (P=0.04), total fat (P=0.035), and fat percentage (P=0.012) had decreased, and bone mineral density (BMD) (P=0.026), T-score (P=0.028), and Z-score (P=0.021) had increased in the study group. Besides, statistical difference was observed in outcome measurements of right upper extremity (P=0.013), total fat (P=0.023), and fat percentage (P=0.012) between the groups. Our study demonstrated that progressive elastic band resistance exercise can reduce fat mass and increase BMD in elderly women with SO, and that this exercise program is feasible for this demographic. Additional studies with larger sample sizes
Design Study of Control System for Radiation Therapy System Based on 6 MeV X-band LINAC
International Nuclear Information System (INIS)
Kim, Sehee; Kim, Jaehyun; Chae, Moonsik; Lee, Byeongno; Oh, Kyeongmin; Lee, Soomin; Ju, Jinsik; Park, Sangjoon; Kim, Hansoo; Jeong, Kyeongmin
2017-01-01
Linear accelerator(LINAC) is used in various fields such as industrial, defense, medical, etc because it is easy to control radiation energy or flow rate. KAERI developed a robot-based radiation therapy system that can efficiently irradiate radiation in a short period of time. Unlike the old type which uses a single robot arm, two robot arms are used and the smart bed is linked to track the respiration. This paper discusses the development of system of integrated X-band LINAC modules installed in smart robot therapy machines. In this study, total control program for integrating and controlling the medical LINAC modules was developed and verified. Future research will continue to reduce delays between transmissions and receptions and minimize interference between the modules.
Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati
2016-05-01
Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were
QUANTUM-MECHANICAL MODELING OF SPATIAL AND BAND STRUCTURE OF Y3AL5O12 SCINTILLATION CRYSTAL
Directory of Open Access Journals (Sweden)
I. I. Vrubel
2016-05-01
Full Text Available Spatial and electronic structures of a unit cell of yttrium-aluminum garnet have been studied. Quantum-mechanical model have been presented. Semi-empirical methods PM6 and PM7 have been used for geometry optimization of the crystal unit cell. Band structure has been calculated within density functional theory with the use of PBE exchange-correlation functional. Histograms of metal-oxygen distances for equilibrium geometry have been constructed. Comparison of the used methods has been carried out and recommendation about their applicability for such problems was given. The single-particle wave functions and energies have been calculated. The bandgap was estimated. The band structure was plotted. It was shown that the method gives reliable results for spatial and band structure of Y3Al5O12 scintillation crystal. The results of this work can be used for improvement of characteristics of garnet scintillation crystals.
Jurewicz, Katarzyna; Paluch, Katarzyna; Kublik, Ewa; Rogala, Jacek; Mikicin, Mirosław; Wróbel, Andrzej
2018-01-08
The frequency-function relation of various EEG bands has inspired EEG-neurofeedback procedures intending to improve cognitive abilities in numerous clinical groups. In this study, we administered EEG-neurofeedback (EEG-NFB) to a healthy population to determine the efficacy of this procedure. We evaluated feedback manipulation in the beta band (12-22Hz), known to be involved in visual attention processing. Two groups of healthy adults were trained to either up- or down-regulate beta band activity, thus providing mutual control. Up-regulation training induced increases in beta and alpha band (8-12Hz) amplitudes during the first three sessions. Group-independent increases in the activity of both bands were observed in the later phase of training. EEG changes were not matched by measured behavioural indices of attention. Parallel changes in the two bands challenge the idea of frequency-specific EEG-NFB protocols and suggest their interdependence. Our study exposes the possibility (i) that the alpha band is more prone to manipulation, and (ii) that changes in the bands' amplitudes are independent from specified training. We therefore encourage a more comprehensive approach to EEG-neurofeedback training embracing physiological and/or operational relations among various EEG bands. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Empirical Outdoor-to-Indoor Path Loss Model from below 6 GHz to cm-Wave Frequency Bands
DEFF Research Database (Denmark)
Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Kovács, István Z.
2017-01-01
This letter presents an empirical multi-frequency outdoor-to-indoor path loss model. The model is based on measurements performed on the exact same set of scenarios for different frequency bands ranging from traditional cellular allocations below 6 GHz (0.8, 2, 3.5 and 5.2 GHz), up to cm-wave fre......This letter presents an empirical multi-frequency outdoor-to-indoor path loss model. The model is based on measurements performed on the exact same set of scenarios for different frequency bands ranging from traditional cellular allocations below 6 GHz (0.8, 2, 3.5 and 5.2 GHz), up to cm...
Directory of Open Access Journals (Sweden)
Yano Akira
2012-11-01
Full Text Available Abstract Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD. The average photosynthetic PFD (PPFD in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%, which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength, the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1 was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-06-15
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.
Villanueva, G. L.; Mumma, M. J.; Magee-Sauer, K.
2011-01-01
Ethane and other hydrocarbon gases have strong rovibrational transitions in the 3.3 micron spectral region owing to C-H, CH2, and CH3 vibrational modes, making this spectral region prime for searching possible biomarker gases in extraterrestrial atmospheres (e.g., Mars, exoplanets) and organic molecules in comets. However, removing ethane spectral signatures from high-resolution terrestrial transmittance spectra has been imperfect because existing quantum mechanical models have been unable to reproduce the observed spectra with sufficient accuracy. To redress this problem, we constructed a line-by-line model for the n7 band of ethane (C2H6) and applied it to compute telluric transmittances and cometary fluorescence efficiencies. Our model considers accurate spectral parameters, vibration-rotation interactions, and a functional characterization of the torsional hot band. We integrated the new band model into an advanced radiative transfer code for synthesizing the terrestrial atmosphere (LBLRTM), achieving excellent agreement with transmittance data recorded against Mars using three different instruments located in the Northern and Southern hemispheres. The retrieved ethane abundances demonstrate the strong hemispheric asymmetry noted in prior surveys of volatile hydrocarbons. We also retrieved sensitive limits for the abundance of ethane on Mars. The most critical validation of the model was obtained by comparing simulations of C2H6 fluorescent emission with spectra of three hydrocarbon-rich comets: C/2004 Q2 (Machholz), 8P/Tuttle, and C/2007 W1 (Boattini). The new model accurately describes the complex emission morphology of the nu7 band at low rotational temperatures and greatly increases the confidence of the retrieved production rates (and rotational temperatures) with respect to previously available fluorescence models.
A New Blind Pointing Model Improves Large Reflector Antennas Precision Pointing at Ka-Band (32 GHz)
Rochblatt, David J.
2009-01-01
The National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory (JPL)-Deep Space Network (DSN) subnet of 34-m Beam Waveguide (BWG) Antennas was recently upgraded with Ka-Band (32-GHz) frequency feeds for space research and communication. For normal telemetry tracking a Ka-Band monopulse system is used, which typically yields 1.6-mdeg mean radial error (MRE) pointing accuracy on the 34-m diameter antennas. However, for the monopulse to be able to acquire and lock, for special radio science applications where monopulse cannot be used, or as a back-up for the monopulse, high-precision open-loop blind pointing is required. This paper describes a new 4th order pointing model and calibration technique, which was developed and applied to the DSN 34-m BWG antennas yielding 1.8 to 3.0-mdeg MRE pointing accuracy and amplitude stability of 0.2 dB, at Ka-Band, and successfully used for the CASSINI spacecraft occultation experiment at Saturn and Titan. In addition, the new 4th order pointing model was used during a telemetry experiment at Ka-Band (32 GHz) utilizing the Mars Reconnaissance Orbiter (MRO) spacecraft while at a distance of 0.225 astronomical units (AU) from Earth and communicating with a DSN 34-m BWG antenna at a record high rate of 6-megabits per second (Mb/s).
Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band
LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.
2004-01-01
The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.
An effective 2-band eg model of sulfur hydride H3S for high-Tc superconductivity
Nishiguchi, Kazutaka; Teranishi, Shingo; Miyao, Satoaki; Matsushita, Goh; Kusakabe, Koichi
To understand high transition temperature (Tc) superconductivity in sulfur hydride H3S, we propose an effective 2-band model having the eg symmetry as the minimal model for H3S. Two eg orbitals centered on a sulfur S atom are chosen for the smallest representation of relevant bands with the van-Hove singularity around the Fermi levels except for the Γ-centered small hole pockets by the sulfur 3 p orbitals. By using the maximally localized Wannier functions, we derive the minimal effective model preserving the body-centered cubic (bcc) crystal symmetry of the H3S phase having the highest Tc ( 203 K under pressures) among the other polymorphs of H3S.
Directory of Open Access Journals (Sweden)
Amran Muis
2016-10-01
Full Text Available Rhizoctonia solani Kuhn. causing banded leaf and sheath blight diseases is one of the important fungi of corn world wide. The fungus is commonly controlled by using fungicide because no resistant variety available. The objective of the study was to develop a seed treatment formulation of the selected Bacillus subtilis to control R. solani in corn. The study was conducted in the Department of Plant Pathology, College of Agriculture, University of the Philippines Los Bañòs, College, Laguna from May 2004 to August 2005, using sweet corn var. IPB Supersweet as test plant. Corn seeds were surface sterilized for 10 minutes in 1% sodium hypochlorite solution and 5% ethanol, washed thrice with sterile distilled water and air-dried. The seeds were coated with formulated B. subtilis BR23 and used for several experiments, such as evaluation for their germination and growth in the laboratory, effectively on R. solani in the baked and nonbaked field soil under greenhouse condition, and in the microplots artificially infested with R. solani. The treatment was compared with other standard seed treatment of synthetic fungicides such as captan (10 g per kg seeds and metalaxyl (10 g per kg seeds. The experiments were designed in a completely random design with three replications. Parameters observed were seed germination, plant height, disease scores, and plant yield. Laboratory formulated B. subtilis BR23 used as seed treatment had no detrimental effects on seed germination and seedling vigor. In microplots artificially infested with a selected highly virulent R. solani, seed treatment with the same formulation increased grain yield by 27% compared to that of the control captan seed treatment with 14.4%. The studies showed the potential of B. subtilis BR23 for commercialization as a seed treatment for the control of banded leaf and sheath blight disease (R. solani in corn.
Description of multi-quasiparticle bands by the tilted axis cranking model
International Nuclear Information System (INIS)
Frauendorf, S.
2000-01-01
The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electro-magnetic transition probabilities are given. The mean field solutions are interpreted in terms of quantal rotational states. The construction of the quasiparticle configurations and the elimination of spurious states is discussed. The application of the theory to high spin data is demonstrated by analyzing the multi-quasiparticle bands in the nuclides with N=102,103 and Z=71,72,73
International Nuclear Information System (INIS)
Palacios, P.; Sanchez, K.; Conesa, J.C.; Fernandez, J.J.; Wahnon, P.
2007-01-01
Electronic structure calculations are carried out for CuGaS 2 partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics
Energy Technology Data Exchange (ETDEWEB)
Palacios, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Sanchez, K [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J C [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J J [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)
2007-05-31
Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.
Energy Technology Data Exchange (ETDEWEB)
Li, Yanfei [College of Power Engineering, Naval University of Engineering, Wuhan, 430033 (China); Shen, Huijie, E-mail: shj588@163.com [College of Power Engineering, Naval University of Engineering, Wuhan, 430033 (China); Zhang, Linke [School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, 430063 (China); Su, Yongsheng, E-mail: suyongsheng1981@163.com [College of Power Engineering, Naval University of Engineering, Wuhan, 430033 (China); Yu, Dianlong [Key Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China)
2016-07-01
Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range. - Highlights: • A metamaterial-type pipe system with Bragg and resonant acoustic gaps. • A low-frequency acoustic coupled gap. • Exact coupling condition for Bragg and resonant gaps. • Effects of resonant parameters on coupled gaps.
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-11-10
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.
Sharvit, Dan; Vasilyev, Tamar; Vasserman, Irena; Simhon, David; Kariv, Naam; DeRowe, Ari; Katzir, Abraham
2005-04-01
Resection of a segment of the trachea is a procedure applied for the removal of cervical tumors invading the trachea, or for the treatment of severe tracheal stenosis. The current method of anastomosis is based on multiple sutures. The main drawbacks of this method are: 1) A long procedure time, 2) An air leakage, and 3) An inflammatory response to the sutures. In this study we evaluated the feasibility and effectiveness of the use of temperature controlled CO2 laser soldering of incisions in pig tracheas in vitro. A transverse incision was made in a separated pig trachea. A flexible albumin band was prepared and was laser soldered with albumin solder to the outer surface of the trachea, covering the incision. The soldered trachea ends were sealed and the burst pressure was measured. In a series of in vitro experiments, the mean burst pressure was found to be 230 mm Hg. These preliminary results demonstrated that laser soldering using a flexible albumin band may be a useful method for sealing an incision in the trachea.
Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB{sub 6} nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Machida, Keisuke; Adachi, Kenji, E-mail: kenji-adachi@ni.smm.co.jp [Ichikawa Research Laboratories, Sumitomo Metal Mining Co., Ltd., Ichikawa 272-8588 (Japan)
2015-07-07
An ensemble inhomogeneity of non-spherical LaB{sub 6} nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB{sub 6} particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent −3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB{sub 6} with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.
Embedded model control GNC for the Next Generation Gravity Mission
Colangelo, Luigi; Massotti, Luca; Canuto, Enrico; Novara, Carlo
2017-11-01
A Next Generation Gravity Mission (NGGM) concept for measuring the Earth's variable gravity field has been recently proposed by ESA. The mission objective consists in measuring the temporal variations of the Earth gravity field over a long-time span, with very high spatial and temporal resolutions. This paper focuses on the guidance, navigation and control (GNC) design for the science phase of the NGGM mission. NGGM will consist of a two-satellite long-distance formation like GRACE, where each satellite will be controlled to be drag-free like GOCE. Satellite-to-satellite distance variations, encoding gravity anomalies, will be measured by laser interferometry. The formation satellites, distant up to 200 km, will fly in a quasi-polar orbit at an Earth altitude between 300 and 450 km. Orbit and formation control counteract bias and drift of the residual drag-free accelerations, in order to reach orbit/formation long-term stability. Drag-free control allows the formation to fly counteracting the atmospheric drag, ideally subject only to gravity. Orbit and formation control, designed through the innovative Integrated Formation Control (IFC), have been integrated into a unique control system, aiming at stabilizing the formation triangle consisting of satellites and Earth Center of Masses. In addition, both spacecraft must align their control axis to the satellite-to-satellite line (SSL) with micro-radian accuracy. This is made possible by specific optical sensors and the inter-satellite laser interferometer, capable of materializing the SSL. Such sensors allow each satellite to pursue an autonomous alignment after a suitable acquisition procedure. Pointing control is severely constrained by the angular drag-free control, which must ideally zero the angular acceleration vector, in the science frequency band. The control unit has been designed according to the Embedded Model Control methodology and is organized in a hierarchical way, where the drag-free control plays the
Medium usage model for the design of dynamic spectrum management in ISM bands
Witvliet, B.A.; Bentum, M.J.; Schiphorst, R.; Slump, C.H.
2012-01-01
This paper presents a new approach for dynamic spectrum management for heterogeneous wireless devices. Local congestion degrades the reliability of wireless applications in the License Exempt bands. This leads to the research questions: (1) how to realize equal spectrum sharing between dissimilar
Comparison of Model Prediction With Measurements of Galactic Background Noise at L-Band
DEFF Research Database (Denmark)
Le Vine, David M.; Abraham, Saji; Kerr, Yann H.
2005-01-01
The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial sources (mostly galactic) is strong in this w...
Gurkan, G.; Langestraat, R.
In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of
Czech Academy of Sciences Publication Activity Database
Kučera, Štěpán; Yamamoto, K.; Yoshida, S.
E90A, č. 7 (2007), s. 1261-1270 ISSN 0916-8508 Grant - others:Japan Society for the Promotion of Science(JP) 14213201; Japan Society for the Promotion of Science(JP) 16206040 Institutional research plan: CEZ:AV0Z20670512 Keywords : power control Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.287, year: 2007
Dynamic Active Power Control with Improved Undead-Band Droop for HVDC Grids
DEFF Research Database (Denmark)
Vrana, T.K.; Zeni, Lorenzo; Fosso, O.B.
The earlier developed control method using a piecewise linear droop curve, with different droop values for the different segments, has now been optimised for dynamic performance. Non-linearities at the junctions of two linear droop sections have been adressed. Also non-linearity of power based DC...
International Nuclear Information System (INIS)
Kuang Qian-Wei; Liu Hong-Xia; Wang Shu-Long; Qin Shan-Shan; Wang Zhi-Lin
2011-01-01
After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k · p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal—oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Dalla Piazza, B.; Mourigal, M.; Guarise, M.; Berger, H.; Schmitt, T.; Zhou, K. J.; Grioni, M.; Rønnow, H. M.
2012-03-01
Using low-energy projection of the one-band t-t'-t'' Hubbard model we derive an effective spin Hamiltonian and its spin-wave expansion to order 1/S. We fit the spin-wave dispersion of several parent compounds to the high-temperature superconducting cuprates La2CuO4, Sr2CuO2Cl2, and Bi2Sr2YCu2O8. Our accurate quantitative determination of the one-band Hubbard model parameters allows prediction and comparison to experimental results. Among those we discuss the two-magnon Raman peak line shape, the K-edge resonant inelastic x-ray scattering 500-meV peak, and the high-energy kink in the angle-resolved photoemission spectroscopy quasiparticle dispersion, also known as the waterfall feature.
The integrated environmental control model
Energy Technology Data Exchange (ETDEWEB)
Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)
1995-11-01
The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.
Welding process modelling and control
Romine, Peter L.; Adenwala, Jinen A.
1993-01-01
The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.
Multiple Model Approaches to Modelling and Control,
DEFF Research Database (Denmark)
on the ease with which prior knowledge can be incorporated. It is interesting to note that researchers in Control Theory, Neural Networks,Statistics, Artificial Intelligence and Fuzzy Logic have more or less independently developed very similar modelling methods, calling them Local ModelNetworks, Operating......, and allows direct incorporation of high-level and qualitative plant knowledge into themodel. These advantages have proven to be very appealing for industrial applications, and the practical, intuitively appealing nature of the framework isdemonstrated in chapters describing applications of local methods...... to problems in the process industries, biomedical applications and autonomoussystems. The successful application of the ideas to demanding problems is already encouraging, but creative development of the basic framework isneeded to better allow the integration of human knowledge with automated learning...
Semi-Empirical Calibration of the Integral Equation Model for Co-Polarized L-Band Backscattering
Directory of Open Access Journals (Sweden)
Nicolas Baghdadi
2015-10-01
Full Text Available The objective of this paper is to extend the semi-empirical calibration of the backscattering Integral Equation Model (IEM initially proposed for Synthetic Aperture Radar (SAR data at C- and X-bands to SAR data at L-band. A large dataset of radar signal and in situ measurements (soil moisture and surface roughness over bare soil surfaces were used. This dataset was collected over numerous agricultural study sites in France, Luxembourg, Belgium, Germany and Italy using various SAR sensors (AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR. Results showed slightly better simulations with exponential autocorrelation function than with Gaussian function and with HH than with VV. Using the exponential autocorrelation function, the mean difference between experimental data and Integral Equation Model (IEM simulations is +0.4 dB in HH and −1.2 dB in VV with a Root Mean Square Error (RMSE about 3.5 dB. In order to improve the modeling results of the IEM for a better use in the inversion of SAR data, a semi-empirical calibration of the IEM was performed at L-band in replacing the correlation length derived from field experiments by a fitting parameter. Better agreement was observed between the backscattering coefficient provided by the SAR and that simulated by the calibrated version of the IEM (RMSE about 2.2 dB.
Swenson, David W; Pietryga, Jason A; Grand, David J; Chang, Kevin J; Murphy, Brian L; Egglin, Thomas K
2014-07-01
The purpose of this study was to compare the diagnostic performance of four radiographic signs of gastric band slippage: abnormal phi angle, the "O sign," inferior displacement of the superolateral gastric band margin, and presence of an air-fluid level above the gastric band. A search of the electronic medical record identified 21 patients with a surgically proven slipped gastric band and 63 randomly-selected asymptomatic gastric band patients who had undergone barium swallow studies. These studies were evaluated for the four signs of band slippage by two independent radiologists who were blinded to clinical data. Sensitivity, specificity, and positive and negative predictive values were calculated for each radiographic sign of band slippage. Interobserver agreement between radiologists was assessed using the Fleiss kappa statistic. In evaluating for gastric band slippage, an abnormal phi angle greater than 58° was 91-95% sensitive and 52-62% specific (κ = 0.78), the O sign was 33-48% sensitive but 97% specific (κ = 0.84), inferior displacement of the superolateral band margin by more than 2.4 cm from the diaphragm was 95% sensitive and 97-98% specific (κ = 0.97), and the presence of an air-fluid level was 95% sensitive and 100% specific (κ = 1.00). We report two previously undescribed radiographic signs of gastric band slippage that are both sensitive and specific for this important surgical complication and recommend that these signs should be incorporated into the imaging evaluation of gastric band patients.
Roy, Bitan; Foster, Matthew S.
2018-01-01
We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the
Directory of Open Access Journals (Sweden)
Bitan Roy
2018-03-01
Full Text Available We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (E_{k}=±sqrt[v^{2}k_{x}^{2}+b^{2}k_{y}^{2n}] with n=2, which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ(E∼|E|^{1/n}], this anisotropic semimetal (ASM is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model or (ii get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ε=1/n, augmented with a 1/n expansion (parametrically suppressing quantum fluctuations in the higher dimension by perturbing away from the one-dimensional limit, realized by setting ε=0 and n→∞. We identify charge density wave (CDW, antiferromagnet (AFM, and singlet s-wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (∼ε takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2-symmetric quantum critical
Simulations of S-band RF gun with RF beam control
Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.
2017-08-01
The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.
Interferometric Control of Dual-Band Terahertz Perfect Absorption Using a Designed Metasurface
Kang, Ming; Zhang, Huifang; Zhang, Xueqian; Yang, Quanlong; Zhang, Weili; Han, Jiaguang
2018-05-01
The coherent perfect absorber (CPA), a time-reversed counterpart to the laser emission, could cause all energy fed to the system to be absorbed. It can also be used as an absorptive interferometer, which could provide applications in controllable optical energy transfer. Here, in order to achieve a terahertz CPA, we propose a designed metasurface and experimentally demonstrate that it can serve as a polarization-insensitive CPA at a one-frequency channel under normal symmetric excitation, while a transverse-electric CPA at two-frequency channels around oblique 40° symmetric incidence. Such phenomena in this system can be attributed to Fano resonance consisting of interacting one bright and one dark mode under normal incidence and an additional operative dark mode under oblique symmetric excitation. The experimental results find good agreement with the fitted coupled-mode theory. Moreover, we show that the output amplitude can be effectively tuned from 0 to 1 only by varying the relative phase between the two input waves. The designed CPA could find potential application in effectively controlling absorption for terahertz imaging and terahertz switches.
Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.
Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen
2018-02-02
The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
GPI Spectra of HR8799 C, D, and E in H-K Bands with KLIP Forward Modeling
Greenbaum, Alexandra Z.; Pueyo, Laurent; Ruffio, Jean-Baptiste; Wang, Jason J.; De Rosa, Robert J.; Aguilar, Jonathan; Rameau, Julien; Barman, Travis; Marois, Christian; Marley, Mark S.;
2018-01-01
We demonstrate KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR8799, using PyKLIP. We report new and re-reduced spectrophotometry of HR8799 c, d, and e from H-K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting fake sources and recovering them over a range of parameters. The K1/K2 spectra for planets c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR8799e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We compare planets c, d, and e with M, L, and T-type field objects. All objects are consistent with low gravity mid-to-late L dwarfs, however, a lack of standard spectra for low gravity late L-type objects lead to poor fit for gravity. We place our results in context of atmospheric models presented in previous publications and discuss differences in the spectra of the three planets.
Band gap control using electric field of photonic gel cells fabricated with block copolymer and hydrogel.
Lee, Sung Nam; Baek, Young Bin; Shin, Dong Myung
2014-08-01
Optical and electrical characteristics of the devices using photonic gel film and hydrogel electrolyte were studied. Poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) lamellar film with alternating hydrophobic block and hydrophilic polyelectrolyte block polymers (52 kg/mol-b-57 kg/mol) were prepared for the photonic gel. Poly(isobutylene-co-maleic acid) sodium salts were prepared for the hydrogel. This hydrogel fiber is common water swelling material and it owned ions for a device has conductivity. Photonic gel and hydrogel was spin coating onto Indium-tin-oxide (ITO) glass for make electric fields. The reflectance maximum wavelength of photonic crystal device shifted from 538 nm and reached to 557 nm, 585 nm and 604 nm during 30 min voltage applying time. The bandwidth variation was very limited. Loss of electrolyte was much less with hydrogel compared to the pure water. We can control color of hydrogel used photonic device by electric field with reasonable time range under moderate electric field by applying 2 V between two facing electrodes.
Automatic Flight Controller With Model Inversion
Meyer, George; Smith, G. Allan
1992-01-01
Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.
International Nuclear Information System (INIS)
Ogbuu, O.A.; Abah, O.C.; Asomba, G.C.; Okoye, C.M.I.
2011-01-01
We derived the transition temperature and the isotope exponent of two-band superconductor. We employed Bogoliubov-Valatin formalism assuming a three-square-well potential. The effect of linear-energy-dependent electronic DOS in superconductors is considered. The relevance of the studies to MgB 2 is analyzed. We have derived the expressions for the transition temperature and the isotope effect exponent within the framework of Bogoliubov-Valatin two-band formalism using a linear-energy-dependent electronic density of states assuming a three-square-well potentials model. Our results show that the approach could be used to account for a wide range of values of the transition temperature and isotope effect exponent. The relevance of the present calculations to MgB 2 is analyzed.
Directory of Open Access Journals (Sweden)
Ali M. Al-Saegh
2015-01-01
Full Text Available Recent advances in satellite to land mobile terminal services and technologies, which utilize high frequencies with directional antennas, have made the design of an appropriate model for land mobile satellite (LMS channels a necessity. This paper presents LMS channel model at Ku-band with features that enhance accuracy, comprehensiveness, and reliability. The effect of satellite tracking loss at different mobile terminal speeds is considered for directional mobile antenna systems, a reliable tropospheric scintillation model for an LMS scenario at tropical and temperate regions is presented, and finally a new quality indicator module for different modulation and coding schemes is included. The proposed extended LMS channel (ELMSC model is designed based on actual experimental measurements and can be applied to narrow- and wide-band signals at different regions and at different speeds and multichannel states. The proposed model exhibits lower root mean square error (RMSE and significant performance observation compared with the conventional model in terms of the signal fluctuations, fade depth, signal-to-noise ratio (SNR, and quality indicators accompanied for several transmission schemes.
International Nuclear Information System (INIS)
Kamino, Yuichiro; Tsukuda, Kazuhiro; Kokubo, Masaki; Miura, Sadao; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo
2007-01-01
We are developing a four-dimensional, image-guided radiotherapy system with a gimbaled x-ray head. The system has pursuing irradiation capability in addition to precise irradiation capability, owing to its agile x-ray head. The moving x-ray head requires a very small C-band accelerator guide. The heat intensity of the accelerator guide is much higher than that of conventional S-band medical linear accelerators. The resonance frequency varies over almost 1.0 MHz with a thermal time constant of about 30 s. An automatic frequency controller (AFC) is employed to compensate for this variation in resonance frequency. Furthermore, we noted that fast AFC response is important for step-and-shoot intensity modulation radiotherapy (IMRT), in which the beam is turned on and off frequently. Therefore, we invented a digital AFC, based on a new concept, to provide effective compensation for the thermal characteristics of the accelerator guide and to ensure stable and optimized x-ray treatment. An important aspect of the performance of the AFC is the capture-frequency range over which the AFC can seek, lock on to, and track the resonance frequency. The conventional, analog AFC used in S-band medical linear accelerators would have a capture-frequency range of about 0.9 MHz, if applied to our accelerator guide, and would be inappropriate. Conversely, our new AFC has a capture-frequency range of 24 MHz, which is well suited to our accelerator guide. The design concept behind this new AFC has been developed and verified. A full prototype system was constructed and tested on an existing accelerator guide at the rated x-ray output (500 cGy/min) of our radiotherapy system, with a pulse-repetition frequency of 300 Hz. The AFC acquired the resonance frequency of the accelerator guide within 0.15 s after beam-on, and provided stable tracking and adjustment of the frequency of the microwave source to the resonance frequency of the accelerator guide. With a planned improvement of the
Oesen, Stefan; Halper, Barbara; Hofmann, Marlene; Jandrasits, Waltraud; Franzke, Bernhard; Strasser, Eva-Maria; Graf, Alexandra; Tschan, Harald; Bachl, Norbert; Quittan, Michael; Wagner, Karl Heinz; Wessner, Barbara
2015-12-01
To evaluate the effects of elastic band resistance training in combination with nutrient supplementation on muscular strength and the ability to perform mobility-related activities of daily living in older adults living in retirement care facilities. Randomized controlled trial, with a 6-month intervention period. A retirement care facility, Vienna, Austria. One hundred and seventeen older adults (14 males (12%) and 103 females (88%)), aged 65 to 97 years (mean age: 82.8 ± 6.0), having a mini-mental state examination score ≥ 23 and no chronic diseases posing a medical contraindication to training therapy. Participants were randomly assigned, but stratified by sex, to one of three intervention groups: supervised resistance exercise training (RT), RT in combination with nutrient supplementation (RTS), or cognitive training group (CT). All interventions were performed two times a week for 6 months. RT was designed to train all major muscle groups using elastic bands. The nutrient supplement (rich in proteins, vitamin D, B2, B12) was distributed every morning as well as after each RT session. A battery of motor ability tests and functional test were performed prior to as well as following 3 months and finally after 6 months of intervention. These tests included isokinetic torque measurements of the knee extensors and flexors in concentric mode at 60 and 120°/s, isometric handgrip strength, senior arm-lifting test, chair stand test, maximum walking speed and a 6-minute walking test (6 MWT). A repeated-measures ANOVA analysis revealed significant improvements in physical function of lower (p=0.002) and upper extremities (p=0.006) for RT and/or RTS in comparison to CT. For isokinetic measurements, 6 MWT, and gait speed time effects (pperformance in chair stand test (p=0.012), 6 MWT (p=0.003), and gait speed (p=0.013) at baseline than that of the finishers of the study. Six months of a low intensity resistance exercise using elastic bands and own body weight is safe
Bressan, Alberto; Lewicka, Marta
2018-03-01
We consider a free boundary problem for a system of PDEs, modeling the growth of a biological tissue. A morphogen, controlling volume growth, is produced by specific cells and then diffused and absorbed throughout the domain. The geometric shape of the growing tissue is determined by the instantaneous minimization of an elastic deformation energy, subject to a constraint on the volumetric growth. For an initial domain with C}^{2,α boundary, our main result establishes the local existence and uniqueness of a classical solution, up to a rigid motion.
Samajdar, D. P.; Dhar, S.
2014-01-01
The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1−xBix and InSb1−xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E − energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data. PMID:24592181
Samajdar, D P; Dhar, S
2014-01-01
The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E - energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.
Path modeling and process control
DEFF Research Database (Denmark)
Høskuldsson, Agnar; Rodionova, O.; Pomerantsev, A.
2007-01-01
and having three or more stages. The methods are applied to a process control of a multi-stage production process having 25 variables and one output variable. When moving along the process, variables change their roles. It is shown how the methods of path modeling can be applied to estimate variables...... be performed regarding the foreseeable output property y, and with respect to an admissible range of correcting actions for the parameters of the next stage. In this paper the basic principles of path modeling is presented. The mathematics is presented for processes having only one stage, having two stages...... of the next stage with the purpose of obtaining optimal or almost optimal quality of the output variable. An important aspect of the methods presented is the possibility of extensive graphic analysis of data that can provide the engineer with a detailed view of the multi-variate variation in data....
DEFF Research Database (Denmark)
Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.
2017-01-01
Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters....... Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors....
An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data
Chen, Shih-Ping; Bilitza, Dieter; Liu, Jann-Yenq; Caton, Ronald; Chang, Loren C.; Yeh, Wen-Hao
2017-09-01
Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.
Energy Technology Data Exchange (ETDEWEB)
Yap, Yung Szen, E-mail: yungszen@utm.my [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan); Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Tabuchi, Yutaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan); Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro, E-mail: kitagawa@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka-shi, Osaka 560-8531 (Japan)
2015-06-15
We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.
Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.
2008-01-01
The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.
Pajic-Lijakovic, Ivana
2015-12-01
An attempt was made to discuss and connect various modeling approaches on various time and space scales which have been proposed in the literature in order to shed further light on the erythrocyte membrane rearrangement caused by the cortex-lipid bilayer coupling under thermal fluctuations. Roles of the main membrane constituents: (1) the actin-spectrin cortex, (2) the lipid bilayer, and (3) the trans membrane protein band 3 and their course-consequence relations were considered in the context of the cortex non linear stiffening and corresponding anomalous nature of energy dissipation. The fluctuations induce alternating expansion and compression of the membrane parts in order to ensure surface and volume conservation. The membrane structural changes were considered within two time regimes. The results indicate that the cortex non linear stiffening and corresponding anomalous nature of energy dissipation are related to the spectrin flexibility distribution and the rate of its changes. The spectrin flexibility varies from purely flexible to semi flexible. It is influenced by: (1) the number of band 3 molecules attached to single spectrin filaments, and (2) phosphorylation of the actin-junctions. The rate of spectrin flexibility changes depends on the band 3 molecules rearrangement.
Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band
Abraham, Saji; LeVine, David M.
2004-01-01
Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.
Tiwari, P. R.; Mohanty, U. C.; Dey, S.; Acharaya, N.; Sinha, P.
2012-12-01
Precipitation over the Western Himalayas region during winter is mainly associated with the passage of midlatitude synoptic systems known as western disturbances (WDs). Recently, many observational and modeling studies reported that the relationship of the Indian southwest monsoon rainfall with El Niño- Southern Oscillation (ENSO) has weakened since around 1980. But, in contrast, only very few observational studies are reported so far to examine the relationship between ENSO and the winter precipitation over the Western Himalayas region from December to February (DJF). But there is a huge gap of modeling this phenomenon. So keeping in view of the absence of modeling studies, an attempt is made to simulate the relationship between wintertime precipitations associated with large scale global forcing of ENSO over the Western Himalayas. In the present study, RegT-Band, a tropical band version of the regional climate model RegCM4 is integrated for a set of 5 El Niño (1986-87, 1991-92, 1997-98, 2002-03, 2009-10) and 4 La Niña (1984-85, 1988-89, 1999-2000, 2007-08) years with the observed sea-surface temperature and lateral boundary condition. The domain extends from 50° S to 50° N and covers the entire tropics at a grid spacing of about 45 km, i.e. it includes lateral boundary forcing only at the southern and northern boundaries. The performance evaluation of the model in capturing the large scale fields followed by ENSO response with wintertime precipitation over the Western Himalayas region has been carried out by using National Center for Environmental Prediction (NCEP)-Department of Energy (DOE) reanalysis 2 (NNRP2) data (2.5° x 2.5°) and Aphrodite precipitation data (0.25° x 0.25°). The model is able to delineate the mean circulation associated with ENSO over the region during DJF reasonably well and shows strong southwesterly to northwesterly wind flow, which is there in verification analysis also. The vertical structure of the low as well as upper level
Water vapor transmittance models for narrow bands in the 13 to 19 μm spectral region
International Nuclear Information System (INIS)
Weichel, R.L.
1983-10-01
The purpose of this report is to document the development of water vapor transmittance models for narrow bands (satellite sensor channels) in the 13 to 19 μm spectral region. The models are the result of research efforts of the author in 1971-1972 while on active duty with the US Air Force at the Air Force Global Weather Central (AFGWC). The models were developed for application in studies involving a temperature profiling sensor system carried aboard the satellites of the Defense Meteorological Satellite Program (DMSP), formerly DAPP. Recently, (Lovill et al., 1978; Luther et al., 1981) the models were implemented for studies concerned with methodologies to retrieve total atmospheric column ozone from measurements of newer DMSP Block 5D series satellite sensors with similar channels (see Nichols, 1975)
Directory of Open Access Journals (Sweden)
E. Picciotti
2013-05-01
Full Text Available Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative mbox{integrated} decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5
International Nuclear Information System (INIS)
Tyynelae, Jani; Nousiainen, Timo; Goeke, Sabine; Muinonen, Karri
2009-01-01
We study the applicability of the discrete-dipole approximation by modeling centimeter (C-band) radar echoes for hydrometeors, and compare the results to exact theories. We use ice and water particles of various shapes with varying water-content to investigate how the backscattering, extinction, and absorption cross sections change as a function of particle radius. We also compute radar parameters, such as the differential reflectivity, the linear depolarization ratio, and the copolarized correlation coefficient. We find that using discrete-dipole approximation (DDA) to model pure ice and pure water particles at the C-band, is a lot more accurate than particles containing both ice and water. For coated particles, a large grid-size is recommended so that the coating is modeled adequately. We also find that the absorption cross section is significantly less accurate than the scattering and backscattering cross sections. The accuracy of DDA can be increased by increasing the number of dipoles, but also by using the filtered coupled dipole-option for the polarizability. This halved the relative errors in cross sections.
Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong
2015-08-01
We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite-difference time-domain method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two-dimensional (2-D) and three-dimensional (3-D) simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived, which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band-filling calculations, simulations of SQW optical gain spectra, and photonic crystal lasers.
McKee, Rodney A.; Walker, Frederick J.
2003-11-25
A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.
Directory of Open Access Journals (Sweden)
Guilherme P. T. Areas
2013-12-01
Full Text Available BACKGROUND: Elastic resistance bands (ERB combined with proprioceptive neuromuscular facilitation (PNF are often used in resistance muscle training programs, which have potential effects on peripheral muscle strength. However, the effects of the combination of ERB and PNF on respiratory muscle strength warrant further investigation. OBJECTIVES: The assessment of the effects of PNF combined with ERB on respiratory muscle strength. METHOD: Twenty healthy, right-handed females were included. Subjects were randomized to either the resistance training program group (TG, n=10 or the control group (CG, n=10. Maximal expiratory pressure (MEP and inspiratory pressure (MIP were measured before and after four weeks of an upper extremity resistance training program. The training protocol consisted of upper extremity PNF combined with ERB, with resistance selected from 1 repetition maximum protocol. RESULTS: PNF combined with ERB showed significant increases in MIP and MEP (p<0.05. In addition, there were significant differences between the TG and CG regarding ∆MIP (p=0.01 and ∆MEP (p=0.04. CONCLUSIONS: PNF combined with ERB can have a positive impact on respiratory muscle strength. These results may be useful with respect to cardiopulmonary chronic diseases that are associated with reduced respiratory muscle strength.
Shak, Joshua R; Roper, Jatin; Perez-Perez, Guillermo I; Tseng, Chi-hong; Francois, Fritz; Gamagaris, Zoi; Patterson, Carlie; Weinshel, Elizabeth; Fielding, George A; Ren, Christine; Blaser, Martin J
2008-09-01
We hypothesized that laparoscopic adjustable gastric banding (LAGB) reduces weight and modulates ghrelin production, but largely spares gastrointestinal endocrine function. To examine this hypothesis, we determined plasma concentrations of appetite-control, insulinotropic, and digestive hormones in relation to LAGB. Twenty-four patients undergoing LAGB were prospectively enrolled. Body mass index (BMI) was measured and blood samples obtained at baseline and 6 and 12 months post-surgery. Plasma concentrations of leptin, acylated and total ghrelin, pancreatic polypeptide (PP), insulin, glucose-dependent insulinotropic peptide (GIP), active glucagon-like peptide-1 (GLP-1), gastrin, and pepsinogens I and II were measured using enzyme-linked immunoassays. Median percent excess weight loss (%EWL) over 12 months was 45.7% with median BMI decreasing from 43.2 at baseline to 33.8 at 12 months post-surgery (p 0.05). Pepsinogen II levels were significantly lower 6 months after LAGB but returned to baseline levels by 12 months. LAGB yielded substantial %EWL and a proportional decrease in plasma leptin. Our results support the hypothesis that LAGB works in part by suppressing the rise in ghrelin that normally accompanies weight loss. Unchanged concentrations of insulinotropic and digestive hormones suggest that gastrointestinal endocrine function is largely maintained in the long term.
Does the chromatic Mach bands effect exist?
Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel
2009-06-30
The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.
Wind turbine control and model predictive control for uncertain systems
DEFF Research Database (Denmark)
Thomsen, Sven Creutz
as disturbance models for controller design. The theoretical study deals with Model Predictive Control (MPC). MPC is an optimal control method which is characterized by the use of a receding prediction horizon. MPC has risen in popularity due to its inherent ability to systematically account for time...
Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
Energy Technology Data Exchange (ETDEWEB)
Bai, J.; Phoenix, S.L. [Cornell University, Ithaca, NY (United States). Dept. of Theoretical and Applied Mechanics
2005-04-01
Predicting compressive failure of a unidirectional fibrous composite is a longstanding and challenging problem that we study from a new perspective. Motivated by previous modelling of tensile failure as well as experimental observations on compressive failures in single carbon fibers, we develop a new micromechanical model for the compressive failure process in unidirectional, planar composites. As the compressive load is increased, random fiber failures are assumed to occur due to statistically distributed flaws, analogous to what occurs in tension. These breaks are often shear-mode failures with slanted surfaces that induce shear dislocations, especially when they occur in small groups aligned obliquely. Our model includes interactions of dislocated and neighboring intact fibers through a system of fourth-order, differential equations governing transverse deformation, and also allows for local matrix plastic yielding and debonding from the fiber near and within the dislocation arrays. Using the Discrete Fourier Transform method, we find a 'building-block' analytical solution form, which naturally embodies local length scales of fiber microbuckling and instability. Based on the influence function, superposition approach, a computationally efficient scheme is developed to model the evolution of fiber and matrix stresses. Under increasing compressive strain the simulations show that matrix yielding and debonding crucially lead to large increases in bending strains in fibers next to small groups of obliquely aligned, dislocated breaks. From the paired locations of maximum fiber bending in flanking fibers, the triggering of an unstable kink band becomes realistic. The geometric features of the kink band, such as the fragment lengths and orientation angles, will depend on the fiber and matrix mechanical and geometric properties. In carbon fiber-polymer matrix systems our model predicts a much lower compressive failure stress than obtained from Rosen
Multiplicity Control in Structural Equation Modeling
Cribbie, Robert A.
2007-01-01
Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…
Boer, A. de; Mouthaan, K.
2000-01-01
The design and measured performance of a GaAs multi-function X-band MMIC for spacebased synthetic aperture radar (SAR) applications with 7-bit phase and amplitude control and integrated serial to parallel converter (including level conversion) is presented. The main application for the
Montuori, Antonio; de Ruggiero, Paola; Migliaccio, Maurizio; Pierini, Stefano
2012-03-01
In this paper, the capabilities of X-band COSMOSkyMed SAR data are investigated for both wind speed estimation purposes and for the improvement of coastal circulation modeling. The data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR HugeRegion COSMO-SkyMed SAR data, gathered in the Southern Tyrrhenian Sea during the summer and winter seasons of 2010. Wind speed is estimated by means of a SAR wind speed retrieval based on the azimuth cut-off procedure. Wind direction is provided by means of a SAR retrieval approach based on Discrete Wavelet Transform. After comparison with the provided ground truth data, SAR-derived wind fields and ECMWF data are used to construct a blended wind product regularly sampled in both space and time. The resulting wind field will be used to force the Princeton Ocean Model, which has been implemented in a Southern Tyrrhenian Sea coastal area to simulate wind-driven costal circulation processes.
Multiband model of the valence-band electronic structure in cylindrical GaAs nanowires
Directory of Open Access Journals (Sweden)
Čukarić Nemanja A.
2010-01-01
Full Text Available We compute the hole states in the GaAs free-standing nanowires, and in the GaAs/(Al,GaAs core-shell nanowires of type I-s, which are grown along the [100] direction. The hole states are extracted from the 4-band Luttinger-Kohn Hamiltonian, which explicitly takes into account mixing between the light and heavy holes. The axial aproximation is adopted, which allowed classification of states according to the total angular monentum (fz when expressed in units of the Planck constant. The envelope functions are expanded in Bessel functions of the first kind. The dispersion relations of the subbands E(kz obtained by the devised method do not resemble parabolas, which is otherwise a feature of the dispersion relations of the conduction subbands. Furthermore, the energy levels of holes whose total orbital momentum is fz=1/2 are shown to cross for a free-standing wire. The low energy fz=1/2 states are found to anticross, but these anticrossings turn into crossings when the ratio of the inner and outer radius of the core-shell wire takes a certain value. The influence of the geometric parameters on the dispersion relations is considered for both free standing and core-shell nanowires.
Model complexity control for hydrologic prediction
Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.
2008-01-01
A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore
An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band
Directory of Open Access Journals (Sweden)
Taekyeong Jin
2018-04-01
Full Text Available We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.
Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band
International Nuclear Information System (INIS)
Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu
2012-01-01
This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder–coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg −1 was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest. (paper)
Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.
Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu
2012-08-07
This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.
International Nuclear Information System (INIS)
Pradhan, B.; Mohanta, K.L.; Rout, G.C.
2012-01-01
We report here a mean-field study of competing antiferromagnetism, superconductivity and lattice strain phases and their effect on the local density of states of the cuprate system. Our model Hamiltonian incorporating these interactions is reported earlier [G.C. Rout et al., Physica C, 2007]. The analytic expression for superconducting, antiferromagnetism and lattice strain order parameters are calculated and solved self-consistently. The interplay of these order parameters is investigated considering the calculated density of states (DOSs) of the conduction electrons. The DOS displays multiple gap structures with multiple peaks. It is suggested that the tunneling conductance data obtained from the scanning tunneling microscopy (STM) measurements could be interpreted by using the quasi-particle bands calculated from our model Hamiltonian. We have discussed the mechanism to calculate the order parameters from the conductance data.
International Nuclear Information System (INIS)
Adam, G.; Adam, S.
2007-01-01
The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T c superconductivity in cuprates rests on the Hubbard operator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean-field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, the use of spectral representations allows the identification and elimination of exponentially small quantities. This procedure secures the reduction of the correlation order to the GMFA-GF expressions
A discrete control model of PLANT
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
Model predictive control for a thermostatic controlled system
DEFF Research Database (Denmark)
Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob
2013-01-01
This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...
Varade, D. M.; Dikshit, O.
2017-12-01
Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.
Stochastic models, estimation, and control
Maybeck, Peter S
1982-01-01
This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.
Directory of Open Access Journals (Sweden)
Guang-jin Wang
2014-01-01
Full Text Available The researchers cannot control the composition and structure of coarse grained soil in the indoor experiment because the granular particles of different size have the characteristics of random distribution and no sorting. Therefore, on the basis of the laboratory tests with the coarse grained soil, the HHC-Granular model, which could simulate the no sorting and random distribution of different size particles in the coarse-grained soil, was developed by use of cellular automata method. Meanwhile, the triaxial numerical simulation experiments of coarse grained soil were finished with the different composition and structure soil, and the variation of shear strength was discussed. The results showed that the internal friction angle was likely to reduce with the increasing of gravel contents in the coarse-grained soil, but the mean internal friction angle significantly increased with the increment of gravel contents. It indicated that the gravel contents of shear bands were the major factor affecting the shear strength.
Dau, T.; Kollmeier, B.; Kohlrausch, A.G.
1997-01-01
This paper presents a quantitative model for describing data from modulation-detection and modulation-masking experiments, which extends the model of the "effective" signal processing of the auditory system described in Dau et al. [J. Acoust. Soc. Am. 99, 3615–3622 (1996)]. The new element in the
A Functional Model of the Digital Extensor Mechanism: Demonstrating Biomechanics with Hair Bands
Cloud, Beth A.; Youdas, James W.; Hellyer, Nathan J.; Krause, David A.
2010-01-01
The action of muscles about joints can be explained through analysis of their spatial relationship. A functional model of these relationships can be valuable in learning and understanding the muscular action about a joint. A model can be particularly helpful when examining complex actions across multiple joints such as in the digital extensor…
Tube Model Predictive Control with an Auxiliary Sliding Mode Controller
Directory of Open Access Journals (Sweden)
Miodrag Spasic
2016-07-01
Full Text Available This paper studies Tube Model Predictive Control (MPC with a Sliding Mode Controller (SMC as an auxiliary controller. It is shown how to calculate the tube widths under SMC control, and thus how much the constraints of the nominal MPC have to be tightened in order to achieve robust stability and constraint fulfillment. The analysis avoids the assumption of infinitely fast switching in the SMC controller.
Band parameters of phosphorene
International Nuclear Information System (INIS)
Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)
Band parameters of phosphorene
DEFF Research Database (Denmark)
Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....
International Nuclear Information System (INIS)
Kravtsov, V E; Yudson, V I
2013-01-01
We consider the distribution function P(|ψ| 2 ) of the eigenfunction amplitude at the center-of-band (E = 0) anomaly in the one-dimensional tight-binding chain with weak uncorrelated on-site disorder (the one-dimensional Anderson model). The special emphasis is on the probability of the anomalously localized states (ALS) with |ψ| 2 much larger than the inverse typical localization length ℓ 0 . Using the recently found solution for the generating function Φ an (u, ϕ) we obtain the ALS probability distribution P(|ψ| 2 ) at |ψ| 2 ℓ 0 ≫ 1. As an auxiliary preliminary step, we found the asymptotic form of the generating function Φ an (u, ϕ) at u ≫ 1 which can be used to compute other statistical properties at the center-of-band anomaly. We show that at moderately large values of |ψ| 2 ℓ 0 , the probability of ALS at E = 0 is smaller than at energies away from the anomaly. However, at very large values of |ψ| 2 ℓ 0 , the tendency is inverted: it is exponentially easier to create a very strongly localized state at E = 0 than at energies away from the anomaly. We also found the leading term in the behavior of P(|ψ| 2 ) at small |ψ| 2 ≪ ℓ −1 0 and show that it is consistent with the exponential localization corresponding to the Lyapunov exponent found earlier by Kappus and Wegner. (paper)
Modeling, robust and distributed model predictive control for freeway networks
Liu, S.
2016-01-01
In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of
Modelling and Control of a Mobile Robot
DEFF Research Database (Denmark)
Christensen, Georg Kronborg
1998-01-01
In order to control a mobile robot, kinematic odels as well as dynamic models are required. This parer describes these basic models for an experimental mobile robot under construction at the Department of Control and Engineering Design. A description of a set of trajectory control rules is given...
Predictor-Based Model Reference Adaptive Control
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2010-01-01
This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.
Basic Research on Adaptive Model Algorithmic Control
1985-12-01
Control Conference. Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial...pp.977-982. Richalet, J., A. Rault, J. L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial processes
Can better modelling improve tokamak control?
International Nuclear Information System (INIS)
Lister, J.B.; Vyas, P.; Ward, D.J.; Albanese, R.; Ambrosino, G.; Ariola, M.; Villone, F.; Coutlis, A.; Limebeer, D.J.N.; Wainwright, J.P.
1997-01-01
The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs
Scramjet Isolator Modeling and Control
2011-12-01
Layer Interactions,” (NATO) AGARD CP 193, May 1976. 17. Cox, C., Lewis, C., Pap, R., Glover, C., Priddy, K., Edwards, J., and McCarty, D., “Prediction...Static Polynomial Model . . . . . . . . . . . . . . . . . . 73 5.2 Continuous Linear Model with Static Polynomial Input . 75 5.3 ARX Models with Static...Vector of NARX model regression values . . . . . . . . . . 70 Nr Number of samples for a run . . . . . . . . . . . . . . . . 73 ΘNL Vector of
Energy Technology Data Exchange (ETDEWEB)
Ruiz Paredes, J.A
2007-05-15
In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k{sup -2} source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w{sup 2} model with spectral amplitudes at high frequency scaled to the coefficient of directivity C{sub d}. To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C{sub d}, as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M{sub w} 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)
Modeling and identification for robot motion control
Kostic, D.; Jager, de A.G.; Steinbuch, M.; Kurfess, T.R.
2004-01-01
This chapter deals with the problems of robot modelling and identification for high-performance model-based motion control. A derivation of robot kinematic and dynamic models was explained. Modelling of friction effects was also discussed. Use of a writing task to establish correctness of the models
Modelling and control of systems with flow
van Mourik, S.
2008-01-01
In practice, feedback control design consists of three steps: modelling, model reduction and controller design for the reduced model. Systems with flow are often complicated, and there is yet no standard algorithm that integrates these steps. In this thesis we make a modest effort by considering two
Nonlinear control of the Salnikov model reaction
DEFF Research Database (Denmark)
Recke, Bodil; Jørgensen, Sten Bay
1999-01-01
This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...
Multi-band effective mass approximations advanced mathematical models and numerical techniques
Koprucki, Thomas
2014-01-01
This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used wit...
Phase diagram of the Hubbard model with arbitrary band filling: renormalization group approach
International Nuclear Information System (INIS)
Cannas, Sergio A.; Cordoba Univ. Nacional; Tsallis, Constantino.
1991-01-01
The finite temperature phase diagram of the Hubbard model in d = 2 and d = 3 is calculated for arbitrary values of the parameter U/t and chemical potential μ using a quantum real space renormalization group. Evidence for a ferromagnetic phase at low temperatures is presented. (author). 15 refs., 5 figs
Optimized Variational 1D Boussinesq Modelling for broad-band waves over flat bottom
Lakhturov, I.; Adytia, D.; van Groesen, Embrecht W.C.
The Variational Boussinesq Model (VBM) for waves above a layer of ideal fluid conserves mass, momentum, energy, and has decreased dimensionality compared to the full problem. It is derived from the Hamiltonian formulation via an approximation of the kinetic energy, and can provide approximate
Modeling Control Situations in Power System Operations
DEFF Research Database (Denmark)
Saleem, Arshad; Lind, Morten; Singh, Sri Niwas
2010-01-01
for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system......Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...
Modeling and control of greenhouse crop growth
Rodríguez, Francisco; Guzmán, José Luis; Ramírez-Arias, Armando
2015-01-01
A discussion of challenges related to the modeling and control of greenhouse crop growth, this book presents state-of-the-art answers to those challenges. The authors model the subsystems involved in successful greenhouse control using different techniques and show how the models obtained can be exploited for simulation or control design; they suggest ideas for the development of physical and/or black-box models for this purpose. Strategies for the control of climate- and irrigation-related variables are brought forward. The uses of PID control and feedforward compensators, both widely used in commercial tools, are summarized. The benefits of advanced control techniques—event-based, robust, and predictive control, for example—are used to improve on the performance of those basic methods. A hierarchical control architecture is developed governed by a high-level multiobjective optimization approach rather than traditional constrained optimization and artificial intelligence techniques. Reference trajector...
Applying model predictive control to power system frequency control
Ersdal, AM; Imsland, L; Cecilio, IM; Fabozzi, D; Thornhill, NF
2013-01-01
16.07.14 KB Ok to add accepted version to Spiral Model predictive control (MPC) is investigated as a control method which may offer advantages in frequency control of power systems than the control methods applied today, especially in presence of increased renewable energy penetration. The MPC includes constraints on both generation amount and generation rate of change, and it is tested on a one-area system. The proposed MPC is tested against a conventional proportional-integral (PI) cont...
Beam-based model of broad-band impedance of the Diamond Light Source
Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo
2015-06-01
In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.
Beam-based model of broad-band impedance of the Diamond Light Source
Directory of Open Access Journals (Sweden)
Victor Smaluk
2015-06-01
Full Text Available In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.
Fractional Order Models of Industrial Pneumatic Controllers
Directory of Open Access Journals (Sweden)
Abolhassan Razminia
2014-01-01
Full Text Available This paper addresses a new approach for modeling of versatile controllers in industrial automation and process control systems such as pneumatic controllers. Some fractional order dynamical models are developed for pressure and pneumatic systems with bellows-nozzle-flapper configuration. In the light of fractional calculus, a fractional order derivative-derivative (FrDD controller and integral-derivative (FrID are remodeled. Numerical simulations illustrate the application of the obtained theoretical results in simple examples.
On the interaction between the ground- and s-bands in the CHFB model
International Nuclear Information System (INIS)
Haakansson, H.B.
1980-01-01
The interaction between the ground configuration and the first excited 2 qp (s-) configuration in the isub 13/2 CHFB model is eliminated in order to investigate how the interaction is built up by the different terms in the Hamiltonian. The changes of sign of the interaction can be understood from the particle number projected wave functions. Oscillations are still present after projection. (author)
Plant control using embedded predictive models
International Nuclear Information System (INIS)
Godbole, S.S.; Gabler, W.E.; Eschbach, S.L.
1990-01-01
B and W recently undertook the design of an advanced light water reactor control system. A concept new to nuclear steam system (NSS) control was developed. The concept, which is called the Predictor-Corrector, uses mathematical models of portions of the controlled NSS to calculate, at various levels within the system, demand and control element position signals necessary to satisfy electrical demand. The models give the control system the ability to reduce overcooling and undercooling of the reactor coolant system during transients and upsets. Two types of mathematical models were developed for use in designing and testing the control system. One model was a conventional, comprehensive NSS model that responds to control system outputs and calculates the resultant changes in plant variables that are then used as inputs to the control system. Two other models, embedded in the control system, were less conventional, inverse models. These models accept as inputs plant variables, equipment states, and demand signals and predict plant operating conditions and control element states that will satisfy the demands. This paper reports preliminary results of closed-loop Reactor Coolant (RC) pump trip and normal load reduction testing of the advanced concept. Results of additional transient testing, and of open and closed loop stability analyses will be reported as they are available
An alternative method for calibration of narrow band radiometer using a radiative transfer model
Energy Technology Data Exchange (ETDEWEB)
Salvador, J; Wolfram, E; D' Elia, R [Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET), Juan B. de La Salle 4397 (B1603ALO), Villa Martelli, Buenos Aires (Argentina); Zamorano, F; Casiccia, C [Laboratorio de Ozono y Radiacion UV, Universidad de Magallanes, Punta Arenas (Chile) (Chile); Rosales, A [Universidad Nacional de la Patagonia San Juan Bosco, UNPSJB, Facultad de Ingenieria, Trelew (Argentina) (Argentina); Quel, E, E-mail: jsalvador@citefa.gov.ar [Universidad Nacional de la Patagonia Austral, Unidad Academica Rio Gallegos Avda. Lisandro de la Torre 1070 ciudad de Rio Gallegos-Sta Cruz (Argentina) (Argentina)
2011-01-01
The continual monitoring of solar UV radiation is one of the major objectives proposed by many atmosphere research groups. The purpose of this task is to determine the status and degree of progress over time of the anthropogenic composition perturbation of the atmosphere. Such changes affect the intensity of the UV solar radiation transmitted through the atmosphere that then interacts with living organisms and all materials, causing serious consequences in terms of human health and durability of materials that interact with this radiation. One of the many challenges that need to be faced to perform these measurements correctly is the maintenance of periodic calibrations of these instruments. Otherwise, damage caused by the UV radiation received will render any one calibration useless after the passage of some time. This requirement makes the usage of these instruments unattractive, and the lack of frequent calibration may lead to the loss of large amounts of acquired data. Motivated by this need to maintain calibration or, at least, know the degree of stability of instrumental behavior, we have developed a calibration methodology that uses the potential of radiative transfer models to model solar radiation with 5% accuracy or better relative to actual conditions. Voltage values in each radiometer channel involved in the calibration process are carefully selected from clear sky data. Thus, tables are constructed with voltage values corresponding to various atmospheric conditions for a given solar zenith angle. Then we model with a radiative transfer model using the same conditions as for the measurements to assemble sets of values for each zenith angle. The ratio of each group (measured and modeled) allows us to calculate the calibration coefficient value as a function of zenith angle as well as the cosine response presented by the radiometer. The calibration results obtained by this method were compared with those obtained with a Brewer MKIII SN 80 located in the
Exploring the origin of broad-band emissions of Mrk 501 with a two-zone model
Lei, Maichang; Yang, Chuyuan; Wang, Jiancheng; Yang, Xiaolin
2018-04-01
We propose a two-zone synchrotron self-Compton (SSC) model, including an inner gamma-ray emitting region with spherical shape and a conical radio emitting region located at the extended jet, to alleviate the long-standing "bulk Lorentz factor crisis" in blazars. In this model, the spectral energy distributions (SEDs) of blazars are produced by considering the gamma-ray emitting region inverse Compton scattering of both the synchrotron photons itself and the ambient photons from the radio emitting region. Applying the model to Mrk 501, we obtain that the radio emitting region has a comoving length of ˜0.15 pc and is located at sub-parsec scale from the central engine by modeling the radio data; the flux of the Compton scattering of the ambient photons is so low that it can be neglected safely. The characteristic hard gamma-ray spectrum can be explained by the superposition of two SSC processes, and the model can approximately explain the very high energy (VHE) data. The insights into the spectral shape and the inter-band correlations under the flaring state will provide us with a diagnostic for the bulk Lorentz factor of radio emitting region, where the low and upper limits of 8 and 15 are preferred, and for the two-zone SSC model itself. In addition, our two-zone SSC model shows that the gamma-ray emitting region creates flare on the timescale of merely a few hours, and the long time outbursts more likely originate from the extended radio emitting region.
Zhang, ZhenHua
2016-07-01
The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hω are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.
Towards an adaptive model for greenhouse control
Speetjens, S.L.; Stigter, J.D.; Straten, van G.
2009-01-01
Application of advanced controllers in horticultural practice requires detailed models. Even highly sophisticated models require regular attention from the user due to changing circumstances like plant growth, changing material properties and modifications in greenhouse design and layout. Moreover,
Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł
2018-02-01
We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.
Viger, R. J.; Van Beusekom, A. E.
2016-12-01
The treatment of glaciers in modeling requires information about their shape and extent. This presentation discusses new methods and their application in a new glacier-capable variant of the USGS PRMS model, a physically-based, spatially distributed daily time-step model designed to simulate the runoff and evolution of glaciers through time. In addition to developing parameters describing PRMS land surfaces (hydrologic response units, HRUs), several of the analyses and products are likely of interest to cryospheric science community in general. The first method is a (fully automated) variation of logic previously presented in the literature for definition of the glacier centerline. Given that the surface of a glacier might be convex, using traditional topographic analyses based on a DEM to trace a path down the glacier is not reliable. Instead a path is derived based on a cost function. Although only a single path is presented in our results, the method can be easily modified to delineate a branched network of centerlines for each glacier. The second method extends the glacier terminus downslope by an arbitrary distance, according to local surface topography. This product is can be used to explore possible, if unlikely, scenarios under which glacier area grows. More usefully, this method can be used to approximate glacier extents from previous years without needing historical imagery. The final method presents an approach for segmenting the glacier into altitude-based HRUs. Successful integration of this information with traditional approaches for discretizing the non-glacierized portions of a basin requires several additional steps. These include synthesizing the glacier centerline network with one developed with a traditional DEM analysis, ensuring that flow can be routed under and beyond glaciers to a basin outlet. Results are presented based on analysis of the Copper River Basin, Alaska.
International Nuclear Information System (INIS)
Kewisch, J.; Mane, V.; Clifford, T.; Hartmann, H.; Kahn, T.; Oerter, B.; Peggs, S.
1994-01-01
This paper introduces the hardware and software concepts for the implementation of the ramp controls. The hardware part of the ramp controls consists of a number of multi-purpose Wave Form Generators (WFGS) which control the settings of accelerator hardware directly or indirectly by controlling their WFG. A Real Time Data Link (RTDL) data transfer system connects the WFGs in a three layer architecture. To the usual two layers which generate an independent timing signal and dependent set points, respectively, an intermediate layer is added which produces accelerator parameters such as the magnet strength. The task of the bottom layer is therefore reduced to the function of implementing those parameters. This architecture de-couples two independent functions which axe normally folded together. The function of the hardware becomes modular and easily maintainable. The ramp control software is layered in the same way. Between the top layer (the ramp procedure application program) and the bottom layer (the hardware interface) an additional layer of ''manager'' programs allow operation of accelerator subsystems
Modeling and Modern Control of Wind Power
DEFF Research Database (Denmark)
This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden...... of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures....
Particle acceleration model for the broad-band baseline spectrum of the Crab nebula
Fraschetti, F.; Pohl, M.
2017-11-01
We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.
Modeling, Control and Coordination of Helicopter Systems
Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng
2012-01-01
Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...
Directory of Open Access Journals (Sweden)
Kamiya Yoshikazu
2010-11-01
Full Text Available There are difficulties associated with near-real time or frequent pavement monitoring, because it is time consuming and costly. This study aimed to develop a binary logit model for the evaluation of highway riding quality, which could be used to monitor pavement conditions. The model was applied to investigate the influence of backscattering values of Phase Array type L-band Synthetic Aperture Radar (PALSAR. Training data obtained during 3–7 May 2007 was used in the development process, together with actual international roughness index (IRI values collected along a highway in Ayutthaya province, Thailand. The analysis showed that an increase in the backscattering value in the HH or the VV polarization indicated the poor condition of the pavement surface and, of the two, the HH polarization is more suitable for developing riding quality evaluation. The model developed was applied to analyze highway number 3467, to demonstrate its capability. It was found that the assessment accuracy of the prediction of the highway level of service was 97.00%. This is a preliminary study of the proposed technique and more intensive investigation must be carried out using ALOS/PALSAR images in various seasons.
1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model
Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.
2014-10-01
The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re
International Nuclear Information System (INIS)
Rodriguez-Nunez, J.J.; Schmidt, A.A.; Beck, H.; Valera, M.
2005-08-01
One of the most intriguing aspects of high temperature superconductors (HTSC) is the presence of the pseudogap in the normal and the superconducting phases of the cuprate compounds. Several pseudogap models have been proposed to explain the $abnormal$ properties of the cuprates. One of the recent models relies on the assumption that the self-energy is given by Σ PG (iω n )=- E g 2 (k)G 0 (k,-iω n ) where G 0 (k,iω n is the one- particle free Green function. Going beyond this mean field model for the pseudogap we now take into account fluctuations of the pseudogap as Σ PG (iω n )=- E g 2 (k)G PG (k,-iω n ) where G PG (k,iω n is the one-particle full Green function. We study the combined effect of the band structure and the Debye frequency, ω D , on the superconducting critical temperature, T c , as a function of the number of carriers per site, n. Our conclusions are: 1) increasing the value of V/t increases the value of T c /t; 2) increasing the value of E G /t decreases the value of T c /t. By the way, one needs some critical value of V/t to have finite values of T c /t. This is the reason we have taken high values of V/ to find superconductivity; 3) decreasing the value of ω D /t decreases the value of T c /t. This is reasonable since we have less available states around the Fermi; 4) the inclusion of α', which we call the effect of the band structure, is important because it moves the center of curve of T c /t x n. The center of this curve, with respect to half-filling (n=1), is displaced to the left if α'>0.0; 5) the chemical potential is defined in the region where T c /t ≠ 0. However, in this region, it is almost identical for different values of V/t. This is due to the fact that μ is a global property; 6) our model always produces d-wave superconductivity around the Fermi level, independent whether E G (K-bar)/t is s- or d-wave symmetry. (author)
Model-Based Power Plant Master Control
Energy Technology Data Exchange (ETDEWEB)
Boman, Katarina; Thomas, Jean; Funkquist, Jonas
2010-08-15
The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are
THE INTERNAL CONTROL MODELS IN ROMANIA
Directory of Open Access Journals (Sweden)
TEODORESCU CRISTIAN DRAGOȘ
2015-06-01
Full Text Available Internal control is indissolubly linked to business and accounting. Throughout history, domestic and international trade has grown exponentially, which has led to an increasing complexity of internal control, to new methods and techniques to control the business. The literature has presented the first models of internal control in the Sumerian period (3600 - 3200 BC, and the emergence and development of internal control in Egypt, Persia, Greek and Roman Empire, in the Middle Ages till modern times. The purpose of this article is to present the models of internal control in Romania, starting from the principles of the classical model of internal control (COSO model. For a better understanding of the implication of internal control in terms of public and private sector, I have structured the article in the following parts: (a the definition of internal control in the literature; (b the presentation of the COSO model; (c internal control and internal audit in public institutions; (d internal control issues in accounting regulations on the individual and consolidated annual financial statements; (e internal / managerial control; (f conclusions.
Energy Technology Data Exchange (ETDEWEB)
Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)
2017-02-15
A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
Wireless Underground Sensor Networks: Channel Modeling and Operation Analysis in the Terahertz Band
Directory of Open Access Journals (Sweden)
Mustafa Alper Akkaş
2015-01-01
Full Text Available Wireless underground sensor networks (WUSNs are networks of sensor nodes operating below the ground surface, which are envisioned to provide real-time monitoring capabilities in the complex underground environments consisting of soil, water, oil, and other components. In this paper, we investigate the possibilities and limitations of using WUSNs for increasing the efficiency of oil recovery processes. To realize this, millimeter scale sensor nodes with antennas at the same scale should be deployed in the confined oil reservoir fractures. This necessitates the sensor nodes to be operating in the terahertz (THz range and the main challenge is establishing reliable underground communication despite the hostile environment which does not allow the direct use of most existing wireless solutions. The major problems are extremely high path loss, small communication range, and high dynamics of the electromagnetic (EM waves when penetrating through soil, sand, and water and through the very specific crude oil medium. The objective of the paper is to address these issues in order to propose a novel communication channel model considering the propagation properties of terahertz EM waves in the complex underground environment of the oil reservoirs and to investigate the feasible transmission distances between nodes for different water-crude-oil-soil-CO2 compositions.
PI controller based model reference adaptive control for nonlinear
African Journals Online (AJOL)
user
Keywords: Model Reference Adaptive Controller (MRAC), Artificial Neural ... attention, and many new approaches have been applied to practical process .... effectiveness of proposed method, it is compared with the simulation results of the ...
Fault Tolerant Control Using Gaussian Processes and Model Predictive Control
Directory of Open Access Journals (Sweden)
Yang Xiaoke
2015-03-01
Full Text Available Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control.
Flexible AC transmission systems modelling and control
Zhang, Xiao-Ping; Pal, Bikash
2012-01-01
The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and
Unreachable Setpoints in Model Predictive Control
DEFF Research Database (Denmark)
Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp
2008-01-01
In this work, a new model predictive controller is developed that handles unreachable setpoints better than traditional model predictive control methods. The new controller induces an interesting fast/slow asymmetry in the tracking response of the system. Nominal asymptotic stability of the optimal...... steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...
Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad
2018-03-01
In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Model based development of engine control algorithms
Dekker, H.J.; Sturm, W.L.
1996-01-01
Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed
Model predictive Controller for Mobile Robot
Alireza Rezaee
2017-01-01
This paper proposes a Model Predictive Controller (MPC) for control of a P2AT mobile robot. MPC refers to a group of controllers that employ a distinctly identical model of process to predict its future behavior over an extended prediction horizon. The design of a MPC is formulated as an optimal control problem. Then this problem is considered as linear quadratic equation (LQR) and is solved by making use of Ricatti equation. To show the effectiveness of the proposed method this controller is...
Cui, Yan; Liao, Xiaoping
2012-05-01
In the work, modeling and design of a capacitive microwave power sensor employing the MEMS plate with clamped-clamped and free-free edges are presented. A novel analytical model of the sensor is established in detail. Through the function of mode shapes presented, the natural frequency can be solved by the Rayleigh-Ritz method. And based on the generalized coordinate introduced, the displacement of the plate with the irradiation of microwave power can be solved. Furthermore, the sensitivity for the power is also derived. Then the detailed consideration of the design and simulation of the microwave characteristic of the sensor are also presented. The linearly graded ground planar in the coplanar waveguide is employed to avoid step discontinuity. The fabrication process is compatible with GaAs MMIC technology completely, also described in detail. The measurement of the proposed sensor indicates a sensitivity of 7.2 fF W-1 and superior return and insertion losses (S11 and S21), less than -22.16 dB and -0.25 dB, respectively, up to 12 GHz, suggesting that it can be available for microwave power detecting in the X-band frequency range.
International Nuclear Information System (INIS)
Cui, Yan; Liao, Xiaoping
2012-01-01
In the work, modeling and design of a capacitive microwave power sensor employing the MEMS plate with clamped–clamped and free–free edges are presented. A novel analytical model of the sensor is established in detail. Through the function of mode shapes presented, the natural frequency can be solved by the Rayleigh–Ritz method. And based on the generalized coordinate introduced, the displacement of the plate with the irradiation of microwave power can be solved. Furthermore, the sensitivity for the power is also derived. Then the detailed consideration of the design and simulation of the microwave characteristic of the sensor are also presented. The linearly graded ground planar in the coplanar waveguide is employed to avoid step discontinuity. The fabrication process is compatible with GaAs MMIC technology completely, also described in detail. The measurement of the proposed sensor indicates a sensitivity of 7.2 fF W −1 and superior return and insertion losses (S 11 and S 21 ), less than −22.16 dB and −0.25 dB, respectively, up to 12 GHz, suggesting that it can be available for microwave power detecting in the X-band frequency range. (paper)
Integrated identification, modeling and control with applications
Shi, Guojun
This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing
Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.
2012-11-01
We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.
International Nuclear Information System (INIS)
Aizawa, H; Kuroki, K; Yasuzuka, S; Yamada, J
2012-01-01
We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP) 2 MF 6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ–B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of T c is qualitatively consistent with the experimental observation. (paper)
Model predictive controller design of hydrocracker reactors
GÖKÇE, Dila
2011-01-01
This study summarizes the design of a Model Predictive Controller (MPC) in Tüpraş, İzmit Refinery Hydrocracker Unit Reactors. Hydrocracking process, in which heavy vacuum gasoil is converted into lighter and valuable products at high temperature and pressure is described briefly. Controller design description, identification and modeling studies are examined and the model variables are presented. WABT (Weighted Average Bed Temperature) equalization and conversion increase are simulate...
Directory of Open Access Journals (Sweden)
G. T. Kulakov
2008-01-01
Full Text Available The paper is devoted to computational investigation of influence relative time constant of an object which changes in broad band on quality of steam temperature control behind a boiler with due account of value of regulating action in the system with PI- and PID- regulator. The simulation has been based on a single-loop automatic control system (ACS. It has been revealed that the less value of the relative time constant of an object leads to more integral control error in system with PID- regulator while operating external ACS perturbation. Decrease of numerical value of relative time constant of an object while operating external perturbation causes decrease of relative time concerning appearance of maximum dynamic control error from common relative control time.
Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash
2018-04-01
Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.
Mathematical Ship Modeling for Control Applications
DEFF Research Database (Denmark)
Perez, Tristan; Blanke, Mogens
2002-01-01
In this report, we review the models for describing the motion of a ship in four degrees of freedom suitable for control applications. We present the hydrodynamic models of two ships: a container and a multi-role naval vessel. The models are based on experimental results in the four degrees...
Flexible AC transmission systems. Modelling and control
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Ping [Birmingham Univ. (United Kingdom); Rehtanz, Christian [Technische Univ. Dortmund (Germany); Pal, Bikash [Imperial College, London (United Kingdom)
2012-11-01
This monograph presents advanced modelling, analysis and control techniques of FACTS. These topics reflect the recent research and development of FACTS controllers, and anticipate the future applications of FACTS in power systems. The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. The book presents the modelling of the latest FACTS controllers for power flow control, compensation and power quality (IPFC, GUPF, VSC HVDC and M-VSCHVDC, etc.) in power system analysis. The selection is evaluated by the actual and likely future practical relevance of each. The material is derived mainly from the research and industrial development in which the authors have been heavily involved. The book is timely and of great value to power engineering engineers and students of modelling, simulations and control design of FACTS for a broad practical range of power system operation, planning and control problems.
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Parametric Analysis of Flexible Logic Control Model
Directory of Open Access Journals (Sweden)
Lihua Fu
2013-01-01
Full Text Available Based on deep analysis about the essential relation between two input variables of normal two-dimensional fuzzy controller, we used universal combinatorial operation model to describe the logic relationship and gave a flexible logic control method to realize the effective control for complex system. In practical control application, how to determine the general correlation coefficient of flexible logic control model is a problem for further studies. First, the conventional universal combinatorial operation model has been limited in the interval [0,1]. Consequently, this paper studies a kind of universal combinatorial operation model based on the interval [a,b]. And some important theorems are given and proved, which provide a foundation for the flexible logic control method. For dealing reasonably with the complex relations of every factor in complex system, a kind of universal combinatorial operation model with unequal weights is put forward. Then, this paper has carried out the parametric analysis of flexible logic control model. And some research results have been given, which have important directive to determine the values of the general correlation coefficients in practical control application.
Model based design introduction: modeling game controllers to microprocessor architectures
Jungwirth, Patrick; Badawy, Abdel-Hameed
2017-04-01
We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.
2012-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters
International Nuclear Information System (INIS)
Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.
2010-01-01
In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the γ-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N H ) and radio (N HI ) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.
Wind farm models and control strategies
Energy Technology Data Exchange (ETDEWEB)
Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.; Donovan, M.H.
2005-08-01
This report describes models and control strategies for 3 different concepts of wind farms. Initially, the potential in improvement of grid integration, structural loads and energy production is investigated in a survey of opportunities. Then simulation models are described, including wind turbine models for a fixed speed wind turbine with active stall control and a variable speed wind turbine with doubly-fed induction generator. After that, the 3 wind farm concepts and control strategies are described. The 3 concepts are AC connected doubly fed turbines, AC connected active stall turbines and DC connected active stall turbines. Finally, some simulation examples and conclusions are presented. (au)
Modelling supervisory controller for hybrid power systems
Energy Technology Data Exchange (ETDEWEB)
Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)
1999-03-01
Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)
International Nuclear Information System (INIS)
Lopez, G.; Muneer, T.; Claywell, R.
2004-01-01
Diffuse irradiance is a fundamental factor for all solar resource considerations. Diffuse irradiance is accurately determined by calculation from global and beam normal (direct) measurements. However, beam solar measurements and related support can be very expensive, and therefore, shadow bands are often used, along with pyranometers, to block the solar disk. The errors that result from the use of shadow bands are well known and have been studied by many authors. The thrust of this article is to examine four recognized techniques for correcting shadow band based, diffuse irradiance and statistically evaluate their individual performance using data culled from two contrasting sites within the United Kingdom and Israel
Contrast Gain Control Model Fits Masking Data
Watson, Andrew B.; Solomon, Joshua A.; Null, Cynthia H. (Technical Monitor)
1994-01-01
We studied the fit of a contrast gain control model to data of Foley (JOSA 1994), consisting of thresholds for a Gabor patch masked by gratings of various orientations, or by compounds of two orientations. Our general model includes models of Foley and Teo & Heeger (IEEE 1994). Our specific model used a bank of Gabor filters with octave bandwidths at 8 orientations. Excitatory and inhibitory nonlinearities were power functions with exponents of 2.4 and 2. Inhibitory pooling was broad in orientation, but narrow in spatial frequency and space. Minkowski pooling used an exponent of 4. All of the data for observer KMF were well fit by the model. We have developed a contrast gain control model that fits masking data. Unlike Foley's, our model accepts images as inputs. Unlike Teo & Heeger's, our model did not require multiple channels for different dynamic ranges.
Capodici, Fulvio; D'Urso, Guido; Maltese, Antonino; Ciraolo, Giuseppe
2013-10-01
Sustainability of modern agro-hydrology requires the knowledge of spatial and temporal variability of vegetation biomass to optimize management of land and water resources. Diversely from optical imaging, temporal resolution of active sensors, such as SAR, is not limited by sky cloudiness; thus, they may be combined with optical imageries to provide a more continuous monitoring of land surfaces. Several new SAR missions (e.g., ALOS-PALSAR, COSMO-SkyMed 1 and 2, TerraSAR-X, TerraSAR-X2, Sentinel 1) acquiring at X-, C- and L-bands and dual polarization capability, are characterized by a short revisit time (from 12 h to ~10 days) and high spatial resolution (COSMOSkyMed images and 2 Landsat 7 SLC-off images were acquired in the southwestern part of Sicily (Italy) between 8 and 25 August 2011. Determination coefficients of the validation set were similar to those of the calibration set. Results confirm that VISAR obtained using the combined model is a suitable surrogate of VIopt if estimated at parcel scale.
Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.
Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu
2015-11-11
The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.
DeLannoy, Gabrielle J. M.; Reichle, Rolf H.; Vrugt, Jasper A.
2013-01-01
Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO).
Rondeau-Genesse, G.; Trudel, M.; Leconte, R.
2014-12-01
Coupling C-Band synthetic aperture radar (SAR) data to a multilayer snow model is a step in better understanding the temporal evolution of the radar backscattering coefficient during snowmelt. The watershed used for this study is the Nechako River Basin, located in the Rocky Mountains of British-Columbia (Canada). This basin has a snowpack of several meters in depth and part of its water is diverted to the Kemano hydropower system, managed by Rio-Tinto Alcan. Eighteen RADARSAT-2 ScanSAR Wide archive images were acquired in VV/VH polarization for the winter of 2011-2012, under different snow conditions. They are interpreted along with CROCUS, a multilayer physically-based snow model developed by Météo-France. This model discretizes the snowpack into 50 layers, which makes it possible to monitor various characteristics, such as liquid water content (LWC), throughout the season. CROCUS is used to model three specific locations of the Nechako River Basin. Results vary from one site to another, but in general there is a good agreement between the modeled LWC of the first layer of the snowpack and the backscattering coefficient of the RADARSAT-2 images, with a coefficient of determination (R²) of 0.80 and more. The radar images themselves were processed using an updated version of Nagler's methodology, which consists of subtracting an image in wet snow conditions to one in dry snow conditions, as wet snow can then be identified using a soft threshold centered around -3 dB. A second filter was used in order to differentiate dry snow and bare soil. That filter combines a VH/VV ratio threshold and an altitude criterion. The ensuing maps show a good agreement with the MODIS snow-covered area, which is already obtained daily over the Nechako River Basin, but with additional information on the location of wet snow and without sensibility to cloud cover. As a next step, the outputs of CROCUS will be used in Mätzler's Microwave Emission Model of Layered Snowpacks (MEMLS) to
Dimou, Kaotar; Emond, Claude
2017-06-01
In recent decades, the control banding (CB) approach has been recognised as a hazard assessment methodology because of its increased importance in the occupational safety, health and hygiene (OSHH) industry. According to the American Industrial Hygiene Association, this approach originates from the pharmaceutical industry in the United Kingdom. The aim of the CB approach is to protect more than 90% (or approximately 2.7 billion) of the world’s workers who do not have access to OSHH professionals and traditional quantitative risk assessment methods. In other words, CB is a qualitative or semi-quantitative tool designed to prevent occupational accidents by controlling worker exposures to potentially hazardous chemicals in the absence of comprehensive toxicological and exposure data. These criteria correspond very precisely to the development and production of engineered nanomaterials (ENMs). Considering the significant lack of scientific knowledge about work-related health risks because of ENMs, CB is, in general, appropriate for these issues. Currently, CB can be adapted to the specificities of ENMs; hundreds of nanotechnology products containing ENMs are already on the market. In this context, this qualitative or semi-quantitative approach appears to be relevant for characterising and quantifying the degree of physico-chemical and biological reactivities of ENMs, leading towards better control of human health effects and the safe handling of ENMs in workplaces. The need to greater understand the CB approach is important to further manage the risks related to handling hazardous substances, such as ENMs, without established occupational exposure limits. In recent years, this topic has garnered much interest, including discussions in many technical papers. Several CB models have been developed, and many countries have created their own nano-specific CB instruments. The aims of this research were to perform a literature review about CBs, to classify the main
International Nuclear Information System (INIS)
Dimou, Kaotar; Emond, Claude
2017-01-01
In recent decades, the control banding (CB) approach has been recognised as a hazard assessment methodology because of its increased importance in the occupational safety, health and hygiene (OSHH) industry. According to the American Industrial Hygiene Association, this approach originates from the pharmaceutical industry in the United Kingdom. The aim of the CB approach is to protect more than 90% (or approximately 2.7 billion) of the world’s workers who do not have access to OSHH professionals and traditional quantitative risk assessment methods. In other words, CB is a qualitative or semi-quantitative tool designed to prevent occupational accidents by controlling worker exposures to potentially hazardous chemicals in the absence of comprehensive toxicological and exposure data. These criteria correspond very precisely to the development and production of engineered nanomaterials (ENMs). Considering the significant lack of scientific knowledge about work-related health risks because of ENMs, CB is, in general, appropriate for these issues. Currently, CB can be adapted to the specificities of ENMs; hundreds of nanotechnology products containing ENMs are already on the market. In this context, this qualitative or semi-quantitative approach appears to be relevant for characterising and quantifying the degree of physico-chemical and biological reactivities of ENMs, leading towards better control of human health effects and the safe handling of ENMs in workplaces. The need to greater understand the CB approach is important to further manage the risks related to handling hazardous substances, such as ENMs, without established occupational exposure limits. In recent years, this topic has garnered much interest, including discussions in many technical papers. Several CB models have been developed, and many countries have created their own nano-specific CB instruments. The aims of this research were to perform a literature review about CBs, to classify the main
Modelling and control of large cryogenic refrigerator
International Nuclear Information System (INIS)
Bonne, Francois
2014-01-01
This manuscript is concern with both the modeling and the derivation of control schemes for large cryogenic refrigerators. The particular case of those which are submitted to highly variable pulsed heat load is studied. A model of each object that normally compose a large cryo-refrigerator is proposed. The methodology to gather objects model into the model of a subsystem is presented. The manuscript also shows how to obtain a linear equivalent model of the subsystem. Based on the derived models, advances control scheme are proposed. Precisely, a linear quadratic controller for warm compression station working with both two and three pressures state is derived, and a predictive constrained one for the cold-box is obtained. The particularity of those control schemes is that they fit the computing and data storage capabilities of Programmable Logic Controllers (PLC) with are well used in industry. The open loop model prediction capability is assessed using experimental data. Developed control schemes are validated in simulation and experimentally on the 400W1.8K SBT's cryogenic test facility and on the CERN's LHC warm compression station. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Schumacher, J.O. [Fraunhofer Institute for Solar Energy Systems ISE, Oltmannsstr, 5, D-79100 Freiburg (Germany); Altermatt, P.P.; Heiser, G.; Aberle, A.G. [Photovoltaics Special Research Centre, University of NSW, 2052 Sydney (Australia)
2001-01-01
The commonly used band-gap narrowing (BGN) models for crystalline silicon do not describe heavily doped emitters with desirable precision. One of the reasons for this is that the applied BGN models were empirically derived from measurements assuming Boltzmann statistics. We apply a new BGN model derived by Schenk from quantum mechanical principles and demonstrate that carrier degeneracy and the new BGN model both substantially affect the electron-hole product within the emitter region. Simulated saturation current densities of heavily phosphorus-doped emitters, calculated with the new BGN model, are lower than results obtained with the widely used empirical BGN model of del Alamo.
Aspects of modelling and control of bioprocesses
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiachang
1996-12-31
The modelling and control of bioprocesses are the main subjects in this thesis. Different modelling approaches are proposed for different purposes in various bioprocesses. A conventional global model was constructed for a very complex mammalian cell culture process. A new concept of functional state and a multiple model (local models) approach were used for modelling the fed-batch baker`s yeast process for monitoring and control purposes. Finally, a combination of conventional electrical and biological models was used to simulate and to control a microbial fuel cell process. In the thesis, a yeast growth process was taken as an example to demonstrate the usefulness of the functional state concept and local models. The functional states were first defined according to the yeast metabolism. The process was then described by a set of simple local models. In different functional states, different local models were used. On the other hand, the on-line estimation of functional state and biomass of the process was discussed for process control purpose. As a consequence, both the functional state concept and the multiple model approach were applied for fuzzy logic control of yeast growth process. A fuzzy factor was calculated on the basis of a knowledge-based expert system and fuzzy logic rules. The factor was used to correct an ideal substrate feed rate. In the last part of the thesis, microbial fuel cell processes were studied. A microbial fuel cell is a device for direct conversion of chemical energy to electrical energy by using micro-organisms as catalysts. A combined model including conventional electrical and biological models was constructed for the process based on the biological and electrochemical phenomena
Aspects of modelling and control of bioprocesses
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiachang
1995-12-31
The modelling and control of bioprocesses are the main subjects in this thesis. Different modelling approaches are proposed for different purposes in various bioprocesses. A conventional global model was constructed for a very complex mammalian cell culture process. A new concept of functional state and a multiple model (local models) approach were used for modelling the fed-batch baker`s yeast process for monitoring and control purposes. Finally, a combination of conventional electrical and biological models was used to simulate and to control a microbial fuel cell process. In the thesis, a yeast growth process was taken as an example to demonstrate the usefulness of the functional state concept and local models. The functional states were first defined according to the yeast metabolism. The process was then described by a set of simple local models. In different functional states, different local models were used. On the other hand, the on-line estimation of functional state and biomass of the process was discussed for process control purpose. As a consequence, both the functional state concept and the multiple model approach were applied for fuzzy logic control of yeast growth process. A fuzzy factor was calculated on the basis of a knowledge-based expert system and fuzzy logic rules. The factor was used to correct an ideal substrate feed rate. In the last part of the thesis, microbial fuel cell processes were studied. A microbial fuel cell is a device for direct conversion of chemical energy to electrical energy by using micro-organisms as catalysts. A combined model including conventional electrical and biological models was constructed for the process based on the biological and electrochemical phenomena
Mob control models of threshold collective behavior
Breer, Vladimir V; Rogatkin, Andrey D
2017-01-01
This book presents mathematical models of mob control with threshold (conformity) collective decision-making of the agents. Based on the results of analysis of the interconnection between the micro- and macromodels of active network structures, it considers the static (deterministic, stochastic and game-theoretic) and dynamic (discrete- and continuous-time) models of mob control, and highlights models of informational confrontation. Many of the results are applicable not only to mob control problems, but also to control problems arising in social groups, online social networks, etc. Aimed at researchers and practitioners, it is also a valuable resource for undergraduate and postgraduate students as well as doctoral candidates specializing in the field of collective behavior modeling.
International Nuclear Information System (INIS)
Hossain, I.; Abdullah, Hewa Y.; Ahmed, I.M.; Saeed, M.A.; Ahmad, S.T.
2012-01-01
In this research, the ground state gamma ray bands of even 114-124 Cd isotopes are calculated using interacting boson model (IBM-1). The theoretical energy levels for Z = 48, N = 66–76 up to spin-parity 8 + have been obtained by using PHINT computer program. The values of the parameters in the IBM-1 Hamiltonian yield the best fit to the experimental energy spectrum. The calculated results of the ground state energy band are compared to the previous experimental results and the obtained theoretical calculations in IBM-1 are in good agreement with the experimental energy level. (author)
Energy Technology Data Exchange (ETDEWEB)
Lauritsen, T; Soramel, F; Khoo, T L; Janssens, R V.F.; Ahmad, I; Carpenter, M P; Liang, Y [Argonne National Lab., IL (United States); Fornal, B; Bearden, I; Benet, Ph; Daley, P; Grabowski, Z W; Maier, R [Purdue Univ., Lafayette, IN (United States); Ye, D; Garg, U; Reviol, W [Notre Dame Univ., IN (United States); Drigert, M W [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1992-08-01
The population of the superdeformed bands in {sup 191} Hg has been measured for two reactions with different mass asymmetry. No entrance channel effect was observed, in contrast to similar measurements in the A=150 region. To further elucidate this problem, the entry distribution for the superdeformed band in {sup 192}Hg was measured and a monte Carlo model for the feeding was developed. The simulations suggest that the decision on trapping in the superdeformed well is made at the barrier between the normal and superdeformed wells rather than at the entry point. (author). 9 refs., 3 figs.
Modelling and control of a flotation process
International Nuclear Information System (INIS)
Ding, L.; Gustafsson, T.
1999-01-01
A general description of a flotation process is given. The dynamic model of a MIMO nonlinear subprocess in flotation, i. e. the pulp levels in five compartments in series is developed and the model is verified with real data from a production plant. In order to reject constant disturbances five extra states are introduced and the model is modified. An exact linearization has been made for the non-linear model and a linear quadratic gaussian controller is proposed based on the linearized model. The simulation result shows an improved performance of the pulp level control when the set points are changed or a disturbance occur. In future the controller will be tested in production. (author)
Energy Technology Data Exchange (ETDEWEB)
Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)
2017-10-15
The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)
International Nuclear Information System (INIS)
Chen Guojie; Cao Hui; Liu Yuxin; Song Huichao
2006-01-01
By taking the particle-triaxial-rotor model with variable moment of inertia, we systematically investigate the energy spectra, deformations, and single-particle configurations of the nuclei 183,185,187 Tl. The calculated energy spectra agree quite well with experimental data. The obtained results indicate that the rotation-aligned bands observed in 183,185,187 Tl originate from one of the [530](1/2) - ,[532](3/2) - ,[660](1/2) + proton configurations coupled to a prolate deformed core. Furthermore, the negative parity bands built upon the (9/2) - isomeric states in 183,185,187 Tl are formed by a proton with the [505](9/2) - configuration coupled to a core with triaxial oblate deformation, and the positive parity band on the (13/2) + isomeric state in 187 Tl is generated by a proton with configuration [606](13/2) + coupled to a triaxial oblate core
Mosaic model for sensorimotor learning and control.
Haruno, M; Wolpert, D M; Kawato, M
2001-10-01
Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.
Modeling and (adaptive) control of greenhouse climates
Udink ten Cate, A.J.
1983-01-01
The material presented in this thesis can be grouped around four themes, system concepts, modeling, control and adaptive control. In this summary these themes will be treated separately.
System concepts
In Chapters 1 and 2 an overview of the problem formulation
Controller Synthesis using Qualitative Models and Constraints
Ramamoorthy, Subramanian; Kuipers, Benjamin J
2004-01-01
Many engineering systems require the synthesis of global behaviors in nonlinear dynamical systems. Multiple model approaches to control design make it possible to synthesize robust and optimal versions of such global behaviors. We propose a methodology called Qualitative Heterogeneous Control that enables this type of control design. This methodology is based on a separation of concerns between qualitative correctness and quantitative optimization. Qualitative sufficient conditions are derive...
Simplified ejector model for control and optimization
International Nuclear Information System (INIS)
Zhu Yinhai; Cai Wenjian; Wen Changyun; Li Yanzhong
2008-01-01
In this paper, a simple yet effective ejector model for a real time control and optimization of an ejector system is proposed. Firstly, a fundamental model for calculation of ejector entrainment ratio at critical working conditions is derived by one-dimensional analysis and the shock circle model. Then, based on thermodynamic principles and the lumped parameter method, the fundamental ejector model is simplified to result in a hybrid ejector model. The model is very simple, which only requires two or three parameters and measurement of two variables to determine the ejector performance. Furthermore, the procedures for on line identification of the model parameters using linear and non-linear least squares methods are also presented. Compared with existing ejector models, the solution of the proposed model is much easier without coupled equations and iterative computations. Finally, the effectiveness of the proposed model is validated by published experimental data. Results show that the model is accurate and robust and gives a better match to the real performances of ejectors over the entire operating range than the existing models. This model is expected to have wide applications in real time control and optimization of ejector systems
Multiple model adaptive control with mixing
Kuipers, Matthew
Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed
Modelling and control of refrigerant circuits
Energy Technology Data Exchange (ETDEWEB)
Gruhle, W D; Isermann, R
1987-01-01
Conventional evaporator control systems involving a thermostatic expansion valve often to not work satisfactorily in terms of stability and evaporator utilization. To improve this, the author first studies the cause of this behaviour by means of theoretic modelling which is greatly determined by processes occurring within the evaporator and by structural combinations. After verification of the simulated model by means of measurements performed on a pilot plant, the results obtained are used to build up a new control system. Various experiments reveal a clearly improved evaporator utilization at greater control stability. (orig.).
A study of pilot modeling in multi-controller tasks
Whitbeck, R. F.; Knight, J. R.
1972-01-01
A modeling approach, which utilizes a matrix of transfer functions to describe the human pilot in multiple input, multiple output control situations, is studied. The approach used was to extend a well established scalar Wiener-Hopf minimization technique to the matrix case and then study, via a series of experiments, the data requirements when only finite record lengths are available. One of these experiments was a two-controller roll tracking experiment designed to force the pilot to use rudder in order to coordinate and reduce the effects of aileron yaw. One model was computed for the case where the signals used to generate the spectral matrix are error and bank angle while another model was computed for the case where error and yaw angle are the inputs. Several anomalies were observed to be present in the experimental data. These are defined by the descriptive terms roll up, break up, and roll down. Due to these algorithm induced anomalies, the frequency band over which reliable estimates of power spectra can be achieved is considerably less than predicted by the sampling theorem.
DEFF Research Database (Denmark)
Vrana, Til Kristian; Zeni, Lorenzo; Fosso, Olav Bjarte
A new control method for large meshed HVDC grids has been developed, which helps to keep the active power balance at the AC and the DC side. The method definition is kept wide, leaving the possibility for control parameter optimisation. Other known control methods can be seen as specific examples...
Model Based Control of Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, Lars Finn Sloth
for automation of these procedures, that is to incorporate some "intelligence" in the control system, this project was started up. The main emphasis of this work has been on model based methods for system optimizing control in supermarket refrigeration systems. The idea of implementing a system optimizing...... control is to let an optimization procedure take over the task of operating the refrigeration system and thereby replace the role of the operator in the traditional control structure. In the context of refrigeration systems, the idea is to divide the optimizing control structure into two parts: A part...... optimizing the steady state operation "set-point optimizing control" and a part optimizing dynamic behaviour of the system "dynamical optimizing control". A novel approach for set-point optimization will be presented. The general idea is to use a prediction of the steady state, for computation of the cost...
Distributed model predictive control made easy
Negenborn, Rudy
2014-01-01
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those ...
Intelligent Mechatronic Systems Modeling, Control and Diagnosis
Merzouki, Rochdi; Pathak, Pushparaj Mani; Ould Bouamama, Belkacem
2013-01-01
Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes: • An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis • Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control • Dedicated chapters ...
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
SILVA R. G.
1999-01-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.
2017-07-01
Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.
Two stage neural network modelling for robust model predictive control.
Patan, Krzysztof
2018-01-01
The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Model Predictive Control for Load Frequency Control with Wind Turbines
Directory of Open Access Journals (Sweden)
Yi Zhang
2015-01-01
Full Text Available Reliable load frequency (LFC control is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control (DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The scheme incorporates the two critical nonlinear constraints, for example, the generation rate constraint (GRC and the valve limit, into convex optimization problems. Furthermore, the algorithm reduces the impact on the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and that without the participation of the wind turbines is carried out. Good performance is obtained in the presence of power system nonlinearities due to the governors and turbines constraints and load change disturbances.
Directory of Open Access Journals (Sweden)
Chun-Chieh Yeh
2015-01-01
Full Text Available Safety of either LigaSure or rubber band in closing inflamed appendiceal stump in acute appendicitis has been less investigated. In this study, cecal ligation followed by resecting inflamed cecum was performed to mimic appendectomy in a rat model of acute appendicitis. Rats were sacrificed immediately (Group A and 7 days (Group B after cecal resection, respectively. The cecal stumps were closed by silk ligature (S, 5 mm LigaSure (L, or rubber band (R. Seven days after cecal resection, the LigaSure (BL and silk subgroups (BS had significantly less intra-abdominal adhesion and better laparotomy wound healing than rubber band subgroup (BR. The initial bursting pressure at cecal stump was comparable among the three methods; along with tissue healing process, both BL and BS provided a higher bursting pressure than BR 7 days after appendectomy. BL subgroup had more abundant hydroxyproline deposition than BS and BR subgroup. Furthermore, serum TNF-α in BR group kept persistently increasing along with time after cecal resection. Thus, the finding that LigaSure but not rubber band is safe in sealing off the inflamed cecal stump in rat model of acute appendicitis suggests the possibility of applying LigaSure for appendectomy via single port procedure or natural orifice transluminal endoscopic surgery (NOTES.
Strain gradient drives shear banding in metallic glasses
Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong
2017-09-01
Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.
Directory of Open Access Journals (Sweden)
Andrea Colombi
2017-08-01
Full Text Available In metamaterial science, local resonance and hybridization are key phenomena strongly influencing the dispersion properties; the metasurface discussed in this article created by a cluster of resonators, subwavelength rods, atop an elastic surface being an exemplar with these features. On this metasurface, band-gaps, slow or fast waves, negative refraction, and dynamic anisotropy can all be observed by exploring frequencies and wavenumbers from the Floquet–Bloch problem and by using the Brillouin zone. These extreme characteristics, when appropriately engineered, can be used to design and control the propagation of elastic waves along the metasurface. For the exemplar we consider, two parameters are easily tuned: rod height and cluster periodicity. The height is directly related to the band-gap frequency and, hence, to the slow and fast waves, while the periodicity is related to the appearance of dynamic anisotropy. Playing with these two parameters generates a gallery of metasurface designs to control the propagation of both flexural waves in plates and surface Rayleigh waves for half-spaces. Scalability with respect to the frequency and wavelength of the governing physical laws allows the application of these concepts in very different fields and over a wide range of lengthscales.
De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre
2018-01-01
The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.
Model Predictive Control for Smart Energy Systems
DEFF Research Database (Denmark)
Halvgaard, Rasmus
pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms....... Chapter 3 introduces Model Predictive Control (MPC) including state estimation, filtering and prediction for linear models. Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC from Chapter 3. An economic MPC minimizes the costs of consumption based on real electricity prices...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...
Parametric uncertainty modeling for robust control
DEFF Research Database (Denmark)
Rasmussen, K.H.; Jørgensen, Sten Bay
1999-01-01
The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...... point changes. It is shown that a diagonal PI control structure provides robust performance towards variations in feed flow rate or feed concentrations. However including both liquid and vapor flow delays robust performance specifications cannot be satisfied with this simple diagonal control structure...
Modelling and control of dynamic systems using gaussian process models
Kocijan, Juš
2016-01-01
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior know...
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
. The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...
Dynamic modeling and control of CFSTF
International Nuclear Information System (INIS)
Danesh, Y.; Jalali Farahani, F.
2001-01-01
This paper deals with the modeling and control of a continuous-flow fermentation process for the production of alcohol: The dynamic behavior of ferment ors has been developed from mass balance and leads to nonlinear differential equations. Based on the proposed model, two computer algorithms are provided to control output alcohol concentration at the desired value by input flow rate manipulation. The first algorithm is based on a conventional Proportional-Integral-Derivative, in which its parameters are determined in a trial and error procedure. The second algorithm is based on optimal controllers. In this way, the difference between output alcohol concentration and desired value is minimized by flow rate manipulation. Minimization (optimization) is done based on the MARQYARDT procedure. The advantages of this method over the conventional Proportional-Integral-Derivative controller are its higher speed and lack of overshoot
Ising model for packet routing control
International Nuclear Information System (INIS)
Horiguchi, Tsuyoshi; Takahashi, Hideyuki; Hayashi, Keisuke; Yamaguchi, Chiaki
2004-01-01
For packet routing control in computer networks, we propose an Ising model which is defined in order to express competition among a queue length and a distance from a node with a packet to its destination node. By introducing a dynamics for a mean-field value of an Ising spin, we show by computer simulations that effective control of packet routing through priority links is possible
Measurement control program at model facility
International Nuclear Information System (INIS)
Schneider, R.A.
1984-01-01
A measurement control program for the model plant is described. The discussion includes the technical basis for such a program, the application of measurement control principles to each measurement, and the use of special experiments to estimate measurement error parameters for difficult-to-measure materials. The discussion also describes the statistical aspects of the program, and the documentation procedures used to record, maintain, and process the basic data
Optimization control of LNG regasification plant using Model Predictive Control
Wahid, A.; Adicandra, F. F.
2018-03-01
Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.
Model predictive control of a wind turbine modelled in Simpack
International Nuclear Information System (INIS)
Jassmann, U; Matzke, D; Reiter, M; Abel, D; Berroth, J; Schelenz, R; Jacobs, G
2014-01-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine
Model predictive control of a wind turbine modelled in Simpack
Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.
2014-06-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to
Model Based Control of Reefer Container Systems
DEFF Research Database (Denmark)
Sørensen, Kresten Kjær
This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together with the Da......This thesis is concerned with the development of model based control for the Star Cool refrigerated container (reefer) with the objective of reducing energy consumption. This project has been carried out under the Danish Industrial PhD programme and has been financed by Lodam together...
L-band airborne synthetic aperture radar observations were made over California shrublands to better understand the effects by soil and vegetation parameters on backscatter. Temporal changes in radar backscattering coefficient (s0) of up to 3 dB were highly correlated to surface soil moisture but no...
Baka, N.; Milles, J.; Hendriks, E.A.; Suinesiaputra, A.; Jerosh Herold, M.; Reiber, J.H.C.; Lelieveldt, B.P.F.
2008-01-01
This work investigates knowledge driven segmentation of cardiac MR perfusion sequences. We build upon previous work on multi-band AAMs to integrate into the segmentation both spatial priors about myocardial shape as well as temporal priors about characteristic perfusion patterns. Different temporal
International Nuclear Information System (INIS)
Vretenar, D.; Paar, V.; Bonsignori, G.; Savoia, M.
1990-01-01
An extension of the interacting boson approximation model is proposed by allowing for two- and four-quasiparticle excitations out of the boson space. The formation of band patterns based on two- and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-representation basis, which is the analog of the strong-coupling basis of the geometrical model, provides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling basis is derived that is equivalent in the geometrical limit to Stephens' rotation-aligned basis. Comparing the wave functions that are obtained by diagonalization of the model Hamiltonian to the decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interaction that conserves only the total nucleon number, mixing states with different number of fermions, are investigated in both the strong-coupling and decoupling limits. All calculations are performed for an SU(3) boson core and the h11/2 fermion orbital
Modelling and Control of Magnetorheological Damper
DEFF Research Database (Denmark)
Bhowmik, Subrata
, used as reference case for assessment of the proposed control methods with negative stiffness. Viscous damping with negative stiffness (VDNS) initially illustrates the effectiveness of the negative stiffness component in structural damping. In a linear control setting negative stiffness requires active...... damper is identified by both the standard parametric Bouc-Wen model and the non-parametric neural network model from an experimental data set generated by dynamic tests of the MR damper mounted in a hydraulic testing machine. The forward model represents the direct dynamics of the MR damper where...... are essential input parameters for the MR damper modelling. Thus, for proper training, the quality of the velocity data is very important. However, direct velocity measurement is not easy. From the displacement data or the acceleration data, velocity can be determined by using simple differentiation...
Model Predictive Control of Wind Turbines
DEFF Research Database (Denmark)
Henriksen, Lars Christian
Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...
Model Predictive Control of Sewer Networks
DEFF Research Database (Denmark)
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik
2016-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....
Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.
2016-10-01
Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.
Control system modelling for superconducting accelerator
International Nuclear Information System (INIS)
Czarski, T.; Pozniak, K.; Romaniuk, R.
2006-01-01
A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)
Directory of Open Access Journals (Sweden)
V. Balaji
2016-12-01
Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.
Model based design of electronic throttle control
Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.
2017-11-01
With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more
Mean-field results of the multiple-band extended Hubbard model for the square-planar CuO2 lattice
International Nuclear Information System (INIS)
Nimkar, S.; Sarma, D.D.; Krishnamurthy, H.R.; Ramasesha, S.
1993-01-01
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO 2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J eff , the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T c materials arising from photoemission and neutron-scattering experiments
Model based control of refrigeration systems
Energy Technology Data Exchange (ETDEWEB)
Sloth Larsen, L.F.
2005-11-15
The subject for this Ph.D. thesis is model based control of refrigeration systems. Model based control covers a variety of different types of controls, that incorporates mathematical models. In this thesis the main subject therefore has been restricted to deal with system optimizing control. The optimizing control is divided into two layers, where the system oriented top layers deals with set-point optimizing control and the lower layer deals with dynamical optimizing control in the subsystems. The thesis has two main contributions, i.e. a novel approach for set-point optimization and a novel approach for desynchronization based on dynamical optimization. The focus in the development of the proposed set-point optimizing control has been on deriving a simple and general method, that with ease can be applied on various compositions of the same class of systems, such as refrigeration systems. The method is based on a set of parameter depended static equations describing the considered process. By adapting the parameters to the given process, predict the steady state and computing a steady state gradient of the cost function, the process can be driven continuously towards zero gradient, i.e. the optimum (if the cost function is convex). The method furthermore deals with system constrains by introducing barrier functions, hereby the best possible performance taking the given constrains in to account can be obtained, e.g. under extreme operational conditions. The proposed method has been applied on a test refrigeration system, placed at Aalborg University, for minimization of the energy consumption. Here it was proved that by using general static parameter depended system equations it was possible drive the set-points close to the optimum and thus reduce the power consumption with up to 20%. In the dynamical optimizing layer the idea is to optimize the operation of the subsystem or the groupings of subsystems, that limits the obtainable system performance. In systems
Andrzejak, Marcin; Kolek, Przemysław
2013-12-05
The harmonic approximation fails for inversion of the NH2 group in the ground state of aromatic amines as this vibration is characterized by a symmetric double-well potential with relatively small energy barrier. In such cases, the standard harmonic vibrational analysis is inapplicable: the inversion frequency calculated for the bottom of the potential well is strongly overestimated, while it attains imaginary values for the planar conformation of the molecule. The model calculations are discussed taking explicitly into account the presence of the double-well potential. The study is initially focused on reproduction of the deuteration-induced shifts of the 0-0 absorption band for anthranilic acid. The (incorrect) harmonic frequency of the NH2 inversion is replaced by a better one, obtained from numerical calculations employing a simple, quartic-quadratic model for the double-well potential, which is parametrized using just the harmonic frequency of the inversion and the height of the energy barrier. This operation brings theoretical results to qualitative agreement with experiment. A still better match is achieved with a modified version of the model that accounts for mixing of the NH2 inversion mode with other normal modes while retaining the initial simplicity of one-dimensional approach. The corrected results show surprisingly good accuracy, with deviations of the calculated shifts from the experimental values reduced to less than 5 cm(-1). In order to test the performance of the model for systems with higher energy barrier for the NH2 inversion, we have measured the LIF excitation spectra of three different amminobenzonitriles. Partial assignment of the 0-0 bands has been achieved based on their relative intensities for samples with different isotopic exchange ratios. Calculated shifts are in excellent agreement with experimental values for the identified bands. Theoretical predictions are used to complete the assignment of the 0-0 bands in the spectra of the
International Nuclear Information System (INIS)
Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.
2013-01-01
Standing Chinese adult anatomical models are obtained from supine-postured cadaver slices. This paper presents the dosimetric differences between the supine and the standing postures over wide band frequencies and various incident configurations. Both the body level and the tissue/organ level differences are reported for plane wave and the 3T magnetic resonance imaging radiofrequency electromagnetic field exposure. The influence of posture on the whole body specific absorption rate and tissue specified specific absorption rate values is discussed. . (authors)
MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON
The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...
Modeling and control of antennas and telescopes
Gawronski, Wodek
2008-01-01
The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..
Advanced feeder control using fast simulation models
Verheijen, O.S.; Op den Camp, O.M.G.C.; Beerkens, R.G.C.; Backx, A.C.P.M.; Huisman, L.; Drummond, C.H.
2005-01-01
For the automatic control of glass quality in glass production, the relation between process variable and product or glass quality and process conditions/process input parameters must be known in detail. So far, detailed 3-D glass melting simulation models were used to predict the effect of process
Plant Modeling for Human Supervisory Control
DEFF Research Database (Denmark)
Lind, Morten
1999-01-01
This paper provides an overview of multilevel flow modelling (MFM) and its application for design of displays for the supervisory control of industrial plant. The problem of designing the inforrrzatian content of sacpervisory displays is discussed and plant representations like MFM using levels...
Power system stability modelling, analysis and control
Sallam, Abdelhay A
2015-01-01
This book provides a comprehensive treatment of the subject from both a physical and mathematical perspective and covers a range of topics including modelling, computation of load flow in the transmission grid, stability analysis under both steady-state and disturbed conditions, and appropriate controls to enhance stability.
Distributed Model Predictive Control via Dual Decomposition
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle
2014-01-01
This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...
Energy Technology Data Exchange (ETDEWEB)
Kusunoki, Shoji; Mizuta, Ryo [Meteorological Research Institute, Climate Research Department, Tsukuba, Ibaraki (Japan); Matsueda, Mio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Tsukuba, Ibaraki (Japan)
2011-12-15
Global warming projection experiments were conducted using a 20-km mesh global atmospheric model, focusing on the change in the rain band of East Asian summer monsoon. To assess the uncertainty of climate change projections, we performed ensemble simulations with the 60-km resolution model combining four different SSTs and three atmospheric initial conditions. In the present-day climate simulations, the 20-km model reproduces the rain band of East Asian summer monsoon better than lower resolution models in terms of geographical distribution and seasonal march. In the future climate simulation by the 20-km model, precipitation increases over the Yangtze River valley in May through July, Korean peninsula in May, and Japan in July. The termination of rainy season over Japan tends to be delayed until August. Ensemble simulations by the 60-km model show that precipitation in the future climate for July increases over the Yangtze River valley, the East China Sea and Japan. These changes in precipitation are partly consistent with those projected by the 20-km model. Simulations by the 20-km and 60-km models consistently show that in the future climate the termination of rainy season over Japan tends to be delayed until August. The changes in the vertically integrated water vapor flux show the intensification of clockwise moisture transport over the western Pacific subtropical high. Most precipitation changes over the East Asia can be interpreted as the moisture convergence resulting from change in the horizontal transport of water vapor. (orig.)
Modeling the Aneuploidy Control of Cancer
Directory of Open Access Journals (Sweden)
Wang Zhong
2010-07-01
Full Text Available Abstract Background Aneuploidy has long been recognized to be associated with cancer. A growing body of evidence suggests that tumorigenesis, the formation of new tumors, can be attributed to some extent to errors occurring at the mitotic checkpoint, a major cell cycle control mechanism that acts to prevent chromosome missegregation. However, so far no statistical model has been available quantify the role aneuploidy plays in determining cancer. Methods We develop a statistical model for testing the association between aneuploidy loci and cancer risk in a genome-wide association study. The model incorporates quantitative genetic principles into a mixture-model framework in which various genetic effects, including additive, dominant, imprinting, and their interactions, are estimated by implementing the EM algorithm. Results Under the new model, a series of hypotheses tests are formulated to explain the pattern of the genetic control of cancer through aneuploid loci. Simulation studies were performed to investigate the statistical behavior of the model. Conclusions The model will provide a tool for estimating the effects of genetic loci on aneuploidy abnormality in genome-wide studies of cancer cells.
Nonsmooth mechanics models, dynamics and control
Brogliato, Bernard
2016-01-01
Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
MODELLING OF DYNAMIC SPEED LIMITS USING THE MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Andrey Borisovich Nikolaev
2017-09-01
Full Text Available The article considers the issues of traffic management using intelligent system “Car-Road” (IVHS, which consist of interacting intelligent vehicles (IV and intelligent roadside controllers. Vehicles are organized in convoy with small distances between them. All vehicles are assumed to be fully automated (throttle control, braking, steering. Proposed approaches for determining speed limits for traffic cars on the motorway using a model predictive control (MPC. The article proposes an approach to dynamic speed limit to minimize the downtime of vehicles in traffic.
Nonlinear Model Predictive Control for Cooperative Control and Estimation
Ru, Pengkai
Recent advances in computational power have made it possible to do expensive online computations for control systems. It is becoming more realistic to perform computationally intensive optimization schemes online on systems that are not intrinsically stable and/or have very small time constants. Being one of the most important optimization based control approaches, model predictive control (MPC) has attracted a lot of interest from the research community due to its natural ability to incorporate constraints into its control formulation. Linear MPC has been well researched and its stability can be guaranteed in the majority of its application scenarios. However, one issue that still remains with linear MPC is that it completely ignores the system's inherent nonlinearities thus giving a sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would naturally yield a globally optimal solution and take into account all the innate nonlinear characteristics. While an exact solution to a nonlinear MPC problem remains extremely computationally intensive, if not impossible, one might wonder if there is a middle ground between the two. We tried to strike a balance in this dissertation by employing a state representation technique, namely, the state dependent coefficient (SDC) representation. This new technique would render an improved performance in terms of optimality compared to linear MPC while still keeping the problem tractable. In fact, the computational power required is bounded only by a constant factor of the completely linearized MPC. The purpose of this research is to provide a theoretical framework for the design of a specific kind of nonlinear MPC controller and its extension into a general cooperative scheme. The controller is designed and implemented on quadcopter systems.
International Nuclear Information System (INIS)
Villanueva, G. L.; DiSanti, M. A.; Mumma, M. J.; Xu, L.-H.
2012-01-01
Methanol (CH 3 OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the ν 3 fundamental band of methanol at 2844 cm –1 (3.52 μm) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K. We validated the model by comparing simulations of CH 3 OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the ν 3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths.
Villanueva, Geronimo L.; DiSanti, M. A.; Mumma, M. J.; Xu, L.-H.
2012-01-01
Methanol (CH3OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the 3 fundamental band of methanol at 2844 / cm (3.52 micron) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K.We validated the model by comparing simulations of CH3OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the nu3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths
DEFF Research Database (Denmark)
Nadimi, Esmaeil Sharak; Bak, Thomas; Izadi-Zamanabadi, Roozbeh
2006-01-01
The main objective of this paper is to investigate the erformance and applicability of two GPC (generalized predictive control) based control methods on a complete benchmark model of the Stewart platform made in MATLAB V6.5. The first method involves an LQG controller (Linear Quadratic Gaussian...
Congenital Constriction Band Syndrome
Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh
2008-01-01
Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.
Manual control models of industrial management
Crossman, E. R. F. W.
1972-01-01
The industrial engineer is often required to design and implement control systems and organization for manufacturing and service facilities, to optimize quality, delivery, and yield, and minimize cost. Despite progress in computer science most such systems still employ human operators and managers as real-time control elements. Manual control theory should therefore be applicable to at least some aspects of industrial system design and operations. Formulation of adequate model structures is an essential prerequisite to progress in this area; since real-world production systems invariably include multilevel and multiloop control, and are implemented by timeshared human effort. A modular structure incorporating certain new types of functional element, has been developed. This forms the basis for analysis of an industrial process operation. In this case it appears that managerial controllers operate in a discrete predictive mode based on fast time modelling, with sampling interval related to plant dynamics. Successive aggregation causes reduced response bandwidth and hence increased sampling interval as a function of level.
Integrated soft sensor model for flow control.
Aijälä, G; Lumley, D
2006-01-01
Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.
Modeling and Control of Underwater Robotic Systems
Energy Technology Data Exchange (ETDEWEB)
Schjoelberg, I:
1996-12-31
This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.
Models, controls, and levels of semiotic autonomy
Energy Technology Data Exchange (ETDEWEB)
Joslyn, C.
1998-12-01
In this paper the authors consider forms of autonomy, forms of semiotic systems, and any necessary relations among them. Levels of autonomy are identified as levels of system identity, from adiabatic closure to disintegration. Forms of autonomy or closure in systems are also recognized, including physical, dynamical, functional, and semiotic. Models and controls are canonical linear and circular (closed) semiotic relations respectively. They conclude that only at higher levels of autonomy do semiotic properties become necessary. In particular, all control systems display at least a minimal degree of semiotic autonomy; and all systems with sufficiently interesting functional autonomy are semiotically related to their environments.
Modeling and control of flexible space structures
Wie, B.; Bryson, A. E., Jr.
1981-01-01
The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.
Data Driven Economic Model Predictive Control
Directory of Open Access Journals (Sweden)
Masoud Kheradmandi
2018-04-01
Full Text Available This manuscript addresses the problem of data driven model based economic model predictive control (MPC design. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. The economic improvements yielded by the proposed method are illustrated through simulations on a nonlinear chemical process system example.
Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.
Ihlefeld, Jon F; Tian, Wei; Liu, Zi-Kui; Doolittle, W Alan; Bernhagen, Margitta; Reiche, Peter; Uecker, Reinhard; Ramesh, Ramamoorthy; Schlom, Darrell G
2009-08-01
BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002 degrees). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized using intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have 2 in-plane orientations: [1120] BiFeO3 || [1120] GaN (SiC) plus a twin variant related by a 180 degrees in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with high bandgap semiconductors is an important step toward novel field-effect devices.
Wilson, Jeffrey D.
2011-01-01
A new C-band (5091 to 5150 MHz) airport communications system designated as Aeronautical Mobile Airport Communications System (AeroMACS) is being planned under the Federal Aviation Administration s NextGen program. An interference analysis software program, Visualyse Professional (Transfinite Systems Ltd), is being utilized to provide guidelines on limitations for AeroMACS transmitters to avoid interference with other systems. A scenario consisting of a single omni-directional transmitting antenna at each of the major contiguous United States airports is modeled and the steps required to build the model are reported. The results are shown to agree very well with a previous study.
Long, G. L.; Ji, H. Y.
1998-04-01
B(E2, L+2-->L) transitions in the sdg interacting boson model SU(3) limit are studied with a general E2 transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when using transition operators of the form (d†g~+g†d~)2 or (g†g~)2, the B(E2, L+2-->L) values in the ground-state band have an L(L+3) dependent term. As L increases, the B(E2) values can be larger than the rigid rotor model value. Application to 236,238U is discussed.
Modeling and control of active twist aircraft
Cramer, Nicholas Bryan
The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.
Snake Robots Modelling, Mechatronics, and Control
Liljebäck, Pål; Stavdahl, Øyvind; Gravdahl, Jan Tommy
2013-01-01
Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader’s basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is de...
Adaptive Control with Reference Model Modification
Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example
Hierarchical Model Predictive Control for Resource Distribution
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob
2010-01-01
units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The approach presented is based on quadratic optimization and possess the properties of low algorithmic complexity and of scalability. In particular, the proposed design methodology...
Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi
2015-03-15
Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate
Global nuclear material flow/control model
International Nuclear Information System (INIS)
Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.
1997-01-01
This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies
Modelling and validation of a simple and compact wide upper stop band ultra-wideband bandpass filter
Directory of Open Access Journals (Sweden)
Somdotta Roy Choudhury
2014-09-01
Full Text Available A compact ultra-wideband (UWB bandpass filter (BPF is proposed based on end coupled microstrip transmission line, defected ground structure and defected microstrip structure. The experimental filter shows a fractional bandwidth of 110% at a centre frequency, with two observable transmission zeros (attenuation poles at 2.1 and 11.7 GHz. Measured results exhibit an UWB passband from 3.02 to 10.6 GHz with mid-band insertion loss of 1.8 dB and group delay variation <0.45 ns. The BPF achieves a wide stopband with < −18 dB attenuation up to 20 GHz.
High-energy band structure of gold
DEFF Research Database (Denmark)
Christensen, N. Egede
1976-01-01
The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...
DEFF Research Database (Denmark)
Borup, Morten; Grum, Morten; Linde, Jens Jørgen
2016-01-01
estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable......Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling...... overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5–30 min of rain data recorded by multiple rain gauges and propagating the rainfall...
Modelling and Control of Thermal System
Directory of Open Access Journals (Sweden)
Vratislav Hladky
2014-01-01
Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.
Mathematical modeling for control zika transmission
Nugraha, Edwin Setiawan; Naiborhu, Janson; Nuraini, Nuning; Ahmadin
2017-11-01
After 70 years since the zika was identified in Uganda, zika is now documented in 62 countries. In general, people infected with this disease do not experience severe conditions, but for pregnant women can cause serious problems because the zika can spread to the fetus. One result, zika can cause abnormalities in the fetal brain called microcephaly. Control and prevention are very important to reduce the spread of this disease. Here, we discussed the problem of optimal control in the model of zika transmission associated with the use of insecticide-treated nets (ITN) and indoor residual spraying (IRS). Using the approach of optimal control theory, we completed the objective function so that the infected population and its control cost are minimum. Numerically using the Forward-Backward Sweep Method, we obtained the control design of ITN and IRS as a function of time. The results show that the use of both simultaneously is more effective in reducing the population of infection than the use of ITN alone or the IRS alone.
Model predictive control of a crude oil distillation column
Directory of Open Access Journals (Sweden)
Morten Hovd
1999-04-01
Full Text Available The project of designing and implementing model based predictive control on the vacuum distillation column at the Nynäshamn Refinery of Nynäs AB is described in this paper. The paper describes in detail the modeling for the model based control, covers the controller implementation, and documents the benefits gained from the model based controller.
Model Predictive Control based on Finite Impulse Response Models
DEFF Research Database (Denmark)
Prasath, Guru; Jørgensen, John Bagterp
2008-01-01
We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....
International Nuclear Information System (INIS)
Jeong, Miseon; Kang, Chulhyung; Hwang, Yongsoo
2011-01-01
Many papers have already dealt with the problem of the radionuclide transport in various fractured porous systems, but without discussing daughter products. However, natural radionuclides may decay to radioactive daughter muscled, which may travel farther than the the parent nuclides. It is considered the multi-member decay chain of the actinide nuclide with the band release inlet boundary condition in a fractured porous rock. In this paper, it is developed the pseudo-colloid migration with the band release inlet boundary conditions with multi-member decay chains in a fractured porous matrix. It is obtained a semi-analytical solution for the multi-member decay chains as a canonical form. As one can expected, the colloid has significantly important influence to the radionuclide transport in the geologic system and the decay chain also isn't neglecting. The concept of deep geological disposal of high-level radioactive waste has been widely accepted at many countries. The repositories aim mainly to prevent the radionuclides form migrating to the biosphere through any one of many pathways. Fractures can act as main pathways for radionuclide transport because of their relatively high permeabilities
A model of optimal voluntary muscular control.
FitzHugh, R
1977-07-19
In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.
Kuai, L.; Bowman, K. W.; Worden, H. M.; Paulot, F.; Paynter, D.; Oman, L.; Strode, S. A.; Rozanov, E.; Stenke, A.; Revell, L. E.; Plummer, D. A.
2017-12-01
The estimated ozone radiative forcing (RF) from chemical-climate models range widely from +0.2 to +0.6 Wm-2. The reason has never been well understood. Since the ozone absorption in the 9.6 μm band contributes 97% of the O3 longwave RF, the variation of outgoing longwave radiation (OLR) due to ozone is dominant by this band. The observed TOA flux over 9.6 µm ozone band by Thermal Emission Spectrometer (TES) shows the global distribution has unique spatial patterns. In addition, the simulated TOA fluxes over 9.6 µm ozone band by different models have never been evaluated against observations. The bias of TOA flux from model could be primarily contributed by the bias of temperature, water vapor and ozone. Furthermore, the sensitivity of TOA flux to tropospheric ozone (instantaneous radiative kernel, IRK) may also affected by these biases (Kuai et al., 2017). The bias in TOA flux would eventually propagate into model calculations of ozone RF and cause divergence of the predictions of future climate by models. In this study, we applied the observation-based IRK product by AURA TES to attribute the CCMI model bias in TOA flux over 9.6 µm ozone band to ozone, water vapor, air temperature, and surface temperature. The comparisons of the three CCMI models (AM3, SOCOL3 and GEOCCM) to TES observations suggest that 1) all models underestimate the TOA flux at tropics and subtropics. 2) The TOA flux bias is comparable similar by AM3 and GEOSCC (-0.2 to -0.3 W/m2) however is larger for the relative young model, SOCOL3 (-0.4 to -0.6 W/m2). 3) The contributions by surface temperature are similarly moderate (-0.2 W/m2). 4) The contribution of ozone is largest by SOCOL3 (-0.3 W/m2), smallest by GEOSCCM (less than 0.1 W/m2) and moderate by AM3 (-0.2 W/m2). 5) Overall, the contributions by atmospheric temperature are all small (less than 0.1 W/m2). 6) The contribution of water vapor is negative and small by both SOCOL3 and GEOSCCM (0.1 W/m2) however large and positive by AM3 (0
International Nuclear Information System (INIS)
Greenberg, J.M.; Bult, C.E.P.M. van de
1984-01-01
Ever since it was proposed that H 2 O could be a dominant constituent of interstellar grains, its detection, or lack thereof, has played a large role in theories of grains and their evolution. It now appears possible to provide a basic theoretical structure for the evolution of grains in molecular clouds based on current observational evidence and laboratory experiments on the ice band. Both band strengths and shapes can be reasonably predicted by grain models. (U.K.)
Dust bands in the asteroid belt
International Nuclear Information System (INIS)
Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.
1989-01-01
This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs
International Nuclear Information System (INIS)
Wu, T.; Tan, L.; Shao, Q.; Li, Y.; Yang, L.; Zhao, C.; Xie, Y.; Zhang, S.
2013-01-01
Digital human models are frequently obtained from supine-postured medical images or cadaver slices, but many applications require standing models. This paper presents the work of reconstructing standing Chinese adult anatomical models from supine postured slices. Apart from the previous studies, the deformation works on 2-D segmented slices. The surface profile of the standing posture is adjusted by population measurement data. A non-uniform texture amplification approach is applied on the 2-D slices to recover the skin contour and to redistribute the internal tissues. Internal organ shift due to postures is taken into account. The feet are modified by matrix rotation. Then, the supine and standing models are utilised for the evaluation of electromagnetic field exposure over wide band frequency and different incident directions. . (authors)
Rowan, D. R.
1989-01-01
The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.
Energy Technology Data Exchange (ETDEWEB)
Liang, Qingshuang, E-mail: lqs671@163.com [Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry (China)
2016-06-15
In this work, we show that compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals can be successfully synthesized by the hot-injection method through careful tuning the Ge/(Sn+Ge) precursor ratio. The band gaps of the resultant nanocrystals are demonstrated to be linearly tuned from 1.45 to 2.33 eV by adjusting the composition parameter x of the Ge/(Sn+Ge) ratio from 0.0 to 1.0. The crystalline structures of the resultant NCs have been studied by the X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), select area electron diffraction (SAED), and Raman spectroscopy. A ligand exchange procedure is further performed to replace the native ligands on the surface of the NCs with sulfur ions. The photoresponsive behavior indicates the potential use of as-prepared Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals in solar energy conversion systems. The synthesis of compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals reported herein provides a way for probing the effect of Ge inclusion in the Cu-Sn-S system thin films.
Liao, Chun-De; Tsauo, Jau-Yih; Huang, Shih-Wei; Ku, Jan-Wen; Hsiao, Dun-Jen; Liou, Tsan-Hon
2018-02-02
Sarcopenia is associated with loss of muscle mass as well as an increased risk of physical disability in elderly people. This study was aimed to investigate the effect of elastic band resistance training (ERT) on muscle mass and physical function in older women with sarcopenic obesity. A randomized controlled trial with an intention-to-treat analysis was conducted. A total of 56 women (mean ± SD age 67.3 ± 5.1 years) were randomly assigned to the experimental group receiving 12 weeks of ERT and to the control group receiving no exercise intervention. Lean mass (measured using a dual-energy X-ray absorptiometer), physical capacity (assessed using the global physical capacity score), and a 36-item short form questionnaire were conducted at the baseline examination (T 0 ), as well as the 3-month (T 1 ) and 9-month followups (T 2 ). At T 1 and T 2 , the between-group difference was measured in total skeletal mass relative to T 0 , with mean differences of 0.70 kg (95% CI 0.12-1.28; P physical capacity, and physical function outcomes. The ERT exerted a significant beneficial effect on muscle mass, muscle quality, and physical function in older women with sarcopenic obesity.
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon
2015-07-24
Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.
Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.
2017-05-01
We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ - ] is calculated and computed numerically. The results are reported.
Band Subset Selection for Hyperspectral Image Classification
Directory of Open Access Journals (Sweden)
Chunyan Yu
2018-01-01
Full Text Available This paper develops a new approach to band subset selection (BSS for hyperspectral image classification (HSIC which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS, rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS, as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ and successive (SC algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS.
Fade Mitigation Techniques at Ka-Band
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
Control mechanisms for a nonlinear model of international relations
Energy Technology Data Exchange (ETDEWEB)
Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.
1997-07-15
Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.
International Nuclear Information System (INIS)
Peng Yafu
2009-01-01
In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua's chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system
Modeling and control of dialysis systems
2013-01-01
This book is the first text of its kind that presents both the traditional and the modern aspects of dialysis modeling and control in a clear, insightful and highly comprehensive writing style. It provides an in-depth analysis of the mathematical models and algorithms, and demonstrates their applications in real world problems of significant complexity. It explains concepts in a clear, matter-of-fact style. The material of this book will be useful to advanced undergraduate and graduate biomedical engineering students. Also, researchers and practitioners in the field of dialysis, control systems, soft computing will benefit from it. In order to make the reader aware of the applied side of the subject, the book includes: Chapter openers with a chapter outline, chapter objectives, key terms list, and abstract. Solved numerical examples to illustrate the application of a particular concept, and also to encourage good problem-solving skills. More than 1000 questions to give the rea...
Reward banding to determine reporting rate of recovered mourning dove bands
Tomlinson, R.E.
1968-01-01
Reward bands placed on the other leg of certain regularly banded immature mourning doves (Zenaidura macroura) were used to develop information on reporting rates of recovered dove bands. Reports from 15 widely separated sections of the United States showed considerable variation in recovery rate of doves both with and without reward bands. The overall percentages of banded doves that were reported as recovered were 9.69% for those with reward bands and 3.83% for controls. The bandreporting rate for states influenced by publicity was 66%; that for states not influenced was 32%.
Nonconvex model predictive control for commercial refrigeration
Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John
2013-08-01
We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.
Model-based accelerator controls: What, why and how
International Nuclear Information System (INIS)
Sidhu, S.S.
1987-01-01
Model-based control is defined as a gamut of techniques whose aim is to improve the reliability of an accelerator and enhance the capabilities of the operator, and therefore of the whole control system. The aim of model-based control is seen as gradually moving the function of model-reference from the operator to the computer. The role of the operator in accelerator control and the need for and application of model-based control are briefly summarized
Tracking the business cycle of the Euro area: A multivariate model-based band-pass filter
Azevedo, J.M.; Koopman, S.J.; Rua, A.
2006-01-01
This article proposes a multivariate bandpass filter based on the trend plus cycle decomposition model. The underlying multivariate dynamic factor model relies on specific formulations for trend and cycle components and produces smooth business cycle indicators with bandpass filter properties.
Mehraeen, Shafigh; Coropceanu, Veaceslav; Bré das, Jean-Luc
2013-01-01
We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case
Band structure of semiconductors
Tsidilkovski, I M
2013-01-01
Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio
Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.
2015-01-01
A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.
Modeling and Control of CSTR using Model based Neural Network Predictive Control
Shrivastava, Piyush
2012-01-01
This paper presents a predictive control strategy based on neural network model of the plant is applied to Continuous Stirred Tank Reactor (CSTR). This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neural network predictive control, can be a better match to govern the system dynamics. In the paper, the NN model and the way in which it can be used to predict the behavior of the CSTR process over a certain prediction horizon are described, and some commen...
An Industrial Model Based Disturbance Feedback Control Scheme
DEFF Research Database (Denmark)
Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper
2014-01-01
This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...
Wind turbine model and loop shaping controller design
Gilev, Bogdan
2017-12-01
A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.