Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth.
Directory of Open Access Journals (Sweden)
Jie Lyu
Full Text Available The processes governing tumor growth and angiogenesis are codependent. To study the relationship between them, we proposed a coupled hybrid continuum-discrete model. In this model, tumor cells, their microenvironment (extracellular matrixes, matrix-degrading enzymes, and tumor angiogenic factors, and their network of blood vessels, described by a series of discrete points, were considered. The results of numerical simulation reveal the process of tumor growth and the change in microenvironment from avascular to vascular stage, indicating that the network of blood vessels develops gradually as the tumor grows. Our findings also reveal that a tumor is divided into three regions: necrotic, semi-necrotic, and well-vascularized. The results agree well with the previous relevant studies and physiological facts, and this model represents a platform for further investigations of tumor therapy.
Phase-shift calculation using continuum-discretized states
International Nuclear Information System (INIS)
Suzuki, Y.; Horiuchi, W.; Arai, K.
2009-01-01
We present a method for calculating scattering phase shifts which utilizes continuum-discretized states obtained in a bound-state type calculation. The wrong asymptotic behavior of the discretized state is remedied by means of the Green's function formalism. Test examples confirm the accuracy of the method. The α+n scattering is described using realistic nucleon-nucleon potentials. The 3/2 - and 1/2 - phase shifts obtained in a single-channel calculation are too small in comparison with experiment. The 1/2 + phase shifts are in reasonable agreement with experiment, and gain contributions both from the tensor and central components of the nucleon-nucleon potential.
9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method
Descouvemont, P.; Itagaki, N.
2018-01-01
We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Multivariate pluvial flood damage models
International Nuclear Information System (INIS)
Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom
2015-01-01
Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks
Multivariate pluvial flood damage models
Energy Technology Data Exchange (ETDEWEB)
Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)
2015-09-15
Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.
Modeling damage in concrete pavements and bridges.
2010-09-01
This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...
Damage Models for Soft Tissues: A Survey.
Li, Wenguang
Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.
A linear model of ductile plastic damage
International Nuclear Information System (INIS)
Lemaitre, J.
1983-01-01
A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr
Intelligent-based Structural Damage Detection Model
International Nuclear Information System (INIS)
Lee, Eric Wai Ming; Yu, K.F.
2010-01-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
Intelligent-based Structural Damage Detection Model
Lee, Eric Wai Ming; Yu, Kin Fung
2010-05-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
Model of designating the critical damages
Directory of Open Access Journals (Sweden)
Zwolińska Bożena
2017-06-01
Full Text Available The article consists of two parts which make for an integral body. This article depicts the method of designating the critical damages in accordance with lean maintenance method. Author considered exemplary production system (serial-parallel in which in time Δt appeared a damage on three different objects. Article depicts the mathematical model which enables determination of an indicator called “prioritized digit of the device”. In the developed model there were considered some parameters: production abilities of devices, existence of potential vicarious devices, position of damage in the production stream based on the capacity of operational buffers, time needed to remove the damages and influence of damages to the finalization of customers’ orders – CEF indicator.
Modeling laser damage to the retina
Clark, Clifton D.
This dissertation presents recent progress in several areas related to modeling laser damage to the retina. In Chapter 3, we consider the consequences of using the Arrhenius damage model to predict the damage thresholds of multiple pulse, or repetitive pulse, exposures. We have identified a few fundamental trends associated with the multiple pulse damage predictions made by the Arrhenius model. These trends differ from what would be expected by non-thermal mechanisms, and could prove useful in differentiating thermal and non-thermal damage. Chapter 4 presents a new rate equation damage model hypothesized to describe photochemical damage. The model adds a temperature dependent term to the simple rate equation implied by the principle of reciprocity that is characteristic of photochemical damage thresholds. A recent damage threshold study, conducted in-vitro, has revealed a very sharp transition between thermal and photochemical damage threshold trends. For the wavelength used in the experiment (413 nm), thermal damage thresholds were observed at exposure levels that were twice the expected photochemical damage threshold, based on the traditional understanding of photochemical damage. Our model accounts for this observed trend by introducing a temperature dependent quenching, or repair, rate to the photochemical damage rate. For long exposures that give a very small temperature rise, the model reduces to the principle of reciprocity. Near the transition region between thermal and photochemical damage, the model allows the damage threshold to be set by thermal mechanisms, even at exposure above the reciprocity exposure. In Chapter 5, we describe a retina damage model that includes thermal lensing in the eye by coupling beam propagation and heat transfer models together. Thermal lensing has recently been suggested as a contributing factor to the large increase in measured retinal damage thresholds in the near infrared. The transmission of the vitreous decreases
Improving Flood Damage Assessment Models in Italy
Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.
2015-12-01
The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.
Koharchik, Michael; Murphy, Lindsay; Parker, Paul
2012-01-01
An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.
Modelling of Damage During Hot Forging of Ingots
DEFF Research Database (Denmark)
Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels
2013-01-01
Ductile damage modelling in the ingot forging process is discussed. Advantages and disadvantages of both coupled and uncoupled ductile damage models are presented. Some uncoupled damage models are examined in greater detail regarding their applicability to different processes, where hydrostatic...
Implementation of an anisotropic damage material model using general second order damage tensor
Niazi, Muhammad Sohail; Mori, K.; Wisselink, H.H.; Pietrzyk, M.; Kusiak, J.; Meinders, Vincent T.; ten Horn, Carel; Majta, J.; Hartley, P.; Lin, J.
2010-01-01
Damage in metals is mainly the process of the initiation and growth of voids. With the growing complexity in materials and forming proc-esses, it becomes inevitable to include anisotropy in damage (tensorial damage variable). Most of the anisotropic damage models define the damage tensor in the
Early models of DNA damage formation
International Nuclear Information System (INIS)
Śmiałek, Małgorzata A
2012-01-01
Quantification of DNA damage, induced by various types of incident radiation as well as chemical agents, has been the subject of many theoretical and experimental studies, supporting the development of modern cancer therapy. The primary observations showed that many factors can lead to damage of DNA molecules. It became clear that the development of experimental techniques for exploring this phenomenon is required. Another problem was simultaneously dealt with, anticipating on how the damage is distributed within the double helix of the DNA molecule and how the single strand break formation and accumulation can influence the lethal double strand break formation. In this work the most important probabilistic models for DNA strand breakage and damage propagation are summarized and compared.
Molecular models for DNA damaged by photoreaction
International Nuclear Information System (INIS)
Pearlman, D.A.; Holbrook, S.R.; Pirkle, D.H.; Kim, S.H.
1985-01-01
Structural models of a DNA molecule containing a radiation-induced psoralen cross-link and of a DNA containing a thymine photodimer were constructed by applying energy-minimization techniques and model-building procedures to data from x-ray crystallographic studies. The helical axes of the models show substantial kinking and unwinding at the sites of the damage, which may have long-range as well as local effects arising from the concomitant changes in the supercoiling and overall structure of the DNA. The damaged areas may also serve as recognition sites for repair enzymes. These results should help in understanding the biologic effects of radiation-induced damage on cells
Impact damages modeling in laminated composite structures
Directory of Open Access Journals (Sweden)
Kreculj Dragan D.
2014-01-01
Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.
Modelling of settlement induced building damage
Giardina, G.
2013-01-01
This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing.
Incorporating damage mechanics into explosion simulation models
International Nuclear Information System (INIS)
Sammis, C.G.
1993-01-01
The source region of an underground explosion is commonly modeled as a nested series of shells. In the innermost open-quotes hydrodynamic regimeclose quotes pressures and temperatures are sufficiently high that the rock deforms as a fluid and may be described using a PVT equation of state. Just beyond the hydrodynamic regime, is the open-quotes non-linear regimeclose quotes in which the rock has shear strength but the deformation is nonlinear. This regime extends out to the open-quotes elastic radiusclose quotes beyond which the deformation is linear. In this paper, we develop a model for the non-linear regime in crystalline source rock where the nonlinearity is mostly due to fractures. We divide the non-linear regime into a open-quotes damage regimeclose quotes in which the stresses are sufficiently high to nucleate new fractures from preexisting ones and a open-quotes crack-slidingclose quotes regime where motion on preexisting cracks produces amplitude dependent attenuation and other non-linear effects, but no new cracks are nucleated. The boundary between these two regimes is called the open-quotes damage radius.close quotes The micromechanical damage mechanics recently developed by Ashby and Sammis (1990) is used to write an analytic expression for the damage radius in terms of the initial fracture spectrum of the source rock, and to develop an algorithm which may be used to incorporate damage mechanics into computer source models for the damage regime. Effects of water saturation and loading rate are also discussed
Microstructural modeling of Vienne granite damage
International Nuclear Information System (INIS)
Homand, F.; Hoxha, D.
2002-01-01
The microstructural approach in damage modeling, which is presented in this paper describes the evolution of micro-crack geometry as a function of history loading. If the crack geometry is known, the effective properties could then be calculated foe any cracked rock by the mean of a micro-mechanical model. The P L evolution law which is necessary in the describing of crack geometry evolution is hardly based on the crack microscope observation as well as on the theory of fabric tensors. This approach is applied in the modeling of mechanical behaviour of Vienne granite. The result of model simulations are compared with laboratory tests. (author)
Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao
2017-02-01
The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.
Fatigue and damage tolerance scatter models
Raikher, Veniamin L.
1994-09-01
Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.
A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow
Zhou, Feng; Cheng, Guangxu
2015-01-01
A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...
Tree-based flood damage modeling of companies: Damage processes and model performance
Sieg, Tobias; Vogel, Kristin; Merz, Bruno; Kreibich, Heidi
2017-07-01
Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data.
Model of designating the critical damages
Directory of Open Access Journals (Sweden)
Zwolińska Bożena
2017-06-01
Full Text Available Managing company in the lean way presumes no breakdowns nor reserves in the whole delivery chain. However, achieving such low indicators is impossible. That is why in some production plants it is extremely important to focus on preventive actions which can limit damages. This article depicts the method of designating the critical damages in accordance with lean maintenance method. The article consists of two parts which make for an integral body. Part one depicts the characteristic of a realistic object, it also contains productions capabilities analysis of certain areas within the production structure. Part two depicts the probabilistic model of shaping maximal time loss basing on emptying and filling interoperational buffers.
Modeling of Corrosion-induced Concrete Damage
DEFF Research Database (Denmark)
Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik
2013-01-01
In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non...... of corrosion products affects both the time-to cover cracking and the crack width at the concrete surface.......In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non......-uniform formation of corrosion products at the concrete/reinforcement interface, a deterministic approach is used. The model gives good estimates of both deformations in the con-crete/reinforcement interface and crack width when compared to experimental data. Further, it is shown that non-uniform deposition...
Damage Model of Reinforced Concrete Members under Cyclic Loading
Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai
2018-06-01
Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.
Modeling the damage of welded steel, using the GTN model
Directory of Open Access Journals (Sweden)
El-Ahmar Kadi
2014-11-01
Full Text Available The aim of our work is the modeling of the damage in the weld metal according to the finite element method and the concepts of fracture mechanics based on local approaches using the code ABAQUS calculates. The use of the Gurson-Tvergaard-Needleman model axisymmetric specimens AE type to three different zones (Base metal, molten metal and heat affected Zone with four levels of triaxiality (AE2, AE4, AE10 and AE80, we have used to model the behavior of damage to welded steel, which is described as being due to the growth and coalescence of cavities with high rates of triaxiality
Exploring the potential of multivariate depth-damage and rainfall-damage models
DEFF Research Database (Denmark)
van Ootegem, Luc; van Herck, K.; Creten, T.
2018-01-01
In Europe, floods are among the natural catastrophes that cause the largest economic damage. This article explores the potential of two distinct types of multivariate flood damage models: ‘depth-damage’ models and ‘rainfall-damage’ models. We use survey data of 346 Flemish households that were...... victim of pluvial floods complemented with rainfall data from both rain gauges and weather radars. In the econometrical analysis, a Tobit estimation technique is used to deal with the issue of zero damage observations. The results show that in the ‘depth-damage’ models flood depth has a significant...... impact on the damage. In the ‘rainfall-damage’ models there is a significant impact of rainfall accumulation on the damage when using the gauge rainfall data as predictor, but not when using the radar rainfall data. Finally, non-hazard indicators are found to be important for explaining pluvial flood...
Computational model for the assessment of oil spill damages
Energy Technology Data Exchange (ETDEWEB)
Seip, K L; Heiberg, A B; Brekke, K A
1985-06-01
A description is given of the method and the required data of a model for calculating oil spill damages. Eleven damage attributes are defined: shorelength contaminated, shore restitution time, birds dead, restitution time for three groups of birds, open sea damages-two types, damages to recreation, economy and fisheries. The model has been applied in several cases of oil pollution assessments: in an examination of alternative models for the organization of oil spill combat in Norway, in the assessment of the damages coused by a blowout at Tromsoeflaket and in assessing a possible increase in oil spill preparedness for Svalbard. 56 references.
Directory of Open Access Journals (Sweden)
Huang-bin Lin
2015-01-01
Full Text Available A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.
Gómez Camacho, A.; Wang, Bing; Zhang, H. Q.
2018-05-01
Continuum discretized coupled-channel (CDCC) calculations of total fusion cross sections for reactions induced by the weakly bound nucleus 6Li with targets 28Si, 59Co, 96Zr, 198Pt, and 209Bi at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α +d , short-range absorption potentials are considered for the interactions between the α and d fragments with the targets. The effect of resonance (l =2 , Jπ=3+,2+,1+ ) and nonresonance states of 6Li on fusion is studied by using two approaches: (1) by omitting the resonance states from the full discretized CDCC breakup space and (2) by considering only the resonance subspace. A systematic analysis of the effect on fusion from resonance breakup couplings is carried out from light to heavy mass targets. Among other things, it is found that resonance breakup states produce strong repulsive polarization potentials that lead to fusion suppression. Couplings from nonresonance states give place to weak repulsive potentials at high energies; however, these become attractive for the heavier targets at low energies.
Micromechanical modeling of strength and damage of fiber reinforced composites
Energy Technology Data Exchange (ETDEWEB)
Mishnaevsky, L. Jr.; Broendsted, P.
2007-03-15
The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)
Experimental Damage Identification of a Model Reticulated Shell
Directory of Open Access Journals (Sweden)
Jing Xu
2017-04-01
Full Text Available The damage identification of a reticulated shell is a challenging task, facing various difficulties, such as the large number of degrees of freedom (DOFs, the phenomenon of modal localization and transition, and low modeling accuracy. Based on structural vibration responses, the damage identification of a reticulated shell was studied. At first, the auto-regressive (AR time series model was established based on the acceleration responses of the reticulated shell. According to the changes in the coefficients of the AR model between the damaged conditions and the undamaged condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive factors were determined based on the coefficients of the AR model. With the damage sensitive factors as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm. The locations of the damages can be predicted by the back-propagation neural networks. At last, according to the experimental scheme of single-point excitation and multi-point responses, the impact experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results verified the efficiency of the proposed damage identification method based on the AR time series model and back-propagation neural networks. The proposed damage identification method can ensure the safety of the practical engineering to some extent.
Integrated geomechanical modelling for deep subsurface damage
Wees, J.D. van; Orlic, B.; Zijl, W.; Jongerius, P.; Schreppers, G.J.; Hendriks, M.
2001-01-01
Government, E&P and mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is difficult to
Modelling low velocity impact induced damage in composite laminates
Shi, Yu; Soutis, Constantinos
2017-12-01
The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.
Probabilistic flood damage modelling at the meso-scale
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
Measuring damage in physical model tests of rubble mounds
Hofland, B.; Rosa-Santos, Paulo; Taveira-Pinto, Francisco; Lemos, Rute; Mendonça, A.; Juana Fortes, C
2017-01-01
This paper studies novel ways to evaluate armour damage in physical models of coastal structures. High-resolution damage data for reference rubble mound breakwaters obtained under the HYDRALAB+ joint-research project are analysed and discussed. These tests are used to analyse the way to describe
Use of heavy ions to model radiation damage of metals
International Nuclear Information System (INIS)
Shirokov, S.V.; Vyshemirskij, M.P.
2011-01-01
The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals
Track structure model of cell damage in space flight
Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.
1992-01-01
The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.
Ji, Zhaojie; Guan, Zhidong; Li, Zengshan
2017-10-01
In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.
A plastic damage model with stress triaxiality-dependent hardening
International Nuclear Information System (INIS)
Shen Xinpu; Shen Guoxiao; Zhou Lin
2005-01-01
Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)
A Plastic Damage Mechanics Model for Engineered Cementitious Composites
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2007-01-01
This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...
Numerical modelling of damage evolution in ingot forging
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf
2015-01-01
The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of feed...... (400mm and 800mm) are analysed. Comparison of the simulation results with recommendations in literature on ingot forging, indicates the normalized Cockcroft & Latham damage criterion to be the most realistic of the two....
Flood damage: a model for consistent, complete and multipurpose scenarios
Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia
2016-12-01
Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.
Modelling of creep damage development in ferritic steels
Energy Technology Data Exchange (ETDEWEB)
Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)
1998-12-31
The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.
Modelling of creep damage development in ferritic steels
Energy Technology Data Exchange (ETDEWEB)
Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)
1999-12-31
The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.
A 3D Orthotropic Elastic Continuum Damage Material Model
Energy Technology Data Exchange (ETDEWEB)
English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2013-08-01
A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.
Modeling of laser damage initiated by surface contamination
International Nuclear Information System (INIS)
Feit, M.D.; Rubenchik, A.M.; Faux, D.R.; Riddle, R.A.; Shapiro, A.; Eder, D.C.; Penetrante, B.M.; Milam, D.; Genin, F.Y.; Kozlowski, M.R.
1996-11-01
The authors are engaged in a comprehensive effort to understand and model the initiation and growth of laser damage initiated by surface contaminants. This includes, for example, the initial absorption by the contaminant, heating and plasma generation, pressure and thermal loading of the transparent substrate, and subsequent shockwave propagation, 'splashing' of molten material and possible spallation, optical propagation and scattering, and treatment of material fracture. The integration use of large radiation hydrodynamics codes, optical propagation codes and material strength codes enables a comprehensive view of the damage process The following picture of surface contaminant initiated laser damage is emerging from our simulations
Research on damage evolution and damage model of 316LN steel during forging
Energy Technology Data Exchange (ETDEWEB)
Duan, X.W., E-mail: dxwmike1998@sina.com; Liu, J.S.
2013-12-20
The tensile tests and unloading tensile experiments of 316LN steel were conducted. The damage evolution processes were investigated by optical microscope. The fracture was studied using a Scanning Electron Microscope (SEM) and optical microscope, of which, the chemical compositions were analyzed by Energy Dispersive Spectrometer (EDS). The results show that voids nucleate by decohesion of Al{sub 2}O{sub 3} inclusions–matrix interface and mainly along the grain boundary, especially, at triangular grain boundary junctions. The tensile processes were simulated by Deform2D under different deformation conditions. The critical damage values were obtained. The model between the critical damage value, temperature and strain rate was established by regression analysis. A combination of numerical simulation and upsetting experiments was applied for verifying the accuracy and reliability of critical damage value. These damage values can be used to predict the initiation of voids during 316LN steel hot forging. So, they have important instructional effects on designing forging technology of 316LN steel.
Damage modeling in Small Punch Test specimens
DEFF Research Database (Denmark)
Martínez Pañeda, Emilio; Cuesta, I.I.; Peñuelas, I.
2016-01-01
. Furthermore,Gurson-Tvergaard-Needleman model predictions from a top-down approach are employed to gain insightinto the mechanisms governing crack initiation and subsequent propagation in small punch experiments.An accurate assessment of micromechanical toughness parameters from the SPT...
Irreversible entropy model for damage diagnosis in resistors
Energy Technology Data Exchange (ETDEWEB)
Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos [Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Escola d' Enginyeria de Telecomunicació i Aeronàutica de Castelldefels EETAC, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Castelldefels-Barcelona (Spain)
2015-10-28
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.
Irreversible entropy model for damage diagnosis in resistors
International Nuclear Information System (INIS)
Cuadras, Angel; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos
2015-01-01
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Formability prediction for AHSS materials using damage models
Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara
2017-05-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.
Formability prediction for AHSS materials using damage models
International Nuclear Information System (INIS)
Amaral, R.; Miranda, Sara; Santos, Abel D.; José, César de Sá
2017-01-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches. (paper)
Bayesian inference method for stochastic damage accumulation modeling
International Nuclear Information System (INIS)
Jiang, Xiaomo; Yuan, Yong; Liu, Xian
2013-01-01
Damage accumulation based reliability model plays an increasingly important role in successful realization of condition based maintenance for complicated engineering systems. This paper developed a Bayesian framework to establish stochastic damage accumulation model from historical inspection data, considering data uncertainty. Proportional hazards modeling technique is developed to model the nonlinear effect of multiple influencing factors on system reliability. Different from other hazard modeling techniques such as normal linear regression model, the approach does not require any distribution assumption for the hazard model, and can be applied for a wide variety of distribution models. A Bayesian network is created to represent the nonlinear proportional hazards models and to estimate model parameters by Bayesian inference with Markov Chain Monte Carlo simulation. Both qualitative and quantitative approaches are developed to assess the validity of the established damage accumulation model. Anderson–Darling goodness-of-fit test is employed to perform the normality test, and Box–Cox transformation approach is utilized to convert the non-normality data into normal distribution for hypothesis testing in quantitative model validation. The methodology is illustrated with the seepage data collected from real-world subway tunnels.
Progressive Damage Modeling of Durable Bonded Joint Technology
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
An approach to modelling radiation damage by fast ionizing particles
International Nuclear Information System (INIS)
Thomas, G.E.
1987-01-01
The paper presents a statistical approach to modelling radiation damage in small biological structures such as enzymes, viruses, and some cells. Irreparable damage is assumed to be caused by the occurrence of ionizations within sensitive regions. For structures containing double-stranded DNA, one or more ionizations occurring within each strand of the DNA will cause inactivation; for simpler structures without double-stranded DNA a single ionization within the structure will be sufficient for inactivation. Damaging ionizations occur along tracks of primary irradiating particles or along tracks of secondary particles released at primary ionizations. An inactivation probability is derived for each damage mechanism, expressed in integral form in terms of the radius of the biological structure (assumed spherical), rate of ionization along primary tracks, and maximum energy for secondary particles. The performance of each model is assessed by comparing results from the model with those derived from data from various experimental studies extracted from the literature. For structures where a single ionization is sufficient for inactivation, the model gives qualitatively promising results; for larger more complex structures containing double-stranded DNA, the model requires further refinements. (author)
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
Verification of flood damage modelling using insurance data
DEFF Research Database (Denmark)
Zhou, Qianqian; Petersen, Toke E. P.; Thorsen, Bo J.
2012-01-01
This paper presents the results of an analysis using insurance data for damage description and risk model verification, based on data from a Danish case. The results show that simple, local statistics of rainfall are not able to describe the variation in individual cost per claim, but are, howeve...
Verification of flood damage modelling using insurance data
DEFF Research Database (Denmark)
Zhou, Qianqian; Panduro, T. E.; Thorsen, B. J.
2013-01-01
This paper presents the results of an analysis using insurance data for damage description and risk model verification, based on data from a Danish case. The results show that simple, local statistics of rainfall are not able to describe the variation in individual cost per claim, but are, howeve...
Experimental data available for radiation damage modelling in reactor materials
International Nuclear Information System (INIS)
Wollenberger, H.
Radiation damage modelling requires rate constants for production, annihilation and trapping of defects. The literature is reviewed with respect to experimental determination of such constants. Useful quantitative information exists only for Cu and Al. Special emphasis is given to the temperature dependence of the rate constants
Freni, G; La Loggia, G; Notaro, V
2010-01-01
Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly
A gradient enhanced plasticity-damage microplane model for concrete
Zreid, Imadeddin; Kaliske, Michael
2018-03-01
Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.
Smeared crack modelling approach for corrosion-induced concrete damage
DEFF Research Database (Denmark)
Thybo, Anna Emilie Anusha; Michel, Alexander; Stang, Henrik
2017-01-01
In this paper a smeared crack modelling approach is used to simulate corrosion-induced damage in reinforced concrete. The presented modelling approach utilizes a thermal analogy to mimic the expansive nature of solid corrosion products, while taking into account the penetration of corrosion...... products into the surrounding concrete, non-uniform precipitation of corrosion products, and creep. To demonstrate the applicability of the presented modelling approach, numerical predictions in terms of corrosion-induced deformations as well as formation and propagation of micro- and macrocracks were......-induced damage phenomena in reinforced concrete. Moreover, good agreements were also found between experimental and numerical data for corrosion-induced deformations along the circumference of the reinforcement....
Statistical 3D damage accumulation model for ion implant simulators
Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.
Statistical 3D damage accumulation model for ion implant simulators
International Nuclear Information System (INIS)
Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided
Bread dough rheology: Computing with a damage function model
Tanner, Roger I.; Qi, Fuzhong; Dai, Shaocong
2015-01-01
We describe an improved damage function model for bread dough rheology. The model has relatively few parameters, all of which can easily be found from simple experiments. Small deformations in the linear region are described by a gel-like power-law memory function. A set of large non-reversing deformations - stress relaxation after a step of shear, steady shearing and elongation beginning from rest, and biaxial stretching, is used to test the model. With the introduction of a revised strain measure which includes a Mooney-Rivlin term, all of these motions can be well described by the damage function described in previous papers. For reversing step strains, larger amplitude oscillatory shearing and recoil reasonable predictions have been found. The numerical methods used are discussed and we give some examples.
Water sorption kinetics of damaged beans: GAB model
Directory of Open Access Journals (Sweden)
Fernanda M. Baptestini
Full Text Available ABSTRACT The objective of this study was to model the water sorption kinetics of damaged beans. Grains with initial moisture content of 53.85%, dry basis (d.b., were used. One portion of the grains was used to obtain desorption isotherms, while the other was subjected to drying until the moisture content of 5.26% (d.b., so that it was subjected to the adsorption. For the induction of damage, a Stein Breakage Tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber at 20, 30, 40 and 50 ± 1 °C combined with relative humidity of 30, 40, 50, 70 and 90 ± 3%. The GAB model fitted well to the equilibrium moisture experimental data of damaged grains and control. With increasing temperature, the monolayer moisture contents decreased in adsorption and desorption processes, ranging from 9.84 to 5.10% d.b. The lower moisture content in the monolayer in damaged grains indicates that lower moisture content is necessary to ensure their conservation.
Modelling of Damage Evolution in Braided Composites: Recent Developments
Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong
2017-12-01
Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.
Search-based model identification of smart-structure damage
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
Towards Industrial Application of Damage Models for Sheet Metal Forming
Doig, M.; Roll, K.
2011-05-01
Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.
Damage modelling in concrete subject to sulfate attack
Directory of Open Access Journals (Sweden)
N. Cefis
2014-07-01
Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.
Local stem cell depletion model for normal tissue damage
International Nuclear Information System (INIS)
Yaes, R.J.; Keland, A.
1987-01-01
The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known
Epigenetic Regulators Modulate Muscle Damage in Duchenne Muscular Dystrophy Model.
Bajanca, Fernanda; Vandel, Laurence
2017-12-21
Histone acetyl transferases (HATs) and histone deacetylases (HDAC) control transcription during myogenesis. HDACs promote chromatin condensation, inhibiting gene transcription in muscle progenitor cells until myoblast differentiation is triggered and HDACs are released. HATs, namely CBP/p300, activate myogenic regulatory and elongation factors promoting myogenesis. HDAC inhibitors are known to improve regeneration in dystrophic muscles through follistatin upregulation. However, the potential of directly modulating HATs remains unexplored. We tested this possibility in a well-known zebrafish model of Duchenne muscular dystrophy. Interestingly, CBP/p300 transcripts were found downregulated in the absence of Dystrophin. While investigating CBP rescuing potential we observed that dystrophin-null embryos overexpressing CBP actually never show significant muscle damage, even before a first regeneration cycle could occur. We found that the pan-HDAC inhibitor trichostatin A (TSA) also prevents early muscle damage, however the single HAT CBP is as efficient even in low doses. The HAT domain of CBP is required for its full rescuing ability. Importantly, both CBP and TSA prevent early muscle damage without restoring endogenous CBP/p300 neither increasing follistatin transcripts. This suggests a new mechanism of action of epigenetic regulators protecting dystrophin-null muscle fibres from detaching, independent from the known improvement of regeneration upon damage of HDACs inhibitors. This study builds supporting evidence that epigenetic modulators may play a role in determining the severity of muscle dystrophy, controlling the ability to resist muscle damage. Determining the mode of action leading to muscle protection can potentially lead to new treatment options for muscular dystrophies in the future.
Micromechanics Based Inelastic and Damage Modeling of Composites
Directory of Open Access Journals (Sweden)
P. P. Procházka
2004-01-01
Full Text Available Micromechanics based models are considered for application to viscoelasticity and damage in metal matrix composites. The method proposes a continuation and development of Dvooák’s transformation field analysis, considering the piecewise uniform eigenstrains in each material phase. Standard applications of the method to a two-phase are considered in this study model, i.e., only one sub-volume per phase is considered. A continuous model is used, employing transformation field analysis with softening in order to prevent the tensile stress overstepping the tensile strength. At the same time shear cracking occurs in the tangential direction of the possible crack. This is considered in the principal shear stresses and they make disconnections in displacements. In this case, discontinuous models are more promising. Because discrete models, that can describe the situation more realistically have not been worked out in detail, we retain a continuous model and substitute the slip caused by overstepping the damage law by introducing eigenparameters from TFA. The various aspects of the proposed methods are systematically checked by comparing with finite element unit cell analyses, made through periodic homogenization assumptions, for SiC/Ti unidirectional lay-ups.
A transportable system of models for natural resource damage assessment
International Nuclear Information System (INIS)
Reed, M.; French, D.
1992-01-01
A system of computer models has been developed for assessment of natural resource economic damages resulting from spills of oil and hazardous materials in marine and fresh water environments. Under USA federal legislation, the results of the model system are presumed correct in damage litigation proceedings. The model can address a wide range of spatial and temporal scales. The equations describing the motion of both pollutants and biota are solved in three dimensions. The model can simulate continuous releases of a contaminant, with representation of complex coastal boundaries, variable bathymetry, multiple shoreline types, and spatially variable ecosystem habitats. A graphic user interface provides easy control of the system in addition to the ability to display elements of the underlying geographical information system data base. The model is implemented on a personal computer and on a UNIX workstation. The structure of the system is such that transport to new geographic regions can be accomplished relatively easily, requiring only the development of the appropriate physical, toxicological, biological, and economic data sets. Applications are currently in progress for USA inland and coastal waters, the Adriatic Sea, the Strait of Sicily, the Gulf of Suez, and the Baltic Sea. 4 refs., 2 figs
Research on spatial Model and analysis algorithm for nuclear weapons' damage effects
International Nuclear Information System (INIS)
Liu Xiaohong; Meng Tao; Du Maohua; Wang Weili; Ji Wanfeng
2011-01-01
In order to realize the three dimension visualization of nuclear weapons' damage effects. Aiming at the characteristics of the damage effects data, a new model-MRPCT model is proposed, and this model can carry out the modeling of the three dimension spatial data of the nuclear weapons' damage effects. For the sake of saving on the memory, linear coding method is used to store the MRPCT model. On the basis of Morton code, spatial analysis of the damage effects is completed. (authors)
Modeling the viscoplastic and damage behavior in deep argillaceous rocks
International Nuclear Information System (INIS)
Souley, M.; Armand, G.; Su, K.; Ghoreychi, M.
2011-01-01
In order to demonstrate the feasibility of a radioactive waste repository in the Callovo-Oxfordian clay-stone formation, the French national radioactive waste management agency (ANDRA) started in 2000 to build an underground research laboratory at Bure (East of France). One of the key issues is to understand long term behavior of the drifts. More than 400 m horizontal galleries at the main level of -490 m have been instrumented since April 2005. The continuous measurements of convergence of the galleries are available, allowing a better understanding of the time-dependent response of the clay-stone at natural scale. Results indicate that the viscoplastic strain rates observed in the undamaged area far from the gallery walls are of the same order of magnitude as those obtained on rock samples, whereas those recorded in the damaged or fractured zone near the gallery walls are one to two orders of magnitude higher, indicating the significant influence of damage or/and macro-fractures on the viscoplastic strains. Based on these observations, a macroscopic viscoplastic model which aims to improve the viscoplastic strain prediction in the EDZ is proposed and implemented in FLAC 3Dc . Both the instantaneous and the time-dependent behavior are considered in the model. The short term response is assumed to be elastoplastic with strain hardening/softening whereas the time-dependent behavior is based on the concepts of visco-plasticity (Lemaitre's model). Finally, the damage-induced viscoplastic strains changes is examined through the plastic deformation (assumed to approach the damage rate).In order to verify both constitutive equations and their implementations, several simulations are performed: (a) triaxial tests at different confining pressures; (b) single- and multi-stage creep tests; (c) relaxation tests with different total axial strain levels, etc. Finally, an example of a blind prediction of the excavation of a drift parallel to the horizontal minor stress,
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2016-01-01
Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
Stochastic models for predicting pitting corrosion damage of HLRW containers
International Nuclear Information System (INIS)
Henshall, G.A.
1991-10-01
Stochastic models for predicting aqueous pitting corrosion damage of high-level radioactive-waste containers are described. These models could be used to predict the time required for the first pit to penetrate a container and the increase in the number of breaches at later times, both of which would be useful in the repository system performance analysis. Monte Carlo implementations of the stochastic models are described, and predictions of induction time, survival probability and pit depth distributions are presented. These results suggest that the pit nucleation probability decreases with exposure time and that pit growth may be a stochastic process. The advantages and disadvantages of the stochastic approach, methods for modeling the effects of environment, and plans for future work are discussed
Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.
Energy Technology Data Exchange (ETDEWEB)
Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.
Micromechanical modeling and inverse identification of damage using cohesive approaches
International Nuclear Information System (INIS)
Blal, Nawfal
2013-01-01
In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr
ITER transient consequences for material damage: modelling versus experiments
International Nuclear Information System (INIS)
Bazylev, B; Janeschitz, G; Landman, I; Pestchanyi, S; Loarte, A; Federici, G; Merola, M; Linke, J; Zhitlukhin, A; Podkovyrov, V; Klimov, N; Safronov, V
2007-01-01
Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed
The Estimation Modelling of Damaged Areas by Harmful Animals
Jang, R.; Sung, M.; Hwang, J.; Jeon, S. W.
2017-12-01
The Republic of Korea has undergone rapid development and urban development without sufficient consideration of the environment. This type of growth is accompanied by a reduction in forest area and wildlife habitat. It is a phenomenon that affects the habitat of large mammals more than small. Especially in Korea, the damage caused by wild boar(Sus scrofa) is harsher than other large mammalian species like water deer(Hydropotes inermis), which also means that the number of these reported cases of this species is higher than ones of other mammals. Wild boar has three to eight cubs per year and it is possible to breed every year, which makes it more populous comparing with the fragmented habitats. It could be regarded as one of the top predators in Korea, which it is inevitable for humans to intervene this creature in population control. In addition, some individuals have been forced to be retreated from other habitats in major habitats, or to invade human activity areas for food activity, thereby destroying crops. Ultimately, this mammal species has been treated as farm pest animals through committing road kills and urban emergences. In this study, we has estimated possible farm pest animal present points from the damage district using 2,505 hazardous wildlife damage areas with four types of geological informations, four kinds of forest information, land cover, and distribution of farmland occurred in Gyeongnam province in Korea. In the estimating model, utilizing MAXENT, information of background point was set to 10,000, 70% of the damaged sites were used to construct the model, 30% was used for verification, and 10 times of crossvalidate were proceeded - verified by AUC of ROC. As a result of analyses, AUC was 0.847, and the percent contribution of the forest information was the distance toward inner-forest areas, 36.1%, the land cover, 16.5%, the distance from the field, 14.9%. Furthermore, the permutation importance was 24.9% of the cover, 12.3% of the height
Computational stress and damage modelling for rolling contact fatigue
DEFF Research Database (Denmark)
Cerullo, Michele
Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...
le Graverend, J.-B.
2018-05-01
A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.
Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials
Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier
2014-02-01
Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.
Two-scale modelling for hydro-mechanical damage
International Nuclear Information System (INIS)
Frey, J.; Chambon, R.; Dascalu, C.
2010-01-01
Document available in extended abstract form only. Excavation works for underground storage create a damage zone for the rock nearby and affect its hydraulics properties. This degradation, already observed by laboratory tests, can create a leading path for fluids. The micro fracture phenomenon, which occur at a smaller scale and affect the rock permeability, must be fully understood to minimize the transfer process. Many methods can be used in order to take into account the microstructure of heterogeneous materials. Among them a method has been developed recently. Instead of using a constitutive equation obtained by phenomenological considerations or by some homogenization techniques, the representative elementary volume (R.E.V.) is modelled as a structure and the links between a prescribed kinematics and the corresponding dual forces are deduced numerically. This yields the so called Finite Element square method (FE2). In a numerical point of view, a finite element model is used at the macroscopic level, and for each Gauss point, computations on the microstructure gives the usual results of a constitutive law. This numerical approach is now classical in order to properly model some materials such as composites and the efficiency of such numerical homogenization process has been shown, and allows numerical modelling of deformation processes associated with various micro-structural changes. The aim of this work is to describe trough such a method, damage of the rock with a two scale hydro-mechanical model. The rock damage at the macroscopic scale is directly link with an analysis on the microstructure. At the macroscopic scale a two phase's problem is studied. A solid skeleton is filled up by a filtrating fluid. It is necessary to enforce two balance equation and two mass conservation equations. A classical way to deal with such a problem is to work with the balance equation of the whole mixture, and the mass fluid conservation written in a weak form, the mass
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Ducourthial, Audrey; The ATLAS collaboration
2017-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Rossini, Lorenzo; The ATLAS collaboration
2018-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...
Modeling radiation damage to pixel sensors in the ATLAS detector
Ducourthial, Audrey; The ATLAS collaboration
2017-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...
Modeling radiation damage to pixel sensors in the ATLAS detector
Ducourthial, A.
2018-03-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Rossini, Lorenzo; The ATLAS collaboration
2018-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...
Modeling of reflood of severely damaged reactor core
International Nuclear Information System (INIS)
Bachrata, A.
2012-01-01
The TMI-2 accident and recently Fukushima accident demonstrated that the nuclear safety philosophy has to cover accident sequences involving massive core melt in order to develop reliable mitigation strategies for both, existing and advanced reactors. Although severe accidents are low likelihood and might be caused only by multiple failures, accident management is implemented for controlling their course and mitigating their consequences. In case of severe accident, the fuel rods may be severely damaged and oxidized. Finally, they collapse and form a debris bed on core support plate. Removal of decay heat from a damaged core is a challenging issue because of the difficulty for water to penetrate inside a porous medium. The reflooding (injection of water into core) may be applied only if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ from original rod bundle geometry and will resemble to the severe damaged core observed in TMI-2. The higher temperatures and smaller hydraulic diameters in a porous medium make the coolability more difficult than for intact fuel rods under typical loss of coolant accident conditions. The modeling of this kind of hydraulic and heat transfer is a one of key objectives of this. At IRSN, part of the studies is realized using an European thermo-hydraulic computer code for severe accident analysis ICARE-CATHARE. The objective of this thesis is to develop a 3D reflood model (implemented into ICARE-CATHARE) that is able to treat different configurations of degraded core in a case of severe accident. The proposed model is characterized by treating of non-equilibrium thermal between the solid, liquid and gas phase. It includes also two momentum balance equations. The model is based on a previously developed model but is improved in order to take into account intense boiling regimes (in particular
Radiation damage of DNA. Model for direct ionization of DNA
International Nuclear Information System (INIS)
Kobayashi, Kazuo; Tagawa, Seiichi
2004-01-01
Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)
Fatigue damage modeling in solder interconnects using a cohesive zone approach
Abdul-Baqi, A.J.J.; Schreurs, P.J.G.; Geers, M.G.D.
2005-01-01
The objective of this work is to model the fatigue damage process in a solder bump subjected to cyclic loading conditions. Fatigue damage is simulated using the cohesive zone methodology. Damage is assumed to occur at interfaces modeled through cohesive zones in the material, while the bulk material
Testicular Damage following Testicular Sperm Retrieval: A Ram Model Study
Directory of Open Access Journals (Sweden)
Jens Fedder
2017-01-01
Full Text Available The aim of this study was to evaluate the possible development of histological abnormalities such as fibrosis and microcalcifications after sperm retrieval in a ram model. Fourteen testicles in nine rams were exposed to open biopsy, multiple TESAs, or TESE, and the remaining four testicles were left unoperated on as controls. Three months after sperm retrieval, the testicles were removed, fixed, and cut into 1/2 cm thick slices and systematically put onto a glass plate exposing macroscopic abnormalities. Tissue from abnormal areas was cut into 3 μm sections and stained for histological evaluation. Pathological abnormalities were observed in testicles exposed to sperm retrieval (≥11 of 14 compared to 0 of 4 control testicles. Testicular damage was found independently of the kind of intervention used. Therefore, cryopreservation of excess sperm should be considered while retrieving sperm.
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Nachman, Benjamin Philip; The ATLAS collaboration
2017-01-01
Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.
A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.
Energy Technology Data Exchange (ETDEWEB)
English, Shawn Allen
2014-09-01
A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.
A Kriging Model Based Finite Element Model Updating Method for Damage Detection
Directory of Open Access Journals (Sweden)
Xiuming Yang
2017-10-01
Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.
Hydromechanical modeling of clay rock including fracture damage
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.
2012-12-01
Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi
A hybrid model of primary radiation damage in crystals
International Nuclear Information System (INIS)
Samarin, S.I.; Dremov, V.V.
2009-01-01
The paper offers a hybrid model which combines molecular dynamics and Monte Carlo (MD+MC) methods to describe primary radiation damage in crystals, caused by particles whose energies are no higher than several tens of keV. The particles are tracked in accord with equations of motion with account for pair interaction. The model also considers particle interaction with the mean-field potential (MFP) of the crystal. Only particles involved in cascading are tracked. Equations of motion for these particles include dissipative forces which describe energy exchange between cascade particles and electrons. New particles - the atoms of the crystal in the cascade region - have stochastic parameters (phase coordinates); they are sampled by the Monte Carlo method from the distribution that describes the classic canonical ensemble of non-interacting particles subjected to the external MFP. The introduction of particle interaction with the MFP helps avoid difficulties related to crystal stability and the choice of an adequate interparticle interaction potential in the traditional MD methods. Our technique is many times as fast as the traditional MD methods because we consider only particles which are involved in cascading and apply special methods to speedup the calculation of forces by accounting for the short-range pair potential used
Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model
Ying Liang; Liu Wenquan; Wang Dantong; Hu Ping
2016-01-01
The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN) model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at el...
Directory of Open Access Journals (Sweden)
Isa Kolo
2016-01-01
Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.
Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J
2018-01-01
Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model
Directory of Open Access Journals (Sweden)
Ying Liang
2016-01-01
Full Text Available The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at elevated temperature. The experimental results show the availability of GTN damage model in analyzing sheet formability in hot forming.
Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter
Belknap, Shannon; Zhang, Michael
2013-01-01
The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.
Mathematical and Computational Aspects Related to Soil Modeling and Simulation
2017-09-26
and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...topics: a) Visco-elasto-plastic continuum models of geo-surface materials b) Discrete models of geo-surface materials (rocks/gravel/sand) c) Mixed...continuum- discrete representations. Coarse-graining and fine-graining mathematical formulations d) Multi-physics aspects related to the modeling of
A Bayesian Decision Model for Battle Damage Assessment
National Research Council Canada - National Science Library
Franzen, Daniel
1999-01-01
Battle damage assessment (BDA) is critical to success in any air campaign. However, Desert Storm highlighted numerous deficiencies in the BDA process, and operations since Desert Storm continue to point out weaknesses...
Directory of Open Access Journals (Sweden)
S. Zengah
2013-06-01
Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.
Basic Modelling principles and Validation of Software for Prediction of Collision Damage
DEFF Research Database (Denmark)
Simonsen, Bo Cerup
2000-01-01
This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software.......This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software....
Flood vulnerability assessment of residential buildings by explicit damage process modelling
DEFF Research Database (Denmark)
Custer, Rocco; Nishijima, Kazuyoshi
2015-01-01
The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Numerical modelling of ductile damage mechanics coupled with an unconventional plasticity model
Directory of Open Access Journals (Sweden)
R. Fincato
2016-10-01
Full Text Available Ductility in metals includes the material’s capability to tolerate plastic deformations before partial or total degradation of its mechanical properties. Modelling this parameter is important in structure and component design because it can be used to estimate material failure under a generic multi-axial stress state. Previous work has attempted to provide accurate descriptions of the mechanical property degradation resulting from the formation, growth, and coalescence of microvoids in the medium. Experimentally, ductile damage is inherently linked with the accumulation of plastic strain; therefore, coupling damage and elastoplasticity is necessary for describing this phenomenon accurately. In this paper, we combine the approach proposed by Lemaitre with the features of an unconventional plasticity model, the extended subloading surface model, to predict material fatigue even for loading conditions below the yield stress
Comparison of Two Models for Damage Accumulation in Simulations of System Performance
Energy Technology Data Exchange (ETDEWEB)
Youngblood, R. [Idaho National Laboratory, Idaho Falls, ID (United States); Mandelli, D. [Idaho National Laboratory, Idaho Falls, ID (United States)
2015-11-01
A comprehensive simulation study of system performance needs to address variations in component behavior, variations in phenomenology, and the coupling between phenomenology and component failure. This paper discusses two models of this: 1. damage accumulation is modeled as a random walk process in each time history, with component failure occurring when damage accumulation reaches a specified threshold; or 2. damage accumulation is modeled mechanistically within each time history, but failure occurs when damage reaches a time-history-specific threshold, sampled at time zero from each component’s distribution of damage tolerance. A limiting case of the latter is classical discrete-event simulation, with component failure times sampled a priori from failure time distributions; but in such models, the failure times are not typically adjusted for operating conditions varying within a time history. Nowadays, as discussed below, it is practical to account for this. The paper compares the interpretations and computational aspects of the two models mentioned above.
Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-10-01
A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.
Modification of Concrete Damaged Plasticity model. Part II: Formulation and numerical tests
Directory of Open Access Journals (Sweden)
Kamińska Inez
2017-01-01
Full Text Available A refined model for elastoplastic damaged material is formulated based on the plastic potential introduced in Part I [1]. Considered model is an extension of Concrete Damaged Plasticity material implemented in Abaqus [2]. In the paper the stiffness tensor for elastoplastic damaged behaviour is derived. In order to validate the model, computations for the uniaxial tests are performed. Response of the model for various cases of parameter’s choice is shown and compared to the response of the CDP model.
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Brøndsted, Povl
2009-01-01
A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...
Continuum damage model for ferroelectric materials and its application to multilayer actuators
Gellmann, Roman; Ricoeur, Andreas
2016-05-01
In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.
Statistical Damage Detection of Civil Engineering Structures using ARMAV Models
DEFF Research Database (Denmark)
Andersen, P.; Kirkegaard, Poul Henning
In this paper a statistically based damage detection of a lattice steel mast is performed. By estimation of the modal parameters and their uncertainties it is possible to detect whether some of the modal parameters have changed with a statistical significance. The estimation of the uncertainties ...
A diagnostic ontological model for damages to historical constructions
Czech Academy of Sciences Publication Activity Database
Cacciotti, Riccardo; Blaško, M.; Valach, Jaroslav
2015-01-01
Roč. 16, č. 1 (2015), s. 40-48 ISSN 1296-2074 R&D Projects: GA MK(CZ) DF11P01OVV002 Keywords : historical constructions * conservation * ontologies * damage Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.533, year: 2015 http://www.sciencedirect.com/science/article/pii/S1296207414000259
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2014-01-01
Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these
Account of the effect of nuclear collision cascades in model of radiation damage of RPV steels
International Nuclear Information System (INIS)
Kevorkyan, Yu.R.; Nikolaev, Yu.A.
1997-01-01
A kinetic model is proposed for describing the effect of collision cascades in model of radiation damage of reactor pressure vessel steels. This is a closed system of equations which can be solved only by numerical methods in general case
Zhang, Jiu-Chang
2018-02-01
Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.
Multi-physics modeling of multifunctional composite materials for damage detection
Sujidkul, Thanyawalai
This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to
An elastic-visco-plastic damage model: from theory to application
International Nuclear Information System (INIS)
Wang, X.C.; Habraken, A.M.
1996-01-01
An energy-based two-variable damage theory is applied to Bodner's model. It gives an elastic-viscoplastic damage model. Some theoretical details are described in this paper. The parameters identification procedure is discussed and a complete set of parameters for an aluminium is presented. Numerical modelling of the laboratory tests are used to validate the model. An industrial aeronautic rod fabrication process is simulated and some numerical results are presented in this paper. (orig.)
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue
International Nuclear Information System (INIS)
Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.
2007-01-01
On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)
Modelling of damage development and ductile failure in welded joints
DEFF Research Database (Denmark)
Nielsen, Kim Lau
, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example......This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly...
Moisture damage susceptibility of asphalt mixtures: Experimental characterization and modelling
Varveri, A.
2017-01-01
A well-functioning, long-lasting and safe highway infrastructure network ensures the mobility of people and facilitates the transport of goods, promoting thus environmental, economic, and social sustainability. The development of sustainable highway infrastructure requires, among other activities, the construction of pavement systems with enhanced durability. Moisture damage in asphalt pavements is associated with inferior performance, unexpected failures and reduced service life. All of thes...
Thermomechanics of damageable materials under diffusion: modelling and analysis
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš; Tomassetti, G.
2015-01-01
Roč. 66, č. 6 (2015), s. 3535-3572 ISSN 0044-2275 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : visco-elastic porous solids * incomplete damage * diffusion driven by chemical-potential gradient Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007/s00033-015-0566-2
Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics
International Nuclear Information System (INIS)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker, Charles L. III
2009-01-01
This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-local modelling of cyclic thermal shock damage including parameter estimation
Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.
2011-01-01
In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by
Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model
International Nuclear Information System (INIS)
Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.
2007-01-01
The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths
Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials
Amri, A. El; Yakhloufi, M. H. El; Khamlichi, A.
2017-05-01
The failure of ductile materials subject to high thermal and mechanical loading rates is notably affected by material inertia. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Numerical simulations of crack propagation in a cylindrical specimen demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale cylindrical structures with engineering accuracy. The influence of damage on the intensity of the destruction of materials is studied as well.
Model-based Prognostics with Concurrent Damage Progression Processes
National Aeronautics and Space Administration — Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several...
A cohesive plastic/damage-zone model for ductile crack analysis
International Nuclear Information System (INIS)
Zhang, C.; Gross, D.
1995-01-01
A cohesive plastic/damage-zone model of the Dugdale-Barenblatt type (G.I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55-129; D.S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100-104) is presented for analyzing crack growth in ductile materials with damage evolution. A semi-infinite Mode I crack in plane stress or plane stress is considered. The damage is assumed to be present in form of dispersed microvoids which are localized into a narrow strip ahead of the crack-tip. A simple damage model of the Gurson model type (A.L. Gurson, J. Eng. Mater. Technol. 99 (1977) 2-15; V. Tvergaard, Advances in Applied Mechanics, Vol. 27, Academic Press, 1990, pp. 83-151) is developed for uniaxial tension to describe the macroscopic properties of the cohesive plastic/damage-zone. Under small-scale yielding and small-scale damage conditions, a system of nonlinear integral equations for the plastic strain and the length of the cohesive plastic/damage-zone is derived. Numerical results are presented and discussed to reveal the effect of damage evolution on the ductile crack growth. (orig.)
Dislocation dynamics modelling of radiation damage in thin films
International Nuclear Information System (INIS)
Ferroni, Francesco; Tarleton, Edmund; Fitzgerald, Steven
2014-01-01
Transmission electron microscopy is a key tool for the extraction of information on radiation damage, the understanding of which is critical for materials development for nuclear fusion and fission reactors. Dislocations in TEM samples are subject to strong image forces, owing to the nanometric sample thicknesses, which may introduce artifacts in the damage analysis. Using dislocation dynamics, we elucidate the roles played by dislocation–surface interactions, dislocation–dislocation interactions and self-interactions due to climb for loop types observed in TEM. Comparisons with analytic solutions for a dislocation loop and an edge dislocation in a half-space are included, and the relationship between glide force and loop tilt examined. The parameters for convergence of the zero-traction boundary conditions are obtained, after which the evolution of dislocation structures in a thin film is studied. It is found that three main length scales govern the physical processes: the image force is governed by the distance of the loop from the surface and scales with the film thickness; the glide force is governed by the image stress as well as the loop–loop interaction stress which is in turn governed by the loop spacing L∼1/√ρ, where ρ is the loop density; finally, the climb force depends on the loop size. The three forces compete and their relative magnitudes define the evolution pathway of the dislocation structure. (paper)
Computer simulation of radiation damage in NaCl using a kinetic rate reaction model
International Nuclear Information System (INIS)
Soppe, W.J.
1993-01-01
Sodium chloride and other alkali halides are known to be very susceptible to radiation damage in the halogen sublattice when exposed to ionizing radiation. The formation of radiation damage in NaCl has generated interest because of the relevance of this damage to the disposal of radioactive waste in rock salt formations. In order to estimate the long-term behaviour of a rock salt repository, an accurate theory describing the major processes of radiation damage in NaCl is required. The model presented in this paper is an extended version of the Jain-Lidiard model; its extensions comprise the effect of impurities and the colloid nucleation stage on the formation of radiation damage. The new model has been tested against various experimental data obtained from the literature and accounts for several well known aspects of radiation damage in alkali halides which were not covered by the original Jain-Lidiard model. The new model thus may be expected to provide more reliable predictions for the build-up of radiation damage in a rock salt nuclear waste repository. (Author)
A model for damage load and its implications for the evolution of bacterial aging.
Directory of Open Access Journals (Sweden)
Lin Chao
2010-08-01
Full Text Available Deleterious mutations appearing in a population increase in frequency until stopped by natural selection. The ensuing equilibrium creates a stable frequency of deleterious mutations or the mutational load. Here I develop the comparable concept of a damage load, which is caused by harmful non-heritable changes to the phenotype. A damage load also ensues when the increase of damage is opposed by selection. The presence of a damage load favors the evolution of asymmetrical transmission of damage by a mother to her daughters. The asymmetry is beneficial because it increases fitness variance, but it also leads to aging or senescence. A mathematical model based on microbes reveals that a cell lineage dividing symmetrically is immortal if lifetime damage rates do not exceed a threshold. The evolution of asymmetry allows the lineage to persist above the threshold, but the lineage becomes mortal. In microbes with low genomic mutation rates, it is likely that the damage load is much greater than the mutational load. In metazoans with higher genomic mutation rates, the damage and the mutational load could be of the same magnitude. A fit of the model to experimental data shows that Escherichia coli cells experience a damage rate that is below the threshold and are immortal under the conditions examined. The model estimates the asymmetry level of E. coli to be low but sufficient for persisting at higher damage rates. The model also predicts that increasing asymmetry results in diminishing fitness returns, which may explain why the bacterium has not evolved higher asymmetry.
Application of a Brittle Damage Model to Normal Plate-on-Plate Impact
National Research Council Canada - National Science Library
Raftenberg, Martin N
2005-01-01
.... For a range of values for the material constants introduced by the damage model, the target's free-surface velocity showed a gradual increase over time following the arrival of the initial compressive shock.
Application of a Brittle Damage Model to Normal Plate-on-Plate Impact
National Research Council Canada - National Science Library
Raftenberg, Martin N
2005-01-01
A brittle damage model presented by Grinfeld and Wright of the U.S. Army Research Laboratory was implemented in the LS-DYNA finite element code and applied to the simulation of normal plate-on-plate impact...
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
National Aeronautics and Space Administration — This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are...
The Pore Collapse “Hot-Spots” Model Coupled with Brittle Damage for Solid Explosives
Directory of Open Access Journals (Sweden)
L. R. Cheng
2014-01-01
Full Text Available This paper is devoted to the building of a numerical pore collapse model with “hot-spots” formation for the impacted damage explosives. According to damage mechanical evolution of brittle material, the one-dimensional elastic-viscoplastic collapse model was improved to incorporate the impact damage during the dynamic collapse of pores. The damage of explosives was studied using the statistical crack mechanics (SCRAM. The effects of the heat conduction and the chemical reaction were taken into account in the formation of “hot-spots.” To verify the improved model, numerical simulations were carried out for different pressure states and used to model a multiple-impact experiment. The results show that repeated weak impacts can lead to the collapse of pores and the “hot-spots” may occur due to the accumulation of internal defects accompanied by the softening of explosives.
Ódor, G; Odor, Geza; Menyhard, Nora
1998-01-01
The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated on the level of kinks and spins. On the level of spins the parity conservation is not satisfied and therefore studying these models provides a convenient tool to understand the dependence of DS properties on symmetries. For the model B the critical point and the DS transition point is well separated and directed percolation damage spreading transition universality was found for spin damage as well as for kink damage in spite of the conservation of damage variables modulo 2 in the latter case. For the A stochastic cellular automaton, and the NEKIM model the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition is continuous and shows regular PC class universality, the spin damage exhibits a discontinuous p...
An approach for the modeling of interface-body coupled nonlocal damage
Directory of Open Access Journals (Sweden)
J. Toti
2010-04-01
Full Text Available Fiber Reinforced Plastic (FRP can be used for strengthening concrete or masonry constructions. One of the main problem in the use of FRP is the possible detachment of the reinforcement from the support material. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting for the coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end, a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strong mesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of a strain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacement occurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode of damage is developed. The coupling between the body damage and the interface damage is performed computing the body damage on the bond surface. Numerical examples are presented.
Mathematical modeling of damage function when attacking file server
Kozlov, V. G.; Skrypnikov, A. V.; Chernyshova, E. V.; Mogutnov, R. V.; Levushkin, D. M.
2018-05-01
The development of information technologies in Russia and the prospects for their further improvement allow us to identify a stable trend of expansion of both functions of the corresponding automated information systems (AIS) and the spheres of their application. At the same time, many threats to information processes in the AIS are expanding, which in turn stimulates the development of adequate means and systems for ensuring the information security of the AS and methods for assessing their protection. It is necessary to assess the ability of the system to continue its normal functioning under the conditions of permanent destructive influences and to resist them, to adapt the functioning algorithms to new conditions and to organize functional restoration or to ensure functioning with a gradual process of degradation, possibly without losing the most significant “critical” information functions. The analysis and evaluation of reliability are needed to be transformed into the analysis and evaluation of survivability. Survivability can be considered as the ability of the information system to store and restore the performance of basic functions in a given volume and for a given time in the case of a change in the system structure and / or algorithms and the conditions of its functioning due to adverse effects. One of the system survivability indicators is the reserve of survivability (S-survivability) that is the critical number of defects reduced by a unit. The authors will consider defect as a unit of measurement of damage to the information system by adverse impact. U is denoted as the critical number of defects, then S = 1-U is the index of S-survivability. The article gives the definition of an analytical formula for the function of damage and risk.
Saleh, Mohamed Nasr
2016-01-08
Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.
Saleh, Mohamed Nasr; Lubineau, Gilles; Potluri, Prasad; Withers, Philip; Soutis, Constantinos
2016-01-01
Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.
Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model
Abdia, M.; Molladavoodi, H.; Salarirad, H.
2017-12-01
The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed
Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling
Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano
2016-12-01
The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.
Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms
Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.
2016-01-01
Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model
Modeling Damage Modes in 3-D Woven Armor Composite Systems
National Research Council Canada - National Science Library
Valisetty, R; Rajendran, A. M; Grove, D; Namburu, R; Bahei-El-Din, Y; Hody, A; Seever, L
2006-01-01
.... This effect is considered in the RVE via a transformation field analysis (TFA). Since the model is computationally intensive, its numerical requirements in modeling the local microstructure, e.g...
ON THE ISSUE OF "MEMORY" MARKOV MODEL OF DAMAGE ACCUMULATION
Directory of Open Access Journals (Sweden)
A. I. Lantuh-Lyaschenko
2010-04-01
Full Text Available This paper presents the application of a probabilistic approach for the modeling of service life of highway bridge elements. The focus of this paper is on the Markov stochastic deterioration models. These models can be used as effective tool for technical state assessments and prediction of residual resource of a structure. For the bridge maintenance purpose these models can give quantitative criteria of a reliability level, risk and prediction algorithms of the residual resource.
A detailed physical model for ion implant induced damage in silicon
International Nuclear Information System (INIS)
Tian, S.; Morris, M.F.; Morris, S.J.; Obradovic, B.; Wang, G.; Tasch, A.F.
1998-01-01
A unified physically based ion implantation damage model has been developed which successfully predicts both the impurity profiles and the damage profiles for a wide range of implant conditions for arsenic, phosphorus, BF 2 , and boron implants into single-crystal silicon. In addition, the amorphous layer thicknesses predicted by this new damage model are also in excellent agreement with experimental measurements. This damage model is based on the physics of point defects in silicon, and explicitly simulates the defect production, diffusion, and their interactions which include interstitial-vacancy recombination, clustering of same type of defects, defect-impurity complex formation, emission of mobile defects from clusters, and surface effects for the first time. New computationally efficient algorithms have been developed to overcome the barrier of the excessive computational requirements. In addition, the new model has been incorporated in the UT-MARLOWE ion implantation simulator, and has been developed primarily for use in engineering workstations. This damage model is the most physical model in the literature to date within the framework of the binary collision approximation (BCA), and provides the required, accurate as-implanted impurity profiles and damage profiles for transient enhanced diffusion (TED) simulation
A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction
Energy Technology Data Exchange (ETDEWEB)
Pignatelli, Rossella, E-mail: rossellapignatelli@gmail.com [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Lombardi Ingegneria S.r.l., Via Giotto 36, 20145 Milano (Italy); Comi, Claudia, E-mail: comi@stru.polimi.it [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)
2013-11-15
To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.
Probabilistic, multi-variate flood damage modelling using random forests and Bayesian networks
Kreibich, Heidi; Schröter, Kai
2015-04-01
Decisions on flood risk management and adaptation are increasingly based on risk analyses. Such analyses are associated with considerable uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention recently, they are hardly applied in flood damage assessments. Most of the damage models usually applied in standard practice have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. This presentation will show approaches for probabilistic, multi-variate flood damage modelling on the micro- and meso-scale and discuss their potential and limitations. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., Merz, B. (2014): How useful are complex flood damage models? - Water Resources Research, 50, 4, p. 3378-3395.
Damage characterization and modeling of a 7075-T651 aluminum plate
International Nuclear Information System (INIS)
Jordon, J.B.; Horstemeyer, M.F.; Solanki, K.; Bernard, J.D.; Berry, J.T.; Williams, T.N.
2009-01-01
In this paper, the damage-induced anisotropy arising from material microstructure heterogeneities at two different length scales was characterized and modeled for a wrought aluminum alloy. Experiments were performed on a 7075-T651 aluminum alloy plate using sub-standard tensile specimens in three different orientations with respect to the rolling direction. Scanning electron microscopy was employed to characterize the stereology of the final damage state in terms of cracked and or debonded particles. A physically motivated internal state variable continuum model was used to predict fracture by incorporating material microstructural features. The continuum model showed good comparisons to the experimental data by capturing the damage-induced anisotropic material response. Estimations of the mechanical stress-strain response, material damage histories, and final failure were numerically calculated and experimentally validated thus demonstrating that the final failure state was strongly dependent on the constituent particle morphology.
Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model
Directory of Open Access Journals (Sweden)
Aifeng Huang
2014-01-01
Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.
Modelling of the mechanical behaviour and damage of clay-stones: application to the East argillite
International Nuclear Information System (INIS)
Aublive-Conil, N.
2003-03-01
The storage in deep geological formation is one of the solutions retained by France for the management of highly long life radioactive waste. The retained host rock is a clay-stone named East argillite located in the departments of Meuse and Haute-Marne. A thermodynamic formulation is used to propose a rheological model, which reproduces the mechanical behavior of clay-stones. Initially, an anisotropic damage plastic model was formulated in order to describe material degradations. Then, the damage plastic model is reformulated in order to taken into account the damage influence on the hydraulic behavior of porous material. The numerical simulations correctly reproduce the mechanical behavior of East Argillites but also the anisotropy of the hydraulic behavior introduced by the damage effect. (author)
Levrero-Florencio, Francesc; Pankaj, Pankaj
2018-01-01
Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Mangas, J.M. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)]. E-mail: jesus.hernandez.mangas@tel.uva.es; Arias, J. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Marques, L.A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Ruiz-Bueno, A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Bailon, L. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)
2005-01-01
Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results.
International Nuclear Information System (INIS)
Hernandez-Mangas, J.M.; Arias, J.; Marques, L.A.; Ruiz-Bueno, A.; Bailon, L.
2005-01-01
Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results
Mitochondrial damage and ageing using skin as a model organ.
Hudson, Laura; Bowman, Amy; Rashdan, Eyman; Birch-Machin, Mark A
2016-11-01
Ageing describes the progressive functional decline of an organism over time, leading to an increase in susceptibility to age-related diseases and eventually to death, and it is a phenomenon observed across a wide range of organisms. Despite a vast repertoire of ageing studies performed over the past century, the exact causes of ageing remain unknown. For over 50 years it has been speculated that mitochondria play a key role in the ageing process, due mainly to correlative data showing an increase in mitochondrial dysfunction, mitochondrial DNA (mtDNA) damage, and reactive oxygen species (ROS) with age. However, the exact role of the mitochondria in the ageing process remains unknown. The skin is often used to study human ageing, due to its easy accessibility, and the observation that the ageing process is able to be accelerated in this organ via environmental insults, such as ultra violet radiation (UVR). This provides a useful tool to investigate the mechanisms regulating ageing and, in particular, the role of the mitochondria. Observations from dermatological and photoageing studies can provide useful insights into chronological ageing of the skin and other organs such as the brain and liver. Moreover, a wide range of diseases are associated with ageing; therefore, understanding the cause of the ageing process as well as regulatory mechanisms involved could provide potentially advantageous therapeutic targets for the prevention or treatment of such diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Research on borehole stability of shale based on seepage-stress-damage coupling model
Directory of Open Access Journals (Sweden)
Xiaofeng Ran
2014-01-01
Full Text Available In oil drilling, one of the most complicated problems is borehole stability of shale. Based on the theory of continuum damage mechanics, a modified Mohr-Coulomb failure criterion according to plastic damage evolution and the seepage-stress coupling is established. Meanwhile, the damage evolution equation which is based on equivalent plastic strain and the permeability evolution equation of shale are proposed in this paper. The physical model of borehole rock for a well in China western oilfield is set up to analyze the distribution of damage, permeability, stress, plastic strain and displacement. In the calculation process, the influence of rock damage to elastic modulus, cohesion and permeability is involved by writing a subroutine for ABAQUS. The results show that the rock damage evolution has a significant effect to the plastic strain and stress in plastic zone. Different drilling fluid density will produce different damage in its value, range and type. This study improves the theory of mechanical mechanism of borehole collapse and fracture, and provides a reference for the further research of seepage-stress-chemical-damage coupling of wall rock.
Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves
Wang, Qiang; Ma, Shuxian; Yue, Dong
2018-04-01
Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.
Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.
2017-12-01
In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.
International Nuclear Information System (INIS)
Taheri, S.; Vincent, L.; Le-Roux, J.C.
2013-01-01
The application of Miner's rule using a loading issued from a mock-up of a RHR system (removal heat system) of PWR plant, made of 304 steel gives a very important non-conservative fatigue life in strain control when strain fatigue curve is used. This result is due to the absence of sequence effect in Miner's rule. Many non linear damage accumulation models have been proposed to get a sequence effect. Shortcomings of some non linear damage accumulation models are discussed. So Smith-Watson-Topper and Fatemi-Socie criterions with a linear damage accumulation rule are then applied to experimental data. A major issue is the need for an elastic-plastic constitutive law which is difficult to propose in the presence of high cycle secondary hardening observed in austenitic stainless steels. A conservative model for fatigue damage accumulation under variable amplitude loading is then proposed for austenitic stainless steels in strain control, which does not need a constitutive law, but takes into account plasticity through cyclic strain stress curve. The model uses a linear damage accumulation rule. This model is based on the fact that for stainless steels, pre-hardening is detrimental for fatigue life in strain control, while it is beneficial in stress control. In the presence of low mean stress, the model is approved based on a large number of tests. Moreover the model allows to explain the larger detrimental effect of a tension mean stress in strain control tests than in stress control tests. (authors)
An accurate fatigue damage model for welded joints subjected to variable amplitude loading
Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.
2017-12-01
Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.
A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards
International Nuclear Information System (INIS)
BAER, MELVIN R.; DRUMHELLER, D.S.; MATHESON, E.R.
1999-01-01
The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample
Hysteretic MDOF Model to Quantify Damage for RC Shear Frames Subject to Earthquakes
DEFF Research Database (Denmark)
Köylüoglu, H. Ugur; Nielsen, Søren R.K.; Cakmak, Ahmet S.
A hysteretic mechanical formulation is derived to quantify local, modal and overall damage in reinforced concrete (RC) shear frames subject to seismic excitation. Each interstorey is represented by a Clough and Johnston (1966) hysteretic constitutive relation with degrading elastic fraction of th...... shear frame is subject to simulated earthquake excitations, which are modelled as a stationary Gaussian stochastic process with Kanai-Tajimi spectrum, multiplied by an envelope function. The relationship between local, modal and overall damage indices is investigated statistically....
The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models
2011-09-01
cracking patterns ob- served in spherical indentation data indirectly quantify microheterogeneity. The evolution of damage in ceramics due to projectile...Kayenta model’s damage evolution and variability parameters. Figure 5 illustrates the relationship between the model implementation of variability...Materials by Design, ed., J. W. McCauley. Vol. 134, 11–18. Ceramic Transactions, Cocoa Beach, FL, 2002. 3. G. E. Hauver, et al. Interface Defeat of Long-Rod
Model for visualizing high energy laser (HEL) damage
Erten, Gail
2017-11-01
This paper describes and presents results from a model created in MATLAB® to calculate and display the time dependent temperature profile on a target aimpoint as it is being engaged by a high energy laser (HEL) beam. The model uses public domain information namely physics equations of heat conduction and phase changes and material properties such as thermal conductivity/diffusivity, latent heat, specific heat, melting and evaporation points as well as user input material type and thickness. The user also provides time varying characteristics of the HEL beam on the aimpoint, including beam size and intensity distribution (in Watts per centimeter square). The model calculates the temperature distribution at and around the aimpoint and also shows the phase changes of the aimpoint with the material first melting and then evaporating. User programmable features (selecting materials and thickness, erosion rates for melting) make the model highly versatile. The objective is to bridge the divide between remaining faithful to theoretical formulations such as the partial differential equations of heat conduction and at the same time serving practical concerns of the model user who needs to rapidly evaluate HEL thermal effects. One possible use of the tool is to assess lethality values of different aimpoints without costly (as well as often dangerous and destructive) experiments.
Influence of Different Yield Loci on Failure Prediction with Damage Models
Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.
2017-09-01
Advanced high strength steels are widely used in the automotive industry to simultaneously improve crash performance and reduce the car body weight. A drawback of these multiphase steels is their sensitivity to damage effects and thus the reduction of ductility. For that reason the Forming Limit Curve is only partially suitable for this class of steels. An improvement in failure prediction can be obtained by using damage mechanics. The objective of this paper is to comparatively review the phenomenological damage model GISSMO and the Enhanced Lemaitre Damage Model. GISSMO is combined with three different yield loci, namely von Mises, Hill48 and Barlat2000 to investigate the influence of the choice of the plasticity description on damage modelling. The Enhanced Lemaitre Model is used with Hill48. An inverse parameter identification strategy for a DP1000 based on stress-strain curves and optical strain measurements of shear, uniaxial, notch and (equi-)biaxial tension tests is applied to calibrate the models. A strong dependency of fracture strains on the choice of yield locus can be observed. The identified models are validated on a cross-die cup showing ductile fracture with slight necking.
Directory of Open Access Journals (Sweden)
Mao Gwladys
2016-01-01
Full Text Available With an annual loss averaging 580 M€ between 1990 and 2014, floods are the main natural catastrophe (Nat Cat risk for the French Nat Cat compensation scheme. As part of its role in this scheme, the Caisse Centrale de Réassurance (CCR offers state guaranteed reinsurance programs and has been modelling the risk of flooding since 2003. This model is based on the traditional valuation approach of direct tangible costs which pairs a physical model with exposure through damage curves. CCR wishes now to widen the studied damage scope to insured and noninsured economic costs and has been collaborating with the SAF research laboratory from the Institute of Financial and Insurance Sciences (ISFA since 2014. CCR’s model has been used to estimate the insured direct damage to residential and non-residential properties and it is now being developed to include damage to vehicles, agriculture and network infrastructures. Research is also being carried out to take into account business interruptions and indirect losses using an Input-Output model. This article describes the undergoing work on model development to estimate the damage to agriculture.
A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions
Directory of Open Access Journals (Sweden)
Xiao Chen
2018-01-01
Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.
Recent changes in flood damage in the United States from observations and ACME model
Leng, G.; Leung, L. R.
2017-12-01
Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.
Biomechanical models of damage and healing processes for voice health
DEFF Research Database (Denmark)
Granados Corsellas, Alba; Brunskog, Jonas; Jacobsen, Finn
2013-01-01
the vocal-fold plane are available. This data is used to improve existing continuum biomechanical models of the vocal-folds by analyzing the injury processes. The project is expected to result in methods that objectively demonstrate the impact of high voice-load on voice. A detailed description...
A ductile fracture analysis using a local damage model
Energy Technology Data Exchange (ETDEWEB)
Benseddiq, N. [Laboratoire de Mecanique et de Rheologie de Tours, Ecole Nationale d' Ingenieurs du Val de Loire (ENIVL), Rue de la Chocolaterie, 41000 Blois Cedex (France)], E-mail: nbensedd@polytech-lille.fr; Imad, A. [Laboratoire de Mecanique de Lille (UMR CNRS 8107), USTL, Ecole Polytechnique Universitaire de Lille Cite Scientifique, Avenue P. Langevin, 59655 Villeneuve d' Ascq Cedex (France)
2008-04-15
In this study, the Gurson-Tvergaard-Needleman (GTN) model is used to investigate ductile tearing. The sensitivity of the model parameters has been examined from literature data. Three types of parameters have been reported: the 'constitutive parameters'q{sub 1}, q{sub 2} and q{sub 3}, the 'initial material and nucleation parameters' and the 'critical and final failure parameters'. Each parameter in this model has been analysed in terms of various results in the literature. Both experimental and numerical results have been obtained for notched round and CT specimens to characterize ductile failure in a NiCr steel (12NC6) with a small initial void volume fraction f{sub 0} (f{sub 0}=0.001%). Ductile crack growth, defined by the J-{delta}a curve, has been correctly simulated using the numerical calculations by adjusting the different parameters of the GTN model in the calibration procedure.
Aircraft ground damage and the use of predictive models to estimate costs
Kromphardt, Benjamin D.
Aircraft are frequently involved in ground damage incidents, and repair costs are often accepted as part of doing business. The Flight Safety Foundation (FSF) estimates ground damage to cost operators $5-10 billion annually. Incident reports, documents from manufacturers or regulatory agencies, and other resources were examined to better understand the problem of ground damage in aviation. Major contributing factors were explained, and two versions of a computer-based model were developed to project costs and show what is possible. One objective was to determine if the models could match the FSF's estimate. Another objective was to better understand cost savings that could be realized by efforts to further mitigate the occurrence of ground incidents. Model effectiveness was limited by access to official data, and assumptions were used if data was not available. However, the models were determined to sufficiently estimate the costs of ground incidents.
Energy Technology Data Exchange (ETDEWEB)
Crosby, Tamer, E-mail: tcrosby@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu
2013-11-15
A combination of transient heating and bombardment by helium and hydrogen atoms has been experimentally proven to lead to severe surface and sub-surface damage. We developed a computational model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on a thermoelasticity fracture damage approach that was developed using the phase field method. The model simulates the distribution of helium bubbles inside the grains and on grain boundaries using space-dependent rate theory. In addition, the model is coupled with a transient heat conduction analysis for temperature distributions inside the material. The results show the effects of helium bubbles on reducing tungsten surface energy. Further, a temperature gradient in the material equals to 10 K/μm, resulted in deep cracks propagating from the tungsten surface.
Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach
van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.
2015-01-01
Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation
Directory of Open Access Journals (Sweden)
Lin Chao
2016-01-01
Full Text Available Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington
Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello
2017-02-01
Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.
Hierarchical composites: Analysis of damage evolution based on fiber bundle model
DEFF Research Database (Denmark)
Mishnaevsky, Leon
2011-01-01
A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...
On the need for data for the verification of service life models for frost damage
DEFF Research Database (Denmark)
Geiker, Mette Rica; Engelund, Sven
1999-01-01
The purpose of this paper is to draw the attention to the need for the verification of service life models for frost attack on concrete and the collection of relevant data. To illustrate the type of data needed the paper presents models for internal freeze/thaw damage (internal cracking including...
A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2011-01-01
A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure...
Towards the damage evaluation using Gurson-Tvergaard-Needleman (GTN) model for hot forming processes
Imran, Muhammad; Bambach, Markus
2018-05-01
In the production of semi-finished metal products, hot forming is used to eliminate the pores and voids from the casting process under compressive stresses and to modify the microstructure for further processing. In the case of caliber and flat rolling processes, tensile stresses occur at certain roll gap ratios which promote pore formation on nonmetallic inclusion. The formation of new pores contributes to ductile damage and reduces the load carrying capacity of the material. In the literature, the damage nucleation and growth during the hot forming process are not comprehensively described. The aim of this study is to understand the damage initiation and growth mechanism during hot forming processes. Hot tensile tests are performed at different temperatures and strain rates for 16MnCrS5 steel. To investigate the influence of geometrical variations on the damage mechanism, specimens with different stress triaxiality ratios are used. Finite element simulations using the Gurson-Tvergaard-Needleman (GTN) damage model are performed to estimate the critical void fraction for the damage initiation and the evolution of the void volume fraction. The results showed that the GTN model underestimates the softening of the material due to the independence of the temperature and the strain rate.
International Nuclear Information System (INIS)
Shimada, Yoshio
2000-01-01
It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)
International Nuclear Information System (INIS)
Hajdu, A.
2003-12-01
The long-term behavior of large, underground works of a civil engineering nature carried out in a rock mass is currently the subject of numerous studies. The object is to attain a better understanding of complex phenomena, such as the convergence of excavated cavities or the outbreak and development of damaged zones in the rock mass neighboring the works, in order to foresee them. This Ph.D. thesis is devoted to the analysis of viscoplastic strain in rocks and to the degradation of their mechanical properties with time, often referred to as deferred damage. A bibliographical record presents the current depth of understanding as regards underlying microstructural phenomena and summarizes the main theories upon which the modeling of these phenomena at the macroscopic scale is based. The formulations enabling a coupling between the viscous effects and the deferred damage are revisited and discussed in detail. One phenomenological model in particular, Lemaitre's viscoplastic constitutive damage law is retained for the numerical modeling. The calculations were performed with the help of a finite element code (CAST3M). Designs of nuclear waste disposal structures at great depth make up the subject of different case studies. The Lemaitre model, originally designed for metallic materials, is next the subject of a theoretical development of which the aim is to better adapt it to the description of the long-term mechanical behavior of rocks. The modifications focus on several points; notably that the hypotheses of anelastic strain at constant volume and of isotropy of damage are rejected. The main characteristics of time-dependent strain in rocks; in particular the phenomena of viscoplastic dilation and contraction as well as the anisotropy induced by damage to the rock matrix are reproduced by the proposed model. A parametric study is then undertaken, using the experimental results obtained on different types of rock, in order to demonstrate the model's capabilities
Micromechanics-based damage model for failure prediction in cold forming
Energy Technology Data Exchange (ETDEWEB)
Lu, X.Z.; Chan, L.C., E-mail: lc.chan@polyu.edu.hk
2017-04-06
The purpose of this study was to develop a micromechanics-based damage (micro-damage) model that was concerned with the evolution of micro-voids for failure prediction in cold forming. Typical stainless steel SS316L was selected as the specimen material, and the nonlinear isotropic hardening rule was extended to describe the large deformation of the specimen undergoing cold forming. A micro-focus high-resolution X-ray computed tomography (CT) system was employed to trace and measure the micro-voids inside the specimen directly. Three-dimensional (3D) representative volume element (RVE) models with different sizes and spatial locations were reconstructed from the processed CT images of the specimen, and the average size and volume fraction of micro-voids (VFMV) for the specimen were determined via statistical analysis. Subsequently, the micro-damage model was compiled as a user-defined material subroutine into the finite element (FE) package ABAQUS. The stress-strain responses and damage evolutions of SS316L specimens under tensile and compressive deformations at different strain rates were predicted and further verified experimentally. It was concluded that the proposed micro-damage model is convincing for failure prediction in cold forming of the SS316L material.
Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment
Rebbapragada, Umaa; Oommen, Thomas
2011-01-01
On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.
International Nuclear Information System (INIS)
Zhao Erqiang; Ma Shaopeng; Wang Hongtao
2014-01-01
Graphite material is generally easy to be damaged by the widely distributed micro-cracks when subjects to load. For numerically analyzing of the structure made of graphite material, the influences of the degradation of the material in damaged areas need to be considered. In this paper, an axial tension test method is proposed to obtain the dynamic damage evolution rule of the material. Using the degradation rule (variation of elastic modulus), the finite element model is then constructed to analyze the tensile fracture process of the L-shaped graphite specimen. An axial tension test of graphite is performed to obtain the stress-strain curve. Based on the variation of the measured curve, the damage evolution rule of the material are fitted out. A simulation model based on the above measured results is then constructed on ABAQUS by user subroutine. Using this simulation model, the tension failure process of L-shaped graphite specimen with fillet are simulated. The calculated and experimental results on fracture load are in good agreement. The damage simulation model based on the stress-strain curve of axial tensile test can be used in other tensile fracture analysis. (author)
Mesoscale modeling of solute precipitation and radiation damage
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ke, Huibin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.
International Nuclear Information System (INIS)
Urrutia, J D; Bautista, L A; Baccay, E B
2014-01-01
The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.
Directory of Open Access Journals (Sweden)
Nicola Bonora
2018-04-01
Full Text Available The extended Bonora damage model was used to investigate joinability of materials in self-piercing riveting process. This updated model formulation accounts for void nucleation and growth process and shear-controlled damage which is critical for shear fracture sensitive materials. Potential joint configurations with dissimilar materials have been investigated computationally. In particular the possible combination of DP600 steel, which is widely used in the automotive industry, with AL2024-T351, which is known to show shear fracture sensitivity, and oxygen-free pure copper, which is known to fail by void nucleation and growth, have been investigated. Preliminary numerical simulation results indicate that the damage modelling is capable to discriminate potential criticalities occurring in the SPR joining process opening the possibility for process parameters optimization and screening of candidate materials for optimum joint
Sepehrinezhad, Alireza; Toufigh, Vahab
2018-05-25
Ultrasonic wave attenuation is an effective descriptor of distributed damage in inhomogeneous materials. Methods developed to measure wave attenuation have the potential to provide an in-site evaluation of existing concrete structures insofar as they are accurate and time-efficient. In this study, material classification and distributed damage evaluation were investigated based on the sinusoidal modeling of the response from the through-transmission ultrasonic tests on polymer concrete specimens. The response signal was modeled as single or the sum of damping sinusoids. Due to the inhomogeneous nature of concrete materials, model parameters may vary from one specimen to another. Therefore, these parameters are not known in advance and should be estimated while the response signal is being received. The modeling procedure used in this study involves a data-adaptive algorithm to estimate the parameters online. Data-adaptive algorithms are used due to a lack of knowledge of the model parameters. The damping factor was estimated as a descriptor of the distributed damage. The results were compared in two different cases as follows: (1) constant excitation frequency with varying concrete mixtures and (2) constant mixture with varying excitation frequencies. The specimens were also loaded up to their ultimate compressive strength to investigate the effect of distributed damage in the response signal. The results of the estimation indicated that the damping was highly sensitive to the change in material inhomogeneity, even in comparable mixtures. In addition to the proposed method, three methods were employed to compare the results based on their accuracy in the classification of materials and the evaluation of the distributed damage. It is shown that the estimated damping factor is not only sensitive to damage in the final stages of loading, but it is also applicable in evaluating micro damages in the earlier stages providing a reliable descriptor of damage. In addition
A new coupled elastoplastic damage model for clay-stone and its parameter identification
International Nuclear Information System (INIS)
Jia, S.P.; Chen, W.Z.; Yu, H.D.; Li, X.L.; Sillen, X.
2010-01-01
Document available in extended abstract form only. In Belgium, the Boom Clay is considered as a potential host rock for the geological disposal of the high level nuclear waste and is intensively studied from hydro-mechanical point of view. Laboratory tests on Boom clay shown that the Boom clay presents very complex stress strain behaviour. Undrained triaxial tests indicated often a hardening behaviour at small deformation and softening at larger deformation. It is not easy to give an explicit function to describe the stress-strain behaviour under triaxial stress state. The mechanical characteristics are obviously affected by the porosity, fractures growth, water content, and stress, etc., four stages can be usually distinguished from the stress-strain curve of Boom Clay, named as OA, AB, BC and CD. 1) Stage OA, the relation between stress and strain is linear. This stage is elastic state, and point A is called as yield strength σ c0 . 2) Stage AB, the weak fractures in the rock appear, develop and cumulate gradually. Point B is called peak strength σ cu . 3) Stage BC, peak strength is reached and stress reduces with the increasing of strain, up to the residual strength. This stage is called strain softening and point C is the residual strength σ cr . The axial pressure causes the fracture developing and strength reducing. 4) Stage CD, the final strength doesn't reduce obviously with the development of plastic deformation. This stage is called plastic flow. Obviously, The conventional elasto-plastic constitutive model can not describe the mechanical behaviours of Boom Clay. Based on damage mechanics theory, an new elasto-plastic damage constitutive model is put forward and applied to Boom Clay, which can describe the complex stress-strain behaviour of clay. It is described as follows: stage OA with an elastic model, stage AB with elastic damage model, stage BC and stage CD with plastic damage model. The complete process curve of stress-strain can be divided
Natural resource damage assessment models for Great Lakes, coastal, and marine environments
International Nuclear Information System (INIS)
French, D.P.; Reed, M.
1993-01-01
A computer model of the physical fates, biological effects, and economic damages resulting from releases of oil and other hazardous materials has been developed by Applied Science Associates to be used in Type A natural resource damage assessments under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Natural resource damage assessment models for great lakes environments and for coastal and marine environments will become available. A coupled geographical information system allows gridded representation of complex coastal boundaries, variable bathymetry, shoreline types, and multiple biological habitats. The physical and biological models are three dimensional. Direct mortality from toxic concentrations and oiling, impacts of habitat loss, and food web losses are included in the model. Estimation of natural resource damages is based both on the lost value of injured resources and on the costs of restoring or replacing those resources. The models are implemented on a personal computer, with a VGA graphical user interface. Following public review, the models will become a formal part of the US regulatory framework. The models are programmed in a modular and generic fashion, to facilitate transportability and application to new areas. The model has several major components. Physical fates and biological effects submodels estimate impacts or injury resulting from a spill. The hydrodynamic submodel calculates currents that transport contaminant(s) or organisms. The compensable value submodel values injuries to help assess damages. The restoration submodel determines what restoration actions will most cost-effectively reduce injuries as measured by compensable values. Injury and restoration costs are assessed for each of a series of habitats (environments) affected by the spill. Environmental, chemical, and biological databases supply required information to the model for computing fates and effects (injury)
Schwalbe, Karl-Heinz; Cornec, Alfred
2013-01-01
This brief provides guidance for the application of cohesive models to determine damage and fracture in materials and structural components. This can be done for configurations with or without a pre-existing crack. Although the brief addresses structural behaviour, the methods described herein may also be applied to any deformation induced material damage and failure, e.g. those occurring during manufacturing processes. The methods described are applicable to the behaviour of ductile metallic materials and structural components made thereof. Hints are also given for applying the cohesive model to other materials.
Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue
Directory of Open Access Journals (Sweden)
J. Kramberger
2016-01-01
Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.
Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions
Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton
2014-10-01
Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.
Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis
Xu, Jinyang; El Mansori, Mohamed
2016-01-01
In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824
Hart, Robert James
In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large
Comparative analysis of coupled creep-damage model implementations and application
International Nuclear Information System (INIS)
Bhandari, S.; Feral, X.; Bergheau, J.M.; Mottet, G.; Dupas, P.; Nicolas, L.
1998-01-01
Creep rupture of a reactor pressure vessel in a severe accident occurs after complex load and temperature histories leading to interactions between creep deformations, stress relaxation, material damaging and plastic instability. The concepts of continuous damage introduced by Kachanov and Robotnov allow to formulate models coupling elasto-visco-plasticity and damage. However, the integration of such models in a finite element code creates some difficulties related to the strong non-linearity of the constitutive equations. It was feared that different methods of implementation of such a model might lead to different results which, consequently, might limit the application and usefulness of such a model. The Commissariat a l'Energie Atomique (CEA), Electricite de France (EDF) and Framasoft (FRA) have worked out numerical solutions to implement such a model in respectively CASTEM 2000, ASTER and SYSTUS codes. A ''benchmark'' was set up, chosen on the basis of a cylinder studied in the programme ''RUPTHER''. The aim of this paper is not to enter into the numerical details of the implementation of the model, but to present the results of the comparative study made using the three codes mentioned above, on a case of engineering interest. The results of the coupled model will also be compared to an uncoupled model to evaluate differences one can obtain between a simple uncoupled model and a more sophisticated coupled model. The main conclusion drawn from this study is that the different numerical implementations used for the coupled damage-visco-plasticity model give quite consistent results. The numerical difficulty inherent to the integration of the strongly non-linear constitutive equations have been resolved using Runge-Kutta or mid-point rule. The usefulness of the coupled model comes from the fact the uncoupled model leads to too conservative results, at least in the example treated and in particular for the uncoupled analysis under the hypothesis of the small
Unified continuum damage model for matrix cracking in composite rotor blades
Energy Technology Data Exchange (ETDEWEB)
Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)
2015-03-10
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.
Unified continuum damage model for matrix cracking in composite rotor blades
International Nuclear Information System (INIS)
Pollayi, Hemaraju; Harursampath, Dineshkumar
2015-01-01
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load
Damage Detection of Refractory Based on Principle Component Analysis and Gaussian Mixture Model
Directory of Open Access Journals (Sweden)
Changming Liu
2018-01-01
Full Text Available Acoustic emission (AE technique is a common approach to identify the damage of the refractories; however, there is a complex problem since there are as many as fifteen involved parameters, which calls for effective data processing and classification algorithms to reduce the level of complexity. In this paper, experiments involving three-point bending tests of refractories were conducted and AE signals were collected. A new data processing method of merging the similar parameters in the description of the damage and reducing the dimension was developed. By means of the principle component analysis (PCA for dimension reduction, the fifteen related parameters can be reduced to two parameters. The parameters were the linear combinations of the fifteen original parameters and taken as the indexes for damage classification. Based on the proposed approach, the Gaussian mixture model was integrated with the Bayesian information criterion to group the AE signals into two damage categories, which accounted for 99% of all damage. Electronic microscope scanning of the refractories verified the two types of damage.
Damage in Creep Aging Process of an Al-Zn-Mg-Cu Alloy: Experiments and Modeling
Directory of Open Access Journals (Sweden)
Chao Lei
2018-04-01
Full Text Available In creep age forming (CAF, large integral panel components of high-strength aluminum alloy can be shaped and strengthened under external elastic loading at an elevated temperature through creep deformation and age hardening, simultaneously. However, the high ribbed structure on panel may induce stress concentration, inhomogeneous plastic deformation and even damage evolution on the bending rib, leading to the difficulty in controlling forming precision and material properties. Therefore, the generation and evolution of damage are necessary to be considered in the design of CAF. Taking 7050 aluminum alloy as the case material, the continuous and interrupted creep aging tests at 165 °C and three stress levels (300, 325, and 350 MPa were conducted, and the corresponding material properties, precipitate, and damage microstructures were studied by mechanical properties tests, transmission electron microscope (TEM and scanning electron microscope (SEM characterizations. With the increase of stress level, the creep deformation occurs easier, the precipitates grow up faster, the creep damage occurs earlier, the growth rate and the size of microvoids increase, the mechanical properties decrease more rapidly, and the dominant mechanism of creep fracture changes from shear to microvoid coalescence. To simulate creep aging behavior with damage, a continuum damage mechanics (CDM based model is calibrated and numerically implemented into ABAQUS solver via CREEP subroutine. The CAF of 7050 aluminum alloy panels with different height ribs were conducted by experiment and FE simulation. The forming process presents a typical stress relaxation phenomenon. The creep damage mainly occurs on the bending rib due to the severe stress concentration. With the increase of rib height, the creep strain and damage degree increase, but the springback decreases.
Track structure model for damage to mammalian cell cultures during solar proton events
Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.
1992-01-01
Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.
A LATIN-based model reduction approach for the simulation of cycling damage
Bhattacharyya, Mainak; Fau, Amelie; Nackenhorst, Udo; Néron, David; Ladevèze, Pierre
2017-11-01
The objective of this article is to introduce a new method including model order reduction for the life prediction of structures subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique, the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations through an internal variable transformation. A specific treatment of this issue is introduced in this work.
Effect of a shear modified Gurson model on damage development in a FSW tensile specimen
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Tvergaard, Viggo
2009-01-01
For a friction stir welded aluminum plate the resistance to ductile failure is studied by analyzing tensile test specimens cut out across the weldline. As the stress triaxiality is rather low in these tests, the Gurson material model is not expected to give a very accurate description of the void......, such that the damage parameter does not really represent the void volume fraction. Various amounts of the additional damage evolution are compared with predictions of the original Gurson model. The analyses are carried out for different yield stress profiles transverse to the weld and for different specimen widths....... It is found that the modification does provide additional damage development in the friction stir weld, which may help to fit experimental data. But the suggested modification depends strongly on the overall stress state, and may have a too strong effect in some cases where the stress triaxiality is rather...
Damage evaluation by a guided wave-hidden Markov model based method
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
\\title{Development of Radiation Damage Models for Irradiated Silicon Sensors Using TCAD Tools}
Bhardwaj, Ashutosh; Lalwani, Kavita; Ranjan, Kirti; Printz, Martin; Ranjeet, Ranjeet; Eber, Robert; Eichhorn, Thomas; Peltola, Timo Hannu Tapani
2014-01-01
Abstract. During the high luminosity upgrade of the LHC (HL-LHC) the CMS tracking system will face a more intense radiation environment than the present system was designed for. In order to design radiation tolerant silicon sensors for the future CMS tracker upgrade it is fundamental to complement the measurement with device simulation. This will help in both the understanding of the device performance and in the optimization of the design parameters. One of the important ingredients of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this paper we will discuss the development of a radiation damage model by using commercial TCAD packages (Silvaco and Synopsys), which successfully reproduce the recent measurements like leakage current, depletion voltage, interstrip capacitance and interstrip resistance, and provides an insight into the performance of irradiated silicon strip sensors.
Measurement and modelling of the radiation damage of silicon by MeV Ag ions
International Nuclear Information System (INIS)
Lindner, J.K.N.; Eder, J.; Stritzker, B.
1999-01-01
Depth profiles of the radiation damage produced by 4 MeV Ag ions in Si(111) at temperatures of 210--450 K are studied by optical reflectivity depth profiling and TEM for doses between 10 12 and 10 15 Ag/cm 2 . For high implantation temperatures, the depth of maximum damage is shown to be dose dependent. Point defect diffusion is shown to result in long tails of defect depth profiles. High-temperature amorphization is observed to proceed via the formation and bridge-like coalescence of isolated amorphous volumina. The damage at the depth of the maximum in the nuclear stopping power is described as a function of dose and temperature by the Hecking model. The model parameters and a comparison with those obtained for lighter ions reflect the particular properties of heavy ion collision cascades
Damage-plasticity model of the host rock in a nuclear waste repository
Energy Technology Data Exchange (ETDEWEB)
Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz [Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)
2016-06-08
The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented in the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.
International Nuclear Information System (INIS)
Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.
2011-01-01
A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.
Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262)
Chen, Yi-Ying; Gardiner, Barry; Pasztor, Ferenc; Blennow, Kristina; Ryder, James; Valade, Aude; Naudts, Kim; Otto, Juliane; McGrath, Matthew J.; Planque, Carole; Luyssaert, Sebastiaan
2018-03-01
Earth system models (ESMs) are currently the most advanced tools with which to study the interactions among humans, ecosystem productivity, and the climate. The inclusion of storm damage in ESMs has long been hampered by their big-leaf approach, which ignores the canopy structure information that is required for process-based wind-throw modelling. Recently the big-leaf assumptions in the large-scale land surface model ORCHIDEE-CAN were replaced by a three-dimensional description of the canopy structure. This opened the way to the integration of the processes from the small-scale wind damage risk model ForestGALES into ORCHIDEE-CAN. The integration of ForestGALES into ORCHIDEE-CAN required, however, developing numerically efficient solutions to deal with (1) landscape heterogeneity, i.e. account for newly established forest edges for the parameterization of gusts; (2) downscaling spatially and temporally aggregated wind fields to obtain more realistic wind speeds that would represents gusts; and (3) downscaling storm damage within the 2500 km2 pixels of ORCHIDEE-CAN. This new version of ORCHIDEE-CAN was parameterized over Sweden. Subsequently, the performance of the model was tested against data for historical storms in southern Sweden between 1951 and 2010 and south-western France in 2009. In years without big storms, here defined as a storm damaging less than 15 × 106 m3 of wood in Sweden, the model error is 1.62 × 106 m3, which is about 100 % of the observed damage. For years with big storms, such as Gudrun in 2005, the model error increased to 5.05 × 106 m3, which is between 10 and 50 % of the observed damage. When the same model parameters were used over France, the model reproduced a decrease in leaf area index and an increase in albedo, in accordance with SPOT-VGT and MODIS records following the passing of Cyclone Klaus in 2009. The current version of ORCHIDEE-CAN (revision 4262) is therefore expected to have the capability to capture the dynamics of
Assessment of mean annual flood damage using simple hydraulic modeling and Monte Carlo simulation
Oubennaceur, K.; Agili, H.; Chokmani, K.; Poulin, J.; Marceau, P.
2016-12-01
Floods are the most frequent and the most damaging natural disaster in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which struck the region in 2011, causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects has been developed. This approach integrates three main components: (1) hydrologic modelling aiming to establish a probability-discharge function which associate each measured discharge to its probability of occurrence (2) hydraulic modeling that aims to establish the relationship between the discharge and the water stage at each building (3) damage study that aims to assess the buildings damage using damage functions. The damage is estimated according to the water depth defined as the difference between the water level and the elevation of the building's first floor. The application of the proposed approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for authorities to support their decisions on risk management and prevention against this disaster.
Directory of Open Access Journals (Sweden)
Milašinović Dragan D.
2015-01-01
Full Text Available A new analytical model for the prediction of concrete response under uniaxial compression and its experimental verification is presented in this paper. The proposed approach, referred to as the rheological-dynamical continuum damage model, combines rheological-dynamical analogy and damage mechanics. Within the framework of this approach the key continuum parameters such as the creep coefficient, Poisson’s ratio and damage variable are functionally related. The critical values of the creep coefficient and damage variable under peak stress are used to describe the failure mode of the concrete cylinder. The ultimate strain is determined in the post-peak regime only, using the secant stress-strain relation from damage mechanics. The post-peak branch is used for the energy analysis. Experimental data for five concrete compositions were obtained during the examination presented herein. The principal difference between compressive failure and tensile fracture is that there is a residual stress in the specimens, which is a consequence of uniformly accelerated motion of load during the examination of compressive strength. The critical interpenetration displacements and crushing energy are obtained theoretically based on the concept of global failure analysis. [Projekat Ministarstva nauke Republike Srbije, br. ON 174027: Computational Mechanics in Structural Engineering i br. TR 36017: Utilization of by-products and recycled waste materials in concrete composites for sustainable construction development in Serbia: Investigation and environmental assessment of possible applications
An improved Corten-Dolan's model based on damage and stress state effects
International Nuclear Information System (INIS)
Gao, Huiying; Huang, Hong Zhong; Lv, Zhiqiang; Zuo, Fang Jun; Wang, Hai Kun
2015-01-01
The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.
An improved Corten-Dolan's model based on damage and stress state effects
Energy Technology Data Exchange (ETDEWEB)
Gao, Huiying; Huang, Hong Zhong; Lv, Zhiqiang; Zuo, Fang Jun; Wang, Hai Kun [University of Electronic Science and Technology of China, Chengdu (China)
2015-08-15
The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.
Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.
2015-01-01
A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2010-01-01
in a computational finite element framework, which is capable of predicting initial failure, subsequent progressive damage up to final collapse. Crack band model and viscous regularization are applied to depress the convergence difficulties associated with strain softening behaviours. To verify the accuracy...
Introduction of damage in an elasto-plastic model for unsaturated geo-materials
International Nuclear Information System (INIS)
Le Pense, S.; Pouya, A.; Gatmiri, B.
2012-01-01
Document available in extended abstract form only. During the excavation of nuclear waste repository galleries, the surrounding soil is suspected to undergo structural changes as well as modification of its stress state. The desaturation due to ventilation of galleries during this stage makes it necessary to consider the unsaturated state of the host geo-material. The decompression occurring after the excavation leads to a modification of the stress state. The purpose of our work is to develop a mechanical model to simulate the non-linear stress-strain behaviour of geo-materials which will have to contain radioactivity of nuclear waste for a very long time. Two irreversible phenomena can explain the non-linear behaviour of geo-materials. Plasticity leads to irrecoverable strains. Damage, linked to the appearance and extension of microcracks, results in a deterioration of elastic and hydraulic properties. We will present here the bases of a new model coupling damage and plasticity for the stress-strain behaviour of unsaturated geo-materials. This model should be thermodynamically consistent and use only a reasonable number of parameters. Based on the work of Houlsby, (Houlsby 1997), we choose to use as constitutive variables for unsaturated soils Bishop's stress and suction. This choice as the advantage to allow for continuity at the transition between saturated and unsaturated states. Damage is taken into account by defining a damaged constitutive stress, which is similar to the effective stress principle defined by Kachanov (Kachanov 1958). A simple damage criterion is proposed and an associative flow rule is assumed. We choose to follow the principle of strain equivalence defined by Lemaitre (Lemaitre 1996). This leads to the following elasticity law giving the damaged constitutive stress as a function of elastic strain. If non-linear elasticity is considered, a pressure-dependent bulk modulus and a constant shear modulus can be chosen in order to fit
Sodium 4-phenylbutyrate reduces myofiber damage in a mouse model of Duchenne muscular dystrophy.
Begam, Morium; Abro, Valerie M; Mueller, Amber L; Roche, Joseph A
2016-10-01
We performed a placebo-controlled pre-clinical study to determine if sodium 4-phenylbutyrate (4PB) can reduce contraction-induced myofiber damage in the mdx mouse model of Duchenne muscular dystrophy (DMD). At 72 h post-eccentric contractions, 4PB significantly increased contractile torque and reduced myofiber damage and macrophage infiltration. We conclude that 4PB, which is approved by Health Canada (Pheburane) and the United States Food and Drug Administration (Buphenyl) for urea cycle disorders, might modify disease severity in patients with DMD.
Damage Model for Reliability Assessment of Solder Joints in Wind Turbines
DEFF Research Database (Denmark)
Kostandyan, Erik; Sørensen, John Dalsgaard
2012-01-01
environmental factors. Reliability assessment for such type of products conventionally is performed by classical reliability techniques based on test data. Usually conventional reliability approaches are time and resource consuming activities. Thus in this paper we choose a physics of failure approach to define...... damage model by Miner’s rule. Our attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Based on the proposed method it is described how to find the damage level for a given temperature loading profile. The proposed method is discussed...
Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun
Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry
2017-01-01
Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.
Directory of Open Access Journals (Sweden)
Treutenaere S.
2015-01-01
Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Kohnert, Aaron A.; Wirth, Brian D. [University of Tennessee, Knoxville, Tennessee 37996-2300 (United States)
2015-04-21
The microstructure that develops under low temperature irradiation in ferritic alloys is dominated by a high density of small (2–5 nm) defects. These defects have been widely observed to move via occasional discrete hops during in situ thin film irradiation experiments. Cluster dynamics models are used to describe the formation of these defects as an aggregation process of smaller clusters created as primary damage. Multiple assumptions regarding the mobility of these damage features are tested in the models, both with and without explicit consideration of such irradiation induced hops. Comparison with experimental data regarding the density of these defects demonstrates the importance of including such motions in a valid model. In particular, discrete hops inform the limited dependence of defect density on irradiation temperature observed in experiments, which the model was otherwise incapable of producing.
International Nuclear Information System (INIS)
Rutz, H.P.; Coucke, P.A.; Mirimanoff, R.O.
1991-01-01
The authors assessed the dose-dependence of repair of potentially lethal damage in Chinese hamster ovary cells x-irradiated in vitro. The recovery ratio (RR) by which survival (SF) of the irradiated cells was enhanced increased exponentially with a linear and a quadratic component namely ζ and ψ: RR=exp(ζD+ψD 2 ). Survival of irradiated cells can thus be expressed by a combined linear-quadratic model considering 4 variables, namely α and β for the capacity of the cells to accumulate sublethal damage, and ζ and ψ for their capacity to repair potentially lethal damage: SF=exp((ζ-α)D+ (ψ-β)D 2 ). author. 26 refs.; 1 fig.; 1 tab
A model for the induction of DNA damages and their evolution into cell clonogenic inactivation
International Nuclear Information System (INIS)
Yamaguchi, Hiroshi; Ohara, Hiroshi; Waker, A.J.
2006-01-01
The dependence of the initial production of DNA damages on radiation quality was examined by using a proposed new model on the basis of target theory. For the estimation of DNA damage-production by different radiation qualities, five possible modes of radiation action, including both direct and indirect effects, were assumed inside a target the molecular structure of which was defined to consist of 10 base-pairs of DNA surrounded by water molecules. The induction of DNA damage was modeled on the basis of comparisons between the primary ionization mean free path and the distance between pairs of ionized atoms, such distance being characteristic on the mode of radiation action. The OH radicals per average energy to produce an ion pair on the nanosecond time scale was estimated and used for indirect action. Assuming a relation between estimated yields of DNA damages and experimental inactivation cross sections for AT-cells, the present model enabled the quantitative reproduction of experimental results for AT-cell killing under aerobic or hypoxic conditions. The results suggest a higher order organization of DNA in a way that there will be at least two types of water environment, one filling half the space surrounding DNA with a depth of 3.7-4.3 nm and the other filling all space with a depth 4.6-4.9 nm. (author)
International Nuclear Information System (INIS)
Simpson, D.; Ashmore, M.R.; Emberson, L.; Tuovinen, J.-P.
2007-01-01
Two very different types of approaches are currently in use today for indicating risk of ozone damage to vegetation in Europe. One approach is the so-called AOTX (accumulated exposure over threshold of X ppb) index, which is based upon ozone concentrations only. The second type of approach entails an estimate of the amount of ozone entering via the stomates of vegetation, the AFstY approach (accumulated stomatal flux over threshold of Y nmol m -2 s -1 ). The EMEP chemical transport model is used to map these different indicators of ozone damage across Europe, for two illustrative vegetation types, wheat and beech forests. The results show that exceedences of critical levels for either type of indicator are widespread, but that the indicators give very different spatial patterns across Europe. Model simulations for year 2020 scenarios suggest reductions in risks of vegetation damage whichever indicator is used, but suggest that AOT40 is much more sensitive to emission control than AFstY values. - Model calculations of AOT40 and AFstY show very different spatial variations in the risks of ozone damage to vegetation
Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C; Lin, Yinan; Kaplan, David L; Kumamoto, Carol A; Mecsas, Joan
2018-04-01
Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O 2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydro-Economic based Model of Damage and Loss Analysis of Winongo River Flood
Directory of Open Access Journals (Sweden)
Muhammad Rifki Hardika
2017-09-01
Full Text Available Winongo River experienced considerably high flow that caused overflows along the downstream part of the river and some inundation at the surrounding area. The inundation has reached up to 1 m spread over the Tegalrejo Sub-district of Yogyakarta City and swept two houses. This paper analyses the damage and loss due to the flood by taking into account the hydraulics phenomena and the economic impact at the inundation area. A hydraulics model has been developed to study the flow characteristics during the flood of Winongo River, especially in the river reach in Tegalrejo Sub-district. The hazard-induced damages in the flooded area were identified and the economic impacts were studied. Several related software have been utilized to analyse the damage and loss of the disaster, including the HEC-RAS 5.0, ArcGIS, HEC-GeoRAS and InaSAFE. Through the integration of the characteristics of both flood phenomena and the economic factor, the damage and loss were then analysed and the Average Annual Damage (AAD of approximately IDR 88,750,000,000 was obtained.
Modelling of microstructural creep damage in welded joints of 316L stainless steel
International Nuclear Information System (INIS)
Bouche, G.
2000-01-01
Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)
Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging
Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea
2013-01-01
The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327
Repairable-conditionally repairable damage model based on dual Poisson processes.
Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A
2003-09-01
The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.
Got, J. L.; Amitrano, D.; Carrier, A.; Marsan, D.; Jouanne, F.; Vogfjord, K. S.
2017-12-01
At Grimsvötn volcano, high-quality earthquake and continuous GPS data were recorded by the Icelandic Meteorological Office during its 2004-2011 inter-eruptive period and exhibited remarkable patterns : acceleration of the cumulated earthquake number, and a 2-year exponential decrease in displacement rate followed by a 4-year constant inflation rate. We proposed a model with one magma reservoir in a non-linear elastic damaging edifice, with incompressible magma and a constant pressure at the base of the magma conduit. We first modelled seismicity rate and damage as a function of time, and show that Kachanov's elastic brittle damage law may be used to express the decrease of the effective shear modulus with time. We then derived simple analytical expressions for the magma reservoir overpressure and the surface displacement as a function of time. We got a very good fit of the seismicity and surface displacement data by adjusting only three phenomenological parameters and computed magma reservoir overpressure, magma flow and strain power as a function of time. Overpressure decrease is controlled by damage and shear modulus decrease. Displacement increases, although overpressure is decreasing, because shear modulus decreases more than overpressure. Normalized strain power reaches a maximum 0.25 value. This maximum is a physical limit, after which the elasticity laws are no longer valid, earthquakes cluster, cumulative number of earthquakes departs from the model. State variable extrema provide four reference times that may be used to assess the mechanical state and dynamics of the volcanic edifice. We also performed the spatial modelling of the progressive damage and strain localization around a pressurized magma reservoir. We used Kachanov's damage law and finite element modelling of an initially elastic volcanic edifice pressurized by a spherical magma reservoir, with a constant pressure in the reservoir and various external boundary conditions. At each node of the
International Nuclear Information System (INIS)
Massoud, J.P.; Bugat, St.; Marini, B.; Lidbury, D.; Van Dyck, St.; Debarberis, L.
2008-01-01
Full text of publication follows. In nuclear PWRs, materials undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities operating these reactors must quantify the aging and the potential degradations of reactor pressure vessels and also of internal structures to ensure safe and reliable plant operation. The EURATOM 6. Framework Integrated Project PERFECT (Prediction of Irradiation Damage Effects in Reactor Components) addresses irradiation damage in RPV materials and components by multi-scale modelling. This state-of-the-art approach offers potential advantages over the conventional empirical methods used in current practice of nuclear plant lifetime management. Launched in January 2004, this 48-month project is focusing on two main components of nuclear power plants which are subject to irradiation damage: the ferritic steel reactor pressure vessel and the austenitic steel internals. This project is also an opportunity to integrate the fragmented research and experience that currently exists within Europe in the field of numerical simulation of radiation damage and creates the links with international organisations involved in similar projects throughout the world. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences make possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. The consequences of irradiation on mechanical and corrosion properties of materials are also tentatively modelled using such multi-scale modelling. But it requires to develop different mechanistic models at different levels of physics and engineering and to extend the state of knowledge in several scientific fields. And the links between these different kinds of models are particularly delicate to deal with and need specific works. Practically the main objective of PERFECT is to build
Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.
2008-01-01
The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.
Development of a Nondestructive Impulse Device and Damage Model for Unreinforced Concrete
Directory of Open Access Journals (Sweden)
Shane D. Boone
2012-01-01
Full Text Available Unconstrained compression waves were measured using a newly developed, nondestructive, short impulse excitation device developed for long-term structural health monitoring. The measurements, using this innovative device, were used to determine the variation in the first longitudinal modal frequency as a function of loading magnitude and loading cycles to failure of various concrete mixes. Longitudinal frequency and cumulative energy variations were found to be a function of concrete compressive strength. These results imply that higher-strength concrete more easily absorbs energy and restricts the growth of microcracks. Based on the results, a new damage model is proposed that was shown to correlate with measured values to within 7%. This proposed model was found to have a closer correlation than Miner’s hypothesis and damage index models from other reviewed research.
Directory of Open Access Journals (Sweden)
A. Campanile
2018-01-01
Full Text Available The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.
Modeling of Metal Structure Corrosion Damage: A State of the Art Report
Directory of Open Access Journals (Sweden)
Francesco Portioli
2010-07-01
Full Text Available The durability of metal structures is strongly influenced by damage due to atmospheric corrosion, whose control is a key aspect for design and maintenance of both new constructions and historical buildings. Nevertheless, only general provisions are given in European codes to prevent the effects of corrosion during the lifetime of metal structures. In particular, design guidelines such as Eurocode 3 do not provide models for the evaluation of corrosion depth that are able to predict the rate of thickness loss as a function of different influencing parameters. In this paper, the modeling approaches of atmospheric corrosion damage of metal structures, which are available in both ISO standards and the literature, are presented. A comparison among selected degradation models is shown in order to evaluate the possibility of developing a general approach to the evaluation of thickness loss due to corrosion.
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Energy Technology Data Exchange (ETDEWEB)
Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)
2006-01-01
In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.
Kerschbaum, M.; Hopmann, C.
2016-06-01
The computationally efficient simulation of the progressive damage behaviour of continuous fibre reinforced plastics is still a challenging task with currently available computer aided engineering methods. This paper presents an original approach for an energy based continuum damage model which accounts for stress-/strain nonlinearities, transverse and shear stress interaction phenomena, quasi-plastic shear strain components, strain rate effects, regularised damage evolution and consideration of load reversal effects. The physically based modelling approach enables experimental determination of all parameters on ply level to avoid expensive inverse analysis procedures. The modelling strategy, implementation and verification of this model using commercially available explicit finite element software are detailed. The model is then applied to simulate the impact and penetration of carbon fibre reinforced cross-ply specimens with variation of the impact speed. The simulation results show that the presented approach enables a good representation of the force-/displacement curves and especially well agreement with the experimentally observed fracture patterns. In addition, the mesh dependency of the results were assessed for one impact case showing only very little change of the simulation results which emphasises the general applicability of the presented method.
High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines
International Nuclear Information System (INIS)
Richards, Phillip W; Griffith, D Todd; Hodges, Dewey H
2014-01-01
Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy
International Nuclear Information System (INIS)
Wassilew, C.
1989-11-01
This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)
Directory of Open Access Journals (Sweden)
Elisa eFerrando-May
2013-07-01
Full Text Available Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly nonlinear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to nonlinear photoperturbation experiments.
High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines
Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.
2014-06-01
Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.
Economic damages of ozone air pollution to crops using combined air quality and GIS modelling
Vlachokostas, Ch.; Nastis, S. A.; Achillas, Ch.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Chourdakis, E.; Banias, G.; Limperi, N.
2010-09-01
This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area's agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered.
International Nuclear Information System (INIS)
Maresca, F; Kouznetsova, V G; Geers, M G D
2016-01-01
Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers thick, and they are often characterized by high contrasts in plastic properties. As a consequence, fracture in these lamellar microstructures generally occurs along the layer interfaces or within one of the layers, typically parallel to the interface. This paper presents a computational framework that addresses the lamellar nature of these microstructures, by homogenizing the plastic deformation at the mesoscale by using the microscale response of the laminates. Failure is accounted for by introducing a family of damaging planes that are parallel to the layer interface. Mode I, mode II and mixed-mode opening are incorporated. The planes along which failure occurs are captured using a smeared damage approach. Coupling of damage with isotropic or anisotropic plasticity models, like crystal plasticity, is straightforward. The damaging planes and directions do not need to correspond to crystalline slip planes, and normal opening is also included. Focus is given on rate-dependent formulations of plasticity and damage, i.e. converged results can be obtained without further regularization techniques. The validation of the model using experimental observations in martensite-austenite lamellar microstructures in steels reveals that the model correctly predicts the main features of the onset of failure, e.g. the necking point, the failure initiation region and the failure mode. Finally, based on the qualitative results obtained, some material design guidelines are provided for martensitic and multi-phase steels. (paper)
International Nuclear Information System (INIS)
Tsubouchi, Susumu; Oohara, Hiroshi.
1989-01-01
Several points on the early and late radiation induced-normal tissue damages in terms of LQ model in multifractionation experiments of isoeffect were discussed from two fractors, (1) dose-responses of cell survivals or of tissue damages and (2) principles of the model. Application of the model to the both early and late tissue damages was fairly difficult in several tissues and several experimental conditions. In early damages, cell survival curve of single irradiation did not always fit to LQ model and further more incomlete repair as well as repopulation in multifractionation experiment contradicted the model especially in low dose fractionation. In late damages, the damages themselves did not express directly cell survival but probably indicate the degree of functional cell damage at the level of 10 -1 . As most isoeffects in early damages were taken at the level of 10 -3 , the comparison of two results from early and late tissue damages indicated the lack of coordinations both conceptionally and experimentally. (author)
François, Bertrand; Labiouse, Vincent; Dizier, Arnaud; Marinelli, Ferdinando; Charlier, Robert; Collin, Frédéric
2014-01-01
Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).
Assessment of damage localization based on spatial filters using numerical crack propagation models
International Nuclear Information System (INIS)
Deraemaeker, Arnaud
2011-01-01
This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.
Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.
2011-01-01
The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.
Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard
2016-08-01
Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.
Directory of Open Access Journals (Sweden)
J. Toti
2011-10-01
Full Text Available In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements.
International Nuclear Information System (INIS)
Dumas, P.
2006-01-01
The aim of this research is to introduce new elements for the assessment of damages due to climate changes within the frame of compact models aiding the decision. Two types of methodologies are used: sequential optimisation stochastic models and simulation stochastic models using optimal assessment methods. The author first defines the damages, characterizes their different categories, and reviews the existing assessments. Notably, he makes the distinction between damages due to climate change and damages due to its rate. Then, he presents the different models used in this study, the numerical solutions, and gives a rough estimate of the importance of the considered phenomena. By introducing a new category of capital in an optimal growth model, he tries to establish a framework allowing the representation of adaptation and of its costs. He introduces inertia in macro-economical evolutions, climatic variability, detection of climate change and damages due to climate hazards
Taşkin Kaya, Gülşen
2013-10-01
Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input
Damage spreading at the corner-filling transition in the two-dimensional Ising model
International Nuclear Information System (INIS)
Rubio Puzzo, M Leticia; Albano, Ezequiel V
2007-01-01
The propagation of damage on the square Ising lattice with a corner geometry is studied by means of Monte Carlo simulations. By imposing free boundary conditions at which competing boundary magnetic fields ± h are applied, the system undergoes a filling transition at a temperature T f (h) lower than the Onsager critical temperature T C . The competing fields cause the formation of two magnetic domains with opposite orientation of the magnetization, separated by an interface that for T larger than T f (h) (but T C ) runs along the diagonal of the sample that connects the corners where the magnetic fields of different orientation meet. Also, for T f (h) this interface is localized either close to the corner where the magnetic field is positive or close to the opposite one, with the same probability. It is found that, just at T = T f (h), the damage initially propagates along the interface of the competing domains, according to a power law given by D(t) ∝ t η . The value obtained for the dynamic exponent (η* = 0.89(1)) is in agreement with that corresponding to the wetting transition in the slit geometry (Abraham model) given by η WT = 0.91(1). However, for later times the propagation crosses to a new regime such as η** = 0.40(2), which is due to the propagation of the damage into the bulk of the magnetic domains. This result can be understood as being due to the constraints imposed on the propagation of damage by the corner geometry of the system that cause healing at the corners where the interface is attached. The critical points for the damage-spreading transition (T D (h)) are evaluated by extrapolation to the thermodynamic limit by using a finite-size scaling approach. Considering error bars, an overlap between the filling and the damage-spreading transitions is found, such that T f (h) = T D (h). The probability distribution of the damage average position P(l 0 D ) and that of the interface between magnetic domains of different orientation P(l 0 ) are
Concrete model for finite element analysis of structures subjected to severe damages
International Nuclear Information System (INIS)
Jamet, Ph.; Millard, A.; Hoffmann, A.; Nahas, G.; Barbe, B.
1984-01-01
A specific concrete model has been developed, in order to perform mechanical analysis of civil engineering structures, when subjected to accidental loadings, leading to severe damages. Its formulation is based on the physical mechanisms, which have been observed on laboratory specimens. The model has been implemented into the CASTEM finite element system, and the case of a concrete slab perforation by a rigid missile has been considered. The qualitative behaviour of the structure is well predicted by the model. Comparison between numerical and experimental results is also performed, using two main curves: missile velocity versus penetration depth; reaction forces versus time. (Author) [pt
Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays
Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.
1991-01-01
The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.
Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays
International Nuclear Information System (INIS)
Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.
1991-02-01
The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space
Modeling technical change in climate analysis: evidence from agricultural crop damages.
Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem
2017-05-01
This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.
Drilling induced damage of core samples. Evidences from laboratory testing and numerical modelling
International Nuclear Information System (INIS)
Lanaro, Flavio
2008-01-01
Extensive sample testing in uniaxial and Brazilian test conditions were carried out for the Shobasama and MIU Research Laboratory Site (Gifu Pref., Japan). The compressive and tensile strength of the samples was observed to be negatively correlated to the in-situ stress components. Such correlation was interpreted as stress-release induced sample damage. Similar stress conditions were then numerically simulated by means of the BEM-DDM code FRACOD 2D in plane strain conditions. This method allows for explicitly consider the influence of newly initiated or propagating fractures on the stress field and deformation of the core during drilling process. The models show that already at moderate stress levels some fracturing of the core during drilling might occur leading to reduced laboratory strength of the samples. Sample damage maps were produced independently from the laboratory test results and from the numerical models and show good agreement with each other. (author)
International Nuclear Information System (INIS)
Christian-Frear, T.; Freeze, G.
1997-01-01
Underground excavations produce damaged zones surrounding the excavations which have disturbed hydrologic and geomechanical properties. Prediction of fluid flow in these zones must consider both the mechanical and fluid flow processes. Presented here is a methodology which utilizes a mechanical model to predict damage and disturbed rock zone (DRZ) development around the excavation and then uses the predictions to develop time-dependent DRZ porosity relationships. These relationships are then used to adjust the porosity of the DRZ in the fluid flow model based upon the time and distance from the edge of the excavation. The application of this methodology is presented using a site-specific example from the Waste Isolation Pilot Plant, a US Department of Energy facility in bedded salts being evaluated for demonstration of the safe underground disposal of transuranic waste from US defense-related activities
The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA.
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Jason James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
A finite strain formulation of the Johnson Cook plasticity and damage model and it's numerical implementation into the ALEGRA code is presented. The goal of this work is to improve the predictive material failure capability of the Johnson Cook model. The new implementation consists of a coupling of damage and the stored elastic energy as well as the minimum failure strain criteria for spall included in the original model development. This effort establishes the necessary foundation for a thermodynamically consistent and complete continuum solid material model, for which all intensive properties derive from a common energy. The motivation for developing such a model is to improve upon ALEGRA's present combined model framework. Several applications of the new Johnson Cook implementation are presented. Deformation driven loading paths demonstrate the basic features of the new model formulation. Use of the model produces good comparisons with experimental Taylor impact data. Localized deformation leading to fragmentation is produced for expanding ring and exploding cylinder applications.
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving
Directory of Open Access Journals (Sweden)
Tao Lu
2017-01-01
Full Text Available Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by pharmacological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal terminal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuronal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.
Geophysical models of heat and fluid flow in damageable poro-elastic continua
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš
2017-01-01
Roč. 29, č. 2 (2017), s. 625-646 ISSN 0935-1175 R&D Projects: GA ČR(CZ) GA16-03823S; GA ČR GA14-15264S Institutional support: RVO:61388998 Keywords : poro-elastic rocks * damage * biot model Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.529, year: 2016 https://link.springer.com/article/10.1007/s00161-016-0547-5
Flood damage: a model for consistent, complete and multipurpose scenarios
Directory of Open Access Journals (Sweden)
S. Menoni
2016-12-01
implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.
Chewing as a forming application: A viscoplastic damage law in modelling food oral breakdown
Skamniotis, C. G.; Charalambides, M. N.; Elliott, M.
2017-10-01
The first bite mechanical response of a food item resembles compressive forming processes, where a tool is pressed into a workpiece. The present study addresses ongoing interests in the deformations and damage of food products, particularly during the first bite, in relation to their mechanical properties. Uniaxial tension, compression and shear tests on a starch based food reveal stress-strain response and fracture strains strongly dependent on strain rate and stress triaxiality, while damage mechanisms are identified in the form of stress softening. A pressure dependent viscoplastic constitutive law reproduces the behavior with the aid of ABAQUS subroutines, while a ductile damage initiation and evolution framework based on fracture toughness data enables accurate predictions of the product breakdown. The material model is implemented in a Finite Element (FE) chewing model based on digital pet teeth geometry where the first bite of molar teeth against a food item is simulated. The FE force displacement results match the experimental data obtained by a physical replicate of the bite model, lending weight to the approach as a powerful tool in understanding of food breakdown and product development.
Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model
Energy Technology Data Exchange (ETDEWEB)
Fok, Alex
2013-10-30
The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.
Meso-Scale Modelling of Deformation, Damage and Failure in Dual Phase Steels
Sari Sarraf, Iman
Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high ductility, formability, and strength, as well as high strength-to-weight ratio and improved crash resistance. Dual phase steels belong to a family of high strength grades which consist of martensite, responsible for strengthening, distributed in a ductile ferrite matrix which accommodates the deformation throughout the forming process. It has been shown that the predominant damage mechanism and failure in DP steels depends on the ferrite and martensite grain sizes and their morphology, and can range from a mixture of brittle and ductile rupture to completely ductile rupture in a quasi-static uniaxial tension test. In this study, a hybrid finite element cellular automata model, initially proposed by Anton Shterenlikht (2003), was developed to evaluate the forming behaviour and predict the onset of instability and damage evolution in a dual phase steel. In this model, the finite element constitutive model is used to represent macro-level strain gradients and a damage variable, and two different cell arrays are designed to represent the ductile and brittle fracture modes in meso-scale. In the FE part of the model, a modified Rousselier ductile damage model is developed to account for nucleation, growth and coalescence of voids. Also, several rate-dependent hardening models were developed and evaluated to describe the work hardening flow curve of DP600. Based on statistical analysis and simulation results, a modified Johnson-Cook (JC) model and a multiplicative combination of the Voce-modified JC functions were found to be the most accurate hardening models. The developed models were then implemented in a user-defined material subroutine (VUMAT) for ABAQUS/Explicit finite element simulation software to simulate uniaxial tension tests at strain rates ranging from 0.001 1/s to 1000 1/s, Marciniak tests, and electrohydraulic free-forming (EHFF
Building damage assessment from PolSAR data using texture parameters of statistical model
Li, Linlin; Liu, Xiuguo; Chen, Qihao; Yang, Shuai
2018-04-01
Accurate building damage assessment is essential in providing decision support for disaster relief and reconstruction. Polarimetric synthetic aperture radar (PolSAR) has become one of the most effective means of building damage assessment, due to its all-day/all-weather ability and richer backscatter information of targets. However, intact buildings that are not parallel to the SAR flight pass (termed oriented buildings) and collapsed buildings share similar scattering mechanisms, both of which are dominated by volume scattering. This characteristic always leads to misjudgments between assessments of collapsed buildings and oriented buildings from PolSAR data. Because the collapsed buildings and the intact buildings (whether oriented or parallel buildings) have different textures, a novel building damage assessment method is proposed in this study to address this problem by introducing texture parameters of statistical models. First, the logarithms of the estimated texture parameters of different statistical models are taken as a new texture feature to describe the collapse of the buildings. Second, the collapsed buildings and intact buildings are distinguished using an appropriate threshold. Then, the building blocks are classified into three levels based on the building block collapse rate. Moreover, this paper also discusses the capability for performing damage assessment using texture parameters from different statistical models or using different estimators. The RADARSAT-2 and ALOS-1 PolSAR images are used to present and analyze the performance of the proposed method. The results show that using the texture parameters avoids the problem of confusing collapsed and oriented buildings and improves the assessment accuracy. The results assessed by using the K/G0 distribution texture parameters estimated based on the second moment obtain the highest extraction accuracies. For the RADARSAT-2 and ALOS-1 data, the overall accuracy (OA) for these three types of
Rupture Complexity Promoted by Damaged Fault Zones in Earthquake Cycle Models
Idini, B.; Ampuero, J. P.
2017-12-01
Pulse-like ruptures tend to be more sensitive to stress heterogeneity than crack-like ones. For instance, a stress-barrier can more easily stop the propagation of a pulse than that of a crack. While crack-like ruptures tend to homogenize the stress field within their rupture area, pulse-like ruptures develop heterogeneous stress fields. This feature of pulse-like ruptures can potentially lead to complex seismicity with a wide range of magnitudes akin to the Gutenberg-Richter law. Previous models required a friction law with severe velocity-weakening to develop pulses and complex seismicity. Recent dynamic rupture simulations show that the presence of a damaged zone around a fault can induce pulse-like rupture, even under a simple slip-weakening friction law, although the mechanism depends strongly on initial stress conditions. Here we aim at testing if fault zone damage is a sufficient ingredient to generate complex seismicity. In particular, we investigate the effects of damaged fault zones on the emergence and sustainability of pulse-like ruptures throughout multiple earthquake cycles, regardless of initial conditions. We consider a fault bisecting a homogeneous low-rigidity layer (the damaged zone) embedded in an intact medium. We conduct a series of earthquake cycle simulations to investigate the effects of two fault zone properties: damage level D and thickness H. The simulations are based on classical rate-and-state friction, the quasi-dynamic approximation and the software QDYN (https://github.com/ydluo/qdyn). Selected fully-dynamic simulations are also performed with a spectral element method. Our numerical results show the development of complex rupture patterns in some damaged fault configurations, including events of different sizes, as well as pulse-like, multi-pulse and hybrid pulse-crack ruptures. We further apply elasto-static theory to assess how D and H affect ruptures with constant stress drop, in particular the flatness of their slip profile
International Nuclear Information System (INIS)
Zhou, Xiaojun; Wu, Changjie; Li, Yanting; Xi, Lifeng
2016-01-01
A periodic preventive maintenance modeling method is proposed for leased equipment with continuous internal degradation and stochastic external shock damage considered simultaneously, which can facilitate the equipment lessor to optimize the maintenance schedule for the same kind of equipment rented by different lessees. A novel interactive mechanism between the continuous internal degradation and the stochastic external shock damage is established on the hazard rate of the equipment with integrating the imperfect effect of maintenance. Two improvement factors are defined for the modeling of imperfect maintenance. The number of failures resulting from internal degradation and from external shocks are both mathematically deduced based on this interactive mechanism. The optimal preventive maintenance scheme is obtained by minimizing the cumulative maintenance cost throughout the lease period. Numerical example shows that the proposed preventive maintenance model not only can reflect the reliability status of the equipment but also can clearly distinguish between the impact from internal degradation and that from external shocks. - Highlights: • We propose an imperfect periodic preventive maintenance model for leased equipment. • It can distinguish between the impact from internal degradation and that from external shocks. • An internal–external interactive mechanism is proposed. • Two improvement factors are introduced into the modeling of imperfect maintenance. • The model is helpful for the PM scheduling of the same equipment rented by different lessees.
Towards a Universal Calving Law: Modeling Ice Shelves Using Damage Mechanics
Whitcomb, M.; Bassis, J. N.; Price, S. F.; Lipscomb, W. H.
2017-12-01
Modeling iceberg calving from ice shelves and ice tongues is a particularly difficult problem in glaciology because of the wide range of observed calving rates. Ice shelves naturally calve large tabular icebergs at infrequent intervals, but may instead calve smaller bergs regularly or disintegrate due to hydrofracturing in warmer conditions. Any complete theory of iceberg calving in ice shelves must be able to generate realistic calving rate values depending on the magnitudes of the external forcings. Here we show that a simple damage evolution law, which represents crevasse distributions as a continuum field, produces reasonable estimates of ice shelf calving rates when added to the Community Ice Sheet Model (CISM). Our damage formulation is based on a linear stability analysis and depends upon the bulk stress and strain rate in the ice shelf, as well as the surface and basal melt rates. The basal melt parameter in our model enhances crevasse growth near the ice shelf terminus, leading to an increased iceberg production rate. This implies that increasing ocean temperatures underneath ice shelves will drive ice shelf retreat, as has been observed in the Amundsen and Bellingshausen Seas. We show that our model predicts broadly correct calving rates for ice tongues ranging in length from 10 km (Erebus) to over 100 km (Drygalski), by matching the computed steady state lengths to observations. In addition, we apply the model to idealized Antarctic ice shelves and show that we can also predict realistic ice shelf extents. Our damage mechanics model provides a promising, computationally efficient way to compute calving fluxes and links ice shelf stability to climate forcing.
From fracture mechanics to damage mechanics: how to model structural deterioration
International Nuclear Information System (INIS)
Nicolet, S.; Lorentz, E.; Barbier, G.
1998-01-01
Modelling of structural deteriorations of thermo-mechanical origin is highly enhanced when using damage mechanics. Indeed, the latter offers both a fine description of the material behaviour and an ability to deal with any loading conditions, moving away the current limits of fracture mechanics. But new difficulties can arise, depending on the examined problem: if forecasts of rack initiation are well mastered, the study of crack propagation remains more complex and needs sophisticated modelizations, which are nevertheless on the point of being well understood too. (authors)
Fretting wear damage of steam generator tubes and its prediction modeling
International Nuclear Information System (INIS)
Che Honglong; Lei Mingkai
2013-01-01
The steam generator is the key equipment used for the energy transition in nuclear power plant. Since the high-temperature and high-pressure fluid flows with high speed, the steam generator tubes will be excited and vibrate, leading to the tremendous fretting wear problem on the tubes, sometimes even leading to tube cracking. This paper introduces typical fretting wear cases, the result of corresponding simulation wear experiment and damage mechanism which combining mechanical wear and erosion-corrosion. Work rate model could give a reasonable life prediction about the steam generator tube, and this predictive model has been used in nuclear power plant safety assessment. (authors)
A model of nonlinear strain and damage accumulation in polymer composites
Directory of Open Access Journals (Sweden)
A. N. Ruslantsev
2014-01-01
Full Text Available This paper presents a model to predict a nonlinear strain of the carbon laminate; the model is based on the relations between the theory of laminated plates and the non-linear approximation of deformation curve of unidirectional layer at the shear in the layer plane. The explicit expressions of stiffness and compliance matrices were obtained via multiplying the matrices that correspond to the elastic characteristics by the matrices, considering the non-linear properties of the laminate. The paper suggests an approximation option for the non-linear properties of the layer at the shear using an exponential function. Some considerations on damage accumulation in carbon laminates were made.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S> KramerWhite, Julie A.; KramerWhite, Julie A.; Labbe, Steve G.; Rotter, Hank A.
2007-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
Directory of Open Access Journals (Sweden)
Xiao-Xuan Fan
2017-07-01
Full Text Available Objective: To study the intervention effect of Peiyuan Huayu Decoction on the neuron damage in model rats with acute subdural hematoma (ASDH. Methods: 160 SD rats were randomly divided into four groups, and the ASDH model rats were made by stereotactic autoblood injection, and sham operation group received craniotomy without blood injection. Sham operation group and model group were normally bred after model establishment, and 6 h after model establishment, the treatment group received intragastric administration of Peiyuan Huayu Decoction, and control group received intragastric administration of Piracetam Tablets, 1 time a day. On the 1d, 3d, 5d and 7d after model establishment, the general conditions of rats (activity, food intake and mental state were observed, blood was collected via auricula dextra, ELISA method was used to determine peripheral plasma NSE and S100毬 protein contents, routine HE staining was conducted after perfusion fixation, the neurons in blood injection side of brain tissue were counted, and the neuron damage was observed. Results: 26 rats were dead in the experiment. The general conditions of sham operation group were significantly better than those of other groups, treatment group was significantly better than model group and control group on the 5d group (P0.05; neuron count of sham operation group was basically stable, treatment group was not different from model group and control group on the 1d (P>0.05, treatment group was better than model group (P0.05 on the 3d, and treatment group was better than model group and control group on the 5d and 7d (P0.05, S100毬 protein and NSE contents decreased significantly on the 3d, and treatment group was significantly different from model group and control group (P<0.05, S100毬 protein and NSE contents increased on the 5d and 7d, the increase in treatment group was slower than that in model group and control group, and there was significant difference (P<0.05. Conclusion
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available The search of optimal variants for composite repair patches allows to increase the service life of a damaged air- plane structure. To sensibly choose the way of repair, it is necessary to have a computational complex to predict the stress- strain condition of "structure-adhesive-patch" system and to take into account the damage growth considering the material properties change. The variant of the computational complex based on inclusion method is proposed.For calculation purposes the repair bonded joint is divided into two areas: a metal plate with patch-shaped hole and a "patch-adhesive layer-skin" composite plate (inclusion.Calculation stages:Evaluation of the patch influence to the skin stress-strain condition, stress distribution between skin and patch in the case of no damage. Calculation of the stress-strain condition is performed separately for the skin with hole and for the inclusion; solutions are coupled based on strain compatibility.Definition of the damage growth parameters at new stress-strain condition due to bonded patch existence. Skincrack stress intensity factors are found to identify the crack growth velocity. Patch is modelled as a set of "springs" bridging the crack.Degradation analysis of elasticity properties for the patch material.Repair effectiveness is evaluated with respect to crack growth velocity reduction in the initial material in compari- son with the case of the patch absence.Calculation example for the crack repair effectiveness depending on number of loading cycles for the 7075-T6 aluminum skin is given. Repair patches are carbon-epoxy, glass-epoxy and boron-epoxy material systems with quasi- isotropic layup and GLARE hybrid metal-polymeric material.The analysis shows the high effectiveness of the carbon-epoxy patch. Due to low stiffness, the glass-epoxy patchdemonstrates the least effectiveness. GLARE patch containing the fiberglass plies oriented across the crack has the same effectiveness as the carbon and
Optimal policies for cumulative damage models with maintenance last and first
International Nuclear Information System (INIS)
Zhao, Xufeng; Qian, Cunhua; Nakagawa, Toshio
2013-01-01
From the economical viewpoint of several combined PM policies in reliability theory, this paper takes up a standard cumulative damage model in which the notion of maintenance last is applied, i.e., the unit undergoes preventive maintenances before failure at a planned time T, at a damage level Z, or at a shock number N, whichever occurs last. Expected cost rates are detailedly formulated, and optimal problems of two alternative policies which combine time-based with condition-based preventive maintenances are discussed, i.e., optimal T L ⁎ for N, Z L ⁎ for T, and N L ⁎ for T are rigorously obtained. Comparison methods between such maintenance last and conventional maintenance first are explored. It is determined theoretically and numerically which policy should be adopted, according to the different methods in different cases when the time-based or the condition-based PM policy is optimized.
A continuum anisotropic damage model with unilateral effect
Directory of Open Access Journals (Sweden)
A. Alliche
2016-02-01
Full Text Available A continuum damage mechanics model has been derived within the framework of irreversible thermodynamics with internal variables in order to describe the behaviour of quasi-brittle materials under various loading paths. The anisotropic character induced by the progressive material degradation is explicitly taken into account, and the Helmholtz free energy is a scalar function of the basic invariants of the second order strain and damage tensors. The elastic response varies depending on the closed or open configuration of defects. The constitutive laws derived within the framework of irreversible thermodynamics theory display a dissymmetry as well as unilateral effects under tensile and compressive loading conditions. This approach verifies continuity and uniqueness of the potential energy. An application to uniaxial tension-compression loading shows a good adequacy with experimental results when available, and realistic evolutions for computed stresses and strains otherwise.
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.
2010-01-01
Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.
Micromechanical Modeling of Grain Boundaries Damage in a Copper Alloy Under Creep
International Nuclear Information System (INIS)
Voese, Markus
2015-01-01
In order to include the processes on the scale of the grain structure into the description of the creep behaviour of polycrystalline materials, the damage development of a single grain boundary has been initially investigated in the present work. For this purpose, a special simulationmethod has been used, whose resolution procedure based on holomorphic functions. The mechanisms taken into account for the simulations include nucleation, growth by grain boundary diffusion, coalescence and shrinkage until complete sintering of grain boundary cavities. These studies have then been used to develop a simplified cavitation model, which describes the grain boundary damage by two state variables and the time-dependent development by a mechanism-oriented rate formulation. To include the influence of grain boundaries within continuum mechanical considerations of polycrystals, an interface model has been developed, that incorporates both damage according to the simplified cavitation model and grain boundary sliding in dependence of a phenomenological grain boundary viscosity. Furthermore a micromechanical model of a polycrystal has been developed that allows to include a material's grain structure into the simulation of the creep behaviour by means of finite element simulations. Thereby, the deformations of individual grains are expressed by a viscoplastic single crystal model and the grain boundaries are described by the proposed interface model. The grain structure is represented by a finite element model, in which the grain boundaries are modelled by cohesive elements. From the evaluation of experimental creep data, the micromechanical model of a polycrystal has been calibrated for a copper-antimony alloy at a temperature of 823 K. Thereby, the adjustment of the single crystal model has been carried out on the basis of creep rates of pure copper single crystal specimens. The experimental determination of grain boundary sliding and grain boundary porosity for coarse
International Nuclear Information System (INIS)
Ijaz, H.; Asad, M.
2015-01-01
The use of composite laminates is increasing in these days due to higher strength and low density values in comparison of metals. Delamination is a major source of failure in composite laminates. Damage mechanics based theories are employed to simulate the delamination phenomena between composite laminates. These damage models are inherently local and can cause the concentration of stresses around the crack tip. In the present study integral type non-local damage formulation is proposed to avoid the localization problem associated to damage formulation. A comprehensive study is carried out for the models and classical local damage model are performed and results are compared with available experimental data for un IMS/924 Carbon/fiber epoxy composite laminate. (author)
International Nuclear Information System (INIS)
Holley, W.R.; Chatterjee, A.
1996-01-01
We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber composed of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and δ rays due to knock-on collisions involving energy transfers > 100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of circ OH, circ H, e aq , etc.; circ OH attack on sugar molecules leading to strand breaks; circ OH attack on bases; direct ionization of the sugar molecules leading to strand breaks; direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 hp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA. 27 refs., 7 figs
Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M
2006-11-22
Object recognition is the canonical test of declarative memory, the type of memory putatively impaired after damage to the temporal lobes. Studies of object recognition memory have helped elucidate the anatomical structures involved in declarative memory, indicating a critical role for perirhinal cortex. We offer a mechanistic account of the effects of perirhinal cortex damage on object recognition memory, based on the assumption that perirhinal cortex stores representations of the conjunctions of visual features possessed by complex objects. Such representations are proposed to play an important role in memory when it is difficult to solve a task using representations of only individual visual features of stimuli, thought to be stored in regions of the ventral visual stream caudal to perirhinal cortex. The account is instantiated in a connectionist model, in which development of object representations with visual experience provides a mechanism for judgment of previous occurrence. We present simulations addressing the following empirical findings: (1) that impairments after damage to perirhinal cortex (modeled by removing the "perirhinal cortex" layer of the network) are exacerbated by lengthening the delay between presentation of to-be-remembered items and test, (2) that such impairments are also exacerbated by lengthening the list of to-be-remembered items, and (3) that impairments are revealed only when stimuli are trial unique rather than repeatedly presented. This study shows that it may be possible to account for object recognition impairments after damage to perirhinal cortex within a hierarchical, representational framework, in which complex conjunctive representations in perirhinal cortex play a critical role.
Energy Technology Data Exchange (ETDEWEB)
Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)
1995-09-01
The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.
International Nuclear Information System (INIS)
French, D.; Rines, H.
1995-01-01
The Natural Resource Damage Assessment Model for Coastal and Marine Environments (NRDAM/CME) was developed by Applied Science Associates to simulate the fate and effects of oil and chemical spills into estuarine and marine environments. The US Department of the Interior has proposed the NRDAM/CME for use in Natural Resource Damage Assessment (NRDA) regulations under CERCLA. As part of the evaluation of model performance, the NRDAM/CME has been validated with observational data from case histories of oil spills, including the Exxon Valdez, World Prodigy, Mega Borg, Apex Houston and a number of others. Primarily, the data available for validation were of oil slick trajectory and coverage (e.g., overflight maps), length of shoreline oiled, area of marshes oiled, and a number of oiled birds recovered. Model performance was dependent on the accuracy of available wind and current data (the primary forces affecting fate) and bird abundances. Where these data sources were good (relatively well quantified), model performance was excellent. Results of the model simulations also provide an interesting sensitivity analysis and indications of relative effects of oil under various spill scenarios and conditions
Wiebe, D. M.; Cox, D. T.; Chen, Y.; Weber, B. A.; Chen, Y.
2012-12-01
Building damage from a hypothetical Cascadia Subduction Zone tsunami was estimated using two methods and applied at the community scale. The first method applies proposed guidelines for a new ASCE 7 standard to calculate the flow depth, flow velocity, and momentum flux from a known runup limit and estimate of the total tsunami energy at the shoreline. This procedure is based on a potential energy budget, uses the energy grade line, and accounts for frictional losses. The second method utilized numerical model results from previous studies to determine maximum flow depth, velocity, and momentum flux throughout the inundation zone. The towns of Seaside and Canon Beach, Oregon, were selected for analysis due to the availability of existing data from previously published works. Fragility curves, based on the hydrodynamic features of the tsunami flow (inundation depth, flow velocity, and momentum flux) and proposed design standards from ASCE 7 were used to estimate the probability of damage to structures located within the inundations zone. The analysis proceeded at the parcel level, using tax-lot data to identify construction type (wood, steel, and reinforced-concrete) and age, which was used as a performance measure when applying the fragility curves and design standards. The overall probability of damage to civil buildings was integrated for comparison between the two methods, and also analyzed spatially for damage patterns, which could be controlled by local bathymetric features. The two methods were compared to assess the sensitivity of the results to the uncertainty in the input hydrodynamic conditions and fragility curves, and the potential advantages of each method discussed. On-going work includes coupling the results of building damage and vulnerability to an economic input output model. This model assesses trade between business sectors located inside and outside the induction zone, and is used to measure the impact to the regional economy. Results highlight
Effect of histidine on sorafenib-induced vascular damage: Analysis using novel medaka fish model.
Shinagawa-Kobayashi, Yoko; Kamimura, Kenya; Goto, Ryo; Ogawa, Kohei; Inoue, Ryosuke; Yokoo, Takeshi; Sakai, Norihiro; Nagoya, Takuro; Sakamaki, Akira; Abe, Satoshi; Sugitani, Soichi; Yanagi, Masahiko; Fujisawa, Koichi; Nozawa, Yoshizu; Koyama, Naoto; Nishina, Hiroshi; Furutani-Seiki, Makoto; Sakaida, Isao; Terai, Shuji
2018-02-05
Sorafenib (SFN) is an anti-angiogenic chemotherapeutic that prolongs survival of patients with hepatocellular carcinoma (HCC); its side effects, including vascular damages such as hand-foot syndrome (HFS), are a major cause of therapy discontinuation. We previously reported that maintenance of peripheral blood flow by intake of dried bonito broth (DBB) significantly prevented HFS and prolonged the administration period. The amino acids contained in DBB probably contribute to its effects, but the mechanism has not been clarified. We hypothesized that histidine, the largest component among the amino acids contained in DBB, has effects on SFN-induced vascular damage, and evaluated this possibility using a novel medaka fish model. The fli::GFP transgenic medaka fish model has a fluorescently visible systemic vasculature. We fed the fish with SFN with and without histidine to compare blood flow and vascular structure among the differently fed models. The vascular cross-sectional area of each fish was measured to determine vascular diameter changes. Our results demonstrated that SFN-fed medaka developed a narrower vascular diameter. In addition, this narrowing was counteracted by addition of histidine to the medaka diet. We observed no positive effect of histidine on regeneration of cut vessels or on cell growth of endothelial cells and HCC cell lines. We proved the efficacy of the medaka model to assess vascular changes after administration of specific chemicals. And our results suggest that SFN causes vascular damage by narrowing peripheral vessel diameter, and that histidine effectively counteracts these changes to maintain blood flow. Copyright © 2018 Elsevier Inc. All rights reserved.
Application of Different HSI Color Models to Detect Fire-Damaged Mortar
Directory of Open Access Journals (Sweden)
H. Luo
2013-12-01
Full Text Available To obtain a better understanding of the effect of vehicle fires on rigid pavement, a nondestructive test method utilizing an ordinary digital camera to capture images of mortar at five elevated temperatures was undertaken. These images were then analyzed by “image color-intensity analyzer” software. In image analysis, the RGB color model was the basic system used to represent the color information of images. HSI is a derived-color model that is transformed from an RGB model by formulae. In order to understand more about surface color changes and temperatures after a vehicle fire, various transformation formulae used in different research areas were applied in this study. They were then evaluated to obtain the optimum HSI model for further studies of fire-damaged mortar through the use of image analysis.
Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.
Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa
2017-06-06
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.
A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems
Directory of Open Access Journals (Sweden)
Mladena Luković
2016-07-01
Full Text Available Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC, for controlling the damage development due to drying shrinkage in concrete repairs was also examined.
Modelling the induction of cell death and chromosome damage by therapeutic protons
Carante, M P
2015-01-01
A two-parameter biophysical model cal led BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations), which assumes a pivotal role for DNA cluster damage and for “lethal” chromosome aberrations, was applied to calculate cell death and chromosome aberrations for normal and radio-resistant cells along a 62-MeV eye melanoma proton beam. The yield of DNA “Cluster Lesions” and the probability for a chromosome fragment of not being rejoined with any partne r were adjustable parameters. In line with other works, the beam effectiveness at inducing both biological endpoints was found to increase with increasing depth, and high levels of damage were found also beyond the dose fall-off, due to the higher biological effectiveness of low-energy protons. This implies that assuming a constant RBE along the whole SOBP, as is currently done in clinical practice, may be sub-optimal, also implying a possible underestimation of normal tissue damage. Furthermore, the calculations suggested that fo...
Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J
2008-02-01
Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial
International Nuclear Information System (INIS)
Badel, P.-B.; Godard, V.; Leblond, J.-B.
2005-01-01
The aim of this paper is to propose a new model for damage in concrete structures which incorporates such complex features as damage anisotropy and asymmetry between tension and compression, while being expressed in a format well suited for numerical applications and involving a limited number of material parameters which can be determined from standard experiments. A crude version of the model involving a single tonsorial internal variable representing damage in tension, and a single material parameter, is presented first. The predictions of this simple model are satisfactory in simple tension, but not so in simple compression. As a remedy, various refinements are then introduced in a second version of the model involving an additional tonsorial or scalar internal variable representing damage in compression, and five additional material parameters. An example of determination of the model parameters using experimental stress-strain curves in simple tension and compression, plus failure envelopes in biaxial tension/compression, is presented next. The model is finally applied to the numerical prediction of the failure of some containment vessel subjected to some large internal pressure, with a comparison with calculations based on a simpler isotropic variant of the model using a single scalar damage variable. The results illustrate the relevance of models incorporating both asymmetry between tension and compression and anisotropy of damage for simulations of industrial concrete structures. (authors)
International Nuclear Information System (INIS)
Nordlund, Kai; Sand, Andrea E.; Granberg, Fredric; Zinkle, Steven J.; Stoller, Roger; Averback, Robert S.; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J.; Willaime, Francois; Dudarev, Sergei; Simeone, David
2015-01-01
Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Multi-scale Modelling of Fuels and Structural Materials for Nuclear Systems (WPMM) was established in 2008 to assess the scientific and engineering aspects of fuels and structural materials, aiming at evaluating multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation, and related topics. It also provides member countries with up-to-date information, shared data, models and expertise. The WPMM Expert Group on Primary Radiation Damage (PRD) was established in 2009 to determine the limitations of the NRT-dpa standard, in the light of both atomistic simulations and known experimental discrepancies, to revisit the NRT-dpa standard and to examine the possibility of proposing a new improved standard of primary damage characteristics. This report reviews the current understanding of primary radiation damage from neutrons, ions and electrons (excluding photons, atomic clusters and more exotic particles), with emphasis on the range of validity of the 'displacement per atom' (dpa) concept in all major classes of materials with the exception of organics. The report also introduces an 'athermal recombination-corrected dpa' (arc-dpa) relation that uses a relatively simple functional to address the well-known issue that 'displacement per atom' (dpa) overestimates damage production in metals under energetic displacement cascade conditions, as well as a 'replacements-per-atom' (rpa) equation, also using a relatively simple functional, that accounts for the fact that dpa is understood to severely underestimate actual atom relocation (ion beam mixing) in metals. (authors)
So, Emily; Spence, Robin
2013-01-01
Recent earthquakes such as the Haiti earthquake of 12 January 2010 and the Qinghai earthquake on 14 April 2010 have highlighted the importance of rapid estimation of casualties after the event for humanitarian response. Both of these events resulted in surprisingly high death tolls, casualties and survivors made homeless. In the Mw = 7.0 Haiti earthquake, over 200,000 people perished with more than 300,000 reported injuries and 2 million made homeless. The Mw = 6.9 earthquake in Qinghai resulted in over 2,000 deaths with a further 11,000 people with serious or moderate injuries and 100,000 people have been left homeless in this mountainous region of China. In such events relief efforts can be significantly benefitted by the availability of rapid estimation and mapping of expected casualties. This paper contributes to ongoing global efforts to estimate probable earthquake casualties very rapidly after an earthquake has taken place. The analysis uses the assembled empirical damage and casualty data in the Cambridge Earthquake Impacts Database (CEQID) and explores data by event and across events to test the relationships of building and fatality distributions to the main explanatory variables of building type, building damage level and earthquake intensity. The prototype global casualty estimation model described here uses a semi-empirical approach that estimates damage rates for different classes of buildings present in the local building stock, and then relates fatality rates to the damage rates of each class of buildings. This approach accounts for the effect of the very different types of buildings (by climatic zone, urban or rural location, culture, income level etc), on casualties. The resulting casualty parameters were tested against the overall casualty data from several historical earthquakes in CEQID; a reasonable fit was found.
Laser-induced cartilage damage: an ex-vivo model using confocal microscopy
Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas
1999-06-01
Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.
Guillaume, Charrier; Isabelle, Chuine; Marc, Bonhomme; Thierry, Améglio
2018-05-01
Frost damages develop when exposure overtakes frost vulnerability. Frost risk assessment therefore needs dynamic simulation of frost hardiness using temperature and photoperiod in interaction with developmental stage. Two models, including or not the effect of photoperiod, were calibrated using five years of frost hardiness monitoring (2007-2012), in two locations (low and high elevation) for three walnut genotypes with contrasted phenology and maximum hardiness (Juglans regia cv Franquette, J. regia × nigra 'Early' and 'Late'). The photothermal model predicted more accurate values for all genotypes (efficiency = 0.879; Root Mean Standard Error Predicted (RMSEP) = 2.55 °C) than the thermal model (efficiency = 0.801; RMSEP = 3.24 °C). Predicted frost damages were strongly correlated to minimum temperature of the freezing events (ρ = -0.983) rather than actual frost hardiness (ρ = -0.515), or ratio of phenological stage completion (ρ = 0.336). Higher frost risks are consequently predicted during winter, at high elevation, whereas spring is only risky at low elevation in early genotypes exhibiting faster dehardening rate. However, early frost damages, although of lower value, may negatively affect fruit production the subsequent year (R 2 = 0.381, P = 0.057). These results highlight the interacting pattern between frost exposure and vulnerability at different scales and the necessity of intra-organ studies to understand the time course of frost vulnerability in flower buds along the winter. © 2017 John Wiley & Sons Ltd.
Energy Technology Data Exchange (ETDEWEB)
Shokoohfar, Ahmad; Rahai, Alireza, E-mail: rahai@aut.ac.ir
2016-03-15
Highlights: • This paper describes nonlinear analyses of a 1:4 scale model of a (PCCV). • Coupled temp-disp. analysis and concrete damage plasticity are considered. • Temperature has limited effects on correct failure mode estimation. • Higher pre-stressing forces have limited effects on ultimate radial displacements. • Anchorage details of liner plates leads to prediction of correct failure mode. - Abstract: This paper describes the nonlinear analyses of a 1:4 scale model of a pre-stressed concrete containment vessel (PCCV). The analyses are performed under pressure and high temperature effects with considering anchorage details of liner plate. The temperature-time history of the model test is considered as an input boundary condition in the coupled temp-displacement analysis. The constitutive model developed by Chang and Mander (1994) is adopted in the model as the basis for the concrete stress–strain relation. To trace the crack pattern of the PCCV concrete faces, the concrete damage plasticity model is applied. This study includes the results of the thermal and mechanical behaviors of the PCCV subject to temperature loading and internal pressure at the same time. The test results are compared with the analysis results. The analysis results show that the temperature has little impact on the ultimate pressure capacity of the PCCV. To simulate the exact failure mode of the PCCV, the anchorage details of the liner plates around openings should be maintained in the analytical models. Also the failure mode of the PCCV structure hasn’t influenced by hoop tendons pre-stressing force variations.
Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector
Wallangen, Veronica; The ATLAS collaboration
2017-01-01
Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.
Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector
Giugliarelli, Gilberto; The ATLAS collaboration
2017-01-01
Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.
WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?
International Nuclear Information System (INIS)
McMahon, S.
2016-01-01
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological
Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector
Wallangen, Veronica; The ATLAS collaboration
2017-01-01
Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10$^{15}$ n$_\\mathrm{eq}$/cm$^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This work presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS detector.
Finite-Element Modeling of a Damaged Pipeline Repaired Using the Wrap of a Composite Material
Lyapin, A. A.; Chebakov, M. I.; Dumitrescu, A.; Zecheru, G.
2015-07-01
The nonlinear static problem of FEM modeling of a damaged pipeline repaired by a composite material and subjected to internal pressure is considered. The calculation is carried out using plasticity theory for the pipeline material and considering the polymeric filler and the composite wrap. The level of stresses in various zones of the structure is analyzed. The most widespread alloy used for oil pipelines is selected as pipe material. The contribution of each component of the pipeline-filler-wrap system to the level of stresses is investigated. The effect of the number of composite wrap layers is estimated. The results obtained allow one to decrease the costs needed for producing test specimens.
Su-Yuen, Hsu
2011-01-01
Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.
WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?
Energy Technology Data Exchange (ETDEWEB)
McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)
2016-06-15
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological
Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.
2017-09-01
A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.
Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.
2017-12-01
A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.
Grunz-Borgmann, Elizabeth A; Nichols, LaNita A; Wiedmeyer, Charles E; Spagnoli, Sean; Trzeciakowski, Jerome P; Parrish, Alan R
2016-06-01
The male Fischer 344 rat is an established model to study progressive renal dysfunction that is similar, but not identical, to chronic kidney disease (CKD) in humans. These studies were designed to assess age-dependent alterations in renal structure and function at late-life timepoints, 16-24 months. Elevations in BUN and plasma creatinine were not significant until 24 months, however, elevations in the more sensitive markers of function, plasma cystatin C and proteinuria, were detectable at 16 and 18 months, respectively. Interestingly, cystatin C levels were not corrected by caloric restriction. Urinary Kim-1, a marker of CKD, was elevated as early as 16 months. Klotho gene expression was significantly decreased at 24 months, but not at earlier timepoints. Alterations in renal structure, glomerulosclerosis and tubulointerstitial fibrosis, were noted at 16 months, with little change from 18 to 24 months. Tubulointerstitial inflammation was increased at 16 months, and remained similar from 18 to 24 months. A SEM (structural equation modeling) model of age-related renal dysfunction suggests that proteinuria is a marker of renal damage, while urinary Kim-1 is a marker of both damage and function. Taken together, these results demonstrate that age-dependent nephropathy begins as early as 16 months and progresses rapidly over the next 8 months. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Characterization of Retinal Vascular and Neural Damage in a Novel Model of Diabetic Retinopathy.
Weerasekera, Lakshini Y; Balmer, Lois A; Ram, Ramesh; Morahan, Grant
2015-06-01
Diabetic retinopathy (DR) is a major cause of blindness globally. Investigating the underlying mechanisms of DR would be aided by a suitable mouse model that developed key features seen in the human disease, and did so without carrying genetic modifications. This study was undertaken to produce such a model. Our panel of Collaborative Cross strains was screened for DR-like features after induction of diabetes by intravenous injection with alloxan or streptozotocin. Both flat-mounted whole-retina and histologic sections were studied for the presence of retinal lesions. Progression of DR was also studied by histologic examination of the retinal vascular and neural structure at various time points after diabetes onset. In addition, microarray investigations were conducted on retinas from control and diabetic mice. Features of DR such as degenerated pericytes, acellular capillaries, minor vascular proliferation, gliosis of Müller cells, and loss of ganglion cells were noted as early as day 7 in some mice. These lesions became more evident with time. After 21 days of diabetes, severe vascular proliferation, microaneurysms, preretinal damage, increased Müller cell gliosis, and damage to the outer retina were all obvious. Microarray studies found significant differential expression of multiple genes known to be involved in DR. The FOT_FB strain provides a useful model to investigate the pathogenesis of DR and to develop treatments for this vision-threatening disease.
Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels
Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.
2017-12-01
9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.
A psychodynamic model of behavior after acute central nervous system damage.
Groswasser, Z; Stern, M J
1998-02-01
This article describes a conceptual psychodynamic model for understanding the neurobehavioral manifestations of acute central nervous system damage (ACNSD) displayed by patients during the rehabilitation process. According to the proposed model, patientsO behavioral responses are viewed as their only means of emotional expression and therefore may not be considered entirely abnormal when viewed from the perspective of patientsO interpersonal contexts. An improved understanding of the dynamic processes through which recovering patients with ACNSD journey may lead to better interaction between the patient and the therapeutic environment, the interdisciplinary team, and family members. Combining this proposed psychodynamic model with an emerging understanding of the neurobehavioral foundations of aggression and depression may also lead to a more rational approach to intervention with various psychopharmacologic agents. During the rehabilitation process, understanding patients' cognitive deficits, motivational drives, and emotional needs and proper implementation of medical and environmental treatment can ultimately lead to a better psychosocial outcome.
International Nuclear Information System (INIS)
Huang, Zhibin; Mayr, Nina A.; Lo, Simon S.; Wang, Jian Z.; Jia Guang; Yuh, William T. C.; Johnke, Roberta
2012-01-01
Purpose: It has been conventionally assumed that the repair rate for sublethal damage (SLD) remains constant during the entire radiation course. However, increasing evidence from animal studies suggest that this may not the case. Rather, it appears that the repair rate for radiation-induced SLD slows down with increasing time. Such a slowdown in repair would suggest that the exponential repair pattern would not necessarily accurately predict repair process. As a result, the purpose of this study was to investigate a new generalized linear-quadratic (LQ) model incorporating a repair pattern with reciprocal time. The new formulas were tested with published experimental data. Methods: The LQ model has been widely used in radiation therapy, and the parameter G in the surviving fraction represents the repair process of sublethal damage with T r as the repair half-time. When a reciprocal pattern of repair process was adopted, a closed form of G was derived analytically for arbitrary radiation schemes. The published animal data adopted to test the reciprocal formulas. Results: A generalized LQ model to describe the repair process in a reciprocal pattern was obtained. Subsequently, formulas for special cases were derived from this general form. The reciprocal model showed a better fit to the animal data than the exponential model, particularly for the ED50 data (reduced χ 2 min of 2.0 vs 4.3, p = 0.11 vs 0.006), with the following gLQ parameters: α/β = 2.6-4.8 Gy, T r = 3.2-3.9 h for rat feet skin, and α/β = 0.9 Gy, T r = 1.1 h for rat spinal cord. Conclusions: These results of repair process following a reciprocal time suggest that the generalized LQ model incorporating the reciprocal time of sublethal damage repair shows a better fit than the exponential repair model. These formulas can be used to analyze the experimental and clinical data, where a slowing-down repair process appears during the course of radiation therapy.
Blasting Damage Predictions by Numerical Modeling in Siahbishe Pumped Storage Powerhouse
Eslami, Majid; Goshtasbi, Kamran
2018-04-01
One of the popular methods of underground and surface excavations is the use of blasting. Throughout this method of excavation, the loading resulted from blasting can be affected by different geo-mechanical and structural parameters of rock mass. Several factors affect turbulence in underground structures some of which are explosion, vibration, and stress impulses caused by the neighbouring blasting products. In investigating the blasting mechanism one should address the processes which expand with time and cause seismic events. To protect the adjoining structures against any probable deconstruction or damage, it is very important to model the blasting process prior to any actual operation. Efforts have been taken in the present study to demonstrate the potentiality of numerical methods in predicting the specified parameters in order to prevent any probable destruction. For this purpose the blasting process was modeled, according to its natural implementation, in one of the tunnels of Siahbishe dam by the 3DEC and AUTODYN 3D codes. 3DEC was used for modeling the blasting environment as well as the blast holes and AUTODYN 3D for modeling the explosion process in the blast hole. In this process the output of AUTODYN 3D, which is a result of modeling the blast hole and is in the form of stress waves, is entered into 3DEC. For analyzing the amount of destruction made by the blasting operation, the key parameter of Peak Particle Velocity was used. In the end, the numerical modeling results have been compared with the data recorded by the seismographs planted through the tunnel. As the results indicated 3DEC and AUTODYN 3D proved appropriate for analyzing such an issue. Therefore, by means of these two softwares one can analyze explosion processes prior to their implementation and make close estimation of the damage resulting from these processes.
Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements
Kim, Myung-Hee Y.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu
2014-01-01
The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ''biological Bragg curve'' is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta, et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called "overkill".
Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation
Khorsandi, Behrooz
There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.
Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.
2012-01-01
Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975
An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion
Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo
2018-05-01
The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.
Damaging process of graphite - new model and its impact on degradation of materials performance
International Nuclear Information System (INIS)
Tanabe, T.; Muto, S.
1999-01-01
The most widely accepted model for development of defect structure in neutron irradiated graphite has been such that following the first production of a pair of an interstitial and vacancy, di-interstitials and vacancies are formed and their subsequent growth would result in the production of an interstitial plane or loop in-between the basal planes and vacancy clusters, respectively, which could cause the loss of thermal conductivity and dimensional change. Recently we have claimed that the formation of vacancy clusters and growth of the interstitial planes are not necessarily a unique interpretation of the damaging process. Instead, the damaging process is described by orientational disordering within the basal planes, i.e. fragmentation into small crystallites and rotation of their crystalline axes, change of stacking order and elongation of the interplanar spacing. The orientational disordering within the basal planes proceeds coordinately over a few layers with their layered correlation maintained. This process accompanies changes in bonding nature producing 5 member- and 7 member-atomic rings as appeared in fullerenes. This is so to speak ''self-restoring or reconstruction'' to maintain resonance bonds as strict as possible without the formation of dangling bonds. This paper reviews irradiation effects in graphite such as increase of hydrogen retention, loss of thermal conductivity and dimensional change on the bases of our new model, taking account of the changes of the bonding nature in irradiated graphite. (orig.)
Directory of Open Access Journals (Sweden)
Hosein Ghaffarzadeh
Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.
A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures
Energy Technology Data Exchange (ETDEWEB)
Bary, B.; Carpentier, O. [CEA Saclay, DEN/DPC/SCCME/LECBA, F-91191 Gif Sur Yvette, (France); Ranc, G. [CEA VALRHO, DEN/DTEC/L2EC/LCEC, F-30207 Bagnols Sur Ceze, (France); Durand, S. [CEA Saclay, DEN/DM2S/SEMT/LM2S, F-91191 Gif Sur Yvette, (France)
2008-07-01
This study focuses on the concrete behavior subjected to moderate temperatures, with a particular emphasis on the transient thermo-hydric stage. A simplified coupled thermo-hydro-mechanical model is developed with the assumption that the gaseous phase is composed uniquely of vapor. Estimations of the mechanical parameters, Biot coefficient and permeability as a function of damage and saturation degree are provided by applying effective-medium approximation schemes. The isotherm adsorption curves are supposed to depend upon both temperature and crack-induced porosity. The effects of damage and parameters linked to transfer (in particular the adsorption curves) on the concrete structure response in the transient phase of heating are then investigated and evaluated. To this aim, the model is applied to the simulation of concrete cylinders with height and diameter of 0.80 m subjected to heating rates of 0.1 and 10 degrees C/min up to 160 degrees C. The numerical results are analyzed, commented and compared with experimental ones in terms of water mass loss, temperatures and gas pressures evolutions. A numerical study indicates that some parameters have a greater influence on the results than others, and that certain coupling terms in the mass conservation equation of water may be neglected. (authors)
Alternative approaches to electronic damage by ion-beam irradiation: Exciton models
Energy Technology Data Exchange (ETDEWEB)
Agullo-Lopez, F.; Munoz-Martin, A.; Zucchiatti, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Climent-Font, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, 28049, Madrid (Spain)
2016-11-15
The paper briefly describes the main features of the damage produced by swift heavy ion (SHI) irradiation. After a short revision of the widely used thermal spike concept, it focuses on cumulative mechanisms of track formation which are alternative to those based on lattice melting (thermal spike models). These cumulative mechanisms rely on the production of point defects around the ion trajectory, and their accumulation up to a final lattice collapse or amorphization. As to the formation of point defects, the paper considers those mechanisms relying on direct local conversion of the excitation energy into atomic displacements (exciton models). A particular attention is given to processes based on the non-radiative recombination of excitons that have become self-trapped as a consequence of a strong electron-phonon interaction (STEs). These mechanisms, although operative under purely ionizing radiation in some dielectric materials, have been rarely invoked, so far, to discuss SHI damage. They are discussed in this paper together with relevant examples to materials such as Cu{sub 3}N, alkali halides, SiO{sub 2}, and LiNbO{sub 3}. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Validation of formability of laminated sheet metal for deep drawing process using GTN damage model
Energy Technology Data Exchange (ETDEWEB)
Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo [Department of Mechanical Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul, 121-742 (Korea, Republic of); Ko, Sangjin [Mold/die and forming technology team, Product prestige research lab, LG electronics, 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 451-713 (Korea, Republic of)
2013-12-16
In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.
Energy Technology Data Exchange (ETDEWEB)
Kohnert, Aaron A.; Wirth, Brian D. [University of Tennessee, Knoxville, Tennessee 37996-2300 (United States)
2015-04-21
The black dot damage features which develop in iron at low temperatures exhibit significant mobility during in situ irradiation experiments via a series of discrete, intermittent, long range hops. By incorporating this mobility into cluster dynamics models, the temperature dependence of such damage structures can be explained with a surprising degree of accuracy. Such motion, however, is one dimensional in nature. This aspect of the physics has not been fully considered in prior models. This article describes one dimensional reaction kinetics in the context of cluster dynamics and applies them to the black dot problem. This allows both a more detailed description of the mechanisms by which defects execute irradiation-induced hops while allowing a full examination of the importance of kinetic assumptions in accurately assessing the development of this irradiation microstructure. Results are presented to demonstrate whether one dimensional diffusion alters the dependence of the defect population on factors such as temperature and defect hop length. Finally, the size of interstitial loops that develop is shown to depend on the extent of the reaction volumes between interstitial clusters, as well as the dimensionality of these interactions.
Tornadoes and related damage costs: statistical modelling with a semi-Markov approach
Directory of Open Access Journals (Sweden)
Guglielmo D’Amico
2016-09-01
Full Text Available We propose a statistical approach to modelling for predicting and simulating occurrences of tornadoes and accumulated cost distributions over a time interval. This is achieved by modelling the tornado intensity, measured with the Fujita scale, as a stochastic process. Since the Fujita scale divides tornado intensity into six states, it is possible to model the tornado intensity by using Markov and semi-Markov models. We demonstrate that the semi-Markov approach is able to reproduce the duration effect that is detected in tornado occurrence. The superiority of the semi-Markov model as compared to the Markov chain model is also affirmed by means of a statistical test of hypothesis. As an application, we compute the expected value and the variance of the costs generated by the tornadoes over a given time interval in a given area. The paper contributes to the literature by demonstrating that semi-Markov models represent an effective tool for physical analysis of tornadoes as well as for the estimation of the economic damages to human things.
Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian
2018-06-01
As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.
Directory of Open Access Journals (Sweden)
Yu-Bo Jiao
2015-01-01
Full Text Available The paper presents an effective approach for damage identification of bridge based on Chebyshev polynomial fitting and fuzzy logic systems without considering baseline model data. The modal curvature of damaged bridge can be obtained through central difference approximation based on displacement modal shape. Depending on the modal curvature of damaged structure, Chebyshev polynomial fitting is applied to acquire the curvature of undamaged one without considering baseline parameters. Therefore, modal curvature difference can be derived and used for damage localizing. Subsequently, the normalized modal curvature difference is treated as input variable of fuzzy logic systems for damage condition assessment. Numerical simulation on a simply supported bridge was carried out to demonstrate the feasibility of the proposed method.
Crack phantoms: localized damage correlations and failure in network models of disordered materials
International Nuclear Information System (INIS)
Zaiser, M; Moretti, P; Lennartz-Sassinek, S
2015-01-01
We study the initiation of failure in network models of disordered materials such as random fuse and spring models, which serve as idealized representations of fracture processes in quasi-two-dimensional, disordered material systems. We consider two different geometries, namely rupture of thin sheets and delamination of thin films, and demonstrate that irrespective of geometry and implementation of the disorder (random failure thresholds versus dilution disorder) failure initiation is associated with the emergence of typical localized correlation structures in the damage patterns. These structures (‘crack phantoms’) exhibit well-defined characteristic lengths, which relate to the failure stress by scaling relations that are typical for critical crack nuclei in disorder-free materials. We discuss our findings in view of the fundamental nature of failure processes in materials with random microstructural heterogeneity. (paper)
Directory of Open Access Journals (Sweden)
Tatyana A. Kuznetsova
2014-01-01
Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.
International Nuclear Information System (INIS)
Nguyen, Huyen; Bary, B.; L'Hostis, Valerie; DeLarrard, T.
2014-01-01
This paper aims at presenting a strategy to simulate the corrosion of steel reinforcement due to carbonation of concrete in atmospheric environment. We propose a model coupling drying, carbonation, diffusion of oxygen, formation of rust and mechanics to describe these phenomena. The rust layer is assumed to be composed of two sub-layers with different elastic modulus. An unstable layer with a low modulus (from 0.1 to 5 GPa) is located next to the transformed medium, and another more stable one with a higher modulus (from 100 to 150 GPa) at the interface with steel reinforcement. This model is applied to a numerical meso-structure composed of 4 phases: mortar matrix, randomly distributed aggregates, steel rebar and rust layers to underline the effect of aggregates on damage initiation and corresponding crack pattern of concrete cover. (authors)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed
Liu, S; Guo, Y
2000-02-01
To observe the early neuron ischemic damage in focal cerebral ischemia/reperfusion with histostaining methods of argyrophil III (AG III), Toludine blue(TB), and H&E, and to make out the 'separating line' between the areas of reversible and irreversible early ischemic damage. Forty-two male Wistar rats were randomly divided into the following groups: pseudo-surgical, blank-control, O2R0(occluded for 2 hours and reperfused for 0 hour), O2R0.5, O2R2, O2R4, O2R24. There were 6 rats in each group. Rats in experimental groups were suffered focal cerebral ischemia/reperfusion through a nylon suture method. After a special processor for tissue manage, the brain were coronal sectioned and stained with H&E, TB, and AG III. The area where dark neurons dwell in (ischemic core) were calculated with image analysis system. The success rate of ischemic model for this experiment is 90%. After being stained with argyrophil III method, normal neurons appear yellow or pale brown, which is hardly distinguished from the pale brown background. The ischemic neuron stained black, and has collapsed body and "corkscrew-like" axon or dentries, which were broken to some extent. The neuropil in the dark neurons dwelt area appears gray or pale black, which is apparently different from the pale brown neighborhood area. The distribution of dark neurons in cortex varies according to different layers, and has a character of columnar form. The dark neurons present as early as 2 hours ischemia without reperfusion with AG III method. AG III stain could selectively display early ischemic neurons, the area dwelt by dark neurons represent early ischemic core. Dark neuron is possibly the irreversibly damaged neuron. Identification of dark neurons could be helpful in the discrimination between early ischemic center and penumbra.
Three job stress models/concepts and oxidative DNA damage in a sample of workers in Japan.
Inoue, Akiomi; Kawakami, Norito; Ishizaki, Masao; Tabata, Masaji; Tsuchiya, Masao; Akiyama, Miki; Kitazume, Akiko; Kuroda, Mitsuyo; Shimazu, Akihito
2009-04-01
Three job stress models/concepts (the job demands-control [DC] model, the effort-reward imbalance [ERI] model, and organizational justice) have been linked to coronary heart disease (CHD) at work. In recent years, oxidative DNA damage has been identified as a new risk factor for CHD. However, evidence for the association between these job stressors and oxidative DNA damage is limited. The present cross-sectional study investigated the association between these job stress models/concepts and oxidative DNA damage as a possible mediator of the adverse health effects of job stress. A total of 166 male and 51 female workers of a manufacturing factory in Japan were surveyed using a mailed questionnaire regarding job stressors and demographic, occupational, and lifestyle variables. Urinary concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, were also measured. In male subjects, the urinary concentrations of 8-OHdG were significantly higher among the group with lower interactional justice, one of the two components of organizational justice; however, no association was observed with the DC model or the ERI model. In female subjects, high job demands/control ratio was significantly and positively associated with the urinary concentrations of 8-OHdG. Interactional justice among male workers and the DC model-based strain among female workers may be associated with increased urinary concentrations of 8-OHdG which possibly reflects oxidative DNA damage.
Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong
2017-12-01
Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.
International Nuclear Information System (INIS)
Qiu, Zeyang; Liang, Wei; Lin, Yang; Zhang, Meng; Wang, Xue
2017-01-01
As an important part of national energy supply system, transmission pipelines for natural gas are possible to cause serious environmental pollution, life and property loss in case of accident. The third party damage is one of the most significant causes for natural gas pipeline system accidents, and it is very important to establish an effective quantitative risk assessment model of the third party damage for reducing the number of gas pipelines operation accidents. Against the third party damage accident has the characteristics such as diversity, complexity and uncertainty, this paper establishes a quantitative risk assessment model of the third party damage based on Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE). Firstly, risk sources of third party damage should be identified exactly, and the weight of factors could be determined via improved AHP, finally the importance of each factor is calculated by fuzzy comprehensive evaluation model. The results show that the quantitative risk assessment model is suitable for the third party damage of natural gas pipelines and improvement measures could be put forward to avoid accidents based on the importance of each factor. (paper)
Directory of Open Access Journals (Sweden)
R. Schinke
2012-09-01
Full Text Available The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.
Goodarzi, Mohammad Saeed; Hosseini-Toudeshky, Hossein
2017-11-01
In this paper a formulation of a viscoelastic-damage interface model with friction in mode-II is presented. The cohesive constitutive law contains elastic and damage regimes. It has been assumed that the shear stress in the elastic regime follows the viscoelastic properties of the matrix material. The three element Voigt model has been used for the formulation of relaxation modulus of the material. Damage evolution proceeds according to the bilinear cohesive constitutive law combined with friction stress consideration. Combination of damage and friction is based on the presumption that the damaged area, related to an integration point, can be dismembered into the un-cracked area with the cohesive damage and cracked area with friction. Samples of a one element model have been presented to see the effect of parameters on the cohesive constitutive law. A comparison between the predicted results with available results of end-notched flexure specimens in the literature is also presented to verify the model. Transverse crack tension specimens are also simulated for different applied displacement velocities.
Finite element model updating and damage detection for bridges using vibration measurement.
2013-12-01
In this report, the results of a study on developing a damage detection methodology based on Statistical Pattern Recognition are : presented. This methodology uses a new damage sensitive feature developed in this study that relies entirely on modal :...
Directory of Open Access Journals (Sweden)
Begoña Pellicer
2011-01-01
Full Text Available Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed.
Development of a new damage function model for power plants: Methodology and applications
International Nuclear Information System (INIS)
Levy, J.I.; Hammitt, J.K.; Yanagisawa, Y.; Spengler, J.D.
1999-01-01
Recent models have estimated the environmental impacts of power plants, but differences in assumptions and analytical methodologies have led to diverging findings. In this paper, the authors present a new damage function model that synthesizes previous efforts and refines components that have been associated with variations in impact estimates. Their model focuses on end-use emissions and quantified the direct human health impacts of criteria air pollutants. To compare their model to previous efforts and to evaluate potential policy applications, the authors assess the impacts of an oil and natural gas-fueled cogeneration power plant in Boston, MA. Impacts under baseline assumptions are estimated to be $0.007/kWh of electricity, $0.23/klb of steam, and $0.004/ton-h of chilled water (representing 2--9% of the market value of outputs). Impacts are largely related to ozone (48%) and particulate matter (42%). Addition of upstream emissions and nonpublic health impacts increases externalities by as much as 50%. Sensitivity analyses demonstrate the importance of plant siting, meteorological conditions, epidemiological assumptions, and the monetary value placed on premature mortality as well as the potential influence of global warming. Comparative analyses demonstrate that their model provides reasonable impact estimates and would therefore be applicable in a broad range of policy settings
Swept-sine noise-induced damage as a hearing loss model for preclinical assays
Directory of Open Access Journals (Sweden)
Lorena eSanz
2015-02-01
Full Text Available Mouse models are key tools for studying cochlear alterations in noise-induced hearing loss and for evaluating new therapies. Stimuli used to induce deafness in mice are usually white and octave band noises that include very low frequencies, considering the large mouse auditory range. We designed different sound stimuli, enriched in frequencies up to 20 kHz (violet noises to examine their impact on hearing thresholds and cochlear cytoarchitecture after short exposure. In addition, we developed a cytocochleogram to quantitatively assess the ensuing structural degeneration and its functional correlation. Finally, we used this mouse model and cochleogram procedure to evaluate the potential therapeutic effect of transforming growth factor β1 inhibitors P17 and P144 on noise-induced hearing loss. CBA mice were exposed to violet swept-sine noise with different frequency ranges (2-20 or 9-13 kHz and levels (105 or 120 dB SPL for 30 minutes. Mice were evaluated by auditory brainstem response and otoacoustic emission tests prior to and 2, 14 and 28 days after noise exposure. Cochlear pathology was assessed with gross histology; hair cell number was estimated by a stereological counting method. Our results indicate that functional and morphological changes induced by violet swept-sine noise depend on the sound level and frequency composition. Partial hearing recovery followed the exposure to 105 dB SPL, whereas permanent cochlear damage resulted from the exposure to 120 dB SPL. Exposure to 9-13 kHz noise caused an auditory threshold shift in those frequencies that correlated with hair cell loss in the corresponding areas of the cochlea that were spotted on the cytocochleogram. In summary, we present mouse models of noise-induced hearing loss, which depending on the sound properties of the noise, cause different degrees of cochlear damage, and could therefore be used to study molecules which are potential players in hearing loss protection and repair.
Energy Technology Data Exchange (ETDEWEB)
Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)
2006-10-01
Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project
Directory of Open Access Journals (Sweden)
D. Molinari
2013-08-01
Full Text Available The European "Floods Directive" 2007/60/EU has produced an important shift from a traditional approach to flood risk management centred only on hazard analysis and forecast to a newer one which encompasses other aspects relevant to decision-making and which reflect recent research advances in both hydraulic engineering and social studies on disaster risk. This paper accordingly proposes a way of modelling the benefits of flood emergency management interventions calculating the possible damages by taking into account exposure, vulnerability, and expected damage reduction. The results of this model can be used to inform decisions and choices for the implementation of flood emergency management measures. A central role is played by expected damages, which are the direct and indirect consequence of the occurrence of floods in exposed and vulnerable urban systems. How damages should be defined and measured is a key question that this paper tries to address. The Floods Directive suggests that mitigation measures taken to reduce flood impact need to be evaluated also by means of a cost–benefit analysis. The paper presents a methodology for assessing the effectiveness of early warning for flash floods, considering its potential impact in reducing direct physical damage, and it assesses the general benefit in regard to other types of damages and losses compared with the emergency management costs. The methodology is applied to the case study area of the city of Sondrio in the northern Alpine region of Italy. A critical discussion follows the application. Its purpose is to highlight the strengths and weaknesses of available models for quantifying direct physical damage and of the general model proposed, given the current state of the art in damage and loss assessment.
di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X; Villoslada, Pablo
2013-01-01
Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines
di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo
2013-01-01
Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of
de Punder, Yvonne M R; van Riel, Piet L C M; Fransen, Jaap
2015-03-01
To compare the performance of an extended model and a simplified prognostic model for joint damage in rheumatoid arthritis (RA) based on 3 baseline risk factors: anticyclic citrullinated peptide antibodies (anti-CCP), erosions, and acute-phase reaction. Data were used from the Nijmegen early RA cohort. An extended model and a simplified baseline prediction model were developed to predict joint damage progression between 0 and 3 years. Joint damage progression was assessed using the Ratingen score. In the extended model, prediction factors were positivity for anti-CCP and/or rheumatoid factor, the level of erythrocyte sedimentation rate, and the quantity of erosions. The prediction score was calculated as the sum of the regression coefficients. In the simplified model, the prediction factors were dichotomized and the number of risk factors was counted. Performances of both models were compared using discrimination and calibration. The models were internally validated using bootstrapping. The extended model resulted in a prediction score between 0 and 5.6 with an area under the receiver-operation characteristic (ROC) curve of 0.77 (95% CI 0.72-0.81). The simplified model resulted in a prediction score between 0 and 3. This model had an area under the ROC curve of 0.75 (95% CI 0.70-0.80). In internal validation, the 2 models showed reasonably well the agreement between observed and predicted probabilities for joint damage progression (Hosmer-Lemeshow test p > 0.05 and calibration slope near 1.0). A simple prediction model for joint damage progression in early RA, by only counting the number of risk factors, has adequate performance. This facilitates the translation of the theoretical prognostic models to daily clinical practice.
Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law
Yongyi, Gao; Zhixiao, Su
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.
Elsässer, Thilo
Exposure to radiation of high-energy and highly charged ions (HZE) causes a major risk to human beings, since in long term space explorations about 10 protons per month and about one HZE particle per month hit each cell nucleus (1). Despite the larger number of light ions, the high ionisation power of HZE particles and its corresponding more complex damage represents a major hazard for astronauts. Therefore, in order to get a reasonable risk estimate, it is necessary to take into account the entire mixed radiation field. Frequently, neoplastic cell transformation serves as an indicator for the oncogenic potential of radiation exposure. It can be measured for a small number of ion and energy combinations. However, due to the complexity of the radiation field it is necessary to know the contribution to the radiation damage of each ion species for the entire range of energies. Therefore, a model is required which transfers the few experimental data to other particles with different LETs. We use the Local Effect Model (LEM) (2) with its cluster extension (3) to calculate the relative biological effectiveness (RBE) of neoplastic transformation. It was originally developed in the framework of hadrontherapy and is applicable for a large range of ions and energies. The input parameters for the model include the linear-quadratic parameters for the induction of lethal events as well as for the induction of transformation events per surviving cell. Both processes of cell inactivation and neoplastic transformation per viable cell are combined to eventually yield the RBE for cell transformation. We show that the Local Effect Model is capable of predicting the RBE of neoplastic cell transformation for a broad range of ions and energies. The comparison of experimental data (4) with model calculations shows a reasonable agreement. We find that the cluster extension results in a better representation of the measured RBE values. With this model it should be possible to better
Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector
Giugliarelli, Gilberto; The ATLAS collaboration
2018-01-01
Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment. They constitute the part of ATLAS closest to the interaction point and for this reason they will be exposed – over their lifetime – to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence of 10^15 neq/cm2 and their HL–LHC upgrades will have to cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.
Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Misra, Vikram; Cryan, Paul M; Blehert, David S; Wibbelt, Gudrun; Willis, Craig K R
2013-08-23
White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid-base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid-base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.
Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation
Energy Technology Data Exchange (ETDEWEB)
Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher
2011-12-29
The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.
Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.
Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J
2017-07-06
The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.
AFM assessment of the surface nano/microstructure on chemically damaged historical and model glasses
Energy Technology Data Exchange (ETDEWEB)
Carmona, Noemi [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kowal, Andrzej [Institute of Catalysis and Surface Chemistry, PAN, ul. Niezapominajek 8, 30239 Cracow (Poland); Rincon, Jesus-Maria [Instituto Eduardo Torroja de Ciencias de la Construccion, CSIC, C. Serrano Galvache s/n, 28033 Madrid (Spain); Villegas, Maria-Angeles, E-mail: mariangeles.villegas@cchs.csic.es [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C. Albasanz, 26-28, 28037 Madrid (Spain)
2010-01-15
Surface chemical damage on selected historical glasses from 13th to 19th centuries was evaluated by means of atomic force microscopy (AFM). Nano- and microstructure, roughness and topography of ancient glass samples have been compared with those of model glasses prepared by conventional melting at the laboratory with similar compositions to those most frequently found in historical glass pieces. The results obtained allow discussing the chemical degradation mechanisms in terms of the acid and/or basic chemical attack carried out by the combination of gaseous pollutants and environmental humidity. Even though deep corrosion features escape to the observation order of magnitude of the AF microscope used, the AFM technique proves to be quite useful for the study and evaluation of the most common surface pathologies of historical glasses with different compositions once submitted to natural weathering.
AFM assessment of the surface nano/microstructure on chemically damaged historical and model glasses
International Nuclear Information System (INIS)
Carmona, Noemi; Kowal, Andrzej; Rincon, Jesus-Maria; Villegas, Maria-Angeles
2010-01-01
Surface chemical damage on selected historical glasses from 13th to 19th centuries was evaluated by means of atomic force microscopy (AFM). Nano- and microstructure, roughness and topography of ancient glass samples have been compared with those of model glasses prepared by conventional melting at the laboratory with similar compositions to those most frequently found in historical glass pieces. The results obtained allow discussing the chemical degradation mechanisms in terms of the acid and/or basic chemical attack carried out by the combination of gaseous pollutants and environmental humidity. Even though deep corrosion features escape to the observation order of magnitude of the AF microscope used, the AFM technique proves to be quite useful for the study and evaluation of the most common surface pathologies of historical glasses with different compositions once submitted to natural weathering.
RPV steel embrittlement: Damage modeling and micro-mechanics in an engineering perspective
Energy Technology Data Exchange (ETDEWEB)
Fabry, A; Walle, E V; Chaouadi, R; Wannijn, J P; Werstrepen, A; Puzzolante, J L; VanRansbeeck, T H; VandeVelde, J [Sofia Univ. (Bulgaria)
1994-12-31
A new, consolidated strategy for improved Light Water Reactor pressure vessel surveillance is proposed. The methodology includes statistical fracture mechanics and damage modeling, while taking maximum advantage of the data generated by conventional surveillance practices. Available reconstitution and miniaturization allow to implement such strategy with minimal material inventory. The themes of the paper are: general philosophy of Belgian surveillance R D program; ductile-brittle transition temperature by use of instrumented C{sub v} load-time traces; towards an enhanced surveillance practice by combined use of instrumented C{sub v} load-time traces and uniaxial tensile tests; constraint, size and strain rate effects for C{sub v} notch impact test. 109 refs., 27 figs.
Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment
International Nuclear Information System (INIS)
Wirth, B.D.; Odette, G.R.; Marian, J.; Ventelon, L.; Young-Vandersall, J.A.; Zepeda-Ruiz, L.A.
2004-01-01
Ferritic alloys represent a technologically important class of candidate materials for fusion first wall and blanket structures. A detailed understanding of the mechanisms of defect accumulation and microstructure evolution, and the corresponding effects on mechanical properties is required to predict their in-service structural performance limits. The physical processes involved in radiation damage, and its effects on mechanical properties, are inherently multiscale and hierarchical, spanning length and time scales from the atomic nucleus to meters and picosecond to decades. In this paper, we present a multiscale modeling methodology to describe radiation effects within the fusion energy environment. Selected results from atomic scale investigation are presented, focusing on (i) the mechanisms of self-interstitial dislocation loop formation with Burgers vector of a in iron relative to vanadium, (ii) helium transport and (iii) the interaction between helium and small self-interstitial clusters in iron, and (iv) dislocation-helium bubble interactions in fcc aluminum
Modelling of Zircaloy-steam-oxidation under severe fuel damage conditions
International Nuclear Information System (INIS)
Malang, S.; Neitzel, H.J.
1983-01-01
Small break loss-of-coolant accidents and special transients in an LWR, in combination with loss of required safety systems, may lead to an uncovered core for an extended period of time. As a consequence, the cladding temperature could rise up to the melting point due to the decay heat, resulting in severely damaged fuel rods. During heat-up the claddings oxidize due to oxygen uptake from the steam atmosphere in the core. The modeling and assessment of the Zircaloy-steam oxidation under such conditions is important, mainly for two reasons: The oxidation of the cladding influences the temperature transients due to the exothermic heat of reaction; the amount of liquified fuel depends on the oxide layer thickness and the oxygen content of the remaining Zircaloy metal when the melting point is reached. (author)
Fracture mechanics model of stone comminution in ESWL and implications for tissue damage
Lokhandwalla, Murtuza; Sturtevant, Bradford
2000-07-01
Focused shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) cause stone fragmentation. The process of stone fragmentation is described in terms of a dynamic fracture process. As is characteristic of all brittle materials, fragmentation requires nucleation, growth and coalescence of flaws, caused by a tensile or shear stress. The mechanisms, operative in the stone, inducing these stresses have been identified as spall and compression-induced tensile microcracks, nucleating at pre-existing flaws. These mechanisms are driven by the lithotripter-generated shock wave and possibly also by cavitation effects in the surrounding fluid. In this paper, the spall mechanism has been analysed, using a cohesive-zone model for the material. The influence of shock wave parameters, and physical properties of stone, on stone comminution is described. The analysis suggests a potential means to exploit the difference between the stone and tissue physical properties, so as to make stone comminution more effective, without increasing tissue damage.
Directory of Open Access Journals (Sweden)
Marcin Klapczynski
2012-01-01
Full Text Available Introduction: Surgical 5/6 nephrectomy and adenine-induced kidney failure in rats are frequently used models of progressive renal failure. In both models, rats develop significant morphological changes in the kidneys and quantification of these changes can be used to measure the efficacy of prophylactic or therapeutic approaches. In this study, the Aperio Genie Pattern Recognition technology, along with the Positive Pixel Count, Nuclear and Rare Event algorithms were used to quantify histological changes in both rat renal failure models. Methods: Analysis was performed on digitized slides of whole kidney sagittal sections stained with either hematoxylin and eosin or immunohistochemistry with an anti-nestin antibody to identify glomeruli, regenerating tubular epithelium, and tubulointerstitial myofibroblasts. An anti-polymorphonuclear neutrophil (PMN antibody was also used to investigate neutrophil tissue infiltration. Results: Image analysis allowed for rapid and accurate quantification of relevant histopathologic changes such as increased cellularity and expansion of glomeruli, renal tubular dilatation, and degeneration, tissue inflammation, and mineral aggregation. The algorithms provided reliable and consistent results in both control and experimental groups and presented a quantifiable degree of damage associated with each model. Conclusion: These algorithms represent useful tools for the uniform and reproducible characterization of common histomorphologic features of renal injury in rats.
Radiation damage prediction system using damage function
International Nuclear Information System (INIS)
Tanaka, Yoshihisa; Mori, Seiji
1979-01-01
The irradiation damage analysis system using a damage function was investigated. This irradiation damage analysis system consists of the following three processes, the unfolding of a damage function, the calculation of the neutron flux spectrum of the object of damage analysis and the estimation of irradiation effect of the object of damage analysis. The damage function is calculated by applying the SAND-2 code. The ANISN and DOT3, 5 codes are used to calculate neutron flux. The neutron radiation and the allowable time of reactor operation can be estimated based on these calculations of the damage function and neutron flux. The flow diagram of the process of analyzing irradiation damage by a damage function and the flow diagram of SAND-2 code are presented, and the analytical code for estimating damage, which is determined with a damage function and a neutron spectrum, is explained. The application of the irradiation damage analysis system using a damage function was carried out to the core support structure of a fast breeder reactor for the damage estimation and the uncertainty evaluation. The fundamental analytical conditions and the analytical model for this work are presented, then the irradiation data for SUS304, the initial estimated values of a damage function, the error analysis for a damage function and the analytical results are explained concerning the computation of a damage function for 10% total elongation. Concerning the damage estimation of FBR core support structure, the standard and lower limiting values of damage, the permissible neutron flux and the allowable years of reactor operation are presented and were evaluated. (Nakai, Y.)
Directory of Open Access Journals (Sweden)
Felipe Barbosa Mangueira
2012-12-01
Full Text Available Models based on the continuous damage theory present good responses in representing the nonlinear behavior of reinforced concrete structures with loss of strength and stiffness of the material. However, damage theory is rarely employed in the analysis of masonry structures and numerical simulations are currently performed mostly by Finite Element Method formulations. A computational program was designed to determine the numerical parameters of a damage model of the physical properties of masonry components, solid clay brick and mortar. The model was formulated based on the composition of tensile and compressive surface strengths in the plane stress state. The numerical parameters, the corresponding curves of the activation surfaces and the evolution of the surfaces are presented. The results were fed into the computational program based on the Boundary Element Method (BEM for the simulation of masonry walls, and two types of masonry were simulated. The results confirm the good performance of the model and the program based on the BEM.
DNA damage response and DNA repair – dog as a model?
International Nuclear Information System (INIS)
Grosse, Nicole; Loon, Barbara van; Rohrer Bley, Carla
2014-01-01
Companion animals like dogs frequently develop tumors with age and similarly to human malignancies, display interpatient tumoral heterogeneity. Tumors are frequently characterized with regard to their mutation spectra, changes in gene expression or protein levels. Among others, these changes affect proteins involved in the DNA damage response (DDR), which served as a basis for the development of numerous clinically relevant cancer therapies. Even though the effects of different DNA damaging agents, as well as DDR kinetics, have been well characterized in mammalian cells in vitro, very little is so far known about the kinetics of DDR in tumor and normal tissues in vivo. Due to (i) the similarities between human and canine genomes, (ii) the course of spontaneous tumor development, as well as (iii) common exposure to environmental agents, canine tumors are potentially an excellent model to study DDR in vivo. This is further supported by the fact that dogs show approximately the same rate of tumor development with age as humans. Though similarities between human and dog osteosarcoma, as well as mammary tumors have been well established, only few studies using canine tumor samples addressed the importance of affected DDR pathways in tumor progression, thus leaving many questions unanswered. Studies in humans showed that misregulated DDR pathways play an important role during tumor development, as well as in treatment response. Since dogs are proposed to be a good tumor model in many aspects of cancer research, we herein critically investigate the current knowledge of canine DDR and discuss (i) its future potential for studies on the in vivo level, as well as (ii) its possible translation to veterinary and human medicine
Directory of Open Access Journals (Sweden)
Roozbeh Hasanzadeh Nafari
2016-07-01
Full Text Available Flood is a frequent natural hazard that has significant financial consequences for Australia. In Australia, physical losses caused by floods are commonly estimated by stage-damage functions. These methods usually consider only the depth of the water and the type of buildings at risk. However, flood damage is a complicated process, and it is dependent on a variety of factors which are rarely taken into account. This study explores the interaction, importance, and influence of water depth, flow velocity, water contamination, precautionary measures, emergency measures, flood experience, floor area, building value, building quality, and socioeconomic status. The study uses tree-based models (regression trees and bagging decision trees and a dataset collected from 2012 to 2013 flood events in Queensland, which includes information on structural damages, impact parameters, and resistance variables. The tree-based approaches show water depth, floor area, precautionary measures, building value, and building quality to be important damage-influencing parameters. Furthermore, the performance of the tree-based models is validated and contrasted with the outcomes of a multi-parameter loss function (FLFArs from Australia. The tree-based models are shown to be more accurate than the stage-damage function. Consequently, considering more parameters and taking advantage of tree-based models is recommended. The outcome is important for improving established Australian flood loss models and assisting decision-makers and insurance companies dealing with flood risk assessment.
Slamet, Samuel Susanto; Takano, Naoki; Tanabe, Yoshiyuki; Hatano, Asako; Nagasao, Tomohisa
This paper aims at building up a computational procedure to study the bio-mechanism of pressure ulcer using the finite element method. Pressure ulcer is a disease that occurs in the human body after 2 hours of continuous external force. In the very early stage of pressure ulcer, it is found that the tissues inside the body are damaged, even though skin surface looks normal. This study assumes that tension and/or shear strain will cause damage to loose fibril tissue between the bone and muscle and that propagation of damaged area will lead to fatal stage. Analysis was performed using the finite element method by modeling the damaged fibril tissue as a cutout. By varying the loading directions and watching both tensile and shear strains, the risk of fibril tissue damage and propagation of the damaged area is discussed, which may give new insight for the careful nursing for patients, particularly after surgical treatment. It was found that the pressure ulcer could reoccur for a surgical flap treatment. The bone cut and surgical flap surgery is not perfect to prevent the bone-muscle interfacial damage.
Lafon, Jose J.
(FOD) Foreign Object Debris/Damage has been a costly issue for the commercial and military aircraft manufacturers at their production lines every day. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality standards. Nowadays, FOD is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access to FOD areas, restrictions of personal items entering designated areas, tool accountability, etc. All of the efforts mentioned before, have not shown a significant reduction in FOD occurrence in the manufacturing processes. This research presents a Decision Making Model approach based on a logistic regression predictive model that was previously made by other researchers. With a general idea of the FOD expected, elimination plans can be put in place and start eradicating the problem minimizing the cost and time spend on the prediction, detection and/or removal of FOD.
Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.
2018-01-01
Large alpine rock slopes undergo long-term evolution in paraglacial to postglacial environments. Rock mass weakening and increased permeability associated with the progressive failure of deglaciated slopes promote the development of potentially catastrophic rockslides. We captured the entire life cycle of alpine slopes in one damage-based, time-dependent 2-D model of brittle creep, including deglaciation, damage-dependent fluid occurrence, and rock mass property upscaling. We applied the model to the Spriana rock slope (Central Alps), affected by long-term instability after Last Glacial Maximum and representing an active threat. We simulated the evolution of the slope from glaciated conditions to present day and calibrated the model using site investigation data and available temporal constraints. The model tracks the entire progressive failure path of the slope from deglaciation to rockslide development, without a priori assumptions on shear zone geometry and hydraulic conditions. Complete rockslide differentiation occurs through the transition from dilatant damage to a compacting basal shear zone, accounting for observed hydraulic barrier effects and perched aquifer formation. Our model investigates the mechanical role of deglaciation and damage-controlled fluid distribution in the development of alpine rockslides. The absolute simulated timing of rock slope instability development supports a very long "paraglacial" period of subcritical rock mass damage. After initial damage localization during the Lateglacial, rockslide nucleation initiates soon after the onset of Holocene, whereas full mechanical and hydraulic rockslide differentiation occurs during Mid-Holocene, supporting a key role of long-term damage in the reported occurrence of widespread rockslide clusters of these ages.
Relations between a micro-mechanical model and a damage model for ductile failure in shear
DEFF Research Database (Denmark)
Tvergaard, Viggo; Nielsen, Kim Lau
2010-01-01
Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro-cracks, w......Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro...
International Nuclear Information System (INIS)
Mizuno, M; Nishikata, T; Okayasu, M
2013-01-01
We have carried out static compression tests in the poling direction for PZT ceramics and evaluated the material properties by measuring the resonance and anti-resonance frequencies and electrostatic capacity at regular intervals. Then the variation in the material properties up to fracture was clarified. Also, the development of internal damage was also clarified quantitatively by evaluating a damage variable on the basis of the continuum damage mechanics. The damage variable was calculated from the ratio of the elastic coefficient to its initial value. In the present paper, the development of internal damage was formulated as an evolution equation of the damage variable. In the formulation, a threshold stress leading to the onset of damage was considered. Moreover, the variation in material properties was related to the damage variable and formulated as material functions of the damage variable. The development of internal damage and the variation in material properties were simulated by the equations proposed in the present paper and the validity of the equations was verified by comparing the predictions with experimental results. (paper)
Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models
International Nuclear Information System (INIS)
Sommer, Silke
2010-01-01
This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.
Directory of Open Access Journals (Sweden)
R. Ghiasi
2017-09-01
Full Text Available Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW is proposed for Extreme Learning Machine (ELM algorithm to improve the accuracy of detecting multiple damages in structural systems. ELM is used as metamodel (surrogate model of exact finite element analysis of structures in order to efficiently reduce the computational cost through updating process. In the proposed two-step method, first a damage index, based on Frequency Response Function (FRF of the structure, is used to identify the location of damages. In the second step, the severity of damages in identified elements is detected using ELM. In order to evaluate the efficacy of ELM, the results obtained from the proposed kernel were compared with other kernels proposed for ELM as well as Least Square Support Vector Machine algorithm. The solved numerical problems indicated that ELM algorithm accuracy in detecting structural damages is increased drastically in case of using LPW kernel.
Abdul-Aziz, Ali; Najafi, Ali; Abdi, Frank; Bhatt, Ramakrishna T.; Grady, Joseph E.
2014-03-01
Protection of Ceramic Matrix Composites (CMCs) is rather an important element for the engine manufacturers and aerospace companies to help improve the durability of their hot engine components. The CMC's are typically porous materials which permits some desirable infiltration that lead to strength enhancements. However, they experience various durability issues such as degradation due to coating oxidation. These concerns are being addressed by introducing a high temperature protective system, Environmental Barrier Coating (EBC) that can operate at temperature applications1, 3 In this paper, linear elastic progressive failure analyses are performed to evaluate conditions that would cause crack initiation in the EBC. The analysis is to determine the overall failure sequence under tensile loading conditions on different layers of material including the EBC and CMC in an attempt to develop a life/failure model. A 3D finite element model of a dogbone specimen is constructed for the analyses. Damage initiation, propagation and final failure is captured using a progressive failure model considering tensile loading conditions at room temperature. It is expected that this study will establish a process for using a computational approach, validated at a specimen level, to predict reliably in the future component level performance without resorting to extensive testing.
Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model.
Directory of Open Access Journals (Sweden)
Flávio Teles
Full Text Available The pathogenic role of inflammation and oxidative stress in chronic kidney disease (CKD is well known. Anti-inflammatories and antioxidant drugs has demonstrated significant renoprotection in experimental nephropathies. Moreover, the inclusion of natural antioxidants derived from food and herbal extracts (such as polyphenols, curcumin and lycopene as an adjuvant therapy for slowing CKD progression has been largely tested. Brazilian propolis is a honeybee product, whose anti-inflammatory, antimicrobial and antioxidant effects have been widely shown in models of sepsis, cancer, skin irritation and liver fibrosis. Furthermore, previous studies demonstrated that this compound promotes vasodilation and reduces hypertension. However, potential renoprotective effects of propolis in CKD have never been investigated. The aim of this study was to evaluate the effects of a subtype of Brazilian propolis, the Red Propolis (RP, in the 5/6 renal ablation model (Nx. Adult male Wistar rats underwent Nx and were divided into untreated (Nx and RP-treated (Nx+RP groups, after 30 days of surgery; when rats already exhibited marked hypertension and proteinuria. Animals were observed for 90 days from the surgery day, when Nx+RP group showed significant reduction of hypertension, proteinuria, serum creatinine retention, glomerulosclerosis, renal macrophage infiltration and oxidative stress, compared to age-matched untreated Nx rats, which worsened progressively over time. In conclusion, RP treatment attenuated hypertension and structural renal damage in Nx model. Reduction of renal inflammation and oxidative stress could be a plausible mechanism to explain this renoprotection.
Garion, Cedric
2003-01-01
Ductile materials (like stainless steel or copper) show at cryogenic temperatures three principal phenomena: serrated yielding (discontinuous in terms of dsigma/depsilon), plastic strain-induced phase transformations and evolution of ductile damage. The present paper deals exclusively with the two latter cases. Thus, it is assumed that the plastic flow is perfectly smooth. Both in the case of damage evolution and for the gamma-alpha prime phase transformation, the principal mechanism is related to the formation of plastic strain fields. In the constitutive modeling of both phenomena, a crucial role is played by the accumulated plastic strain, expressed by the Odqvist parameter p. Following the general trends, both in the literature concerning the phase transformation and the ductile damage, it is assumed that the rate of transformation and the rate of damage are proportional to the accumulated plastic strain rate. The gamma-alpha prime phase transformation converts the initially homogenous material to a two-p...
Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor
International Nuclear Information System (INIS)
Choi, Woo Sung; Song, Gee Wook; Kim, Bum Shin; Chang, Sung Ho; Fleury, Eric
2011-01-01
It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed
Final Report - Modeling the Physics of Damage Cluster Formation in a Cellular Environment
International Nuclear Information System (INIS)
L.H. Toburen, Principal Investigator; J.L. Shinpaugh; M. Dingfelder; and G. Lapicki; Co-Investigators
2007-01-01
Modern tools of radiobiology are leading to many new discoveries regarding how cells and tissues respond to radiation exposure. We can now irradiate single cells and observe responses in adjacent cells. We can also measure clusters of radiation damage produced in DNA. Our primary objective has been to understand the underling physics associated with these new biological responses. The primary tools available to describe the initial spatial pattern of damage formed by the absorption of ionizing radiation are based on Monte Carlo simulation of the structure of charged particle tracks. Although many Monte Carlo codes exist and considerable progress is being made in the incorporation of detailed macromolecular target structures into these codes, much of the interaction physics is still based on gas phase measurements and/or untested theoretical calculations that focus on water as the transport medium. Our objectives were threefold, (1) to expand the applicability of Monte Carlo track structure simulation to tissue-like material beyond the current focus on water, (2) to incorporate the most recent experimental information on electron interactions in biologically relevant material, and (3) to compare recent measurements of electron emissions induced by charged particles in thin foils with Monte Carlo predictions. We addressed these research objectives in three ways. First we applied theoretical techniques, similar to those used to derive data for water, to obtain cross sections for other condensed phase materials. This served two purposes. One was to provide testability of the theoretical technique by comparison to existing experimental data for electron transport (similar data does not exist for water), and the other was to expand the target database for use in modeling tissue. Second, we carefully reviewed published data, and ongoing experiments, for electron interaction cross-sections in biologically relevant condensed phase material. Results for low-energy electron
International Nuclear Information System (INIS)
Moiseenko, V.; Waker, A.J.; Prestwich, W.V.
1998-02-01
A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10 -12 - 10 -9 s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl radicals react
Energy Technology Data Exchange (ETDEWEB)
Moiseenko, V [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada); Waker, A J [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Prestwich, W V [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada)
1998-02-01
A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10{sup -12}- 10{sup -9} s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl
Dong, Zhichao; Cheng, Haobo
2016-11-10
Fixed-abrasive grinding by cup wheels plays an important role in the production of precision optics. During cup wheel grinding, we strive for a large removal rate while maintaining fine integrity on the surface and subsurface layers (academically recognized as surface roughness and subsurface damage, respectively). This study develops a theoretical model used to predict the trend of subsurface damage of optics (with respect to various grinding parameters) in fixed-abrasive grinding by cup wheels. It is derived from the maximum undeformed chip thickness model, and it successfully correlates the pivotal parameters of cup wheel grinding with the subsurface damage depth. The efficiency of this model is then demonstrated by a set of experiments performed on a cup wheel grinding machine. In these experiments, the characteristics of subsurface damage are inspected by a wedge-polishing plus microscopic inspection method, revealing that the subsurface damage induced in cup wheel grinding is composed of craterlike morphologies and slender cracks, with depth ranging from ∼6.2 to ∼13.2 μm under the specified grinding parameters. With the help of the proposed model, an optimized grinding strategy is suggested for realizing fine subsurface integrity as well as high removal rate, which can alleviate the workload of subsequent lapping and polishing.
Flood damage in Italy: towards an assessment model of reconstruction costs
Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto
2016-04-01
Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy
DEFF Research Database (Denmark)
Janta, Iustina; Morán, Julio; Naredo, Esperanza
2016-01-01
between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned......To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance...... a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1...
A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction
Directory of Open Access Journals (Sweden)
Meng Wang
2016-01-01
Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.
International Nuclear Information System (INIS)
Perlado, J.M.; Victoria, M.; Arevalo, C.; Martinez, E.; Mota, F.; Velarde, M.; Velarde, G.; Cepas, P.; Caturla, M.J.; Marian, J.; Gamez, M.L.
2006-01-01
We have simulated in order to compare with experiments, ultra-high pure α-iron with 20 appm of impurities irradiated with 150 keV Fe + ions at a temperature of 573 K. The dose rate was 4.0 10 11 ions/cm 2 .s. We have compared 50 nm depth simulations with 100 nm depth ones and we have obtained results concerning concentration and sizes versus dose. We can conclude that the higher the depth of the sample the larger the diameter of the loops. The accumulation damage in iron is largely influenced by the 3 parameters studied: sample depth, impurity concentration and minimum transition size. Concerning the long-term behaviour of irradiated Zr and Ti, we have studied irradiation of Zr under different conditions with a kinetic Monte-Carlo model and with input data from molecular dynamics simulations on defect energetics and cascade damage. The result show that the total concentration of vacancies in the bulk is larger than the concentration of interstitials when clusters of all sizes are accounted for. The average cluster size of interstitials is independent of dose, due to their stability. As for the molecular dynamics simulations of the formation of oxygen vacancies in SiO 2 by atomic silicon and oxygen collisions, it appears clearly that the probability of creating a stable ODC (oxygen deficient center) increases with the initial energy of the recoil for both Si and O atoms. The probability of creating a stable oxygen vacancy when the initial energetic atom is oxygen is, as expected much higher than for the case when the initial energetic atom is silicon
International Nuclear Information System (INIS)
Arson, Chloe; Gatmiri, Behrouz
2010-01-01
Document available in extended abstract form only. The design of deep nuclear waste repositories requires the modelling of the effects of thermal loadings in the Excavation Damaged Zone (EDZ). The containers are to be stored in bentonite buffers surrounded by a geological massif. These two barriers are multi-phase porous media, in which coupled mechanical, capillary and thermal phenomena occur. The aim of this study is to develop a new damage model dedicated to non-isothermal unsaturated porous media, the 'THHMD' model. Contrary to almost all of the existing damage models dedicated to non dry media, it is formulated in independent stress state variables (net stress, suction and thermal stress). The damage variable is a second-order tensor, which gives a good approximation for the representation of anisotropic cracking in three dimensions. The behaviour laws stem from the combination of phenomenological and micromechanical principles. The total strain tensor is split into three components, each of which being conjugated to a stress state variable. The Helmholtz free energy is written as the sum of damaged elastic energies and residual-strain-potentials. The concept of effective stress, frequently used in Continuum Damaged Mechanics, is extended to the three stress state variables, by using the operator of Cordebois and Sidoroff. The damaged rigidities are computed by application of the Principle of Equivalent Elastic Energy (PEEE). The non-elastic strain components depend on the increment of damage, which is determined by an associative flow rule. Fracturing is also modelled in the transfer equations. The Representative Elementary Volume (REV) is assumed to be damaged by a microcrack network, among which liquid water and vapour flows are homogenized. A damaged intrinsic conductivity, which plays the role of an internal length parameter, is introduced. The influence of damage on air and heat flows is taken into account by means of porosity, which is also
Miehe, C; Teichtmeister, S; Aldakheel, F
2016-04-28
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).
Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.
2011-01-01
Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.
Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment
Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia
2015-04-01
Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to
Camps, Montserrat; Rückle, Thomas; Ji, Hong; Ardissone, Vittoria; Rintelen, Felix; Shaw, Jeffrey; Ferrandi, Chiara; Chabert, Christian; Gillieron, Corine; Françon, Bernard; Martin, Thierry; Gretener, Denise; Perrin, Dominique; Leroy, Didier; Vitte, Pierre-Alain; Hirsch, Emilio; Wymann, Matthias P; Cirillo, Rocco; Schwarz, Matthias K; Rommel, Christian
2005-09-01
Phosphoinositide 3-kinases (PI3K) have long been considered promising drug targets for the treatment of inflammatory and autoimmune disorders as well as cancer and cardiovascular diseases. But the lack of specificity, isoform selectivity and poor biopharmaceutical profile of PI3K inhibitors have so far hampered rigorous disease-relevant target validation. Here we describe the identification and development of specific, selective and orally active small-molecule inhibitors of PI3Kgamma (encoded by Pik3cg). We show that Pik3cg(-/-) mice are largely protected in mouse models of rheumatoid arthritis; this protection correlates with defective neutrophil migration, further validating PI3Kgamma as a therapeutic target. We also describe that oral treatment with a PI3Kgamma inhibitor suppresses the progression of joint inflammation and damage in two distinct mouse models of rheumatoid arthritis, reproducing the protective effects shown by Pik3cg(-/-) mice. Our results identify selective PI3Kgamma inhibitors as potential therapeutic molecules for the treatment of chronic inflammatory disorders such as rheumatoid arthritis.
Simplified Model for Evaluation of VIV-induced Fatigue Damage of Deepwater Marine Risers
Institute of Scientific and Technical Information of China (English)
XUE Hong-xiang; TANG Wen-yong; ZHANG Sheng-kun
2009-01-01
A simplified empirical model for fatigue analysis of deepwater marine risers due to vortex-induced vibration (VIV) in non-uniform current is presented. A simplified modal vibration equation is employed according to the characteristics of deepwater top tensioned risers. The response amplitude of each mode is determined by a balance between the energy feeding into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainder based on the data from self-excited oscillation and forced oscillation experiments of rigid cylinders. Multi-modal VIV fatigue loading is obtained by the square root of the sum of squares approach.Compared with previous works, this model can take fully account of the main intrinsic natures of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping. In addition, a closed form solution of fatigue damage is presented for the case of a riser with uniform mass and cross-section oscillating in a uniform flow. Fatigue analysis of a typical deepwater riser operating in Gulf of Mexico and West Africa shows that the current velocity profiles affect the riser's fatigue life significantly and the most dangerous locations of the riser are also pointed out.
Directory of Open Access Journals (Sweden)
Nadine Schulz
2017-06-01
Full Text Available Time resolved data of DNA damage and repair after radiotherapy elucidates the relation between damage, repair, and cell survival. While well characterized in vitro, little is known about the time-course of DNA damage response in tumors sampled from individual patients. Kinetics of DNA damage after radiotherapy was assessed in eight dogs using repeated in vivo samples of tumor and co-irradiated normal tissue analyzed with comet assay and phosphorylated H2AX (γH2AX immunohistochemistry. In vivo results were then compared (in silico with a dynamic mathematical model for DNA damage formation and repair. Maximum %DNA in tail was observed at 15–60 min after irradiation, with a rapid decrease. Time-courses of γH2AX-foci paralleled these findings with a small time delay and were not influenced by covariates. The evolutionary parameter search based on %DNA in tail revealed a good fit of the DNA repair model to in vivo data for pooled sarcoma time-courses, but fits for individual sarcoma time-courses suffer from the heterogeneous nature of the in vivo data. It was possible to follow dynamics of comet tail intensity and γH2AX-foci during a course of radiation using a minimally invasive approach. DNA repair can be quantitatively investigated as time-courses of individual patients by integrating this resulting data into a dynamic mathematical model.
Hrinkevich, Kathryn H; Progar, Robert A; Shaw, David C
2016-01-01
The balsam woolly adelgid (Adelges piceae (Ratzeburg) (Homoptera: Adelgidae)) (BWA) is a nonnative, invasive insect that threatens Abies species throughout North America. It is well established in the Pacific Northwest, but continues to move eastward through Idaho and into Montana and potentially threatens subalpine fir to the south in the central and southern Rocky Mountains. We developed a climatic risk model and map that predicts BWA impacts to subalpine fir using a two-step process. Using 30-year monthly climate normals from sites with quantitatively derived BWA damage severity index values, we built a regression model that significantly explained insect damage. The sites were grouped into two distinct damage categories (high damage and mortality versus little or no mortality and low damage) and the model estimates for each group were used to designate distinct value ranges for four climatic risk categories: minimal, low, moderate, and high. We then calculated model estimates for each cell of a 4-kilometer resolution climate raster and mapped the risk categories over the entire range of subalpine fir in the western United States. The spatial variation of risk classes indicates a gradient of climatic susceptibility generally decreasing from the Olympic Peninsula in Washington and the Cascade Range in Oregon and Washington moving eastward, with the exception of some high risk areas in northern Idaho and western Montana. There is also a pattern of decreasing climatic susceptibility from north to south in the Rocky Mountains. Our study provides an initial step for modeling the relationship between climate and BWA damage severity across the range of subalpine fir. We showed that September minimum temperature and a metric calculated as the maximum May temperature divided by total May precipitation were the best climatic predictors of BWA severity. Although winter cold temperatures and summer heat have been shown to influence BWA impacts in other locations, these
Synthetic Modifications In the Frequency Domain for Finite Element Model Update and Damage Detection
2017-09-01
R_C.spring_cond(cnt)=cond(S_s); %%% SpringRank=rank(S_s) Pivot.CondS(cnt)=Pivot.CondS(cnt)*cond(S_s); SpringTime= toc ...PinTime= toc figure TrueDeltaP=Beam.EI’; TrueDeltaP(Damage.elem)=TrueDeltaP(Damage.elem)+TrueDeltaP
International Nuclear Information System (INIS)
Pitkaenen, Maunu.
1986-04-01
X-ray induced changes in rat and human bone and bone marrow vasculature and in rat brain vasculature were measured as a function of time after irradiation and absorbed dose. The absorbed dose in the organ varied from 5 to 25 Gy for single dose irradiations and from 19 to 58 Gy for fractionated irradiations.The number of fractions varied from 3 to 10 for the rats and from 12 to 25 for the human. Blood flow changes were measured using an ''1''2''5I antipyrine or ''8''6RbCl extraction technique. The red blood cell (RBC) volume was examined by ''5''1Cr labelled red cells. Different fractionation models have been compared. Radiation induced reduction of bone and bone marrow blood flow were both time and dose dependent. Reduced blood flow 3 months after irradiation would seem to be an important factor in the subsequent atrophy of bones. With a single dose of 10 Gy the bone marrow blood flow returned to the control level by 7 months after irradiation. In the irradiated bone the RBC volume was about same as that in the control side but in bone marrow the reduction was from 32 to 59%. The dose levels predicted by the nominal standard dose (NSD) formula produced about the same damage to the rat femur seven months after irradiation when the extraction of ''8''6Rb chloride and the dry weight were concerned as the end points. However, the results suggest that the NSB formula underestimates the late radiation damage in bone marrow when a small number of large fractions are used. In the irradiated brains of the rats the blood flow was on average 20.4% higher compared to that in the control group. There was no significant difference in brain blood flow between different fractionation schemes. The value of 0.42 for the exponent of N corresponds to the average value for central nervous system tolerance in the literature. The model used may be sufficiently accurate for clinical work provided the treatment schemes used do not depart too radically from standard practice
Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng
2017-11-01
A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.
Modeling of damage generation mechanisms in silicon at energies below the displacement threshold
International Nuclear Information System (INIS)
Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes
2006-01-01
We have used molecular dynamics simulation techniques to study the generation of damage in Si within the low-energy deposition regime. We have demonstrated that energy transfers below the displacement threshold can produce a significant amount of damage, usually neglected in traditional radiation damage calculations. The formation of amorphous pockets agrees with the thermal spike concept of local melting. However, we have found that the order-disorder transition is not instantaneous, but it requires some time to reach the appropriate kinetic-potential energy redistribution for melting. The competition between the rate of this energy redistribution and the energy diffusion to the surrounding atoms determines the amount of damage generated by a given deposited energy. Our findings explain the diverse damage morphology produced by ions of different masses
International Nuclear Information System (INIS)
Chateau, C.
2011-01-01
Because of their potential use as a cladding material in future nuclear reactors, the complex mechanical behavior of SiC/SiC composites, which combines damage and anisotropy, must be understood and predictable. As part of a multi-scale approach, this work focuses on the first scale change: from the elementary constituents to the tow. Micromechanical approaches are implemented to describe the macroscopic behavior of the tow taking into account its microstructure heterogeneity and damage mechanisms occurring at the local scale. A representative virtual microstructure is generated based on a detailed microstructural investigation of the tow and its elastic response is studied by numerical homogenization. In addition to addressing the mechanical RVE issue, this study highlights the significant effects of residual porosity on the transverse behavior of the tow, due to the matrix infiltration process. The longitudinal damage is being studied through mini-composites, for which the evolution of microscopic damage mechanisms (matrix cracks and fiber breaks) is experimentally analyzed (in-situ SEM and tomography tensile tests). The identification of interfacial parameters of a 1D statistical damage model is based on the experimental characterization. Conventional assumptions of such models can adequately describe matrix cracking at macro and micro scale. However it is necessary to change them to get a proper prediction of ultimate failure. (author) [fr
Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei
2018-06-01
Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Thuillier, S.; Maire, E.; Brunet, M.
2012-01-01
This work deals with the characterization of ductile damage in an aluminium alloy AA6016-T4 by X-ray micro-tomography, as a function of anisotropy and triaxiality. Interrupted tensile tests on notched samples with three different geometries were performed and the void volume fraction was measured for different strain values, up to rupture. It was shown that void volume fraction evolution with the strain is rather similar at 0° and 90° to RD but at 45° to RD it shows a more rapid evolution. Moreover, for the same strain level, a higher void volume fraction was recorded for a higher triaxiality ratio. Whatever the orientation and the stress triaxiality ratio, void volume fraction values range from 5×10 −4 up to 0.04. A numerical model based on Gurson–Tvergaard–Needleman constitutive equations was used to simulate the different tests. Hardening of the material was identified from macroscopic tensile test nucleation material parameters were identified by a direct method from void volume fraction evolution. It can be seen that the influence of triaxiality on void volume fraction is underestimated, though void growth is nicely predicted for the highest triaxiality ratio, for strains below 0.5. The load level was correctly predicted, except for high strain, where coalescence seems necessary to be taken into account.
Directory of Open Access Journals (Sweden)
Xu Li
Full Text Available BACKGROUND: A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL. The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2S has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2S in cochlear blood flow regulation and noise protection. METHODOLOGY/PRINCIPAL FINDINGS: The gene and protein expression of the H(2S synthetase cystathionine-γ-lyase (CSE in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP, NaHS or DL-propargylglycine (PPG were locally administered. Local sodium hydrosulfide (NaHS significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR, cochlear scanning electron microscope (SEM and outer hair cell (OHC count. The highest percentage of OHC loss occurred in the PPG group. CONCLUSIONS/SIGNIFICANCE: Our results suggest that H(2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.
Mechanistic model for Sr and Ba release from severely damaged fuel
International Nuclear Information System (INIS)
Rest, J.; Cronenberg, A.W.
1985-11-01
Among radionuclides associated with fission product release during severe accidents, the primary ones with health consequences are the volatile species of I, Te, and Cs, and the next most important are Sr, Ba, and Ru. Considerable progress has been made in the mechanistic understanding of I, Cs, Te, and noble gas release; however, no capability presently exists for estimating the release of Sr, Ba, and Ru. This paper presents a description of the primary physical/chemical models recently incorporated into the FASTGRASS-VFP (volatile fission product) code for the estimation of Sr and Ba release. FASTGRASS-VFP release predictions are compared with two data sets: (1) data from out-of-reactor induction-heating experiments on declad low-burnup (1000 and 4000 MWd/t) pellets, and (2) data from the more recent in-reactor PBF Severe Fuel Damage Tests, in which one-meter-long, trace-irradiated (89 MWd/t) and normally irradiated (approx.35,000 MWd/t) fuel rods were tested under accident conditions. 10 refs
A Simulation for the Punchless Piercing Process using Lemaitre Damage Model
International Nuclear Information System (INIS)
Lee, Sang Wook; Pourboghrat, Farhang
2005-01-01
The punchless piercing is a process that uses highly pressurized fluid instead of the conventional punch to make holes into the sheet metal. This process has many advantages over the conventional method for piercing various shaped holes into very thin strips of metal, composite, etc. An important cost advantage comes from not having to use a punch. Another important advantage comes from the top quality of pierced holes produced by punchless piercing, as no secondary finishing process will be needed for removing burrs typically found in conventional cutting processes. The ABAQUS/Explicit FEM code coupled with Lemaitre damage model has been used to more precisely characterize the punchless piercing process. The formulation adopted for this purpose focuses on the development of an efficient stress integration algorithm and development of a user material subroutine (VUMAT). For verification, the computed results have been compared with those of the experimental results in the literature and shown to be in good agreement with each other. The results obtained from this work are expected to be of significant interest to automotive and aerospace industries interested in using the punchless piercing process
Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik
2012-01-01
The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly
Villamizar-Mejia, Rodolfo; Mujica-Delgado, Luis-Eduardo; Ruiz-Ordóñez, Magda-Liliana; Camacho-Navarro, Jhonatan; Moreno-Beltrán, Gustavo
2017-05-01
In previous works, damage detection of metallic specimens exposed to temperature changes has been achieved by using a statistical baseline model based on Principal Component Analysis (PCA), piezodiagnostics principle and taking into account temperature effect by augmenting the baseline model or by using several baseline models according to the current temperature. In this paper a new approach is presented, where damage detection is based in a new index that combine Q and T2 statistical indices with current temperature measurements. Experimental tests were achieved in a carbon-steel pipe of 1m length and 1.5 inches diameter, instrumented with piezodevices acting as actuators or sensors. A PCA baseline model was obtained to a temperature of 21º and then T2 and Q statistical indices were obtained for a 24h temperature profile. Also, mass adding at different points of pipe between sensor and actuator was used as damage. By using the combined index the temperature contribution can be separated and a better differentiation of damages respect to undamaged cases can be graphically obtained.
International Nuclear Information System (INIS)
Kozlowski, M.R.; DeFord, J.F.; Staggs, M.C.
1993-01-01
Atomic force microscopy (AFM) and electromagnetic field modeling were used to study the influence of nodular coating defects on laser-induced damage of multilayer dielectric coatings. In studies of HfO 2 /SiO 2 mirrors with 1.06 μm illumination, AFM results showed that nodular defects with high dome heights (>0.6 μm) were most susceptible to laser damage. Crater defects, formed by nodules ejected from the coating prior to illumination, were not damaged when illuminated over the same range of fluences. A finite-difference time-domain electromagnetic modeling code was used to study the influence of 3-D nodule defects on the E-field distribution within the interference coating. The modeling results show that Enfield enhancements as large as a factor of 4 can be present at the defects. Crater defects, however, result in minimal enhancement of the E-fields within the coating. These modeling results are consistent with the AFM experimental data, indicating that E-field enhancement is a contributing mechanism in defect-dominated laser damage of optical coatings
Modeling of beam-induced damage of the LHC tertiary collimators
Directory of Open Access Journals (Sweden)
E. Quaranta
2017-09-01
Full Text Available Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC, which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β^{*} and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.
Modeling of beam-induced damage of the LHC tertiary collimators
Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P.
2017-09-01
Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β* and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.
Li, Rui; Zhou, Li; Yang, Jann N.
2010-04-01
An objective of the structural health monitoring system is to identify the state of the structure and to detect the damage when it occurs. Analysis techniques for the damage identification of structures, based on vibration data measured from sensors, have received considerable attention. Recently, a new damage tracking technique, referred to as the adaptive quadratic sum-square error (AQSSE) technique, has been proposed, and simulation studies demonstrated that the AQSSE technique is quite effective in identifying structural damages. In this paper, the adaptive quadratic sumsquare error (AQSSE) along with the reduced-order finite-element method is proposed to identify the damages of complex structures. Experimental tests were conducted to verify the capability of the proposed damage detection approach. A series of experimental tests were performed using a scaled cantilever beam subject to the white noise and sinusoidal excitations. The capability of the proposed reduced-order finite-element based adaptive quadratic sum-square error (AQSSE) method in detecting the structural damage is demonstrated by the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Vogel, C.; Drubay, B. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Cailletaud, G. [Ecole Nationale Superieure des Mines, 75 - Paris (France); Mottot, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees
1994-12-31
A damage model for anticipating zirconium {alpha} test-piece rupture under cyclic solicitations at 200 degree Celsius is presented. The article is divided into three parts : an experimental approach, the damage model presentation and the application of this model. (O.L.). 10 refs., 7 figs., 4 tabs.
International Nuclear Information System (INIS)
Michaels, H.B.; Hunt, J.W.
1978-01-01
A model is presented to describe the contributions of direct and indirect effects to the radiation damage of cells. The model is derived using principles of radiation chemistry and of pulse radiolysis in particular. From data available in the literature, parameters for cellular composition and values of rate constants for indirect action have been used in preliminary applications of the model. The results obtained in calculations of the protective effect of .OH and .H scavengers are consistent with experimental data. Possible modifications and improvements to the model are suggested, along with proposed future applications of the model in radiobiological studies
Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model
Wen, Y.; Chen, Z. H.; Zang, Y.
2013-11-01
In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.
Modeling of damage evaluation in thin composite plate loaded by pressure loading
Directory of Open Access Journals (Sweden)
Dudinský M.
2012-12-01
Full Text Available This article presents the results of numerical analysis of elastic damage of thin laminated long fiber-reinforced composite plate consisting of unidirectional layers which is loaded by uniformly distributed pressure. The analysis has been performed by means of the finite element method (FEM. The numerical implementation uses layered plate finite elements based on the Kirchhoff plate theory. System of nonlinear equations has been solved by means of the Newton- Raphson procedure. Evolution of damage has been solved using the return-mapping algorithm based on the continuum damage mechanics (CDM. The analysis was performed using own program created in MATLAB. Problem of laminated fiber-reinforced composite plate fixed on edges for two different materials and three different laminate stacking sequences (LSS was simulated. Evolution of stresses vs. strains and also evolution of damage variables in critical points of the structure are shown.
International Nuclear Information System (INIS)
Panza, G.F.; Romanelli, F.; Vaccari. F.; . E-mails: Luis.Decanini@uniroma1.it; Fabrizio.Mollaioli@uniroma1.it)
2002-07-01
The input for the seismic risk analysis can be expressed with a description of 'roundshaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For these
Friedland, Werner; Kundrat, Pavel; Schmitt, Elke
2016-07-01
quasi-homogenous irradiation with these particles [3]. PARTRAC calculations of initial DNA damage showed that the sub-micrometer beam focusing of the ions in these experiments affects neither DSB yields nor local DSB complexity, but considerably enhances the formation of DSB fragments of 10 - 1000 kbp size [4], corresponding to DSB pairs in about 100 - 500 nm distance. Thus, the substantial impact of ion focusing on dicentric induction points out that nanoscale DNA damage clustering can explain only partly the increased RBE of high LET radiation regarding dicentric induction. The measured trends for dicentric induction as a function of grid size (or particle number per spot) were largely reproduced by the calculated induction of total chromosomal aberrations, whereas the calculation of dicentrics yielded apparent discrepancies, such as an overestimation of the focusing effect for protons and of the yield for quasi-homogeneous lithium ions [3]. Since this incongruity was found to be rather robust against model parameter variations, a more basic review of the chromosomal aberration model with in-depth testing of several hypotheses on the origin of misrejoining events of DNA ends has been started considering the reported experimental findings. The results of ongoing parameter studies will be presented at the meeting. Acknowledgement. This work was supported by the German Federal Ministry of Education and Research (Project 'LET-Verbund', Funding no. 02NUK031C). References [1] Schmid et al. 2012 Phys. Med. Biol. 57, 5889-5907 [2] Friedland et al. 2011 Mutat. Res. 711, 28-40 [3] Schmid et al. 2015 Mutat. Res. 793, 30-40 [4] Friedland et al. 2015 Radiat. Prot. Dosim. 166, 34-37
McKenna, Alice
One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures
Anisotropic 3D delay-damage model to simulate concrete structures
Gatuingt , Fabrice; Desmorat , Rodrigue; Chambart , Marion; Combescure , Didier; Guilbaud , Daniel
2008-01-01
International audience; High dynamic loadings lead to material degradation and structural failure. This is even more the case for concrete structures where the parts initially in compression break in ten- sion due to waves propagation and reflection. The dissymmetry of the material behavior plays a major role in such cases, dissymmetry mainly due to damage induced anisotropy. Loading induced damage is most often anisotropic and one proposes here to take advantage of such a feature to build a ...
Modeling DNA?damage-induced pneumopathy in mice: insight from danger signaling cascades
Wirsd?rfer, Florian; Jendrossek, Verena
2017-01-01
Radiation-induced pneumonitis and fibrosis represent severe and dose-limiting side effects in the radiotherapy of thorax-associated neoplasms leading to decreased quality of life or - as a consequence of treatment with suboptimal radiation doses - to fatal outcomes by local recurrence or metastatic disease. It is assumed that the initial radiation-induced damage to the resident cells triggers a multifaceted damage-signalling cascade in irradiated normal tissues including a multifactorial secr...
International Nuclear Information System (INIS)
Wu Shuyan; Zhang Xuguang; Wang Xiangying; Li Su'an; Mao Dihua
2004-01-01
Objective: To investigate the damage effect of 131 I-iodinated oil internal radiation in hepatoma. Methods: SMMC-7721 rat hepatoma model was used to evaluate the damage of 131 I-iodinated oil internal radiation in carcinoma. 131 I-iodinated oil was injected sector-shapely into tumor model of SMMC-7721 hepatoma with arc-needle, matched with routine straight-needle injection. Tumor damage induced by 131 I-iodinated oil intralesion radiation in the carcinoma models are recorded through survival time, weight of rat, local carcinoma, pathology, electron microscopy. Results: Arc-needle injection 131 I-iodinated oil in SMMC-7721 hepatoma at subcutis could increase rat's survival time, the body weight kept less descent, the lumps necrosed wholly. Pathology and ultrastructure detection revealed cell necrosis and collapse, sever nuclear damage was observed in the death cells. The early characteristics of necrosis such as margination of heterochromatin was also found in some tumor cells. Besides, well differentiated tumor cells, degenerative tumor cells and some lymphocytes were seen. Conclusion: Arc-needle injection 131 I-iodinated oil step-by step sector-shapely into tumor is a better method and necrosis is the major effect of 131 I-iodinated oil internal radiation in carcinoma at the level of treated dosage
Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan
2009-02-01
Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.
Atomic and Molecular Data Needs for Radiation Damage Modeling: Multiscale Approach
International Nuclear Information System (INIS)
Yakubovich, Alexander V.; Solov'yov, Andrey V.; Surdutovich, Eugene
2011-01-01
We present a brief overview of the multiscale approach towards understanding of the processes responsible for the radiation damage caused by energetic ions. This knowledge is very important, because it can be utilized in the ion-beam cancer therapy, which is one of the most advanced modern techniques to cure certain type of cancer. The central element of the multiscale approach is the theoretical evaluation and quantification of the DNA damage within cell environment. To achieve this goal one needs a significant amount of data on various atomic and molecular processes involved into the cascade of events starting with the ion entering and propagation in the biological medium and resulting in the DNA damage. The discussion of the follow up biological processes are beyond the scope of this brief overview. We consider different paths of the DNA damage and focus on the the illustration of the thermo-mechanical effects caused by the propagation of ions through the biological environment and in particular on the possibility of the creation of the shock waves in the vicinity of the ion tracks. We demonstrate that at the initial stages after ion's passage the shock wave is so strong that it can contribute to the DNA damage due to large pressure gradients developed at the distances of a few nanometers from the ionic tracks. This novel mechanism of the DNA damage provides an important contribution to the cumulative biodamage caused by low-energy secondary electrons, holes and free radicals.
Pradeep, K. R.; Thomas, A. M.; Basker, V. T.
2018-03-01
Structural health monitoring (SHM) is an essential component of futuristic civil, mechanical and aerospace structures. It detects the damages in system or give warning about the degradation of structure by evaluating performance parameters. This is achieved by the integration of sensors and actuators into the structure. Study of damage detection process in piezoelectric sensor and actuator integrated sandwich cantilever beam is carried out in this paper. Possible skin-core debond at the root of the cantilever beam is simulated and compared with undamaged case. The beam is actuated using piezoelectric actuators and performance differences are evaluated using Polyvinylidene fluoride (PVDF) sensors. The methodology utilized is the voltage/strain response of the damaged versus undamaged beam against transient actuation. Finite element model of piezo-beam is simulated in ANSYSTM using 8 noded coupled field element, with nodal degrees of freedoms are translations in the x, y directions and voltage. An aluminium sandwich beam with a length of 800mm, thickness of core 22.86mm and thickness of skin 0.3mm is considered. Skin-core debond is simulated in the model as unmerged nodes. Reduction in the fundamental frequency of the damaged beam is found to be negligible. But the voltage response of the PVDF sensor under transient excitation shows significantly visible change indicating the debond. Piezo electric based damage detection system is an effective tool for the damage detection of aerospace and civil structural system having inaccessible/critical locations and enables online monitoring possibilities as the power requirement is minimal.
International Nuclear Information System (INIS)
Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.
1995-01-01
This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation
2016-01-01
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308
Janta, Iustina; Morán, Julio; Naredo, Esperanza; Nieto, Juan Carlos; Uson, Jacqueline; Möller, Ingrid; Bong, David; Bruyn, George A W; D Agostino, Maria Antonietta; Filippucci, Emilio; Hammer, Hilde Berner; Iagnocco, Annamaria; Terslev, Lene; González, Jorge Murillo; Mérida, José Ramón; Carreño, Luis
2016-06-01
To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1); or complete tear (2). All 20 tendons were blindly and independently evaluated twice, over two rounds, by each of the three observers. Overall, technical performance was satisfactory for all items in the two rounds (all values over 2.9 in a Likert scale 1-5). Intraobserver and interobserver agreement for US grading of tendon damage was good (mean κ values 0.62 and 0.71, respectively), with greater reliability found in the TAT than the TPT. Concordance between US findings and experimental tendon lesions was acceptable (70-100 %), again greater for the TAT than for the TPT. A cadaver model with surgically created tendon damage can be useful in evaluating US metric properties of RA tendon lesions.
Energy Technology Data Exchange (ETDEWEB)
May, Jennifer E., E-mail: Jennifer2.May@uwe.ac.uk; Morse, H. Ruth, E-mail: Ruth.Morse@uwe.ac.uk; Xu, Jinsheng, E-mail: Jinsheng.Xu@uwe.ac.uk; Donaldson, Craig, E-mail: Craig.Donaldson@uwe.ac.uk
2012-09-15
There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic
International Nuclear Information System (INIS)
May, Jennifer E.; Morse, H. Ruth; Xu, Jinsheng; Donaldson, Craig
2012-01-01
There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic
Rutqvist, Jonny; Börgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son
2009-05-01
This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of a test tunnel associated with the tunnel sealing experiment (TSX) at the Underground Research Laboratory (URL) in Canada. Four different numerical models were applied using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters, the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increase alongside the tunnel is a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis’ coefficient, α ≈ 0.2, a porosity of n ≈ 0.007, and a relatively low permeability of k ≈ 2 × 10-22 m2, which is consistent with the very tight, unfractured granite at the site.
Iron-induced neuronal damage in a rat model of post-traumatic stress disorder.
Zhao, Ming; Yu, Zhibo; Zhang, Yang; Huang, Xueling; Hou, Jingming; Zhao, YanGang; Luo, Wei; Chen, Lin; Ou, Lan; Li, Haitao; Zhang, Jiqiang
2016-08-25
Previous studies have shown that iron redistribution and deposition in the brain occurs in some neurodegenerative diseases, and oxidative damage due to abnormal iron level is a primary cause of neuronal death. In the present study, we used the single prolonged stress (SPS) model to mimic post-traumatic stress disorder (PTSD), and examined whether iron was involved in the progression of PTSD. The anxiety-like behaviors of the SPS group were assessed by the elevated plus maze (EPM) and open field tests, and iron levels were measured by inductively coupled plasma optical emission spectrometer (ICP-OES). Expression of glucocorticoid receptors and transferrin receptor 1 (TfR1) and ferritin (Fn) was detected by Western blot and immunohistochemistry in selected brain areas; TfR1 and Fn mRNA expression were detected by quantitative-polymerase chain reaction (Q-PCR). Ultrastructures of the hippocampus were observed under a transmission electron microscope. Our results showed that SPS exposure induced anxiety-like symptoms and increased the level of serum cortisol and the concentration of iron in key brain areas such as the hippocampus, prefrontal cortex, and striatum. The stress induced region-specific changes in both protein and mRNA levels of TfR1 and Fn. Moreover, swelling mitochondria and cell apoptosis were observed in neurons in brain regions with iron accumulation. We concluded that SPS stress increased iron in some cognition-related brain regions and subsequently cause neuronal injury, indicating that the iron may function in the pathology of PTSD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Schultz, Verena; van der Meer, Franziska; Wrzos, Claudia; Scheidt, Uta; Bahn, Erik; Stadelmann, Christine; Brück, Wolfgang; Junker, Andreas
2017-08-01
Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.
Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.
2016-03-01
Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.
International Nuclear Information System (INIS)
Xiong, J.J.; Shenoi, R.A.
2009-01-01
This paper outlines a new durability model to assess the first inspection and maintenance period for structures. Practical scatter factor formulae are presented to determine the safe fatigue crack initiation and propagation lives from the results of a single full-scale test of a complete structure. New theoretical solutions are proposed to determine the s a -s m -N surfaces of fatigue crack initiation and propagation. Prediction techniques are then developed to establish the relationship equation between safe fatigue crack initiation and propagation lives with a specific reliability level using a two-stage fatigue damage cumulative rule. A new durability model incorporating safe life and damage tolerance design approaches is derived to assess the first inspection and maintenance period. Finally, the proposed models are applied to assess the first inspection and maintenance period of a fastening structure at the root of helicopter blade.
Energy Technology Data Exchange (ETDEWEB)
Xiong, J.J. [Aircraft Department, Beihang University, Beijing 100083 (China); Shenoi, R.A. [School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)], E-mail: r.a.shenoi@ship.soton.ac.uk
2009-08-15
This paper outlines a new durability model to assess the first inspection and maintenance period for structures. Practical scatter factor formulae are presented to determine the safe fatigue crack initiation and propagation lives from the results of a single full-scale test of a complete structure. New theoretical solutions are proposed to determine the s{sub a}-s{sub m}-N surfaces of fatigue crack initiation and propagation. Prediction techniques are then developed to establish the relationship equation between safe fatigue crack initiation and propagation lives with a specific reliability level using a two-stage fatigue damage cumulative rule. A new durability model incorporating safe life and damage tolerance design approaches is derived to assess the first inspection and maintenance period. Finally, the proposed models are applied to assess the first inspection and maintenance period of a fastening structure at the root of helicopter blade.
Nguyen Van Do, Vuong
2018-04-01
In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.
Creep characterization of type 316LN and HT-9 stainless steels by the K-R creep damage model
International Nuclear Information System (INIS)
Kim, Woo Gon; Kim, Sung Ho; Ryu, Woo Seog
2001-01-01
The Kachanov and Rabotnov (K-R) creep damage model was interpreted and applied to type 316LN and HT-9 stainless steels. Seven creep constants of the model, A, B, k, m, λ, γ, and q were determined for type 316LN stainless steel. In order to quantify a damage parameter, the cavity was interruptedly traced during creep for measuring cavity area to be reflected into the damage equation. For type 316LN stainless steel, λ=ε R /ε * and λ f =ε/ε R were 3.1 and increased with creep strain. The creep curve with λ=3.1 depicted well the experimental data to the full lifetime and its damage curve showed a good agreement when γ=24. However for the HT-9 stainless steel, the values of λ and λ f were different as λ=6.2 and λ f =8.5, and their K-R creep curves did not agree with the experimental data. This mismatch in the HT-9 steel was due to the ductile fracture by softening of materials rather than the brittle fracture by cavity growth. The differences of the values in the above steels were attributed to creep ductilities at the secondary and the tertiary creep stages
International Nuclear Information System (INIS)
Etkin, D.S.; French McCay, D.; Whittier, N.; Sankaranarayanan, S.; Jennings, J.
2002-01-01
A study was conducted to determine the influence of oil type, spill size, response strategy and location factors on oil spill response costs, with particular reference to the cost benefits of the use of dispersants. Modeling has been conducted for a hypothetical oil spill in San Francisco Bay to determine biological impacts, damages to natural resources and response costs. The SIMAP modeling software by the Applied Science Associates was used to model 3 spill sizes (20, 50 and 95 percentile by volume) and 4 types of oil (gasoline, diesel, heavy fuel oil, and crude oil). Response costs, natural resource damages and socioeconomic impact were determined based on spill trajectory and fate. Mechanical recovery-based operations carry higher response costs than dispersant-based operations. Response costs for diesel and gasoline spills make up 20 per cent of the total costs, compared to 43 per cent for crude and heavy fuel oil spills. Damages to natural resources are higher for spills of toxic lighter fuels such as gasoline and diesel because gasoline has a greater impact on the water column with less shoreline oiling, resulting in more damages to natural resources. Heavier oils have a greater impact on shorelines and higher response and socioeconomic costs. Although socioeconomic costs varied by location, they tend to be greater than response costs and natural resource damage costs. Proportions of the different costs were described with reference to various spill factors. Socioeconomic costs are 61, 76, 45 and 53 per cent respectively for gasoline, diesel, crude oil, and heavy fuel oil spills. 27 refs., 23 tabs., 5 figs
International Nuclear Information System (INIS)
Gottlob, R.
1981-01-01
The endothelial damage caused by X-ray contrast media is tested on en face preparations of the rat aorta after silver staining. Hypertonic contrast media cause dehydration of the vessels so that solutions of silver nitrate penetrate into the media during the phase of rehydration whereby medial transverse lines are stained. These artifacts can be avoided by 3 minute rehydration of the vessels by Ringer solution prior to silver staining. In addition it is recommended to add highly diluted silver nitrate to the fixing media in order to intensify the pattern of the endothelial silver lines. Modern contrast media may cause very little endothelial damage, however, significant differences can be detected when in addition to the evaluation of larger foci damages of single endothelial cells ( brown cells with sparing of the nuclei and pseudonuclei ) are evaluated as well. No significant differences were found between the endothelial toxicity of meglumin diatrizoate and meglumin iothalamate. (orig.) [de
A discrete element model for damage and fracture of geomaterials under fatigue loading
Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille
2017-06-01
Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.
Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio
2008-06-01
Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.
International Nuclear Information System (INIS)
Michaelides, P G; Apostolellis, P G; Fassois, S D
2011-01-01
Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.
Energy Technology Data Exchange (ETDEWEB)
Michaelides, P G; Apostolellis, P G; Fassois, S D, E-mail: mixail@mech.upatras.gr, E-mail: fassois@mech.upatras.gr [Laboratory for Stochastic Mechanical Systems and Automation (SMSA), Department of Mechanical and Aeronautical Engineering, University of Patras, GR 265 00 Patras (Greece)
2011-07-19
Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.
A simplified model for cumulative damage with interaction effect for creep loading
International Nuclear Information System (INIS)
Gomuc, R.; Bui-Quoc, T.; Biron, A.
1989-01-01
This paper explains that the basic creep-rupture behavior of a material at high temperature is obtained with constant stresses under isothermal conditions. Structural components operating at high temperature are, however, usually subjected to fluctuations of stresses and/or temperatures. Experimental conditions cannot cover all possible combinations of these parameters and, in addition, systematic investigations on cumulative creep damage are very limited due to long-term testing. The authors suggest that there is a need to establish a reliable procedure for evaluating the cumulative creep damage effect under non-steady stresses and temperatures
Interaction of 1.319 μm laser with skin: an optical-thermal-damage model and experimental validation
Jiao, Luguang; Yang, Zaifu; Wang, Jiarui
2014-09-01
With the widespread use of high-power laser systems operating within the wavelength region of approximately 1.3 to 1.4 μm, it becomes very necessary to refine the laser safety guidelines setting the exposure limits for the eye and skin. In this paper, an optical-thermal-damage model was developed to simulate laser propagation, energy deposition, heat transfer and thermal damage in the skin for 1.319 μm laser irradiation. Meanwhile, an experiment was also conducted in vitro to measure the tempreture history of a porcine skin specimen irradiated by a 1.319 μm laser. Predictions from the model included light distribution in the skin, temperature response and thermal damge level of the tissue. It was shown that the light distribution region was much larger than that of the incident laser at the wavelength of 1.319 μm, and the maximum value of the fluence rate located on the interior region of the skin, not on the surface. By comparing the calculated temperature curve with the experimentally recorded temperautre data, good agreement was shown betweeen them, which validated the numerical model. The model also indicated that the damage integral changed little when the temperature of skin tissue was lower than about 55 °C, after that, the integral increased rapidly and denatunation of the tissue would occur. Based on this model, we can further explore the damage mechanisms and trends for the skin and eye within the wavelength region of 1.3 μm to 1.4 μm, incorporating with in vivo experimental investigations.
Directory of Open Access Journals (Sweden)
William B Ashworth
2016-09-01
Full Text Available In non-alcoholic fatty liver disease (NAFLD, lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation
Ashworth, William B.; Bogle, I. David L.
2016-01-01
In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the
Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.
2015-11-01
The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.
DEFF Research Database (Denmark)
Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat
2015-01-01
In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...
Multiscale modelling of damage and failure in two-dimensional metallic foams
Mangipudi, K. R.; Onck, P. R.
The fracture strength of metal foams depends sensitively on the properties of the constituent material as well as the cellular architecture. A change in microscopic properties carries over to the macroscopic scale through an alteration of the mesoscopic damage and fracture mechanisms. In this paper
The Sensitization Model to Explain How Chronic Pain Exists Without Tissue Damage
van Wilgen, C. Paul; Keizer, Doeke
The interaction of nurses with chronic pain patients is often difficult. One of the reasons is that chronic pain is difficult to explain, because no obvious anatomic defect or tissue damage is present. There is now enough evidence available indicating that chronic pain syndromes such as low back
Overview of radiation damage in silicon detectors - models and defect engineering
International Nuclear Information System (INIS)
Watts, S.J.
1997-01-01
This paper reviews recent work in the area of radiation damage in silicon detectors. It is not intended as a comprehensive review, but provides a snapshot guide to current ideas and indicates how the subject is expected to develop in the immediate future. (orig.)
Pakizegi, B.
This paper examines the relevance of social structure, in terms of class, race, and gender, in the lives of damaged parents of low power positions who abuse or neglect their children. The predominant view in the understanding and treatment of abusive parents stresses the parent's poor childhood experiences and the "intergenerational…
Modeling of combined physical-mechanical moisture induced damage in asphaltic mixes
Kringos, N.
2007-01-01
Moisture induced damage in asphaltic mixes is recognized as a major issue, resulting to the need for frequent maintenance operations. This does not only imply high maintenance costs, but also temporary closure of traffic and hence increased road congestion. Given the high costs for the road
Why Are Males Bad for Females? Models for the Evolution of Damaging Male Mating Behavior
Lessells, C.M.
2005-01-01
One explanation for the cost to mating for females caused by damaging male mating behavior is that this causes the females to adaptively modify their subsequent life histories in a way that also increases male fitness. This might occur because the reduction in residual reproductive value of the
Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.
2010-01-01
Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to
Advanced hair damage model from ultra-violet radiation in the presence of copper.
Marsh, J M; Davis, M G; Flagler, M J; Sun, Y; Chaudhary, T; Mamak, M; McComb, D W; Williams, R E A; Greis, K D; Rubio, L; Coderch, L
2015-10-01
Damage to hair from UV exposure has been well reported in the literature and is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS). The objective of this work was to understand these mechanisms, explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species. The location of copper in hair was measured by Transmission electron microscopy-(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES. Protein changes were measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments. TBARS assay was used to measure lipid peroxide formation. Sensory methods and dry combing friction were used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage. In this work, a biomarker protein fragment formed during UV exposure is identified using mass spectrometry. This fragment originates from the calcium-binding protein S100A3. Also shown is the accelerated formation of this peptide fragment in hair containing low levels of copper absorbed from hair during washing with tap water containing copper ions. Transmission electron microscopy (TEM) X-ray energy dispersive spectroscopy (XEDS) studies indicate copper is located in the sulphur-poor endo-cuticle region, a region where the S100A3 protein is concentrated. A mechanism for formation of this peptide fragment is proposed in addition to the possible role of lipids in UV oxidation. A shampoo and conditioner containing chelants (EDDS in shampoo and histidine in conditioner) is shown to reduce copper uptake from tap water and reduce protein loss and formation of S100A3 protein fragment. In addition, the long-term consequences of UV oxidation and
HATAZAKI, S.; BELLVER-ESTELLES, C.; JIMENEZ-MATEOS, E. M.; MELLER, R.; BONNER, C.; MURPHY, N.; MATSUSHIMA, S.; TAKI, W.; PREHN, J. H. M.; SIMON, R. P.; HENSHALL, D. C.
2007-01-01
A neuroprotected state can be acquired by preconditioning brain with a stimulus that is subthreshold for damage (tolerance). Acquisition of tolerance involves coordinate, bi-directional changes to gene expression levels and the re-programmed phenotype is determined by the preconditioning stimulus. While best studied in ischemic brain there is evidence brief seizures can confer tolerance against prolonged seizures (status epilepticus). Presently, we developed a model of epileptic preconditioni...
International Nuclear Information System (INIS)
Becquart, C.S.; Barbu, A.; Bocquet, J.L.; Caturla, M.J.; Domain, C.; Fu, C.-C.; Golubov, S.I.; Hou, M.; Malerba, L.; Ortiz, C.J.; Souidi, A.; Stoller, R.E.
2010-01-01
Knowledge of the long-term evolution of the microstructure after introduction of primary damage is an essential ingredient in understanding mechanical property changes that occur during irradiation. Within the European integrated project 'PERFECT,' different techniques have been developed or improved to model microstructure evolution of Fe alloys under irradiation. This review paper aims to present the current state of the art of these techniques, as developed in the project, as well as the main results obtained.
Assessment of the progressive nature of cell damage in the pilocarpine model of epilepsy
Directory of Open Access Journals (Sweden)
L. Covolan
2006-07-01
Full Text Available Pilocarpine-induced (320 mg/kg, ip status epilepticus (SE in adult (2-3 months male Wistar rats results in extensive neuronal damage in limbic structures. Here we investigated whether the induction of a second SE (N = 6 would generate damage and cell loss similar to that seen after a first SE (N = 9. Counts of silver-stained (indicative of cell damage cells, using the Gallyas argyrophil III method, revealed a markedly lower neuronal injury in animals submitted to re-induction of SE compared to rats exposed to a single episode of pilocarpine-induced SE. This effect could be explained as follows: 1 the first SE removes the vulnerable cells, leaving behind resistant cells that are not affected by the second SE; 2 the first SE confers increased resistance to the remaining cells, analogous to the process of ischemic tolerance. Counting of Nissl-stained cells was performed to differentiate between these alternative mechanisms. Our data indicate that different neuronal populations react differently to SE induction. For some brain areas most, if not all, of the vulnerable cells are lost after an initial insult leaving only relatively resistant cells and little space for further damage or cell loss. For some other brain areas, in contrast, our data support the hypothesis that surviving cells might be modified by the initial insult which would confer a sort of excitotoxic tolerance. As a consequence of both mechanisms, subsequent insults after an initial insult result in very little damage regardless of their intensity.
International Nuclear Information System (INIS)
Fossum, A.F.; Brodsky, N.S.; Chan, K.S.; Munson, D.E.
1992-01-01
Recent concern over the potential for creep induced development of a damaged rock zone adjacent to shafts and rooms at the Waste Isolation Pilot Plant (WIPP) has motivated the formulation of a coupled constitutive description of continuum salt creep and damage. This constitutive model gives time-dependent inelastic flow and pressure-sensitive damage in crystalline solids. Initially the constitutive model was successfully used to simulate multiaxial, i.e. true triaxial, experiments obtained at relatively high, 2.5 to 20 MPa, confining pressures. Predictions of the complete creep curve, including the heretofore unmodeled tertiary creep, were also demonstrated. However, comparisons of model predictions with data were hampered because the bulk of the creep data existing on WIPP salt was intentionally obtained under confining pressures typically greater than 15 MPa, in an attempt to match the underground in situ lithostatic pressure level. It was realized that the high confining pressures suppressed tertiary creep and resulted in better defined steady state creep responses. To address the tertiary creep process directly, a number of creep tests were conducted at lower confining pressures for the explicit purpose of creating dilatant behavior
Directory of Open Access Journals (Sweden)
Daniela Molinari
2017-09-01
Full Text Available IN-depth SYnthetic Model for Flood Damage Estimation (INSYDE is a model for the estimation of flood damage to residential buildings at the micro-scale. This study investigates the sensitivity of INSYDE to the accuracy of input data. Starting from the knowledge of input parameters at the scale of individual buildings for a case study, the level of detail of input data is progressively downgraded until the condition in which a representative value is defined for all inputs at the census block scale. The analysis reveals that two conditions are required to limit the errors in damage estimation: the representativeness of representatives values with respect to micro-scale values and the local knowledge of the footprint area of the buildings, being the latter the main extensive variable adopted by INSYDE. Such a result allows for extending the usability of the model at the meso-scale, also in different countries, depending on the availability of aggregated building data.
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung-O; Roh, Gyuhong; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
The level of radiation induced material damage is mainly quantified by using the unit of Displacements Per Atom (DPA), and particularly, the displacement cross-section is used for characterizing/analyzing the radiation damage from incident neutrons and charged particles. Not long ago, the standard Norgett-Robinson-Torrens (NRT) model had been applied to produce the nuclear data due to its simplicity and implementation in commonly used codes, such as NJOY and MCNP codes. However, the evaluations based on NRT model represent the severe disagreement with experimental data and more accurate calculations. Hence, the evaluations with existing and new nuclear data are performed/compared in this study. It is assumed that a high energy proton beam is directly moved to the target, and a series of calculations are performed by using MCNPX code. The proton induced material damage is evaluated by using the displacement cross-sections, and the effect of nuclear data on the evaluation is specifically analyzed with MCNPX code. First, there is significant difference between the nuclear data from existing and new models, and the new evaluated data is generally lower than the existing one. Second, the position of maximum DPA is slightly differed with the position of maximum energy deposition, and the evaluation using new evaluated data is lower about 2 times than the other.
Directory of Open Access Journals (Sweden)
Daniel Béracochéa
2005-01-01
Full Text Available Chronic alcohol consumption (CAC can lead to the Korsakoff syndrome (KS, a memory deficiency attributed to diencephalie damage and/or to medial temporal or cortical related dysfunction. The etiology of KS remains unclear. Most animal models of KS involve thiaminedeficient diets associated with pyrithiamine treatment. Here we present a mouse model of CAC-induced KS. We demonstrate that CAC-generated retrieval memory deficits in working/ episodic memory tasks, together with a reduction of fear reactivity, result from damage to the mammillary bodies (MB. Experimental lesions of MB in non-alcoholic mice produced the same memory and emotional impairments. Drugs having anxiogenic-like properties counteract such impairments produced by CAC or by MB lesions. We suggest (a that MB are the essential components of a brain network underlying emotional processes, which would be critically important in the retrieval processes involved in working/ episodic memory tasks, and (b that failure to maintain emotional arousal due to MB damage can be a main factor of CAC-induced memory deficits. Overall, our animal model fits well with general neuropsychological and anatomic impairments observed in KS.
Béracochéa, Daniel
2005-01-01
Chronic alcohol consumption (CAC) can lead to the Korsakoff syndrome (KS), a memory deficiency attributed to diencephalic damage and/or to medial temporal or cortical related dysfunction. The etiology of KS remains unclear. Most animal models of KS involve thiamine-deficient diets associated with pyrithiamine treatment. Here we present a mouse model of CAC-induced KS. We demonstrate that CAC-generated retrieval memory deficits in working/ episodic memory tasks, together with a reduction of fear reactivity, result from damage to the mammillary bodies (MB). Experimental lesions of MB in non-alcoholic mice produced the same memory and emotional impairments. Drugs having anxiogenic-like properties counteract such impairments produced by CAC or by MB lesions. We suggest (a) that MB are the essential components of a brain network underlying emotional processes, which would be critically important in the retrieval processes involved in working/ episodic memory tasks, and (b) that failure to maintain emotional arousal due to MB damage can be a main factor of CAC-induced memory deficits. Overall, our animal model fits well with general neuropsychological and anatomic impairments observed in KS.
International Nuclear Information System (INIS)
Zhou, J.
2006-03-01
This work deals with a modeling of the mechanical and hydro-mechanical behaviour of saturated rocks taking into account the variation of the permeability with damage. At first is established a function of the free enthalpy by a direct micro-mechanical approach in taking into account the distribution of the microcrack length. The opening of