WorldWideScience

Sample records for continuous global optimization

  1. A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions

    KAUST Repository

    Fowkes, Jaroslav M.; Gould, Nicholas I. M.; Farmer, Chris L.

    2012-01-01

    We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation

  2. A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions

    KAUST Repository

    Fowkes, Jaroslav M.

    2012-06-21

    We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation techniques to the objective function within an overlapping branch and bound algorithm for convex constrained global optimization. Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underestimators of the function. For a numerical example, we apply the proposed branch and bound algorithm to radial basis function approximations. © 2012 Springer Science+Business Media, LLC.

  3. Introduction to Continuous Optimization

    DEFF Research Database (Denmark)

    Andreasson, Niclas; Evgrafov, Anton; Patriksson, Michael

    optimal solutions for continuous optimization models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimization problems. Natural...... algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analyzed. The book answers many more questions of the form “Why?” and “Why not?” than “How?”. We use only elementary mathematics in the development of the book, yet are rigorous throughout...

  4. Towards continuous global measurements and optimal emission estimates of NF3

    Science.gov (United States)

    Arnold, T.; Muhle, J.; Salameh, P.; Harth, C.; Ivy, D. J.; Weiss, R. F.

    2011-12-01

    We present an analytical method for the continuous in situ measurement of nitrogen trifluoride (NF3) - an anthropogenic gas with a global warming potential of ~16800 over a 100 year time horizon. NF3 is not included in national reporting emissions inventories under the United Nations Framework Convention on Climate Change (UNFCCC). However, it is a rapidly emerging greenhouse gas due to emission from a growing number of manufacturing facilities with increasing output and modern end-use applications, namely in microcircuit etching, and in production of flat panel displays and thin-film photovoltaic cells. Despite success in measuring the most volatile long lived halogenated species such as CF4, the Medusa preconcentration GC/MS system of Miller et al. (2008) is unable to detect NF3 under remote operation. Using altered techniques of gas separation and chromatography after initial preconcentration, we are now able to make continuous atmospheric measurements of NF3 with average precisions NF3 produced. Emission factors are shown to have reduced over the last decade; however, rising production and end-use have caused the average global atmospheric concentration to double between 2005 and 2011 i.e. half the atmospheric NF3 present today originates from emissions after 2005. Finally we show the first continuous in situ measurements from La Jolla, California, illustrating how global deployment of our technique could improve the temporal and spatial scale of NF3 'top-down' emission estimates over the coming years. These measurements will be important for independent verification of emissions should NF3 be regulated under a new climate treaty.

  5. Stochastic and global optimization

    National Research Council Canada - National Science Library

    Dzemyda, Gintautas; Šaltenis, Vydūnas; Zhilinskas, A; Mockus, Jonas

    2002-01-01

    ... and Effectiveness of Controlled Random Search E. M. T. Hendrix, P. M. Ortigosa and I. García 129 9. Discrete Backtracking Adaptive Search for Global Optimization B. P. Kristinsdottir, Z. B. Zabinsky and...

  6. Convex analysis and global optimization

    CERN Document Server

    Tuy, Hoang

    2016-01-01

    This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;

  7. Global optimization and simulated annealing

    NARCIS (Netherlands)

    Dekkers, A.; Aarts, E.H.L.

    1988-01-01

    In this paper we are concerned with global optimization, which can be defined as the problem of finding points on a bounded subset of Rn in which some real valued functionf assumes its optimal (i.e. maximal or minimal) value. We present a stochastic approach which is based on the simulated annealing

  8. Global optimization at work

    NARCIS (Netherlands)

    Hendrix, E.M.T.

    1998-01-01

    In many research situations where mathematical models are used, researchers try to find parameter values such that a given performance criterion is at an optimum. If the parameters can be varied in a continuous way, this in general defines a so-called Nonlinear Programming Problem. Methods

  9. A Direct Search Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Enrique Baeyens

    2016-06-01

    Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.

  10. Firefly Mating Algorithm for Continuous Optimization Problems

    Directory of Open Access Journals (Sweden)

    Amarita Ritthipakdee

    2017-01-01

    Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  11. Global optimization methods for engineering design

    Science.gov (United States)

    Arora, Jasbir S.

    1990-01-01

    The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.

  12. Conference on Convex Analysis and Global Optimization

    CERN Document Server

    Pardalos, Panos

    2001-01-01

    There has been much recent progress in global optimization algo­ rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun­ damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon­ vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en­ dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...

  13. Global optimization and sensitivity analysis

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1990-01-01

    A new direction for the analysis of nonlinear models of nuclear systems is suggested to overcome fundamental limitations of sensitivity analysis and optimization methods currently prevalent in nuclear engineering usage. This direction is toward a global analysis of the behavior of the respective system as its design parameters are allowed to vary over their respective design ranges. Presented is a methodology for global analysis that unifies and extends the current scopes of sensitivity analysis and optimization by identifying all the critical points (maxima, minima) and solution bifurcation points together with corresponding sensitivities at any design point of interest. The potential applicability of this methodology is illustrated with test problems involving multiple critical points and bifurcations and comprising both equality and inequality constraints

  14. A brief introduction to continuous evolutionary optimization

    CERN Document Server

    Kramer, Oliver

    2014-01-01

    Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel ...

  15. Building a global business continuity programme.

    Science.gov (United States)

    Lazcano, Michael

    2014-01-01

    Business continuity programmes provide an important function within organisations, especially when aligned with and supportive of the organisation's goals, objectives and organisational culture. Continuity programmes for large, complex international organisations, unlike those for compact national companies, are more difficult to design, build, implement and maintain. Programmes for international organisations require attention to structural design, support across organisational leadership and hierarchy, seamless integration with the organisation's culture, measured success and demonstrated value. This paper details practical, but sometimes overlooked considerations for building successful global business continuity programmes.

  16. 3rd World Congress on Global Optimization in Engineering & Science

    CERN Document Server

    Ruan, Ning; Xing, Wenxun; WCGO-III; Advances in Global Optimization

    2015-01-01

    This proceedings volume addresses advances in global optimization—a multidisciplinary research field that deals with the analysis, characterization, and computation of global minima and/or maxima of nonlinear, non-convex, and nonsmooth functions in continuous or discrete forms. The volume contains selected papers from the third biannual World Congress on Global Optimization in Engineering & Science (WCGO), held in the Yellow Mountains, Anhui, China on July 8-12, 2013. The papers fall into eight topical sections: mathematical programming; combinatorial optimization; duality theory; topology optimization; variational inequalities and complementarity problems; numerical optimization; stochastic models and simulation; and complex simulation and supply chain analysis.

  17. Global perspective on continuing professional development

    Directory of Open Access Journals (Sweden)

    Lawrence T. Sherman

    2018-05-01

    Full Text Available Healthcare professionals worldwide participate in continuing professional development (CPD to remain competent in practice, and to ensure they provide high-quality care to patients. Globally, CPD systems have evolved at different rates resulting in significant variation in structure, requirements, and oversight. In some countries, CPD has moved from single profession educational designs and formal didactic methods of delivery to educational models that are innovative, dynamic, and learnercentric. In other countries, CPD is a neglected part of the healthcare education continuum. This article provides a global perspective on the evolution of CPD over the past 20 years, and identifies opportunities for the future.

  18. Hydrothermal optimal power flow using continuation method

    International Nuclear Information System (INIS)

    Raoofat, M.; Seifi, H.

    2001-01-01

    The problem of optimal economic operation of hydrothermal electric power systems is solved using powerful continuation method. While in conventional approach, fixed generation voltages are used to avoid convergence problems, in the algorithm, they are treated as variables so that better solutions can be obtained. The algorithm is tested for a typical 5-bus and 17-bus New Zealand networks. Its capabilities and promising results are assessed

  19. Essays and surveys in global optimization

    CERN Document Server

    Audet, Charles; Savard, Giles

    2005-01-01

    Global optimization aims at solving the most general problems of deterministic mathematical programming. In addition, once the solutions are found, this methodology is also expected to prove their optimality. With these difficulties in mind, global optimization is becoming an increasingly powerful and important methodology. This book is the most recent examination of its mathematical capability, power, and wide ranging solutions to many fields in the applied sciences.

  20. Introduction to Nonlinear and Global Optimization

    NARCIS (Netherlands)

    Hendrix, E.M.T.; Tóth, B.

    2010-01-01

    This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization

  1. Stochastic global optimization as a filtering problem

    International Nuclear Information System (INIS)

    Stinis, Panos

    2012-01-01

    We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.

  2. Advances in stochastic and deterministic global optimization

    CERN Document Server

    Zhigljavsky, Anatoly; Žilinskas, Julius

    2016-01-01

    Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and mu...

  3. On the efficiency of chaos optimization algorithms for global optimization

    International Nuclear Information System (INIS)

    Yang Dixiong; Li Gang; Cheng Gengdong

    2007-01-01

    Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions

  4. On benchmarking Stochastic Global Optimization Algorithms

    NARCIS (Netherlands)

    Hendrix, E.M.T.; Lancinskas, A.

    2015-01-01

    A multitude of heuristic stochastic optimization algorithms have been described in literature to obtain good solutions of the box-constrained global optimization problem often with a limit on the number of used function evaluations. In the larger question of which algorithms behave well on which

  5. Optimal beneficiation of global resources

    Energy Technology Data Exchange (ETDEWEB)

    Aloisi de Larderel, J. (Industry and Environment Office, Paris (France). United Nations Environment Programme)

    1989-01-01

    The growth of the world's population and related human activities are clearly leaving major effects on the environment and on the level of use of natural resources: forests are disappearing, air pollution is leading to acid rains, changes are occuring in the atmospheric ozone and global climate, more and more people lack access to reasonable safe supplies of water, soil pollution is becoming a problem, mineral and energy resources are increasingly being used. Producing more with less, producing more, polluting less, these are basic challenges that the world now faces. Low- and non-waste technologies are certainly one of the keys to those challenges.

  6. Evolutionary global optimization, manifolds and applications

    CERN Document Server

    Aguiar e Oliveira Junior, Hime

    2016-01-01

    This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory....

  7. Deterministic global optimization an introduction to the diagonal approach

    CERN Document Server

    Sergeyev, Yaroslav D

    2017-01-01

    This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed...

  8. Distributed Optimization Design of Continuous-Time Multiagent Systems With Unknown-Frequency Disturbances.

    Science.gov (United States)

    Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu

    2017-05-24

    In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.

  9. A Novel Particle Swarm Optimization Algorithm for Global Optimization.

    Science.gov (United States)

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.

  10. Automatic penalty continuation in structural topology optimization

    DEFF Research Database (Denmark)

    Rojas Labanda, Susana; Stolpe, Mathias

    2015-01-01

    this issue is addressed. We propose an automatic continuation method, where the material penalization parameter is included as a new variable in the problem and a constraint guarantees that the requested penalty is eventually reached. The numerical results suggest that this approach is an appealing...... alternative to continuation methods. Automatic continuation also generally obtains better designs than the classical formulation using a reduced number of iterations....

  11. Competing intelligent search agents in global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Streltsov, S.; Vakili, P. [Boston Univ., MA (United States); Muchnik, I. [Rutgers Univ., Piscataway, NJ (United States)

    1996-12-31

    In this paper we present a new search methodology that we view as a development of intelligent agent approach to the analysis of complex system. The main idea is to consider search process as a competition mechanism between concurrent adaptive intelligent agents. Agents cooperate in achieving a common search goal and at the same time compete with each other for computational resources. We propose a statistical selection approach to resource allocation between agents that leads to simple and efficient on average index allocation policies. We use global optimization as the most general setting that encompasses many types of search problems, and show how proposed selection policies can be used to improve and combine various global optimization methods.

  12. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  13. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  14. Solving global optimization problems on GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)

    2016-06-08

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  15. Global Optimization of Nonlinear Blend-Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  16. Neoliberal Optimism: Applying Market Techniques to Global Health.

    Science.gov (United States)

    Mei, Yuyang

    2017-01-01

    Global health and neoliberalism are becoming increasingly intertwined as organizations utilize markets and profit motives to solve the traditional problems of poverty and population health. I use field work conducted over 14 months in a global health technology company to explore how the promise of neoliberalism re-envisions humanitarian efforts. In this company's vaccine refrigerator project, staff members expect their investors and their market to allow them to achieve scale and develop accountability to their users in developing countries. However, the translation of neoliberal techniques to the global health sphere falls short of the ideal, as profits are meager and purchasing power remains with donor organizations. The continued optimism in market principles amidst such a non-ideal market reveals the tenacious ideological commitment to neoliberalism in these global health projects.

  17. A perturbed martingale approach to global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Saikat [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Roy, Debasish, E-mail: royd@civil.iisc.ernet.in [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Vasu, Ram Mohan [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-08-01

    A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as ‘coalescence’ and ‘scrambling’. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. - Highlights: • Evolutionary global optimization is posed as a perturbed martingale problem. • Resulting search via additive updates is a generalization over Gateaux derivatives. • Additional layers of random perturbation help avoid trapping at local extrema. • The approach ensures efficient design space exploration and high accuracy. • The method is numerically assessed via parameter recovery of chaotic oscillators.

  18. Discrete and Continuous Optimization Based on Hierarchical Artificial Bee Colony Optimizer

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC, to tackle complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems. The experimental results demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms.

  19. A Continuously Updated, Global Land Classification Map, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate a fully automatic capability for generating a global, high resolution (30 m) land classification map, with continuous updates from...

  20. Dual Schroedinger Equation as Global Optimization Algorithm

    International Nuclear Information System (INIS)

    Huang Xiaofei; eGain Communications, Mountain View, CA 94043

    2011-01-01

    The dual Schroedinger equation is defined as replacing the imaginary number i by -1 in the original one. This paper shows that the dual equation shares the same stationary states as the original one. Different from the original one, it explicitly defines a dynamic process for a system to evolve from any state to lower energy states and eventually to the lowest one. Its power as a global optimization algorithm might be used by nature for constructing atoms and molecules. It shall be interesting to verify its existence in nature.

  1. Global Optimization using Interval Analysis : Interval Optimization for Aerospace Applications

    NARCIS (Netherlands)

    Van Kampen, E.

    2010-01-01

    Optimization is an important element in aerospace related research. It is encountered for example in trajectory optimization problems, such as: satellite formation flying, spacecraft re-entry optimization and airport approach and departure optimization; in control optimization, for example in

  2. Continuous nonlinear optimization for engineering applications in GAMS technology

    CERN Document Server

    Andrei, Neculai

    2017-01-01

    This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical opti...

  3. Criteria for optimizing cortical hierarchies with continuous ranges

    Directory of Open Access Journals (Sweden)

    Antje Krumnack

    2010-03-01

    Full Text Available In a recent paper (Reid et al.; 2009, NeuroImage we introduced a method to calculate optimal hierarchies in the visual network that utilizes continuous, rather than discrete, hierarchical levels, and permits a range of acceptable values rather than attempting to fit fixed hierarchical distances. There, to obtain a hierarchy, the sum of deviations from the constraints that define the hierarchy was minimized using linear optimization. In the short time since publication of that paper we noticed that many colleagues misinterpreted the meaning of the term optimal hierarchy. In particular, a majority of them were under the impression that there was perhaps only one optimal hierarchy, but a substantial difficulty in finding that one. However, there is not only more than one optimal hierarchy but also more than one option for defining optimality. Continuing the line of this work we look at additional options for optimizing the visual hierarchy: minimizing the number of violated constraints and minimizing the maximal size of a constraint violation using linear optimization and mixed integer programming. The implementation of both optimization criteria is explained in detail. In addition, using constraint sets based on the data from Felleman and Van Essen, optimal hierarchies for the visual network are calculated for both optimization methods.

  4. Focusing light through dynamical samples using fast continuous wavefront optimization.

    Science.gov (United States)

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  5. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Qingyang Zhang

    2015-02-01

    Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.

  6. Parallel Global Optimization with the Particle Swarm Algorithm (Preprint)

    National Research Council Canada - National Science Library

    Schutte, J. F; Reinbolt, J. A; Fregly, B. J; Haftka, R. T; George, A. D

    2004-01-01

    .... To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the Particle Swarm Optimization (PSO) algorithm...

  7. Truss topology optimization with discrete design variables — Guaranteed global optimality and benchmark examples

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Stolpe, Mathias

    2007-01-01

    this problem is well-studied for continuous bar areas, we consider in this study the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single available bar area, i.......e., a 0/1 problem. In contrast to the heuristic methods considered in many other approaches, our goal is to compute guaranteed globally optimal structures. This is done by a branch-and-bound method for which convergence can be proven. In this branch-and-bound framework, lower bounds of the optimal......-integer problems. The main intention of this paper is to provide optimal solutions for single and multiple load benchmark examples, which can be used for testing and validating other methods or heuristics for the treatment of this discrete topology design problem....

  8. Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms

    Science.gov (United States)

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and

  9. Discrete-continuous analysis of optimal equipment replacement

    OpenAIRE

    YATSENKO, Yuri; HRITONENKO, Natali

    2008-01-01

    In Operations Research, the equipment replacement process is usually modeled in discrete time. The optimal replacement strategies are found from discrete (or integer) programming problems, well known for their analytic and computational complexity. An alternative approach is represented by continuous-time vintage capital models that explicitly involve the equipment lifetime and are described by nonlinear integral equations. Then the optimal replacement is determined via the opt...

  10. Forest value and optimal rotations in continuous cover forestry

    DEFF Research Database (Denmark)

    Jacobsen, Jette Bredahl; Jensen, Frank; Thorsen, Bo Jellesmark

    2018-01-01

    The Faustmann forest rotation model is a celebrated contribution in economics. The model provides a forest value expression and allows a solution to the optimal rotation problem valid for perpetual rotations of even-aged forest stands. However, continuous forest cover forest management systems......, but rigorous mathematical model of the continuous cover forest, which strictly focuses on the area use dynamics that such an uneven-aged forest must have in equilibrium. This implies explicitly accounting for area reallocation and for weighting the productivity of each age class by the area occupied. We...... present results for unrestricted as well as area-restricted versions of the models. We find that land values are unambiguously higher in the continuous cover forest models compared with the even-aged models. Under area restrictions, the optimal rotation age in a continuous cover forest model...

  11. Optimality of Gaussian attacks in continuous-variable quantum cryptography.

    Science.gov (United States)

    Navascués, Miguel; Grosshans, Frédéric; Acín, Antonio

    2006-11-10

    We analyze the asymptotic security of the family of Gaussian modulated quantum key distribution protocols for continuous-variables systems. We prove that the Gaussian unitary attack is optimal for all the considered bounds on the key rate when the first and second momenta of the canonical variables involved are known by the honest parties.

  12. 4th International Conference on Frontiers in Global Optimization

    CERN Document Server

    Pardalos, Panos

    2004-01-01

    Global Optimization has emerged as one of the most exciting new areas of mathematical programming. Global optimization has received a wide attraction from many fields in the past few years, due to the success of new algorithms for addressing previously intractable problems from diverse areas such as computational chemistry and biology, biomedicine, structural optimization, computer sciences, operations research, economics, and engineering design and control. This book contains refereed invited papers submitted at the 4th international confer­ ence on Frontiers in Global Optimization held at Santorini, Greece during June 8-12, 2003. Santorini is one of the few sites of Greece, with wild beauty created by the explosion of a volcano which is in the middle of the gulf of the island. The mystic landscape with its numerous mult-extrema, was an inspiring location particularly for researchers working on global optimization. The three previous conferences on "Recent Advances in Global Opti­ mization", "State-of-the-...

  13. SIMULTANEOUS SCHEDULING AND OPERATIONAL OPTIMIZATION OF MULTIPRODUCT, CYCLIC CONTINUOUS PLANTS

    Directory of Open Access Journals (Sweden)

    A. Alle

    2002-03-01

    Full Text Available The problems of scheduling and optimization of operational conditions in multistage, multiproduct continuous plants with intermediate storage are simultaneously addressed. An MINLP model, called TSPFLOW, which is based on the TSP formulation for product sequencing, is proposed to schedule the operation of such plants. TSPFLOW yields a one-order-of-magnitude CPU time reduction as well as the solution of instances larger than those formerly reported (Pinto and Grossmann, 1994. Secondly, processing rates and yields are introduced as additional optimization variables in order to state the simultaneous problem of scheduling with operational optimization. Results show that trade-offs are very complex and that the development of a straightforward (rule of thumb method to optimally schedule the operation is less effective than the proposed approach.

  14. SIMULTANEOUS SCHEDULING AND OPERATIONAL OPTIMIZATION OF MULTIPRODUCT, CYCLIC CONTINUOUS PLANTS

    Directory of Open Access Journals (Sweden)

    Alle A.

    2002-01-01

    Full Text Available The problems of scheduling and optimization of operational conditions in multistage, multiproduct continuous plants with intermediate storage are simultaneously addressed. An MINLP model, called TSPFLOW, which is based on the TSP formulation for product sequencing, is proposed to schedule the operation of such plants. TSPFLOW yields a one-order-of-magnitude CPU time reduction as well as the solution of instances larger than those formerly reported (Pinto and Grossmann, 1994. Secondly, processing rates and yields are introduced as additional optimization variables in order to state the simultaneous problem of scheduling with operational optimization. Results show that trade-offs are very complex and that the development of a straightforward (rule of thumb method to optimally schedule the operation is less effective than the proposed approach.

  15. Microwave tomography global optimization, parallelization and performance evaluation

    CERN Document Server

    Noghanian, Sima; Desell, Travis; Ashtari, Ali

    2014-01-01

    This book provides a detailed overview on the use of global optimization and parallel computing in microwave tomography techniques. The book focuses on techniques that are based on global optimization and electromagnetic numerical methods. The authors provide parallelization techniques on homogeneous and heterogeneous computing architectures on high performance and general purpose futuristic computers. The book also discusses the multi-level optimization technique, hybrid genetic algorithm and its application in breast cancer imaging.

  16. Decentralized Control Using Global Optimization (DCGO) (Preprint)

    National Research Council Canada - National Science Library

    Flint, Matthew; Khovanova, Tanya; Curry, Michael

    2007-01-01

    The coordination of a team of distributed air vehicles requires a complex optimization, balancing limited communication bandwidths, non-instantaneous planning times and network delays, while at the...

  17. GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.

    Energy Technology Data Exchange (ETDEWEB)

    D' Helon, CD

    2004-08-18

    The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.

  18. Application of a Continuous Particle Swarm Optimization (CPSO for the Optimal Coordination of Overcurrent Relays Considering a Penalty Method

    Directory of Open Access Journals (Sweden)

    Abdul Wadood

    2018-04-01

    Full Text Available In an electrical power system, the coordination of the overcurrent relays plays an important role in protecting the electrical system by providing primary as well as backup protection. To reduce power outages, the coordination between these relays should be kept at the optimum value to minimize the total operating time and ensure that the least damage occurs under fault conditions. It is also imperative to ensure that the relay setting does not create an unintentional operation and consecutive sympathy trips. In a power system protection coordination problem, the objective function to be optimized is the sum of the total operating time of all main relays. In this paper, the coordination of overcurrent relays in a ring fed distribution system is formulated as an optimization problem. Coordination is performed using proposed continuous particle swarm optimization. In order to enhance and improve the quality of this solution a local search algorithm (LSA is implanted into the original particle swarm algorithm (PSO and, in addition to the constraints, these are amalgamated into the fitness function via the penalty method. The results achieved from the continuous particle swarm optimization algorithm (CPSO are compared with other evolutionary optimization algorithms (EA and this comparison showed that the proposed scheme is competent in dealing with the relevant problems. From further analyzing the obtained results, it was found that the continuous particle swarm approach provides the most globally optimum solution.

  19. Interactive Cosegmentation Using Global and Local Energy Optimization

    OpenAIRE

    Xingping Dong,; Jianbing Shen,; Shao, Ling; Yang, Ming-Hsuan

    2015-01-01

    We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothne...

  20. Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.

  1. WFH: closing the global gap--achieving optimal care.

    Science.gov (United States)

    Skinner, Mark W

    2012-07-01

    For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan

  2. Forest value and optimal rotations in continuous cover forestry

    DEFF Research Database (Denmark)

    Jacobsen, Jette Bredahl; Jensen, Frank; Thorsen, Bo Jellesmark

    The Faustmann forest rotation model is a celebrated contribution in economics. The model provides a forest value expression and allows a solution to the optimal rotation problem valid for perpetual rotations of even-aged forest stands. However, continuous forest cover forest management systems......, but rigorous mathematical model of the continuous cover forest, which strictly focuses on the area use dynamics that such an uneven-aged forest must have in equilibrium. This implies explicitly accounting for area reallocation and for weighting the productivity of each age class by the area occupied. The model...... allows for a simple expression for forest value and the derivation of conditions for the optimal rotation age. The model also makes straightforward comparisons with the well-known Faustmann model possible. We present results for unrestricted as well as area-restricted versions of the models. We find...

  3. Optimal use of multipartite entanglement for continuous variable teleportation

    International Nuclear Information System (INIS)

    Adesso, G.; Illuminati, F.

    2005-01-01

    Full text: In this work we discuss how continuous variable teleportation takes advantage of the quadrature entanglement in different ways, depending on the preparation of the entangled state. For a given amount of the entanglement resource, we describe the best production scheme for a two-mode Gaussian state, which enables quantum teleportation with optimal fidelity. We extend this study to multiparty entangled Gaussian states and define an operative measure of multipartite entanglement related to the optimal fidelity in a quantum teleportation network experiment. This optimal fidelity is shown to be equivalent to the entanglement of formation for the standard two-user protocol, and to the multipartite localizable entanglement for the multiuser protocol. (author)

  4. Nonlinear adaptive optimization of biomass productivity in continuous bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Sauvaire, P; Mellichamp, D A; Agrawal, P [California Univ., Santa Barbara, CA (United States). Dept. of Chemical and Nuclear Engineering

    1991-11-01

    A novel on-line adaptive optimization algorithm is developed and applied to continuous biological reactors. The algorithm makes use of a simple nonlinear estimation model that relates either the cell-mass productivity or the cell-mass concentration to the dilution rate. On-line estimation is used to recursively identify the parameters in the nonlinear process model and to periodically calculate and steer the bioreactor to the dilution rate that yields optimum cell-mass productivity. Thus, the algorithm does not require an accurate process model, locates the optimum dilution rate online, and maintains the bioreactors at this optimum condition at all times. The features of the proposed new algorithm are compared with those of other adaptive optimization techniques presented in the literature. A detailed simulation study using three different microbial system models was conducted to illustrate the performance of the optimization algorithms. (orig.).

  5. A New Hybrid Whale Optimizer Algorithm with Mean Strategy of Grey Wolf Optimizer for Global Optimization

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    2018-03-01

    Full Text Available The quest for an efficient nature-inspired optimization technique has continued over the last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed. The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO and Whale Optimizer Algorithm (WOA. We have utilized the spiral equation of Whale Optimizer Algorithm for two procedures in the Hybrid Approach GWO (HAGWO algorithm: (i firstly, we used the spiral equation in Grey Wolf Optimizer algorithm for balance between the exploitation and the exploration process in the new hybrid approach; and (ii secondly, we also applied this equation in the whole population in order to refrain from the premature convergence and trapping in local minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design problems and comparing the results with those obtained through other metaheuristics. The solutions prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate and computational accuracy than other nature-inspired metaheuristics on the maximum number of problems and can successfully resolve the function of constrained nonlinear optimization in reality.

  6. Optimization and control of a continuous polymerization reactor

    Directory of Open Access Journals (Sweden)

    L. A. Alvarez

    2012-12-01

    Full Text Available This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO, the Model Predictive Control (MPC and a Target Calculation (TC that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

  7. Theory and Algorithms for Global/Local Design Optimization

    National Research Council Canada - National Science Library

    Haftka, Raphael T

    2004-01-01

    ... the component and overall design as well as on exploration of global optimization algorithms. In the former category, heuristic decomposition was followed with proof that it solves the original problem...

  8. Theory and Algorithms for Global/Local Design Optimization

    National Research Council Canada - National Science Library

    Watson, Layne T; Guerdal, Zafer; Haftka, Raphael T

    2005-01-01

    The motivating application for this research is the global/local optimal design of composite aircraft structures such as wings and fuselages, but the theory and algorithms are more widely applicable...

  9. Acceleration techniques in the univariate Lipschitz global optimization

    Science.gov (United States)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela

    2016-10-01

    Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.

  10. Global optimization of silicon nanowires for efficient parametric processes

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Xu, Jing; Mørk, Jesper

    2013-01-01

    We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions.......We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions....

  11. Optimization of continuous ranked probability score using PSO

    Directory of Open Access Journals (Sweden)

    Seyedeh Atefeh Mohammadi

    2015-07-01

    Full Text Available Weather forecast has been a major concern in various industries such as agriculture, aviation, maritime, tourism, transportation, etc. A good weather prediction may reduce natural disasters and unexpected events. This paper presents an empirical investigation to predict weather temperature using continuous ranked probability score (CRPS. The mean and standard deviation of normal density function are linear combination of the components of ensemble system. The resulted optimization model has been solved using particle swarm optimization (PSO and the results are compared with Broyden–Fletcher–Goldfarb–Shanno (BFGS method. The preliminary results indicate that the proposed PSO provides better results in terms of root-mean-square deviation criteria than the alternative BFGS method.

  12. Global optimization framework for solar building design

    Science.gov (United States)

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  13. Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Silviya Popova

    2009-10-01

    Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.

  14. Optimization of asparaginase production from Zymomonas mobilis by continuous fermentation

    Directory of Open Access Journals (Sweden)

    Francieli Bortoluzzi Menegat

    2016-10-01

    Full Text Available Asparaginase is an enzyme used in clinical treatments as a chemotherapeutic agent and in food technology to prevent acrylamide formation in fried and baked foods. Asparaginase is industrially produced by microorganisms, mainly gram-negative bacteria. Zymomonas mobilis is a Gram-negative bacterium that utilizes glucose, fructose and sucrose as carbon source and has been known for its efficiency in producing ethanol, sorbitol, levan, gluconic acid and has recently aroused interest for asparaginase production. Current assay optimizes the production of Z. mobilis asparaginase by continuous fermentation using response surface experimental design and methodology. The studied variables comprised sucrose, yeast extract and asparagine. Optimized condition obtained 117.45 IU L-1 with dilution rate 0.20 h-1, yeast extract 0.5 g L-1, sucrose 20 g L-1 and asparagine 1.3 g L-1. Moreover, carbon:nitrogen ratio (1:0.025 strongly affected the response of asparaginase activity. The use of Z. mobilis by continuous fermentation has proved to be a promising alternative for the biotechnological production of asparaginase.

  15. An Improved Real-Coded Population-Based Extremal Optimization Method for Continuous Unconstrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2014-01-01

    Full Text Available As a novel evolutionary optimization method, extremal optimization (EO has been successfully applied to a variety of combinatorial optimization problems. However, the applications of EO in continuous optimization problems are relatively rare. This paper proposes an improved real-coded population-based EO method (IRPEO for continuous unconstrained optimization problems. The key operations of IRPEO include generation of real-coded random initial population, evaluation of individual and population fitness, selection of bad elements according to power-law probability distribution, generation of new population based on uniform random mutation, and updating the population by accepting the new population unconditionally. The experimental results on 10 benchmark test functions with the dimension N=30 have shown that IRPEO is competitive or even better than the recently reported various genetic algorithm (GA versions with different mutation operations in terms of simplicity, effectiveness, and efficiency. Furthermore, the superiority of IRPEO to other evolutionary algorithms such as original population-based EO, particle swarm optimization (PSO, and the hybrid PSO-EO is also demonstrated by the experimental results on some benchmark functions.

  16. Optimizing human activity patterns using global sensitivity analysis.

    Science.gov (United States)

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  17. Simulation and optimization of continuous extractive fermentation with recycle system

    Science.gov (United States)

    Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo

    2017-05-01

    Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.

  18. Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories

    Science.gov (United States)

    Ng, Hok Kwan; Sridhar, Banavar

    2016-01-01

    This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASAs Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies.

  19. Application of surrogate-based global optimization to aerodynamic design

    CERN Document Server

    Pérez, Esther

    2016-01-01

    Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogat...

  20. Global Optimization for Bus Line Timetable Setting Problem

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2014-01-01

    Full Text Available This paper defines bus timetables setting problem during each time period divided in terms of passenger flow intensity; it is supposed that passengers evenly arrive and bus runs are set evenly; the problem is to determine bus runs assignment in each time period to minimize the total waiting time of passengers on platforms if the number of the total runs is known. For such a multistage decision problem, this paper designed a dynamic programming algorithm to solve it. Global optimization procedures using dynamic programming are developed. A numerical example about bus runs assignment optimization of a single line is given to demonstrate the efficiency of the proposed methodology, showing that optimizing buses’ departure time using dynamic programming can save computational time and find the global optimal solution.

  1. A dynamic global and local combined particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Chen Qunxian

    2009-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.

  2. A DE-Based Scatter Search for Global Optimization Problems

    Directory of Open Access Journals (Sweden)

    Kun Li

    2015-01-01

    Full Text Available This paper proposes a hybrid scatter search (SS algorithm for continuous global optimization problems by incorporating the evolution mechanism of differential evolution (DE into the reference set updated procedure of SS to act as the new solution generation method. This hybrid algorithm is called a DE-based SS (SSDE algorithm. Since different kinds of mutation operators of DE have been proposed in the literature and they have shown different search abilities for different kinds of problems, four traditional mutation operators are adopted in the hybrid SSDE algorithm. To adaptively select the mutation operator that is most appropriate to the current problem, an adaptive mechanism for the candidate mutation operators is developed. In addition, to enhance the exploration ability of SSDE, a reinitialization method is adopted to create a new population and subsequently construct a new reference set whenever the search process of SSDE is trapped in local optimum. Computational experiments on benchmark problems show that the proposed SSDE is competitive or superior to some state-of-the-art algorithms in the literature.

  3. Conference on "State of the Art in Global Optimization : Computational Methods and Applications"

    CERN Document Server

    Pardalos, P

    1996-01-01

    Optimization problems abound in most fields of science, engineering, and technology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob­ lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver­ age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solvin...

  4. Improved Particle Swarm Optimization with a Collective Local Unimodal Search for Continuous Optimization Problems

    Science.gov (United States)

    Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka

    2014-01-01

    A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants. PMID:24723827

  5. Global-local optimization of flapping kinematics in hovering flight

    KAUST Repository

    Ghommem, Mehdi; Hajj, M. R.; Mook, Dean T.; Stanford, Bret K.; Bé ran, Philip S.; Watson, Layne T.

    2013-01-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  6. Global-local optimization of flapping kinematics in hovering flight

    KAUST Repository

    Ghommem, Mehdi

    2013-06-01

    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.

  7. Dispositional Optimism and Terminal Decline in Global Quality of Life

    Science.gov (United States)

    Zaslavsky, Oleg; Palgi, Yuval; Rillamas-Sun, Eileen; LaCroix, Andrea Z.; Schnall, Eliezer; Woods, Nancy F.; Cochrane, Barbara B.; Garcia, Lorena; Hingle, Melanie; Post, Stephen; Seguin, Rebecca; Tindle, Hilary; Shrira, Amit

    2015-01-01

    We examined whether dispositional optimism relates to change in global quality of life (QOL) as a function of either chronological age or years to impending death. We used a sample of 2,096 deceased postmenopausal women from the Women's Health Initiative clinical trials who were enrolled in the 2005-2010 Extension Study and for whom at least 1…

  8. Global Optimization Based on the Hybridization of Harmony Search and Particle Swarm Optimization Methods

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2014-01-01

    Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.

  9. Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2012-01-01

    Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.

  10. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  11. Continuous dynamic assimilation of the inner region data in hydrodynamics modelling: optimization approach

    Directory of Open Access Journals (Sweden)

    F. I. Pisnitchenko

    2008-11-01

    Full Text Available In meteorological and oceanological studies the classical approach for finding the numerical solution of the regional model consists in formulating and solving a Cauchy-Dirichlet problem. The boundary conditions are obtained by linear interpolation of coarse-grid data provided by a global model. Errors in boundary conditions due to interpolation may cause large deviations from the correct regional solution. The methods developed to reduce these errors deal with continuous dynamic assimilation of known global data available inside the regional domain. One of the approaches of this assimilation procedure performs a nudging of large-scale components of regional model solution to large-scale global data components by introducing relaxation forcing terms into the regional model equations. As a result, the obtained solution is not a valid numerical solution to the original regional model. Another approach is the use a four-dimensional variational data assimilation procedure which is free from the above-mentioned shortcoming. In this work we formulate the joint problem of finding the regional model solution and data assimilation as a PDE-constrained optimization problem. Three simple model examples (ODE Burgers equation, Rossby-Oboukhov equation, Korteweg-de Vries equation are considered in this paper. Numerical experiments indicate that the optimization approach can significantly improve the precision of the regional solution.

  12. An Optimal Method for Developing Global Supply Chain Management System

    Directory of Open Access Journals (Sweden)

    Hao-Chun Lu

    2013-01-01

    Full Text Available Owing to the transparency in supply chains, enhancing competitiveness of industries becomes a vital factor. Therefore, many developing countries look for a possible method to save costs. In this point of view, this study deals with the complicated liberalization policies in the global supply chain management system and proposes a mathematical model via the flow-control constraints, which are utilized to cope with the bonded warehouses for obtaining maximal profits. Numerical experiments illustrate that the proposed model can be effectively solved to obtain the optimal profits in the global supply chain environment.

  13. GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2012-01-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  14. Global Optimization of Minority Game by Smart Agents

    OpenAIRE

    Yan-Bo Xie; Bing-Hong Wang; Chin-Kun Hu; Tao Zhou

    2004-01-01

    We propose a new model of minority game with so-called smart agents such that the standard deviation and the total loss in this model reach the theoretical minimum values in the limit of long time. The smart agents use trail and error method to make a choice but bring global optimization to the system, which suggests that the economic systems may have the ability to self-organize into a highly optimized state by agents who are forced to make decisions based on inductive thinking for their lim...

  15. An Algorithm for Global Optimization Inspired by Collective Animal Behavior

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2012-01-01

    Full Text Available A metaheuristic algorithm for global optimization called the collective animal behavior (CAB is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.

  16. A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhijun Luo

    2014-01-01

    Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.

  17. Optimal design of RTCs in digital circuit fault self-repair based on global signal optimization

    Institute of Scientific and Technical Information of China (English)

    Zhang Junbin; Cai Jinyan; Meng Yafeng

    2016-01-01

    Since digital circuits have been widely and thoroughly applied in various fields, electronic systems are increasingly more complicated and require greater reliability. Faults may occur in elec-tronic systems in complicated environments. If immediate field repairs are not made on the faults, elec-tronic systems will not run normally, and this will lead to serious losses. The traditional method for improving system reliability based on redundant fault-tolerant technique has been unable to meet the requirements. Therefore, on the basis of (evolvable hardware)-based and (reparation balance technology)-based electronic circuit fault self-repair strategy proposed in our preliminary work, the optimal design of rectification circuits (RTCs) in electronic circuit fault self-repair based on global sig-nal optimization is deeply researched in this paper. First of all, the basic theory of RTC optimal design based on global signal optimization is proposed. Secondly, relevant considerations and suitable ranges are analyzed. Then, the basic flow of RTC optimal design is researched. Eventually, a typical circuit is selected for simulation verification, and detailed simulated analysis is made on five circumstances that occur during RTC evolution. The simulation results prove that compared with the conventional design method based RTC, the global signal optimization design method based RTC is lower in hardware cost, faster in circuit evolution, higher in convergent precision, and higher in circuit evolution success rate. Therefore, the global signal optimization based RTC optimal design method applied in the elec-tronic circuit fault self-repair technology is proven to be feasible, effective, and advantageous.

  18. On convergence of differential evolution over a class of continuous functions with unique global optimum.

    Science.gov (United States)

    Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik

    2012-02-01

    Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.

  19. Design by continuous collaboration between manual and automatic optimization

    NARCIS (Netherlands)

    K.E. Shahroudi

    1997-01-01

    textabstractNumerical optimization is traditionally viewed as a machine centric activity. This view dominates the majority of numerical optimization packages today, where user interaction is normally limited to the problem definition phase or visualization of the results with little or no

  20. Local and global dynamics of Ramsey model: From continuous to discrete time.

    Science.gov (United States)

    Guzowska, Malgorzata; Michetti, Elisabetta

    2018-05-01

    The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.

  1. Proposal of Evolutionary Simplex Method for Global Optimization Problem

    Science.gov (United States)

    Shimizu, Yoshiaki

    To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.

  2. Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.

  3. Global optimization for quantum dynamics of few-fermion systems

    Science.gov (United States)

    Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.

    2018-03-01

    Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.

  4. Global dissipativity of continuous-time recurrent neural networks with time delay

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Wang Jun

    2003-01-01

    This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems

  5. A Local and Global Search Combined Particle Swarm Optimization Algorithm and Its Convergence Analysis

    Directory of Open Access Journals (Sweden)

    Weitian Lin

    2014-01-01

    Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.

  6. Avoiding spurious submovement decompositions: a globally optimal algorithm

    International Nuclear Information System (INIS)

    Rohrer, Brandon Robinson; Hogan, Neville

    2003-01-01

    Evidence for the existence of discrete submovements underlying continuous human movement has motivated many attempts to extract them. Although they produce visually convincing results, all of the methodologies that have been employed are prone to produce spurious decompositions. Examples of potential failures are given. A branch-and-bound algorithm for submovement extraction, capable of global nonlinear minimization (and hence capable of avoiding spurious decompositions), is developed and demonstrated.

  7. Global structural optimizations of surface systems with a genetic algorithm

    International Nuclear Information System (INIS)

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems

  8. Globally convergent optimization algorithm using conservative convex separable diagonal quadratic approximations

    NARCIS (Netherlands)

    Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.

    2009-01-01

    We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by

  9. A Novel Hybrid Firefly Algorithm for Global Optimization.

    Directory of Open Access Journals (Sweden)

    Lina Zhang

    Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.

  10. A Global Network Alignment Method Using Discrete Particle Swarm Optimization.

    Science.gov (United States)

    Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia

    2016-10-19

    Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.

  11. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    Science.gov (United States)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  12. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury

    NARCIS (Netherlands)

    Aries, M.J.H.; Czosnyka, Marek; Budohoski, Karol P.; Steiner, Luzius A.; Lavinio, Andrea; Kolias, Angelos G.; Hutchinson, Peter J.; Brady, Ken M.; Menon, David K.; Pickard, John D.; Smielewski, Peter

    Objectives: We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by

  13. Global optimization of minority game by intelligent agents

    Science.gov (United States)

    Xie, Yan-Bo; Wang, Bing-Hong; Hu, Chin-Kun; Zhou, Tao

    2005-10-01

    We propose a new model of minority game with intelligent agents who use trail and error method to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical minimum values in the long time limit and the global optimization of the system is reached. This suggests that the economic systems can self-organize into a highly optimized state by agents who make decisions based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also present, the simulation results and analytic calculations show that the intelligent agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority games proposed by Challet and Zhang.

  14. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  15. Global optimization in the adaptive assay of subterranean uranium nodules

    International Nuclear Information System (INIS)

    Vulkan, U.; Ben-Haim, Y.

    1989-01-01

    An adaptive assay is one in which the design of the assay system is modified during operation in response to measurements obtained on-line. The present work has two aims: to design an adaptive system for borehole assay of isolated subterranean uranium nodules, and to investigate globality of optimal design in adaptive assay. It is shown experimentally that reasonably accurate estimates of uranium mass are obtained for a wide range of nodule shapes, on the basis of an adaptive assay system based on a simple geomorphological model. Furthermore, two concepts are identified which underlie the optimal design of the assay system. The adaptive assay approach shows promise for successful measurement of spatially random material in many geophysical applications. (author)

  16. A concept for global optimization of topology design problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi

    2006-01-01

    We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...... on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...

  17. A Unified Differential Evolution Algorithm for Global Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; Mitchell, Chad

    2014-06-24

    Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.

  18. Simulated Annealing-Based Krill Herd Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Gai-Ge Wang

    2013-01-01

    Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.

  19. Turnpike theory of continuous-time linear optimal control problems

    CERN Document Server

    Zaslavski, Alexander J

    2015-01-01

    Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems.  The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands.  Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...

  20. Energy consumption optimization of a continuous ice cream process

    International Nuclear Information System (INIS)

    González-Ramírez, J.E.; Leducq, D.; Arellano, M.; Alvarez, G.

    2013-01-01

    Highlights: • This work investigates potential energy savings of an ice cream freezer. • From a full load compressor to a variable speed compressor one in freezer. • 30% less of energy consumption. • It is possible to save between 11 and 14 MWh per year by optimizing freezers. - Abstract: This work investigates potential energy saves in an ice cream freezer by using a variable speed compressor and optimization’s methodology for operating conditions during the process. Two configurations to control the refrigeration capacity were analyzed, the first one, modifies the pressure through the pilot control valve (conventional refrigeration system) and the second one with a variable speed compressor, both with a float expansion valve. Variable speed compressor configuration has showed the highest coefficient of performance and around of 30% less of energy consumption than the conventional one. The optimization of operating conditions in order to minimize the energy consumption is also presented. It was calculated only in France, for all ice cream and sorbet production, it is possible to save energy between 11 and 14 MWh per year by optimizing the operation of the refrigeration system through a variable speed compressor configuration

  1. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    Science.gov (United States)

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  2. Identification of metabolic system parameters using global optimization methods

    Directory of Open Access Journals (Sweden)

    Gatzke Edward P

    2006-01-01

    Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.

  3. Optimal Preventive Bank Supervision: Combining Random Audits and Continuous Intervention

    OpenAIRE

    Mohamed Belhaj; Nataliya Klimenko

    2012-01-01

    Early regulator interventions into problem banks are one of the key suggestions of Basel II. However, no guidance is given on their design. To fill this gap, we outline an incentive-based preventive supervision strategy that eliminates bad asset management in banks. Two supervision techniques are combined: continuous regulator intervention and random audits. Random audit technologies differ as to quality and cost. Our design ensures good management without excessive supervision costs, through...

  4. Spatiotemporal radiotherapy planning using a global optimization approach

    Science.gov (United States)

    Adibi, Ali; Salari, Ehsan

    2018-02-01

    This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.

  5. Globalization as Continuing Colonialism: Critical Global Citizenship Education in an Unequal World

    Science.gov (United States)

    Mikander, Pia

    2016-01-01

    In an unequal world, education about global inequality can be seen as a controversial but necessary topic for social science to deal with. Even though the world no longer consists of colonies and colonial powers, many aspects of the global economy follow the same patterns as during colonial times, with widening gaps between the world's richest and…

  6. Optimal correction and design parameter search by modern methods of rigorous global optimization

    International Nuclear Information System (INIS)

    Makino, K.; Berz, M.

    2011-01-01

    Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle

  7. Topological Effects and Performance Optimization in Transportation Continuous Network Design

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2014-01-01

    Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.

  8. Design optimization of continuous partially prestressed concrete beams

    Science.gov (United States)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  9. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 500m SIN Grid V051

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra MODIS Vegetation Continuous Fields (VCF) product is a sub-pixel-level representation of surface vegetation cover estimates globally. Designed to...

  10. Landsat Data Continuity Mission (LDCM) - Optimizing X-Band Usage

    Science.gov (United States)

    Garon, H. M.; Gal-Edd, J. S.; Dearth, K. W.; Sank, V. I.

    2010-01-01

    The NASA version of the low-density parity check (LDPC) 7/8-rate code, shortened to the dimensions of (8160, 7136), has been implemented as the forward error correction (FEC) schema for the Landsat Data Continuity Mission (LDCM). This is the first flight application of this code. In order to place a 440 Msps link within the 375 MHz wide X band we found it necessary to heavily bandpass filter the satellite transmitter output . Despite the significant amplitude and phase distortions that accompanied the spectral truncation, the mission required BER is maintained at LDPC code and the amplitude and phase compensation provided in the receiver. Similar results were obtained with receivers from several vendors.

  11. Implementation and verification of global optimization benchmark problems

    Science.gov (United States)

    Posypkin, Mikhail; Usov, Alexander

    2017-12-01

    The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its' gradient at a given point and the interval estimates of a function and its' gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.

  12. Global optimization applied to GPS positioning by ambiguity functions

    International Nuclear Information System (INIS)

    Baselga, Sergio

    2010-01-01

    Differential GPS positioning with carrier-phase observables is commonly done in a process that involves determination of the unknown integer ambiguity values. An alternative approach, named the ambiguity function method, was already proposed in the early days of GPS positioning. By making use of a trigonometric function ambiguity unknowns are eliminated from the functional model before the estimation process. This approach has significant advantages, such as ease of use and insensitivity to cycle slips, but requires such high accuracy in the initial approximate coordinates that its use has been practically dismissed from consideration. In this paper a novel strategy is proposed so that the need for highly accurate initial coordinates disappears: the application of a global optimization method to the ambiguity functions model. The use of this strategy enables the ambiguity function method to compete with the present prevailing approach of ambiguity resolution

  13. Global optimization numerical strategies for rate-independent processes

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora

    2011-01-01

    Roč. 50, č. 2 (2011), s. 197-220 ISSN 0925-5001 R&D Projects: GA ČR GAP201/10/0357 Grant - others:GA MŠk(CZ) LC06052 Program:LC Institutional research plan: CEZ:AV0Z20760514 Keywords : rate-independent processes * numerical global optimization * energy estimates based algorithm Subject RIV: BA - General Mathematics Impact factor: 1.196, year: 2011 http://math.hnue.edu.vn/portal/rss.viewpage.php?id=0000037780&ap=L3BvcnRhbC9ncmFiYmVyLnBocD9jYXRpZD0xMDEyJnBhZ2U9Mg==

  14. Implementation and verification of global optimization benchmark problems

    Directory of Open Access Journals (Sweden)

    Posypkin Mikhail

    2017-12-01

    Full Text Available The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its’ gradient at a given point and the interval estimates of a function and its’ gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.

  15. Adjusting process count on demand for petascale global optimization

    KAUST Repository

    Sosonkina, Masha; Watson, Layne T.; Radcliffe, Nicholas R.; Haftka, Rafael T.; Trosset, Michael W.

    2013-01-01

    There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, the modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed.

  16. A practical globalization of one-shot optimization for optimal design of tokamak divertors

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten, E-mail: maarten.blommaert@kuleuven.be [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany); Dekeyser, Wouter; Baelmans, Martine [KU Leuven, Department of Mechanical Engineering, 3001 Leuven (Belgium); Gauger, Nicolas R. [TU Kaiserslautern, Chair for Scientific Computing, 67663 Kaiserslautern (Germany); Reiter, Detlev [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany)

    2017-01-01

    In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes only state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.

  17. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    Science.gov (United States)

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  18. The Expanded Invasive Weed Optimization Metaheuristic for Solving Continuous and Discrete Optimization Problems

    Directory of Open Access Journals (Sweden)

    Henryk Josiński

    2014-01-01

    Full Text Available This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.

  19. A Comparative Study on Recently-Introduced Nature-Based Global Optimization Methods in Complex Mechanical System Design

    Directory of Open Access Journals (Sweden)

    Abdulbaset El Hadi Saad

    2017-10-01

    Full Text Available Advanced global optimization algorithms have been continuously introduced and improved to solve various complex design optimization problems for which the objective and constraint functions can only be evaluated through computation intensive numerical analyses or simulations with a large number of design variables. The often implicit, multimodal, and ill-shaped objective and constraint functions in high-dimensional and “black-box” forms demand the search to be carried out using low number of function evaluations with high search efficiency and good robustness. This work investigates the performance of six recently introduced, nature-inspired global optimization methods: Artificial Bee Colony (ABC, Firefly Algorithm (FFA, Cuckoo Search (CS, Bat Algorithm (BA, Flower Pollination Algorithm (FPA and Grey Wolf Optimizer (GWO. These approaches are compared in terms of search efficiency and robustness in solving a set of representative benchmark problems in smooth-unimodal, non-smooth unimodal, smooth multimodal, and non-smooth multimodal function forms. In addition, four classic engineering optimization examples and a real-life complex mechanical system design optimization problem, floating offshore wind turbines design optimization, are used as additional test cases representing computationally-expensive black-box global optimization problems. Results from this comparative study show that the ability of these global optimization methods to obtain a good solution diminishes as the dimension of the problem, or number of design variables increases. Although none of these methods is universally capable, the study finds that GWO and ABC are more efficient on average than the other four in obtaining high quality solutions efficiently and consistently, solving 86% and 80% of the tested benchmark problems, respectively. The research contributes to future improvements of global optimization methods.

  20. On the Performance of Linear Decreasing Inertia Weight Particle Swarm Optimization for Global Optimization

    Science.gov (United States)

    Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka

    2013-01-01

    Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383

  1. Optimizing Cost of Continuous Overlapping Queries over Data Streams by Filter Adaption

    KAUST Repository

    Xie, Qing; Zhang, Xiangliang; Li, Zhixu; Zhou, Xiaofang

    2016-01-01

    The problem we aim to address is the optimization of cost management for executing multiple continuous queries on data streams, where each query is defined by several filters, each of which monitors certain status of the data stream. Specially

  2. Cloud Particles Differential Evolution Algorithm: A Novel Optimization Method for Global Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-01-01

    Full Text Available We propose a new optimization algorithm inspired by the formation and change of the cloud in nature, referred to as Cloud Particles Differential Evolution (CPDE algorithm. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The best solution found so far acts as a nucleus. In gaseous state, the nucleus leads the population to explore by condensation operation. In liquid state, cloud particles carry out macrolocal exploitation by liquefaction operation. A new mutation strategy called cloud differential mutation is introduced in order to solve a problem that the misleading effect of a nucleus may cause the premature convergence. In solid state, cloud particles carry out microlocal exploitation by solidification operation. The effectiveness of the algorithm is validated upon different benchmark problems. The results have been compared with eight well-known optimization algorithms. The statistical analysis on performance evaluation of the different algorithms on 10 benchmark functions and CEC2013 problems indicates that CPDE attains good performance.

  3. Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-10-07

    We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.

  4. Automatic Construction and Global Optimization of a Multisentiment Lexicon

    Directory of Open Access Journals (Sweden)

    Xiaoping Yang

    2016-01-01

    Full Text Available Manual annotation of sentiment lexicons costs too much labor and time, and it is also difficult to get accurate quantification of emotional intensity. Besides, the excessive emphasis on one specific field has greatly limited the applicability of domain sentiment lexicons (Wang et al., 2010. This paper implements statistical training for large-scale Chinese corpus through neural network language model and proposes an automatic method of constructing a multidimensional sentiment lexicon based on constraints of coordinate offset. In order to distinguish the sentiment polarities of those words which may express either positive or negative meanings in different contexts, we further present a sentiment disambiguation algorithm to increase the flexibility of our lexicon. Lastly, we present a global optimization framework that provides a unified way to combine several human-annotated resources for learning our 10-dimensional sentiment lexicon SentiRuc. Experiments show the superior performance of SentiRuc lexicon in category labeling test, intensity labeling test, and sentiment classification tasks. It is worth mentioning that, in intensity label test, SentiRuc outperforms the second place by 21 percent.

  5. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    An optimization analysis of a continuous TREC (thermally regenerative electrochemical cycle) was conducted with maximum power output and exergy efficiency as the objective functions simultaneously. For comparison, the power output, exergy efficiency, and thermal efficiency under the corresponding single-objective optimization schematics were also calculated. Under different optimization methods it was observed that the power output and the thermal efficiency increase with increasing inlet temperature of the heat source, whereas the exergy efficiency increases with increasing inlet temperature, reaches a maximum value, and then decreases. Results revealed that the optimal power output under the multi-objective optimization turned out to be slightly less than that obtained under the single-objective optimization for power output. However, the exergy and thermal efficiencies were much greater. Furthermore, the thermal exergy and exergy efficiency by single-objective optimization for energy efficiency shows no dominant advantage than that obtained under multi-objective optimization, comparing with the increase amplitude of the power output. This suggests that the multi-objective optimization could coordinate well both the power output and the exergy efficiency of the TREC system, and may serve as a more promising guide for operating and designing TREC systems. - Highlights: • An optimal analysis of a continuous TREC is conducted based on multi-objective optimization. • Performance under corresponding single-objective optimizations has also been calculated and compared. • Power under multi-objective optimization is slightly less than the maximum power. • Exergy and thermal efficiencies are much larger than that under the single-objective optimization.

  6. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    Science.gov (United States)

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  7. Global stabilization of linear continuous time-varying systems with bounded controls

    International Nuclear Information System (INIS)

    Phat, V.N.

    2004-08-01

    This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)

  8. A simple boundary element formulation for shape optimization of 2D continuous structures

    International Nuclear Information System (INIS)

    Luciano Mendes Bezerra; Jarbas de Carvalho Santos Junior; Arlindo Pires Lopes; Andre Luiz; Souza, A.C.

    2005-01-01

    For the design of nuclear equipment like pressure vessels, steam generators, and pipelines, among others, it is very important to optimize the shape of the structural systems to withstand prescribed loads such as internal pressures and prescribed or limiting referential values such as stress or strain. In the literature, shape optimization of frame structural systems is commonly found but the same is not true for continuous structural systems. In this work, the Boundary Element Method (BEM) is applied to simple problems of shape optimization of 2D continuous structural systems. The proposed formulation is based on the BEM and on deterministic optimization methods of zero and first order such as Powell's, Conjugate Gradient, and BFGS methods. Optimal characterization for the geometric configuration of 2D structure is obtained with the minimization of an objective function. Such function is written in terms of referential values (such as loads, stresses, strains or deformations) prescribed at few points inside or at the boundary of the structure. The use of the BEM for shape optimization of continuous structures is attractive compared to other methods that discretized the whole continuous. Several numerical examples of the application of the proposed formulation to simple engineering problems are presented. (authors)

  9. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.; Fabry, D.C.; Heddrich, S.; Sugiono, E.; Liauw, M.A.; Rueping, Magnus

    2018-01-01

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  10. Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions

    KAUST Repository

    Poscharny, K.

    2018-04-07

    A methodology for the synthesis of oxetanes from benzophenone and furan derivatives is presented. UV-light irradiation in batch and flow systems allowed the [2 + 2] cycloaddition reaction to proceed and a broad range of oxetanes could be synthesized in manual and automated fashion. The identification of high-yielding reaction parameters was achieved through a new self-optimizing photoreactor system.

  11. Global Optimization Employing Gaussian Process-Based Bayesian Surrogates

    Directory of Open Access Journals (Sweden)

    Roland Preuss

    2018-03-01

    Full Text Available The simulation of complex physics models may lead to enormous computer running times. Since the simulations are expensive it is necessary to exploit the computational budget in the best possible manner. If for a few input parameter settings an output data set has been acquired, one could be interested in taking these data as a basis for finding an extremum and possibly an input parameter set for further computer simulations to determine it—a task which belongs to the realm of global optimization. Within the Bayesian framework we utilize Gaussian processes for the creation of a surrogate model function adjusted self-consistently via hyperparameters to represent the data. Although the probability distribution of the hyperparameters may be widely spread over phase space, we make the assumption that only the use of their expectation values is sufficient. While this shortcut facilitates a quickly accessible surrogate, it is somewhat justified by the fact that we are not interested in a full representation of the model by the surrogate but to reveal its maximum. To accomplish this the surrogate is fed to a utility function whose extremum determines the new parameter set for the next data point to obtain. Moreover, we propose to alternate between two utility functions—expected improvement and maximum variance—in order to avoid the drawbacks of each. Subsequent data points are drawn from the model function until the procedure either remains in the points found or the surrogate model does not change with the iteration. The procedure is applied to mock data in one and two dimensions in order to demonstrate proof of principle of the proposed approach.

  12. Global stability-based design optimization of truss structures using ...

    Indian Academy of Sciences (India)

    Furthermore, a pure pareto-ranking based multi-objective optimization model is employed for the design optimization of the truss structure with multiple objectives. The computational performance of the optimization model is increased by implementing an island model into its evolutionary search mechanism. The proposed ...

  13. An Improved Teaching-Learning-Based Optimization with the Social Character of PSO for Global Optimization

    Directory of Open Access Journals (Sweden)

    Feng Zou

    2016-01-01

    Full Text Available An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO, which is considering the teacher’s behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods.

  14. Global asymptotic stability of Cohen-Grossberg neural network with continuously distributed delays

    International Nuclear Information System (INIS)

    Wan Li; Sun Jianhua

    2005-01-01

    The convergence dynamical behaviors of Cohen-Grossberg neural network with continuously distributed delays are discussed. By using Brouwer's fixed point theorem, matrix theory and analysis techniques such as Gronwall inequality, some new sufficient conditions guaranteeing the existence, uniqueness of an equilibrium point and its global asymptotic stability are obtained. An example is given to illustrate the theoretical results

  15. Global exponential stability of cellular neural networks with continuously distributed delays and impulses

    International Nuclear Information System (INIS)

    Wang Yixuan; Xiong Wanmin; Zhou Qiyuan; Xiao Bing; Yu Yuehua

    2006-01-01

    In this Letter cellular neural networks with continuously distributed delays and impulses are considered. Sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and differential inequality techniques. The results of this Letter are new and they complement previously known results

  16. Long-term costs and health impact of continued global fund support for antiretroviral therapy

    NARCIS (Netherlands)

    J. Stover (John); E.L. Korenromp (Eline); M. Blakley (Matthew); R. Komatsu (Ryuichi); K.M. Viisainen (Kirsi); L. Bollinger (Lori); R. Atun (Rifat)

    2011-01-01

    textabstractBackground: By the end of 2011 Global Fund investments will be supporting 3.5 million people on antiretroviral therapy (ART) in 104 low- and middle-income countries. We estimated the cost and health impact of continuing treatment for these patients through 2020. Methods and Findings:

  17. Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system.

    Science.gov (United States)

    Kwon, Jong-Hee; Rögner, Matthias; Rexroth, Sascha

    2012-11-30

    Application of photosynthetic micro-organisms, such as cyanobacteria and green algae, for the carbon neutral energy production raises the need for cost-efficient photobiological processes. Optimization of these processes requires permanent control of many independent and mutably dependent parameters, for which a continuous cultivation approach has significant advantages. As central factors like the cell density can be kept constant by turbidostatic control, light intensity and iron content with its strong impact on productivity can be optimized. Both are key parameters due to their strong dependence on photosynthetic activity. Here we introduce an engineered low-cost 5 L flat-plate photobioreactor in combination with a simple and efficient optimization procedure for continuous photo-cultivation of microalgae. Based on direct determination of the growth rate at constant cell densities and the continuous measurement of O₂ evolution, stress conditions and their effect on the photosynthetic productivity can be directly observed. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A Simple But Effective Canonical Dual Theory Unified Algorithm for Global Optimization

    OpenAIRE

    Zhang, Jiapu

    2011-01-01

    Numerical global optimization methods are often very time consuming and could not be applied for high-dimensional nonconvex/nonsmooth optimization problems. Due to the nonconvexity/nonsmoothness, directly solving the primal problems sometimes is very difficult. This paper presents a very simple but very effective canonical duality theory (CDT) unified global optimization algorithm. This algorithm has convergence is proved in this paper. More important, for this CDT-unified algorithm, numerous...

  19. Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time

    Directory of Open Access Journals (Sweden)

    Daheng Peng

    2017-10-01

    Full Text Available In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.

  20. Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time

    OpenAIRE

    Daheng Peng; Fang Zhang

    2017-01-01

    In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.

  1. Aerodynamic Optimization Based on Continuous Adjoint Method for a Flexible Wing

    Directory of Open Access Journals (Sweden)

    Zhaoke Xu

    2016-01-01

    Full Text Available Aerodynamic optimization based on continuous adjoint method for a flexible wing is developed using FORTRAN 90 in the present work. Aerostructural analysis is performed on the basis of high-fidelity models with Euler equations on the aerodynamic side and a linear quadrilateral shell element model on the structure side. This shell element can deal with both thin and thick shell problems with intersections, so this shell element is suitable for the wing structural model which consists of two spars, 20 ribs, and skin. The continuous adjoint formulations based on Euler equations and unstructured mesh are derived and used in the work. Sequential quadratic programming method is adopted to search for the optimal solution using the gradients from continuous adjoint method. The flow charts of rigid and flexible optimization are presented and compared. The objective is to minimize drag coefficient meanwhile maintaining lift coefficient for a rigid and flexible wing. A comparison between the results from aerostructural analysis of rigid optimization and flexible optimization is shown here to demonstrate that it is necessary to include the effect of aeroelasticity in the optimization design of a wing.

  2. Continuous and Discrete-Time Optimal Controls for an Isolated Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Jiyuan Tan

    2017-01-01

    Full Text Available A classical control problem for an isolated oversaturated intersection is revisited with a focus on the optimal control policy to minimize total delay. The difference and connection between existing continuous-time planning models and recently proposed discrete-time planning models are studied. A gradient descent algorithm is proposed to convert the optimal control plan of the continuous-time model to the plan of the discrete-time model in many cases. Analytic proof and numerical tests for the algorithm are also presented. The findings shed light on the links between two kinds of models.

  3. The Algorithm of Continuous Optimization Based on the Modified Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Oleg Evsutin

    2016-08-01

    Full Text Available This article is devoted to the application of the cellular automata mathematical apparatus to the problem of continuous optimization. The cellular automaton with an objective function is introduced as a new modification of the classic cellular automaton. The algorithm of continuous optimization, which is based on dynamics of the cellular automaton having the property of geometric symmetry, is obtained. The results of the simulation experiments with the obtained algorithm on standard test functions are provided, and a comparison between the analogs is shown.

  4. Effective Energy Methods for Global Optimization for Biopolymer Structure Prediction

    National Research Council Canada - National Science Library

    Shalloway, David

    1998-01-01

    .... Its main strength is that it uncovers and exploits the intrinsic "hidden structures" of biopolymer energy landscapes to efficiently perform global minimization using a hierarchical search procedure...

  5. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    Science.gov (United States)

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions

    Science.gov (United States)

    Butler, Roger A. R.; Slaminka, Edward E.

    1992-03-01

    The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.

  7. Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach

    DEFF Research Database (Denmark)

    Boldrini, Lorenzo

    In this paper we propose a continuous-time, Gaussian, linear, state-space system to model the relation between global mean sea level (GMSL) and the global mean temperature (GMT), with the aim of making long-term projections for the GMSL. We provide a justification for the model specification based......) and the temperature reconstruction from Hansen et al. (2010). We compare the forecasting performance of the proposed specification to the procedures developed in Rahmstorf (2007b) and Vermeer and Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional on the 21st century SRES temperature...

  8. In-plane material continuity for the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    When performing discrete material optimization of laminated composite structures, the variation of the in-plane material continuity is typically governed by the size of the finite element discretization. For a fine mesh, this can lead to designs that cannot be manufactured due to the complexity...

  9. Continuous Linguistic Rhetorical Education as a Means of Optimizing Language Policy in Russian Multinational Regions

    Science.gov (United States)

    Vorozhbitova, Alexandra A.; Konovalova, Galina M.; Ogneva, Tatiana N.; Chekulaeva, Natalia Y.

    2017-01-01

    Drawing on the function of Russian as a state language the paper proposes a concept of continuous linguistic rhetorical (LR) education perceived as a means of optimizing language policy in Russian multinational regions. LR education as an innovative pedagogical system shapes a learner's readiness for self-projection as a strong linguistic…

  10. Model-aided optimization of delta-endotoxin-formation in continuous culture systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, V; Schorcht, R; Ignatenko, Yu N; Sakharova, Z V; Khovrychev, M P

    1985-01-01

    A mathematical model of growth, sporulation and delta-endotoxin-formation of bac. thuringiensis is given. The results of model-aided optimization of steady-state continuous culture systems indicate that the productivity in the one-stage system is 1.9% higher and in the two-stage system is 18.5% higher than in the batch process.

  11. Real-time aircraft continuous descent trajectory optimization with ATC time constraints using direct collocation methods.

    OpenAIRE

    Verhoeven, Ronald; Dalmau Codina, Ramon; Prats Menéndez, Xavier; de Gelder, Nico

    2014-01-01

    1 Abstract In this paper an initial implementation of a real - time aircraft trajectory optimization algorithm is presented . The aircraft trajectory for descent and approach is computed for minimum use of thrust and speed brake in support of a “green” continuous descent and approach flight operation, while complying with ATC time constraints for maintaining runway throughput and co...

  12. Thermo-mechanical simulation and parameters optimization for beam blank continuous casting

    International Nuclear Information System (INIS)

    Chen, W.; Zhang, Y.Z.; Zhang, C.J.; Zhu, L.G.; Lu, W.G.; Wang, B.X.; Ma, J.H.

    2009-01-01

    The objective of this work is to optimize the process parameters of beam blank continuous casting in order to ensure high quality and productivity. A transient thermo-mechanical finite element model is developed to compute the temperature and stress profile in beam blank continuous casting. By comparing the calculated data with the metallurgical constraints, the key factors causing defects of beam blank can be found out. Then based on the subproblem approximation method, an optimization program is developed to search out the optimum cooling parameters. Those optimum parameters can make it possible to run the caster at its maximum productivity, minimum cost and to reduce the defects. Now, online verifying of this optimization project has been put in practice, which can prove that it is very useful to control the actual production

  13. Recently amplified arctic warming has contributed to a continual global warming trend

    Science.gov (United States)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  14. The continuous 1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS

    Directory of Open Access Journals (Sweden)

    Stephan Friedrichs

    2016-05-01

    Full Text Available In the NP-hard continuous 1.5D Terrain Guarding Problem (TGP we are given an $x$-monotone chain of line segments in $R^2$ (the terrain $T$, and ask for the minimum number of guards (located anywhere on $T$ required to guard all of $T$. We construct guard candidate and witness sets $G, W \\subset T$ of polynomial size such that any feasible (optimal guard cover $G^* \\subseteq G$ for $W$ is also feasible (optimal for the continuous TGP. This discretization allows us to: (1 settle NP-completeness for the continuous TGP; (2 provide a Polynomial Time Approximation Scheme (PTAS for the continuous TGP using the PTAS for the discrete TGP by Gibson et al.; (3 formulate the continuous TGP as an Integer Linear Program (IP. Furthermore, we propose several filtering techniques reducing the size of our discretization, allowing us to devise an efficient IP-based algorithm that reliably provides optimal guard placements for terrains with up to $10^6$ vertices within minutes on a standard desktop computer.

  15. Global optimization for overall HVAC systems - Part I problem formulation and analysis

    International Nuclear Information System (INIS)

    Lu Lu; Cai Wenjian; Chai, Y.S.; Xie Lihua

    2005-01-01

    This paper presents the global optimization technologies for overall heating, ventilating and air conditioning (HVAC) systems. The objective function of global optimization and constraints are formulated based on mathematical models of the major components. All these models are associated with power consumption components and heat exchangers for transferring cooling load. The characteristics of all the major components are briefly introduced by models, and the interactions between them are analyzed and discussed to show the complications of the problem. According to the characteristics of the operating components, the complicated original optimization problem for overall HVAC systems is transformed and simplified into a compact form ready for optimization

  16. Global behavior analysis for stochastic system of 1,3-PD continuous fermentation

    Science.gov (United States)

    Zhu, Xi; Kliemann, Wolfgang; Li, Chunfa; Feng, Enmin; Xiu, Zhilong

    2017-12-01

    Global behavior for stochastic system of continuous fermentation in glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae is analyzed in this paper. This bioprocess cannot avoid the stochastic perturbation caused by internal and external disturbance which reflect on the growth rate. These negative factors can limit and degrade the achievable performance of controlled systems. Based on multiplicity phenomena, the equilibriums and bifurcations of the deterministic system are analyzed. Then, a stochastic model is presented by a bounded Markov diffusion process. In order to analyze the global behavior, we compute the control sets for the associated control system. The probability distributions of relative supports are also computed. The simulation results indicate that how the disturbed biosystem tend to stationary behavior globally.

  17. Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruddick, R. [Geoscience Australia, Symonston (Australia); Twilley, B. [Geoscience Australia, Symonston (Australia)

    2016-03-01

    This station formed part of the Australian Regional GPS Network (ARGN) and South Pacific Regional GPS Network (SPRGN), which is a network of continuous GPS stations operating within Australia and its Territories (including Antarctica) and the Pacific. These networks support a number of different science applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming.

  18. Global optimization of maintenance and surveillance testing based on reliability and probabilistic safety assessment. Research project

    International Nuclear Information System (INIS)

    Martorell, S.; Serradell, V.; Munoz, A.; Sanchez, A.

    1997-01-01

    Background, objective, scope, detailed working plan and follow-up and final product of the project ''Global optimization of maintenance and surveillance testing based on reliability and probabilistic safety assessment'' are described

  19. A globally nonsingular quaternion-based formulation for all-electric satellite trajectory optimization

    Science.gov (United States)

    Libraro, Paola

    The general electric propulsion orbit-raising maneuver of a spacecraft must contend with four main limiting factors: the longer time of flight, multiple eclipses prohibiting continuous thrusting, long exposure to radiation from the Van Allen belt and high power requirement of the electric engines. In order to optimize a low-thrust transfer with respect to these challenges, the choice of coordinates and corresponding equations of motion used to describe the kinematical and dynamical behavior of the satellite is of critical importance. This choice can potentially affect the numerical optimization process as well as limit the set of mission scenarios that can be investigated. To increase the ability to determine the feasible set of mission scenarios able to address the challenges of an all-electric orbit-raising, a set of equations free of any singularities is required to consider a completely arbitrary injection orbit. For this purpose a new quaternion-based formulation of a spacecraft translational dynamics that is globally nonsingular has been developed. The minimum-time low-thrust problem has been solved using the new set of equations of motion inside a direct optimization scheme in order to investigate optimal low-thrust trajectories over the full range of injection orbit inclinations between 0 and 90 degrees with particular focus on high-inclinations. The numerical results consider a specific mission scenario in order to analyze three key aspects of the problem: the effect of the initial guess on the shape and duration of the transfer, the effect of Earth oblateness on transfer time and the role played by, radiation damage and power degradation in all-electric minimum-time transfers. Finally trade-offs between mass and cost savings are introduced through a test case.

  20. A Local and Global Search Combine Particle Swarm Optimization Algorithm for Job-Shop Scheduling to Minimize Makespan

    Directory of Open Access Journals (Sweden)

    Zhigang Lian

    2010-01-01

    Full Text Available The Job-shop scheduling problem (JSSP is a branch of production scheduling, which is among the hardest combinatorial optimization problems. Many different approaches have been applied to optimize JSSP, but for some JSSP even with moderate size cannot be solved to guarantee optimality. The original particle swarm optimization algorithm (OPSOA, generally, is used to solve continuous problems, and rarely to optimize discrete problems such as JSSP. In OPSOA, through research I find that it has a tendency to get stuck in a near optimal solution especially for middle and large size problems. The local and global search combine particle swarm optimization algorithm (LGSCPSOA is used to solve JSSP, where particle-updating mechanism benefits from the searching experience of one particle itself, the best of all particles in the swarm, and the best of particles in neighborhood population. The new coding method is used in LGSCPSOA to optimize JSSP, and it gets all sequences are feasible solutions. Three representative instances are made computational experiment, and simulation shows that the LGSCPSOA is efficacious for JSSP to minimize makespan.

  1. A hybrid metaheuristic method to optimize the order of the sequences in continuous-casting

    Directory of Open Access Journals (Sweden)

    Achraf Touil

    2016-06-01

    Full Text Available In this paper, we propose a hybrid metaheuristic algorithm to maximize the production and to minimize the processing time in the steel-making and continuous casting (SCC by optimizing the order of the sequences where a sequence is a group of jobs with the same chemical characteristics. Based on the work Bellabdaoui and Teghem (2006 [Bellabdaoui, A., & Teghem, J. (2006. A mixed-integer linear programming model for the continuous casting planning. International Journal of Production Economics, 104(2, 260-270.], a mixed integer linear programming for scheduling steelmaking continuous casting production is presented to minimize the makespan. The order of the sequences in continuous casting is assumed to be fixed. The main contribution is to analyze an additional way to determine the optimal order of sequences. A hybrid method based on simulated annealing and genetic algorithm restricted by a tabu list (SA-GA-TL is addressed to obtain the optimal order. After parameter tuning of the proposed algorithm, it is tested on different instances using a.NET application and the commercial software solver Cplex v12.5. These results are compared with those obtained by SA-TL (simulated annealing restricted by tabu list.

  2. Global blending optimization of laminated composites with discrete material candidate selection and thickness variation

    DEFF Research Database (Denmark)

    Sørensen, Søren N.; Stolpe, Mathias

    2015-01-01

    rate. The capabilities of the method and the effect of active versus inactive manufacturing constraints are demonstrated on several numerical examples of limited size, involving at most 320 binary variables. Most examples are solved to guaranteed global optimality and may constitute benchmark examples...... but is, however, convex in the original mixed binary nested form. Convexity is the foremost important property of optimization problems, and the proposed method can guarantee the global or near-global optimal solution; unlike most topology optimization methods. The material selection is limited...... for popular topology optimization methods and heuristics based on solving sequences of non-convex problems. The results will among others demonstrate that the difficulty of the posed problem is highly dependent upon the composition of the constitutive properties of the material candidates....

  3. Globally Optimal Segmentation of Permanent-Magnet Systems

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective...... remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast...

  4. Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic

    Directory of Open Access Journals (Sweden)

    Timo Pukkala

    2015-03-01

    Full Text Available Background Decisions on forest management are made under risk and uncertainty because the stand development cannot be predicted exactly and future timber prices are unknown. Deterministic calculations may lead to biased advice on optimal forest management. The study optimized continuous cover management of boreal forest in a situation where tree growth, regeneration, and timber prices include uncertainty. Methods Both anticipatory and adaptive optimization approaches were used. The adaptive approach optimized the reservation price function instead of fixed cutting years. The future prices of different timber assortments were described by cross-correlated auto-regressive models. The high variation around ingrowth model was simulated using a model that describes the cross- and autocorrelations of the regeneration results of different species and years. Tree growth was predicted with individual tree models, the predictions of which were adjusted on the basis of a climate-induced growth trend, which was stochastic. Residuals of the deterministic diameter growth model were also simulated. They consisted of random tree factors and cross- and autocorrelated temporal terms. Results Of the analyzed factors, timber price caused most uncertainty in the calculation of the net present value of a certain management schedule. Ingrowth and climate trend were less significant sources of risk and uncertainty than tree growth. Stochastic anticipatory optimization led to more diverse post-cutting stand structures than obtained in deterministic optimization. Cutting interval was shorter when risk and uncertainty were included in the analyses. Conclusions Adaptive optimization and management led to 6%–14% higher net present values than obtained in management that was based on anticipatory optimization. Increasing risk aversion of the forest landowner led to earlier cuttings in a mature stand. The effect of risk attitude on optimization results was small.

  5. The Tunneling Method for Global Optimization in Multidimensional Scaling.

    Science.gov (United States)

    Groenen, Patrick J. F.; Heiser, Willem J.

    1996-01-01

    A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)

  6. Global Optimization of a Periodic System using a Genetic Algorithm

    Science.gov (United States)

    Stucke, David; Crespi, Vincent

    2001-03-01

    We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.

  7. Global Launcher Trajectory Optimization for Lunar Base Settlement

    NARCIS (Netherlands)

    Pagano, A.; Mooij, E.

    2010-01-01

    The problem of a mission to the Moon to set a permanent outpost can be tackled by dividing the journey into three phases: the Earth ascent, the Earth-Moon transfer and the lunar landing. In this paper we present an optimization analysis of Earth ascent trajectories of existing launch vehicles

  8. Vertical bifacial solar farms: Physics, design, and global optimization

    KAUST Repository

    Khan, M. Ryyan; Hanna, Amir; Sun, Xingshu; Alam, Muhammad A.

    2017-01-01

    10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a

  9. Global stability-based design optimization of truss structures using ...

    Indian Academy of Sciences (India)

    The quality of current pareto front obtained in the end of a whole genetic search is assessed according to its closeness to the ...... better optimal designation with a lower displacement value of 0.3075 in. satisfying the service- .... Internal force. R.

  10. Optimization of Modulator and Circuits for Low Power Continuous-Time Delta-Sigma ADC

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Bruun, Erik

    2014-01-01

    This paper presents a new optimization method for achieving a minimum current consumption in a continuous-time Delta-Sigma analog-to-digital converter (ADC). The method is applied to a continuous-time modulator realised with active-RC integrators and with a folded-cascode operational transconduc...... levels are swept. Based on the results of the circuit analysis, for each modulator combination the summed current consumption of the 1st integrator and quantizer of the ADC is determined. By also sweeping the partitioning of the noise power for the different circuit parts, the optimum modulator...

  11. System optimization for continuous on-stream elemental analysis using low-output isotopic neutron sources

    International Nuclear Information System (INIS)

    Rizk, R.A.M.

    1989-01-01

    In continuous on-stream neutron activation analysis, the material to be analyzed may be continuously recirculated in a closed loop system between an activation source and a shielded detector. In this paper an analytical formulation of the detector response for such a system is presented. This formulation should be useful in optimizing the system design parameters for specific applications. A study has been made of all parameters that influence the detector response during on-stream analysis. Feasibility applications of the method to solutions of manganese and vanadium using a 5 μg 252 Cf neutron source are demonstrated. (author)

  12. RDEL: Restart Differential Evolution algorithm with Local Search Mutation for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Ali Wagdy Mohamed

    2014-11-01

    Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.

  13. 3D prostate TRUS segmentation using globally optimized volume-preserving prior.

    Science.gov (United States)

    Qiu, Wu; Rajchl, Martin; Guo, Fumin; Sun, Yue; Ukwatta, Eranga; Fenster, Aaron; Yuan, Jing

    2014-01-01

    An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.

  14. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front.

    Science.gov (United States)

    Saborido, Rubén; Ruiz, Ana B; Luque, Mariano

    2017-01-01

    In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.

  15. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    Science.gov (United States)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  16. Variation method for optimization of Raman fiber amplifier pumped by continuous-spectrum radiation

    International Nuclear Information System (INIS)

    Ghasempour Ardekani, A.; Bahrampour, A. R.; Feizpour, A.

    2007-01-01

    In Raman fiber amplifiers, reduction of gain ripple versus frequency has a great importance. In this article using variational method and continuous pump, gain ripple is optimized. It is shown here that for a 40 km line the average gain is 1.3dB and the gain ripple is 0.12 dB, that is lower than the latest published data.

  17. Optimization and control of a continuous stirred tank fermenter using learning system

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, J [Dept. of Chemical Engineering, Laval Univ., Quebec City, PQ (Canada); Najim, K [CNRS, URA 192, GRECO SARTA, Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, 31 - Toulouse (France)

    1993-05-01

    A variable structure learning automaton is used as an optimization and control of a continuous stirred tank fermenter. The alogrithm requires no modelling of the process. The use of appropriate learning rules enables to locate the optimum dilution rate in order to maximize an objective cost function. It is shown that a hierarchical structure of automata can adapt to environmental changes and can also modify efficiently the domain of variation of the control variable in order to encompass the optimum value. (orig.)

  18. A Global Optimization Algorithm for Sum of Linear Ratios Problem

    OpenAIRE

    Yuelin Gao; Siqiao Jin

    2013-01-01

    We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...

  19. Global Optimization for Transport Network Expansion and Signal Setting

    OpenAIRE

    Liu, Haoxiang; Wang, David Z. W.; Yue, Hao

    2015-01-01

    This paper proposes a model to address an urban transport planning problem involving combined network design and signal setting in a saturated network. Conventional transport planning models usually deal with the network design problem and signal setting problem separately. However, the fact that network capacity design and capacity allocation determined by network signal setting combine to govern the transport network performance requires the optimal transport planning to consider the two pr...

  20. Optimization of continuous and intermittent microwave extraction of pectin from banana peels.

    Science.gov (United States)

    Swamy, Gabriela John; Muthukumarappan, Kasiviswanathan

    2017-04-01

    Continuous and intermittent microwave-assisted extractions were used to extract pectin from banana peels. Extraction parameters which were employed in the continuous process were microwave power (300-900W), time (100-300s), pH (1-3) and in the intermittent process were microwave power (300-900W), pulse ratio (0.5-1), pH (1-3). The independent factors were optimized with the Box-Behnken response surface design (BBD) (three factor three level) with the desirability function methodology. Results indicate that the independent factors have substantial effect on the pectin yield. Optimized solutions for highest pectin yield (2.18%) from banana peels were obtained with microwave power of 900W, time 100s and pH 3.00 in the continuous method while the intermittent process yielded the highest pectin content (2.58%) at microwave power of 900W, pulse ratio of 0.5 and pH of 3.00. The optimized conditions were validated and close agreement was observed with the validation experiment and predicted value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.

    Science.gov (United States)

    Quan, Quan; Cai, Kai-Yuan

    2016-02-01

    In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.

  2. Business as usual? Results of Global Continuous Miner and Bolter Miner Census 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Arne K. [RWTH Aachen (DE). Excavation and Mining Equipment Group (BGMR); E.ON Kraftwerke GmbH, Hannover (Germany); Nienhaus, Karl; Dangela, Manuel [RWTH Aachen (DE). Excavation and Mining Equipment Group (BGMR)

    2009-08-27

    The Global Continuous Miner and Bolter Miner Census 2008 conducted by the Excavation and Mining Equipment Group (BGMR), RWTH Aachen, identified globally the 1,400 CM production units and about 200 Bolter Miners are mainly employed in coal mining operations. The study identified a number of relevant trends of interest to both mining companies as well as original equipment manufacturers (OEM). E.g. new markets like China, India or Russia are not developing as quickly as expected, the large CM and BM nations like US, South Africa and Australia will remain saturated and the annual replacement rate of new machines will stabilize at some 160 units. Other key findings highlight the growing importance of after sales services and a stronger focus on automation, as well as, aspects of Health, Safety and Environment (HSE). (orig.)

  3. Global issues and opportunities for optimized retinoblastoma care.

    Science.gov (United States)

    Gallie, Brenda L; Zhao, Junyang; Vandezande, Kirk; White, Abigail; Chan, Helen S L

    2007-12-01

    The RB1 gene is important in all human cancers. Studies of human retinoblastoma point to a rare retinal cell with extreme dependency on RB1 for initiation but not progression to full malignancy. In developed countries, genetic testing within affected families can predict children at high risk of retinoblastoma before birth; chemotherapy with local therapy often saves eyes and vision; and mortality is 4%. In less developed countries where 92% of children with retinoblastoma are born, mortality reaches 90%. Global collaboration is building for the dramatic change in mortality that awareness, simple expertise and therapies could achieve in less developed countries. Copyright 2007 Wiley-Liss, Inc.

  4. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  5. Optimal Compensation with Hidden Action and Lump-Sum Payment in a Continuous-Time Model

    International Nuclear Information System (INIS)

    Cvitanic, Jaksa; Wan, Xuhu; Zhang Jianfeng

    2009-01-01

    We consider a problem of finding optimal contracts in continuous time, when the agent's actions are unobservable by the principal, who pays the agent with a one-time payoff at the end of the contract. We fully solve the case of quadratic cost and separable utility, for general utility functions. The optimal contract is, in general, a nonlinear function of the final outcome only, while in the previously solved cases, for exponential and linear utility functions, the optimal contract is linear in the final output value. In a specific example we compute, the first-best principal's utility is infinite, while it becomes finite with hidden action, which is increasing in value of the output. In the second part of the paper we formulate a general mathematical theory for the problem. We apply the stochastic maximum principle to give necessary conditions for optimal contracts. Sufficient conditions are hard to establish, but we suggest a way to check sufficiency using non-convex optimization

  6. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.

    Science.gov (United States)

    Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V

    2006-01-01

    Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.

  7. A Global Optimization Algorithm for Sum of Linear Ratios Problem

    Directory of Open Access Journals (Sweden)

    Yuelin Gao

    2013-01-01

    Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.

  8. Global and regional changes of cardiopulmonary blood volume under continuous work load

    International Nuclear Information System (INIS)

    Hoeck, A.; Schuerch, P.; Freundlieb, C.; Vyska, K.; Kunz, N.; Feinendegen, L.E.; Hollmann, W.

    1980-01-01

    The present study describes a method for the continuous determination of global and regional stress-induced alterations of cardiopulmonary blood volumes in normals, trained athletes and patients with latent cardiac insufficiency. In contrast to normals and athletes there is an increase of the total cardiac blood volume in the cardiac patients. There are also significant differences in blood volume changes of the left lung between normals and athletes on the one hand and the cardiac patients on the other. The method is simple and non-hazardous; it permits the observation of the obviously different adaptation of the cardiopulmonary system during exercise in normals, athletes and cardiac patients. (orig.) [de

  9. Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    V. D. Sulimov

    2014-01-01

    Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search

  10. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    Science.gov (United States)

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  11. Vertical bifacial solar farms: Physics, design, and global optimization

    KAUST Repository

    Khan, M. Ryyan

    2017-09-04

    There have been sustained interest in bifacial solar cell technology since 1980s, with prospects of 30–50% increase in the output power from a stand-alone panel. Moreover, a vertical bifacial panel reduces dust accumulation and provides two output peaks during the day, with the second peak aligned to the peak electricity demand. Recent commercialization and anticipated growth of bifacial panel market have encouraged a closer scrutiny of the integrated power-output and economic viability of bifacial solar farms, where mutual shading will erode some of the anticipated energy gain associated with an isolated, single panel. Towards that goal, in this paper we focus on geography-specific optimization of ground-mounted vertical bifacial solar farms for the entire world. For local irradiance, we combine the measured meteorological data with the clear-sky model. In addition, we consider the effects of direct, diffuse, and albedo light. We assume the panel is configured into sub-strings with bypass-diodes. Based on calculated light collection and panel output, we analyze the optimum farm design for maximum yearly output at any given location in the world. Our results predict that, regardless of the geographical location, a vertical bifacial farm will yield 10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a viable technology option for large-scale solar energy generation.

  12. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization

    Science.gov (United States)

    Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei

    2014-04-01

    Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.

  13. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    Science.gov (United States)

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  14. Highlighting continued uncertainty in global land cover maps for the user community

    International Nuclear Information System (INIS)

    Fritz, Steffen; See, Linda; McCallum, Ian; Schill, Christian; Obersteiner, Michael; Van der Velde, Marijn; Boettcher, Hannes; Havlík, Petr; Achard, Frédéric

    2011-01-01

    In the last 10 years a number of new global datasets have been created and new, more sophisticated algorithms have been designed to classify land cover. GlobCover and MODIS v.5 are the most recent global land cover products available, where GlobCover (300 m) has the finest spatial resolution of other comparable products such as MODIS v.5 (500 m) and GLC-2000 (1 km). This letter shows that the thematic accuracy in the cropland domain has decreased when comparing these two latest products. This disagreement is also evident spatially when examining maps of cropland and forest disagreement between GLC-2000, MODIS and GlobCover. The analysis highlights the continued uncertainty surrounding these products, with a combined forest and cropland disagreement of 893 Mha (GlobCover versus MODIS v.5). This letter suggests that data sharing efforts and the provision of more in situ data for training, calibration and validation are very important conditions for improving future global land cover products.

  15. The Continuing Growth of Global Cooperation Networks in Research: A Conundrum for National Governments.

    Directory of Open Access Journals (Sweden)

    Caroline S Wagner

    Full Text Available Global collaboration continues to grow as a share of all scientific cooperation, measured as coauthorships of peer-reviewed, published papers. The percent of all scientific papers that are internationally coauthored has more than doubled in 20 years, and they account for all the growth in output among the scientifically advanced countries. Emerging countries, particularly China, have increased their participation in global science, in part by doubling their spending on R&D; they are increasingly likely to appear as partners on internationally coauthored scientific papers. Given the growth of connections at the international level, it is helpful to examine the phenomenon as a communications network and to consider the network as a new organization on the world stage that adds to and complements national systems. When examined as interconnections across the globe over two decades, a global network has grown denser but not more clustered, meaning there are many more connections but they are not grouping into exclusive 'cliques'. This suggests that power relationships are not reproducing those of the political system. The network has features an open system, attracting productive scientists to participate in international projects. National governments could gain efficiencies and influence by developing policies and strategies designed to maximize network benefits-a model different from those designed for national systems.

  16. Multistage and multiobjective formulations of globally optimal upgradable expansions for electric power distribution systems

    Science.gov (United States)

    Vaziri Yazdi Pin, Mohammad

    Electric power distribution systems are the last high voltage link in the chain of production, transport, and delivery of the electric energy, the fundamental goals of which are to supply the users' demand safely, reliably, and economically. The number circuit miles traversed by distribution feeders in the form of visible overhead or imbedded underground lines, far exceed those of all other bulk transport circuitry in the transmission system. Development and expansion of the distribution systems, similar to other systems, is directly proportional to the growth in demand and requires careful planning. While growth of electric demand has recently slowed through efforts in the area of energy management, the need for a continued expansion seems inevitable for the near future. Distribution system and expansions are also independent of current issues facing both the suppliers and the consumers of electrical energy. For example, deregulation, as an attempt to promote competition by giving more choices to the consumers, while it will impact the suppliers' planning strategies, it cannot limit the demand growth or the system expansion in the global sense. Curiously, despite presence of technological advancements and a 40-year history of contributions in the area, many of the major utilities still relay on experience and resort to rudimentary techniques when planning expansions. A comprehensive literature review of the contributions and careful analyses of the proposed algorithms for distribution expansion, confirmed that the problem is a complex, multistage and multiobjective problem for which a practical solution remains to be developed. In this research, based on the 15-year experience of a utility engineer, the practical expansion problem has been clearly defined and the existing deficiencies in the previous work identified and analyzed. The expansion problem has been formulated as a multistage planning problem in line with a natural course of development and industry

  17. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks

    Directory of Open Access Journals (Sweden)

    Na Lin

    2017-03-01

    Full Text Available In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS2Os, which extend the single population particle swarm optimization (PSO algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS2O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS2O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm’s performance. Then PS2O is used for solving the radio frequency identification (RFID network planning (RNP problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  18. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks.

    Science.gov (United States)

    Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan

    2017-03-01

    In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  19. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    Science.gov (United States)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  20. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    Science.gov (United States)

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.

  1. A global optimization method for evaporative cooling systems based on the entransy theory

    International Nuclear Information System (INIS)

    Yuan, Fang; Chen, Qun

    2012-01-01

    Evaporative cooling technique, one of the most widely used methods, is essential to both energy conservation and environment protection. This contribution introduces a global optimization method for indirect evaporative cooling systems with coupled heat and mass transfer processes based on the entransy theory to improve their energy efficiency. First, we classify the irreversible processes in the system into the heat transfer process, the coupled heat and mass transfer process and the mixing process of waters in different branches, where the irreversibility is evaluated by the entransy dissipation. Then through the total system entransy dissipation, we establish the theoretical relationship of the user demands with both the geometrical structures of each heat exchanger and the operating parameters of each fluid, and derive two optimization equation groups focusing on two typical optimization problems. Finally, an indirect evaporative cooling system is taken as an example to illustrate the applications of the newly proposed optimization method. It is concluded that there exists an optimal circulating water flow rate with the minimum total thermal conductance of the system. Furthermore, with different user demands and moist air inlet conditions, it is the global optimization, other than parametric analysis, will obtain the optimal performance of the system. -- Highlights: ► Introduce a global optimization method for evaporative cooling systems. ► Establish the direct relation between user demands and the design parameters. ► Obtain two groups of optimization equations for two typical optimization objectives. ► Solving the equations offers the optimal design parameters for the system. ► Provide the instruction for the design of coupled heat and mass transfer systems.

  2. A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory

    International Nuclear Information System (INIS)

    Xu, Yun-Chao; Chen, Qun

    2013-01-01

    The vapor-compression refrigeration systems have been one of the essential energy conversion systems for humankind and exhausting huge amounts of energy nowadays. Surrounding the energy efficiency promotion of the systems, there are lots of effectual optimization methods but mainly relied on engineering experience and computer simulations rather than theoretical analysis due to the complex and vague physical essence. We attempt to propose a theoretical global optimization method based on in-depth physical analysis for the involved physical processes, i.e. heat transfer analysis for condenser and evaporator, through introducing the entransy theory and thermodynamic analysis for compressor and expansion valve. The integration of heat transfer and thermodynamic analyses forms the overall physical optimization model for the systems to describe the relation between all the unknown parameters and known conditions, which makes theoretical global optimization possible. With the aid of the mathematical conditional extremum solutions, an optimization equation group and the optimal configuration of all the unknown parameters are analytically obtained. Eventually, via the optimization of a typical vapor-compression refrigeration system with various working conditions to minimize the total heat transfer area of heat exchangers, the validity and superior of the newly proposed optimization method is proved. - Highlights: • A global optimization method for vapor-compression systems is proposed. • Integrating heat transfer and thermodynamic analyses forms the optimization model. • A mathematical relation between design parameters and requirements is derived. • Entransy dissipation is introduced into heat transfer analysis. • The validity of the method is proved via optimization of practical cases

  3. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    Science.gov (United States)

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Transfer function fitting using a continuous Ant Colony Optimization (ACO algorithm

    Directory of Open Access Journals (Sweden)

    A. Reineix

    2015-03-01

    Full Text Available An original approach is proposed in order to achieve the  fitting of ultra-wideband complex frequency functions, such  as the complex impedances, by using the so-called ACO  (Ant Colony Optimization methods. First, we present the  optimization principle of ACO, which originally was  dedicated to the combinatorial problems. Further on, the  extension to the continuous and mixed problems is  explained in more details. The interest in this approach is  proved by its ability to define practical constraints and  objectives, such as minimizing the number of filters used in  the model with respect to a fixed relative error. Finally, the  establishment of the model for the first and second order  filter types illustrates the power of the method and its  interest for the time-domain electromagnetic computation.

  5. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  6. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  7. Global Surface Mass Variations from Continuous GPS Observations and Satellite Altimetry Data

    Directory of Open Access Journals (Sweden)

    Xinggang Zhang

    2017-09-01

    Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission is able to observe the global large-scale mass and water cycle for the first time with unprecedented spatial and temporal resolution. However, no other time-varying gravity fields validate GRACE. Furthermore, the C20 of GRACE is poor, and no GRACE data are available before 2002 and there will likely be a gap between the GRACE and GRACE-FOLLOW-ON mission. To compensate for GRACE’s shortcomings, in this paper, we provide an alternative way to invert Earth’s time-varying gravity field, using a priori degree variance as a constraint on amplitudes of Stoke’s coefficients up to degree and order 60, by combining continuous GPS coordinate time series and satellite altimetry (SA mean sea level anomaly data from January 2003 to December 2012. Analysis results show that our estimated zonal low-degree gravity coefficients agree well with those of GRACE, and large-scale mass distributions are also investigated and assessed. It was clear that our method effectively detected global large-scale mass changes, which is consistent with GRACE observations and the GLDAS model, revealing the minimums of annual water cycle in the Amazon in September and October. The global mean mass uncertainty of our solution is about two times larger than that of GRACE after applying a Gaussian spatial filter with a half wavelength at 500 km. The sensitivity analysis further shows that ground GPS observations dominate the lower-degree coefficients but fail to contribute to the higher-degree coefficients, while SA plays a complementary role at higher-degree coefficients. Consequently, a comparison in both the spherical harmonic and geographic domain confirms our global inversion for the time-varying gravity field from GPS and Satellite Altimetry.

  8. Self-adaptive global best harmony search algorithm applied to reactor core fuel management optimization

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Valavi, K.

    2013-01-01

    Highlights: • SGHS enhanced the convergence rate of LPO using some improvements in comparison to basic HS and GHS. • SGHS optimization algorithm obtained averagely better fitness relative to basic HS and GHS algorithms. • Upshot of the SGHS implementation in the LPO reveals its flexibility, efficiency and reliability. - Abstract: The aim of this work is to apply the new developed optimization algorithm, Self-adaptive Global best Harmony Search (SGHS), for PWRs fuel management optimization. SGHS algorithm has some modifications in comparison with basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms such as dynamically change of parameters. For the demonstration of SGHS ability to find an optimal configuration of fuel assemblies, basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms also have been developed and investigated. For this purpose, Self-adaptive Global best Harmony Search Nodal Expansion package (SGHSNE) has been developed implementing HS, GHS and SGHS optimization algorithms for the fuel management operation of nuclear reactor cores. This package uses developed average current nodal expansion code which solves the multi group diffusion equation by employment of first and second orders of Nodal Expansion Method (NEM) for two dimensional, hexagonal and rectangular geometries, respectively, by one node per a FA. Loading pattern optimization was performed using SGHSNE package for some test cases to present the SGHS algorithm capability in converging to near optimal loading pattern. Results indicate that the convergence rate and reliability of the SGHS method are quite promising and practically, SGHS improves the quality of loading pattern optimization results relative to HS and GHS algorithms. As a result, it has the potential to be used in the other nuclear engineering optimization problems

  9. Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco

    OpenAIRE

    Kerschke, Pascal

    2017-01-01

    Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms is usually a difficult and complex task. It gets even worse, if the underlying functions are unknown, i.e., so-called Black-Box problems, and function evaluations are considered to be expensive. In the case of continuous single-objective optimization problems, Exploratory Landscape Analysis (ELA) - a sophisticated and effective approach for characterizing the landscapes of such problems by means of numeric...

  10. Thermodynamic optimization with a finite number of heat intercepts for cryogenic systems with parameters stepwise continuous

    International Nuclear Information System (INIS)

    Bisio, G.

    1992-01-01

    The aim of this paper is to study the thermodynamic optimization by the variation of the heat transfer rate in a finite number of points through insulation for the general case of one-dimensional heat transfer (flat plate, hollow cylinder and hollow sphere) in systems, consisting of different materials in series, whose thermal conductivity is a function of temperature and of the coordinate in the heat flux direction. Besides, some parameters or their first derivative are assumed stepwise continuous. For this purpose, the results of some researches by the author pertinent to the properties of entropy production rate in the one-dimensional heat transfer are utilized

  11. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...

  12. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    Directory of Open Access Journals (Sweden)

    Leilei Cao

    2016-01-01

    Full Text Available A Guiding Evolutionary Algorithm (GEA with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  13. Neural-Fuzzy Digital Strategy of Continuous-Time Nonlinear Systems Using Adaptive Prediction and Random-Local-Optimization Design

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Tsai

    2013-01-01

    Full Text Available A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM, and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline RLO and second-stage (online adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.

  14. Optimal batch production strategies under continuous price decrease and time discounting

    Directory of Open Access Journals (Sweden)

    Mandal S.

    2007-01-01

    Full Text Available Single price discount in unit cost for bulk purchasing is quite common in reality as well as in inventory literature. However, in today's high-tech industries such as personal computers and mobile industries, continuous decrease in unit cost is a regular phenomenon. In the present paper, an attempt has been made to investigate the effects of continuous price decrease and time-value of money on optimal decisions for inventoried goods having time-dependent demand and production rates. The proposed models are developed over a finite time horizon considering both shortages and without shortages in inventory. Numerical examples are taken to illustrate the developed models and to examine the sensitivity of model parameters.

  15. The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-01-01

    Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.

  16. Statistically optimized biotransformation protocol for continuous production of L-DOPA using Mucuna monosperma callus culture.

    Science.gov (United States)

    Inamdar, Shrirang Appasaheb; Surwase, Shripad Nagnath; Jadhav, Shekhar Bhagwan; Bapat, Vishwas Anant; Jadhav, Jyoti Prafull

    2013-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), a modified amino acid, is an expansively used drug for the Parkinson's disease treatment. In the present study, optimization of nutritional parameters influencing L-DOPA production was attempted using the response surface methodology (RSM) from Mucuna monosperma callus. Optimization of the four factors was carried out using the Box-Behnken design. The optimized levels of factors predicted by the model include tyrosine 0.894 g l(-1), pH 4.99, ascorbic acid 31.62 mg l(-1)and copper sulphate 23.92 mg l(-1), which resulted in highest L-DOPA yield of 0.309 g l(-1). The optimization of medium using RSM resulted in a 3.45-fold increase in the yield of L-DOPA. The ANOVA analysis showed a significant R (2) value (0.9912), model F-value (112.465) and probability (0.0001), with insignificant lack of fit. Optimized medium was used in the laboratory scale column reactor for continuous production of L-DOPA. Uninterrupted flow column exhibited maximum L-DOPA production rate of 200 mg L(-1) h(-1) which is one of the highest values ever reported using plant as a biotransformation source. L-DOPA production was confirmed by HPTLC and HPLC analysis. This study demonstrates the synthesis of L- DOPA using Mucuna monosperma callus using a laboratory scale column reactor.

  17. Two-stage collaborative global optimization design model of the CHPG microgrid

    Science.gov (United States)

    Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng

    2017-06-01

    With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.

  18. Global warming and carbon taxation. Optimal policy and the role of administration costs

    International Nuclear Information System (INIS)

    Williams, M.

    1995-01-01

    This paper develops a model relating CO 2 emissions to atmosphere concentrations, global temperature change and economic damages. For a variety of parameter assumptions, the model provides estimates of the marginal cost of emissions in various years. The optimal carbon tax is a function of the marginal emission cost and the costs of administering the tax. This paper demonstrates that under any reasonable assumptions, the optimal carbon tax is zero for at least several decades. (author)

  19. Optimal sampling in damage detection of flexural beams by continuous wavelet transform

    International Nuclear Information System (INIS)

    Basu, B; Broderick, B M; Montanari, L; Spagnoli, A

    2015-01-01

    Modern measurement techniques are improving in capability to capture spatial displacement fields occurring in deformed structures with high precision and in a quasi-continuous manner. This in turn has made the use of vibration-based damage identification methods more effective and reliable for real applications. However, practical measurement and data processing issues still present barriers to the application of these methods in identifying several types of structural damage. This paper deals with spatial Continuous Wavelet Transform (CWT) damage identification methods in beam structures with the aim of addressing the following key questions: (i) can the cost of damage detection be reduced by down-sampling? (ii) what is the minimum number of sampling intervals required for optimal damage detection ? The first three free vibration modes of a cantilever and a simple supported beam with an edge open crack are numerically simulated. A thorough parametric study is carried out by taking into account the key parameters governing the problem, including level of noise, crack depth and location, mechanical and geometrical parameters of the beam. The results are employed to assess the optimal number of sampling intervals for effective damage detection. (paper)

  20. A kind of balance between exploitation and exploration on kriging for global optimization of expensive functions

    International Nuclear Information System (INIS)

    Dong, Huachao; Song, Baowei; Wang, Peng; Huang, Shuai

    2015-01-01

    In this paper, a novel kriging-based algorithm for global optimization of computationally expensive black-box functions is presented. This algorithm utilizes a multi-start approach to find all of the local optimal values of the surrogate model and performs searches within the neighboring area around these local optimal positions. Compared with traditional surrogate-based global optimization method, this algorithm provides another kind of balance between exploitation and exploration on kriging-based model. In addition, a new search strategy is proposed and coupled into this optimization process. The local search strategy employs a kind of improved 'Minimizing the predictor' method, which dynamically adjusts search direction and radius until finds the optimal value. Furthermore, the global search strategy utilizes the advantage of kriging-based model in predicting unexplored regions to guarantee the reliability of the algorithm. Finally, experiments on 13 test functions with six algorithms are set up and the results show that the proposed algorithm is very promising.

  1. Proving Continuity of Coinductive Global Bisimulation Distances: A Never Ending Story

    Directory of Open Access Journals (Sweden)

    David Romero-Hernández

    2015-12-01

    Full Text Available We have developed a notion of global bisimulation distance between processes which goes somehow beyond the notions of bisimulation distance already existing in the literature, mainly based on bisimulation games. Our proposal is based on the cost of transformations: how much we need to modify one of the compared processes to obtain the other. Our original definition only covered finite processes, but a coinductive approach allows us to extend it to cover infinite but finitary trees. After having shown many interesting properties of our distance, it was our intention to prove continuity with respect to projections, but unfortunately the issue remains open. Nonetheless, we have obtained several partial results that are presented in this paper.

  2. Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system

    International Nuclear Information System (INIS)

    Ashokkumar, Veeramuthu; Agila, Elango; Sivakumar, Pandian; Salam, Zainal; Rengasamy, Ramasamy; Ani, Farid Nasir

    2014-01-01

    Highlights: • Bioprospecting for Botryococcus in upstream and downstream process for bioenergy production. • Large scale cultivation of B. braunii at semi-continuous system under open raceway system. • The biomass was harvested 99.5% successfully by Poly-(D)glucosamine and ferric iron. • Botryococcus biodiesel was characterized and found within ASTM standards. • Under semi-continuous mode, the alga B. braunii produces 101 tons ha −1 year −1 . - Abstract: The indigenous strain Botryococcus braunii TN101 was isolated and acclimatized under laboratory condition. Upstream and downstream process was thoroughly explored for biofuel production. During semi-continuous cultivation, the alga was grown under batch mode for 6 days; thereafter 40% of algal culture was harvested at every three days interval. At semi-continuous system, the indigenous strain grows well and produces high biomass productivity of 33.8 g m −3 day −1 . A two step combined harvesting process was designed using ferric iron and organic polymer Poly-(D)glucosamine and harvested 99.5% of biomass. Lipid extraction was optimized using different solvents, cyclohexane and methanol at 3:1 ratio supported for maximum extraction of lipids in Botryococcus up to 26.3%. Physicochemical properties of lipid was analyzed and found, saponification values 184, ester values 164, iodine values 92 and the average molecular weight of the lipids are 920 g mol −1 . The lipid contains 9.7% of FFA level, therefore, a simultaneous esterification and transesterification of free fatty acids and triacylglycerides were optimized for biodiesel production and the methyl ester yield was recorded up to 84%. In addition, an optimization study was carried out for the removal of pigments present in the biodiesel; the result revealed that 99% of pigments were removed from the biodiesel using activated charcoal. The biodiesel profile was analyzed by 1 H and 13 C NMR and GC–MS analyzer, methyl palmitate and methyl oleate

  3. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    Science.gov (United States)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits

  4. Theoretical properties of the global optimizer of two layer neural network

    OpenAIRE

    Boob, Digvijay; Lan, Guanghui

    2017-01-01

    In this paper, we study the problem of optimizing a two-layer artificial neural network that best fits a training dataset. We look at this problem in the setting where the number of parameters is greater than the number of sampled points. We show that for a wide class of differentiable activation functions (this class involves "almost" all functions which are not piecewise linear), we have that first-order optimal solutions satisfy global optimality provided the hidden layer is non-singular. ...

  5. A global optimization algorithm inspired in the behavior of selfish herds.

    Science.gov (United States)

    Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián

    2017-10-01

    In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Global optimal path planning of an autonomous vehicle for overtaking a moving obstacle

    Directory of Open Access Journals (Sweden)

    B. Mashadi

    Full Text Available In this paper, the global optimal path planning of an autonomous vehicle for overtaking a moving obstacle is proposed. In this study, the autonomous vehicle overtakes a moving vehicle by performing a double lane-change maneuver after detecting it in a proper distance ahead. The optimal path of vehicle for performing the lane-change maneuver is generated by a path planning program in which the sum of lateral deviation of the vehicle from a reference path and the rate of steering angle become minimum while the lateral acceleration of vehicle does not exceed a safe limit value. A nonlinear optimal control theory with the lateral vehicle dynamics equations and inequality constraint of lateral acceleration are used to generate the path. The indirect approach for solving the optimal control problem is used by applying the calculus of variation and the Pontryagin's Minimum Principle to obtain first-order necessary conditions for optimality. The optimal path is generated as a global optimal solution and can be used as the benchmark of the path generated by the local motion planning of autonomous vehicles. A full nonlinear vehicle model in CarSim software is used for path following simulation by importing path data from the MATLAB code. The simulation results show that the generated path for the autonomous vehicle satisfies all vehicle dynamics constraints and hence is a suitable overtaking path for the following vehicle.

  7. Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use

    Science.gov (United States)

    Steinbuks, J.; Hertel, T. W.

    2011-12-01

    The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the

  8. Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule

    KAUST Repository

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-01-01

    cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural

  9. Artificial intelligence versus statistical modeling and optimization of continuous bead milling process for bacterial cell lysis

    Directory of Open Access Journals (Sweden)

    Shafiul Haque

    2016-11-01

    Full Text Available AbstractFor a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD was studied in a continuous bead milling process. A full factorial Response Surface Model (RSM design was employed and compared to Artificial Neural Networks coupled with Genetic Algorithm (ANN-GA. Significant process variables, cell slurry feed rate (A, bead load (B, cell load (C and run time (D, were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v, cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN coupled with GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h: 258.08, bead loading (%, v/v: 80%, cell loading (OD600 nm: 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN in combination with evolutionary optimization (GA for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  10. PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization

    Science.gov (United States)

    Chen, Shuangqing; Wei, Lixin; Guan, Bing

    2018-01-01

    Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036

  11. Selective Segmentation for Global Optimization of Depth Estimation in Complex Scenes

    Directory of Open Access Journals (Sweden)

    Sheng Liu

    2013-01-01

    Full Text Available This paper proposes a segmentation-based global optimization method for depth estimation. Firstly, for obtaining accurate matching cost, the original local stereo matching approach based on self-adapting matching window is integrated with two matching cost optimization strategies aiming at handling both borders and occlusion regions. Secondly, we employ a comprehensive smooth term to satisfy diverse smoothness request in real scene. Thirdly, a selective segmentation term is used for enforcing the plane trend constraints selectively on the corresponding segments to further improve the accuracy of depth results from object level. Experiments on the Middlebury image pairs show that the proposed global optimization approach is considerably competitive with other state-of-the-art matching approaches.

  12. Global optimization based on noisy evaluations: An empirical study of two statistical approaches

    International Nuclear Information System (INIS)

    Vazquez, Emmanuel; Villemonteix, Julien; Sidorkiewicz, Maryan; Walter, Eric

    2008-01-01

    The optimization of the output of complex computer codes has often to be achieved with a small budget of evaluations. Algorithms dedicated to such problems have been developed and compared, such as the Expected Improvement algorithm (El) or the Informational Approach to Global Optimization (IAGO). However, the influence of noisy evaluation results on the outcome of these comparisons has often been neglected, despite its frequent appearance in industrial problems. In this paper, empirical convergence rates for El and IAGO are compared when an additive noise corrupts the result of an evaluation. IAGO appears more efficient than El and various modifications of El designed to deal with noisy evaluations. Keywords. Global optimization; computer simulations; kriging; Gaussian process; noisy evaluations.

  13. Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Palazzi, E.; Perego, P.; Fabiano, B. [University of Genoa, Genova (Italy). Chemical and Process Engineering Department ' G.B. Bonino'

    2002-09-01

    The purpose of this paper is to investigate, both theoretically and experimentally, hydrogen production from agro-industrial by-products using a continuous bioreactor packed with a mixture of spongy and glass beads and inoculated with Enterobacter aerogenes. Replicated series of experimental runs were performed to study the effects of residence time on hydrogen evolution rate and to characterize the critical conditions for the wash out, as a function of the inlet glucose concentration and of the fluid superficial velocity. A further series of experimental runs was focused on the effects of both residence time and inlet glucose concentration over hydrogen productivity. A kinetic model of the process was developed and showed good agreement with experimental data, thus representing a potential tool to design a large-scale fermenter. In fact, the model was applied to the optimal design of a bioreactor suitable of feeding a phosphoric acid fuel cell of a target power. (author)

  14. Adaptive near-optimal neuro controller for continuous-time nonaffine nonlinear systems with constrained input.

    Science.gov (United States)

    Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali

    2017-09-01

    In this paper, an identifier-critic structure is introduced to find an online near-optimal controller for continuous-time nonaffine nonlinear systems having saturated control signal. By employing two Neural Networks (NNs), the solution of Hamilton-Jacobi-Bellman (HJB) equation associated with the cost function is derived without requiring a priori knowledge about system dynamics. Weights of the identifier and critic NNs are tuned online and simultaneously such that unknown terms are approximated accurately and the control signal is kept between the saturation bounds. The convergence of NNs' weights, identification error, and system states is guaranteed using Lyapunov's direct method. Finally, simulation results are performed on two nonlinear systems to confirm the effectiveness of the proposed control strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Material discovery by combining stochastic surface walking global optimization with a neural network.

    Science.gov (United States)

    Huang, Si-Da; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-09-01

    While the underlying potential energy surface (PES) determines the structure and other properties of a material, it has been frustrating to predict new materials from theory even with the advent of supercomputing facilities. The accuracy of the PES and the efficiency of PES sampling are two major bottlenecks, not least because of the great complexity of the material PES. This work introduces a "Global-to-Global" approach for material discovery by combining for the first time a global optimization method with neural network (NN) techniques. The novel global optimization method, named the stochastic surface walking (SSW) method, is carried out massively in parallel for generating a global training data set, the fitting of which by the atom-centered NN produces a multi-dimensional global PES; the subsequent SSW exploration of large systems with the analytical NN PES can provide key information on the thermodynamics and kinetics stability of unknown phases identified from global PESs. We describe in detail the current implementation of the SSW-NN method with particular focuses on the size of the global data set and the simultaneous energy/force/stress NN training procedure. An important functional material, TiO 2 , is utilized as an example to demonstrate the automated global data set generation, the improved NN training procedure and the application in material discovery. Two new TiO 2 porous crystal structures are identified, which have similar thermodynamics stability to the common TiO 2 rutile phase and the kinetics stability for one of them is further proved from SSW pathway sampling. As a general tool for material simulation, the SSW-NN method provides an efficient and predictive platform for large-scale computational material screening.

  16. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.

    Science.gov (United States)

    Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-01-01

    Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating

  17. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Science.gov (United States)

    Xu, Gang; Li, Ming; Mourrain, Bernard; Rabczuk, Timon; Xu, Jinlan; Bordas, Stéphane P. A.

    2018-01-01

    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach.

  18. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  19. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    Science.gov (United States)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  20. Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Lara, Cesar-Arturo [INRA, UMR792, Ingenierie des Systemes Biologiques et des Procedes, Toulouse (France); CNRS, UMR5504, Toulouse, France 135 Avenue de Rangueil, Toulouse Cedex F-31077 (France); INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France); Latrille, Eric; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2010-10-15

    This paper addresses the problem of optimization of hydrogen production in continuous anaerobic digesters using a model predictive control (MPC) strategy. The process is described by a dynamic nonlinear model. The influent concentration of molasses together with the effluent substrate and product concentrations of acetate, propionate, butyrate and biomass were estimated by an asymptotic online observer from measurements of gas composition in H{sub 2} and CO{sub 2} and gas flow rate. The observer was tested experimentally before to apply MPC online. The combined strategy (MPC and observer) was used in order to optimize a bioreactor of 2 L. The hydrogen production was increased by 75% up to 8.27mL{sub H{sub 2}} L{sup -1}min{sup -1}, using the influent flow rate as the main control variable while keeping the conversion of the influent concentration higher than 95% and maintaining the temperature at 37 C and pH at 5.5. (author)

  1. Optimizing Cost of Continuous Overlapping Queries over Data Streams by Filter Adaption

    KAUST Repository

    Xie, Qing

    2016-01-12

    The problem we aim to address is the optimization of cost management for executing multiple continuous queries on data streams, where each query is defined by several filters, each of which monitors certain status of the data stream. Specially the filter can be shared by different queries and expensive to evaluate. The conventional objective for such a problem is to minimize the overall execution cost to solve all queries, by planning the order of filter evaluation in shared strategy. However, in streaming scenario, the characteristics of data items may change in process, which can bring some uncertainty to the outcome of individual filter evaluation, and affect the plan of query execution as well as the overall execution cost. In our work, considering the influence of the uncertain variation of data characteristics, we propose a framework to deal with the dynamic adjustment of filter ordering for query execution on data stream, and focus on the issues of cost management. By incrementally monitoring and analyzing the results of filter evaluation, our proposed approach can be effectively adaptive to the varied stream behavior and adjust the optimal ordering of filter evaluation, so as to optimize the execution cost. In order to achieve satisfactory performance and efficiency, we also discuss the trade-off between the adaptivity of our framework and the overhead incurred by filter adaption. The experimental results on synthetic and two real data sets (traffic and multimedia) show that our framework can effectively reduce and balance the overall query execution cost and keep high adaptivity in streaming scenario.

  2. Long-term costs and health impact of continued global fund support for antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    John Stover

    Full Text Available BACKGROUND: By the end of 2011 Global Fund investments will be supporting 3.5 million people on antiretroviral therapy (ART in 104 low- and middle-income countries. We estimated the cost and health impact of continuing treatment for these patients through 2020. METHODS AND FINDINGS: Survival on first-line and second-line ART regimens is estimated based on annual retention rates reported by national AIDS programs. Costs per patient-year were calculated from country-reported ARV procurement prices, and expenditures on laboratory tests, health care utilization and end-of-life care from in-depth costing studies. Of the 3.5 million ART patients in 2011, 2.3 million will still need treatment in 2020. The annual cost of maintaining ART falls from $1.9 billion in 2011 to $1.7 billion in 2020, as a result of a declining number of surviving patients partially offset by increasing costs as more patients migrate to second-line therapy. The Global Fund is expected to continue being a major contributor to meeting this financial need, alongside other international funders and domestic resources. Costs would be $150 million less in 2020 with an annual 5% decline in first-line ARV prices and $150-370 million less with a 5%-12% annual decline in second-line prices, but $200 million higher in 2020 with phase out of stavudine (d4T, or $200 million higher with increased migration to second-line regimens expected if all countries routinely adopted viral load monitoring. Deaths postponed by ART correspond to 830,000 life-years saved in 2011, increasing to around 2.3 million life-years every year between 2015 and 2020. CONCLUSIONS: Annual patient-level direct costs of supporting a patient cohort remain fairly stable over 2011-2020, if current antiretroviral prices and delivery costs are maintained. Second-line antiretroviral prices are a major cost driver, underscoring the importance of investing in treatment quality to improve retention on first-line regimens.

  3. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    Science.gov (United States)

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2017-01-01

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  4. Reverse translated and gold standard continuous performance tests predict global cognitive performance in schizophrenia.

    Science.gov (United States)

    Bismark, Andrew W; Thomas, Michael L; Tarasenko, Melissa; Shiluk, Alexandra L; Rackelmann, Sonia Y; Young, Jared W; Light, Gregory A

    2018-04-12

    Attentional dysfunction contributes to functional impairments in schizophrenia (SZ). Sustained attention is typically assessed via continuous performance tasks (CPTs), though many CPTs have limited cross-species translational validity and place demands on additional cognitive domains. A reverse-translated 5-Choice Continuous Performance Task (5C-CPT) for human testing-originally developed for use in rodents-was designed to minimize demands on perceptual, visual learning, processing speed, or working memory functions. To-date, no studies have validated the 5C-CPT against gold standard attentional measures nor evaluated how 5C-CPT scores relate to cognition in SZ. Here we examined the relationship between the 5C-CPT and the CPT-Identical Pairs (CPT-IP), an established and psychometrically robust measure of vigilance from the MATRICS Consensus Cognitive Battery (MCCB) in a sample of SZ patients (n = 35). Relationships to global and individual subdomains of cognition were also assessed. 5C-CPT and CPT-IP measures of performance (d-prime) were strongly correlated (r = 0.60). In a regression model, the 5C-CPT and CPT-IP collectively accounted for 54% of the total variance in MCCB total scores, and 27.6% of overall cognitive variance was shared between the 5C-CPT and CPT-IP. These results indicate that the reverse translated 5C-CPT and the gold standard CPT-IP index a common attentional construct that also significantly overlaps with variance in general cognitive performance. The use of simple, cross-species validated behavioral indices of attentional/cognitive functioning such as the 5C-CPT could accelerate the development of novel generalized pro-cognitive therapeutics for SZ and related neuropsychiatric disorders.

  5. Clinical review: Optimal dose of continuous renal replacement therapy in acute kidney injury.

    Science.gov (United States)

    Prowle, John R; Schneider, Antoine; Bellomo, Rinaldo

    2011-01-01

    Continuous renal replacement therapy (CRRT) is the preferred treatment for acute kidney injury in intensive care units (ICUs) throughout much of the world. Despite the widespread use of CRRT, controversy and center-specific practice variation in the clinical application of CRRT continue. In particular, whereas two single-center studies have suggested survival benefit from delivery of higher-intensity CRRT to patients with acute kidney injury in the ICU, other studies have been inconsistent in their results. Now, however, two large multi-center randomized controlled trials - the Veterans Affairs/National Institutes of Health Acute Renal Failure Trial Network (ATN) study and the Randomized Evaluation of Normal versus Augmented Level (RENAL) Replacement Therapy Study - have provided level 1 evidence that effluent flow rates above 25 mL/kg per hour do not improve outcomes in patients in the ICU. In this review, we discuss the concept of dose of CRRT, its relationship with clinical outcomes, and what target optimal dose of CRRT should be pursued in light of the high-quality evidence now available.

  6. Optimizing Diamond Structured Automobile Supply Chain Network Towards a Robust Business Continuity Management

    Directory of Open Access Journals (Sweden)

    Abednico Montshiwa

    2016-02-01

    Full Text Available This paper presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain. Companies in tier two are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is the inherent risks in the supply chain. Once supply chain disruption takes place at tier 2 level, the whole supply chain network suffers huge loses. To address this challenge, the paper replaces Risk Analysis with Risk Ranking and it introduces Supply Chain Cooperation (SCC to the traditional Business Continuity Plan (BCP concept. The paper employed three statistical analysis techniques (correlation analysis, regression analysis and Smart PLS 3.0 calculations. In this study, correlation and regression analysis results on risk rankings, SCC and Business Impact Analysis were significant, ascertaining the value of the model. The multivariate data analysis calculations demonstrated that SCC has a positive total significant effect on risk rankings and BCM while BIA has strongest positive effects on all BCP factors. Finally, sensitivity analysis demonstrated that company size plays a role in BCM.

  7. Statistical distributions of optimal global alignment scores of random protein sequences

    Directory of Open Access Journals (Sweden)

    Tang Jiaowei

    2005-10-01

    Full Text Available Abstract Background The inference of homology from statistically significant sequence similarity is a central issue in sequence alignments. So far the statistical distribution function underlying the optimal global alignments has not been completely determined. Results In this study, random and real but unrelated sequences prepared in six different ways were selected as reference datasets to obtain their respective statistical distributions of global alignment scores. All alignments were carried out with the Needleman-Wunsch algorithm and optimal scores were fitted to the Gumbel, normal and gamma distributions respectively. The three-parameter gamma distribution performs the best as the theoretical distribution function of global alignment scores, as it agrees perfectly well with the distribution of alignment scores. The normal distribution also agrees well with the score distribution frequencies when the shape parameter of the gamma distribution is sufficiently large, for this is the scenario when the normal distribution can be viewed as an approximation of the gamma distribution. Conclusion We have shown that the optimal global alignment scores of random protein sequences fit the three-parameter gamma distribution function. This would be useful for the inference of homology between sequences whose relationship is unknown, through the evaluation of gamma distribution significance between sequences.

  8. Statistical surrogate model based sampling criterion for stochastic global optimization of problems with constraints

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Su Gil; Jang, Jun Yong; Kim, Ji Hoon; Lee, Tae Hee [Hanyang University, Seoul (Korea, Republic of); Lee, Min Uk [Romax Technology Ltd., Seoul (Korea, Republic of); Choi, Jong Su; Hong, Sup [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-04-15

    Sequential surrogate model-based global optimization algorithms, such as super-EGO, have been developed to increase the efficiency of commonly used global optimization technique as well as to ensure the accuracy of optimization. However, earlier studies have drawbacks because there are three phases in the optimization loop and empirical parameters. We propose a united sampling criterion to simplify the algorithm and to achieve the global optimum of problems with constraints without any empirical parameters. It is able to select the points located in a feasible region with high model uncertainty as well as the points along the boundary of constraint at the lowest objective value. The mean squared error determines which criterion is more dominant among the infill sampling criterion and boundary sampling criterion. Also, the method guarantees the accuracy of the surrogate model because the sample points are not located within extremely small regions like super-EGO. The performance of the proposed method, such as the solvability of a problem, convergence properties, and efficiency, are validated through nonlinear numerical examples with disconnected feasible regions.

  9. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    Energy Technology Data Exchange (ETDEWEB)

    Rattá, G.A., E-mail: giuseppe.ratta@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, J. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Murari, A. [Consorzio RFX, Associazione EURATOM/ENEA per la Fusione, Padua (Italy); Dormido-Canto, S. [Dpto. de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid (Spain); Moreno, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain)

    2016-11-15

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  10. Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture

    International Nuclear Information System (INIS)

    Rattá, G.A.; Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.

    2016-01-01

    Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.

  11. Globally linearized control on diabatic continuous stirred tank reactor: a case study.

    Science.gov (United States)

    Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal

    2005-07-01

    This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.

  12. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal

    2017-08-15

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  13. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal; Deton-Cabanillas, Anne-Flore; Rocha Jimenez Vieira, Fabio; Veluchamy, Alaguraj; Cantrel, Catherine; Wang, Gaohong; Vanormelingen, Pieter; Bowler, Chris; Piganeau, Gwenael; Tirichine, Leila; Hu, Hanhua

    2017-01-01

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  14. Continuation of Global NO2 and SO2 Monitoring with Suomi NPP OMPS

    Science.gov (United States)

    Yang, K.; Zhang, H.; Wang, J.; Ge, C.; Wang, Y.

    2017-12-01

    We have produced high-quality NO2 and SO2 standard products (named NMNO2 and NMSO2 respectively) from the SNPP OMPS-NM daily global observations. These OMPS standard products have been archived and publicly released at NASA Goddard Earth Sciences Data and Information Services Center (https://daac.gsfc.nasa.gov/information/news/595e9675624016d1af392c73/omps-nm-no- 2-and-so-2-l-2-data-products-released). Analyses and comparisons have demonstrated that the qualities of these OMPS standard products match or surpass those of the corresponding OMI products, enabling the continuity and extension of these two key standard Earth System Data Records (ESDRs) that begun with NASA's EOS Aura mission using the SNPP observations. In this presentation, we summarize the new techniques and algorithm advances that improve the accuracy and consistency of these ESDRs from satellite observations, and highlight the regional changes in NO2 and SO2 detected from half a decade of SNPP OMPS observations.

  15. A New Multidisciplinary Design Optimization Method Accounting for Discrete and Continuous Variables under Aleatory and Epistemic Uncertainties

    Directory of Open Access Journals (Sweden)

    Hong-Zhong Huang

    2012-02-01

    Full Text Available Various uncertainties are inevitable in complex engineered systems and must be carefully treated in design activities. Reliability-Based Multidisciplinary Design Optimization (RBMDO has been receiving increasing attention in the past decades to facilitate designing fully coupled systems but also achieving a desired reliability considering uncertainty. In this paper, a new formulation of multidisciplinary design optimization, namely RFCDV (random/fuzzy/continuous/discrete variables Multidisciplinary Design Optimization (RFCDV-MDO, is developed within the framework of Sequential Optimization and Reliability Assessment (SORA to deal with multidisciplinary design problems in which both aleatory and epistemic uncertainties are present. In addition, a hybrid discrete-continuous algorithm is put forth to efficiently solve problems where both discrete and continuous design variables exist. The effectiveness and computational efficiency of the proposed method are demonstrated via a mathematical problem and a pressure vessel design problem.

  16. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses

    International Nuclear Information System (INIS)

    Zou, Dexuan; Li, Steven; Li, Zongyan; Kong, Xiangyong

    2017-01-01

    Highlights: • A new global particle swarm optimization (NGPSO) is proposed. • NGPSO has strong convergence and desirable accuracy. • NGPSO is used to handle the economic emission dispatch with or without transmission losses. • The equality constraint can be satisfied by solving a quadratic equation. • The inequality constraints can be satisfied by using penalty function method. - Abstract: A new global particle swarm optimization (NGPSO) algorithm is proposed to solve the economic emission dispatch (EED) problems in this paper. NGPSO is different from the traditional particle swarm optimization (PSO) algorithm in two aspects. First, NGPSO uses a new position updating equation which relies on the global best particle to guide the searching activities of all particles. Second, it uses the randomization based on the uniform distribution to slightly disturb the flight trajectories of particles during the late evolutionary process. The two steps enable NGPSO to effectively execute a number of global searches, and thus they increase the chance of exploring promising solution space, and reduce the probabilities of getting trapped into local optima for all particles. On the other hand, the two objective functions of EED are normalized separately according to all candidate solutions, and then they are incorporated into one single objective function. The transformation steps are very helpful in eliminating the difference caused by the different dimensions of the two functions, and thus they strike a balance between the fuel cost and emission. In addition, a simple and common penalty function method is employed to facilitate the satisfactions of EED’s constraints. Based on these improvements in PSO, objective functions and constraints handling, high-quality solutions can be obtained for EED problems. Five examples are chosen to testify the performance of three improved PSOs on solving EED problems with or without transmission losses. Experimental results show that

  17. Optimization Solution of Troesch’s and Bratu’s Problems of Ordinary Type Using Novel Continuous Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zaer Abo-Hammour

    2014-01-01

    Full Text Available A new kind of optimization technique, namely, continuous genetic algorithm, is presented in this paper for numerically approximating the solutions of Troesch’s and Bratu’s problems. The underlying idea of the method is to convert the two differential problems into discrete versions by replacing each of the second derivatives by an appropriate difference quotient approximation. The new method has the following characteristics. First, it should not resort to more advanced mathematical tools; that is, the algorithm should be simple to understand and implement and should be thus easily accepted in the mathematical and physical application fields. Second, the algorithm is of global nature in terms of the solutions obtained as well as its ability to solve other mathematical and physical problems. Third, the proposed methodology has an implicit parallel nature which points to its implementation on parallel machines. The algorithm is tested on different versions of Troesch’s and Bratu’s problems. Experimental results show that the proposed algorithm is effective, straightforward, and simple.

  18. Developing a Continuous Quality Improvement Assessment Using a Patient-Centered Approach in Optimizing Systemic Lupus Erythematosus Disease Control.

    Science.gov (United States)

    Updyke, Katelyn Mariko; Urso, Brittany; Beg, Shazia; Solomon, James

    2017-10-09

    Systemic lupus erythematosus (SLE) is a multi-organ, autoimmune disease in which patients lose self-tolerance and develop immune complexes which deposit systemically causing multi-organ damage and inflammation. Patients often experience unpredictable flares of symptoms with poorly identified triggers. Literature suggests exogenous exposures may contribute to flares in symptoms. An online pilot survey was marketed globally through social media to self-reported SLE patients with the goal to identify specific subpopulations who are susceptible to disease state changes based on analyzed exogenous factors. The pilot survey was promoted for two weeks, 80 respondents fully completed the survey and were included in statistical analysis. Descriptive statistical analysis was performed on de-identified patient surveys and compared to previous literature studies reporting known or theorized triggers in the SLE disease state. The pilot survey identified similar exogenous triggers compared to previous literature, including antibiotics, increasing beef intake, and metal implants. The goal of the pilot survey is to utilize similar questions to develop a detailed internet-based patient interactive form that can be edited and time stamped as a method to promote continuous quality improvement assessments. The ultimate objective of the platform is to interact with SLE patients from across the globe longitudinally to optimize disease control and improve quality of care by allowing them to avoid harmful triggers.

  19. SGO: A fast engine for ab initio atomic structure global optimization by differential evolution

    Science.gov (United States)

    Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.

  20. Efficient algorithms for multidimensional global optimization in genetic mapping of complex traits

    Directory of Open Access Journals (Sweden)

    Kajsa Ljungberg

    2010-10-01

    Full Text Available Kajsa Ljungberg1, Kateryna Mishchenko2, Sverker Holmgren11Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden; 2Department of Mathematics and Physics, Mälardalen University College, Västerås, SwedenAbstract: We present a two-phase strategy for optimizing a multidimensional, nonconvex function arising during genetic mapping of quantitative traits. Such traits are believed to be affected by multiple so called QTL, and searching for d QTL results in a d-dimensional optimization problem with a large number of local optima. We combine the global algorithm DIRECT with a number of local optimization methods that accelerate the final convergence, and adapt the algorithms to problem-specific features. We also improve the evaluation of the QTL mapping objective function to enable exploitation of the smoothness properties of the optimization landscape. Our best two-phase method is demonstrated to be accurate in at least six dimensions and up to ten times faster than currently used QTL mapping algorithms.Keywords: global optimization, QTL mapping, DIRECT 

  1. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    OpenAIRE

    Youhua Chen

    2014-01-01

    In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR), one-continuous-shift (OCS) and multiplediscrete- shifts (MDS) situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001), implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR...

  2. Stepwise optimization and global chaos of nonlinear parameters in exact calculations of few-particle systems

    International Nuclear Information System (INIS)

    Frolov, A.M.

    1986-01-01

    The problem of exact variational calculations of few-particle systems in the exponential basis of the relative coordinates using nonlinear parameters is studied. The techniques of stepwise optimization and global chaos of nonlinear parameters are used to calculate the S and P states of homonuclear muonic molecules with an error of no more than +0.001 eV. The global-chaos technique also has proved to be successful in the case of the nuclear systems 3 H and 3 He

  3. Global optimization of discrete truss topology design problems using a parallel cut-and-branch method

    DEFF Research Database (Denmark)

    Rasmussen, Marie-Louise Højlund; Stolpe, Mathias

    2008-01-01

    the physics, and the cuts (Combinatorial Benders’ and projected Chvátal–Gomory) come from an understanding of the particular mathematical structure of the reformulation. The impact of a stronger representation is investigated on several truss topology optimization problems in two and three dimensions.......The subject of this article is solving discrete truss topology optimization problems with local stress and displacement constraints to global optimum. We consider a formulation based on the Simultaneous ANalysis and Design (SAND) approach. This intrinsically non-convex problem is reformulated...

  4. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation

    Science.gov (United States)

    Bergeron, Dominic; Tremblay, A.-M. S.

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ2 with respect to α , and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  5. External costs in the global energy optimization models. A tool in favour of sustain ability

    International Nuclear Information System (INIS)

    Cabal Cuesta, H.

    2007-01-01

    The aim of this work is the analysis of the effects of the GHG external costs internalization in the energy systems. This may provide a useful tool to support decision makers to help reaching the energy systems sustain ability. External costs internalization has been carried out using two methods. First, CO 2 externalities of different power generation technologies have been internalized to evaluate their effects on the economic competitiveness of these present and future technologies. The other method consisted of analysing and optimizing the global energy system, from an economic and environmental point of view, using the global energy optimization model generator, TIMES, with a time horizon of 50 years. Finally, some scenarios regarding environmental and economic strategic measures have been analysed. (Author)

  6. Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2015-01-01

    Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of

  7. Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data

    Science.gov (United States)

    Ming, Jing; Papa, Maria Alessandra; Krishnan, Badri; Prix, Reinhard; Beer, Christian; Zhu, Sylvia J.; Eggenstein, Heinz-Bernd; Bock, Oliver; Machenschalk, Bernd

    2018-02-01

    In this paper we design a search for continuous gravitational waves from three supernova remnants: Vela Jr., Cassiopeia A (Cas A) and G347.3. These systems might harbor rapidly rotating neutron stars emitting quasiperiodic gravitational radiation detectable by the advanced LIGO detectors. Our search is designed to use the volunteer computing project Einstein@Home for a few months and assumes the sensitivity and duty cycles of the advanced LIGO detectors during their first science run. For all three supernova remnants, the sky positions of their central compact objects are well known but the frequency and spin-down rates of the neutron stars are unknown which makes the searches computationally limited. In a previous paper we have proposed a general framework for deciding on what target we should spend computational resources and in what proportion, what frequency and spin-down ranges we should search for every target, and with what search setup. Here we further expand this framework and apply it to design a search directed at detecting continuous gravitational wave signals from the most promising three supernova remnants identified as such in the previous work. Our optimization procedure yields broad frequency and spin-down searches for all three objects, at an unprecedented level of sensitivity: The smallest detectable gravitational wave strain h0 for Cas A is expected to be 2 times smaller than the most sensitive upper limits published to date, and our proposed search, which was set up and ran on the volunteer computing project Einstein@Home, covers a much larger frequency range.

  8. Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes

    OpenAIRE

    Dressel, F.; Kobe, S.

    2004-01-01

    A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.

  9. Global optimization of truss topology with discrete bar areas-Part II: Implementation and numerical results

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Stolpe, Mathias

    2009-01-01

    we use the theory developed in Part I to design a convergent nonlinear branch-and-bound method tailored to solve large-scale instances of the original discrete problem. The problem formulation and the needed theoretical results from Part I are repeated such that this paper is self-contained. We focus...... the largest discrete topology design problems solved by means of global optimization....

  10. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    Science.gov (United States)

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An online spaced-education game for global continuing medical education: a randomized trial.

    Science.gov (United States)

    Kerfoot, B Price; Baker, Harley

    2012-07-01

    To assess the efficacy of a "spaced-education" game as a method of continuing medical education (CME) among physicians across the globe. The efficacy of educational games for the CME has yet to be established. We created a novel online educational game by incorporating game mechanics into "spaced education" (SE), an evidence-based method of online CME. This 34-week randomized trial enrolled practicing urologists across the globe. The SE game consisted of 40 validated multiple-choice questions and explanations on urology clinical guidelines. Enrollees were randomized to 2 cohorts: cohort A physicians were sent 2 questions via an automated e-mail system every 2 days, and cohort B physicians were sent 4 questions every 4 days. Adaptive game mechanics re-sent the questions in 12 or 24 days if answered incorrectly and correctly, respectively. Questions expired if not answered on time (appointment dynamic). Physicians retired questions by answering each correctly twice-in-a-row (progression dynamic). Competition was fostered by posting relative performance among physicians. Main outcome measures were baseline scores (percentage of questions answered correctly upon initial presentation) and completion scores (percentage of questions retired). A total of 1470 physicians from 63 countries enrolled. Median baseline score was 48% (interquartile range [IQR] 17) and, in multivariate analyses, was found to vary significantly by region (Cohen dmax = 0.31, P = 0.001) and age (dmax = 0.41, P games. An online SE game can substantially improve guidelines knowledge and is a well-accepted method of global CME delivery.

  12. Ringed Seal Search for Global Optimization via a Sensitive Search Model.

    Directory of Open Access Journals (Sweden)

    Younes Saadi

    Full Text Available The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive and exploitation (intensive of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be

  13. Process design and optimization of novel wheat-based continuous bioethanol production system.

    Science.gov (United States)

    Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis K; Webb, Colin; Koutinas, Apostolis A

    2007-01-01

    A novel design of a wheat-based biorefinery for bioethanol production, including wheat milling, gluten extraction as byproduct, fungal submerged fermentation for enzyme production, starch hydrolysis, fungal biomass autolysis for nutrient regeneration, yeast fermentation with recycling integrated with a pervaporation membrane for ethanol concentration, and fuel-grade ethanol purification by pressure swing distillation (PSD), was optimized in continuous mode using the equation-based software General Algebraic Modelling System (GAMS). The novel wheat biorefining strategy could result in a production cost within the range of dollars 0.96-0.50 gal(-1) ethanol (dollars 0.25-0.13 L(-1) ethanol) when the production capacity of the plant is within the range of 10-33.5 million gal y(-1) (37.85-126.8 million L y(-1)). The production of value-added byproducts (e.g., bran-rich pearlings, gluten, pure yeast cells) was identified as a crucial factor for improving the economics of fuel ethanol production from wheat. Integration of yeast fermentation with pervaporation membrane could result in the concentration of ethanol in the fermentation outlet stream (up to 40 mol %). The application of a PSD system that consisted of a low-pressure and a high-pressure column and employing heat integration between the high- and low-pressure columns resulted in reduced operating cost (up to 44%) for fuel-grade ethanol production.

  14. Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions

    KAUST Repository

    Odat, Enas M.

    2011-05-01

    The purpose of this dissertation is to present a methodology to model global sequence alignment problem as directed acyclic graph which helps to extract all possible optimal alignments. Moreover, a mechanism to sequentially optimize sequence alignment problem relative to different cost functions is suggested. Sequence alignment is mostly important in computational biology. It is used to find evolutionary relationships between biological sequences. There are many algo- rithms that have been developed to solve this problem. The most famous algorithms are Needleman-Wunsch and Smith-Waterman that are based on dynamic program- ming. In dynamic programming, problem is divided into a set of overlapping sub- problems and then the solution of each subproblem is found. Finally, the solutions to these subproblems are combined into a final solution. In this thesis it has been proved that for two sequences of length m and n over a fixed alphabet, the suggested optimization procedure requires O(mn) arithmetic operations per cost function on a single processor machine. The algorithm has been simulated using C#.Net programming language and a number of experiments have been done to verify the proved statements. The results of these experiments show that the number of optimal alignments is reduced after each step of optimization. Furthermore, it has been verified that as the sequence length increased linearly then the number of optimal alignments increased exponentially which also depends on the cost function that is used. Finally, the number of executed operations increases polynomially as the sequence length increase linearly.

  15. Economic optimization of a global strategy to address the pandemic threat.

    Science.gov (United States)

    Pike, Jamison; Bogich, Tiffany; Elwood, Sarah; Finnoff, David C; Daszak, Peter

    2014-12-30

    Emerging pandemics threaten global health and economies and are increasing in frequency. Globally coordinated strategies to combat pandemics, similar to current strategies that address climate change, are largely adaptive, in that they attempt to reduce the impact of a pathogen after it has emerged. However, like climate change, mitigation strategies have been developed that include programs to reduce the underlying drivers of pandemics, particularly animal-to-human disease transmission. Here, we use real options economic modeling of current globally coordinated adaptation strategies for pandemic prevention. We show that they would be optimally implemented within 27 y to reduce the annual rise of emerging infectious disease events by 50% at an estimated one-time cost of approximately $343.7 billion. We then analyze World Bank data on multilateral "One Health" pandemic mitigation programs. We find that, because most pandemics have animal origins, mitigation is a more cost-effective policy than business-as-usual adaptation programs, saving between $344.0.7 billion and $360.3 billion over the next 100 y if implemented today. We conclude that globally coordinated pandemic prevention policies need to be enacted urgently to be optimally effective and that strategies to mitigate pandemics by reducing the impact of their underlying drivers are likely to be more effective than business as usual.

  16. Economic optimization of a global strategy to address the pandemic threat

    Science.gov (United States)

    Pike, Jamison; Bogich, Tiffany; Elwood, Sarah; Finnoff, David C.; Daszak, Peter

    2014-01-01

    Emerging pandemics threaten global health and economies and are increasing in frequency. Globally coordinated strategies to combat pandemics, similar to current strategies that address climate change, are largely adaptive, in that they attempt to reduce the impact of a pathogen after it has emerged. However, like climate change, mitigation strategies have been developed that include programs to reduce the underlying drivers of pandemics, particularly animal-to-human disease transmission. Here, we use real options economic modeling of current globally coordinated adaptation strategies for pandemic prevention. We show that they would be optimally implemented within 27 y to reduce the annual rise of emerging infectious disease events by 50% at an estimated one-time cost of approximately $343.7 billion. We then analyze World Bank data on multilateral “One Health” pandemic mitigation programs. We find that, because most pandemics have animal origins, mitigation is a more cost-effective policy than business-as-usual adaptation programs, saving between $344.0.7 billion and $360.3 billion over the next 100 y if implemented today. We conclude that globally coordinated pandemic prevention policies need to be enacted urgently to be optimally effective and that strategies to mitigate pandemics by reducing the impact of their underlying drivers are likely to be more effective than business as usual. PMID:25512538

  17. SU-E-J-130: Automating Liver Segmentation Via Combined Global and Local Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dengwang; Wang, Jie [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong (China); Kapp, Daniel S.; Xing, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data were segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is

  18. SU-E-J-130: Automating Liver Segmentation Via Combined Global and Local Optimization

    International Nuclear Information System (INIS)

    Li, Dengwang; Wang, Jie; Kapp, Daniel S.; Xing, Lei

    2015-01-01

    Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data were segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is

  19. Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms

    International Nuclear Information System (INIS)

    Göktürkler, G; Balkaya, Ç

    2012-01-01

    Three naturally inspired meta-heuristic algorithms—the genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO)—were used to invert some of the self-potential (SP) anomalies originated by some polarized bodies with simple geometries. Both synthetic and field data sets were considered. The tests with the synthetic data comprised of the solutions with both noise-free and noisy data; in the tests with the field data some SP anomalies observed over a copper belt (India), graphite deposits (Germany) and metallic sulfide (Turkey) were inverted. The model parameters included the electric dipole moment, polarization angle, depth, shape factor and origin of the anomaly. The estimated parameters were compared with those from previous studies using various optimization algorithms, mainly least-squares approaches, on the same data sets. During the test studies the solutions by GA, PSO and SA were characterized as being consistent with each other; a good starting model was not a requirement to reach the global minimum. It can be concluded that the global optimization algorithms considered in this study were able to yield compatible solutions with those from widely used local optimization algorithms. (paper)

  20. Annealing evolutionary stochastic approximation Monte Carlo for global optimization

    KAUST Repository

    Liang, Faming

    2010-04-08

    In this paper, we propose a new algorithm, the so-called annealing evolutionary stochastic approximation Monte Carlo (AESAMC) algorithm as a general optimization technique, and study its convergence. AESAMC possesses a self-adjusting mechanism, whose target distribution can be adapted at each iteration according to the current samples. Thus, AESAMC falls into the class of adaptive Monte Carlo methods. This mechanism also makes AESAMC less trapped by local energy minima than nonadaptive MCMC algorithms. Under mild conditions, we show that AESAMC can converge weakly toward a neighboring set of global minima in the space of energy. AESAMC is tested on multiple optimization problems. The numerical results indicate that AESAMC can potentially outperform simulated annealing, the genetic algorithm, annealing stochastic approximation Monte Carlo, and some other metaheuristics in function optimization. © 2010 Springer Science+Business Media, LLC.

  1. Global optimization methods for the aerodynamic shape design of transonic cascades

    International Nuclear Information System (INIS)

    Mengistu, T.; Ghaly, W.

    2003-01-01

    Two global optimization algorithms, namely Genetic Algorithm (GA) and Simulated Annealing (SA), have been applied to the aerodynamic shape optimization of transonic cascades; the objective being the redesign of an existing turbomachine airfoil to improve its performance by minimizing the total pressure loss while satisfying a number of constraints. This is accomplished by modifying the blade camber line; keeping the same blade thickness distribution, mass flow rate and the same flow turning. The objective is calculated based on an Euler solver and the blade camber line is represented with non-uniform rational B-splines (NURBS). The SA and GA methods were first assessed for known test functions and their performance in optimizing the blade shape for minimum loss is then demonstrated on a transonic turbine cascade where it is shown to produce a significant reduction in total pressure loss by eliminating the passage shock. (author)

  2. $H_2$ optimal controllers with observer based architecture for continuous-time systems : separation principle

    NARCIS (Netherlands)

    Saberi, A.; Sannuti, P.; Stoorvogel, A.A.

    1994-01-01

    For a general H2 optimal control problem, at first all Hz optimal measurement feedback controllers are characterized and parameterized, and then attention is focused on controllers with observer based architecture. Both full order as well as reduced order observer based H2 optimal controllers are

  3. Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes

    Science.gov (United States)

    Mitra, Sumit

    With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with

  4. A global carbon assimilation system based on a dual optimization method

    Science.gov (United States)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2015-02-01

    Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.

  5. Globalization of continuing professional development by journal clubs via microblogging: a systematic review.

    Science.gov (United States)

    Roberts, Matthew John; Perera, Marlon; Lawrentschuk, Nathan; Romanic, Diana; Papa, Nathan; Bolton, Damien

    2015-04-23

    Journal clubs are an essential tool in promoting clinical evidence-based medical education to all medical and allied health professionals. Twitter represents a public, microblogging forum that can facilitate traditional journal club requirements, while also reaching a global audience, and participation for discussion with study authors and colleagues. The aim of the current study was to evaluate the current state of social media-facilitated journal clubs, specifically Twitter, as an example of continuing professional development. A systematic review of literature databases (Medline, Embase, CINAHL, Web of Science, ERIC via ProQuest) was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search of Twitter, the followers of identified journal clubs, and Symplur was also performed. Demographic and monthly tweet data were extracted from Twitter and Symplur. All manuscripts related to Twitter-based journal clubs were included. Statistical analyses were performed in MS Excel and STATA. From a total of 469 citations, 11 manuscripts were included and referred to five Twitter-based journal clubs (#ALiEMJC, #BlueJC, #ebnjc, #urojc, #meded). A Twitter-based journal club search yielded 34 potential hashtags/accounts, of which 24 were included in the final analysis. The median duration of activity was 11.75 (interquartile range [IQR] 19.9, SD 10.9) months, with 7 now inactive. The median number of followers and participants was 374 (IQR 574) and 157 (IQR 272), respectively. An overall increasing establishment of active Twitter-based journal clubs was observed, resulting in an exponential increase in total cumulative tweets (R(2)=.98), and tweets per month (R(2)=.72). Cumulative tweets for specific journal clubs increased linearly, with @ADC_JC, @EBNursingBMJ, @igsjc, @iurojc, and @NephJC, and showing greatest rate of change, as well as total impressions per month since establishment. An average of two

  6. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...

  7. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....

  8. The Development of a Long-Term, Continually Updated Global Solar Resource at 10 km Resolution: Preliminary Results From Test Processing and Continuing Plans

    Science.gov (United States)

    Stackhouse, P.; Perez, R.; Sengupta, M.; Knapp, K.; Cox, Stephen; Mikovitz, J. Colleen; Zhang, T.; Hemker, K.; Schlemmer, J.; Kivalov, S.

    2014-01-01

    Background: Considering the likelihood of global climatic weather pattern changes and the global competition for energy resources, there is an increasing need to provide improved and continuously updated global Earth surface solar resource information. Toward this end, a project was funded under the NASA Applied Science program involving the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), National Renewable Energy Laboratory (NREL), the State University of New York/Albany (SUNY) and the NOAA National Climatic Data Center (NCDC) to provide NREL with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and variability and to provide a mechanism for continual updates of solar resource information. This new production system is made possible by the efforts of NOAA and NASA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 3-hourly basis beginning from July 1983. The old version of the ISCCP data provided this information for all the world TMs available geosynchronous satellite systems and NOAA TMs AVHRR data sets at a 30 km effective resolution. This new version aims to provide a new and improved satellite calibration at an effective 10 km resolution. Thus, working with SUNY, NASA will develop and test an improved production system that will enable NREL to continually update the Earth TM solar resource. Objective and Methods: In this presentation, we provide a general overview of this project together with samples of the new solar irradiance mapped data products and comparisons to surface measurements at various locations across the world. An assessment of the solar resource values relative to calibration uncertainty and assumptions are presented. Errors resulting assumptions in snow cover and background aerosol

  9. Observer variability and optimal criteria of transient ischemia during ST monitoring with continuous 12-lead ECG.

    Science.gov (United States)

    Jernberg, Tomas; Cronblad, Jörgen; Lindahl, Bertil; Wallentin, Lars

    2002-07-01

    ST monitoring with continuous 12-lead ECG is a well-established method in patients with unstable coronary artery disease (CAD). However, the method lacks documentation on optimal criteria for episodes of transient ischemia and on observer variability. Observer variability was evaluated in 24-hour recordings from 100 patients with unstable CAD with monitoring in the coronary care unit. Influence on ST changes by variations in body position were evaluated by monitoring 50 patients in different body positions. Different criteria of transient ischemia and their predictive importance were evaluated in 630 patients with unstable CAD who underwent 12 hours of monitoring and thereafter were followed for 1 to13 months. Two sets of criteria were tested: (1) ST deviation > or = 0.1 mV for at least 1 minute, and (2) ST depression > or = 0.05 mV or elevation > or = 0.1 mV for at least 1 minute. When the first set of criteria were used, the interobserver agreement was good (kappa = 0.72) and 8 (16%) had significant ST changes in at least one body position. Out of 100 patients with symptoms suggestive of unstable CAD and such ischemia, 24 (24%) had a cardiac event during follow-up. When the second set of criteria were used, the interobserver agreement was poor (kappa = 0.32) and 21 (42%) had significant ST changes in at least one body position. Patients fulfilling the second but not the first set of criteria did not have a higher risk of cardiac event than those without transient ischemia (5.3 vs 4.3%). During 12-lead ECG monitoring, transient ischemic episodes should be defined as ST deviations > or = 0.1 mV for at least 1 minute, based on a low observer variability, minor problems with postural ST changes and an important predictive value.

  10. Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing

    Science.gov (United States)

    Rais-Rohani, Masound

    1999-01-01

    This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).

  11. Optimizing rice yields while minimizing yield-scaled global warming potential.

    Science.gov (United States)

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  12. Estimated Costs of Continuing Operations in Iraq and Other Operations of the Global War on Terrorism

    National Research Council Canada - National Science Library

    Holtz-Eakin, Douglas

    2004-01-01

    At the request of Senator Conrad, the Congressional Budget Office (CBO) has estimated the costs of military operations in Iraq and Afghanistan and other operations associated with the global war on terrorism (GWOT...

  13. Parameter identification using optimization techniques in the continuous simulation programs FORSIM and MACKSIM

    International Nuclear Information System (INIS)

    Carver, M.B.; Austin, C.F.; Ross, N.E.

    1980-02-01

    This report discusses the mechanics of automated parameter identification in simulation packages, and reviews available integration and optimization algorithms and their interaction within the recently developed optimization options in the FORSIM and MACKSIM simulation packages. In the MACKSIM mass-action chemical kinetics simulation package, the form and structure of the ordinary differential equations involved is known, so the implementation of an optimizing option is relatively straightforward. FORSIM, however, is designed to integrate ordinary and partial differential equations of abritrary definition. As the form of the equations is not known in advance, the design of the optimizing option is more intricate, but the philosophy could be applied to most simulation packages. In either case, however, the invocation of the optimizing interface is simple and user-oriented. Full details for the use of the optimizing mode for each program are given; specific applications are used as examples. (O.T.)

  14. Comparison of global optimization approaches for robust calibration of hydrologic model parameters

    Science.gov (United States)

    Jung, I. W.

    2015-12-01

    Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  15. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.

    Science.gov (United States)

    Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon

    2012-01-01

    Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.

  16. Simulated Stochastic Approximation Annealing for Global Optimization With a Square-Root Cooling Schedule

    KAUST Repository

    Liang, Faming

    2014-04-03

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.

  17. Global solar PV installations grew in 2015 and will continue this trend over the coming years

    International Nuclear Information System (INIS)

    2016-01-01

    According to preliminary numbers from GTM Research, 59 GW of solar PV were installed globally in 2015, representing a 34% increase over 2014 total. The fourth quarter of 2015 showed that global PV demand is very much at the mercy of government support, which can often be unpredictable and idiosyncratic, frequently leading to negative, although occasionally positive, outcomes. By the end of 2016, cumulative installations will reach 321 GW. (Author)

  18. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    Science.gov (United States)

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    JongHyup Lee

    2016-08-01

    Full Text Available For practical deployment of wireless sensor networks (WSN, WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections.

  20. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    Science.gov (United States)

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  1. Research on optimal investment path of transmission corridor under the global energy Internet

    Science.gov (United States)

    Huang, Yuehui; Li, Pai; Wang, Qi; Liu, Jichun; Gao, Han

    2018-02-01

    Under the background of the global energy Internet, the investment planning of transmission corridor from XinJiang to Germany is studied in this article, which passes through four countries: Kazakhstan, Russia, Belarus and Poland. Taking the specific situation of different countries into account, including the length of transmission line, unit construction cost, completion time, transmission price, state tariff, inflation rate and so on, this paper constructed a power transmission investment model. Finally, the dynamic programming method is used to simulate the example, and the optimal strategies under different objective functions are obtained.

  2. Global stability, periodic solutions, and optimal control in a nonlinear differential delay model

    Directory of Open Access Journals (Sweden)

    Anatoli F. Ivanov

    2010-09-01

    Full Text Available A nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability and for the existence of periodic solutions are given. Two particular applications are treated in detail. The first one is a blood cell production model by Mackey, for which new periodicity criteria are derived. The second application is a modified economic model with delay due to Ramsey. An optimization problem for a maximal consumption is stated and solved for the latter.

  3. Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Jinkui Liu

    2012-01-01

    Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.

  4. Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems.

    Science.gov (United States)

    Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano

    2012-05-10

    The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.

  5. OPTIMIZATION OF SPECIFIC FUEL CONSUMPTION OF HYDROGEN IN COMMERCIAL TURBOFANS FOR REDUCING GLOBAL WARMING EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    T. Hikmet Karakoc; Onder Turan [School of Civil Aviation, Anadolu University, Eskisehir (Turkey)

    2008-09-30

    The main objective of the present study is to perform minimizing specific fuel consumption of a non afterburning high bypass turbofan engine with separate exhaust streams and unmixed flow for reducing global effect. The values of engine design parameters are optimized for maintaining minimum specific fuel consumption of high bypass turbofan engine under different flight conditions, different fuel types and design criteria. The backbones of optimization approach consisted of elitism-based genetic algorithm coupled with real parametric cycle analysis of a turbofan engine. For solving optimization problem a new software program is developed in MATLAB programming language, while objective function is determined for minimizing the specific fuel consumption. The input variables included the compressor pressure ratio ({pi}{sub c}), bypass ratio ({alpha}) and the fuel heating value [h{sub PR}-(kJ/kg)]. Hydrogen was selected as fuel type in real parametric cycle analysis of commercial turbofans. It may be concluded that the software program developed can successfully solve optimization problems at 10{le}{pi}{sub c}{le}20, 2{le}{alpha}{le}10 and h{sub PR} 120,000 with aircraft flight Mach number {le}0.8.

  6. Model-data fusion across ecosystems: from multisite optimizations to global simulations

    Science.gov (United States)

    Kuppel, S.; Peylin, P.; Maignan, F.; Chevallier, F.; Kiely, G.; Montagnani, L.; Cescatti, A.

    2014-11-01

    This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with performances often comparable to those of the corresponding site-specific optimizations. Besides reducing the PFT-averaged model-data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate evergreen forests, and better model-data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP - gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite parameter sets are then tested against CO2 concentrations measured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index

  7. A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm

    Science.gov (United States)

    Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai

    2014-05-01

    We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.

  8. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    International Nuclear Information System (INIS)

    Zhou Tiejun; Chen Anping; Zhou Yuyuan

    2005-01-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible

  9. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    Science.gov (United States)

    Zhou, distributed delays [rapid communication] T.; Chen, A.; Zhou, Y.

    2005-08-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible.

  10. Efficient computation of past global ocean circulation patterns using continuation in paleobathymetry

    NARCIS (Netherlands)

    Mulder, T. E.; Baatsen, M. L.J.; Wubs, F.W.; Dijkstra, H. A.

    2017-01-01

    In the field of paleoceanographic modeling, the different positioning of Earth's continental configurations is often a major challenge for obtaining equilibrium ocean flow solutions. In this paper, we introduce numerical parameter continuation techniques to compute equilibrium solutions of ocean

  11. Transportability of tertiary qualifications and CPD: A continuing challenge for the global health workforce

    Directory of Open Access Journals (Sweden)

    Saltman Deborah C

    2012-07-01

    Full Text Available Abstract Background In workforces that are traditionally mobile and have long lead times for new supply, such as health, effective global indicators of tertiary education are increasingly essential. Difficulties with transportability of qualifications and cross-accreditation are now recognised as key barriers to meeting the rapidly shifting international demands for health care providers. The plethora of mixed education and service arrangements poses challenges for employers and regulators, let alone patients; in determining equivalence of training and competency between individuals, institutions and geographical locations. Discussion This paper outlines the shortfall of the current indicators in assisting the process of global certification and competency recognition in the health care workforce. Using Organisation for Economic Cooperation and Development (OECD data we highlight how International standardisation in the tertiary education sector is problematic for the global health workforce. Through a series of case studies, we then describe a model which enables institutions to compare themselves internally and with others internationally using bespoke or prioritised parameters rather than standards. Summary The mobility of the global health workforce means that transportability of qualifications is an increasing area of concern. Valid qualifications based on workplace learning and assessment requires at least some variables to be benchmarked in order to judge performance.

  12. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the

  13. The Multipoint Global Shape Optimization of Flying Configuration with Movable Leading Edges Flaps

    Directory of Open Access Journals (Sweden)

    Adriana NASTASE

    2012-12-01

    Full Text Available The aerodynamical global optimized (GO shape of flying configuration (FC, at two cruising Mach numbers, can be realized by morphing. Movable leading edge flaps are used for this purpose. The equations of the surfaces of the wing, of the fuselage and of the flaps in stretched position are approximated in form of superpositions of homogeneous polynomes in two variables with free coefficients. These coefficients together with the similarity parameters of the planform of the FC are the free parameters of the global optimization. Two enlarged variational problems with free boundaries occur. The first one consists in the determination of the GO shape of the wing-fuselageFC, with the flaps in retracted position, which must be of minimum drag, at higher cruising Mach number. The second enlarged variational problem consists in the determination of the GO shape of the flaps in stretched position in such a manner that the entire FC shall be of minimum drag at the second lower Mach number. The iterative optimum-optimorum (OO theory of the author is used for the solving of these both enlarged variational problems. The inviscid GO shape of the FC is used only in the first step of iteration and the own developed hybrid solutions for the compressible Navier-Stokes partial-differential equations (PDEs are used for the determination of the friction drag coefficient and up the second step of iteration of OO theory.

  14. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian

    2018-03-01

    Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)

  15. Protein structure modeling for CASP10 by multiple layers of global optimization.

    Science.gov (United States)

    Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2014-02-01

    In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.

  16. Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response

    International Nuclear Information System (INIS)

    Abdulaal, Ahmed; Moghaddass, Ramin; Asfour, Shihab

    2017-01-01

    Highlights: •Two-stage model links discrete-optimization to real-time system dynamics operation. •The solutions obtained are non-dominated Pareto optimal solutions. •Computationally efficient GA solver through customized chromosome coding. •Modest to considerable savings are achieved depending on the consumer’s preference. -- Abstract: In the wake of today’s highly dynamic and competitive energy markets, optimal dispatching of energy sources requires effective demand responsiveness. Suppliers have adopted a dynamic pricing strategy in efforts to control the downstream demand. This method however requires consumer awareness, flexibility, and timely responsiveness. While residential activities are more flexible and schedulable, larger commercial consumers remain an obstacle due to the impacts on industrial performance. This paper combines methods from quadratic, stochastic, and evolutionary programming with multi-objective optimization and continuous simulation, to propose a two-stage discrete-continuous multi-objective load optimization (DiCoMoLoOp) autonomous approach for industrial consumer demand response (DR). Stage 1 defines discrete-event load shifting targets. Accordingly, controllable loads are continuously optimized in stage 2 while considering the consumer’s utility. Utility functions, which measure the loads’ time value to the consumer, are derived and weights are assigned through an analytical hierarchy process (AHP). The method is demonstrated for an industrial building model using real data. The proposed method integrates with building energy management system and solves in real-time with autonomous and instantaneous load shifting in the hour-ahead energy price (HAP) market. The simulation shows the occasional existence of multiple load management options on the Pareto frontier. Finally, the computed savings, based on the simulation analysis with real consumption, climate, and price data, ranged from modest to considerable amounts

  17. Design recommendations for the optimized continuity diaphragm for prestressed concrete bulb-T beams.

    Science.gov (United States)

    2008-01-01

    This research focused on prestressed concrete bulb-T (PCBT) beams made composite with a cast-in-place concrete deck and continuous over several spans through the use of continuity diaphragms. The current design procedure in AASHTO states that a conti...

  18. Globalization of Continuing Professional Development by Journal Clubs via Microblogging: A Systematic Review

    OpenAIRE

    Roberts, Matthew John; Perera, Marlon; Lawrentschuk, Nathan; Romanic, Diana; Papa, Nathan; Bolton, Damien

    2015-01-01

    Background Journal clubs are an essential tool in promoting clinical evidence-based medical education to all medical and allied health professionals. Twitter represents a public, microblogging forum that can facilitate traditional journal club requirements, while also reaching a global audience, and participation for discussion with study authors and colleagues. Objective The aim of the current study was to evaluate the current state of social media?facilitated journal clubs, specifically Twi...

  19. Response of snow-dependent hydrologic extremes to continued global warming

    Energy Technology Data Exchange (ETDEWEB)

    Diffenbaugh, Noah [Stanford University; Scherer, Martin [Stanford University; Ashfaq, Moetasim [ORNL

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  20. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin

    2015-01-01

    Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models

  1. Negotiation and Optimality in an Economic Model of Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Gottinger, H. [International Institute for Environmental Economics and Management IIEEM, University of Maastricht, Maastricht (Netherlands)

    2000-03-01

    The paper addresses the problem of governmental intervention in a multi-country regime of controlling global climate change. Using a simplified case of a two-country, two-sector general equilibrium model the paper shows that the global optimal time path of economic outputs and temperature will converge to a unique steady state provided that consumers care enough about the future. To answer a set of questions relating to 'what will happen if governments decide to correct the problem of global warming?' we study the equilibrium outcome in a bargaining game where two countries negotiate an agreement on future consumption and production plans for the purpose of correcting the problem of climate change. It is shown that the agreement arising from such a negotiation process achieves the best outcome and that it can be implemented in decentralised economies by a system of taxes, subsidies and transfers. By employing the recent advances in non-cooperative bargaining theory, the agreement between two countries is derived endogenously through a well-specified bargaining procedure.

  2. Negotiation and Optimality in an Economic Model of Global Climate Change

    International Nuclear Information System (INIS)

    Gottinger, H.

    2000-03-01

    The paper addresses the problem of governmental intervention in a multi-country regime of controlling global climate change. Using a simplified case of a two-country, two-sector general equilibrium model the paper shows that the global optimal time path of economic outputs and temperature will converge to a unique steady state provided that consumers care enough about the future. To answer a set of questions relating to 'what will happen if governments decide to correct the problem of global warming?' we study the equilibrium outcome in a bargaining game where two countries negotiate an agreement on future consumption and production plans for the purpose of correcting the problem of climate change. It is shown that the agreement arising from such a negotiation process achieves the best outcome and that it can be implemented in decentralised economies by a system of taxes, subsidies and transfers. By employing the recent advances in non-cooperative bargaining theory, the agreement between two countries is derived endogenously through a well-specified bargaining procedure

  3. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  4. Prediction of energy demands using neural network with model identification by global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Ryohei; Wakui, Tetsuya; Satake, Ryoichi [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2009-02-15

    To operate energy supply plants properly from the viewpoints of stable energy supply, and energy and cost savings, it is important to predict energy demands accurately as basic conditions. Several methods of predicting energy demands have been proposed, and one of them is to use neural networks. Although local optimization methods such as gradient ones have conventionally been adopted in the back propagation procedure to identify the values of model parameters, they have the significant drawback that they can derive only local optimal solutions. In this paper, a global optimization method called ''Modal Trimming Method'' proposed for non-linear programming problems is adopted to identify the values of model parameters. In addition, the trend and periodic change are first removed from time series data on energy demand, and the converted data is used as the main input to a neural network. Furthermore, predicted values of air temperature and relative humidity are considered as additional inputs to the neural network, and their effect on the prediction of energy demand is investigated. This approach is applied to the prediction of the cooling demand in a building used for a bench mark test of a variety of prediction methods, and its validity and effectiveness are clarified. (author)

  5. Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

  6. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    Science.gov (United States)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  7. Microseismic event location using global optimization algorithms: An integrated and automated workflow

    Science.gov (United States)

    Lagos, Soledad R.; Velis, Danilo R.

    2018-02-01

    We perform the location of microseismic events generated in hydraulic fracturing monitoring scenarios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an integrated and optimized workflow that concatenates into an automated bash script the different steps that lead to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denoising and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using polarization information, and propose a simple energy-based criterion to automatically decide which is the most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages of using either VFSA or PSO over GS to attain significant speed-ups.

  8. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.

    Science.gov (United States)

    Ong, M L; Ng, E Y K

    2005-12-01

    In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.

  9. On-Line Optimizing Control of a Simulated Continuous Yeast Fermentation

    DEFF Research Database (Denmark)

    Andersen, Maria Y.; Asferg, L.; Brabrand, H.

    1989-01-01

    On-line optimizing control of a simulated fermentation is investigated using a non-segregated dynamic model of aerobic glucose limited growth of saccharomyces cerevisiae. The optimization procedure is carried out with an underlying adaptive regulator to stabilize the culture. This stabilization...... is especially important during the setpoint changes specified by the optimizing routine. A linear ARMAX model structure is used for the fermentation process with dilution rate as input and biomass as output variable. The parameters of the linear model structure are estimated using a pseudo linear regression...... method with bandpass filtering of in- and output variables in order to ensure low frequency validity of the estimated model. An LQ-regulator is used with iterative solution of the Riccati equation. Simulation results illustrate the tuning of the underlying regulator, and the effect of perturbing...

  10. The Global Challenge in Basic Education: Why Continued Investment in Basic Education Is Important

    Science.gov (United States)

    Mertaugh, Michael T.; Jimenez, Emmanuel Y.; Patrinos, Harry A.

    2009-01-01

    This paper documents the importance of continued investment in basic education and argues that investments need to be carefully targeted to address the constraints that limit the coverage and quality of education if they are to provide expected benefits. Part I begins with a discussion of the returns to investment in education. Part II then…

  11. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    Science.gov (United States)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network

  12. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization.

    Science.gov (United States)

    Gros, Charley; De Leener, Benjamin; Dupont, Sara M; Martin, Allan R; Fehlings, Michael G; Bakshi, Rohit; Tummala, Subhash; Auclair, Vincent; McLaren, Donald G; Callot, Virginie; Cohen-Adad, Julien; Sdika, Michaël

    2018-02-01

    During the last two decades, MRI has been increasingly used for providing valuable quantitative information about spinal cord morphometry, such as quantification of the spinal cord atrophy in various diseases. However, despite the significant improvement of MR sequences adapted to the spinal cord, automatic image processing tools for spinal cord MRI data are not yet as developed as for the brain. There is nonetheless great interest in fully automatic and fast processing methods to be able to propose quantitative analysis pipelines on large datasets without user bias. The first step of most of these analysis pipelines is to detect the spinal cord, which is challenging to achieve automatically across the broad range of MRI contrasts, field of view, resolutions and pathologies. In this paper, a fully automated, robust and fast method for detecting the spinal cord centerline on MRI volumes is introduced. The algorithm uses a global optimization scheme that attempts to strike a balance between a probabilistic localization map of the spinal cord center point and the overall spatial consistency of the spinal cord centerline (i.e. the rostro-caudal continuity of the spinal cord). Additionally, a new post-processing feature, which aims to automatically split brain and spine regions is introduced, to be able to detect a consistent spinal cord centerline, independently from the field of view. We present data on the validation of the proposed algorithm, known as "OptiC", from a large dataset involving 20 centers, 4 contrasts (T 2 -weighted n = 287, T 1 -weighted n = 120, T 2 ∗ -weighted n = 307, diffusion-weighted n = 90), 501 subjects including 173 patients with a variety of neurologic diseases. Validation involved the gold-standard centerline coverage, the mean square error between the true and predicted centerlines and the ability to accurately separate brain and spine regions. Overall, OptiC was able to cover 98.77% of the gold-standard centerline, with a

  13. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B L; Kivaisi, A K; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  14. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  15. SHOOT2.0: An indirect grid shooting package for optimal control problems, with switching handling and embedded continuation

    OpenAIRE

    Martinon , Pierre; Gergaud , Joseph

    2010-01-01

    The SHOOT2.0 package implements an indirect shooting method for optimal control problems. It is specifically designed to handle control discontinuities, with an automatic switching detection that requires no assumptions concerning the number of switchings. Special care is also devoted to the computation of the Jacobian matrix of the shooting function, using the variational system instead of classical finite differences. The package also features an embedded continuation method and an automati...

  16. A Particle Swarm Optimization of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents

    Directory of Open Access Journals (Sweden)

    Abdelhafid HASNI

    2009-03-01

    Full Text Available Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO algorithm which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m2 plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results.

  17. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review.

    Science.gov (United States)

    Bonyadi, Mohammad Reza; Michalewicz, Zbigniew

    2017-01-01

    This paper reviews recent studies on the Particle Swarm Optimization (PSO) algorithm. The review has been focused on high impact recent articles that have analyzed and/or modified PSO algorithms. This paper also presents some potential areas for future study.

  18. Occupational exposure limits in Europe and Asia--continued divergence or global harmonization?

    Science.gov (United States)

    Ding, Qian; Schenk, Linda; Malkiewicz, Katarzyna; Hansson, Sven Ove

    2011-12-01

    Occupational exposure limits (OELs) are used as a risk management tool aiming at protecting against negative health effects of occupational exposure to harmful substances. The systems of OEL development have not been standardized and divergent outcomes have been reported. However some harmonization processes have been initiated, primarily in Europe. This study investigates the state of harmonization in a global context. The OEL systems of eight Asian and seventeen European organizations are analyzed with respect to similarities and differences in: (1) the system for determining OELs, (2) the selection of substances, and (3) the levels of the OELs. The majority of the investigated organizations declare themselves to have been influenced by the American Conference of Governmental Industrial Hygienists (ACGIH), and in many cases this can be empirically confirmed. The EU harmonization process is reflected in trends towards convergence within the EU. However, comparisons of Asian and European organizations provide no obvious evidence that OELs are becoming globally harmonized. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Population Structures in Russia: Optimality and Dependence on Parameters of Global Evolution

    Directory of Open Access Journals (Sweden)

    Yuri Yegorov

    2016-07-01

    Full Text Available The paper is devoted to analytical investigation of the division of geographical space into urban and rural areas with application to Russia. Yegorov (2005, 2006, 2009 has suggested the role of population density on economics. A city has an attractive potential based on scale economies. The optimal city size depends on the balance between its attractive potential and the cost of living that can be approximated by equilibrium land rent and commuting cost. For moderate scale effects optimal population of a city depends negatively on transport costs that are related positively with energy price index. The optimal agricultural density of population can also be constructed. The larger is a land slot per peasant, the higher will be the output from one unit of his labour force applied to this slot. But at the same time, larger farm size results in increase of energy costs, related to land development, collecting the crop and bringing it to the market. In the last 10 years we have observed substantial rise of both food and energy prices at the world stock markets. However, the income of farmers did not grow as fast as food price index. This can shift optimal rural population density to lower level, causing migration to cities (and we observe this tendency globally. Any change in those prices results in suboptimality of existing spatial structures. If changes are slow, the optimal infrastructure can be adjusted by simple migration. If the shocks are high, adaptation may be impossible and shock will persist. This took place in early 1990es in the former USSR, where after transition to world price for oil in domestic markets existing spatial infrastructure became suboptimal and resulted in persistent crisis, leading to deterioration of both industry and agriculture. Russia is the largest country but this is also its problem. Having large resource endowment per capita, it is problematic to build sufficient infrastructure. Russia has too low population

  20. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  1. OPTIMASI PRODUKSI ENZIMATIS DIASILGLISEROL MELALUI GLISEROLISIS KONTINU [Optimization of Enzymatic Diacylglycerol Production through Continuous Glycerolysis

    Directory of Open Access Journals (Sweden)

    Tri-Panji*

    2014-06-01

    Full Text Available Diacylglycerol (DAG produced from crude palm oil (CPO is one of the healthy oils that can be consumed for daily human diet. DAG production in Indonesia is constrained by the high cost of the mostly imported lipase. To overcome this problem, research of DAG production has been carried out using crude extracts of lipase produced by local species of fungi Rhizopus oryzae. This study aims to develop a continuous process of enzymatic glycerolysis of CPO for DAG production; to establish optimum conditions of DAG production which includes flow rate of CPO and glycerolysis time; and to test the performance of lipase from the local mold R. oryzae in catalyzing continuous process of glycerolysis for the production of DAG. Lipase isolation was carried out by acetone precipitation and lipase was used as a catalyst in the continuous glycerolysis process. The glycerolysis was conducted by reacting CPO with glycerol continuously at various time periods. The optimum condition of automatic continuous glycerolysis process was achieved at a CPO flow rate of 3 mL/min with a glycerolysis time at the 18 cycles (9 hours. The conversion of DAG was 29%. The performance of lipase was proven to remain stable up to 3 times changes of CPO substrate for 9 hours of glycerolysis process with the best condition at the 3 cycles and can improved conversion of DAG until 37%.

  2. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  3. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Science.gov (United States)

    Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.

    2014-09-01

    The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  4. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Directory of Open Access Journals (Sweden)

    V. Mitroi

    2014-09-01

    Full Text Available The (reconstruction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and “classical” ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  5. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    Directory of Open Access Journals (Sweden)

    Youhua Chen

    2014-01-01

    Full Text Available In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR, one-continuous-shift (OCS and multiplediscrete- shifts (MDS situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001, implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR models using “laser” package under R environment. Moreover, MDS models, implemented using another R package “MEDUSA”, indicated that there were sixteen shifts over the internal nodes for amphibian phylogeny. Conclusively, both OCS and MDS models are recommended to compare so as to better quantify rate-shifting trends of species diversification. MDS diversification models should be preferential for large phylogenies using “MEDUSA” package in which any arbitrary numbers of shifts are allowed to model.

  6. A New Method for Global Optimization Based on Stochastic Differential Equations.

    Science.gov (United States)

    1984-12-01

    Serie Naranja, n. 204, IINAS-UNAM, Mx ic o D. F. , 1979. [6] A. V. Levy, A. Montalvo, S. G6mez, A. Cald’er6n, ’Topics in global optimi~zation", in: J...FTFOPT aF 455. £ 456. C S7ART SERIES OF TR IAL5 457. C 458. DO 30 IC x 1,M7RIA&. 459. C 46r’. C SET INITIALIZATION IN&EX FOR NOISE GENERATOR 461. C 1 462...Ia iunghezza del passo di integrazione temporale , t k =o+ hi+ h 2+ ... + h kl rk e u ksono due vettori aleatori in n.-dimensioni scelti ii primo da

  7. Robust video watermarking via optimization algorithm for quantization of pseudo-random semi-global statistics

    Science.gov (United States)

    Kucukgoz, Mehmet; Harmanci, Oztan; Mihcak, Mehmet K.; Venkatesan, Ramarathnam

    2005-03-01

    In this paper, we propose a novel semi-blind video watermarking scheme, where we use pseudo-random robust semi-global features of video in the three dimensional wavelet transform domain. We design the watermark sequence via solving an optimization problem, such that the features of the mark-embedded video are the quantized versions of the features of the original video. The exact realizations of the algorithmic parameters are chosen pseudo-randomly via a secure pseudo-random number generator, whose seed is the secret key, that is known (resp. unknown) by the embedder and the receiver (resp. by the public). We experimentally show the robustness of our algorithm against several attacks, such as conventional signal processing modifications and adversarial estimation attacks.

  8. Two Modified Three-Term Type Conjugate Gradient Methods and Their Global Convergence for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhongbo Sun

    2014-01-01

    Full Text Available Two modified three-term type conjugate gradient algorithms which satisfy both the descent condition and the Dai-Liao type conjugacy condition are presented for unconstrained optimization. The first algorithm is a modification of the Hager and Zhang type algorithm in such a way that the search direction is descent and satisfies Dai-Liao’s type conjugacy condition. The second simple three-term type conjugate gradient method can generate sufficient decent directions at every iteration; moreover, this property is independent of the steplength line search. Also, the algorithms could be considered as a modification of the MBFGS method, but with different zk. Under some mild conditions, the given methods are global convergence, which is independent of the Wolfe line search for general functions. The numerical experiments show that the proposed methods are very robust and efficient.

  9. Optimization of a functionally graded circular plate with inner rigid thin obstacles. I. Continuous problems

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Lovíšek, J.

    2011-01-01

    Roč. 91, č. 9 (2011), s. 711-723 ISSN 0044-2267 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : functionally graded plate * optimal design Subject RIV: BA - General Mathematics Impact factor: 0.863, year: 2011 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201000119/abstract

  10. Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs

    Science.gov (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.

    2017-12-01

    Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future

  11. A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Santhan Kumar Cherukuri

    2016-11-01

    Full Text Available To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG systems are to be operated at their maximum power  point (MPP under both variable climatic and partial shaded condition (PSC. From literature most of conventional MPP tracking (MPPT methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented.  From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed. Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available online How to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016 A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3, 225-232. http://dx.doi.org/10.14710/ijred.5.3.225-232

  12. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  13. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  14. Optimal policies for Production-Clearing Systems under Continuous-Review

    NARCIS (Netherlands)

    Germs, R.; Foreest, van Nicky D.; Kilic, Onur A.

    2016-01-01

    In this paper, we consider a production-clearing system with compound Poisson demand under continuous review. The production facility produces one type of item without stopping and at a constant rate, and stores the product into a buffer to meet future demand. To prevent high inventory levels, a

  15. CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    2016-01-01

    The Conic Benchmark Library is an ongoing community-driven project aiming to challenge commercial and open source solvers on mainstream cone support. In this paper, 121 mixed-integer and continuous second-order cone problem instances have been selected from 11 categories as representative...

  16. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    Science.gov (United States)

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  17. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  18. Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting.

    Science.gov (United States)

    Corzo, Gerald; Solomatine, Dimitri

    2007-05-01

    Natural phenomena are multistationary and are composed of a number of interacting processes, so one single model handling all processes often suffers from inaccuracies. A solution is to partition data in relation to such processes using the available domain knowledge or expert judgment, to train separate models for each of the processes, and to merge them in a modular model (committee). In this paper a problem of water flow forecast in watershed hydrology is considered where the flow process can be presented as consisting of two subprocesses -- base flow and excess flow, so that these two processes can be separated. Several approaches to data separation techniques are studied. Two case studies with different forecast horizons are considered. Parameters of the algorithms responsible for data partitioning are optimized using genetic algorithms and global pattern search. It was found that modularization of ANN models using domain knowledge makes models more accurate, if compared with a global model trained on the whole data set, especially when forecast horizon (and hence the complexity of the modelled processes) is increased.

  19. Artificial Bee Colony Algorithm Combined with Grenade Explosion Method and Cauchy Operator for Global Optimization

    Directory of Open Access Journals (Sweden)

    Jian-Guo Zheng

    2015-01-01

    Full Text Available Artificial bee colony (ABC algorithm is a popular swarm intelligence technique inspired by the intelligent foraging behavior of honey bees. However, ABC is good at exploration but poor at exploitation and its convergence speed is also an issue in some cases. To improve the performance of ABC, a novel ABC combined with grenade explosion method (GEM and Cauchy operator, namely, ABCGC, is proposed. GEM is embedded in the onlooker bees’ phase to enhance the exploitation ability and accelerate convergence of ABCGC; meanwhile, Cauchy operator is introduced into the scout bees’ phase to help ABCGC escape from local optimum and further enhance its exploration ability. Two sets of well-known benchmark functions are used to validate the better performance of ABCGC. The experiments confirm that ABCGC is significantly superior to ABC and other competitors; particularly it converges to the global optimum faster in most cases. These results suggest that ABCGC usually achieves a good balance between exploitation and exploration and can effectively serve as an alternative for global optimization.

  20. Local search for optimal global map generation using mid-decadal landsat images

    Science.gov (United States)

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  1. Characterization of PV panel and global optimization of its model parameters using genetic algorithm

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Genetic Algorithm optimization ability had been utilized to extract parameters of PV panel model. • Effect of solar radiation and temperature variations was taken into account in fitness function evaluation. • We used Matlab-Simulink to simulate operation of the PV-panel to validate results. • Different cases were analyzed to ascertain which of them gives more accurate results. • Accuracy and applicability of this approach to be used as a valuable tool for PV modeling were clearly validated. - Abstract: This paper details an improved modeling technique for a photovoltaic (PV) module; utilizing the optimization ability of a genetic algorithm, with different parameters of the PV module being computed via this approach. The accurate modeling of any PV module is incumbent upon the values of these parameters, as it is imperative in the context of any further studies concerning different PV applications. Simulation, optimization and the design of the hybrid systems that include PV are examples of these applications. The global optimization of the parameters and the applicability for the entire range of the solar radiation and a wide range of temperatures are achievable via this approach. The Manufacturer’s Data Sheet information is used as a basis for the purpose of parameter optimization, with an average absolute error fitness function formulated; and a numerical iterative method used to solve the voltage-current relation of the PV module. The results of single-diode and two-diode models are evaluated in order to ascertain which of them are more accurate. Other cases are also analyzed in this paper for the purpose of comparison. The Matlab–Simulink environment is used to simulate the operation of the PV module, depending on the extracted parameters. The results of the simulation are compared with the Data Sheet information, which is obtained via experimentation in order to validate the reliability of the approach. Three types of PV modules

  2. Optimal model of economic diplomacy of Republic of Croatia in the contexst of global intelligence revolution

    Directory of Open Access Journals (Sweden)

    Zdravko Bazdan

    2010-12-01

    Full Text Available The aim of this study is to point to the fact that economic diplomacy is a relatively new practice in international economics, specifically the expansion of the occurrence of Intelligence Revolution. The history in global relations shows that without economic diplomacy there is no optimal economic growth and social development. It is important to note that economic diplomacy should be important for our country and the political elite, as well as for the administration of Croatian economic subjects that want to compete in international market economy. Comparative analysis are particularly highlighted by French experience. Therefore, Croatia should copy the practice of those countries that are successful in economic diplomacy. And in the curricula - especially of our economic faculties - we should introduce the course of Economic Diplomacy. It is important to note, that in order to form our optimal model of economic diplomacy which would be headed by the President of Republic of Croatia formula should be based on: Intelligence Security Agency (SOA, Intelligence Service of the Ministry of Foreign Affairs and European Integration, Intelligence Service of the Croatian Chamber of Commerce and the Intelligence Service of the Ministry of Economy, Labor and Entrepreneurship. Described model would consist of intelligence subsystem with at least twelve components.

  3. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth

    Science.gov (United States)

    Westhoff, Jacob T.; Rosenberger, Amanda E.

    2016-01-01

    Conservation efforts, environmental planning, and management must account for ongoing ecosystem alteration due to a changing climate, introduced species, and shifting land use. This type of management can be facilitated by an understanding of the thermal ecology of aquatic organisms. However, information on thermal ecology for entire taxonomic groups is rarely compiled or summarized, and reviews of the science can facilitate its advancement. Crayfish are one of the most globally threatened taxa, and ongoing declines and extirpation could have serious consequences on aquatic ecosystem function due to their significant biomass and ecosystem roles. Our goal was to review the literature on thermal ecology for freshwater crayfish worldwide, with emphasis on studies that estimated temperature tolerance, temperature preference, or optimal growth. We also explored relationships between temperature metrics and species distributions. We located 56 studies containing information for at least one of those three metrics, which covered approximately 6 % of extant crayfish species worldwide. Information on one or more metrics existed for all 3 genera of Astacidae, 4 of the 12 genera of Cambaridae, and 3 of the 15 genera of Parastacidae. Investigations employed numerous methodological approaches for estimating these parameters, which restricts comparisons among and within species. The only statistically significant relationship we observed between a temperature metric and species range was a negative linear relationship between absolute latitude and optimal growth temperature. We recommend expansion of studies examining the thermal ecology of freshwater crayfish and identify and discuss methodological approaches that can improve standardization and comparability among studies.

  4. Global Energy-Optimal Redundancy Resolution of Hydraulic Manipulators: Experimental Results for a Forestry Manipulator

    Directory of Open Access Journals (Sweden)

    Jarmo Nurmi

    2017-05-01

    Full Text Available This paper addresses the energy-inefficiency problem of four-degrees-of-freedom (4-DOF hydraulic manipulators through redundancy resolution in robotic closed-loop controlled applications. Because conventional methods typically are local and have poor performance for resolving redundancy with respect to minimum hydraulic energy consumption, global energy-optimal redundancy resolution is proposed at the valve-controlled actuator and hydraulic power system interaction level. The energy consumption of the widely popular valve-controlled load-sensing (LS and constant-pressure (CP systems is effectively minimised through cost functions formulated in a discrete-time dynamic programming (DP approach with minimum state representation. A prescribed end-effector path and important actuator constraints at the position, velocity and acceleration levels are also satisfied in the solution. Extensive field experiments performed on a forestry hydraulic manipulator demonstrate the performance of the proposed solution. Approximately 15–30% greater hydraulic energy consumption was observed with the conventional methods in the LS and CP systems. These results encourage energy-optimal redundancy resolution in future robotic applications of hydraulic manipulators.

  5. Development of a fuzzy optimization model, supporting global warming decision-making

    International Nuclear Information System (INIS)

    Leimbach, M.

    1996-01-01

    An increasing number of models have been developed to support global warming response policies. The model constructors are facing a lot of uncertainties which limit the evidence of these models. The support of climate policy decision-making is only possible in a semi-quantitative way, as presented by a Fuzzy model. The model design is based on an optimization approach, integrated in a bounded risk decision-making framework. Given some regional emission-related and impact-related restrictions, optimal emission paths can be calculated. The focus is not only on carbon dioxide but on other greenhouse gases too. In the paper, the components of the model will be described. Cost coefficients, emission boundaries and impact boundaries are represented as Fuzzy parameters. The Fuzzy model will be transformed into a computational one by using an approach of Rommelfanger. In the second part, some problems of applying the model to computations will be discussed. This includes discussions on the data situation and the presentation, as well as interpretation of results of sensitivity analyses. The advantage of the Fuzzy approach is that the requirements regarding data precision are not so strong. Hence, the effort for data acquisition can be reduced and computations can be started earlier. 9 figs., 3 tabs., 17 refs., 1 appendix

  6. Continuing medical and dental education on the global stage: the nexus of supporting international Christian healthcare workers and developing educators

    Directory of Open Access Journals (Sweden)

    Lyubov D Slashcheva

    2016-01-01

    Full Text Available One of the challenges facing international healthcare missionaries is that of maintaining up-to-date knowledge and staying current with professional certification. Since 1978, annual programs by the Christian Medical and Dental Associations have offered professional continuing education to thousands of US healthcare professionals serving as missionaries in the regions of Africa, Asia, and, in more recent years, globally. In addition, conference programming is designed to prepare, train, and support healthcare missionaries to, in turn, serve as educators in their places of ministry. The program is designed for both professional education and personal encouragement. Utilizing historical documents from program facilitation and interviews from those involved with its implementation, this paper describes the history, vision, and favorable quantitative growth and qualitative impact on participants. The program continues to grow as healthcare missionaries are educated near their places of service, while reinforcing their own roles as educators.

  7. Performance Optimization of Alternative Lower Global Warming Potential Refrigerants in Mini-Split Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2017-01-01

    Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heat exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.

  8. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  9. Study of optimal operation for producing onion vinegar using two continuously stirred tank reactors

    OpenAIRE

    小林, 秀彰; 山口, 文; 富田, 弘毅; 管野, 亨; 小林, 正義; KOBAYASHI, Hideaki; YAMAGUCHI, Kazaru; TOMITA, Koki; KANNO, Tohru; KOBAYASHI, Masayoshi

    1997-01-01

     Onion vinegar was produced using a 2-stage continuously stirred tank reactor. Regarding the alcohol fermentation and the acetic acid fermentation examined in this study, the immobilized cells on porous ceramics offered stable production of alcohol and acetic acid for long periods of 300 and 700 days, respectively. Compared with the steady-state operation method, the temperature-change forced-cyclic operation method increased ethanol yield of alcohol fermentation by a maximum of 15%. Acetic a...

  10. Optimization and quantization in gradient symbol systems: a framework for integrating the continuous and the discrete in cognition.

    Science.gov (United States)

    Smolensky, Paul; Goldrick, Matthew; Mathis, Donald

    2014-08-01

    Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance. Copyright © 2013 Cognitive Science Society, Inc.

  11. A New Filled Function Method with One Parameter for Global Optimization

    Directory of Open Access Journals (Sweden)

    Fei Wei

    2013-01-01

    Full Text Available The filled function method is an effective approach to find the global minimizer of multidimensional multimodal functions. The conventional filled functions are numerically unstable due to exponential or logarithmic term and sensitive to parameters. In this paper, a new filled function with only one parameter is proposed, which is continuously differentiable and proved to satisfy all conditions of the filled function definition. Moreover, this filled function is not sensitive to parameter, and the overflow can not happen for this function. Based on these, a new filled function method is proposed, and it is numerically stable to the initial point and the parameter variable. The computer simulations indicate that the proposed filled function method is efficient and effective.

  12. Off-policy integral reinforcement learning optimal tracking control for continuous-time chaotic systems

    International Nuclear Information System (INIS)

    Wei Qing-Lai; Song Rui-Zhuo; Xiao Wen-Dong; Sun Qiu-Ye

    2015-01-01

    This paper estimates an off-policy integral reinforcement learning (IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman (HJB) equation, an off-policy IRL algorithm is proposed. It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method. (paper)

  13. OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS

    International Nuclear Information System (INIS)

    Ellis, J. A.; Siemens, X.; Creighton, J. D. E.

    2012-01-01

    Supermassive black hole binaries (SMBHBs) are expected to emit a continuous gravitational wave signal in the pulsar timing array (PTA) frequency band (10 –9 to 10 –7 Hz). The development of data analysis techniques aimed at efficient detection and characterization of these signals is critical to the gravitational wave detection effort. In this paper, we leverage methods developed for LIGO continuous wave gravitational searches and explore the use of the F-statistic for such searches in pulsar timing data. Babak and Sesana have used this approach in the context of PTAs to show that one can resolve multiple SMBHB sources in the sky. Our work improves on several aspects of prior continuous wave search methods developed for PTA data analysis. The algorithm is implemented fully in the time domain, which naturally deals with the irregular sampling typical of PTA data and avoids spectral leakage problems associated with frequency domain methods. We take into account the fitting of the timing model and have generalized our approach to deal with both correlated and uncorrelated colored noise sources. We also develop an incoherent detection statistic that maximizes over all pulsar-dependent contributions to the likelihood. To test the effectiveness and sensitivity of our detection statistics, we perform a number of Monte Carlo simulations. We produce sensitivity curves for PTAs of various configurations and outline an implementation of a fully functional data analysis pipeline. Finally, we present a derivation of the likelihood maximized over the gravitational wave phases at the pulsar locations, which results in a vast reduction of the search parameter space.

  14. A Continuous-Time Agency Model of Optimal Contracting and Capital Structure

    OpenAIRE

    Peter M. DeMarzo; Yuliy Sannikov

    2004-01-01

    We consider a principal-agent model in which the agent needs to raise capital from the principal to finance a project. Our model is based on DeMarzo and Fishman (2003), except that the agent's cash flows are given by a Brownian motion with drift in continuous time. The difficulty in writing an appropriate financial contract in this setting is that the agent can conceal and divert cash flows for his own consumption rather than pay back the principal. Alternatively, the agent may reduce the mea...

  15. Optimization of the uniformity of a metal flow during continuous extrusion by the Conform method

    Science.gov (United States)

    Lyubanova, A. Sh.; Gorokhov, Yu. V.; Solopko, I. V.; Ziborov, A. Yu.

    2010-03-01

    The scheme of plastic deformation of a billet in a container is considered as part of continuous extrusion by the Conform method. A mathematical model of the motion of a viscoplastic Bingham liquid is used to determine the metal velocity distribution in the plastic-deformation zone. As a result, the optimum angle between the longitudinal axes of the die and container is estimated. This angle is found to be one of the main factors affecting the nonuniformity of deformation when a metal flows into the die. The calculated results are compared to experimental data.

  16. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    Energy Technology Data Exchange (ETDEWEB)

    Portnoy, David, E-mail: david.portnoy@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Feuerbach, Robert; Heimberg, Jennifer [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of

  17. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    International Nuclear Information System (INIS)

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-01-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of spectra

  18. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    Science.gov (United States)

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra

  19. Optimal and continuous anaemia control in a cohort of dialysis patients in Switzerland

    Directory of Open Access Journals (Sweden)

    Kiss Denes

    2008-12-01

    Full Text Available Abstract Background Guidelines for the management of anaemia in patients with chronic kidney disease (CKD recommend a minimal haemoglobin (Hb target of 11 g/dL. Recent surveys indicate that this requirement is not met in many patients in Europe. In most studies, Hb is only assessed over a short-term period. The aim of this study was to examine the control of anaemia over a continuous long-term period in Switzerland. Methods A prospective multi-centre observational study was conducted in dialysed patients treated with recombinant human epoetin (EPO beta, over a one-year follow-up period, with monthly assessments of anaemia parameters. Results Three hundred and fifty patients from 27 centres, representing 14% of the dialysis population in Switzerland, were included. Mean Hb was 11.9 ± 1.0 g/dL, and remained stable over time. Eighty-five % of the patients achieved mean Hb ≥ 11 g/dL. Mean EPO dose was 155 ± 118 IU/kg/week, being delivered mostly by subcutaneous route (64–71%. Mean serum ferritin and transferrin saturation were 435 ± 253 μg/L and 30 ± 11%, respectively. At month 12, adequate iron stores were found in 72.5% of patients, whereas absolute and functional iron deficiencies were observed in only 5.1% and 17.8%, respectively. Multivariate analysis showed that diabetes unexpectedly influenced Hb towards higher levels (12.1 ± 0.9 g/dL; p = 0.02. One year survival was significantly higher in patients with Hb ≥ 11 g/dL than in those with Hb Conclusion In comparison to European studies of reference, this survey shows a remarkable and continuous control of anaemia in Swiss dialysis centres. These results were reached through moderately high EPO doses, mostly given subcutaneously, and careful iron therapy management.

  20. Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    N. Othman

    2014-01-01

    Full Text Available This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD using computational fluid dynamics (CFD. In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT. Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  1. Optimization of a continuous hybrid impeller mixer via computational fluid dynamics.

    Science.gov (United States)

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Meor Adnan, M A K

    2014-01-01

    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.

  2. Continuous spatial public goods game with self and peer punishment based on particle swarm optimization

    Science.gov (United States)

    Quan, Ji; Yang, Xiukang; Wang, Xianjia

    2018-07-01

    How cooperative behavior emerges and evolves in human society remains a puzzle. It has been observed that the sense of guilt rooted from free-riding and the sense of justice for punishing the free-riders are prevalent in the real world. Inspired by this observation, two punishment mechanisms have been introduced in the spatial public goods game which are called self-punishment and peer punishment respectively in this paper. In each situation, we have introduced a corresponding parameter to describe the level of individual tolerance or social tolerance. For each individual, whether to punish others or whether it will be punished by others depends on the corresponding tolerance parameter. We focus on the effects of the two kinds of tolerance parameters on the cooperation of the population. The particle swarm optimization (PSO)-based learning rule is used to describe the strategy updating process of individuals. We consider both of the memory and the imitation in our model. Via simulation experiments, we find that both of the two punishment mechanisms could facilitate the promotion of cooperation to a large extent. For the self-punishment and for most parameters in the peer punishment, the smaller the tolerance parameter, the more conducive it is to promote cooperation. These results can help us to better understand the prevailing phenomenon of cooperation in the real world.

  3. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative 1H NMR Metabonomic Study.

    Science.gov (United States)

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  4. Quantum separability and entanglement detection via entanglement-witness search and global optimization

    International Nuclear Information System (INIS)

    Ioannou, Lawrence M.; Travaglione, Benjamin C.

    2006-01-01

    We focus on determining the separability of an unknown bipartite quantum state ρ by invoking a sufficiently large subset of all possible entanglement witnesses given the expected value of each element of a set of mutually orthogonal observables. We review the concept of an entanglement witness from the geometrical point of view and use this geometry to show that the set of separable states is not a polytope and to characterize the class of entanglement witnesses (observables) that detect entangled states on opposite sides of the set of separable states. All this serves to motivate a classical algorithm which, given the expected values of a subset of an orthogonal basis of observables of an otherwise unknown quantum state, searches for an entanglement witness in the span of the subset of observables. The idea of such an algorithm, which is an efficient reduction of the quantum separability problem to a global optimization problem, was introduced by [Ioannou et al., Phys. Rev. A 70, 060303(R)], where it was shown to be an improvement on the naive approach for the quantum separability problem (exhaustive search for a decomposition of the given state into a convex combination of separable states). The last section of the paper discusses in more generality such algorithms, which, in our case, assume a subroutine that computes the global maximum of a real function of several variables. Despite this, we anticipate that such algorithms will perform sufficiently well on small instances that they will render a feasible test for separability in some cases of interest (e.g., in 3x3 dimensional systems)

  5. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models.

    Science.gov (United States)

    Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert

    2011-08-25

    Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  6. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2011-08-01

    Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  7. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation

    International Nuclear Information System (INIS)

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie-Laure

    2011-01-01

    This paper presents an application of Artificial Neural Networks (ANNs) to predict daily solar radiation. We look at the Multi-Layer Perceptron (MLP) network which is the most used of ANNs architectures. In previous studies, we have developed an ad-hoc time series preprocessing and optimized a MLP with endogenous inputs in order to forecast the solar radiation on a horizontal surface. We propose in this paper to study the contribution of exogenous meteorological data (multivariate method) as time series to our optimized MLP and compare with different forecasting methods: a naive forecaster (persistence), ARIMA reference predictor, an ANN with preprocessing using only endogenous inputs (univariate method) and an ANN with preprocessing using endogenous and exogenous inputs. The use of exogenous data generates an nRMSE decrease between 0.5% and 1% for two stations during 2006 and 2007 (Corsica Island, France). The prediction results are also relevant for the concrete case of a tilted PV wall (1.175 kWp). The addition of endogenous and exogenous data allows a 1% decrease of the nRMSE over a 6 months-cloudy period for the power production. While the use of exogenous data shows an interest in winter, endogenous data as inputs on a preprocessed ANN seem sufficient in summer. -- Research highlights: → Use of exogenous data as ANN inputs to forecast horizontal daily global irradiation data. → New methodology allowing to choice the adequate exogenous data - a systematic method comparing endogenous and exogenous data. → Different referenced mathematical predictors allows to conclude about the pertinence of the proposed methodology.

  8. Utility of formulas predicting the optimal nasal continuous positive airway pressure in a Greek population.

    Science.gov (United States)

    Schiza, Sophia E; Bouloukaki, Izolde; Mermigkis, Charalampos; Panagou, Panagiotis; Tzanakis, Nikolaos; Moniaki, Violeta; Tzortzaki, Eleni; Siafakas, Nikolaos M

    2011-09-01

    There have been reports that optimal CPAP pressure can be predicted from a previously derived formula, with the Hoffstein formula being the most accurate and accepted in the literature so far. However, the validation of this predictive model has not been applied in different clinical settings. Our aim was to compare both the Hoffstein prediction formula and a newly derived formula to the CPAP pressure setting assessed during a formal CPAP titration study. We prospectively studied 1,111 patients (871 males/240 females) with obstructive sleep apnea hypopnea syndrome (OSAHS) undergoing a CPAP titration procedure. In this large population sample, we tested the Hoffstein formula, utilizing body mass index (BMI), neck circumference and apnea/hypopnea index (AHI), and we compared it with our new formula that included not only AHI and BMI but also smoking history and gender adjustment. We found that using the Hoffstein prediction formula, successful prediction (predicted CPAP pressure within ±2 cm H(2)O compared to the finally assessed optimum CPAP pressure during titration) was accomplished in 873 patients (79%), with significant correlation between CPAP predicted pressure (CPAPpred(1)) and the optimum CPAP pressure (CPAPopt) [r = 0.364, p history and gender adjustment, successful prediction was accomplished in 1,057 patients (95%), with significant correlation between CPAP predicted pressure (CPAPpred(2)) and the CPAPopt (r = 0.392, p titration. It may also be possible to shorten CPAP titration and perhaps in selected cases to combine it with the initial diagnostic study.

  9. Optimal estimation of regional N2O emissions using a three-dimensional global model

    Science.gov (United States)

    Huang, J.; Golombek, A.; Prinn, R.

    2004-12-01

    In this study, we use the MATCH (Model of Atmospheric Transport and Chemistry) model and Kalman filtering techniques to optimally estimate N2O emissions from seven source regions around the globe. The MATCH model was used with NCEP assimilated winds at T62 resolution (192 longitude by 94 latitude surface grid, and 28 vertical levels) from July 1st 1996 to December 31st 2000. The average concentrations of N2O in the lowest four layers of the model were then compared with the monthly mean observations from six national/global networks (AGAGE, CMDL (HATS), CMDL (CCGG), CSIRO, CSIR and NIES), at 48 surface sites. A 12-month-running-mean smoother was applied to both the model results and the observations, due to the fact that the model was not able to reproduce the very small observed seasonal variations. The Kalman filter was then used to solve for the time-averaged regional emissions of N2O for January 1st 1997 to June 30th 2000. The inversions assume that the model stratospheric destruction rates, which lead to a global N2O lifetime of 130 years, are correct. It also assumes normalized emission spatial distributions from each region based on previous studies. We conclude that the global N2O emission flux is about 16.2 TgN/yr, with {34.9±1.7%} from South America and Africa, {34.6±1.5%} from South Asia, {13.9±1.5%} from China/Japan/South East Asia, {8.0±1.9%} from all oceans, {6.4±1.1%} from North America and North and West Asia, {2.6±0.4%} from Europe, and {0.9±0.7%} from New Zealand and Australia. The errors here include the measurement standard deviation, calibration differences among the six groups, grid volume/measurement site mis-match errors estimated from the model, and a procedure to account approximately for the modeling errors.

  10. Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaced by CentER DP 2011-015

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.; van Beers, W.C.M.; van Nieuwenhuyse, I.

    2010-01-01

    This paper uses a sequentialized experimental design to select simulation input com- binations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code). This

  11. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    Science.gov (United States)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  12. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  13. Globalization

    OpenAIRE

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  14. Protein structure modeling and refinement by global optimization in CASP12.

    Science.gov (United States)

    Hong, Seung Hwan; Joung, InSuk; Flores-Canales, Jose C; Manavalan, Balachandran; Cheng, Qianyi; Heo, Seungryong; Kim, Jong Yun; Lee, Sun Young; Nam, Mikyung; Joo, Keehyoung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2018-03-01

    For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain re-modeling. For better template selection and model selection, we updated our model quality assessment (QA) method with the newly developed SVMQA (support vector machine for quality assessment). For 3D chain building, we updated our energy function by including restraints generated from predicted residue-residue contacts. New energy terms for the predicted secondary structure and predicted solvent accessible surface area were also introduced. For difficult targets, we proposed a new method, LEEab, where the template term played a less significant role than it did in LEE, complemented by increased contributions from other terms such as the predicted contact term. For TBM (template-based modeling) targets, LEE performed better than LEEab, but for FM targets, LEEab was better. For model refinement, we modified our CASP11 molecular dynamics (MD) based protocol by using explicit solvents and tuning down restraint weights. Refinement results from MD simulations that used a new augmented statistical energy term in the force field were quite promising. Finally, when using inaccurate information (such as the predicted contacts), it was important to use the Lorentzian function for which the maximal penalty arising from wrong information is always bounded. © 2017 Wiley Periodicals, Inc.

  15. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction

    International Nuclear Information System (INIS)

    Yang, Jian; Cong, Weijian; Fan, Jingfan; Liu, Yue; Wang, Yongtian; Chen, Yang

    2014-01-01

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm. (paper)

  16. Searching for globally optimal functional forms for interatomic potentials using genetic programming with parallel tempering.

    Science.gov (United States)

    Slepoy, A; Peters, M D; Thompson, A P

    2007-11-30

    Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.

  17. Global shape optimization of airfoil using multi-objective genetic algorithm

    International Nuclear Information System (INIS)

    Lee, Ju Hee; Lee, Sang Hwan; Park, Kyoung Woo

    2005-01-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model

  18. Global shape optimization of airfoil using multi-objective genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Hee; Lee, Sang Hwan [Hanyang Univ., Seoul (Korea, Republic of); Park, Kyoung Woo [Hoseo Univ., Asan (Korea, Republic of)

    2005-10-01

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model.

  19. Smart telemedicine support for continuous glucose monitoring: the embryo of a future global agent for diabetes care.

    Science.gov (United States)

    Rigla, Mercedes

    2011-01-01

    Although current systems for continuous glucose monitoring (CGM) are the result of progressive technological improvement, and although a beneficial effect on glucose control has been demonstrated, few patients are using them. Something similar has happened to telemedicine (TM); in spite of the long-term experience, which began in the early 1980s, no TM system has been widely adopted, and presential visits are still almost the only way diabetologists and patients communicate. The hypothesis developed in this article is that neither CGM nor TM will ever be routinely implemented separately, and their consideration as essential elements for standard diabetes care will one day come from their integration as parts of a telemedical monitoring platform. This platform, which should include artificial intelligence for giving decision support to patients and physicians, will represent the core of a more complex global agent for diabetes care, which will provide control algorithms and risk analysis among other essential functions. © 2010 Diabetes Technology Society.

  20. A Novel Idea for Optimizing Condition-Based Maintenance Using Genetic Algorithms and Continuous Event Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Mansoor Ahmed Siddiqui

    2017-01-01

    Full Text Available Effective maintenance strategies are of utmost significance for system engineering due to their direct linkage with financial aspects and safety of the plants’ operation. At a point where the state of a system, for instance, level of its deterioration, can be constantly observed, a strategy based on condition-based maintenance (CBM may be affected; wherein upkeep of the system is done progressively on the premise of monitored state of the system. In this article, a multicomponent framework is considered that is continuously kept under observation. In order to decide an optimal deterioration stage for the said system, Genetic Algorithm (GA technique has been utilized that figures out when its preventive maintenance should be carried out. The system is configured into a multiobjective problem that is aimed at optimizing the two desired objectives, namely, profitability and accessibility. For the sake of reality, a prognostic model portraying the advancements of deteriorating system has been employed that will be based on utilization of continuous event simulation techniques. In this regard, Monte Carlo (MC simulation has been shortlisted as it can take into account a wide range of probable options that can help in reducing uncertainty. The inherent benefits proffered by the said simulation technique are fully utilized to display various elements of a deteriorating system working under stressed environment. The proposed synergic model (GA and MC is considered to be more effective due to the employment of “drop-by-drop approach” that permits successful drive of the related search process with regard to the best optimal solutions.

  1. Globally-Optimized Local Pseudopotentials for (Orbital-Free) Density Functional Theory Simulations of Liquids and Solids.

    Science.gov (United States)

    Del Rio, Beatriz G; Dieterich, Johannes M; Carter, Emily A

    2017-08-08

    The accuracy of local pseudopotentials (LPSs) is one of two major determinants of the fidelity of orbital-free density functional theory (OFDFT) simulations. We present a global optimization strategy for LPSs that enables OFDFT to reproduce solid and liquid properties obtained from Kohn-Sham DFT. Our optimization strategy can fit arbitrary properties from both solid and liquid phases, so the resulting globally optimized local pseudopotentials (goLPSs) can be used in solid and/or liquid-phase simulations depending on the fitting process. We show three test cases proving that we can (1) improve solid properties compared to our previous bulk-derived local pseudopotential generation scheme; (2) refine predicted liquid and solid properties by adding force matching data; and (3) generate a from-scratch, accurate goLPS from the local channel of a non-local pseudopotential. The proposed scheme therefore serves as a full and improved LPS construction protocol.

  2. Optimization of voltage output of energy harvesters with continuous mechanical rotation extracted from human motion (Conference Presentation)

    Science.gov (United States)

    Rashid, Evan; Hamidi, Armita; Tadesse, Yonas

    2017-04-01

    With increasing popularity of portable devices for outdoor activities, portable energy harvesting devices are coming into spot light. The next generation energy harvester which is called hybrid energy harvester can employ more than one mechanism in a single device to optimize portion of the energy that can be harvested from any source of waste energy namely motion, vibration, heat and etc. In spite of few recent attempts for creating hybrid portable devices, the level of output energy still needs to be improved with the intention of employing them in commercial electronic systems or further applications. Moreover, implementing a practical hybrid energy harvester in different application for further investigation is still challenging. This proposal is projected to incorporate a novel approach to maximize and optimize the voltage output of hybrid energy harvesters to achieve a greater conversion efficiency normalized by the total mass of the hybrid device than the simple arithmetic sum of the individual harvesting mechanisms. The energy harvester model previously proposed by Larkin and Tadesse [1] is used as a baseline and a continuous unidirectional rotation is incorporated to maximize and optimize the output. The device harvest mechanical energy from oscillatory motion and convert it to electrical energy through electromagnetic and piezoelectric systems. The new designed mechanism upgrades the device in a way that can harvest energy from both rotational and linear motions by using magnets. Likewise, the piezoelectric section optimized to harvest at least 10% more energy. To the end, the device scaled down for tested with different sources of vibrations in the immediate environment, including machinery operation, bicycle, door motion while opening and closing and finally, human motions. Comparing the results from literature proved that current device has capability to be employed in commercial small electronic devices for enhancement of battery usage or as a backup

  3. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    Science.gov (United States)

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  4. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

    Directory of Open Access Journals (Sweden)

    Hsiao-Ching Chen

    2011-01-01

    Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  5. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  6. Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment

    Directory of Open Access Journals (Sweden)

    Winfried Schlee

    2017-06-01

    Full Text Available BackgroundThe assessment and treatment of complex disorders is challenged by the multiple domains and instruments used to evaluate clinical outcome. With the large number of assessment tools typically used in complex disorders comes the challenge of obtaining an integrative view of disease status to further evaluate treatment outcome both at the individual level and at the group level. Radar plots appear as an attractive visual tool to display multivariate data on a two-dimensional graphical illustration. Here, we describe the use of radar plots for the visualization of disease characteristics applied in the context of tinnitus, a complex and heterogeneous condition, the treatment of which has shown mixed success.MethodsData from two different cohorts, the Swedish Tinnitus Outreach Project (STOP and the Tinnitus Research Initiative (TRI database, were used. STOP is a population-based cohort where cross-sectional data from 1,223 non-tinnitus and 933 tinnitus subjects were analyzed. By contrast, the TRI contained data from 571 patients who underwent various treatments and whose Clinical Global Impression (CGI score was accessible to infer treatment outcome. In the latter, 34,560 permutations were tested to evaluate whether a particular ordering of the instruments could reflect better the treatment outcome measured with the CGI.ResultsRadar plots confirmed that tinnitus subtypes such as occasional and chronic tinnitus from the STOP cohort could be strikingly different, and helped appreciate a gender bias in tinnitus severity. Radar plots with greater surface areas were consistent with greater burden, and enabled a rapid appreciation of the global distress associated with tinnitus in patients categorized according to tinnitus severity. Permutations in the arrangement of instruments allowed to identify a configuration with minimal variance and maximized surface difference between CGI groups from the TRI database, thus affording a means of optimally

  7. Cooperative Coevolution with Formula-Based Variable Grouping for Large-Scale Global Optimization.

    Science.gov (United States)

    Wang, Yuping; Liu, Haiyan; Wei, Fei; Zong, Tingting; Li, Xiaodong

    2017-08-09

    For a large-scale global optimization (LSGO) problem, divide-and-conquer is usually considered an effective strategy to decompose the problem into smaller subproblems, each of which can then be solved individually. Among these decomposition methods, variable grouping is shown to be promising in recent years. Existing variable grouping methods usually assume the problem to be black-box (i.e., assuming that an analytical model of the objective function is unknown), and they attempt to learn appropriate variable grouping that would allow for a better decomposition of the problem. In such cases, these variable grouping methods do not make a direct use of the formula of the objective function. However, it can be argued that many real-world problems are white-box problems, that is, the formulas of objective functions are often known a priori. These formulas of the objective functions provide rich information which can then be used to design an effective variable group method. In this article, a formula-based grouping strategy (FBG) for white-box problems is first proposed. It groups variables directly via the formula of an objective function which usually consists of a finite number of operations (i.e., four arithmetic operations "[Formula: see text]", "[Formula: see text]", "[Formula: see text]", "[Formula: see text]" and composite operations of basic elementary functions). In FBG, the operations are classified into two classes: one resulting in nonseparable variables, and the other resulting in separable variables. In FBG, variables can be automatically grouped into a suitable number of non-interacting subcomponents, with variables in each subcomponent being interdependent. FBG can easily be applied to any white-box problem and can be integrated into a cooperative coevolution framework. Based on FBG, a novel cooperative coevolution algorithm with formula-based variable grouping (so-called CCF) is proposed in this article for decomposing a large-scale white-box problem

  8. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  9. Globalization

    OpenAIRE

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  10. Optimal Stomatal Behaviour Around the World: Synthesis of a Global Stomatal Conductance Database and Scaling from Leaf to Ecosystem

    Science.gov (United States)

    Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.

    2014-12-01

    Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.

  11. Inter-terminal transfer between port terminals. A continuous mathematical programming model to optimize scheduling and deployment of transport units

    Energy Technology Data Exchange (ETDEWEB)

    Morales Fusco, P.; Pedrielli, G.; Zhou, C.; Hay Lee, L.; Peng Chew, E.

    2016-07-01

    In most large port cities, the challenge of inter-terminal transfers (ITT) prevails due to the long distance between multiple terminals. The quantity of containers requiring movement between terminals as they connect from pre-carrier to on-carrier is increasing with the formation of the mega-alliances. The paper proposes a continuous time mathematical programming model to optimize the deployment and schedule of trucks and barges to minimize the number of operating transporters, their makespan, costs and the distance travelled by the containers by choosing the right combination of transporters and container movements while fulfilling time window restrictions imposed on reception of the containers. A multi-step routing problem is developed where transporters can travel from one terminal to another and/or load or unload containers from a specific batch at each step. The model proves successful in identifying the costless schedule and means of transportation. And a sensibility analysis over the parameters used is provided. (Author)

  12. The optimal timing of continuous renal replacement therapy for patients with sepsis-induced acute kidney injury.

    Science.gov (United States)

    Tian, Huanhuan; Sun, Ting; Hao, Dong; Wang, Tao; Li, Zhi; Han, Shasha; Qi, Zhijiang; Dong, Zhaoju; Lv, Changjun; Wang, Xiaozhi

    2014-10-01

    High mortality in the intensive care unit (ICU) is probably associated with sepsis-induced acute kidney injury (AKI). The aim of this study is to explore which stage of AKI may be the optimal timing for continuous renal replacement therapy (CRRT). A retrospective analysis of 160 critically ill patients with septic AKI, treated with or without CRRT was performed in Binzhou medical college affiliated hospital ICU. The parameters including 28-days mortality rate, renal recovery, ventilation time and ICU stay between CRRT group and control group were assessed. Renal recovery, defined as independence from dialysis at discharge, was documented for 64/76 (84.2 %) of the surviving patients (48.1 % of total subjects included in the study). The mortality rate increased proportionally with acute kidney injury Network stages in CRRT subgroups (P = 0.001) and control groups (P = 0.029). CRRT initiation at stage 2 of AKI significantly reduced the 28-day mortality (P = 0.048) and increased the 28-day survival rate (P = 0.036) compared with those in control group. In addition, the ICU stay and ventilation time were shorter in CRRT group than that of control group in stage 2 of AKI. The stage 2 AKI might be the optimal timing for performing CRRT.

  13. Step-by-step optimization and global chaos of nonlinear parameters in exact calculations of few-particle systems

    International Nuclear Information System (INIS)

    Frolov, A.M.

    1986-01-01

    Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of ppμ, ddμ, ttμ homonuclear mesomolecules within the error ≤±0.001 eV. The global chaos method turned out to be well applicable to nuclear 3 H and 3 He systems

  14. Step-by-step optimization and global chaos of nonlinear parameters in exact calculations of few-particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A M

    1986-09-01

    Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of pp..mu.., dd..mu.., tt..mu.. homonuclear mesomolecules within the error less than or equal to+-0.001 eV. The global chaos method turned out to be well applicable to nuclear /sup 3/H and /sup 3/He systems.

  15. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    Science.gov (United States)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  16. Global approach to the n-dimensional traveling salesman problem: Application to the optimization of crystallographic data collection

    Energy Technology Data Exchange (ETDEWEB)

    Weinrach, J.B.; Bennett, D.W.

    1987-12-01

    An algorithm for the optimization of data collection time has been written and a subsequent computer program tested for diffractometer systems. The program, which utilizes a global statistical approach to the traveling salesman problem, yields reasonable solutions in a relatively short time. The algorithm has been successful in treating very large data sets (up to 4000 points) in three dimensions with subsequent time savings of ca 30%.

  17. Annealing evolutionary stochastic approximation Monte Carlo for global optimization

    KAUST Repository

    Liang, Faming

    2010-01-01

    outperform simulated annealing, the genetic algorithm, annealing stochastic approximation Monte Carlo, and some other metaheuristics in function optimization. © 2010 Springer Science+Business Media, LLC.

  18. Implementing the global plan to stop TB, 2011-2015--optimizing allocations and the Global Fund's contribution: a scenario projections study.

    Directory of Open Access Journals (Sweden)

    Eline L Korenromp

    Full Text Available BACKGROUND: The Global Plan to Stop TB estimates funding required in low- and middle-income countries to achieve TB control targets set by the Stop TB Partnership within the context of the Millennium Development Goals. We estimate the contribution and impact of Global Fund investments under various scenarios of allocations across interventions and regions. METHODOLOGY/PRINCIPAL FINDINGS: Using Global Plan assumptions on expected cases and mortality, we estimate treatment costs and mortality impact for diagnosis and treatment for drug-sensitive and multidrug-resistant TB (MDR-TB, including antiretroviral treatment (ART during DOTS for HIV-co-infected patients, for four country groups, overall and for the Global Fund investments. In 2015, China and India account for 24% of funding need, Eastern Europe and Central Asia (EECA for 33%, sub-Saharan Africa (SSA for 20%, and other low- and middle-income countries for 24%. Scale-up of MDR-TB treatment, especially in EECA, drives an increasing global TB funding need--an essential investment to contain the mortality burden associated with MDR-TB and future disease costs. Funding needs rise fastest in SSA, reflecting increasing coverage need of improved TB/HIV management, which saves most lives per dollar spent in the short term. The Global Fund is expected to finance 8-12% of Global Plan implementation costs annually. Lives saved through Global Fund TB support within the available funding envelope could increase 37% if allocations shifted from current regional demand patterns to a prioritized scale-up of improved TB/HIV treatment and secondly DOTS, both mainly in Africa--with EECA region, which has disproportionately high per-patient costs, funded from alternative resources. CONCLUSIONS/SIGNIFICANCE: These findings, alongside country funding gaps, domestic funding and implementation capacity and equity considerations, should inform strategies and policies for international donors, national governments and

  19. Global On-Chip Differential Interconnects with Optimally-Placed Twists

    NARCIS (Netherlands)

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2005-01-01

    Global on-chip communication is receiving quite some attention as global interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Recently, we proposed a bus-transceiver test chip in 0.13 μm CMOS using 10 mm long uninterrupted differential interconnects

  20. Subdivision, Sampling, and Initialization Strategies for Simplical Branch and Bound in Global Optimization

    DEFF Research Database (Denmark)

    Clausen, Jens; Zilinskas, A,

    2002-01-01

    We consider the problem of optimizing a Lipshitzian function. The branch and bound technique is a well-known solution method, and the key components for this are the subdivision scheme, the bound calculation scheme, and the initialization. For Lipschitzian optimization, the bound calculations are...

  1. Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal

    Science.gov (United States)

    Steinley, Douglas; Hubert, Lawrence

    2008-01-01

    This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…

  2. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.

    Science.gov (United States)

    Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J

    2017-07-01

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N 2 O) and methane (CH 4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha -1  yr -1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N 2 O and CH 4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N 2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH 4 neutral and CT a CH 4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface

  3. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  4. Globalization

    OpenAIRE

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  5. Continuous assessment of land mapping accuracy at High Resolution from global networks of atmospheric and field observatories -concept and demonstration

    Science.gov (United States)

    Sicard, Pierre; Martin-lauzer, François-regis

    2017-04-01

    In the context of global climate change and adjustment/resilience policies' design and implementation, there is a need not only i. for environmental monitoring, e.g. through a range of Earth Observations (EO) land "products" but ii. for a precise assessment of uncertainties of the aforesaid information that feed environmental decision-making (to be introduced in the EO metadata) and also iii. for a perfect handing of the thresholds which help translate "environment tolerance limits" to match detected EO changes through ecosystem modelling. Uncertainties' insight means precision and accuracy's knowledge and subsequent ability of setting thresholds for change detection systems. Traditionally, the validation of satellite-derived products has taken the form of intensive field campaigns to sanction the introduction of data processors in Payload Data Ground Segments chains. It is marred by logistical challenges and cost issues, reason why it is complemented by specific surveys at ground-based monitoring sites which can provide near-continuous observations at a high temporal resolution (e.g. RadCalNet). Unfortunately, most of the ground-level monitoring sites, in the number of 100th or 1000th, which are part of wider observation networks (e.g. FLUXNET, NEON, IMAGINES) mainly monitor the state of the atmosphere and the radiation exchange at the surface, which are different to the products derived from EO data. In addition they are "point-based" compared to the EO cover to be obtained from Sentinel-2 or Sentinel-3. Yet, data from these networks, processed by spatial extrapolation models, are well-suited to the bottom-up approach and relevant to the validation of vegetation parameters' consistency (e.g. leaf area index, fraction of absorbed photosynthetically active radiation). Consistency means minimal errors on spatial and temporal gradients of EO products. Test of the procedure for land-cover products' consistency assessment with field measurements delivered by worldwide

  6. An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing

    KAUST Repository

    Han, Renmin

    2017-12-24

    Long-reads, point-of-care, and PCR-free are the promises brought by nanopore sequencing. Among various steps in nanopore data analysis, the global mapping between the raw electrical current signal sequence and the expected signal sequence from the pore model serves as the key building block to base calling, reads mapping, variant identification, and methylation detection. However, the ultra-long reads of nanopore sequencing and an order of magnitude difference in the sampling speeds of the two sequences make the classical dynamic time warping (DTW) and its variants infeasible to solve the problem. Here, we propose a novel multi-level DTW algorithm, cwDTW, based on continuous wavelet transforms with different scales of the two signal sequences. Our algorithm starts from low-resolution wavelet transforms of the two sequences, such that the transformed sequences are short and have similar sampling rates. Then the peaks and nadirs of the transformed sequences are extracted to form feature sequences with similar lengths, which can be easily mapped by the original DTW. Our algorithm then recursively projects the warping path from a lower-resolution level to a higher-resolution one by building a context-dependent boundary and enabling a constrained search for the warping path in the latter. Comprehensive experiments on two real nanopore datasets on human and on Pandoraea pnomenusa, as well as two benchmark datasets from previous studies, demonstrate the efficiency and effectiveness of the proposed algorithm. In particular, cwDTW can almost always generate warping paths that are very close to the original DTW, which are remarkably more accurate than the state-of-the-art methods including FastDTW and PrunedDTW. Meanwhile, on the real nanopore datasets, cwDTW is about 440 times faster than FastDTW and 3000 times faster than the original DTW. Our program is available at https://github.com/realbigws/cwDTW.

  7. Continuing global significance of emissions of Montreal Protocol-restricted halocarbons in the United States and Canada

    Science.gov (United States)

    Hurst, D. F.; Lin, J. C.; Romashkin, P. A.; Daube, B. C.; Gerbig, C.; Matross, D. M.; Wofsy, S. C.; Hall, B. D.; Elkins, J. W.

    2006-08-01

    Contemporary emissions of six restricted, ozone-depleting halocarbons, chlorofluorocarbon-11 (CFC-11, CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2FCClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), and Halon-1211 (CBrClF2), and two nonregulated trace gases, chloroform (CHCl3) and sulfur hexafluoride (SF6), are estimated for the United States and Canada. The estimates derive from 900 to 2900 in situ measurements of each of these gases within and above the planetary boundary layer over the United States and Canada as part of the 2003 CO2 Budget and Regional Airborne-North America (COBRA-NA) study. Air masses polluted by anthropogenic sources, identified by concurrently elevated levels of carbon monoxide (CO), SF6, and CHCl3, were sampled over a wide geographical range of these two countries. For each polluted air mass, we calculated emission ratios of halocarbons to CO and employed the Stochastic Time-Inverted Lagrangian Transport (STILT) model to determine the footprint associated with the air mass. Gridded CO emission estimates were then mapped onto the footprints and combined with measured emission ratios to generate footprint-weighted halocarbon flux estimates. We present statistically significant linear relationships between halocarbon fluxes (excluding CCl4) and footprint-weighted population densities, with slopes representative of per capita emission rates. These rates indicate that contemporary emissions of five restricted halocarbons (excluding CCl4) in the United States and Canada continue to account for significant fractions (7-40%) of global emissions.

  8. Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions

    KAUST Repository

    Odat, Enas M.

    2011-01-01

    The algorithm has been simulated using C#.Net programming language and a number of experiments have been done to verify the proved statements. The results of these experiments show that the number of optimal alignments is reduced after each step of optimization. Furthermore, it has been verified that as the sequence length increased linearly then the number of optimal alignments increased exponentially which also depends on the cost function that is used. Finally, the number of executed operations increases polynomially as the sequence length increase linearly.

  9. Optimal level of continuous positive airway pressure: auto-adjusting titration versus titration with a predictive equation.

    Science.gov (United States)

    Choi, Ji Ho; Jun, Young Joon; Oh, Jeong In; Jung, Jong Yoon; Hwang, Gyu Ho; Kwon, Soon Young; Lee, Heung Man; Kim, Tae Hoon; Lee, Sang Hag; Lee, Seung Hoon

    2013-05-01

    The aims of the present study were twofold. We sought to compare two methods of titrating the level of continuous positive airway pressure (CPAP) - auto-adjusting titration and titration using a predictive equation - with full-night manual titration used as the benchmark. We also investigated the reliability of the two methods in patients with obstructive sleep apnea syndrome (OSAS). Twenty consecutive adult patients with OSAS who had successful, full-night manual and auto-adjusting CPAP titration participated in this study. The titration pressure level was calculated with a previously developed predictive equation based on body mass index and apnea-hypopnea index. The mean titration pressure levels obtained with the manual, auto-adjusting, and predictive equation methods were 9.0 +/- 3.6, 9.4 +/- 3.0, and 8.1 +/- 1.6 cm H2O,respectively. There was a significant difference in the concordance within the range of +/- 2 cm H2O (p = 0.019) between both the auto-adjusting titration and the titration using the predictive equation compared to the full-night manual titration. However, there was no significant difference in the concordance within the range of +/- 1 cm H2O (p > 0.999). When compared to full-night manual titration as the standard method, auto-adjusting titration appears to be more reliable than using a predictive equation for determining the optimal CPAP level in patients with OSAS.

  10. Prediction and Optimization of Phase Transformation Region After Spot Continual Induction Hardening Process Using Response Surface Method

    Science.gov (United States)

    Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Chen, Xuliang; Wang, Zhou

    2017-09-01

    The spot continual induction hardening (SCIH) process, which is a modified induction hardening, can be assembled to a five-axis cooperating computer numerical control machine tool to strengthen more than one small area or relatively large area on complicated component surface. In this study, a response surface method was presented to optimize phase transformation region after the SCIH process. The effects of five process parameters including feed velocity, input power, gap, curvature and flow rate on temperature, microstructure, microhardness and phase transformation geometry were investigated. Central composition design, a second-order response surface design, was employed to systematically estimate the empirical models of temperature and phase transformation geometry. The analysis results indicated that feed velocity has a dominant effect on the uniformity of microstructure and microhardness, domain size, oxidized track width, phase transformation width and height in the SCIH process while curvature has the largest effect on center temperature in the design space. The optimum operating conditions with 0.817, 0.845 and 0.773 of desirability values are expected to be able to minimize ratio (tempering region) and maximize phase transformation width for concave, flat and convex surface workpieces, respectively. The verification result indicated that the process parameters obtained by the model were reliable.

  11. Optimizing Quality of Care and Patient Safety in Malaysia: The Current Global Initiatives, Gaps and Suggested Solutions.

    Science.gov (United States)

    Jarrar, Mu'taman; Abdul Rahman, Hamzah; Don, Mohammad Sobri

    2015-10-20

    Demand for health care service has significantly increased, while the quality of healthcare and patient safety has become national and international priorities. This paper aims to identify the gaps and the current initiatives for optimizing the quality of care and patient safety in Malaysia. Review of the current literature. Highly cited articles were used as the basis to retrieve and review the current initiatives for optimizing the quality of care and patient safety. The country health plan of Ministry of Health (MOH) Malaysia and the MOH Malaysia Annual Reports were reviewed. The MOH has set four strategies for optimizing quality and sustaining quality of life. The 10th Malaysia Health Plan promotes the theme "1 Care for 1 Malaysia" in order to sustain the quality of care. Despite of these efforts, the total number of complaints received by the medico-legal section of the MOH Malaysia is increasing. The current global initiatives indicted that quality performance generally belong to three main categories: patient; staffing; and working environment related factors. There is no single intervention for optimizing quality of care to maintain patient safety. Multidimensional efforts and interventions are recommended in order to optimize the quality of care and patient safety in Malaysia.

  12. Optimizing Quality of Care and Patient Safety in Malaysia: The Current Global Initiatives, Gaps and Suggested Solutions

    Science.gov (United States)

    Jarrar, Mu’taman; Rahman, Hamzah Abdul; Don, Mohammad Sobri

    2016-01-01

    Background and Objective: Demand for health care service has significantly increased, while the quality of healthcare and patient safety has become national and international priorities. This paper aims to identify the gaps and the current initiatives for optimizing the quality of care and patient safety in Malaysia. Design: Review of the current literature. Highly cited articles were used as the basis to retrieve and review the current initiatives for optimizing the quality of care and patient safety. The country health plan of Ministry of Health (MOH) Malaysia and the MOH Malaysia Annual Reports were reviewed. Results: The MOH has set four strategies for optimizing quality and sustaining quality of life. The 10th Malaysia Health Plan promotes the theme “1 Care for 1 Malaysia” in order to sustain the quality of care. Despite of these efforts, the total number of complaints received by the medico-legal section of the MOH Malaysia is increasing. The current global initiatives indicted that quality performance generally belong to three main categories: patient; staffing; and working environment related factors. Conclusions: There is no single intervention for optimizing quality of care to maintain patient safety. Multidimensional efforts and interventions are recommended in order to optimize the quality of care and patient safety in Malaysia. PMID:26755459

  13. Global Optimization of Damping Ring Designs Using a Multi-Objective Evolutionary Algorithm

    CERN Document Server

    Emery, Louis

    2005-01-01

    Several damping ring designs for the International Linear Collider have been proposed recently. Some of the specifications, such as circumference and bunch train, are not fixed yet. Designers must make a choice anyway, select a geometry type (dog-bone or circular), an arc cell type (TME or FODO), and optimize linear and nonlinear part of the optics. The design process include straightforward steps (usually the linear optics), and some steps not so straightforward (when nonlinear optics optimization is affected by the linear optics). A first attempt at automating this process for the linear optics is reported. We first recognize that the optics is defined by just a few primary parameters (e.g., phase advance per cell) that determine the rest (e.g., quadrupole strength). In addition to the exact specification of circumference, equilibrium emittance and damping time there are some other quantities which could be optimized that may conflict with each other. A multiobjective genetic optimizer solves this problem b...

  14. A Global Multi-Objective Optimization Tool for Design of Mechatronic Components using Generalized Differential Evolution

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Nørgård, Christian; Roemer, Daniel Beck

    2016-01-01

    This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri-objectiv......This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri...... different optimization control parameter settings and it is concluded that GDE3 is a reliable optimization tool that can assist mechatronic engineers in the design and decision making process....

  15. Optimal Control Method of Parabolic Partial Differential Equations and Its Application to Heat Transfer Model in Continuous Cast Secondary Cooling Zone

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Our work is devoted to a class of optimal control problems of parabolic partial differential equations. Because of the partial differential equations constraints, it is rather difficult to solve the optimization problem. The gradient of the cost function can be found by the adjoint problem approach. Based on the adjoint problem approach, the gradient of cost function is proved to be Lipschitz continuous. An improved conjugate method is applied to solve this optimization problem and this algorithm is proved to be convergent. This method is applied to set-point values in continuous cast secondary cooling zone. Based on the real data in a plant, the simulation experiments show that the method can ensure the steel billet quality. From these experiment results, it is concluded that the improved conjugate gradient algorithm is convergent and the method is effective in optimal control problem of partial differential equations.

  16. Effects of Milrinone continuous intravenous infusion on global cerebral oxygenation and cerebral vasospasm after cerebral aneurysm surgical clipping

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ghanem

    2014-01-01

    Conclusions: Milrinone improved significantly the global cerebral oxygenation and reduced the incidence of cerebral vasospasm during the dangerous period of cerebral spasm after cerebral aneurysm clipping.

  17. From the social learning theory to a social learning algorithm for global optimization

    OpenAIRE

    Gong, Yue-Jiao; Zhang, Jun; Li, Yun

    2014-01-01

    Traditionally, the Evolutionary Computation (EC) paradigm is inspired by Darwinian evolution or the swarm intelligence of animals. Bandura's Social Learning Theory pointed out that the social learning behavior of humans indicates a high level of intelligence in nature. We found that such intelligence of human society can be implemented by numerical computing and be utilized in computational algorithms for solving optimization problems. In this paper, we design a novel and generic optimization...

  18. Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting.

    Science.gov (United States)

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  19. Continuous 4-1BB co-stimulatory signals for the optimal expansion of tumor-infiltrating lymphocytes for adoptive T-cell therapy.

    Science.gov (United States)

    Chacon, Jessica Ann; Pilon-Thomas, Shari; Sarnaik, Amod A; Radvanyi, Laszlo G

    2013-09-01

    Co-stimulation through members of the tumor necrosis factor receptor (TNFR) family appears to be critical for the generation of T cells with optimal effector-memory properties for adoptive cell therapy. Our work suggests that continuous 4-1BB/CD137 co-stimulation is required for the expansion of T cells with an optimal therapeutic profile and that the administration of 4-1BB agonists upon adoptive cell transfer further improves antitumor T-cell functions.

  20. Global (volume-averaged) model of inductively coupled chlorine plasma : influence of Cl wall recombination and external heating on continuous and pulse-modulated plasmas

    NARCIS (Netherlands)

    Kemaneci, E.H.; Carbone, E.A.D.; Booth, J.P.; Graef, W.A.A.D.; Dijk, van J.; Kroesen, G.M.W.

    An inductively coupled radio-frequency plasma in chlorine is investigated via a global (volume-averaged) model, both in continuous and square wave modulated power input modes. After the power is switched off (in a pulsed mode) an ion–ion plasma appears. In order to model this phenomenon, a novel

  1. Multi-GPU configuration of 4D intensity modulated radiation therapy inverse planning using global optimization

    Science.gov (United States)

    Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo

    2018-01-01

    We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the

  2. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn

    Science.gov (United States)

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emis-sions, and global warming potential (GWP) in irrigated systems, however,...

  3. Optimal insulin pump dosing and postprandial glycemia following a pizza meal using the continuous glucose monitoring system.

    Science.gov (United States)

    Jones, Susan M; Quarry, Jill L; Caldwell-McMillan, Molly; Mauger, David T; Gabbay, Robert A

    2005-04-01

    We attempted to identify an optimal insulin pump meal bolus by comparing postprandial sensor glucose values following three methods of insulin pump meal bolusing for a consistent pizza meal. Twenty-four patients with type 1 diabetes participated in a study to compare postprandial glucose values following three meal bolus regimens for a consistent evening pizza meal. Each participant utilized the following insulin lispro regimens on consecutive evenings, and glucose values were tracked by the Continuous Glucose Monitoring System (CGMS, Medtronic MiniMed, Northridge, CA): (a) single-wave bolus (100% of insulin given immediately); (b) 4-h dual-wave bolus (50% of insulin given immediately and 50% given over a 4-h period); and (c) 8-h dual-wave bolus (50% of insulin given immediately and 50% given over a 8-h period). Total insulin bolus amount was kept constant for each pizza meal. Divergence in blood glucose among the regimens was greatest at 8-12 h. The 8-h dual-wave bolus provided the best glycemic control and lowest mean glucose values (singlewave bolus, 133 mg/dL; 4-h dual-wave bolus, 145 mg/dL; 8-h dual-wave bolus, 104 mg/dL), leading to a difference in mean glucose of 29 mg/dL for the single-wave bolus versus the 8-h dual-wave bolus and 42 mg/dL for the 4-h dual-wave bolus versus the 8-h dual-wave bolus. The lower mean glucose in the 8-h dual-wave bolus was not associated with any increased incidence of hypoglycemia. Use of a dual-wave bolus extended over an 8-h period following a pizza meal provided significantly less postprandial hyperglycemia in the late postprandial period (8-12 h) with no increased risk of hypoglycemia.

  4. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    Science.gov (United States)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when

  5. An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Lihong Guo

    2013-01-01

    Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.

  6. Attending Globally or Locally: Incidental Learning of Optimal Visual Attention Allocation

    Science.gov (United States)

    Beck, Melissa R.; Goldstein, Rebecca R.; van Lamsweerde, Amanda E.; Ericson, Justin M.

    2018-01-01

    Attention allocation determines the information that is encoded into memory. Can participants learn to optimally allocate attention based on what types of information are most likely to change? The current study examined whether participants could incidentally learn that changes to either high spatial frequency (HSF) or low spatial frequency (LSF)…

  7. Service ORiented Computing EnviRonment (SORCER) for Deterministic Global and Stochastic Optimization

    OpenAIRE

    Raghunath, Chaitra

    2015-01-01

    With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better...

  8. Optimal carbon emissions trajectories when damages depend on the rate or level of global warming

    International Nuclear Information System (INIS)

    Peck, S.C.; Teisberg, T.J.

    1994-01-01

    The authors extend earlier work with the Carbon Emissions Trajectory Assessment model (CETA) to consider a number of issues relating to the nature of optimal carbon emissions trajectories. They first explore model results when warming costs are associated with the rate of temperature rise, rather than with its level, as in earlier work. It is found that optimal trajectories are more strongly affected by the degree of non-linearity in the warming cost function than by whether the cost function is driven by the warming level or the warming rate. The authors briefly explore the implications of simple uncertainty and risk aversion for optimal emissions trajectories to be somewhat lower, but that the effect is not noticeable in the near term and not dramatic in the long term; the long term effect on the shadow price of carbon is more marked, however. Finally, they experiment with scaling up the warming cost functions until optimal policies are approximately the same as a policy of stabilising emissions at the 1990 level. Based on the results of this experiment, it is concluded that damages would have to be very high to justify anything like a stabilization policy; and even in this case, a policy allowing intertemporal variation in emissions would be better. 18 refs., 15 figs

  9. Global optimization for integrated design and control of computationally expensive process models

    NARCIS (Netherlands)

    Egea, J.A.; Vries, D.; Alonso, A.A.; Banga, J.R.

    2007-01-01

    The problem of integrated design and control optimization of process plants is discussed in this paper. We consider it as a nonlinear programming problem subject to differential-algebraic constraints. This class of problems is frequently multimodal and "costly" (i.e., computationally expensive to

  10. Defining Glaucomatous Optic Neuropathy from a Continuous Measure of Optic Nerve Damage - The Optimal Cut-off Point for Risk-factor Analysis in Population-based Epidemiology

    NARCIS (Netherlands)

    Ramdas, Wishal D.; Rizopoulos, Dimitris; Wolfs, Roger C. W.; Hofman, Albert; de Jong, Paulus T. V. M.; Vingerling, Johannes R.; Jansonius, Nomdo M.

    2011-01-01

    Purpose: Diseases characterized by a continuous trait can be defined by setting a cut-off point for the disease measure in question, accepting some misclassification. The 97.5th percentile is commonly used as a cut-off point. However, it is unclear whether this percentile is the optimal cut-off

  11. Optimization Case Study: ISR Allocation in the Global Force Management Process

    Science.gov (United States)

    2016-09-01

    assets available to meet the GCC requirements. The Joint Staff, in concert with USSTRATCOM, use many factors to prioritize allocation of assets to...include determining which GCC gets the assets and for how long. The decision influencers recommend a resource allocation solution based on experience...The allocation process illustrated in Figure 1 is the OV-1 diagram from the Joint Staff Global Force Management Enterprise Integration

  12. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using Energy Plus

    Energy Technology Data Exchange (ETDEWEB)

    Kamph, Jerome Henri; Robinson, Darren; Wetter, Michael

    2009-09-01

    There is an increasing interest in the use of computer algorithms to identify combinations of parameters which optimise the energy performance of buildings. For such problems, the objective function can be multi-modal and needs to be approximated numerically using building energy simulation programs. As these programs contain iterative solution algorithms, they introduce discontinuities in the numerical approximation to the objective function. Metaheuristics often work well for such problems, but their convergence to a global optimum cannot be established formally. Moreover, different algorithms tend to be suited to particular classes of optimization problems. To shed light on this issue we compared the performance of two metaheuristics, the hybrid CMA-ES/HDE and the hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization problems of varying complexity. From this we find that the CMA-ES/HDE performs well on more complex objective functions, but that the PSO/HJ more consistently identifies the global minimum for simpler objective functions. Both identified similar values in the objective functions arising from energy simulations, but with different combinations of model parameters. This may suggest that the objective function is multi-modal. The algorithms also correctly identified some non-intuitive parameter combinations that were caused by a simplified control sequence of the building energy system that does not represent actual practice, further reinforcing their utility.

  13. Development of a model to optimize global use of nuclear energy considering competition of seawater uranium and reprocessing

    International Nuclear Information System (INIS)

    Undarmaa, Baatarkhuu; Horio, Kenta; Fujii, Yasumasa; Komiyama, Ryoichi

    2017-01-01

    In order to sustain long-term energy security and to mitigate the climate change, nuclear power remains an important baseload option for the global power generation mix. To utilize nuclear power in long-term, some important concerns such as economics, stability of fuel supply and spent fuel amount should be evaluated. Model developed in this study optimizes the global use nuclear power considering such issues. The Model is based on linear programming and calculates the best mix of nuclear reactor types by minimizing the current value of total power generation cost within the target period (next 100 years). Possibility of fuel cycle options such as reprocessing, seawater uranium and thorium utilization are also taken in to account, along with remaining spent fuel and plutonium stock. As result. reprocessing and uranium from seawater become essential part of nuclear fuel cycle in the long run. Amount of stored spent fuel is reduced following the deployment of Fast Breeder Reactor. Also, as an extension of current model, a baseload power generation mix model, which estimates the optimal mix of nuclear and coal-fired power generation will be introduced. (author)

  14. Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters

    Science.gov (United States)

    Kumar, S.; Singh, A.; Dhar, A.

    2017-08-01

    The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.

  15. Cuckoo Search with Lévy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting

    Directory of Open Access Journals (Sweden)

    Akemi Gálvez

    2014-01-01

    for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  16. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    Science.gov (United States)

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  17. Optimization Model for Mitigating Global Warming at the Farm Scale: An Application to Japanese Rice Farms

    Directory of Open Access Journals (Sweden)

    Kiyotaka Masuda

    2016-06-01

    Full Text Available In Japan, greenhouse gas emissions from rice production, especially CH4 emissions in rice paddy fields, are the primary contributors to global warming from agriculture. When prolonged midseason drainage for mitigating CH4 emissions from rice paddy fields is practiced with environmentally friendly rice production based on reduced use of synthetic pesticides and chemical fertilizers, Japanese rice farmers can receive an agri-environmental direct payment. This paper examines the economic and environmental effects of the agri-environmental direct payment on the adoption of a measure to mitigate global warming in Japanese rice farms using a combined application of linear programming and life cycle assessment at the farm scale. Eco-efficiency, which is defined as net farm income divided by global warming potential, is used as an integrated indicator for assessing the economic and environmental feasibilities. The results show that under the current direct payment level, the prolonged midseason drainage technique does not improve the eco-efficiency of Japanese rice farms because the practice of this technique in environmentally friendly rice production causes large economic disadvantages in exchange for small environmental advantages. The direct payment rates for agri-environmental measures should be determined based on the condition that environmentally friendly agricultural practices improve eco-efficiency compared with conventional agriculture.

  18. Optimal Methods to Screen Men and Women for Intimate Partner Violence: Results from an Internal Medicine Residency Continuity Clinic

    Science.gov (United States)

    Kapur, Nitin A.; Windish, Donna M.

    2011-01-01

    Contradictory data exist regarding optimal methods and instruments for intimate partner violence (IPV) screening in primary care settings. The purpose of this study was to determine the optimal method and screening instrument for IPV among men and women in a primary-care resident clinic. We conducted a cross-sectional study at an urban, academic,…

  19. Solving non-standard packing problems by global optimization and heuristics

    CERN Document Server

    Fasano, Giorgio

    2014-01-01

    This book results from a long-term research effort aimed at tackling complex non-standard packing issues which arise in space engineering. The main research objective is to optimize cargo loading and arrangement, in compliance with a set of stringent rules. Complicated geometrical aspects are also taken into account, in addition to balancing conditions based on attitude control specifications. Chapter 1 introduces the class of non-standard packing problems studied. Chapter 2 gives a detailed explanation of a general model for the orthogonal packing of tetris-like items in a convex domain. A number of additional conditions are looked at in depth, including the prefixed orientation of subsets of items, the presence of unusable holes, separation planes and structural elements, relative distance bounds as well as static and dynamic balancing requirements. The relative feasibility sub-problem which is a special case that does not have an optimization criterion is discussed in Chapter 3. This setting can be exploit...

  20. A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy

    International Nuclear Information System (INIS)

    Zhang, Dongjie; Liu, Pei; Ma, Linwei; LI, Zheng

    2013-01-01

    A great challenge China's power sector faces is to mitigate its carbon emissions whilst satisfying the ever-increasing power demand. Optimal planning of the power sector with consideration of carbon mitigation for a long-term future remains a complex task, involving many technical alternatives and an infinite number of possible plants installations, retrofitting, and decommissioning over the planning horizon. Previously the authors built a multi-period optimization model for the planning of China's power sector during 2010–2050. Based on that model, this paper executed calculations on the optimal pathways of China's power sector with two typical decision-making modes, which are based on “full-information” and “limited-information” hypothesis, and analyzed the impacts on the optimal planning results by two typical types of carbon tax policies including a “continuous and stable” one and a “loose first and tight later” one. The results showed that making carbon tax policy for long-term future, and improving the continuity and stability in policy execution can effectively help reduce the accumulated total carbon emissions, and also the cost for carbon mitigation of the power sector. The conclusion of this study is of great significance for the policy makers to make carbon mitigation policies in China and other countries as well. - Highlights: • A multi-stage optimization model for planning the power sector is applied as basis. • Difference of ideal and actual decision making processes are proposed and analyzed. • A “continuous and stable” policy and a “loose first and tight later” one are designed. • 4 policy scenarios are studied applying the optimal planning model and compared. • The importance of “continuous and stable” policy for long term is well demonstrated

  1. A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins

    Science.gov (United States)

    Glick, Meir; Rayan, Anwar; Goldblum, Amiram

    2002-01-01

    The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838

  2. Tobacco smoking trends in Samoa over four decades: can continued globalization rectify that which it has wrought?

    Science.gov (United States)

    Linhart, Christine; Naseri, Take; Lin, Sophia; Taylor, Richard; Morrell, Stephen; McGarvey, Stephen T; Magliano, Dianna J; Zimmet, Paul

    2017-06-12

    The island country of Samoa (population 188,000 in 2011) forms part of Polynesia in the South Pacific. Over the past several decades Samoa has experienced exceptional modernization and globalization of many sectors of society, with noncommunicable diseases (NCD) now the leading cause of morbidity and mortality. The evolution of risk factor prevalence underpinning the increase in NCDs, however, has not been well described, including tobacco smoking which is related to cardiovascular disease, lung cancer, and chronic obstructive pulmonary disease. The present study examines tobacco smoking in relation to different forms and effects of globalization in Samoa using 7 population-based surveys (n = 9223) over 1978-2013. The prevalence of daily tobacco smoking steadily decreased over 1978-2013 from 76% to 36% in men, and from 27% to 15% in women (p globalization facilitated the introduction and prolific spread of tobacco trade and consumption in the Pacific Islands from the sixteenth century, with many populations inexorably pulled into trade relations and links to the global economy. It has also been a different globalization which may have led to the decline in smoking prevalence in Samoa in recent decades, through global dissemination since the 1950s of information on the harmful effects of tobacco smoking derived from research studies in the USA and Europe. Over the past 35 years tobacco smoking has steadily declined among Samoan adults; the only NCD risk factor to demonstrate marked declines during this period. By 2013 tobacco smoking in women had decreased to levels similar to Australia and New Zealand (ANZ), however in men smoking prevalence remained more than three times higher than ANZ. The impact on smoking prevalence of the variety of tobacco control interventions that have been implemented so far in Samoa need to be evaluated in order to determine the most effective initiatives that should be prioritized and strengthened.

  3. Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Stolpe, Mathias

    2008-01-01

    the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single bar area, i.e., a 0/1-problem. In contrast to heuristic methods considered in other approaches, Part I....... The main issue of the paper and of the approach lies in the fact that the relaxed nonlinear optimization problem can be formulated as a quadratic program (QP). Here the paper generalizes and extends the available theory from the literature. Although the Hessian of this QP is indefinite, it is possible...

  4. An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing

    KAUST Repository

    Han, Renmin; Li, Yu; Wang, Sheng; Gao, Xin

    2017-01-01

    Long-reads, point-of-care, and PCR-free are the promises brought by nanopore sequencing. Among various steps in nanopore data analysis, the global mapping between the raw electrical current signal sequence and the expected signal sequence from

  5. Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization

    OpenAIRE

    Khulood A. Dagher; Ahmed S. Al-Araji

    2013-01-01

    A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation resu...

  6. Uses of continuous measuring techniques for optimizing the operation of municipal sewage treatment plants; Einsatzmoeglichkeiten kontinuierlicher Messtechnik zur Betriebsoptimierung kommunaler Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wedi, D [Vermicon AG, Muenchen/Braunschweig (Germany)

    1998-12-31

    Three different optimization measures are briefly discussed, each of which was carried out with the support of continuous measurements: efforts to enhance the sedimentation performance of a final sedimentation tank, investigations to establish the nitrification performance of an existing plant, and measurements permitting optimized parametrization of the complex control of a new sewage treatement plant. (orig./SR) [Deutsch] Es werden drei verschiedene Optimierungsmassnahmen kurz erlaeutert, die jeweils mit Unterstutzung kontinuierlicher Messungen erfolgten: Arbeiten zur Verbesserung der Sedimentationsleistung eines Nachklaerbeckens, Untersuchungen zur besseren Nachrechnung der Nitrifikationskapazitaet einer bestehenden Anlage und Messungen zur optimierten Parametrierung einer komplexeren Regelung einer neuen Klaeranlage. (orig./SR)

  7. Uses of continuous measuring techniques for optimizing the operation of municipal sewage treatment plants; Einsatzmoeglichkeiten kontinuierlicher Messtechnik zur Betriebsoptimierung kommunaler Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wedi, D. [Vermicon AG, Muenchen/Braunschweig (Germany)

    1997-12-31

    Three different optimization measures are briefly discussed, each of which was carried out with the support of continuous measurements: efforts to enhance the sedimentation performance of a final sedimentation tank, investigations to establish the nitrification performance of an existing plant, and measurements permitting optimized parametrization of the complex control of a new sewage treatement plant. (orig./SR) [Deutsch] Es werden drei verschiedene Optimierungsmassnahmen kurz erlaeutert, die jeweils mit Unterstutzung kontinuierlicher Messungen erfolgten: Arbeiten zur Verbesserung der Sedimentationsleistung eines Nachklaerbeckens, Untersuchungen zur besseren Nachrechnung der Nitrifikationskapazitaet einer bestehenden Anlage und Messungen zur optimierten Parametrierung einer komplexeren Regelung einer neuen Klaeranlage. (orig./SR)

  8. Optimization and Quantization in Gradient Symbol Systems: A Framework for Integrating the Continuous and the Discrete in Cognition

    Science.gov (United States)

    Smolensky, Paul; Goldrick, Matthew; Mathis, Donald

    2014-01-01

    Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The…

  9. Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value

    Science.gov (United States)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2016-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.

  10. Optimization of semi-continuous anaerobic digestion of sugarcane straw co-digested with filter cake: Effects of macronutrients supplementation on conversion kinetics.

    Science.gov (United States)

    Janke, Leandro; Weinrich, Sören; Leite, Athaydes F; Schüch, Andrea; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2017-12-01

    Anaerobic digestion of sugarcane straw co-digested with sugarcane filter cake was investigated with a special focus on macronutrients supplementation for an optimized conversion process. Experimental data from batch tests and a semi-continuous experiment operated in different supplementation phases were used for modeling the conversion kinetics based on continuous stirred-tank reactors. The semi-continuous experiment showed an overall decrease in the performance along the inoculum washout from the reactors. By supplementing nitrogen alone or in combination to phosphorus and sulfur the specific methane production significantly increased (P0.99), the use of the depicted kinetics did not provide a good estimation for process simulation of the semi-continuous process (in any supplementation phase), possibly due to the different feeding modes and inoculum source, activity and adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Global Culture, Island Identity: Continuity and Change in the Afro-Caribbean Community of Nevis by Karen Fog Olwig

    OpenAIRE

    Maurer, WM

    1995-01-01

    This important book sheds light on the interplay of hierarchy and equality, the local and the global, and the Caribbean and the European in the cultural history of Nevis. In addition to bringing recent theoretical concerns with transnationalism and identity to Caribbean studies, Karen Olwig directs Caribbean ethnology away from static conceptions of kinship and household, religion and social life, and African cultural retentions, and toward an integration of kinship, gender,...

  12. Review on Doctoral Dissertation: Drago Pupavac: Logistics operator – the factor of dynamic optimization of global logistics chains

    Directory of Open Access Journals (Sweden)

    Ratko Zelenika

    2007-05-01

    Full Text Available The main objective of the scientific research of this doctoral thesis is the effect of the logistics operator in the function of cutting total costs of the global logistics chain. In order to achieve the objective of the research, a number of scientific methods have been applied such as survey methods, methods of dynamic programming and mixed convex programming. Owing to the applied scientific methodology,Drago Pupovac, M.Sc. has successfully interpreted the obtained results by proving that the selective model approach to active participants of the logistics chain gives the logistics operator the insight into potential logistics network, depicts skills of individual operators in the logistics network, specifies logistics activitiesof each logistics venture, provides information on costs of specific logistics activities and in that way proves that it enables logistics operator to optimize logistics chains by protecting them from the demand instability and changes.

  13. Global Time Tomography of Finite Frequency Waves with Optimized Tetrahedral Grids.

    Science.gov (United States)

    Montelli, R.; Montelli, R.; Nolet, G.; Dahlen, F. A.; Masters, G.; Hung, S.

    2001-12-01

    Besides true velocity heterogeneities, tomographic images reflect the effect of data errors, model parametrization, linearization, uncertainties involved with the solution of the forward problem and the greatly inadequate sampling of the earth by seismic rays. These influences cannot be easily separated and often produce artefacts in the final image with amplitudes comparable to those of the velocity heterogeneities. In practice, the tomographer uses some form of damping of the ill-resolved aspects of the model to get a unique solution and reduce the influence of the errors. However damping is not fully adequate, and may reveal a strong influence of the ray path coverage in tomographic images. If some cells are ill determinated regularization techniques may lead to heterogeneity because these cells are damped towards zero. Thus we want a uniform resolution of the parameters in our model. This can be obtained by using an irregular grid with variable length scales. We have introduced an irregular parametrization of the velocity structure by using a Delaunay triangulation. Extensively work on error analysis of tomographic images together with mesh optimization has shown that both resolution and ray density can provide the critical informations needed to re-design grids. However, criteria based on resolution are preferred in the presence of narrow ray beams coming from the same direction. This can be understood if we realise that resolution is not only determined by the number of rays crossing a region, but also by their azimutal coverage. We shall discuss various strategies for grid optimization. In general the computation of the travel times is restricted to ray theory, the infinite frequency approximation of the elastodynamic equation of motion. This simplifies the mathematic and is therefore widely applied in seismic tomography. But ray theory does not account for scattering, wavefront healing and other diffraction effects that render the traveltime of a finite

  14. Global Crisis as Enterprise Software Motivator: from Lifecycle Optimization to Efficient Implementation Series

    Directory of Open Access Journals (Sweden)

    Sergey V. Zykov

    2012-04-01

    Full Text Available It is generally known that software system development lifecycle (SSDL should be managed adequately. The global economy crisis and subsequent depression have taught us certain lessons on the subject, which is so vital for enterprises. The paper presents the adaptive methodology of enterprise SSDL, which allows to avoid "local crises" while producing large-scale software. The methodology is based on extracting common ERP module level patterns and applying them to series of heterogeneous implementations. The approach includes a lifecycle model, which extends conventional spiral model by formal data representation/management models and DSL-based "low-level" CASE tools supporting the formalisms. The methodology has been successfully implemented as a series of portal-based ERP systems in ITERA oil-and-gas corporation, and in a number of trading/banking enterprise applications for other enterprises. Semantic network-based airline dispatch system, and a 6D-model-driven nuclear power plant construction support system are currently in progress. Combining various SSDL models is discussed. Terms-and-cost reduction factors are examined. Correcting SSDL according to project size and scope is overviewed. The so-called “human factor errors” resulting from non-systematic SSDL approach, and their influencing crisis and depression, are analyzed. The ways to systematic and efficient SSDL are outlined. Troubleshooting advises are given for the problems concerned.

  15. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  16. The q-G method : A q-version of the Steepest Descent method for global optimization.

    Science.gov (United States)

    Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M

    2015-01-01

    In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.

  17. Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography.

    Science.gov (United States)

    Tavakoli, Behnoosh; Zhu, Quing

    2013-01-01

    Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.

  18. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    International Nuclear Information System (INIS)

    Chao, Ming; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi; Wei, Jie; Li, Tianfang

    2016-01-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  −0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. (paper)

  19. Moment-tensor solutions estimated using optimal filter theory: Global seismicity, 2001

    Science.gov (United States)

    Sipkin, S.A.; Bufe, C.G.; Zirbes, M.D.

    2003-01-01

    This paper is the 12th in a series published yearly containing moment-tensor solutions computed at the US Geological Survey using an algorithm based on the theory of optimal filter design (Sipkin, 1982 and Sipkin, 1986b). An inversion has been attempted for all earthquakes with a magnitude, mb or MS, of 5.5 or greater. Previous listings include solutions for earthquakes that occurred from 1981 to 2000 (Sipkin, 1986b; Sipkin and Needham, 1989, Sipkin and Needham, 1991, Sipkin and Needham, 1992, Sipkin and Needham, 1993, Sipkin and Needham, 1994a and Sipkin and Needham, 1994b; Sipkin and Zirbes, 1996 and Sipkin and Zirbes, 1997; Sipkin et al., 1998, Sipkin et al., 1999, Sipkin et al., 2000a, Sipkin et al., 2000b and Sipkin et al., 2002).The entire USGS moment-tensor catalog can be obtained via anonymous FTP at ftp://ghtftp.cr.usgs.gov. After logging on, change directory to “momten”. This directory contains two compressed ASCII files that contain the finalized solutions, “mt.lis.Z” and “fmech.lis.Z”. “mt.lis.Z” contains the elements of the moment tensors along with detailed event information; “fmech.lis.Z” contains the decompositions into the principal axes and best double-couples. The fast moment-tensor solutions for more recent events that have not yet been finalized and added to the catalog, are gathered by month in the files “jan01.lis.Z”, etc. “fmech.doc.Z” describes the various fields.

  20. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    Science.gov (United States)

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.