WorldWideScience

Sample records for continuous cropping

  1. Continuous Cropping and Moist Deep Convection on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Devon E. Worth

    2012-12-01

    Full Text Available Summerfallow is cropland that is purposely kept out of production during a growing season to conserve soil moisture. On the Canadian Prairies, a trend to continuous cropping with a reduction in summerfallow began after the summerfallow area peaked in 1976. This study examined the impact of this land-use change on convective available potential energy (CAPE, a necessary but not sufficient condition for moist deep convection. All else being equal, an increase in CAPE increases the probability-of-occurrence of convective clouds and their intensity if they occur. Representative Bowen ratios for the Black, Dark Brown, and Brown soil zones were determined for 1976: the maximum summerfallow year, 2001: our baseline year, and 20xx: a hypothetical year with the maximum-possible annual crop area. Average mid-growing-season Bowen ratios and noon solar radiation were used to estimate the reduction in the lifted index (LI from land-use weighted evapotranspiration in each study year. LI is an index of CAPE, and a reduction in LI indicates an increase in CAPE. The largest reductions in LI were found for the Black soil zone. They were −1.61 ± 0.18, −1.77 ± 0.14 and −1.89 ± 0.16 in 1976, 2001 and 20xx, respectively. These results suggest that, all else being equal, the probability-of-occurrence of moist deep convection in the Black soil zone was lower in 1976 than in the base year 2001, and it will be higher in 20xx when the annual crop area reaches a maximum. The trend to continuous cropping had less impact in the drier Dark Brown and Brown soil zones.

  2. Influence of continuous cropping on corn and soybean pathogens

    OpenAIRE

    Ranzi, Camila; Camera, Juliane Nicolodi; Deuner, Carolina Cardoso

    2017-01-01

    ABSTRACT The objective of this study was to evaluate the influence of two tillage programs (conventional and no-tillage) and different rotations with soybeans and corn on the occurrence of Fusarium species. The work was conducted in the experimental field and Seed Laboratory at Iowa State University. The treatments were: tillage (no-tillage and conventional tillage), crop (corn and soybeans) and three different cropping sequences for corn and soybeans, respectively. Treatment with corn: (1) t...

  3. Continuous cropping with 13 - 15 inches of precipitation

    Science.gov (United States)

    Producers in the Great Plains have use fallow to adjust for inconsistent and often, inadequate rainfall. The prevalent rotation in this region is winter wheat-fallow. Fallow, however, is damaging to soil health. No-till practices have enabled producers to include more crops in the rotation. This...

  4. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L..

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Plant health and soil fertility are affected by plant-microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including

  5. Erratum to: Estimating the crop response to fertilizer nitrogen residues in long-continued field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattson, L

    2012-01-01

    Knowledge of the cumulated effect of long-continued nitrogen (N) inputs is important for both agronomic and environmental reasons. However, only little attention has been paid to estimate the crop response to mineral fertilizer N residues. Before interpreting estimates for the crop response...

  6. The effects of continuous cropping and fallowing on the chemical ...

    African Journals Online (AJOL)

    In this study, soil chemical properties were determined in a cleared forestland continuously grown to cassava (Manihot esculenta Crantz), pigeon pea (Cajanus cajan), maize (Zea mays) and their combination for seven years and from then was fallowed for ten years. Soil samples were also collected from the adjacent ...

  7. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    Science.gov (United States)

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  8. Diversity of Rhizosphere Soil Arbuscular Mycorrhizal Fungi in Various Soybean Cultivars under Different Continuous Cropping Regimes

    Science.gov (United States)

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants. PMID:23977368

  9. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes.

    Science.gov (United States)

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants.

  10. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    Science.gov (United States)

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Nitrogen fertilizer fate after introducing maize into a continuous paddy rice cropping system

    Science.gov (United States)

    Thiemann, Irabella; He, Yao; Siemens, Jan; Brüggemann, Nicolas; Lehndorf, Eva; Amelung, Wulf

    2017-04-01

    After introducing upland crops into permanent flooded cropping systems, soil conditions temporally change from anaerobic to aerobic, which profoundly impacts nitrogen (N) dynamics. In the framework of the DFG research unit 1701 ICON we applied a single 15N-urea pulse in a field experiment in the Philippines with three different crop rotations: continuous paddy rice, paddy rice-dry rice, and paddy rice-maize. Subsequently, we traced the fate of the labelled urea in bulk soil, rhizosphere, roots, biomass and microbial residues (amino sugars) within the following two years. 15N recovery in the first 5 cm of bulk soil was highest in the first dry season of continuous paddy rice cropping (37.8 % of applied 15N) and lowest in the paddy rice-maize rotation (19.2 %). While an accumulation over time could be observed in bulk soil in 5-20 cm depth of the continuous paddy rice system, the recoveries decreased over time within the following two years in the other cropping systems. Highest 15N-recovery in shoots and roots were found in the continuous paddy rice system in the first dry season (27.3 % in shoots, 3.2 % in roots) as well as in the following wet season (4.2 % in shoots, 0.3 % in roots). Lowest recoveries in biomass were found for the paddy rice-dry rice rotation. Long-term fixation of 15N in microbial biomass residues was observed in all cropping systems (2-3 % in the 3rd dry season). The results indicate that the introduction of maize into a continuous paddy rice cropping system can reduce the fertilizer N use efficiency especially in the first year, most likely due to nitrate leaching and gaseous losses to the atmosphere.

  12. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    Science.gov (United States)

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  13. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    Science.gov (United States)

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  14. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    Science.gov (United States)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  15. Malabsorption of mineral nutrients and effects of foliar fertilization on continuously cropped capsicum annuum l. var. annuum

    International Nuclear Information System (INIS)

    Ye, X.H.; Zhao, Z.L.; Zhao, Z.L.; Zhao, H.B.

    2014-01-01

    Cayenne pepper (C. annuum var. annuum) cultivar known as line No. 5 was used to establish a reference baseline for fertilization experiments under conditions of continuous cropping versus crop rotation. The effects of continuous cropping on absorption of 11 essential nutrient elements and fruit yield were studied. Concurrently, we also examined the effects of foliar application of urea + KH/sub 2/ PO/sub 4/ and Fe + B + Zn + Mn on nutrient absorption due to continuous cropping. The results showed that, compared with peppers grown in rotation soil, continuous cropping affected the uptake of eight elements (P, K, Mg, Fe, B, Zn, Mn, Cu) and transport of these elements to the aerial parts of the plant, although the element concentrations in continuous cropping soil were not lower than those in rotation soil. Continuous cropping caused a decline in fruit yield. The impact of continuous cropping on the uptake of trace elements was greater than it was for macro elements. Foliar application of urea + KH/sub 2/ PO/sub 4/ significantly improved the P, Mg, Fe, and Mo content of continuously-cropped pepper plants, but did not significantly improve the content of N and K, and there was an antagonistic effect on Zn uptake. Foliar application of Fe + B + Zn + Mn, significantly increased the Fe, B, Zn, Mn, and P content in the plants; Ca uptake in the leaves and fruits was promoted to a certain degree, but there was obvious antagonism toward Mo and Cu uptake in the stems, leaves and fruits. Pepper fruit yields were significantly increased by foliar application of urea + KH/sub 2/ PO/sub 4/ or foliar application of Fe + B + Zn + Mn. However the effects of foliar application of Fe + B + Zn + Mn on increased production were significantly better than the effects of foliar application of urea + KH/sub 2/ PO/sub 4/. (author)

  16. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil.

    Science.gov (United States)

    Ma, Hai-Yan; Yang, Bo; Wang, Hong-Wei; Yang, Qi-Yin; Dai, Chuan-Chao

    2016-01-15

    Continuous cropping practices cause a severe decline in peanut yield. The aim of this study was to investigate the remediation effect of Serratia marcescens on continuously cropped peanut soil. A pot experiment was conducted under natural conditions to determine peanut agronomic indices, soil microorganism characteristics, soil enzyme activities and antagonism ability to typical pathogens at different growth stages. Four treatments were applied to red soil as follows: an active fermentation liquor of S. marcescens (RZ-21), an equivalent sterilized fermentation liquor (M), an equivalent fermentation medium (P) and distilled water (CK). S. marcescens significantly inhibited the two typical plant pathogens Fusarium oxysporum A1 and Ralstonia solanacearum B1 and reduced their populations in rhizosphere soil. The RZ-21 treatment significantly increased peanut yield, vine dry weight, root nodules and taproot length by 62.3, 33, 72 and 61.4% respectively, followed by the M treatment. The P treatment also increased root nodules and root length slightly. RZ-21 also enhanced the activities of soil urease, sucrase and hydrogen peroxidase at various stages. In addition, RZ-21 and M treatments increased the average population of soil bacteria and decreased the average population of fungi in the three critical peanut growth stages, except for M in the case of the fungal population at flowering, thus balancing the structure of the soil microorganism community. This is the first report of S. marcescens being applied to continuously cropped peanut soil. The results suggest that S. marcescens RZ-21 has the potential to improve the soil environment and agricultural products and thus allow the development of sustainable management practices. © 2015 Society of Chemical Industry.

  17. [Effect of substrate of edible mushroom on continuously cropping obstacle of Rehmannia glutinosa].

    Science.gov (United States)

    Ru, Rui-Hong; Li, Xuan-Zhen; Hunag, Xiao-Shu; Gao, Feng; Wang, Jian-Ming; Li, Ben-Yin; Zhang, Zhong-Yi

    2014-08-01

    The continuous cultivation of Rehmannia glutinosa causes the accumulation of phenolic acids in soil. It is supposed to be the reason of the so called "continuously cropping obstacle". In this study, phenolic acids (hydroxybenzoic acid, vanillic acid, eugenol, vanillin and ferulic acid) were degraded by the extracta of all the tested spent mushroom substrate (SMS) and the maximal degradation rate was 75.3%, contributed by extraction of SMS of Pleurotus eryngii. Pot experiment indicated that hydroxybenzoic acid and vanillin in soil were also degraded effectively by SMS of P. eryngii. The employment of SMS enhanced ecophysiology index to near the normal levels, such as crown width, leaves number, leaf length, leaf width and height. At the same time, the fresh and dry weight and total catalpol concentration of tuberous root weight of R. glutinosa was increased to 2.70, 3.66, 2.25 times by employment of SMS, respectively. The increase of bacteria, fungi and actinomycetes numbers in rhizosphere soil were observed after the employment of SMS by microbial counts. The employment of SMS also enhanced the enzyme activity in soils, such as sucrase, cellulase, phosphalase, urease and catelase. These results indicated that the employment of SMS alleviated the continuously cropping obstacle of R. glutinosa in some extent.

  18. The potential of Arachis pintoi biomass to improve quality of soil continuously used for cassava cropping

    OpenAIRE

    N. Muddarisna; S. Prijono

    2014-01-01

    A field experiment that was aimed to elucidate the effects of application of Arachis pintoi biomass and animal dung on quality of soil continuously used for cassava cropping was conducted at Jatikerto Village, Kromengan District of Malang Regency. Eight treatments tested were 100% NPK inorganic fertilizer, 100 kg N Arachis pintoi/ha, (3) 100 kg N chicken dung / ha, 100 kg N cow dung /ha, 100 kg N goat dung /ha, 100 kg N Arachis pintoi + chicken dung /ha, 100 kg N Arachis pintoi + cow dung /h...

  19. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    Science.gov (United States)

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  20. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected.

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping.

  1. Laboratory investigations on continuous bio-methanization of energy crops as mono-substrate without supplementation

    International Nuclear Information System (INIS)

    Demirel, Burak

    2009-01-01

    Continuous bio-methanization of an energy crop, namely the beet silage, was investigated in this laboratory-scale work as mono-substrate, using a mesophilic biogas digester controlled by a fuzzy logic control (FLC) technique and without using any supplementing or buffering agent, despite the low pH of the substrate around 3.80. The temperature, pH, redox potential (ORP), daily biogas production and composition of digester biogas were continuously measured online. During the operation, the hydraulic retention time (HRT) varied between 24.8 and 9 days, as the organic loading rate (OLR) ranged from 2.6 to 4.7 g L -1 d -1 . The average pH, specific gas production rate (spec. GPR) and volumetric gas production rate (vol. GPR) were determined to be 7.12, 0.31 L g VS -1 d -1 and 1.084 L L -1 d -1 , respectively. The average methane (CH 4 ) content of digester biogas was about 56%. The FLC technique, which was developed at HAW Hamburg for anaerobic conversion of acidic energy crops to methane, determined the daily feeding volume (∼ OLR/HRT) for the biogas digester, depending on the feedback from online pH and methane measurements, and on the calculation of the spec. GPR. The spec. GPR was calculated by the corrected daily biogas production. Through online monitoring of pH, biogas production rate and composition, and by use of the FLC technique, the acidic beet silage could continuously be converted to biogas, without using manure or any other kind of buffering or supplementing agent(s). The lab-scale anaerobic biogas digester performed stable and safe, without encountering any problems of instability, as indicated by an adequate amount of buffering capacity, a VFA content below 0.5 g L -1 and a neutral pH range throughout the study.

  2. Continual observation on crop leaf area index using wireless sensors network

    International Nuclear Information System (INIS)

    Jiao, Sihong

    2014-01-01

    Crop structural parameter, i.e. leaf area index(LAI), is the main factor that can effect the solar energy re-assignment in the canopy. An automatic measuring system which is designed on the basis of wireless sensors network(WSN) is present in this paper. The system is comprised of two types of node. One is the measurement nodes which measured solar irradiance and were deployed beneath and above the canopy respectively, and another is a sink node which was used to collect data from the other measurement nodes. The measurement nodes also have ability to repeater data from one node to another and finally transfer signal to the sink node. Then the collected data of sink node are transferred to the data center through GPRS network. Using the field data collected by WSN, canopy structural parameters can be calculated using the direct transmittance which is the ratio of sun radiation captured by the measurement node beneath and above the canopy on different sun altitude angles. The proposed WSN measurement systems which is consisted of about 45 measurement node was deployed in the Heihe watershed to continually observe the crop canopy structural parameters from 25 June to 24 August 2012. To validate the performance of the WSN measured crop structural parameters, the LAI values were also measured by LAI2000. The field preliminary validation results show that the designed system can capture the varies of solar direct canopy transmittance on different time in a day, which is the basis to calculate the target canopy structural parameters. The validation results reveal that the measured LAI values derived from our propose measurement system have acceptable correlation coefficient(R2 from 0.27 to 0.96 and averaged value 0.42) with those derived from LAI2000. So it is a promising way in the agriculture application to utilize the proposed system and thus will be an efficient way to measure the crop structural parameters in the large spatial region and on the long time series

  3. Soil Chemical Property Changes in Eggplant/Garlic Relay Intercropping Systems under Continuous Cropping

    Science.gov (United States)

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen; Zhang, Mengru; Zhang, Hongjing

    2014-01-01

    Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg−1, significantly higher than 61.95 mg·kg−1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg−1 in NG and GG, both were significantly higher than 314.84 mg·kg−1 in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production. PMID:25340875

  4. The potential of Arachis pintoi biomass to improve quality of soil continuously used for cassava cropping

    Directory of Open Access Journals (Sweden)

    N. Muddarisna

    2014-01-01

    Full Text Available A field experiment that was aimed to elucidate the effects of application of Arachis pintoi biomass and animal dung on quality of soil continuously used for cassava cropping was conducted at Jatikerto Village, Kromengan District of Malang Regency. Eight treatments tested were 100% NPK inorganic fertilizer, 100 kg N Arachis pintoi/ha, (3 100 kg N chicken dung/ ha, 100 kg N cow dung /ha, 100 kg N goat dung /ha, 100 kg N Arachis pintoi + chicken dung /ha, 100 kg N Arachis pintoi + cow dung /ha, and 100 kg N Arachis pintoi + goat dung /ha. Monitoring quality of top soil (0-20 cm was carried out at planting time and 3 months after planting. Soil samples were collected and analyzed for chemical and physical properties. Yield of cassava was measured at 6 months after planting. Results of this study showed that application of organic fertilizer in forms of green manure (Arachis pintoi biomass, and animal dung significantly improved physical and chemical properties of soil. Application of 50% NPK combined with organic manures did not significantly gave different tuber yield with that of 100% NPK.

  5. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  6. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    Science.gov (United States)

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  7. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.)

    Science.gov (United States)

    Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012–2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  8. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    Science.gov (United States)

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Yang, Ruiping; Mo, Yanling; Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012-2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality.

  10. Impact of Continuous Cropping on the Diurnal Range of Dew Point Temperature during the Foliar Expansion Period of Annual Crops on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Bharat M. Shrestha

    2016-01-01

    Full Text Available It is important to increase our knowledge of the role of land use in changing the regional climate. This study asked, “Has the increase in continuous cropping over the past 50 years on the Canadian Prairies influenced the daily mean and range of morning dew point temperatures (Td during the foliar expansion period (from mid-June to mid-July of annual field crops?” We found that there has been a general increase in the decadal average of mean daily Td and in the range of morning Td from the 1960s to the 2000s. The increase in the observed range of Td between the daily minimum value, which typically occurs near sunrise, and the late morning peak was found to be related to the increase in annual crop acreage and consequent decrease in summerfallow area. The relationship was more significant in the subhumid climatic zone than in the semiarid climatic zone, and it was influenced by whether the region was experiencing either wet, normal, or dry conditions.

  11. Effect on stone lines on soil chemical characteristics under continuous sorghum cropping in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmore, R.; Gnankambary, Z.; Guillobez, L.S.; Stroosnijder, L.

    2002-01-01

    In the semiarid Sahel, farmers commonly lay stone lines in fields to disperse runoff. This study was conducted in northern Burkina Faso to assess the chemical fertility of soil under a permanent, non-fertilised sorghum crop, which is the main production system in this area, 5 years after laying

  12. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.

    Science.gov (United States)

    McNally, Sam R; Beare, Mike H; Curtin, Denis; Meenken, Esther D; Kelliher, Francis M; Calvelo Pereira, Roberto; Shen, Qinhua; Baldock, Jeff

    2017-11-01

    Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non-Allophanic topsoils (0-15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non-Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long-term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g -1 ) was greater than that of non-Allophanic soils (16.3 mg C g -1 ). The saturation deficit of cropped soils was 1.14-1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha -1 (Ultic soils) to 42 t C ha -1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off-setting New Zealand's greenhouse gas emissions. As the first national-scale estimate of SOC sequestration potential that encompasses both Allophanic and non-Allophanic soils, this serves as an informative case study for the international

  13. Impact of continued use of profenofos on soil as a consequence of cotton crop protection

    International Nuclear Information System (INIS)

    Tejada, A.W.; Bayot, R.G.; Quintana, B.B.; Austria, L.M.; Bobiles, S.C.; Villanueva, A.G.R.

    2001-01-01

    The same area was used since the project started in 1995 in the study to determine the impact of continued use of profenofos on soil properties in a cotton field. The effect on microbial population was minimal. Total bacterial, Bacillus and fungal counts generally decreased during the first spraying but recovered after the succeeding applications of profenofos. Basal respiration was not affected by profenofos treatment. Substrate induced respiration was not affected in the first spraying but was stimulated after the second and third sprayings. Movement of profenofos in the soil was slow when the soil was maintained at field capacity. It is easily degraded in the soil. The differences in organic volatiles, cumulative percent mineralization and bound residue formation of 14 C-2,4-D in untreated soil and farmer's field soil previously treated with cypermethrin, isoprocarb and profenofos were not statistically significant. (author)

  14. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping.

    Science.gov (United States)

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE.

  15. Socio-ecological Niches for Minimum Tillage and Crop-residue Retention in Continuous Maize Cropping Systems in Smallholder Farms of Central Kenya

    NARCIS (Netherlands)

    Guto, S.N.; Pypers, P.; Vanlauwe, B.; Ridder, de N.; Giller, K.E.

    2012-01-01

    Soil fertility gradients develop on smallholder farms due to preferential allocation of inputs. A multi-location on-farm trial was conducted in Meru South, Central Kenya whose overall aim was to test minimum tillage and crop-residue retention practices in socio-ecological niches across heterogeneous

  16. [Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping].

    Science.gov (United States)

    Zhang, Xue-peng; Ning, Tang-yuan; Yang, Yan; Sun, Tao; Zhang, Shu-min; Wang, Bin

    2015-10-01

    A 2-year field experiment was conducted to study the effects of CaCN2 combined with cucumber straw retention on soil microbial biomass carbon (SMBC) , soil microbial biomass nitrogen (SMBN) and soil enzyme activities under cucumber continuous cropping system. Four treatments were used in this study as follows: CK (null CaCN2), CaCN2-90 (1350 kg CaCN2 . hm-2) CaCN2-60 (900 kg CaCN2 . hm-2), CaCN2-30 (450 kg CaCN2 . hm-2). The results indicated that, compared with the other treatments, CaCN2-90 treatment significantly decreased SMBC in 0-10 cm soil layer at seedling stage, but increased SMBC in 0-20 cm soil layer after early-fruit stage. Compared with CK, CaCN2 increased SMBC in 0-20 cm soil layer at late-fruit stage, and increased SMBN in 0-10 cm soil layer at mid- and late-fruit stages, however there was no significant trend among CaCN2 treatments in the first year (2012), while in the second year (2013) SMBN increased with the increasing CaCN2 amount after mid-fruit stage. CaCN2 increased straw decaying and nutrients releasing, and also increased soil organic matter. Furthermore, the CaCN2-90 could accelerate straw decomposition. Compared with CK, CaCN2 effectively increased soil urease, catalase and polyphenol oxidase activity. The soil urease activity increased while the polyphenol oxidase activity decreased with the increase of CaCN2, and CaCN2-60 could significantly improve catalase activity. Soil organic matter, urease activity and catalase activity had significant positive correlations with SMBC and SMBN. However, polyphenol oxidase activity was negatively correlated to SMBC and SMBN. Our findings indicated that CaCN2 application at 900 kg . hm-2 combined with cucumber straw retention could effectively improve soil environment, alleviating the soil obstacles under the cucumber continuous cropping system.

  17. Comparison of bacteria diversity between tobacco plantation soils of rotational cropping and continuous cropping%烤烟轮作与连作土壤细菌群落多样性比较

    Institute of Scientific and Technical Information of China (English)

    段玉琪; 晋艳; 陈泽斌; 夏振远; 杨宇虹; 徐照丽

    2012-01-01

    Total DNA of microbe in rotational cropping and continuous cropping soil were extracted and amplified by PCR with universally bacteria-specific rDNA primers. Clone libraries were set up to evaluate responses of soil bacteria community to different tobacco cropping systems (rotational and continuous cropping). PCR-RFLP analysis was carried out with restriction endonuclease Hae III and Afa I. 147 and 177 types of restriction endonuclease were obtained from these samples. Statistical analysis using diversity index measurement showed both Shannon-wiener index and species richness of rotational cropping soil were higher than that in continuous cropping soil. Bacterial phylogenetic trees of the samples revealed that Acidobacteria was dominant group in continuous cropping soil library while acidobacteria,γ-pro-teobacterium, α-proteobacterium were in rotational cropping soil library. It indicated that rotational farming system could improve bacterial diversity of soil while continuous cropping could simplify bacterial community structure. This phenomenon might cause functional disorder in bacterial community and destruction of ecological balance in rhizosphere soil. It might be one of the factors resulted in continuous cropping obstacle.%为了解烤烟轮作和连作对土壤细菌群落多样性的影响,分别提取轮作和连作土壤总DNA,用细菌16S rDNA特异引物扩增出细菌16S rDNA,建立克隆文库.用限制性内切酶Hae Ⅲ和AfaⅠ进行PCR-RFLP分析,分别得到177和147个酶切类型,采用多样性指数对试验结果进行分析统计表明,香农多样性指数和丰富度指数均表现为轮作大于连作.通过构建两克隆文库的系统发育树,并分析主要种群的组成表明:连作文库的优势种群主要集中在酸杆菌门,轮作文库的优势种群主要分布在酸杆菌门、γ-变形菌门、α-变形菌门.说明轮作方式可提高植烟土壤细菌群落的多样性,而连作使植烟土壤细菌群落结构

  18. The Lower Sevier River Basin Crop Monitor and Forecast Decision Support System: Exploiting Landsat Imagery to Provide Continuous Information to Farmers and Water Managers

    Science.gov (United States)

    Torres-Rua, A. F.; Walker, W. R.; McKee, M.

    2013-12-01

    The last century has seen a large number of innovations in agriculture such as better policies for water control and management, upgraded water conveyance, irrigation, distribution, and monitoring systems, and better weather forecasting products. In spite of this, irrigation management and irrigation water deliveries by farmers/water managers is still based on factors like water share amounts, tradition, and past experience on irrigation. These factors are not necessarily related to the actual crop water use; they are followed because of the absence of related information provided in a timely manner at an affordable cost. Thus, it is necessary to develop means to deliver continuous and personalized information about crop water requirements to water users/managers at the field and irrigation system levels so managers at these levels can better quantify the required versus available water for irrigation during the irrigation season. This study presents a new decision support system (DSS) platform that addresses the absence of information on actual crop water requirements and crop performance by providing continuous updated farm-based crop water use along with other farm performance indicators such as crop yield and farm management to irrigators and water managers. This DSS exploits the periodicity of the Landsat Satellite Mission (8 to 16 days, depending on the period of interest) to provide remote monitoring at the individual field and irrigation system levels. The Landsat satellite images are converted into information about crop water use, yield performance and field management through application of state-of-the-art semi-physical and statistical algorithms that provide this information at a pixel basis that are ultimately aggregated to field and irrigation system levels. A version of the DSS has been implemented for the agricultural lands in the Lower Sevier River, Utah, and has been operational since the beginning of the 2013 irrigation season. The main goal of

  19. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    Science.gov (United States)

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Effects of cotton stalk biochar on microbial community structure and function of continuous cropping cotton rhizosphere soil in Xinjiang, China].

    Science.gov (United States)

    Gu, Mei-ying; Tang, Guang-mu; Liu, Hong-liang; Li, Zhi-qiang; Liu, Xiao-wei; Xu, Wan-li

    2016-01-01

    In this study, field trials were conducted to examine the effects of cotton stalk biochar on microbial population, function and structural diversity of microorganisms in rhizosphere soil of continuous cotton cropping field in Xinjiang by plate count, Biolog and DGGE methods. The experiment was a factorial design with four treatments: 1) normal fertilization with cotton stalk removed (NPK); 2) normal fertilization with cotton stalk powdered and returned to field (NPKS); 3) normal fertilization plus cotton stalk biochar at 22.50 t · hm⁻² (NPKB₁); and 4) normal fertilization plus cotton stalk biochar at 45.00 t · hm⁻² (NPKB₂). The results showed that cotton stalk biochar application obviously increased the numbers of bacteria and actinomycetes in the rhizospheric soil. Compared with NPK treatment, the number of fungi was significantly increased in the NPKB₁treatment, but not in the NPKB₂ treatment. However, the number of fungi was generally lower in the biochar amended (NPKB₁, NPKB₂) than in the cotton stalk applied plots (NPKS). Application of cotton stalk biochar increased values of AWCD, and significantly improved microbial richness index, suggesting that the microbial ability of utilizing carbohydrates, amino acids and carboxylic acids, especially phenolic acids was enhanced. The number of DGGE bands of NPKB₂ treatment was the greatest, with some species of Gemmatimonadetes, Acidobacteria, Proteobacteria and Actinobacteria being enriched. UPGMC Cluster analysis pointed out that bacterial communities in the rhizospheric soil of NPKB₂ treatment were different from those in the NPK, NPKS and NPKB₁treatments, which belonged to the same cluster. These results indicated that application of cotton stalk biochar could significantly increase microbial diversity and change soil bacterial community structure in the cotton rhizosphere soil, thus improving the health of soil ecosystem.

  1. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone

  2. [Effects of lime-ammonium bicarbonate fumigation and biofertilizer application on Fusarium wilt and biomass of continuous cropping cucumber and watermelon.

    Science.gov (United States)

    Shen, Zong Zhuan; Sun, Li; Wang, Dong Sheng; Lyu, Na Na; Xue, Chao; Li, Rong; Shen, Qi Rong

    2017-10-01

    In this study, the population size of soil microbes was determined using plate counting method after the application of lime-ammonium bicarbonate and ammonium bicarbonate fumigation. In addition, biofertilizer was applied after soil fumigation and population of Fusarium oxysporum, Fusarium wilt disease control efficiency and plant biomass were determined in the cucumber and watermelon continuous cropping soil. The results showed that the population of F. oxysporum in cucumber mono-cropped soil fumigated with lime-ammonium bicarbonate or ammonium bicarbonate was decreased by 95.4% and 71.4%, while that in watermelon mono-cropped soil was decreased by 87.3% and 61.2%, respectively compared with non-fumigated control (CK). Furthermore, the greenhouse experiment showed that biofertilizer application, soil fumigation and crop type showed significant effects on the number of soil F. oxysporum, Fusarium wilt disease incidence, disease control efficiency and plant biomass based on multivariate analysis of variance. In the lime-ammonium bicarbonate fumigated soil amended with biofertilizer (LFB), significant reductions in the numbers of F. oxysporum and Fusarium wilt disease incidence were observed in both cucumber and watermelon cropped soil compared to non-fumigated control soil applied with organic fertilizer. The disease control rate was 91.9% and 92.5% for cucumber and watermelon, respectively. Moreover, LFB also significantly increased the plant height, stem diameter, leaf SPAD, and dry biomass for cucumber and watermelon. It was indicated that biofertilizer application after lime-ammonium bicarbonate fumigation could effectively reduce the abundance of F. oxysporum in soil, control Fusarium wilt disease and improve plant biomass in cucumber and watermelon mono-cropping systems.

  3. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on

  4. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  5. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].

    Science.gov (United States)

    Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li

    2007-11-01

    The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger.

  6. A mathematical approach for estimating light absorption by a crop from continuous radiation measurements and restricted absorption data

    International Nuclear Information System (INIS)

    Zanetti, P.; Delfine, S.; Alvino, A.

    1999-01-01

    A sunflower (Helianthus annuus L.) crop was grown with four different water regimes to obtain different canopy growth and light absorption capability. The incoming solar radiation was recorded by an agrometeorological field station, while the percentage absorbed by the crop was measured by a ceptometer at four times and on a quasi-daily basis over the all reproductive phases. Triangulation on these data points and cubic interpolation was used to model the radiation absorbed by the canopies over time. In order to validate this approach, the procedure was also applied to a small subset of the data. Numerical quadrature based on an adaptive recursive Simpson’s rule was used to integrate the radiation absorbed by the canopies. The numerical quadrature was applied (i) to the whole data collected, represented by a cubic two-dimensional spline interpolation function, and (ii) to the interpolated values obtained from the restricted data set. The differences between (i) and (ii) for the four water regimes varied from 3.6 to 5.2% approximately. These comparisons demonstrated the potential of a restricted data interpolation model for investigating the complex phenomena of light interception by canopies with different plant structure. (author)

  7. Semi-continuous anaerobic digestion of different silage crops: VFAs formation, methane yield from fiber and non-fiber components and digestate composition.

    Science.gov (United States)

    Pokój, T; Bułkowska, K; Gusiatin, Z M; Klimiuk, E; Jankowski, K J

    2015-08-01

    This study presents the results of long-term semi-continuous experiments on anaerobic digestion at an HRT of 45d with ten silages: 2 annual and 4 perennial crops, and 4 mixtures of annual with perennial crops. The composition of substrates and digestates was determined with Van Soest's fractionation method. Removal of non-fiber materials ranged from 49.4% (Miscanthus sacchariflorus) to 89.3% (Zea mays alone and mixed with M. sacchariflorus), that of fiber materials like lignin ranged from 0.005% (Z. mays alone and mixed with grasses at VS ratio of 90:10%) to 46.5% (Sida hermaphrodita). The lowest stability of anaerobic digestion, as confirmed by normalized data concentrations of volatile fatty acids, was reported for both miscanthuses and sugar sorghum. The methane yield coefficients for non-fiber and fiber materials were 0.3666 and 0.2556L/g, respectively. All digestate residues had high fertilizing value, especially those from mixtures of crops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Straw export in continuous winter wheat and the ability of oil radish catch crops and early sowing of wheat to offset soil C and N losses: A simulation study

    DEFF Research Database (Denmark)

    Peltre, Clément; Nielsen, M; Christensen, Bent Tolstrup

    2016-01-01

    The export of winter wheat straw for bioenergy may reduce soil C stocks and affect N losses. Establishing fast-growing catch crops between successive wheat crops could potentially offset some of the C and N losses. Another option is to sow wheat earlier, increasing biomass production during...... the autumn. The effects of straw export, oil radish catch crop and early sowing of wheat on soil C storage, N leaching losses and N2O emissions were simulated by applying the Daisy model to winter wheat grown continuously for a period of 100 years on a sandy loam soil in a Danish climate. The simulations....... Inclusion of the oil radish catch crop could offset this loss by 2–3 percentage points. Earlier sowing of wheat increased straw production by 18% and reduced loss of soil C by 3–5 percentage points compared to normal sowing time with full straw export. Catch crops and early sowing also reduced N...

  9. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  10. Effects of soybean continuous cropping on rhisphere culturable microorganisms and physicochemical properties of soil%连作对大豆根际可培养微生物及土壤理化性状的影响

    Institute of Scientific and Technical Information of China (English)

    于寒; 吴春胜; 王振民; 陈喜凤; 谷岩

    2014-01-01

    [Objective]Effects of soybean continuous cropping on soil microorganisms and physicochemical properties were studied .[Method]With the rhisphere soils of cropping and rotation soybean as test materi-als, the following indexes including soil microorganisms , bacterial physiological groups , physicochemical properties were investigated during the different growth stages of soybean .[Result and conclusion]The re-sults showed that there were significant influences of continuous and alternate cropping on soil microor -ganisms .The number of bacteria , actinomycetes decreased , especially the reduction of ammonifying bac-teria, nitrifying bacteria , aerobic nitrogen-fixing bacteria , cellulose-decomposing bacteria , but fungi a-mount increased .The content order of soil available nitrogen and potassium was rotation cropping >alter-nate cropping>1-year continuous cropping >2-year continuous cropping >3-year continuous cropping . The content order of soil available phosphorus was rotation cropping >alternate cropping >1-year continu-ous cropping >3-year continuous cropping >2-year continuous cropping .The mean mass diameter and geometric mean diameter of rotation soil were significantly higher than alternate and continuous cropping .%[目的]探讨大豆重迎茬对根际可培养微生物及土壤理化性状的影响。[方法]以正茬和重迎茬大豆根际土壤为研究对象,在不同生育时期取根际土进行土壤微生物区系、微生物生理类群和土壤理化性状等指标的测定。[结果和结论]大豆重迎茬对土壤可培养微生物及微生物生理类群有较大影响。重迎茬使大豆全生育期细菌、放线菌、氨化细菌、硝化细菌、好气性自生固氮菌和纤维素分解菌总量减少,真菌数量显著增加。各处理土壤平均碱解氮和速效钾含量顺序为:正茬>迎茬>重茬1年>重茬2年>重茬3年;而土壤速效磷含量为正茬>迎茬>重茬1年>重茬3年>重茬2

  11. Adsorptive Removal of Trichloroethylene in Water by Crop Residue Biochars Pyrolyzed at Contrasting Temperatures: Continuous Fixed-Bed Experiments

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-01-01

    Full Text Available Biochar (BC has attracted great attention as an alternative sorbent to activated carbon (AC. Objective of this study was to determine trichloroethylene (TCE removal by soybean stover BC pyrolyzed at 300 (BC300 and 700°C (BC700 in continuous fixed-bed column. Columns packed with BC300, BC700, and AC reached breakthrough time in 1.1, 27.0, and 50.7 h, respectively. BC700 had higher TCE adsorption capacity than BC300 due to its higher surface area, nonpolarity, and aromaticity. The sorption capacities of AC (774.0 mg g−1 and BC700 (515.1 mg g−1 were 21.6 and 14.4 times higher than that of BC300 (35.9 mg g−1. The lower desorption rate of TCE from BC300 than BC700 and AC may be attributed to the strong binding/partition of TCE to the noncarbonized part of BC. Thomas model also adequately described the adsorption data indicating interphase mass transfer. Overall, AC showed best efficiency for removing TCE from water in column experiments. However, although sorption and desorption capabilities of BC700 were a little lower than AC, it is still a good alternative for AC to remove organic contaminants such as TCE from water due to its cost-effectiveness.

  12. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  13. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  14. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  15. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    Science.gov (United States)

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient. PMID:27031697

  16. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    Directory of Open Access Journals (Sweden)

    Andong Cai

    Full Text Available Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC accumulation and nitrogen (N mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1 yr(-1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P and potassium (K. Soils were separated into three particle-size fractions (2000-250, 250-53, and 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.

  17. Effects of Continuous Cropping on Bacterial Flora Structure in Soybean Rhizosphere Soil%连作对大豆根际土壤细菌菌群结构的影响

    Institute of Scientific and Technical Information of China (English)

    殷继忠; 李亮; 接伟光; 蔡柏岩

    2018-01-01

    土壤细菌的菌群结构是土壤生态环境质量的重要组成部分.为探明大豆连作种植后根际土壤细菌群落结构变化,试验选取连作0年大豆根际土样与连作2年大豆根际土壤,利用Illumina高通量测序技术对比研究了其中的细菌群落结构.结果表明,连作0年根际土壤中的细菌丰富度和多样性指数均高于连作2年大豆根际土壤中相应值.大豆根际土壤中的噬纤维菌科(Cytophagaceae)、鞘氨纯单胞菌(Sphingomonas)、慢生根瘤菌(Bradyrhizobium)及链霉菌属(Streptomyces)等一些有益菌的相对丰度要变化并不显著.大豆连作会降低土壤的细菌多样性,改变细菌菌群结构.但是在短期连作过程中,不同作物根际微生物类群的变化规律各不相同,难以用来推断作物连作所存在普遍现象.以期试验结果同时为缓解短期大豆连作障碍提高大豆产量提供一定的理论依据.%The flora structure of soil bacteria is an important part of soil ecological environment quality. In order to find out the changes of bacterial flora structure in the rhizosphere soil after continuous cropping of soybean,soybean rhizosphere soil samples of zero- and 2-year of continuous cropping were selected,and their bacterial flora structures were studied using Illumina high-throughput sequencing technique. The results showed that the bacterial abundances and diversity indexes in the rhizosphere soil of zero-year continuous cropping were higher than those of the rhizosphere soil of 2-year continuous cropping. The abundances of these beneficial bacteria Cytophagaceae,Sphingomonas, Bradyrhizobium,and Streptomyces varied insignificantly. Soybean continuous cropping reduced the bacterial diversity of the soil and changed the bacterial flora structure. However,during the short-term continuous cropping process,the variation pattern of rhizosphere microbes in different crops differed,thus it was difficult to infer a common phenomenon resulted

  18. Altered cropping pattern and cultural continuation with declined prosperity following abrupt and extreme arid event at ~4,200 yrs BP: Evidence from an Indus archaeological site Khirsara, Gujarat, western India.

    Directory of Open Access Journals (Sweden)

    Anil K Pokharia

    Full Text Available Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600-3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to 'drought-resistant' millet-based crops at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase.

  19. 蔬菜连作改为蓝莓种植后土壤细菌群落多样性变化的分析%Changes in Soil Bacterial Community Diversity Caused by Cropping System Alteration from Vegetable Continuous Cropping to Blueberry Planting

    Institute of Scientific and Technical Information of China (English)

    祁石刚; 田畅; 却枫; 徐志胜; 王枫; 熊爱生

    2016-01-01

    基于第二代Illumina Miseq高通量测序平台,利用16S rDNA技术分析了江苏省宿迁市蔬菜连作改为蓝莓种植后土壤细菌多样性的分布和细菌群落多样性的变化。结果表明:Kaistobacter、假交替单胞菌属( Pseud oaltre omno as)、硫杆状菌属( Thiobacillus)、Rubritalea、浮霉菌属( Planctomyces)、Lysobacter、纤维弧菌属( Cellvibrio)、噬氢菌属( Hdy roeg nohp a-ga )、鞘脂单胞菌属( Sphingomona s)和热单胞菌属( Thermomonas)为蔬菜连作改为蓝莓种植后土壤细菌的主要类群; Spo-rosarcina、Alicyclobacillus、氨氧化古细菌( Candidatus nitrososphaera)和P ontibatc er是蔬菜连作土壤细菌的主要类群;蔬菜连作改为种植蓝莓后,土壤细菌多样性和丰度降低,优势菌群也出现了显著的变化。%Based on the second-generation high-throughput sequencing platform Illumina Miseq , using the 16S rDNA gene sequencing technology, the author analyzed the changes in soil bacterial community diversity caused by the cropping system altera-tion from vegetable continuous cropping to blueberry planting in Suqian city of Jiangsu province .The results showed that:Kaisto-bacter, Pseudoalteromonas, Thiobacillus, Rubrti alea, Planctomyces, Lysobacter, Cellvibrio, Hydrogenophaga, Sphingomonas and Thermomonas were the dominant bacterial populations in the soil after cropping system alteration from vegetable continuous crop-ping to blueberry planting;Sporosarcina, Alicyclobacillus, Cand idatus nitrososphaera and Pontbi acter were the dominant bacterial populations in the soil of continuous-cropping vegetable field;after the alteration from vegetable continuous cropping to blueberry planting, the diversity and abundance of soil bacteria were reduced , and the dominant bacterial community also changed obvious-ly.

  20. Effects of Continuous Cropping on Soil Microbial Biomas s of Tobacco Field and Quality of Flue-cured Tobacco%烤烟连作土壤微生物数量及烤烟品质变化的比较

    Institute of Scientific and Technical Information of China (English)

    王蒙蒙; 朱金峰; 许自成; 贾健; 王林

    2015-01-01

    The soil microbial quantity and quality of flue-cured tobacco were studied in tobacco field , in which crop rotation , 3-year continuous cropping , and 6-year continuous cropping had been carried out .The results showed that:from resettling stage to vigorous growth stage , further to mature period , the bacterial population in the soil reduced gradually , and it was the highest in the soil of crop rotation .The fungal number in the soil of crop rotation was less than that in the soil of continuous cropping , it reached the maximum at resettling stage in the soil of 6-year continuous cropping , and was significantly higher than that in the soil of crop rotation and 3-year continuous cropping .As for the number of actinomyces in the soil , the following order was found:crop rotation>continuous cropping for 3 years>continuous cropping for 6 years; at resettling stage>at vigorous growth stage>in mature period . There were significant differences in some physical characteristics of flue-cured tobacco ( such as filling value , leaf thickness , ten-sion stress, specific weight of leaf and stem ratio ) between crop rotation and 3-year continuous cropping , but the other indexes had no significant difference .As for the chemical properties of flue-cured tobacco , sugar-nicotine ratio , nitrogen-nicotine ratio , ratio of potassium to chlorine , and Schmuck value showed the sequence of crop rotation >continuous cropping for 6 years>continuous crop-ping for 3 years, they were all in the appropriate range , and their coordination in crop rotation treatment was better than that in con-tinuous cropping treatment .The total amount of neutral aroma components ( excluding neophytadiene ) showed crop rotation >contin-uous cropping for 6 years >continuous cropping for 3 years.%研究了轮作、连作3年、连作6年的植烟土壤微生物数量以及烤烟质量的变化,结果表明:细菌数量从团棵期、旺长期到成熟期,呈现出逐步减少的趋势,且轮作

  1. A Survey of Continuous and Every Other Cropping of Soybean in Heilongjiang Province%黑龙江省大豆重迎茬问题的研究概况

    Institute of Scientific and Technical Information of China (English)

    刘佩印

    2001-01-01

    黑龙江省大豆年平均种植面积233~300万hm2。重迎茬面积占大豆播种面积的50%左右,重迎茬大豆植株生长矮小,病虫害加重,大豆的生物产量和子食产量明显下降,虫食率、病粒率增加,直接影响大豆的产量和质量。重迎茬大豆减产是由多种因素综合作用的结果。减缓重迎茬产量损失的农艺措施是:选用耐重迎茬品种,配以适当的耕作、施肥、病虫害防治和密植等综合技术,更重要的是要建立一个适应大豆生产发展的合理轮作体系。%The average area of soybean grown in Heilongjiang Province annually is 2.3~3.0 million hectares, among which, 50% is continuous or every other cropping. In continuous and every other cropping soybean, the plant is low and small, diseases and pets are heavy, biomass and seed yield are decreased, worm eaten seed rate and infected seed rate are increased, yield and quality of soybean are affected directly. Yield decrease of continuous and every other cropping soybean is the result of comprehensive action of many factors. The measures to decrease the yield loss of continuous and every other cropping soybean are using varieties olerant to continuous and every other cropping accompanied by integrated techniques such as suitable cultivation, fertilizer application,diseases and pets control, thick planting and so on and, more important, establishing a proper rotatoion system suitable to soybean production.

  2. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  3. Containment of the western corn rootworm Diabrotica v.virgifera: continued successful management 2008 in southern Switzerland by monitoring and crop rotation.

    Science.gov (United States)

    Hummel, Hans E; Bertossa, M

    2009-01-01

    Diabrotica virgifera virgifera LeConte (Col.: Chrysomelidae), known as western corn rootworm (WCR) and endemic in North America, invaded Europe about two decades ago. Various unsuccessful attempts have been made to eradicate it from the Old World. Management with a variety of strategies is the option now remaining. WCR management in Southern Switzerland by a unique containment approach has been practiced successfully since 2003 using biotechnical means. Without any chemical pesticides or GMO input, the Swiss government mandated adherence to strict crop rotation. In addition to the economic benefits of this relatively simple approach, the environment was saved a considerable burden of pesticide applications. Other countries are invited to follow this example of sustainable pest management.

  4. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  5. Canaryseed Crop

    Directory of Open Access Journals (Sweden)

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  6. Continuous Measurements of Canopy-level Solar-Induced Chlorophyll Fluorescence for Inferring Diurnal and Seasonal Dynamics of Photosynthesis in Crop Fields in the Midwestern USA

    Science.gov (United States)

    Miao, G.; Guan, K.; Yang, X.; Bernacchi, C.; DeLucia, E. H.; Cai, Y.; Masters, M. D.; Peng, B.

    2016-12-01

    Plants emitted photons of red and far-red light, called chlorophyll fluorescence, after sunlight absorption for photosynthesis. This solar-induced fluorescence (SIF) is generated simultaneously while plants actively photosynthesize. The link between photosynthesis and SIF resulting from the competition for the same excitation energy has long been investigated and applied for inferring the rate of photosynthesis. Recent development of continuous SIF observational technology is furthering the inferring potential as well as our understandings of fluctuations of SIF and photosynthesis with changes in environmental conditions. To better understand this photosynthesis-SIF link at multiple time scales and their relationships with environmental drivers, we deployed two newly developed tower-based SIF systems (FluoSpec) in a corn (Zea mays L., C4 plant) field and a soybean (Glycine max L., C3 plant) field at University of Illinois Energy Farm and conducted continuous near-surface SIF measurements at canopy scale from mid-growing season of 2016. Eddy covariance flux towers were installed in parallel at both sites for canopy-scale gas exchange measurements. Relationship between SIF and flux tower photosynthesis will be analyzed to derive the empirical models for photosynthesis retrieval from SIF signals. Preliminary results indicate that canopy SIF can reflect diurnal and seasonal dynamics of photosynthesis. Mechanistic analysis on SIF fluctuations and responses to environmental variations will be conducted as well for a closer look at mechanism of photosynthetic responses. Corn and soybean SIF and photosynthesis-SIF relationship will be compared to investigate the difference between C4 and C3 plants.

  7. Continuous multi-criteria methods for crop and soil conservation planning on La Colacha (Río Cuarto, Province of Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    J. M. Antón

    2012-08-01

    Full Text Available Agro-areas of Arroyos Menores (La Colacha west and south of Río Cuarto (Prov. of Córdoba, Argentina basins are very fertile but have high soil loses. Extreme rain events, inundations and other severe erosions forming gullies demand urgently actions in this area to avoid soil degradation and erosion supporting good levels of agro production. The authors first improved hydrologic data on La Colacha, evaluated the systems of soil uses and actions that could be recommended considering the relevant aspects of the study area and applied decision support systems (DSS with mathematic tools for planning of defences and uses of soils in these areas. These were conducted here using multi-criteria models, in multi-criteria decision making (MCDM; first of discrete MCDM to chose among global types of use of soils, and then of continuous MCDM to evaluate and optimize combined actions, including repartition of soil use and the necessary levels of works for soil conservation and for hydraulic management to conserve against erosion these basins. Relatively global solutions for La Colacha area have been defined and were optimised by Linear Programming in Goal Programming forms that are presented as Weighted or Lexicographic Goal Programming and as Compromise Programming. The decision methods used are described, indicating algorithms used, and examples for some representative scenarios on La Colacha area are given.

  8. Effect meerjarige toepassing groenbemester en organische mest op bodemkwaliteit bij continuteelt maïs : 2e rapport project Zorg voor Zand = Effect of long-term application of cover crops and organic manure on soil quality in a continuous maize production system : 2nd report project Care for Sand

    NARCIS (Netherlands)

    Schooten, van H.A.; Eekeren, van N.J.M.; Hanegraaf, M.C.; Burgt, van der G.J.H.M.; Visser, de M.

    2006-01-01

    In 2005 research was conducted on the effect of long-term application of cover crops and organic manure on various soil quality characteristics in a continuous maize production system on sandy soil. The conclusion was that the effect of organic fertiliser on the quality of the soil and yield was

  9. Biogas production from energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.

    2006-07-01

    The feasibility of utilising energy crops and crop residues in methane production through anaerobic digestion in boreal conditions was evaluated in this thesis. Potential boreal energy crops and crop residues were screened for their suitability for methane production, and the effects of harvest time and storage on the methane potential of crops was evaluated. Codigestion of energy crops and crop residues with cow manure, as well as digestion of energy crops alone in batch leach bed reactors with and without a second stage upflow anaerobic sludge blanket reactor (UASB) or methanogenic filter (MF) were evaluated. The methane potentials of crops, as determined in laboratory methane potential assays, varied from 0.17 to 0.49 m3 CH{sub 4} kg-1 VS{sub added} (volatile solids added) and from 25 to 260 m3 CH4 t-1 ww (tons of wet weight). Jerusalem artichoke, timothy-clover and reed canary grass gave the highest methane potentials of 2 900-5 400 m3 CH{sub 4} ha-1, corresponding to a gross energy potential of 28-53 MWh ha-1 and 40 000-60 000 km ha-1 in passenger car transport. The methane potentials per ww increased with most crops as the crops matured. Ensiling without additives resulted in minor losses (0-13%) in the methane potential of sugar beet tops but more substantial losses (17-39%) in the methane potential of grass, while ensiling with additives was shown to have potential in improving the methane potentials of these substrates by up to 19-22%. In semi-continuously fed laboratory continuously stirred tank reactors (CSTRs) co-digestion of manure and crops was shown feasible with feedstock VS containing up to 40% of crops. The highest specific methane yields of 0.268, 0.229 and 0.213 m3 CH{sub 4} kg-1 VS{sub added} in co-digestion of cow manure with grass, sugar beet tops and straw, respectively, were obtained with 30% of crop in the feedstock, corresponding to 85-105% of the methane potential in the substrates as determined by batch assays. Including 30% of crop in

  10. Improving selenium nutritional value of major crops

    Science.gov (United States)

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  11. Analysis of Bacterial Communities in Rhizosphere Soil of Continuous Cropping Flue-cured Tobacco Using 16S rDNA-PCR-DGGE%连作烤烟根际土壤细菌群落16S rDNA-PCR-DGGE分析

    Institute of Scientific and Technical Information of China (English)

    龚治翔; 马晓寒; 任志广; 朱金峰; 黄元炯; 王蒙蒙; 陈征; 许自成

    2018-01-01

    The bacterial colonies of soil samples were analyzed by PCR-DGGE technique in order to provide theoretical basis for controlling obstacles of tobacco continuous cropping.The results showed that soil bacterial community was rich in flue-cured tobacco mid-late growing period.There were differences in the structure of bacterial community in field soil by different continuous tobacco cropping,most of the bacterial types were common,and there were few unique bacterial types.The change of bacterial abundance in continuous cropping soil was very stable,and the continuous cropping increased the abundance of soil bacteria,and showed a tendency of firstly increasing and then decreasing.The dominant populations of rotation bacteria were stable in the field period,while the bacterial flora in continuous cropping soil had greater changes.The activities of bacteria in warm-curvae,acid bacillus door and corynebacteriaceae had strong impact on soil nutritional metabolism,the pathogens were increased,which was unfavorable for the growth and development of flue-cured tobacco.Different continuous cropping years had greater impacts on the soil bacterial population structure in flue-cured tobacco.The changes in bacterial population structure of flue-cured tobacco after continuous cropping could be one of the main reasons causing obstacles in flue-cured tobacco continuous cropping.%以不同连作年限烤烟根际土壤为材料,应用PCR-DGGE技术对土壤样品进行细菌菌落分析,以期为烟草连作障碍调控提供理论依据.结果表明:烤烟生育中后期土壤细菌群落比较丰富.不同连作年限植烟土壤大田期细菌种群结构有差别,表现为大多数细菌类型是共有的,存在少数特有的细菌类型,轮作土壤的细菌丰度变化较稳定,而连作增加了土壤细菌的丰度,并呈先增加后降低趋势.轮作细菌优势种群在大田期很稳定,而连作土壤的细菌菌群有较大变化,绿弯菌门的暖绳菌科、酸杆菌

  12. Influence of poultry litter and double cropping on soybean yield

    Science.gov (United States)

    Continuous cultivation of mono-cropping systems coupled with inorganic fertilizer consumption has led to a decline in soil fertility, negatively influencing crop yields. Poultry litter application and double cropping are two management practices that could be used with conservation tillage to increa...

  13. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  14. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  15. Optimization of the cropping pattern in Egypt

    Directory of Open Access Journals (Sweden)

    Sara Osama

    2017-12-01

    Full Text Available Continuous increase of population in Egypt, limited fresh water, poor maintenance and low efficiency of irrigation systems lead to a real burden on the Egyptian natural water resources. Accordingly, for Egypt, land and water resources management is considered an absolutely strategic priority. In this study, a linear optimization model is developed to maximize the net annual return from the three old regions of Egypt. Data for 28 crops in five years from 2008 to 2012 are being analyzed. The spatial variations of crops, irrigation water needs, crop yields and food requirements are incorporated in the model. The results show that there is a significant reduction in the allocated areas for onion, garlic, barley, flax, fenugreek, chickpeas, lentil and lupine since they are considered as non-strategic crops. On the other side, the allocated areas for strategic crops such as wheat, maize, clover, rice, sugar products and cotton remained almost the same to satisfy their actual food requirements. However, crops with high net returns such as tomatoes have increased substantially. The trend for the gross net benefit is decreasing and is expected to reach a lower value in year 2017. Different approaches and scenarios are analyzed. The developed model proposes a change in the cropping pattern in the old lands of Egypt to increase the gross net return without adding further any other expenses. Keywords: Cropping pattern, Linear programming, Net return, Optimization

  16. Radiation induced mutant crop varieties: accomplishment and societal deployment

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane

  17. Economic impact of GM crops

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  18. Potential of irradiation technology in horticultural crops

    International Nuclear Information System (INIS)

    Thomas, P.

    1994-01-01

    Fresh fruits and vegetables are living tissues which are subject to continuous change after harvest leading to senescence, cellular break-down and death. Post harvest losses in quality and quantity of horticultural crops result from physiological, pathological and physical processes, acting separately or in combination. Temperature management, maintenance of proper relative humidity of air, manipulation of storage temperature and exposing to ionizing radiation such as gamma rays enhance the shelf-life of horticultural crops

  19. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  20. Impact of cash cropping and perennial crops on food crop ...

    African Journals Online (AJOL)

    significant effects on food crop production and productivity. ... 2 Department of Economics and Resource management, Norwegian University of Life Sciences, Norway ... food markets work well, the problem of imperfect markets does not allow ..... prices at the time of purchase with the remaining balance due at the end of the.

  1. Gender in crop agriculture

    OpenAIRE

    Food and Agriculture Organization; The World Bank; IFAD

    2008-01-01

    Metadata only record This is a module in the "Gender in Agriculture Sourcebook" published by the World Bank, UN Food and Agriculture Organization, and International Fund for Agricultural Development. This module examines the role of gender in crop agriculture as an essential component of development and poverty reduction. Gender is an integral aspect of crop agriculture because women's roles in crop production and household subsistence, as well as their knowledge of complex production syst...

  2. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  3. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  4. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  5. Crop responses to CO2 enrichment

    International Nuclear Information System (INIS)

    Rogers, H.H.; Dahlman, R.C.

    1993-01-01

    Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agroecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO 2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO 2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO 2 . 137 refs., 4 figs., 4 tabs

  6. Numerical simulation of cropping

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, John W.

    2014-01-01

    Cropping is a cutting process whereby opposing aligned blades create a shearing failure by exerting opposing forces normal to the surfaces of a metal sheet or plate. Building on recent efforts to quantify cropping, this paper formulates a plane strain elastic-plastic model of a plate subject to s...

  7. Applied Crop Protection 2017

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Nielsen, Bent Jørgen; Mathiassen, Solvejg Kopp

    Linket til højre henviser til rapporten i trykt format til download. This publication contains results from crop protection trials which were carried out at the Department of Agroecology within the area of gricultural crops. Most of the results come from field trials, but results from greenhouse...

  8. Applied Crop Protection 2017

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Nielsen, Bent Jørgen; Mathiassen, Solvejg Kopp

    Linket til højre henviser til rapporten i trykt format til download. This publication contains results from crop protection trials which were carried out at the Department of Agroecology within the area of gricultural crops. Most of the results come from field trials, but results from greenhouse ...

  9. Applied crop protection 2016

    DEFF Research Database (Denmark)

    Jørgensen, Lise Nistrup; Nielsen, Bent Jørgen; Jensen, Peter Kryger

    This publication contains results from crop protection trials which were carried out at the Department of Agroecology within the area of agricultural crops. Most of the results come from field trials, but results from greenhouse and semi-field trials are also included. The report contains results...

  10. Responsive Polymers for Crop Protection

    Directory of Open Access Journals (Sweden)

    Serban F. Peteu

    2010-08-01

    Full Text Available This review outlines the responsive polymer methods currently in use with their potential application to plant protection and puts forward plant-specific mechanisms as stimuli in newly devised methods for smart release of crop protection agents (CPAs. CPAs include chemicals (fungicides, insecticides, herbicides, biochemicals (antibiotics, RNA-based vaccines for plant viruses, semiochemicals (pheromones, repellents, allomones, microbial pesticides, growth regulators (insect and plant or micronutrients, all with crop protection effects. This appraisal focuses on emerging uses of polymer nano-encapsulated CPAs. Firstly, the most interesting advances in controlled release methods are critically discussed with their advantages and drawbacks. Secondly, several plant-specific stimuli-based smart methods are anticipated for use alongside the polymer nano- or micro-capsules. These new CPA release methods are designed to (i protect plants against infection produced by fungi or bacteria, and (ii apply micro-nutrients when the plants need it the most. Thus, we foresee (i the responsive release of nano- encapsulated bio-insecticides regulated by plant stress enzymes, and (ii the delivery of micro-nutrients synchronized by the nature or intensity of plant root exudates. Such continued advances of nano-scale smart polymer-based CPAs for the protection of crops herald a “small revolution” for the benefit of sustainable agriculture.

  11. The effect of cropping sequence on the crop yield and nutrient availability

    International Nuclear Information System (INIS)

    Sisworo, W.H.; Rasjid, H.

    1988-01-01

    A two seasons field experiment was conducted to study the carry over effect of previous crop on the succeeding crop yield and plan nutrient (N and P) availability. The experiment consisted of eight treatments were arranged in a randomized block design with six resplications. Cropping sequence was studied that was soybean followed by corn and a continuous corn system. The effect of added P to the previous crops on the succeeding crops yield was also observed. Labelled fertilizer were used in the experiment to measure dinitrogen fixation of two soybean varieties and the amount of available nutrient in the soil by using isotopic dilution technique. The result obtained showed that corn yield was significantly influenced by cropping sequence, but available nutrient was not. Corn grown after soybean produced about 22 percent more grain than those of the continuous corn system. The phosphorus applied to the first season crops increased significantly the succeeding corn yield. The highest amount of accumulation in soybean was 81 kg N/h, around 40 percent of the amount was obtained through fixation. (authors). 19 refs.; 8 tabs

  12. An Inventory of Crop Wild Relatives of the United States

    NARCIS (Netherlands)

    Khoury, C.K.; Greene, S.; Wiersema, J.; Maxted, N.; Jarvis, A.; Struik, P.C.

    2013-01-01

    The use of crop wild relatives (CWRs) in breeding is likely to continue to intensify as utilization techniques improve and crop adaptation to climate change becomes more pressing. Signifi cant gaps remain in the conservation of these genetic resources. As a fi rst step toward a national strategy for

  13. African Crop Science Journal

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The African Crop Science Journal, a quarterly publication, publishes original ... interactions, information science, environmental science and soil science.

  14. African Crop Science Journal

    African Journals Online (AJOL)

    African Crop Science Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 2 (1993) >. Log in or Register to get access to full text downloads.

  15. African Crop Science Journal

    African Journals Online (AJOL)

    African Crop Science Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22 (2014) >. Log in or Register to get access to full text downloads.

  16. Radioactivity in food crops

    International Nuclear Information System (INIS)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for 137 Cs, 40 K, 90 Sr, 226 Ra, 228 Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for 241 Am, 7 Be, 60 Co, 55 Fe, 3 H, 131 I, 54 Mn, 95 Nb, 210 Pb, 210 Po, 106 Ru, 125 Sb, 228 Th, 232 Th, and 95 Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g -1 (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins

  17. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  18. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    objectives of this discussion article are as follows: (i) to discuss the characteristics of cropping systems which might affect the LCA methodology, (ii) to discuss the advantages and the disadvantages of the current available methods for the life-cycle assessment of cropping systems, and (iii) to offer...... management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability...... considers cropping system issues if they are related to multiproduct and nutrient cycling, while the crop-by-crop approach is highly affected by assumptions and considers cropping system issues only if they are related to the analyzed crop. Conclusions Each LCA approach presents advantages and disadvantages...

  19. Grand challenges for crop science

    Science.gov (United States)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  20. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  1. Energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1990-04-15

    At the Research Station of Royal Veterinary and Agricultural University, Copenhagen, Denmark, investigation concerning cultivation and exploitation of field crops for production of fuels was carried out during the period 1986-1989. High yielding crops, such as sugar beet - BETA VULGARIS, jerusalem artichoke - HELIANTHUS TUBEROSUS, rhubarb - RHEUM RHAPONTICUM, and comfrey - SYMPHYTUM ASPERUM, were grown experimentally in the field. Different cultivation methods for the crops were used and evaluated. Simultaneously with the field experiment, laboratory investigation was carried out to determine the energy potential of different products and by-products from the crops processes, such as alcoholic and methanogenic fermantation. Production expenses for the crops were determined, and cost of the fuels was estimated. The experimental results show that beet is a superior crop for the climatic conditions of Northern Europe. In the season 1986, yields exceeded 20 t TS/ha in the form of roots and tops, where achieved. A combined exploitation of beet roots and tops via alcoholic and methanogenic fermantation gave a gross energy corresponding to 80 hl OE/ha/yr. Using methanogenic fermentation exclusively, from ensiled beet roots and tops, gross energy yield corresponding to 85 hl IE/ha/yr, was achieved. The cost of energy in the form of alcohol from beet roots was estimated to be 5.17 DKK/1 OE (0.64 ECU/l OE). The cost of energy in the form of methane from ensiled beet tops, was estimated to be 2.68 DKK/l OE (0.33 ECU/l OE). At the present time, methane produced on the basis of ensiled beet roots and tops appears to be competitive with fossil fuels. Irrespective of the cost, however, the possibility of producing clean energy from field crops remains of interest for the future. (author) 27 refs.

  2. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw...

  3. Rice crop risk map in Babahoyo canton (Ecuador)

    Science.gov (United States)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  4. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  5. Protein improvement in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Rabson, R

    1974-07-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  6. Protein improvement in crop plants

    International Nuclear Information System (INIS)

    Rabson, R.

    1974-01-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  7. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  8. Crop modeling applications in agricultural water management

    Science.gov (United States)

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  9. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  10. Impact of sole cropping and multiple cropping on soil humified carbon fractions

    International Nuclear Information System (INIS)

    Radhakrishnan, R.; Lee, I.J.

    2014-01-01

    The present study was planned to improve our understanding how crop rotation can enhance humified C fractions. A long term experiment was conducted on Vanmeter farm of the Ohio State University South Centers at Piketon Ohio, USA from 2002 to 2007. Crop rotation treatments included were continuous corn (CC), corn-soybean (CS) and corn-soybean-wheat-cowpea (CSW) rotations. Randomized complete block design with 6 replications was used under natural field conditions. The findings of this long-term study revealed that multiple cropping had significantly improved humified carbon fractions compared to mono-cropping system. Although total humified carbon (THOC), sugar free humified carbon (HOC) concentration were non-significant however, humin (NH) contents, humic (HA), fulvic acids (FA), humic and fulvic acid associated glucose (HA-NH and FA-NH) were significantly affected by various crop rotations within five years. The soil under CC had 22-52% significantly greater NH concentration than CSW and CS rotations respectively. Similarly all crop rotations had shown 5-16 increase in HA and 5-17% decreased in FA over time. Likewise soil under CC had 16 and 54% greater HA-NH concentration as compared to CSW and CS rotations. The FA-NH concentration increased significantly by 27- 51% in soil under all treatments over time. The soil under CSW had greater HA/FA (1.6) fallowed by CC (1.4) and CS (1.1). Soils under CSW had significantly greater HA/HOC (12-18%) as compare to CC and CS respectively. Conversely, the value of FA/HOC decreased (1-23%) in soil under all crop rotation treatments within five years. Degree of humification (DH) had shown a significant increase (7-12%) in soil under all treatments as compared to 2002. Irrespective of crop rotation THOC, HOC, NH, humin, HA, HR and FA/HOC concentration decreased significantly with increase in soil depth. While fulvic acid concentration HA/HOC in all crop rotation increased with increase in soil depth. The effect of crop rotation

  11. Sustainable Agriculture: Cover Cropping

    Science.gov (United States)

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  12. Transpiration and crop yields

    NARCIS (Netherlands)

    Wit, de C.T.

    1958-01-01

    Theoretical and practical aspects of the transpiration of crops in the field are discussed and he concludes that the relationship between transpiration and total dry matter production is much less affected by growing conditions than has been supposed. In semi-arid and arid regions, this relationship

  13. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  14. Future-proof crops

    NARCIS (Netherlands)

    Kissoudis, Christos; Wiel, van de Clemens; Visser, R.G.F.; Linden, van der Gerard

    2016-01-01

    Breeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as

  15. Mycorrhiza and crop production

    Energy Technology Data Exchange (ETDEWEB)

    Hayman, D S

    1980-10-09

    This article describes recent research with vesicular-arbuscular mycorrhiza, a symbiotic fungus-root association. The suggestion that the symbiotic association may be harnessed to achieve more economical use of phosphate fertilizers is discussed and the results from various test crops are given.

  16. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest

    OpenAIRE

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ...

  17. Building crop models within different crop modelling frameworks

    NARCIS (Netherlands)

    Adam, M.Y.O.; Corbeels, M.; Leffelaar, P.A.; Keulen, van H.; Wery, J.; Ewert, F.

    2012-01-01

    Modular frameworks for crop modelling have evolved through simultaneous progress in crop science and software development but differences among these frameworks exist which are not well understood, resulting in potential misuse for crop modelling. In this paper we review differences and similarities

  18. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop...... production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal...

  19. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by

  20. Crop rotation impact on soil quality

    International Nuclear Information System (INIS)

    Aziz, I.; Ashraf, M.; Mahmood, T.; Islam, K.R.

    2011-01-01

    Management systems influence soil quality over time. A study was carried out on Van meter farm of the Ohio State University South Centers at Piketon Ohio, USA to evaluate the impact of crop rotations on soil quality from 2002 to 2007. The crop rotations comprised of continuous corn (CC), corn-soybean (CS) and corn-soybean-wheat-cowpea (CSW). Ten soil cores were collected at 0-7.5, 7.5-15, 15-22.5 and 22.5-30 cm, and sieved. The soils were analyzed for total microbial biomass (C/sub mic/), basal respiration (BR) and specific maintenance respiration (qCO/sub 2/) rates as biological quality indicators; total organic carbon (TC), active carbon (AC) and total nitrogen (TN) as chemical quality indicators; and aggregate stability (AS), particulate organic matter (POM) and total porosity (ft) as physical quality parameters at different depths of soil. The inductive additive approach based on the concept of 'higher value of any soil property except ft, a better indicator of soil quality' was used to calculate the biological (SBQ), chemical (SCQ), physical (SPQ) and composite soil quality (SQI) indices. The results showed that crop rotation had significant impact on C/sub mic/, BR, qCO/sub 2/, TC, AC, TN, AS and POM except ft at different depths of soil. The CSW had higher soil quality values than CC and CS. The values of selected soil quality properties under the given crop rotation significantly decreased except ft with increasing soil depth. The SBQ (23%), SCQ (16%), SPQ (7%) and SQI (15%) improved under CSW over time. The results imply that multiple cropping systems could be more effective for maintaining and enhancing soil quality than sole-cropping systems. (author)

  1. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  2. Radiation and crop improvement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    The present state of the research was reviewed and its results analyzed at an international scientific Symposium on the Effects of Ionizing Radiations on Seeds and their Significance for Crop Improvement held at Karlsruhe, Federal Republic of Germany, in 1960. The experts began a detailed examination of certain special aspects of the radiobiology of seeds. Some of the topics discussed related to the processes initiated in seeds as a result of irradiation. The influence of environmental factors, such as temperature, humidity and the presence or absence of oxygen, was also evaluated. Variations in the sensitivity to radiation were taken into consideration and ways of modifying the sensitivity were examined. Two sessions were devoted to a study of radiation- and chemically-induced chromosome breakage and reunion. The nature and mechanism of chromosome breakage and reunion area subject of basic importance in all radiobiological studies and naturally constituted one of the main topics of discussion at the Karlsruhe symposium. The symposium discussed the relevance of these basic scientific questions to crop improvement. Whether irradiation itself, without producing any hereditary changes, can stimulate crop yields is a matter of considerable interest. It has been found that in some cases the effect is stimulating, while in others it is inhibitive. A number of experiments were described and an attempt was made to deduce certain principles from the results obtained

  3. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    -substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare......Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  4. Crop yield response to climate change varies with cropping intensity.

    Science.gov (United States)

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change. © 2015 John Wiley & Sons Ltd.

  5. Weather based risks and insurances for crop production in Belgium

    Science.gov (United States)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate

  6. Radiation technology for the development of improved crop varieties

    International Nuclear Information System (INIS)

    D'Souza, Stanislaus F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane. The desirable traits which have been bred through induced mutations include higher yield, grain quality, early maturity, disease and pest resistance, improved plant type and abiotic stress resistance

  7. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  8. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  9. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  10. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  11. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  12. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  13. Role of modern chemistry in sustainable arable crop protection

    OpenAIRE

    Smith, Keith; Evans, David A; El-Hiti, Gamal A

    2007-01-01

    Organic chemistry has been, and for the foreseeable future will remain, vitally important for crop protection. Control of fungal pathogens, insect pests and weeds is crucial to enhanced food provision. As world population continues to grow, it is timely to assess the current situation, anticipate future challenges and consider how new chemistry may help meet those challenges. In future, agriculture will increasingly be expected to provide not only food and feed, but also crops for conversion ...

  14. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    Science.gov (United States)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  15. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  16. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    Science.gov (United States)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  17. in crop plants

    Directory of Open Access Journals (Sweden)

    Jan Antoni Rafalski

    2017-05-01

    Full Text Available Most important crop productivity traits, such as yield under normal and environmental stress conditions, are determined by a large number of genes, each with a small phenotypic effect. Genetic improvement of these traits through breeding or genetic engineering has been frustrating researchers in academia and industry. The reasons for this include the complexity of the traits, the difficulty of precise phenotyping and the lack of validated candidate genes. Different approaches to the discovery of the genetic architecture of such traits, such as Genetic Association Mapping and Genomic Selection and their engineering, are expected to yield benefits for farmers and consumers.

  18. Meteorological risks and impacts on crop production systems in Belgium

    Science.gov (United States)

    Gobin, Anne

    2013-04-01

    the sensitive stages of summer crops increases and may be further aggravated by atmospheric moisture deficits and heat stress. Summer crops may therefore benefit from earlier planting dates and beneficial moisture conditions during early canopy development, but will suffer from increased drought and heat stress during crop maturity. During the harvesting stages, the number of waterlogged days increases in particular for tuber crops. Physically based crop models assist in understanding the links between different factors causing crop damage. The approach allows for assessing the meteorological impacts on crop growth due to the sensitive stages occurring earlier during the growing season and due to extreme weather events. Though average yields have risen continuously between 1947 and 2008 mainly due to technological advances, there is no evidence that relative tolerance to adverse weather conditions such as atmospheric moisture deficit and temperature extremes has changed.

  19. Continuous Problem of Function Continuity

    Science.gov (United States)

    Jayakody, Gaya; Zazkis, Rina

    2015-01-01

    We examine different definitions presented in textbooks and other mathematical sources for "continuity of a function at a point" and "continuous function" in the context of introductory level Calculus. We then identify problematic issues related to definitions of continuity and discontinuity: inconsistency and absence of…

  20. Space Data for Crop Management

    Science.gov (United States)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  1. Introduction of Alley Cropping

    Directory of Open Access Journals (Sweden)

    Sugeng Parmadi

    2004-01-01

    Full Text Available One of the efforts to preserve the sources of vegetarian, soil, and water is to rehabilitate the land and soil conservation. The aim of this rehabilitation is increasing and maintaining the produtivity of the land, so it can be preserved and used optimally. Therefore, it is necessary to a  develop a variety of good soil conservation, such as vegetative method and civil engineering. To find an appropriate technology, so it is necessary to develop some alternatives of soil conservation technique that are mainly implemented at dry land with its slope of more than 15% in the upstream area of discharge. One of the most suitable soil conservation technique today is Alley Cropping. Based on the research (trial and error in some areas, Alley Cropping could really provide a positive result in terms of erotion controlling and running off and maintain the land productivity. In addition, the technique is more easly operated and spends a cheaper cost than making a bench terrace.

  2. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  3. Molecular mechanisms involved in convergent crop domestication.

    Science.gov (United States)

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Microbial enhancement of crop resource use efficiency.

    Science.gov (United States)

    Dodd, Ian C; Ruiz-Lozano, Juan Manuel

    2012-04-01

    Naturally occurring soil microbes may be used as inoculants to maintain crop yields despite decreased resource (water and nutrient) inputs. Plant symbiotic relationships with mycorrhizal fungi alter root aquaporin gene expression and greatly increase the surface area over which plant root systems take up water and nutrients. Soil bacteria on the root surface alter root phytohormone status thereby increasing growth, and can make nutrients more available to the plant. Combining different classes of soil organism within one inoculant can potentially take advantage of multiple plant growth-promoting mechanisms, but biological interactions between inoculant constituents and the plant are difficult to predict. Whether the yield benefits of such inocula allow modified nutrient and water management continues to challenge crop biotechnologists. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Safety of GM crops: compositional analysis.

    Science.gov (United States)

    Brune, Philip D; Culler, Angela Hendrickson; Ridley, William P; Walker, Kate

    2013-09-04

    The compositional analysis of genetically modified (GM) crops has continued to be an important part of the overall evaluation in the safety assessment program for these materials. The variety and complexity of genetically engineered traits and modes of action that will be used in GM crops in the near future, as well as our expanded knowledge of compositional variability and factors that can affect composition, raise questions about compositional analysis and how it should be applied to evaluate the safety of traits. The International Life Sciences Institute (ILSI), a nonprofit foundation whose mission is to provide science that improves public health and well-being by fostering collaboration among experts from academia, government, and industry, convened a workshop in September 2012 to examine these and related questions, and a series of papers has been assembled to describe the outcomes of that meeting.

  6. Acumulação de nitrogênio e carbono no solo pela adubação orgânica e mineral contínua na cultura do milho Nitrogen and carbon accumulation in soil through continuous organic and mineral fertilization of maize crop

    Directory of Open Access Journals (Sweden)

    Celsemy E. Maia

    2004-04-01

    Full Text Available No presente trabalho, avaliou-se o efeito do uso contínuo das adubações orgânica e mineral na cultura do milho e sobre a acumulação e a disponibilidade do nitrogênio em um Argissolo Vermelho-Amarelo. Estudou-se a produção de milho em função das doses de 0 e 40 m³ ha-1 ano-1 de composto orgânico (palhada de soja e feijão com esterco bovino, combinadas com 0, 250 e 500 kg ha-1 ano-1 da fórmula 4-14-8 aplicados no plantio, e 0, 100 e 200 kg ha-1 ano-1 de sulfato de amônio em cobertura. O uso contínuo da adubação orgânica aumentou a produtividade de milho com o efeito da adubação química sendo menos expressivo. Observou-se, ainda, aumento do C total. Com base nos resultados observados, pôde-se concluir que o uso contínuo da adubação orgânica proporcionou aumento na reserva (N total e na disponibilidade de N, sendo essas características pouco influenciadas pela adubação química.This study aimed to evaluate the effect of continuous use of the organic and mineral fertilization in maize crop and on the accumulation and availability of nitrogen in a Cambic Yellow Red Podzol. The maize yield was evaluated as a function of doses from 0 to 40 m³ ha-1 year-1 of the organic compost (beans and soybean straw with manure combined with 0, 250 and 500 kg ha-1 year-1 of the formula 4-14-8 applied at the planting time, and the application of 0, 100 and 200 kg ha-1 year-1 of ammonium sulphate. The plots consisted of eight furrows (8 m length 1.0 m apart from each other in a randomized experimental block design with four replications. The results showed that the continuous use of the organic fertilization increased maize productivity, whereas the chemical fertilization showed less expressive effects. Increases in both the total carbon and KMnO4- oxidized carbon were observed. The results also show that the continuous use of the organic fertilization provided an increase in total N reserve and availability of N, while the chemical

  7. Modifying agricultural crops for improved nutrition.

    Science.gov (United States)

    McGloughlin, Martina Newell

    2010-11-30

    The first generation of biotechnology products commercialized were crops focusing largely on input agronomic traits whose value was often opaque to consumers. The coming generations of crop plants can be grouped into four broad areas each presenting what, on the surface, may appear as unique challenges and opportunities. The present and future focus is on continuing improvement of agronomic traits such as yield and abiotic stress resistance in addition to the biotic stress tolerance of the present generation; crop plants as biomass feedstocks for biofuels and "bio-synthetics"; value-added output traits such as improved nutrition and food functionality; and plants as production factories for therapeutics and industrial products. From a consumer perspective, the focus on value-added traits, especially improved nutrition, is undoubtedly one of the areas of greatest interest. From a basic nutrition perspective, there is a clear dichotomy in demonstrated need between different regions and socioeconomic groups, the starkest being inappropriate consumption in the developed world and under-nourishment in Less Developed Countries (LDCs). Dramatic increases in the occurrence of obesity and related ailments in affluent regions are in sharp contrast to chronic malnutrition in many LDCs. Both problems require a modified food supply, and the tools of biotechnology have a part to play. Developing plants with improved traits involves overcoming a variety of technical, regulatory and indeed perception hurdles inherent in perceived and real challenges of complex traits modifications. Continuing improvements in molecular and genomic technologies are contributing to the acceleration of product development to produce plants with the appropriate quality traits for the different regions and needs. Crops with improved traits in the pipeline, the evolving technologies and the opportunities and challenges that lie ahead are covered. Copyright © 2010. Published by Elsevier B.V.

  8. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  9. Biosolarization in garlic crop

    Science.gov (United States)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  10. Crop Protection in Medieval Agriculture

    NARCIS (Netherlands)

    Zadoks, J.C.

    2013-01-01

    Mediterranean and West European pre-modern agriculture (agriculture before 1600) was by necessity ‘organic agriculture’. Crop protection is part and parcel of this agriculture, with weed control in the forefront. Crop protection is embedded in the medieval agronomy text books but specialised

  11. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  12. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  13. Climate Impacts of Cover Crops

    Science.gov (United States)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  14. Chemical mutagenesis for crop improvement

    International Nuclear Information System (INIS)

    1986-01-01

    Focusses on methodological aspects for the efficient induction of mutations in crop plants by chemomutagens. Mutagen treatment of barley seeds with ethylmethane sulfonate (EMS) is documented in detail to exemplify procedural phases. Reference is made to safe handling and the prevention of biohazards. Induced biological and genetic effects at various plant generations are documented and the use of mutants for crop improvement is discussed

  15. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  16. Archives: African Crop Science Journal

    African Journals Online (AJOL)

    Items 1 - 50 of 99 ... Archives: African Crop Science Journal. Journal Home > Archives: African Crop Science Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 50 of 99 ...

  17. Archives: African Crop Science Journal

    African Journals Online (AJOL)

    Items 51 - 99 of 99 ... Archives: African Crop Science Journal. Journal Home > Archives: African Crop Science Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 51 - 99 of 99 ...

  18. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    Science.gov (United States)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  19. Business continuity

    International Nuclear Information System (INIS)

    Breunhoelder, Gert

    2002-01-01

    This presentation deals with the following keypoints: Information Technology (IT) Business Continuity and Recovery essential for any business; lessons learned after Sept. 11 event; Detailed planning, redundancy and testing being the key elements for probability estimation of disasters

  20. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  1. 26 CFR 1.501(c)(16)-1 - Corporations organized to finance crop operations.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Corporations organized to finance crop operations. 1.501(c)(16)-1 Section 1.501(c)(16)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(16)-1 Corporations organized to finance crop...

  2. The economics of producing energy crops

    International Nuclear Information System (INIS)

    Shapouri, H.; Duffield, J.

    1993-01-01

    The US agricultural sector has an immense supply of natural resources which can be used to product energy. Production of energy from these resources could stimulate economic growth, improve environmental quality, and enhance energy security. However, producing feedstocks and converting biomass to energy require large amounts of capital, equipment, labor, and processing facilities. This paper looks at the costs and benefits of producing energy crops for fuel conversion. A review of studies and crop data show that the cost of growing and converting various feedstocks with current technology is greater than the cost of producing conventional fuels. Conventional motor fuels have a price advantage over biofuels, but market prices don't always reflect the cost of negative externalities imposed on society. Government decisions to invest in alternative energy sources should be based on research that includes the environmental costs and benefits of energy production. The future of biofuels will depend on the continuation of government research and incentive programs. As new technologies advance, the costs of processing energy crops and residues will fall, making biofuels more competitive in energy markets

  3. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N

    2008-04-01

    Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions. Copyright (c) 2008 by John Wiley & Sons

  4. Continuous Dropout.

    Science.gov (United States)

    Shen, Xu; Tian, Xinmei; Liu, Tongliang; Xu, Fang; Tao, Dacheng

    2017-10-03

    Dropout has been proven to be an effective algorithm for training robust deep networks because of its ability to prevent overfitting by avoiding the co-adaptation of feature detectors. Current explanations of dropout include bagging, naive Bayes, regularization, and sex in evolution. According to the activation patterns of neurons in the human brain, when faced with different situations, the firing rates of neurons are random and continuous, not binary as current dropout does. Inspired by this phenomenon, we extend the traditional binary dropout to continuous dropout. On the one hand, continuous dropout is considerably closer to the activation characteristics of neurons in the human brain than traditional binary dropout. On the other hand, we demonstrate that continuous dropout has the property of avoiding the co-adaptation of feature detectors, which suggests that we can extract more independent feature detectors for model averaging in the test stage. We introduce the proposed continuous dropout to a feedforward neural network and comprehensively compare it with binary dropout, adaptive dropout, and DropConnect on Modified National Institute of Standards and Technology, Canadian Institute for Advanced Research-10, Street View House Numbers, NORB, and ImageNet large scale visual recognition competition-12. Thorough experiments demonstrate that our method performs better in preventing the co-adaptation of feature detectors and improves test performance.

  5. A blended approach to analyze staple and high-value crops using remote sensing with radiative transfer and crop models.

    Science.gov (United States)

    Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.

    2017-12-01

    The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop

  6. Continuity theory

    CERN Document Server

    Nel, Louis

    2016-01-01

    This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...

  7. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  8. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  9. Stable Food Crops Turning Into Commercial Crops: Case studies of ...

    African Journals Online (AJOL)

    RahelYilma

    case study analyses for the cereal crops of teff3, wheat and rice. Specifically, the ... behavior of households during the process of commercial transformation of subsistence ..... roducer → rural assembler, and producer → consumer. As with teff ...

  10. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  11. Continuation calculus

    NARCIS (Netherlands)

    Geron, B.; Geuvers, J.H.; de'Liguoro, U.; Saurin, A.

    2013-01-01

    Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head

  12. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  13. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    rotation of annual crops (maize, beet, hemp/oat, triticale, winter rye and winter rapeseed), ii) perennial crops intensively fertilised (festulolium, reed canary, cocksfoot and tall fescue), low-fertilised (miscanthus) or unfertilised (grass-legume mixtures) and iii) traditional systems (continuous...

  14. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Science.gov (United States)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  15. Effects of cover crops on the nitrogen fluxes in a silage maize production system

    NARCIS (Netherlands)

    Schröder, J.J.; Dijk, van W.; Groot, de W.J.M.

    1996-01-01

    Rye and grass cover crops can potentially intercept residual soil mineral nitrogen (SMN), reduce overwinter leaching, transfer SMN to next growing seasons and reduce the fertilizer need of subsequent crops. These aspects were studied for 6 years in continuous silage maize cv. LG 2080 production

  16. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    Primary nutrient (N, P and K) composition of the ... Crop rotation with fertilizer amendment improved the pH of the soil. Crop rotation and ..... Soil organic carbon contents declined regardless of inputs application for continuously cultivated land (Kapkiyai, 1996). Higher. Organic carbon content next to before planting (1.98 %).

  17. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, Kurt C; Kollas, Chris

    2017-01-01

    Realistic estimation of grain nitrogen (N; N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simul...

  18. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  19. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  20. The FSE system for crop simulation, version 2.1

    NARCIS (Netherlands)

    Kraalingen, van D.W.G.

    1995-01-01

    A FORTRAN 77 programming environment for continuous simulation of agro-ecological processes, such as crop growth and calculation of water balances is presented. This system, called FSE (FORTRAN Simulation Environment), consists of a main program, weather data and utilities for performing specific

  1. Deployment of Wireless Sensor Networks in Crop Storages

    DEFF Research Database (Denmark)

    Juul, Jakob Pilegaard; Green, Ole; Jacobsen, Rune Hylsberg

    2015-01-01

    of a wireless sensor network based system that provides continuous, automatic, and up-to-date information on a crop storage, while presenting the data in an easily accessible manner, is also described. The design decisions, challenges, and practical experiences from real-world large scale deployment...

  2. Impact of preceding crop on alfalfa competitiveness with weeds

    Science.gov (United States)

    Organic producers would like to include no-till practices in their farming systems. We are seeking to develop a continuous no-till system for organic farming, based on a complex rotation that includes a 3-year sequence of alfalfa. In this study, we evaluated impact of preceding crop on weed infest...

  3. 7 CFR 1405.6 - Crop insurance requirement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Crop insurance requirement. 1405.6 Section 1405.6 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... sentence, if the total expected liability under the catastrophic risk protection endorsement is equal to or...

  4. Medicinal and aromatic crops: Production, Phytochemistry, and Utilization

    Science.gov (United States)

    In the later part of the 20th century the United States experienced a remarkable surge in public interest towards medicinal and aromatic crops and this trend continues. This consumer interest helped create a significant demand for plants with culinary and medicinal applications as the public discove...

  5. African Crop Science Journal: Submissions

    African Journals Online (AJOL)

    Particular attention should be paid to the study factors/treatments and their structure, design, ... The African Crop Science Journal uses the Harvard citation style. Only published articles (journals and proceedings) or books may be cited.

  6. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  7. Continuation calculus

    Directory of Open Access Journals (Sweden)

    Bram Geron

    2013-09-01

    Full Text Available Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head reduction, and argue that it is suitable for modeling programs with control. It is demonstrated how to define programs, specify them, and prove them correct. This is shown in detail by presenting in CC a list multiplication program that prematurely returns when it encounters a zero. The correctness proof includes termination of the program. In continuation calculus we can model both call-by-name and call-by-value. In addition, call-by-name functions can be applied to call-by-value results, and conversely.

  8. Crop diversity for yield increase.

    Directory of Open Access Journals (Sweden)

    Chengyun Li

    2009-11-01

    Full Text Available Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean--either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand.

  9. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  10. Crop Registration: The Pathway to Public Access of Plant Genetic Materials to Build Crops for the Future

    Science.gov (United States)

    Starting as Crop Science Registrations in the American Journal of the Society of Agronomy in 1926, and continuing 80+ years later in the Journal of Plant Registrations, 11,241 plant cultivars, germplasm, parental lines, genetic stocks and mapping populations have been registered as of December 31, 2...

  11. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    Science.gov (United States)

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  12. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  13. Alternatives to crop residues for soil amendment

    OpenAIRE

    Powell, J.M.; Unger, P.W.

    1997-01-01

    Metadata only record In semiarid agroecosystems, crop residues can provide important benefits of soil and water conservation, nutrient cycling, and improved subsequent crop yields. However, there are frequently multiple competing uses for residues, including animal forage, fuel, and construction material. This chapter discusses the various uses of crop residues and examines alternative soil amendments when crop residues cannot be left on the soil.

  14. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas

    2015-01-01

    Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fiftee...

  15. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  16. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    Science.gov (United States)

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This

  17. 77 FR 22467 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2012-04-16

    ...-0006] RIN 0563-AC32 Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop... Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Fresh Market Tomato (Dollar... Common Crop Insurance Regulations (7 CFR part 457), Fresh Market Tomato (Dollar Plan) Crop Provisions...

  18. 76 FR 71276 - Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions

    Science.gov (United States)

    2011-11-17

    ...-0008] RIN 0563-AC35 Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions AGENCY... Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Pecan Revenue Crop Insurance... Regulations (7 CFR part 457) by revising Sec. 457.167 Pecan Revenue Crop Insurance Provisions, to be effective...

  19. 75 FR 15603 - Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions

    Science.gov (United States)

    2010-03-30

    ... to: (1) Theft; or (2) Inability to market the avocados for any reason other than actual physical... Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions AGENCY: Federal Crop Insurance... Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions to convert the Florida...

  20. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    Science.gov (United States)

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  1. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  2. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  3. Automated phenotyping of permanent crops

    Science.gov (United States)

    McPeek, K. Thomas; Steddom, Karl; Zamudio, Joseph; Pant, Paras; Mullenbach, Tyler

    2017-05-01

    AGERpoint is defining a new technology space for the growers' industry by introducing novel applications for sensor technology and data analysis to growers of permanent crops. Serving data to a state-of-the-art analytics engine from a cutting edge sensor platform, a new paradigm in precision agriculture is being developed that allows growers to understand the unique needs of each tree, bush or vine in their operation. Autonomous aerial and terrestrial vehicles equipped with multiple varieties of remote sensing technologies give AGERpoint the ability to measure key morphological and spectral features of permanent crops. This work demonstrates how such phenotypic measurements combined with machine learning algorithms can be used to determine the variety of crops (e.g., almond and pecan trees). This phenotypic and varietal information represents the first step in enabling growers with the ability to tailor their management practices to individual plants and maximize their economic productivity.

  4. Crop modelling and water use efficiency of protected cucumber

    International Nuclear Information System (INIS)

    El Moujabber, M.; Atallah, Th.; Darwish, T.

    2002-01-01

    Crop modelling is considered an essential tool of planning. The automation of irrigation scheduling using crop models would contribute to an optimisation of water and fertiliser use of protected crops. To achieve this purpose, two experiments were carried. The first one aimed at determining water requirements and irrigation scheduling using climatic data. The second experiment was to establish the influence of irrigation interval and fertigation regime on water use efficiency. The results gave a simple model for the determination of the water requirements of protected cucumber by the use of climatic data: ETc=K* Ep. K and Ep are calculated using climatic data outside the greenhouse. As for water use efficiency, the second experiment highlighted the fact that a high frequency and continuous feeding are highly recommended for maximising yield. (author)

  5. Climate change impacts on crop yield: evidence from China.

    Science.gov (United States)

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Detecting crop population growth using chlorophyll fluorescence imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  7. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    Science.gov (United States)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  8. Environmental health impacts of feeding crops to farmed fish.

    Science.gov (United States)

    Fry, Jillian P; Love, David C; MacDonald, Graham K; West, Paul C; Engstrom, Peder M; Nachman, Keeve E; Lawrence, Robert S

    2016-05-01

    Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Helping to increase tree crops

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    Tree crops such as coffee, coconuts, palm oil, citrus fruits and cocoa are of major importance to the economies of countries in Africa, Asia and Latin America, and may be a prime source of foreign exchange earnings. The search for ways to improve efficiently the yields of crops like these - now being aided by the Division of Atomic Energy in Food and Agriculture operated jointly with the Food and Agriculture Organization - thus has a clearly defined practical goal. D. Nethsinghe deals here with some of the work. (author)

  10. Helping to increase tree crops

    International Nuclear Information System (INIS)

    1970-01-01

    Tree crops such as coffee, coconuts, palm oil, citrus fruits and cocoa are of major importance to the economies of countries in Africa, Asia and Latin America, and may be a prime source of foreign exchange earnings. The search for ways to improve efficiently the yields of crops like these - now being aided by the Division of Atomic Energy in Food and Agriculture operated jointly with the Food and Agriculture Organization - thus has a clearly defined practical goal. D. Nethsinghe deals here with some of the work. (author)

  11. Ammonia volatilization from crop residues and frozen green manure crops

    NARCIS (Netherlands)

    Ruijter, de F.J.; Huijsmans, J.F.M.; Rutgers, B.

    2010-01-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues

  12. Compositions comprising lignosulfonates for crop protection and crop improvement

    NARCIS (Netherlands)

    Stevens, L.H.; Kok, C.J.; Krieken, van der W.M.

    2009-01-01

    International patent application number: WO2004067699http://www.wipo.int/patentscope/search/en/WO2004067699 (EN)The invention relates to a composition for protecting an agricultural crop against external threats, such as weeds, pathogens, abiotic and biotic stresses and/or for improving the quality

  13. Progress update: crop development of biofortified staple food crops ...

    African Journals Online (AJOL)

    Over the past 15 years, biofortification, the process of breeding nutrients into food crops, has gained ample recognition as a cost-effective, complementary, feasible means of delivering micronutrients to populations that may have limited access to diverse diets, supplements, or commercially fortified foods. In 2008, a panel of ...

  14. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  15. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Rachael D. Garrett

    2017-03-01

    Full Text Available The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food production regions that span a range of socioeconomic contexts, Brazil, New Zealand, and the United States, incentivize or disincentivize the use of integrated crop and livestock practices (ICLS. Our analysis indicates that Brazil and New Zealand have the most favorable policy environment for ICLS, while the United States provides the least favorable environment. The balance of policy incentives and disincentives across our three cases studies mirrors current patterns of ICLS usage. Brazil and New Zealand have both undergone a trend toward mixed crop livestock systems in recent years, while the United States has transitioned rapidly toward continuous crop and livestock production. If transitions to ICLS are desired, particularly in the United States, it will be necessary to change agricultural, trade, environmental, biofuels, and food safety policies that currently buffer farmers from risk, provide too few incentives for pollution reduction, and restrict the presence of animals in crop areas. It will also be necessary to invest more in research and development in all countries to identify the most profitable ICLS technologies in each region.

  16. Energy embodiment in Brazilian agriculture: an overview of 23 crops

    Directory of Open Access Journals (Sweden)

    João Paulo Soto Veiga

    2015-12-01

    Full Text Available The amount of energy required to produce a commodity or to supply a service varies from one production system to another and consequently giving rise to differing levels of environmental efficiency. Moreover, since energy prices have been continuously increasing over time, this energy amount may be a factor that has economic worth. Biomass production has a variety of end-products such as food, energy, and fiber; thus, taking into account the similarity in end-product of different crops (e.g.: sunflower, peanuts, or soybean for oil it is possible to evaluate which crops require less energy per functional unit, such as starch, oil, and protein. This information can be used in decision-making about policies for food safety or bioenergy. In this study, 23 crops were evaluated allowing for a comparison in terms of energy embodied per functional unit. Crops were grouped as follows: starch, oil, horticultural, perennial and fiber, to provide for a deeper analysis of alternatives for the groups, and subsidize further studies comparing conventional and alternative production systems such as organic or genetically modified organisms, in terms of energy. The best energy balance observed was whole sugarcane (juice, bagasse and straw with a surplus of 268 GJ ha−1 yr−1; palm shows the highest energy return on investment with a ratio of approximately 30:1. For carbohydrates and protein production, cassava and soybean, respectively, emerged as the crops offering the greatest energy savings in the production of these functional foods.

  17. Determining the potential productivity of food crops in controlled environments

    Science.gov (United States)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  18. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  19. GM Crops, Organic Agriculture and Breeding for Sustainability

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2014-07-01

    Full Text Available The ongoing debate about the use of genetically-modified (GM crops in agriculture has largely focused on food safety and genetic contamination issues. Given that the majority of GM crops have been produced to respond to the problem of crop yield reductions caused by diseases, insects and weeds, the paper argues that in those cases, the currently used GM crops are an unstable solution to the problem, because they represent such a strong selection pressure, that pests rapidly evolve resistance. Organic agriculture practices provide a more sustainable way of producing healthy food; however, the lower yields often associated with those practices, making the resultant healthy food more expensive, open the criticism that such practices will not be able to feed human populations. Evolutionary plant breeding offers the possibility of using the evolutionary potential of crops to our advantage by producing a continuous flow of varieties better adapted to organic systems, to climate change and to the ever changing spectrum of pests, without depending on chemical control.

  20. Optimising an integrated crop-livestock farm using risk programming

    Directory of Open Access Journals (Sweden)

    SE Visagie

    2004-06-01

    Full Text Available Numerous studies have analysed farm planning decisions focusing on producer risk preferences. Few studies have focussed on the farm planning decisions in an integrated croplivestock farm context. Income variability and means of managing risk continues to receive much attention in farm planning research. Different risk programming models have attempted to focus on minimising the income variability of farm activities. This study attempts to identify the optimal mix of crops and the number of animals the farm needs to keep in the presence of crop production risk for a range of risk levels. A mixed integer linear programming model was developed to model the decision environment faced by an integrated crop-livestock farmer. The deviation of income from the expected value was used as a measure of risk. A case study is presented with representative data from a farm in the Swartland area. An investigation of the results of the model under different constraints shows that, in general, strategies that depend on crop rotation principles are preferred to strategies that follow mono-crop production practices.

  1. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  2. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  3. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    Directory of Open Access Journals (Sweden)

    Zhenping Yang

    Full Text Available As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping

  4. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    Science.gov (United States)

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut

  5. Nitrogen research for perennial crops

    International Nuclear Information System (INIS)

    Bowen, G.D.; Danso, S.K.A.

    1987-01-01

    The article describes the role of trees in restoring and maintaining soil fertility. Cropping systems that include trees can provide the ecological framework within which food, fuelwood, and fibre production can be intergrated. The IAEA has been actively involved in studies on nitrogen-fixing pasture legumes and is ready to embark on similar studies of trees. 1 tab

  6. Energy crops - where are they?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, Jim [CPL Scientific Ltd., Newbury (United Kingdom)

    1999-07-01

    The author examines briefly the factors controlling the growth of energy crops, particularly the relationship between dry matter yield and fuel costs and conversion efficiency and electricity price. The EU target is for 135 Mtoe from biomass by 2010 and consideration is given on how this can be met.

  7. Cover Crops in Hillside Agriculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    Our study focuses on the wet tropical hillsides of northern Honduras (Figure 1). ..... The eastern extreme of the region (Jutiapa) is a dry spot, with less rainfall (2 000 mm a-1) as a result ...... Paper presented at the International Workshop on Green Manure–Cover Crops for Smallholders in ..... Lamaster, J.P.; Jones, I.R. 1923.

  8. Vegetable Crop Pests. MEP 311.

    Science.gov (United States)

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  9. Fruit Crop Pests. MEP 312.

    Science.gov (United States)

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  10. Botrytis species on bulb crops

    NARCIS (Netherlands)

    Lorbeer, J.W.; Seyb, A.M.; Boer, de M.; Ende, van den J.E.

    2007-01-01

    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph=Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rotare two of the most important fungal diseases of onion. The taxonomics of several of the

  11. Water, heat and crop growth

    NARCIS (Netherlands)

    Feddes, R.A.

    1971-01-01

    To a large extent the results of a farmer's efforts to get higher crop yields will be determined by the prevailing environmental conditions, i.e. by the existing complex of physical, chemical and biological factors. The possibilities of an efficient use of these factors are enlarged by our

  12. WEED INTERFERENCE IN EGGPLANT CROPS

    Directory of Open Access Journals (Sweden)

    LUIZ JUNIOR PEREIRA MARQUES

    2017-01-01

    Full Text Available Uncontrolled weed growth interferes with the growth eggplants and crop yields. To control weeds, the main weed species must be identified in crop growing areas and during weed control periods, as weed species might vary in relation to management practices. Therefore, this study aimed to identify the main weed species and determine the periods of weed interference in the eggplant cultivar Nápoli when grown under certain cultural practices, including plant staking and sprout thinning. The experiment was carried out in 2014 using a randomized complete block design, with 3 replications. The treatments consisted of 11 periods of (1 increasing weed control and (2 increasing coexistence of eggplant with weeds from the first day of transplanting (0-14, 0-28, 0-42, 0-56, 0-70, 0-84, 0-98, 0-112, 0-126, 0-140, and up do day 154. Eggplant staking and sprout thinning were performed 42 days after transplanting (DAT. Weed identification and crop yield assessments were performed to determine the Period Before Interference (PBI, Total Period of Interference Prevention (TPIP, and the Critical Period of Interference Prevention (CPIP. The major weeds found in the eggplant cultivar Nápoli were Eleusine indica, Portulaca oleracea, and Cyperus rotundus. Coexistence between the weed community and the eggplant throughout the entire crop production cycle reduced eggplant fruit yield by 78%. The PBI was 29 DAT and the TPIP was 48 DAT, resulting in 19 days of CPIP.

  13. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  14. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    Science.gov (United States)

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  15. Influence of Previous Crop on Durum Wheat Yield and Yield Stability in a Long-term Experiment

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2011-02-01

    Full Text Available Long-term experiments are leading indicators of sustainability and serve as an early warning system to detect problems that may compromise future productivity. So the stability of yield is an important parameter to be considered when judging the value of a cropping system relative to others. In a long-term rotation experiment set up in 1972 the influence of different crop sequences on the yields and on yield stability of durum wheat (Triticum durum Desf. was studied. The complete field experiment is a split-split plot in a randomized complete block design with two replications; the whole experiment considers three crop sequences: 1 three-year crop rotation: sugar-beet, wheat + catch crop, wheat; 2 one-year crop rotation: wheat + catch crop; 3 wheat continuous crop; the split treatments are two different crop residue managements; the split-split plot treatments are 18 different fertilization formulas. Each phase of every crop rotation occurred every year. In this paper only one crop residue management and only one fertilization treatment have been analized. Wheat crops in different rotations are coded as follows: F1: wheat after sugar-beet in three-year crop rotation; F2: wheat after wheat in three-year crop rotation; Fc+i: wheat in wheat + catch crop rotation; Fc: continuous wheat. The following two variables were analysed: grain yield and hectolitre weight. Repeated measures analyses of variance and stability analyses have been perfomed for the two variables. The stability analysis was conducted using: three variance methods, namely the coefficient of variability of Francis and Kannenberg, the ecovalence index of Wricke and the stability variance index of Shukla; the regression method of Eberhart and Russell; a method, proposed by Piepho, that computes the probability of one system outperforming another system. It has turned out that each of the stability methods used has enriched of information the simple variance analysis. The Piepho

  16. AN APPROACH TO TRANSGENIC CROP MONITORING

    Science.gov (United States)

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  17. Nutritionally Enhanced Food Crops; Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2015-02-01

    Full Text Available Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.

  18. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by the Editorial Board of 85 international experts from various fields of crop sciences.

  19. Marketing biofortified crops: insights from consumer research ...

    African Journals Online (AJOL)

    Marketing biofortified crops: insights from consumer research. ... To develop a global strategy for consumer marketing of biofortified crops, research is needed to understand consumer ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem.

    Directory of Open Access Journals (Sweden)

    Jiashu Chu

    Full Text Available The effect of cropping system on the distribution of organic carbon (OC and nitrogen (N in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0-40 cm at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0-20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the 0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm.

  1. Crop diversity prevents serious weed problems

    DEFF Research Database (Denmark)

    Melander, Bo

    2016-01-01

    Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified.......Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified....

  2. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  3. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  4. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief

  5. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of

  6. 7th International Crop Science Congress Announcement

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    August 14–19,2016 Beijing,China Crop Science—Innovation and SustainabilityInternational Crop Science Congress(ICSC)is a regular forum for crop scientists from around the world to integrate current knowledge into a global context and international applications.The Congress is organized about every four years beginning in July,1992.The International Crop Science Society has primary oversight for general

  7. Looking forward to genetically edited fruit crops.

    Science.gov (United States)

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    International Nuclear Information System (INIS)

    Manatt, Robert K; Schulte, Lisa A; Hall, Richard B; Hallam, Arne; Heaton, Emily A; Gunther, Theo; Moore, Ken J

    2013-01-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn–soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn–switchgrass system. A novel triticale–hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops. (letter)

  9. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    Science.gov (United States)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  10. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain

  11. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  12. Do green manures as winter cover crops impact the weediness and crop yield in an organic crop rotation?

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Viacheslav; Alaru, Maarika; Kauer, Karin; Luik, Anne

    2016-01-01

    The effects of different winter cover crops and their combination with composted cattle manure on weeds and crop yields were investigated within a five-field crop rotation (barley undersown with red clover, red clover, winter wheat, pea, potato) in three organic cropping systems. The control system (Org 0) followed the rotation. In organic systems Org I and Org II the winter cover crops were used as follows: ryegrass (Lolium perenne L. in 2011/2012) and a mixture of winter oilseed-rape (Brass...

  13. Ammonia volatilization from crop residues and frozen green manure crops

    Science.gov (United States)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  14. Impact of perennial energy crops income variability on the crop selection of risk averse farmers

    International Nuclear Information System (INIS)

    Alexander, Peter; Moran, Dominic

    2013-01-01

    The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data. - Highlights: ► Energy crop and conventional crop incomes suggested as uncorrelated. ► Diversification effect of energy crops investigated for a risk averse farmer. ► Energy crops indicated as optimal selection only on highest yielding UK sites. ► Large establishment grant rates to substantially alter crop selections.

  15. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Science.gov (United States)

    2010-03-30

    ... (protection for production losses only) within one Basic Provisions and the applicable Crop Provisions to..., Macadamia Nut Crop Insurance Provisions, Onion Crop Insurance Provisions, Dry Pea Crop Insurance Provisions... (protection for production losses only) and revenue protection (protection against loss of revenue caused by...

  16. Climate change and global crop yield: impacts, uncertainties and adaptation

    OpenAIRE

    Deryng, Delphine

    2014-01-01

    As global mean temperature continues to rise steadily, agricultural systems are projected to face unprecedented challenges to cope with climate change. However, understanding of climate change impacts on global crop yield, and of farmers’ adaptive capacity, remains incomplete as previous global assessments: (1) inadequately evaluated the role of extreme weather events; (2) focused on a small subset of the full range of climate change predictions; (3) overlooked uncertainties related to the ch...

  17. Organic fertigation for greenhouse crops

    DEFF Research Database (Denmark)

    Pokhrel, Bhaniswor

    2017-01-01

    productivity is suboptimal nutrient management resulting from poor synchronization between crop nutrient demand and nutrient release from organic fertilizers, affecting the physical, chemical and biological characteristics of the root zone environment, and thus plant growth and productivity. Compared to solid...... organic fertilizers, the application of liquid organic fertilizers potentially more accurately addresses the nutrient demand, because nutrients are readily available and different fertilizers are easily mixed. This PhD work explores the possibilities and challenges related to the application of liquid...... organic fertilizers in organic greenhouse crop production. Four greenhouse experiments were designed where different liquid organic fertilizers were prepared: acidic extraction or anaerobic digestion of red clover and white mustard silage, water extraction of composted chicken manure and flushing...

  18. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    , being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas......Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co...

  19. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  20. Selenium Enrichment of Horticultural Crops.

    Science.gov (United States)

    Puccinelli, Martina; Malorgio, Fernando; Pezzarossa, Beatrice

    2017-06-04

    The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  1. Selenium Enrichment of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Martina Puccinelli

    2017-06-01

    Full Text Available The ability of some crops to accumulate selenium (Se is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  2. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  3. Androgenesis in recalcitrant solanaceous crops.

    Science.gov (United States)

    Seguí-Simarro, José M; Corral-Martínez, Patricia; Parra-Vega, Verónica; González-García, Beatriz

    2011-05-01

    Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations.

  4. Simple weighing lysimeters for measuring reference and crop evapotranspiration

    Science.gov (United States)

    Knowledge of cotton crop evapotranspiration is important in scheduling irrigations, optimizing crop production, and modeling evapotranspiration and crop growth. The ability to measure, estimate, and predict evapotranspiration and cotton crop water requirements can result in better satisfying the cr...

  5. Microeconomic aspects of energy crops cultivation

    International Nuclear Information System (INIS)

    Bartolelli, V.; Mutinati, G.; Pisani, F.

    1992-01-01

    The topic of energy crops, namely of those crops designed to produce biomass to transform into ethanol, has been explored, in Italy and abroad, in all its technical and agronomical aspects. The microeconomic aspect, including the evaluation of convenience for the farmer in adopting such crops, is, on the contrary, less well researched. RENAGRI has developed a research methodology able to give information about the level of convenience of two energy crops (Sweet Sorghum and Topinambour) and has applied it to different Italian agricultural situations, in order to verify the existence of conditions favourable to the cultivation of the two crops, or to indicate the necessity of eventual subvention. (author)

  6. Handling Procedures of Vegetable Crops

    Science.gov (United States)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  7. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2008-09-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  8. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,Ph D,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  9. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access) in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  10. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  11. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    Science.gov (United States)

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  12. A meta-analysis of the impacts of genetically modified crops.

    Directory of Open Access Journals (Sweden)

    Wilhelm Klümper

    Full Text Available Despite the rapid adoption of genetically modified (GM crops by farmers in many countries, controversies about this technology continue. Uncertainty about GM crop impacts is one reason for widespread public suspicion.We carry out a meta-analysis of the agronomic and economic impacts of GM crops to consolidate the evidence.Original studies for inclusion were identified through keyword searches in ISI Web of Knowledge, Google Scholar, EconLit, and AgEcon Search.Studies were included when they build on primary data from farm surveys or field trials anywhere in the world, and when they report impacts of GM soybean, maize, or cotton on crop yields, pesticide use, and/or farmer profits. In total, 147 original studies were included.Analysis of mean impacts and meta-regressions to examine factors that influence outcomes.On average, GM technology adoption has reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%. Yield gains and pesticide reductions are larger for insect-resistant crops than for herbicide-tolerant crops. Yield and profit gains are higher in developing countries than in developed countries.Several of the original studies did not report sample sizes and measures of variance.The meta-analysis reveals robust evidence of GM crop benefits for farmers in developed and developing countries. Such evidence may help to gradually increase public trust in this technology.

  13. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  14. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    Science.gov (United States)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  15. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  16. Crop residue decomposition in Minnesota biochar-amended plots

    Science.gov (United States)

    Weyers, S. L.; Spokas, K. A.

    2014-06-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.

  17. Crop residue decomposition in Minnesota biochar amended plots

    Science.gov (United States)

    Weyers, S. L.; Spokas, K. A.

    2014-02-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.

  18. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Soil fertility and crop nutrient management practice standard. 205.203 Section 205.203 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT...

  19. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  20. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    Science.gov (United States)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  1. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  2. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  3. Minichromosomes: Vectors for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Jon P. Cody

    2015-07-01

    Full Text Available Minichromosome technology has the potential to offer a number of possibilities for expanding current biofortification strategies. While conventional genome manipulations rely on random integration of one or a few genes, engineered minichromosomes would enable researchers to concatenate several gene aggregates into a single independent chromosome. These engineered minichromosomes can be rapidly transferred as a unit to other lines through the utilization of doubled haploid breeding. If used in conjunction with other biofortification methods, it may be possible to significantly increase the nutritional value of crops.

  4. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  5. Induced mutations for crop improvement

    International Nuclear Information System (INIS)

    Micke, A.; Donini, B.; Maluszynski, M.

    1990-01-01

    Mutation induction has become an established tool in plant breeding to supplement existing germ plasma and to improve cultivars in certain specific traits. Hundreds of improved varieties have been released to farmers for many different crop species, demonstrating the economic value of the technology. Limitations arise mainly from the large mutagenized populations to be screened and from the unsatisfactory selection methods. Both limitations may be eased to some extent by advances in techniques of plant in-vitro culture. (author). Refs, 1 fig., 7 tabs

  6. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  7. Between strong continuity and almost continuity

    Directory of Open Access Journals (Sweden)

    J.K. Kohli

    2010-04-01

    Full Text Available As embodied in the title of the paper strong and weak variants of continuity that lie strictly between strong continuity of Levine and almost continuity due to Singal and Singal are considered. Basic properties of almost completely continuous functions (≡ R-maps and δ-continuous functions are studied. Direct and inverse transfer of topological properties under almost completely continuous functions and δ-continuous functions are investigated and their place in the hier- archy of variants of continuity that already exist in the literature is out- lined. The class of almost completely continuous functions lies strictly between the class of completely continuous functions studied by Arya and Gupta (Kyungpook Math. J. 14 (1974, 131-143 and δ-continuous functions defined by Noiri (J. Korean Math. Soc. 16, (1980, 161-166. The class of almost completely continuous functions properly contains each of the classes of (1 completely continuous functions, and (2 al- most perfectly continuous (≡ regular set connected functions defined by Dontchev, Ganster and Reilly (Indian J. Math. 41 (1999, 139-146 and further studied by Singh (Quaestiones Mathematicae 33(2(2010, 1–11 which in turn include all δ-perfectly continuous functions initi- ated by Kohli and Singh (Demonstratio Math. 42(1, (2009, 221-231 and so include all perfectly continuous functions introduced by Noiri (Indian J. Pure Appl. Math. 15(3 (1984, 241-250.

  8. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  9. Managing for Multifunctionality in Perennial Grain Crops

    Science.gov (United States)

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  10. Dynamics of world oil crops market

    Directory of Open Access Journals (Sweden)

    Knežević Marija

    2012-01-01

    Full Text Available According to the harvested area, oil crops are the second most important crops after cereals. Soybean is the most important oil crop in terms of production and trade of oilseeds and meals, and second most important in terms of production and trade of vegetable oils after palm oil. Dynamics of prices of derived oil crop products in the international market is conditioned by the relationship between supply and demand in the overall market of oil crops. The substitution of animal fats with vegetable oils in human nutrition, the expansion of biodiesel industry and intensification of livestock production have led to increased demand for oil crops. The objective of this paper was to identify trends in production, consumption and trade of soybeans, rapeseed and sunflower and their derived products.

  11. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  12. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  13. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  14. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    Science.gov (United States)

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  15. The Economics of Genetically Modified Crops

    OpenAIRE

    Matin Qaim

    2009-01-01

    Genetically modified (GM) crops have been used commercially for more than 10 years. Available impact studies of insect-resistant and herbicide-tolerant crops show that these technologies are beneficial to farmers and consumers, producing large aggregate welfare gains as well as positive effects for the environment and human health. The advantages of future applications could even be much bigger. Given a conducive institutional framework, GM crops can contribute significantly to global food se...

  16. Ethics and Transgenic Crops: a Review

    OpenAIRE

    Robinson, Jonathan

    1999-01-01

    This article represents a review of some of the ethical dilemmas that have arisen as a result of the development and deployment of transgenic crop plants. The potential for transgenic crops to alleviate human hunger and the possible effects on human health are discussed. Risks and benefits to the environment resulting from genetic engineering of crops for resistance to biotic and abiotic stresses are considered, in addition to effects on biodiversity. The socio-economic impacts and distributi...

  17. Genetically Modified Crops and Food Security

    OpenAIRE

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the firs...

  18. The spatial impact of genetically modified crops

    OpenAIRE

    MUNRO, Alistair

    2008-01-01

    Although genetically modified (GM) organisms have attracted a great deal of public attention, analysis of their economic impacts has been less common. It is, perhaps, spatial externalities where the divergence between efficient and unregulated outcomes is potentially largest, because the presence of transgenic crops may eliminate or severely reduce the planting of organic varieties and other crops where some consumers have a preference for non-GM crops. This paper constructs a simple model of...

  19. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  20. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  1. Crop improvement through mutation techniques in Chinese agriculture

    International Nuclear Information System (INIS)

    Wen, X.; Qu, L.

    1996-01-01

    Induced mutations for crop improvement is the most developed field in China's nuclear-agricultural sciences. It is well known that China has supported 22% of the world's population with only 7% of its cultivated land. The continued rise in population stresses the importance of increasing food production. Although developing crop varieties is efficient in increasing food production, plant breeders are approaching the outer limits of existing and useful genetic variability. As nuclear techniques provide an efficient route to inducing genetic mutations, more and more efforts have been focused on induced genetic variability. Induced mutations have become an effective way of improving cultivars and supplementing existing germplasm. Since 1981 two nationwide co-operation programs for mutation breeding, organized by the IAEA, have been carried out. 3 tabs

  2. Remote Sensing and Cropping Practices: A Review

    Directory of Open Access Journals (Sweden)

    Agnès Bégué

    2018-01-01

    Full Text Available For agronomic, environmental, and economic reasons, the need for spatialized information about agricultural practices is expected to rapidly increase. In this context, we reviewed the literature on remote sensing for mapping cropping practices. The reviewed studies were grouped into three categories of practices: crop succession (crop rotation and fallowing, cropping pattern (single tree crop planting pattern, sequential cropping, and intercropping/agroforestry, and cropping techniques (irrigation, soil tillage, harvest and post-harvest practices, crop varieties, and agro-ecological infrastructures. We observed that the majority of the studies were exploratory investigations, tested on a local scale with a high dependence on ground data, and used only one type of remote sensing sensor. Furthermore, to be correctly implemented, most of the methods relied heavily on local knowledge on the management practices, the environment, and the biological material. These limitations point to future research directions, such as the use of land stratification, multi-sensor data combination, and expert knowledge-driven methods. Finally, the new spatial technologies, and particularly the Sentinel constellation, are expected to improve the monitoring of cropping practices in the challenging context of food security and better management of agro-environmental issues.

  3. Origins of food crops connect countries worldwide

    Science.gov (United States)

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  4. Modelling crop yield in Iberia under drought conditions

    Science.gov (United States)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  5. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    Directory of Open Access Journals (Sweden)

    Jingting Zhang

    Full Text Available It has long been concerned how crop water use efficiency (WUE responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation and agronomic practices (fertilization and cropping patterns in the semi-arid area of northern China (SAC during two periods, 1983-1999 and 2000-2010 (drier and warmer. Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax in warm-dry environment while reach the stable minimum WUE (WUEmin in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping. Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  6. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    Science.gov (United States)

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  7. 78 FR 70485 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2013-11-26

    ... planting period may be deemed appropriate and actuarially sound. No change has been made in the final rule... in the table for crops in the Crop Insurance Handbook (CIH). Response: The option for providing a...

  8. 78 FR 33690 - Common Crop Insurance Regulations; Pecan Crop Insurance Provisions; Correction

    Science.gov (United States)

    2013-06-05

    ...-0008] RIN 0563-AC35 Common Crop Insurance Regulations; Pecan Crop Insurance Provisions; Correction... FR 13454-13460). The regulation pertains to the insurance of Pecans. DATES: Effective Date: June 5...: [[Page 33691

  9. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    International Nuclear Information System (INIS)

    Potgieter A B; Rodriguez D; Power B; Mclean J; Davis P

    2014-01-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (∼1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible

  10. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    OpenAIRE

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  11. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  12. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  13. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate h...

  14. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; van Tienderen, P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.W.; Visser, R.G.F.; van de Wiel, C.C.M.

    2012-01-01

    Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural

  15. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; Tienderen, van P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.; Visser, R.G.F.; Wiel, van de C.C.M.

    2012-01-01

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The

  16. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  17. Assessing climate change effects on European crop yields using the Crop Growth

    NARCIS (Netherlands)

    Supit, I.; Diepen, van C.A.; Wit, de A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F.

    2012-01-01

    Climate change impacts on potential and rainfed crop yields on the European continent were studied using output of three General Circulation Models and the Crop Growth Monitoring System in combination with a weather generator. Climate change impacts differ per crop type and per CO2 emission

  18. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  19. Status of market, regulation and research of genetically modified crops in Chile.

    Science.gov (United States)

    Sánchez, Miguel A; León, Gabriel

    2016-12-25

    Agricultural biotechnology and genetically modified (GM) crops are effective tools to substantially increase productivity, quality, and environmental sustainability in agricultural farming. Furthermore, they may contribute to improving the nutritional content of crops, addressing needs related to public health. Chile has become one of the most important global players for GM seed production for counter-season markets and research purposes. It has a comprehensive regulatory framework to carry out this activity, while at the same time there are numerous regulations from different agencies addressing several aspects related to GM crops. Despite imports of GM food/feed or ingredients for the food industry being allowed without restrictions, Chilean farmers are not using GM seeds for farming purposes because of a lack of clear guidelines. Chile is in a rather contradictory situation about GM crops. The country has invested considerable resources to fund research and development on GM crops, but the lack of clarity in the current regulatory situation precludes the use of such research to develop new products for Chilean farmers. Meanwhile, a larger scientific capacity regarding GM crop research continues to build up in the country. The present study maps and analyses the current regulatory environment for research and production of GM crops in Chile, providing an updated overview of the current status of GM seeds production, research and regulatory issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Uptake of iodine-131 in tropical crops

    International Nuclear Information System (INIS)

    Asprer, G.A.; Lansangan, L.M.

    1986-01-01

    Vegetable crops which include sweet potato tops (Ipomoea batatas), kangkong (Ipomoea repitans) and tomato plants were grown in dark-painted jars containing Hoagland-Arnon modified nutrient solution, utilizing the technique of hydroponics. The experiments for sweet potato tops and kangkong plants were duplicated for replicate studies and steady-state conditions were simulated throughout. Tomato plants were grown in the same manner but growth was observed to be hampered when starting from mature plants. Radioiodine was added to the nutrient medium containing 0.5% non-radioactive NaI solution. The solution in the jar was adjusted daily so as to maintain a constant concentration which would simulate routine releases that are essentially continuous. After incorporating the radioiodine to the solution, 10 ml aliquot was taken and counted for radioactivity by means of a 5'' x 5'' NaI(T1) detector connected to the multichannel gamma analyzer. Both plants and solution were counted for radioactivity at different time intervals using the same geometry. Results indicate that the activity in the plants were relatively higher than that of the solution. The activity tends to level off or decrease after a few days. The concentration factor which is the ratio of the activity in the plant (uCi/gm) over the activity in the medium (uCi/ml) varied for each time interval. 12 references, 2 figures, 3 tables

  1. The impact of the cropping system management on soil erosion and fertility in Northeastern Romania

    Energy Technology Data Exchange (ETDEWEB)

    Jitareanu, G.; Ailincai, C.; Bucur, D.; Raus, L.; Filipov, F.; Cara, M.

    2009-07-01

    The mass of total carbon from Cambic Chernozem in the Moldavian Plain has recorded significant increases at higher than N{sub 1}40 P{sub 1}00 rates, in organo-mineral fertilization and in 4-year crop rotation, which included melioration plants of perennial grasses and legumes. In maize continuous cropping and wheat-maize rotation, very significant values of the carbon content were found only in the organo-mineral fertilization, in 4-year crop rotations + reserve field cultivated with perennial legumes and under N{sub 1}40 P{sub 1}00 fertilization. In comparison with 4-year crop rotations, in wheat-maize rotation with melioration plants (annual and perennial legumes and perennial grasses), the mean carbon content from soil has diminished from 18.6 to 16.4 C, g.Kg{sup -}1 and the content in mobile phosphorus decreased from 51.6 to 36.8 P-Al, mg.kg{sup -}1. The 40 year use of 3 and 4-year crop rotations has determined the increase in total carbon mass and mobile phosphorus from soil by 10% (1.7 C g-kg{sup -}1) and 31%, respectively (11.8 P-Al mg.kg{sup -}1), against maize continuous cropping. (Author) 6 refs.

  2. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  3. The impact of the cropping system management on soil erosion and fertility in Northeastern Romania

    International Nuclear Information System (INIS)

    Jitareanu, G.; Ailincai, C.; Bucur, D.; Raus, L.; Filipov, F.; Cara, M.

    2009-01-01

    The mass of total carbon from Cambic Chernozem in the Moldavian Plain has recorded significant increases at higher than N 1 40 P 1 00 rates, in organo-mineral fertilization and in 4-year crop rotation, which included melioration plants of perennial grasses and legumes. In maize continuous cropping and wheat-maize rotation, very significant values of the carbon content were found only in the organo-mineral fertilization, in 4-year crop rotations + reserve field cultivated with perennial legumes and under N 1 40 P 1 00 fertilization. In comparison with 4-year crop rotations, in wheat-maize rotation with melioration plants (annual and perennial legumes and perennial grasses), the mean carbon content from soil has diminished from 18.6 to 16.4 C, g.Kg - 1 and the content in mobile phosphorus decreased from 51.6 to 36.8 P-Al, mg.kg - 1. The 40 year use of 3 and 4-year crop rotations has determined the increase in total carbon mass and mobile phosphorus from soil by 10% (1.7 C g-kg - 1) and 31%, respectively (11.8 P-Al mg.kg - 1), against maize continuous cropping. (Author) 6 refs.

  4. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    Science.gov (United States)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  5. Engineering insect-resistant crops: A review

    African Journals Online (AJOL)

    dgeorge

    African Journal of Biotechnology ... Transgenic crops engineered for enhanced levels of resistance to insect ... this background that research work targeting other candidate genes such as ... nisms, and potential deleterious environmental effects. ... The global market value of biotech crops was esti- .... located in repeat 11.

  6. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  7. Analysis of yield advantage in mixed cropping

    NARCIS (Netherlands)

    Ranganathan, R.

    1993-01-01

    It has long been recognized that mixed cropping can give yield advantages over sole cropping, but methods that can identify such yield benefits are still being developed. This thesis presents a method that combines physiological and economic principles in the evaluation of yield advantage.

  8. Crop yield response to increasing biochar rates

    Science.gov (United States)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  9. Engineering Sclerotinia Sclerotiorum Resistance in Oilseed Crops ...

    African Journals Online (AJOL)

    The fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary is worldwide in distribution and pathogenic to more than 400 plant species. This disease causes significant yield losses of various important crops including sunflower, canola, and soybean. Applying fungicides and crop rotation are currently the major methods of ...

  10. Effects of cropping systems on soil biology

    Science.gov (United States)

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  11. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  12. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  13. Kenaf and cowpea as sugarcane cover crops

    Science.gov (United States)

    The use of cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Typically, a Louisiana sugarcane field is replanted every four years due to declining yields, and,...

  14. Genetic diversity in a crop metapopulation

    NARCIS (Netherlands)

    Heerwaarden, van J.; Eeuwijk, van F.A.; Ross-Ibarra, J.

    2010-01-01

    The need to protect crop genetic resources has sparked a growing interest in the genetic diversity maintained in traditional farming systems worldwide. Although traditional seed management has been proposed as an important determinant of genetic diversity and structure in crops, no models exist that

  15. Mathematical analysis and simulation of crop micrometeorology

    NARCIS (Netherlands)

    Chen, J.

    1984-01-01

    In crop micrometeorology the transfer of radiation, momentum, heat and mass to or from a crop canopy is studied. Simulation models for these processes do exist but are not easy to handle because of their complexity and the long computing time they need. Moreover, up to now such models can

  16. Cover crop and CO2 emissions

    Science.gov (United States)

    Agricultural land management practices account for about 50% of soil organic carbon (SOC) loss. Restoring SOC is important to soil productivity and fertility. Management strategies to rebuild SOC include addition of manure or other organic amendments, increasing root biomass from crops, leaving crop...

  17. Emerging Viral Diseases of Tomato Crops

    NARCIS (Netherlands)

    Hanssen, I.M.; Lapidot, M.; Thomma, B.P.H.J.

    2010-01-01

    Viral diseases are an important limiting factor in many crop production systems. Because antiviral products are not available, control strategies rely on genetic resistance or hygienic measures to prevent viral diseases, or on eradication of diseased crops to control such diseases. Increasing

  18. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... degradation is dominating. We are currently testing the regression to predict degradation half-lives in crops. By providing mean degradation half-lives at 20°C for more than 300 pesticides, we reduce uncertainty and improve assumptions in current practice of health risk and impact assessments....

  19. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  20. Putting mechanisms into crop production models.

    Science.gov (United States)

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  1. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  2. Danish farmer’s perception of GM-crops

    DEFF Research Database (Denmark)

    Søndergaard, Janus; Pedersen, Søren Marcus; Gylling, Morten

    2005-01-01

    This paper presents a study of 185 farmer’s perception of GM-crops in Denmark. The respondent’s attitude to GM-crops mainly reflects a conservative view of the adoption of GM-crops. Among farmers only the exciting crops in rotation is seen as their future potential GM-crops. Findings from...

  3. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  4. Strategies for Improving Enterprise Standardization Management of Tropical Crop Machinery

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ There are two categories of tropical crop machinery. One comprises operation machinery that is used for planting, managing and harvesting tropical crops, while the other comprises process machinery for processing tropical crops. Tropical crop machinery is distinguished from other agricultural machinery by the special crops that such machinery cultivates and processes.

  5. 7 CFR 457.123 - Almond crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows: FCIC...

  6. 7 CFR 457.162 - Nursery crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery crop insurance provisions. 457.162 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.162 Nursery crop insurance provisions. The Nursery Crop Insurance Provisions for the 2006 and succeeding crop years are as follows: FCIC...

  7. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  8. [Soil quality assessment under different cropping system and straw management in farmland of arid oasis region].

    Science.gov (United States)

    Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng

    2018-03-01

    To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.

  9. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  10. Biodiversity, evolution and adaptation of cultivated crops.

    Science.gov (United States)

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Automatic crop row detection from UAV images

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Rasmussen, Jesper

    are considered weeds. We have used a Sugar beet field as a case for evaluating the proposed crop detection method. The suggested image processing consists of: 1) locating vegetation regions in the image by thresholding the excess green image derived from the orig- inal image, 2) calculate the Hough transform......Images from Unmanned Aerial Vehicles can provide information about the weed distribution in fields. A direct way is to quantify the amount of vegetation present in different areas of the field. The limitation of this approach is that it includes both crops and weeds in the reported num- bers. To get...... of the segmented image 3) determine the dominating crop row direction by analysing output from the Hough transform and 4) use the found crop row direction to locate crop rows....

  12. Crop insurance: Risks and models of insurance

    Directory of Open Access Journals (Sweden)

    Čolović Vladimir

    2014-01-01

    Full Text Available The issue of crop protection is very important because of a variety of risks that could cause difficult consequences. One type of risk protection is insurance. The author in the paper states various models of insurance in some EU countries and the systems of subsidizing of insurance premiums by state. The author also gives a picture of crop insurance in the U.S., noting that in this country pays great attention to this matter. As for crop insurance in Serbia, it is not at a high level. The main problem with crop insurance is not only the risks but also the way of protection through insurance. The basic question that arises not only in the EU is the question is who will insure and protect crops. There are three possibilities: insurance companies under state control, insurance companies that are public-private partnerships or private insurance companies on a purely commercial basis.

  13. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009.

    Directory of Open Access Journals (Sweden)

    Nicholas W Calderone

    Full Text Available In the US, the cultivated area (hectares and production (tonnes of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc. increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc. was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination.

  14. Benefits of seasonal forecasts of crop yields

    Science.gov (United States)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  15. Embodied crop calories in animal products

    International Nuclear Information System (INIS)

    Pradhan, Prajal; Lüdeke, Matthias K B; Reusser, Dominik E; Kropp, Jürgen P

    2013-01-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on

  16. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    Science.gov (United States)

    Shang, J.; Huang, X.; Liu, J.; Wang, J.

    2016-12-01

    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  17. Transfer of antibiotics from wastewater or animal manure to soil and edible crops.

    Science.gov (United States)

    Pan, Min; Chu, L M

    2017-12-01

    Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log K ow ), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Determinants of crop diversity and composition in Enset-coffee agroforestry homegardens of Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Tesfaye Abebe

    2013-08-01

    Full Text Available Households in much of the tropics depend for their livelihoods on the variety and continued production of food and other products that are provided by their own farms. In such systems, maintenance of agrobiodiversity and ensuring food security are important for the well being of the population. The enset-coffee agroforestry homegardens of Southern Ethiopia that are dominated by two native perennial crops, Coffee (Coffea arabica L. and Enset (Enset ventricosum Welw. Cheesman, are examples of such agricultural systems. This study was conducted in Sidama administrative zone of Southern Ethiopia to determine the factors that influence the diversity and composition of crops in the systems. Data were collected from 144 sample homegardens selected from four districts. Stepwise multiple regression analysis was used to relate indices of crop diversity and area share of major crops with the physical and socioeconomic factors. The study revealed that socioeconomic factors, mainly proximity to markets, affected negatively crop species richness. The production area of the main crops enset and coffee decreased with increasing proximity to market and road while that of maize and khat increased. At household level, farm size had a significant effect on area share of enset and coffee. As farm size increased the share of the cash crop, coffee increased but that of the staple, enset declined. Enset, which is the backbone of the system in terms of food security, is declining on small farms and the share of monoculture maize system is increasing. The trend towards declining agrobiodiversity, and reduction in the production area of the main perennial crops and their gradual replacement with monoculture fields could make the systems liable to instability and collapse. As these sites are high potential agricultural areas, intensification can be achieved by integrating high-value and more productive crops, such as fruits, spices and vegetables, while maintaining the

  19. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    Science.gov (United States)

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  20. Progress and challenges for abiotic stress proteomics of crop plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Precise, flexible and affordable gene stacking for crop improvement.

    Science.gov (United States)

    Chen, Weiqiang; Ow, David W

    2017-09-03

    The genetic engineering of plants offers a revolutionary advance for crop improvement, and the incorporation of transgenes into crop species can impart new traits that would otherwise be difficult to obtain through conventional breeding. Transgenes introduced into plants, however, can only be useful when bred out to field cultivars. As new traits are continually added to further improve transgenic cultivars, clustering new DNA near previously introduced transgenes keep from inflating the number of segregating units that breeders must assemble back into a breeding line. Here we discuss various options to introduce DNA site-specifically into an existing transgenic locus. As food security is becoming a pressing global issue, the old proverb resonates true to this day: "give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime." Hence, we describe a recombinase-mediate gene stacking system designed with freedom to operate, providing an affordable option for crop improvement by less developed countries where food security is most at risk.

  2. Effects of Temperature and Growing Seasons on Crop Water ...

    African Journals Online (AJOL)

    PROF HORSFALL

    The crop water requirement (CWR) depends on several factors including temperature and ...... infrastructure for collection, treatment and recycling of wastewater (MOEP, 2010 .... blue and grey water footprint of crops and derived crop products ...

  3. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  4. Functional molecular markers for crop improvement.

    Science.gov (United States)

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  5. Mutation Breeding for Crop Improvement

    International Nuclear Information System (INIS)

    Rajbir, S. Sangwan

    2017-01-01

    Chromosomes contain genes responsible of different traits of any organism. Induced mutation using chemical mutagens and radiation to modify molecular structure of plants played a major role in the development of high genetic variability and help develop new superior crop varieties. The Mutation Breeding is applicable to all plants and has generated lot of agronomically interesting mutants, both in vegetatively and seed propagated plants. The technique is easy but long and challenging to detect, isolate and characterize the mutant and gene. A specific dose of irradiation has to be used to obtain desired mutants. However, with modern molecular technique, the gene responsible for mutation can be identified. The CRISPR-Cas9 allows the removal of a specific gene which is responsible of unwanted trait and replacing it with a gene which induces a desired trait. There have been more than 2700 officially released mutant varieties from 170 different plant species in more than 60 countries throughout the world and A more participatory approach, involving all stakeholders in plant breeding, is needed to ensure that it is demand/farmers driven.

  6. Crop improvement projects in Peru

    International Nuclear Information System (INIS)

    Broeshart, H.

    1978-01-01

    Only two percent of the territory of Peru consists of arable land. Sixteen million people depend on the production of about three million hectares of land, which means that on the average only 1800 square metres is available per person. It is clear that Peru is one of the poorest countries of the world as far as available arable land is concerned and consequently it will have to drastically increase its agricultural production per unit area or import large quantities of agricultural products to feed its rapidly growing population. Agricultural research on the efficient use of fertilizers is being carried out by the regional experiment station (CRIA), by the National University of Agriculture, La Molina, Lima, dealing with programmes on maize, potatoes, cereals and forage crops, by national universities in the country and by specialized research institutes for tropical agriculture on sugar-cane, cotton, coffee and tea. Isotope and radiation techniques are a particularly effective means of determining the best cultural practices for the efficient use of fertilizers and water, and the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture has been involved in the organization of field and greenhouse programmes at experiment stations and universities in Peru since 1963

  7. GENETICALLY MODIFIED CROPS: INTERNATIONAL TRADE AND TRADE POLICY EFFECTS

    OpenAIRE

    George Frisvold; Jeanne Reeves

    2015-01-01

    Where approved, producers have adopted genetically modified (GM) crops extensively. Yet, areas not adopting GM crops account for large shares of production and consumption. GM crops differ from previous agricultural innovations because consumers may perceive them as fundamentally different from (and potentially inferior to) conventionally grown crops. Many countries maintain restrictions on production and importation of GM crops. GM crop adoption affects producers and consumers, not only thro...

  8. Short Rotation Crops in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L L

    1998-06-04

    The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy's Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy's Bioenergy Feedstock Development Program are described in an appendix to the paper.

  9. Completely continuous and weakly completely continuous abstract ...

    Indian Academy of Sciences (India)

    An algebra A is called right completely continuous (right weakly completely continuous) ... Moreover, some applications of these results in group algebras are .... A linear subspace S(G) of L1(G) is said to be a Segal algebra, if it satisfies the.

  10. Deconstructing crop processes and models via identities

    DEFF Research Database (Denmark)

    Porter, John Roy; Christensen, Svend

    2013-01-01

    This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables......, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included...

  11. Jerusalem artichoke as an agricultural crop

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Cosentino, G.P.; Wieczorek, A.; Duvnjak, Z.

    1984-01-01

    The Jerusalem artichoke (Helianthus tuberosus) is an agricultural crop which is of great potential for food, production of fuels, and industrial products. This crop gives a high yield in tubers, it grows better in poor soils than most crops, and it is resistant to pests and common plant diseases as well as to cold temperatures. In this article, the agronomic characteristics of this plant are discussed in detail. Special emphasis is given to the effects of various parameters on the production of both tubers and tops from the Jerusalem artichoke. 74 references.

  12. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  13. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  14. 4F CROPS: Future crops for food, feed, fibre and fuel

    Energy Technology Data Exchange (ETDEWEB)

    E. Alexopoulou, E.; Christou, M.; Eleftheriadis, I. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    2008-07-01

    As different sectors - food, feed, fiber, and fuels - compete for land, the yielding potential of the future non-food crops has to be as efficient as possible in order to minimize the competition for land. The main objective of 4F CROPS project is to survey and analyze all the parameters that will play an important role in successful non-food cropping systems in the agriculture of EU27 alongside the existing food crop systems. The work will start with the prediction of the future land use in short term (2020) and long term (2030), taking under consideration restrict factors for agriculture and the market demand for non-food crops. The cropping possibilities based on regional potential levels, ecology and climate will be determined. This group of non-food crops will be then subjected to a comparative cost analysis with conventional crops for the same time framework. Socio-economic impacts, like farmers' income, rural development, public development, and public acceptance will analyze. Then environmental implications will be assessed compared to their respective conventional products (fossil energy, conversional materials). Several environmental impacts will be assessed like soil quality and soil erosion, air quality and climate change, water issues, biodiversity and landscape by using LCA and EIE methods. The regulatory framework of the non-food crops will be considered including existing policies, co-existence and safety measures when the crops used for both food and non-food crops. All the collected information will be used for the formation of scenarios for successful non-food cropping alongside food cropping systems answering whether a completive bioeconomy is a viable option for EU27.

  15. The Crop Journal: A new scientific journal for the global crop science community

    Directory of Open Access Journals (Sweden)

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  16. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    management on quality parameters and (iv) environmentally benign crop rotation systems. Differently maturing maize varieties were grown in six different crop rotation systems (continuous maize with and without an undersown grass, maize as a main crop partially preceded by different winter catch crops and followed by winter wheat) and tested at two sites. Additional factors were sowing and/or harvest dates. Maize and cumulative biomass yields of the crop rotation systems were compared. Specific methane yield measurements were carried out to evaluate the energy performance of the tested crops. Quality was assessed either by measurements of the dry matter content or by using the near infrared reflectance spectroscopy for the determination of chemical composition. Results indicate that an environmentally benign crop rotation system requires nearly year-round soil cover to minimize nitrogen leaching. This can be achieved through the cultivation of undersown or catch crops and additional main crops alongside maize, such as winter wheat. Late maturing maize varieties can be cultivated at a site where the maize can build adequate dry matter contents due to a long growth period (late harvest date). The energy generation in terms of methane production was primarily dependent on high biomass yields. It could be further shown that the specific methane yield of maize increased with increasing starch content, digestibility and decreasing fiber content. To conclude, selected site-specific energy crops and crop rotation systems, with suitable crop management, (fertilizer and soil tillage) can produce high quality biomass and the highest net energy return. Lignocellulosic biomass can be optimized for combustion. Wet biomass is an optimal substrate for anaerobic digestion. Profitable energy production is characterized by a high land and energy use efficiency and especially high net energy yields. (orig.)

  17. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    Science.gov (United States)

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover

  18. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops

    Science.gov (United States)

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abs...

  19. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    Science.gov (United States)

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Specialty oilseed crops provide an attractive source of pollen for beneficial insects

    Science.gov (United States)

    The continuing pollinator crisis is due, in part, to the lack of year-round floral resources. In intensive farming regions, such as the Upper Midwest (UMW) of the USA, natural and pastoral vegetation largely has been replaced by annual crops such as corn, soybean, and wheat. Neither the energy (nect...

  1. Increases of soil phosphatase and urease activities in potato fields by cropping rotation practices

    Science.gov (United States)

    Potato yield in Maine has remained relatively constant for over 50 years. To identify and quantify constraints to potato productivity, we established Status Quo (SQ), Soil Conserving (SC), Soil Improving (SI), Disease Suppressive (DS), and Continuous Potato (PP) cropping systems under both rainfed ...

  2. Crop mergers: Management of soil contamination and leaf loss in alfalfa

    Science.gov (United States)

    Maximizing the capacity and subsequent efficiency of the forage harvester necessitates consolidation (raking or merging) of alfalfa cuttings. Although rotary rakes are in wide use, the use of continuous pickup belt mergers is increasing in the Midwestern U.S. Previous work on crop consolidation is l...

  3. 7 CFR 457.121 - Arizona-California citrus crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... quarantine, boycott, or refusal of any person to accept production. 10. Duties in the Event of Damage or Loss... insured acreage that you intend to abandon or no longer care for, if you and we agree on the appraised... agree with our appraisal, we may defer the claim only if you agree to continue to care for the crop. We...

  4. The fundament of food, crop protein production, is threatened by climate change

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Gislum, René; Jørgensen, Johannes Ravn

    2016-01-01

    Income growth, urbanization, and changes in lifestyles and food preferences combined with continuing population growth lead to increasing demand for plant protein production worldwide. All the proteins we eat are produced by crops, including the proteins we get from animals, which initially come...

  5. African Crop Science Journal: Editorial Policies

    African Journals Online (AJOL)

    The African Crop Science Journal was established with the primary objective of ... and all those concerned with agricultural development issues in the region. .... as possible, the editors avoid appointing reviewers from the country of origin of ...

  6. Sensitivity of annual and seasonal reference crop ...

    Indian Academy of Sciences (India)

    scheduling and water resources management. Ref- ... time, and refers to evapotranspiration rate from a reference ... variable per unit increase in independent variable. Sensitivity ...... Pereira L S 2007 Relating water productivity and crop.

  7. TALE nucleases and next generation GM crops.

    KAUST Repository

    Mahfouz, Magdy M.; Li, Lixin

    2011-01-01

    Site-specific and adaptable DNA binding domains are essential modules to develop genome engineering technologies for crop improvement. Transcription activator-like effectors (TALEs) proteins are used to provide a highly specific and adaptable DNA

  8. Institutional Factors Influencing Crop Farmers Adoption of ...

    African Journals Online (AJOL)

    E M IGBOKWE

    recommended agrochemical practices (RAPs) among crop farmers in Nigeria. A total of 260 ... It would neither be logical nor ethical to expect poor people to forego the benefits of ..... Credit use is expected to assist farmers purchase necessary.

  9. Smallholder integrated crop management (ICM) research planning ...

    African Journals Online (AJOL)

    Mo

    More women farmers were invited because they do most of the farming. Other participants came from ... smallholders to innovate their land and crop management strategies. This would be ..... Asian Farming Systems Association, 2 (2): 67.

  10. Crop physiology calibration in the CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2015-04-01

    scalable and adaptive scheme based on sequential Monte Carlo (SMC. The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  11. Storage of catch crops to produce biogas

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2014-01-01

    . On the contrary, the poor quality of IR silage, due to its high TS content, made it inappropriate as feedstock for biogas production. A TS content of 25-35% is preferable, to obtain a proper fermentation avoid leachate run-off and growth of Clostridium sp. or mold formation. Avoiding soil particles in the bales......Catch crop biomass is a promising co-substrate for manure-based biogas plants in Denmark since the cultivation of catch crops is mandatory to retain nutrients in the soil, contributing to protect the aquatic environment. In general, the growth period for catch crops is from harvest of the previous...... crop in July-August to the end of the growing season and harvest in late October. Hence, for use of the biomass in biogas production there is a need for storage of the biomass. Storage as silage would guarantee the availability of the feedstock for biogas production during the whole year. A proper...

  12. Energy Crops and the Common Agricultural Policy

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Kes; Nilsson, Helen; Tomescu, Mihail [Lund Univ. (Sweden). International Inst. for Industrial Environmental Economics (IIIEE)

    2006-07-15

    The Biomass Action Plan (BAP) for Europe outlines how to achieve the targets for bioenergy and energy crops defined by the European Commission and member states. However, it is the Common Agricultural Policy (CAP) that shapes the utilisation of agricultural land. This paper therefore reviews the supportive measures for energy crops in recent CAP reforms and investigates the effects on farmers in 'real-life' case studies from Sweden, Italy and Austria. This paper explores if the recent CAP reforms are sufficient to motivate farmers to cultivate energy crops; identifies the barriers and drivers for energy crops from the perspective of farmers; and suggests how to enhance supportive measures in the CAP to overcome barriers and complement the BAP.

  13. Biomass for energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1988-01-01

    On the basis of a field experiment, selected crops were evaluated for feasibility in producing biomass applicable as raw material for fuels. Both the main products and byproducts of the crops were investigated in the laboratory for qualitative characteristics and were subjected to methanogenic fermentation under mesophilic conditions. The biogas energy potential and gross energy potential were determined. Under the climatic conditions of Northern Europe, sugar beet (Beta vulgaris) was found to be a superior energy crop. White cabbage (Brassica oleracea var. Capitata), rhubarb (Rheum rhaponticum) and comfrey (Symphytum asperum) can be considered as potential crops for biomass. The agrotechnical and the economic aspects of the biomass production are being subjected to further investigation.

  14. The effect of catch crop species on selenium availability for succeeding crops

    DEFF Research Database (Denmark)

    Stavridou, Eleftheria; Young, Scott D.; Thorup-Kristensen, Kristian

    2012-01-01

    2007–10 investigated the ability of catch crops (Italian ryegrass, fodder radish and hairy vetch) under different fertiliser regimes to reduce soil Se content in the autumn and to increase its availability in spring to the succeeding crop. Results and Conclusions The catch crops (Italian ryegrass...... and fodder radish) increased water-extractable Se content in the 0.25–0.75msoil layer in only one of the experiments. Selenium uptake by the catch crops varied between 65 and 3263 mg ha−1, depending on species, year and fertilisation treatment; this corresponded to 0.1–3.0% of the water-extractable soil Se......Background and Aims Selenium (Se) is an essential nutrient for humans and animals. In order to ensure an optimal concentration of Se in crops, Se fertilisers are applied. Catch crops may be an alternative way to increase Se concentrations in vegetables. Methods Three experiments in Denmark between...

  15. Providing Continuous Assurance

    NARCIS (Netherlands)

    Kocken, Jonne; Hulstijn, Joris

    2017-01-01

    It has been claimed that continuous assurance can be attained by combining continuous monitoring by management, with continuous auditing of data streams and the effectiveness of internal controls by an external auditor. However, we find that in existing literature the final step to continuous

  16. A database for coconut crop improvement.

    Science.gov (United States)

    Rajagopal, Velamoor; Manimekalai, Ramaswamy; Devakumar, Krishnamurthy; Rajesh; Karun, Anitha; Niral, Vittal; Gopal, Murali; Aziz, Shamina; Gunasekaran, Marimuthu; Kumar, Mundappurathe Ramesh; Chandrasekar, Arumugam

    2005-12-08

    Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. http://www.bioinfcpcri.org.

  17. Modelling nutrient management in tropical cropping systems

    OpenAIRE

    Delve, R. (ed.); Probert, M. (ed.)

    2004-01-01

    Metadata only record In tropical regions, organic materials are often more important than fertilizers in maintaining soil fertility, yet fertilizer recommendations and most crop models are unable to take account of the level and quality of organic inputs that farmers use. Computer simulation models, such as the Agricultural Production Systems Simulator (APSIM) developed by CSIRO and the Queensland Department of Primary Industries, have proven their value in many cropping environments. Thes...

  18. Will energy crop yields meet expectations?

    International Nuclear Information System (INIS)

    Searle, Stephanie Y.; Malins, Christopher J.

    2014-01-01

    Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switchgrass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha −1  y −1 in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus × giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production. - Highlights: • This review covers Miscanthus, switchgrass, poplar, willow, and Eucalyptus. • High yields of energy crops are typically from small experimental plots. • Field scale yields are lower due to real world harvesting losses and edge effects. • The potential for yield improvement of energy crops is relatively limited. • Expectations must be realistic for successful policies and commercial production

  19. Integrated crop protection as a system approach

    OpenAIRE

    Haan, de, J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values connected to integrated crop protection. The role of integrated crop protection in prototyping new systems is discussed. The results of twenty years working with this prototyping methodology are pre...

  20. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    Science.gov (United States)

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  1. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  2. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  3. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector.

    Science.gov (United States)

    Huesing, Joseph E; Andres, David; Braverman, Michael P; Burns, Andrea; Felsot, Allan S; Harrigan, George G; Hellmich, Richard L; Reynolds, Alan; Shelton, Anthony M; Jansen van Rijssen, Wilna; Morris, E Jane; Eloff, Jacobus N

    2016-01-20

    Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.

  4. Evaluation for Multi Purpose Free Species for Inter Cropping with Maize

    International Nuclear Information System (INIS)

    Kimotho, L.M

    2002-01-01

    The continued increase in Kenya's population has forced people to move into the dry lands and hence increasing demand for food and tree products in these areas. This has forced farmers to clear the existing natural forests to pave way for agricultural activities. In order to address this problem an integrated approach of planting both trees and crops on farm has been adopted. A trial was established to compare the growth performance of some local and exotic timber tree species as well as examine their effect on maize (Zea mays) crop yield. the tree treatments included Acacia polyacantha, caesalpinia velutina, Grevillae robusta, melia azaderach, senna spectabilis and senna siamea, planted at 5m x 5m spacing, in a Randomized Complete Block Design with three (3) replicates. Maize crop (Dry Land Hybrid 1 -DH1) was used as inter-crop during November-January seasons. The maize was planted at a spacing of 90 cm by 40 cm. There was a control with no trees. Growth of the trees was based on increase in both height and girth while whilst the crop yield was asses d by estimating average plot yield under each species. Results indicated that, different tree species affected the maize grain yield differently: i.e. there was no tre effect on maize yield in the earlier stages but as the trees increased in age and hence size some species caused reduction in the maize grain yields while others did not cause any reduction as yet. However, depending on the individual needs various decisions could be made on whether to compromise the crop yields, which are minimal in order to attain some timber products in addition to food. The trial is continuing in order to establish how long each tree species would permit a maize crop

  5. Ecophysiology of horticultural crops: an overview

    Directory of Open Access Journals (Sweden)

    Restrepo-Díaz Hermann

    2010-04-01

    Full Text Available

    Horticultural crops include a wide range of commodities, such as fruits and vegetables that are highly valuable for humanity. They are extensively grown worldwide, and their production can be described as an open and highly complex system affected by many factors, among which we can count weather, soil and cropping system, as well as the interaction between these factors. The aim of environmental physiology is to characterize the interaction between environmental stress and crop response, in order to maximize both yield quantity and quality. This review presents the most recent findings about the effects of the main abiotic environmental factors (light, temperature, and water on whole plant physiology of horticultural crops. Environmental stresses can cause morpho-anatomical, physiological and biochemical changes in crops, resulting in a strong profit reduction. A clear understanding of environmental factors and their interaction with physiological processes is extremely important for improving horticultural practices (irrigation, light management, mineral nutrition, greenhouse design, etc., optimizing photosynthetic carbon assimilation and increasing fruit productivity and crop quality. In addition, the information obtained by ecophysiological studies can be incorporated into breeding programs or agricultural zoning strategies.

  6. Satellite image simulations for model-supervised, dynamic retrieval of crop type and land use intensity

    Science.gov (United States)

    Bach, H.; Klug, P.; Ruf, T.; Migdall, S.; Schlenz, F.; Hank, T.; Mauser, W.

    2015-04-01

    To support food security, information products about the actual cropping area per crop type, the current status of agricultural production and estimated yields, as well as the sustainability of the agricultural management are necessary. Based on this information, well-targeted land management decisions can be made. Remote sensing is in a unique position to contribute to this task as it is globally available and provides a plethora of information about current crop status. M4Land is a comprehensive system in which a crop growth model (PROMET) and a reflectance model (SLC) are coupled in order to provide these information products by analyzing multi-temporal satellite images. SLC uses modelled surface state parameters from PROMET, such as leaf area index or phenology of different crops to simulate spatially distributed surface reflectance spectra. This is the basis for generating artificial satellite images considering sensor specific configurations (spectral bands, solar and observation geometries). Ensembles of model runs are used to represent different crop types, fertilization status, soil colour and soil moisture. By multi-temporal comparisons of simulated and real satellite images, the land cover/crop type can be classified in a dynamically, model-supervised way and without in-situ training data. The method is demonstrated in an agricultural test-site in Bavaria. Its transferability is studied by analysing PROMET model results for the rest of Germany. Especially the simulated phenological development can be verified on this scale in order to understand whether PROMET is able to adequately simulate spatial, as well as temporal (intra- and inter-season) crop growth conditions, a prerequisite for the model-supervised approach. This sophisticated new technology allows monitoring of management decisions on the field-level using high resolution optical data (presently RapidEye and Landsat). The M4Land analysis system is designed to integrate multi-mission data and is

  7. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    Science.gov (United States)

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Climatic and management drivers of CO2 exchanges by a production crop: analysis over three successive 4-year cycles.

    Science.gov (United States)

    Buysse, Pauline; Moureaux, Christine; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (candidate ICOS site) in the Hesbaye region in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Eddy covariance, automatic and manual soil chambers, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), total Ecosystem Respiration (TER), Net Primary Productivity (NPP), autotrophic respiration, heterotrophic respiration and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. Climatic and seasonal evolutions of the carbon balance components were studied and crop carbon budgets were computed both at the yearly and crop rotation cycle scales. On average over the 12 years, NEE was negative but NBP was positive, i.e. as far as carbon exportation by harvest are included in the budget, the site behaved as a carbon source. Impacts of both meteorological drivers and crop management operations on CO2 exchanges were analyzed and compared between crop types, years, and rotation cycles. The uncertainties associated to the carbon fluxes were also evaluated and discussed.

  9. Doses and application seasons of potassium on soybean crop in succession the cover crops

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira Silva

    2014-02-01

    Full Text Available Potassium (K is the second nutrient that is required in larger amounts by soybean crop. With the use of high doses of that nutrient and increase of no-tillage areas in last years, some changes occurred in ways of this nutrient application, as well as the introduction of cover crops in the system for straw formation. Due those facts, the aim with this work was to study doses and times of potassium application for soybean sowed as succession for cover crops in no-tillage system, in a clayey Distrofic Red Latosol, in cerrado region. The experimental design was a randomized block with treatments arranged in 3x3x5 factorial scheme, with the following factors, cover crops: Pearl millet (Pennisetum glaucum and Proso millet (Panicum miliaceum and a control (fallow area, rates of K2O (0, 50 e 100 kg ha-1 and K2O application forms (100% in the cover crops; 100% at sowing of soybean; 100% in topdressing in soybean; 50% at sowing cover crops + 50% at soybean sowing; 50% at soybean sowing + 50% in topdressing in the soybean with four replicates. The Pennisetum glaucum as soybean predecessor crop yields higher dry matter content than the Panicum miliaceum in a short period of time. In clay soil with high content of potassium there was no response to the applied potassium levels. Full doses of potassium maintenance fertilization can be applied in the predecessor cover crop, at sowing or topdressing in soybean crop.

  10. Pea-barley intercropping and short-term subsequent crop effects across European organic cropping conditions

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    . In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with ‘extra’ barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark......) to grain N yield with 25–30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected...

  11. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    Science.gov (United States)

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  12. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    International Nuclear Information System (INIS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-01-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUE PAR ) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security

  13. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    pipes were pressed into the soil as enclosures to restrict root access to soil nitrogen. Soil samples were taken as close to 2-week intervals as possible from both inside and outside the enclosures. The crop rotation N values were also compared to triple replicated perennial native grassland plot areas (predominate sp. Western wheatgrass - Pascopyrum smithii, Blue grama - Bouteloua gracilis, Little bluestem - Schizachyrium scoparium, Switchgrass - Panicum virgatum). Trends identified for both NH4-N and NO3-N indicate that the values are relatively similar with respect to seasonal change over time. There was a greater amount of soil nitrogen accumulation inside the enclosures indicating that outside the enclosures roots scavenge nitrogen for plant growth and production. Seasonally, comparing the cropping system crops, NO3-N declined mid-July and then rebounded by mid-August and continued to increase until leveling off in September. Corn NO3-N, however, did not follow this pattern, but increased from early June to the end of June and remained high until the first of September. We will present the results of bulk density data and seasonal N fertility data providing evidence for the impact of previous CC on corn production. Probable explanation for the mid-summer nitrogen decline will be presented and justification for reduced fertilizer application will be discussed.

  14. The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols

    Science.gov (United States)

    Shukla, Sonali P.; Ruane, Alexander Clark

    2014-01-01

    Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve

  15. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  16. iPot: Improved potato monitoring in Belgium using remote sensing and crop growth modelling

    Science.gov (United States)

    Piccard, Isabelle; Gobin, Anne; Curnel, Yannick; Goffart, Jean-Pierre; Planchon, Viviane; Wellens, Joost; Tychon, Bernard; Cattoor, Nele; Cools, Romain

    2016-04-01

    Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these. The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market. The iPot project, financed by the Belgian Science Policy Office (Belspo), aims at providing the Belgian potato processing sector, represented by Belgapom, with near real time information on field condition (weather-soil), crop development and yield estimates, derived from a combination of satellite images and crop growth models. During the cropping season regular UAV flights (RGB, 3x3 cm) and high resolution satellite images (DMC/Deimos, 22m pixel size) were combined to elucidate crop phenology and performance at variety trials. UAV images were processed using a K-means clustering algorithm to classify the crop according to its greenness at 5m resolution. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) on the DMC images. Both DMC and UAV-based cover maps showed similar patterns, and helped detect different crop stages during the season. A wide spread field monitoring campaign with crop observations and measurements allowed for further calibration of the satellite image derived vegetation indices. Curve fitting techniques and phenological models were developed and compared with the vegetation indices during the season, both at trials and farmers' fields. Understanding and predicting crop phenology and canopy development is important for timely crop management and ultimately for yield estimates. An

  17. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    Science.gov (United States)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin

  18. Crop Dominance Mapping with IRS-P6 and MODIS 250-m Time Series Data

    Directory of Open Access Journals (Sweden)

    Murali Krishna Gumma

    2014-04-01

    Full Text Available This paper describes an approach to accurately separate out and quantify crop dominance areas in the major command area in the Krishna River Basin. Classification was performed using IRS-P6 (Indian Remote Sensing Satellite, series P6 and MODIS eight-day time series remote sensing images with a spatial resolution of 23.6 m, 250 m for the year 2005. Temporal variations in the NDVI (Normalized Difference Vegetation Index pattern obtained in crop dominance classes enables a demarcation between long duration crops and short duration crops. The NDVI pattern was found to be more consistent in long duration crops than in short duration crops due to the continuity of the water supply. Surface water availability, on the other hand, was dependent on canal water release, which affected the time of crop sowing and growth stages, which was, in turn, reflected in the NDVI pattern. The identified crop-wise classes were tested and verified using ground-truth data and state-level census data. The accuracy assessment was performed based on ground-truth data through the error matrix method, with accuracies from 67% to 100% for individual crop dominance classes, with an overall accuracy of 79% for all classes. The derived major crop land areas were highly correlated with the sub-national statistics with R2 values of 87% at the mandal (sub-district level for 2005–2006. These results suggest that the methods, approaches, algorithms and datasets used in this study are ideal for rapid, accurate and large-scale mapping of paddy rice, as well as for generating their statistics over large areas. This study demonstrates that IRS-P6 23.6-m one-time data fusion with MODIS 250-m time series data is very useful for identifying crop type, the source of irrigation water and, in the case of surface water irrigation, the way in which it is applied. The results from this study have assisted in improving surface water and groundwater irrigated areas of the command area and also

  19. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  20. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  1. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  2. Winter rye cover crop effect on corn seedling pathogens

    Science.gov (United States)

    Cover crops have been grown successfully in Iowa, but sometimes a cereal rye cover crop preceding corn can reduce corn yields. Our research examines the effect of a rye cover crop on infections of the succeeding corn crop by soil fungal pathogens. Plant measurements included: growth stage, height, r...

  3. Winter cover crop effect on corn seedling pathogens

    Science.gov (United States)

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  4. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance provisions. 457.142... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern potato crop insurance provisions. The Northern Potato Crop Insurance Provisions for the 2008 and succeeding...

  5. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    Science.gov (United States)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    the type of vegetation and its state of development in a more accurate way than using the ECOCLIMAP database. Finally, the CASA method was applied using the evapotranspiration images with FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) images from LSA-SAF to obtain Dry Matter Productivity (DMP) and crop yield. The potential of using evapotranspiration obtained from remote sensing in crop growth modeling is studied and discussed. Results of comparing the evapotranspiration obtained with ground truth data are shown as well as the influence of using high resolution information to characterize the vegetation in the evapotranspiration estimation. The values of DMP and yield obtained with the CASA method are compared with those obtained using crop growth modeling and field data, showing the potential of using this simplified remote sensing method for crop monitoring and yield forecasting. This methodology could be applied in an operative way to the entire MSG disk, allowing the continuous crop growth monitoring.

  6. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  7. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  8. Do cover crop mixtures have the same ability to suppress weeds as competitive monoculture cover crops?

    Directory of Open Access Journals (Sweden)

    Brust, Jochen

    2014-02-01

    Full Text Available An increasing number of farmers use cover crop mixtures instead of monoculture cover crops to improve soil and crop quality. However, only little information is available about the weed suppression ability of cover crop mixtures. Therefore, two field experiments were conducted in Baden-Württemberg between 2010 and 2012, to compare growth and weed suppression of monoculture cover crops and cover crop mixtures. In the first experiment, heterogeneous results between yellow mustard and the cover crop mixture occurred. For further research, a field experiment was conducted in 2012 to compare monocultures of yellow mustard and hemp with three cover crop mixtures. The evaluated mixtures were: “MELO”: for soil melioration; “BETA”: includes only plant species with no close relation to main cash crops in Central Europe and “GPS”: for usage as energy substrate in spring. Yellow mustard, MELO, BETA and GPS covered 90% of the soil in less than 42 days and were able to reduce photosynthetically active radiation (PAR on soil surface by more than 96% after 52 days. Hemp covered 90% of the soil after 47 days and reduced PAR by 91% after 52 days. Eight weeks after planting, only BETA showed similar growth to yellow mustard which produced the highest dry matter. The GPS mixture had comparatively poor growth, while MELO produced similar dry matter to hemp. Yellow mustard, MELO and BETA reduced weed growth by 96% compared with a no cover crop control, while hemp and GPS reduced weeds by 85% and 79%. In spring, weed dry matter was reduced by more than 94% in plots with yellow mustard and all mixtures, while in hemp plots weeds were only reduced by 71%. The results suggest that the tested cover crop mixtures offer similar weed suppression ability until spring as the monoculture of the competitive yellow mustard.

  9. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    Science.gov (United States)

    Yu, Kangfu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops. PMID:21811383

  10. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  11. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    Science.gov (United States)

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  12. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  13. Business Continuity Management Plan

    Science.gov (United States)

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT BUSINESS CONTINUITY MANAGEMENT PLAN December 2014......maximum 200 words) Navy Supply Systems Command (NAVSUP) lacks a business process framework for the development of Business Continuity Management

  14. Future contributions of crop modelling : from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement

    NARCIS (Netherlands)

    Hammer, G.L.; Kropff, M.J.; Sinclair, T.R.; Porter, J.R.

    2002-01-01

    Crop modelling has evolved over the last 30 or so years in concert with advances in crop physiology, crop ecology and computing technology. Having reached a respectable degree of acceptance, it is appropriate to review briefly the course of developments in crop modelling and to project what might be

  15. Weed Control with Cover Crops in Irrigated Potatoes

    OpenAIRE

    G.H. Mehring; J.E. Stenger; H.M. Hatterman-Valenti

    2016-01-01

    Field experiments at Oakes, ND, USA in 2010 and Carrington, ND, USA in 2011 were conducted to evaluate the potential for cover crops grown in the Northern Great Plains, USA in order to reduce weed emergence and density in irrigated potatoes. Treatments included five cover crop treatments and three cover crop termination treatments. Termination of cover crops was done with glyphosate, disk-till, and roto-till. Cover crop biomass accumulation was greatest for rye/canola and triticale at Oakes, ...

  16. Cover Crop (Rye) and No-Till System in Wisconsin

    OpenAIRE

    Alföldi, Thomas

    2014-01-01

    Erin Silva, University of Wisconsin, describes an organic no-till production technique using rye as cover crop to suppress weeds in the following production season. Using a roller-crimper, the overwintering rye is terminated at the time of cash crop planting, leaving a thick mat of plant residue on the soil surface. Soybeans are sown directly into the cover crop residue, allowing the cash crop to emerge through the terminated cover crop while suppressing weeds throughout the season. W...

  17. 78 FR 13454 - Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions

    Science.gov (United States)

    2013-02-28

    ... meaning of the definition to allow a choice of either four or six years of sales records to be used to... adding ``2014'' in its place; 0 b. In section 1 by: 0 i. Revising the definitions of ``approved average... Provisions for the 2013 crop year by changing the definition of two-year coverage module to one crop year...

  18. 78 FR 17606 - Common Crop Insurance Regulations; Arizona-California Citrus Crop Insurance Provisions

    Science.gov (United States)

    2013-03-22

    ... definition of ``crop year'' by removing the term ``citrus'' and adding the term ``insured'' in its place; 0 v... is planning to replace the category of ``type'' in the actuarial documents with four categories named... category of ``practice'' in the actuarial documents with four categories named ``cropping practice...

  19. Crop damage by primates: quantifying the key parameters of crop-raiding events.

    Directory of Open Access Journals (Sweden)

    Graham E Wallace

    Full Text Available Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species.

  20. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture

    Directory of Open Access Journals (Sweden)

    Khush Gurdev S

    2012-09-01

    Full Text Available Abstract The major scientific advances of the last century featured the identification of the structure of DNA, the development of molecular biology and the technology to exploit these advances. These breakthroughs gave us new tools for crop improvement, including molecular marker-aided selection (MAS and genetic modification (GM. MAS improves the efficiency of breeding programs, and GM allows us to accomplish breeding objectives not possible through conventional breeding approaches. MAS is not controversial and is now routinely used in crop improvement programs. However, the international debate about the application of genetic manipulation to crop improvement has slowed the adoption of GM crops in developing as well as in European countries. Since GM crops were first introduced to global agriculture in 1996, Clive James has published annual reports on the global status of commercialized GM crops as well as special reports on individual GM crops for The International Service for the Acquisition of Agri-biotech Applications (ISAAA. His 34th report, Global Status of Commercialized Biotech/ GM crops: 2011 [1] is essential reading for those who are concerned about world food security.

  1. The green, blue and grey water footprint of crops and derived crop products

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid.

  2. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    Science.gov (United States)

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  3. Smarandache Continued Fractions

    OpenAIRE

    Ibstedt, H.

    2001-01-01

    The theory of general continued fractions is developed to the extent required in order to calculate Smarandache continued fractions to a given number of decimal places. Proof is given for the fact that Smarandache general continued fractions built with positive integer Smarandache sequences baving only a finite number of terms equal to 1 is convergent. A few numerical results are given.

  4. Plants under continuous light

    NARCIS (Netherlands)

    Velez Ramirez, A.I.; Ieperen, van W.; Vreugdenhill, D.; Millenaar, F.F.

    2011-01-01

    Continuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges. For instance, most of the circadian clock-oriented experiments

  5. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  6. Genetically modified crops and food security.

    Directory of Open Access Journals (Sweden)

    Matin Qaim

    Full Text Available The role of genetically modified (GM crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  7. Availability and utility of crop composition data.

    Science.gov (United States)

    Kitta, Kazumi

    2013-09-04

    The safety assessment of genetically modified (GM) crops is mandatory in many countries. Although the most important factor to take into account in these safety assessments is the primary effects of artificially introduced transgene-derived traits, possible unintended effects attributed to the insertion of transgenes must be carefully examined in parallel. However, foods are complex mixtures of compounds characterized by wide variations in composition and nutritional values. Food components are significantly affected by various factors such as cultivars and the cultivation environment including storage conditions after harvest, and it can thus be very difficult to detect potential adverse effects caused by the introduction of a transgene. A comparative approach focusing on the identification of differences between GM foods and their conventional counterparts has been performed to reveal potential safety issues and is considered the most appropriate strategy for the safety assessment of GM foods. This concept is widely shared by authorities in many countries. For the efficient safety assessment of GM crops, an easily accessible and wide-ranging compilation of crop composition data is required for use by researchers and regulatory agencies. Thus, we developed an Internet-accessible food composition database comprising key nutrients, antinutrients, endogenous toxicants, and physiologically active substances of staple crops such as rice and soybeans. The International Life Sciences Institute has also been addressing the same matter and has provided the public a crop composition database of soybeans, maize, and cotton.

  8. Genetically Modified Crops and Food Security

    Science.gov (United States)

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15–20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy. PMID:23755155

  9. Crop Biometric Maps: The Key to Prediction

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2013-09-01

    Full Text Available The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular “identity.” This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  10. Genetically modified crops and food security.

    Science.gov (United States)

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  11. Crop biometric maps: the key to prediction.

    Science.gov (United States)

    Rovira-Más, Francisco; Sáiz-Rubio, Verónica

    2013-09-23

    The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular "identity." This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  12. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  13. An investigation into the energy use in relation to yield of traditional crops in central Himalaya, India

    International Nuclear Information System (INIS)

    Chandra, Abhishek; Saradhi, P. Pardha; Rao, K.S.; Saxena, K.G.; Maikhuri, R.K.

    2011-01-01

    Agrobiodiversity and agroecosystem management have changed in central Himalaya due to increasing emphasis on market economy and the motive 'maximization of profit'. Such changes have benefited local people in economic terms, but at the same time increased their vulnerability to environmental and economic risks. The present study addressed the issue of how the ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. Important characteristics of agrodiversity management are the use of bullocks for draught power, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. The present analysis of resource input-output energy currency in traditional crop production indicated that inputs into different crop systems were significantly higher during kharif season compared to rabi season both under rainfed and irrigated conditions. The maximum input for crop during rabi season (second crop season) was about 31% of that of kharif season (first crop season after fallow) under rainfed conditions. Under irrigated conditions the rabi season input was about 63% of kharif season input. Under rainfed conditions, paddy sole cropping required maximum inputs (231.31 GJ/ha) as compared to mustard sole cropping (11.79 GJ/ha). The present investigation revealed that the total energy inputs and outputs are higher for irrigated agriculture as compared to rainfed system, the difference in inputs is about 5 fold and outputs is about 2 fold. The output-input ratio showed that irrigated systems have higher values as compared to rainfed systems. -- Highlights: → Agriculture continues to be biggest employment provider in the region. → Ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. → Analysis of resource input-output energy currency in traditional crop production. → Improvements in crop

  14. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    Science.gov (United States)

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    Directory of Open Access Journals (Sweden)

    Gurbir Singh

    2018-04-01

    Full Text Available In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphorus, and sediment loss in stream water from a no-till corn-soybean rotation planted with winter cover crops cereal rye (Secale cereale and hairy vetch (Vicia villosa in non-tile drained paired watersheds in Illinois, USA. The paired watersheds are under mixed land use (agriculture, forest, and pasture. The control watershed had 27 ha of row-crop agriculture, and the treatment watershed had 42 ha of row crop agriculture with cover crop treatment (CC-treatment. During a 4-year calibration period, 42 storm events were collected and Event Mean Concentrations (EMCs for each storm event were calculated for total suspended solids (TSS, nitrate-N (NO3-N, ammonia-N (NH4-N, dissolved reactive phosphorus (DRP, and total discharge. Predictive regression equations developed from the calibration period were used for calculating TSS, NO3-N, NH4-N, and DRP losses of surface runoff for the CC-treatment watershed. The treatment period consisted of total 18 storm events, seven of which were collected during the cereal rye, eight in the hairy vetch cover crop season and three during cash crop season. Cover crops reduced TSS and discharge by 33% and 34%, respectively in the CC-treatment watershed during the treatment period. However, surprisingly, EMCs for NO3-N, NH4-N, and DRP did not decrease. Stream discharge from the paired-watersheds will continue to be monitored to determine if the current water quality results hold or new patterns emerge.

  16. Agricultural sectoral demand and crop productivity response across the world

    Science.gov (United States)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  17. Assessment of global grey water footprint of major food crops

    Science.gov (United States)

    Yang, Hong; Liu, Wenfeng; Antonelli, Marta

    2016-04-01

    Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.

  18. RNA interference in designing transgenic crops.

    Science.gov (United States)

    Ali, Nusrat; Datta, Swapan K; Datta, Karabi

    2010-01-01

    RNA interference (RNAi) is a sequence specific gene silencing mechanism, triggered by the introduction of dsRNA leading to mRNA degradation. It helps in switching on and off the targeted gene, which might have significant impact in developmental biology. Discovery of RNAi represents one of the most promising and rapidly advancing frontiers in plant functional genomics and in crop improvement by plant metabolic engineering and also plays an important role in reduction of allergenicity by silencing specific plant allergens. In plants the RNAi technology has been employed successfully in improvement of several plant species- by increasing their nutritional value, overall quality and by conferring resistance against pathogens and diseases. The review gives an insight to the perspective use of the technology in designing crops with innovation, to bring improvement to crop productivity and quality.

  19. Replacing fallow by cover crops: economic sustainability

    Science.gov (United States)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  20. FCDD: A Database for Fruit Crops Diseases.

    Science.gov (United States)

    Chauhan, Rupal; Jasrai, Yogesh; Pandya, Himanshu; Chaudhari, Suman; Samota, Chand Mal

    2014-01-01

    Fruit Crops Diseases Database (FCDD) requires a number of biotechnology and bioinformatics tools. The FCDD is a unique bioinformatics resource that compiles information about 162 details on fruit crops diseases, diseases type, its causal organism, images, symptoms and their control. The FCDD contains 171 phytochemicals from 25 fruits, their 2D images and their 20 possible sequences. This information has been manually extracted and manually verified from numerous sources, including other electronic databases, textbooks and scientific journals. FCDD is fully searchable and supports extensive text search. The main focus of the FCDD is on providing possible information of fruit crops diseases, which will help in discovery of potential drugs from one of the common bioresource-fruits. The database was developed using MySQL. The database interface is developed in PHP, HTML and JAVA. FCDD is freely available. http://www.fruitcropsdd.com/

  1. DAMAGE BY GAME ANIMALS IN AGRICULTURAL CROPS

    Directory of Open Access Journals (Sweden)

    Monika Sporek

    2014-06-01

    Full Text Available In the recent years the damage caused by the game animals to the agricultural crops has increased considerably. An immediate cause of this situation is an expanding population of big game, especially wild boar. This increase is primarily due to the changes in agrocenoses, dominated by large area maize cropping. The crop damage is compensated by hunting associations leasing the specific areas. The aim of this paper was to present the costs of the compensation incurred by the lease-holders of the hunting grounds. A cause - effect relationship between greater game damage and increased harvest of the game animals was demonstrated. The analysis was based on the data provided in the Statistical Yearbooks of the Central Statistical Office for 2000-2013. The study also indicated a problem of a decline in roe deer population, caused by more intense harvest resulting from farmer compensation claims.

  2. TALE nucleases and next generation GM crops.

    KAUST Repository

    Mahfouz, Magdy M.

    2011-04-01

    Site-specific and adaptable DNA binding domains are essential modules to develop genome engineering technologies for crop improvement. Transcription activator-like effectors (TALEs) proteins are used to provide a highly specific and adaptable DNA binding modules. TALE chimeric nucleases (TALENs) were used to generate site-specific double strand breaks (DSBs) in vitro and in yeast, Caenorhabditis elegans, mammalian and plant cells. The genomic DSBs can be generated at predefined and user-selected loci and repaired by either the non-homologous end joining (NHEJ) or homology dependent repair (HDR). Thus, TALENs can be used to achieve site-specific gene addition, stacking, deletion or inactivation. TALE-based genome engineering tools should be powerful to develop new agricultural biotechnology approaches for crop improvement. Here, we discuss the recent research and the potential applications of TALENs to accelerate the generation of genomic variants through targeted mutagenesis and to produce a non-transgenic GM crops with the desired phenotype.

  3. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2008-03-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  4. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  5. Energy potential of agricultural crops in Kosovo

    International Nuclear Information System (INIS)

    Sahiti, Naser; Sfishta, Avni; Gramatikov, Plamen

    2015-01-01

    Primary energy mix in Kosovo with 98 % consisting of lignite and only 2 % of water is far from portfolio of primary energy sources which could contribute to a sustainable and environmental friendly energy supply of the country. In order to improve the situation, government is supporting activities in favor of upgrading of electricity production capacities based on Renewable Energy Sources. Corresponding action plans and feed in tariffs are already in place. However, prior to any investment, one needs specific results on available potential. Current study provides results of the analysis of Kosovo potential for energy production by using of agricultural crops. Study is based on national statistics on available agricultural crops in Kosovo and provides results on biomass potential of crops, corresponding energy potential and an assessment of financial cost of energy produced.

  6. Enhancing crop innate immunity: new promising trends

    Directory of Open Access Journals (Sweden)

    Pin-Yao eHuang

    2014-11-01

    Full Text Available Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs, plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signalling.

  7. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  8. Principal component regression for crop yield estimation

    CERN Document Server

    Suryanarayana, T M V

    2016-01-01

    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  9. Unintended compositional changes in genetically modified (GM) crops: 20 years of research.

    Science.gov (United States)

    Herman, Rod A; Price, William D

    2013-12-04

    The compositional equivalency between genetically modified (GM) crops and nontransgenic comparators has been a fundamental component of human health safety assessment for 20 years. During this time, a large amount of information has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods; additionally, the genetic mechanisms behind these changes have been elucidated. After two decades, scientists are encouraged to objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general requirement for these studies to support the safety assessment of transgenic crops. It is concluded that suspect unintended compositional effects that could be caused by genetic modification have not materialized on the basis of this substantial literature. Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified on the basis of scientific uncertainty.

  10. Factors Constraining Local Food Crop Production in Indonesia: Experiences from Kulon Progo Regency, Yogyakarta Special Province

    Directory of Open Access Journals (Sweden)

    RADEN RIJANTA

    2013-01-01

    Full Text Available Local food crops are believed to be important alternatives in facing the problems of continuously growing price of food stuff worldwide. There has been a strong bias in national agricultural development policy towards the production of rice as staple food in Indonesia. Local food crops have been neglected in the agricultural development policy in the last 50 years, leading to the dependency on imported commodities and creating a vulnerability in the national food security. This paper aims at assessing the factors constraining local food production in Indonesia based on empirical experiences drawn from a research in Kulon Progo Regency, Yogyakarta Province. The government of Kulon Progo Regency has declared its commitment in the development of local food commodities as a part of its agricultural development policy, as it is mentioned in the long-term and medium-term development planning documents. There is also a head regency decree mandating the use of local food commodities in any official events organized by the government organisations. The research shows that there are at least six policy-related problems and nine technical factors constraining local food crops production in the regency. Some of the policy-related and structural factors hampering the production of local food crops consist of (1 long-term policy biases towards rice, (2 strong biases on rice diet in the community, (3 difficulties in linking policy to practices, (4 lack of information on availability of local food crops across the regency and (5 external threat from the readily available instant food on local market and (6 past contra-productive policy to the production of local food crops. The technical factors constraining local food production comprises (1 inferiority of the food stuff versus the instantly prepared food, (2 difficulty in preparation and risk of contagion of some crops, lack of technology for processing, (3 continuity of supply (some crops are seasonally

  11. Flower volatiles, crop varieties and bee responses.

    Directory of Open Access Journals (Sweden)

    Björn K Klatt

    Full Text Available Pollination contributes to an estimated one third of global food production, through both the improvement of the yield and the quality of crops. Volatile compounds emitted by crop flowers mediate plant-pollinator interactions, but differences between crop varieties are still little explored. We investigated whether the visitation of crop flowers is determined by variety-specific flower volatiles using strawberry varieties (Fragaria x ananassa Duchesne and how this affects the pollination services of the wild bee Osmia bicornis L. Flower volatile compounds of three strawberry varieties were measured via headspace collection. Gas chromatography showed that the three strawberry varieties produced the same volatile compounds but with quantitative differences of the total amount of volatiles and between distinct compounds. Electroantennographic recordings showed that inexperienced females of Osmia bicornis had higher antennal responses to all volatile compounds than to controls of air and paraffin oil, however responses differed between compounds. The variety Sonata was found to emit a total higher level of volatiles and also higher levels of most of the compounds that evoked antennal responses compared with the other varieties Honeoye and Darselect. Sonata also received more flower visits from Osmia bicornis females under field conditions, compared with Honeoye. Our results suggest that differences in the emission of flower volatile compounds among strawberry varieties mediate their attractiveness to females of Osmia bicornis. Since quality and quantity of marketable fruits depend on optimal pollination, a better understanding of the role of flower volatiles in crop production is required and should be considered more closely in crop-variety breeding.

  12. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  13. Carbon budget over 12 years in a production crop under temperate climate

    Science.gov (United States)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9

  14. The effects of climatic change on crop production. Results of a five-year research project

    Energy Technology Data Exchange (ETDEWEB)

    Mela, T.; Carter, T.; Hakala, K.; Kaukoranta, T.; Laurila, H.; Niemi, K.; Saarikko, R.; Tiilikkala, K. [Agricultural Research Centre of Finland, Jokioinen (Finland); Hannukkala, A. [Agricultural Research Centre, Rovaniemi (Finland). Lapland Research Station

    1996-12-31

    The aim of this research project, funded jointly by SILMU and by the Agricultural Research Centre of Finland, was to evaluate the possible effects of changes in climate and carbon dioxide concentration on the growth, development and yield of field crops and on crop pests and diseases in Finland. The study focused on two cereal crops (spring wheat and spring barley), a grass species (meadow fescue), some common pathogens of cereals and potato, insect pests of small fruits and nematode risk of potato and sugar beet. The results of this study indicate the following effects on crop production of the `best guess` climate change anticipated for Finland by 2050: A lengthening of the potential growing season of 3-5 weeks. A northward expansion of about 250-500 km in suitability for cereal production. Increased yields of adapted spring cereals. New, longer-season cultivars would benefit from both higher temperatures and elevated CO{sub 2}. Improved potential for the cultivation of higher-yielding winter sown cereals. Increased grass yields due to a lengthening growing season and increased growth rates, assuming that water and nutrient limitations are minor. However, there is a possibility of reduced winter hardening under higher autumn temperatures and an increased risk of winter damage. Potential for the successful cultivation of new crops like maize in southern Finland. Increased potential for yield losses due to crop pests and diseases under climatic warming. The range of many species is expected to expand northwards, additional generations of some species would develop successfully, and new species may become established in Finland. The research is continuing as part of a new European Community project, and will explore a wider range of crop types, focusing on the effects of climate change on agricultural risk at national scale

  15. The effects of climatic change on crop production. Results of a five-year research project

    Energy Technology Data Exchange (ETDEWEB)

    Mela, T; Carter, T; Hakala, K; Kaukoranta, T; Laurila, H; Niemi, K; Saarikko, R; Tiilikkala, K [Agricultural Research Centre of Finland, Jokioinen (Finland); Hannukkala, A [Agricultural Research Centre, Rovaniemi (Finland). Lapland Research Station

    1997-12-31

    The aim of this research project, funded jointly by SILMU and by the Agricultural Research Centre of Finland, was to evaluate the possible effects of changes in climate and carbon dioxide concentration on the growth, development and yield of field crops and on crop pests and diseases in Finland. The study focused on two cereal crops (spring wheat and spring barley), a grass species (meadow fescue), some common pathogens of cereals and potato, insect pests of small fruits and nematode risk of potato and sugar beet. The results of this study indicate the following effects on crop production of the `best guess` climate change anticipated for Finland by 2050: A lengthening of the potential growing season of 3-5 weeks. A northward expansion of about 250-500 km in suitability for cereal production. Increased yields of adapted spring cereals. New, longer-season cultivars would benefit from both higher temperatures and elevated CO{sub 2}. Improved potential for the cultivation of higher-yielding winter sown cereals. Increased grass yields due to a lengthening growing season and increased growth rates, assuming that water and nutrient limitations are minor. However, there is a possibility of reduced winter hardening under higher autumn temperatures and an increased risk of winter damage. Potential for the successful cultivation of new crops like maize in southern Finland. Increased potential for yield losses due to crop pests and diseases under climatic warming. The range of many species is expected to expand northwards, additional generations of some species would develop successfully, and new species may become established in Finland. The research is continuing as part of a new European Community project, and will explore a wider range of crop types, focusing on the effects of climate change on agricultural risk at national scale

  16. Safety assessment of genetically modified crops

    International Nuclear Information System (INIS)

    Atherton, Keith T.

    2002-01-01

    The development of genetically modified (GM) crops has prompted widespread debate regarding both human safety and environmental issues. Food crops produced by modern biotechnology using recombinant techniques usually differ from their conventional counterparts only in respect of one or a few desirable genes, as opposed to the use of traditional breeding methods which mix thousands of genes and require considerable efforts to select acceptable and robust hybrid offspring. The difficulties of applying traditional toxicological testing and risk assessment procedures to whole foods are discussed along with the evaluation strategies that are used for these new food products to ensure the safety of these products for the consumer

  17. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  18. Individual plant care in cropping systems

    OpenAIRE

    Griepentrog, Hans W.; Nørremark, Michael; Nielsen, Henning; Blackmore, Simon

    2003-01-01

    Individual plant care cropping systems, embodied in precision farming, may lead to new opportunities in agricultural crop management. The objective of the project was to provide high accuracy seed position mapping of a field of sugar beet. An RTK GPS was retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 32 mm to 59 mm. The results showed that the overall accuracy of the estimated plant position...

  19. Bioethanol production from crops - recent developments

    International Nuclear Information System (INIS)

    Dalton, Colin

    1992-01-01

    The author notes much higher rates of ethanol production in Brazil and the United States of America than in the European Economic Community. While bioethanol from arable crops makes environmental sense there is, at present, a sizeable difference between the value of fuel ethanol (Pound 100-130/t) and the cost of producing it (Pound 236-Pound 450/t). This gap could be remedied using excise duty. Farmers would like to change crop production but await a political initiative. The technology for bioethanol production still needs some fine tuning, with ETBE (an ether produced from reacting isobutylene with ethanol) being preferred to other methods. (UK)

  20. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning

    International Nuclear Information System (INIS)

    Eckner, Jens; Peter, Christiane; Vetter, Armin

    2015-01-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  1. Nuclear agriculture and biotechnology: integrated approaches for crop improvement

    International Nuclear Information System (INIS)

    Suprasanna, P.; Venugopalan, V.

    2017-01-01

    Use of radiation and radioisotopes in agriculture is one of the most important fields of peaceful applications of atomic energy for societal benefit. They are used to induce genetic variability in crop plants to develop improved mutant varieties, to manage insect pests, to monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. So far, BARC has developed and released 42 Trombay mutant varieties in oilseeds (groundnut, mustard, soybean, sunflower), pulses (pigeonpea, blackgram, greengram, cowpea), rice and jute for commercial cultivation across the nation. Mutant characterization has been benefitted by genomics approaches and availability of crop genome sequencing. In this regard, studies are underway to utilize mutant germplasm for molecular characterization and understanding trait modification. The nuclear technologies have benefited the farmers, traders and end-users and will continue to play a significant role in addressing food and nutritional security. In this presentation, an overview will be given on the activities of the NABTD in the field of nuclear agriculture and biotechnology

  2. Coping mechanisms for crop plants in drought-prone environments.

    Science.gov (United States)

    Neumann, Peter M

    2008-05-01

    Drought is a major limitation to plant productivity. Various options are available for increasing water availability and sustaining growth of crop plants in drought-prone environments. After a general introduction to the problems of water availability, this review focuses on a critical evaluation of recent progress in unravelling mechanisms for modifying plant growth responses to drought. Investigations of key regulatory mechanisms integrating plant growth responses to water deficits at the whole-organism, cellular and genomic levels continue to provide novel and exiting research findings. For example, recent reports contradict the widespread conception that root-derived abscisic acid is necessarily involved in signalling for stomatal and shoot-growth responses to soil water deficits. The findings bring into question the theoretical basis for alternate-side root-irrigation techniques. Similarly, recent reports indicate that increased ABA production or increased aquaporin expression did not lead to improved drought resistance. Other reports have concerned key genes and proteins involved in regulation of flowering (FT), vegetative growth (DELLA), leaf senescence (IPT) and desiccation tolerance (LEA). Introgression of such genes, with suitable promoters, can greatly impact on whole-plant responses to drought. Further developments could facilitate the introduction by breeders of new crop varieties with growth physiologies tailored to improved field performance under drought. Parallel efforts to encourage the introduction of supplementary irrigation with water made available by improved conservation measures and by sea- or brackish-water desalination, will probably provide comprehensive solutions to coping with drought-prone environments.

  3. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  4. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  5. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Green biotechnology, nanotechnology and bio-fortification: perspectives on novel environment-friendly crop improvement strategies.

    Science.gov (United States)

    Yashveer, Shikha; Singh, Vikram; Kaswan, Vineet; Kaushik, Amit; Tokas, Jayanti

    2014-10-01

    Food insecurity and malnutrition are prominent issues for this century. As the world's population continues to increase, ensuring that the earth has enough food that is nutritious too will be a difficult task. Today one billion people of the world are undernourished and more than a third are malnourished. Moreover, the looming threat of climate change is exasperating the situation even further. At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of 'hidden hunger' resulting from malnourishment. It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New high-impact technologies such as green biotechnology, biofortification, and nanotechnology offer opportunities for boosting agricultural productivity and enhancing food quality and nutritional value with eco-friendly manner. These agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions, our planet will take as a result of climate change.

  7. Transgenic crops with an improved resistance to biotic stresses. A review

    Directory of Open Access Journals (Sweden)

    Tohidfar, M.

    2015-01-01

    Full Text Available Introduction. Pests, diseases and weeds (biotic stresses are significant limiting factors for crop yield and production. However, the limitations associated with conventional breeding methods necessitated the development of alternative methods for improving new varieties with higher resistance to biotic stresses. Molecular techniques have developed applicable methods for genetic transformation of a wide range of plants. Genetic engineering approach has been demonstrated to provide enormous options for the selection of the resistance genes from different sources to introduce them into plants to provide resistance against different biotic stresses. Literature. In this review, we focus on strategies to achieve the above mentioned objectives including expression of insecticidal, antifungal, antibacterial, antiviral resistance and herbicide detoxification for herbicide resistance. Conclusion. Regardless of the concerns about commercialization of products from genetically modified (GM crops resistant to biotic stresses, it is observed that the cultivation area of these crops is growing fast each year. Considering this trend, it is expected that production and commercialization of GM crops resistant to biotic stresses will continue to increase but will also extend to production of crops resistant to abiotic stresses (e.g. drought, salinity, etc. in a near future.

  8. Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.

    Science.gov (United States)

    Pearl, Stephanie A; Burke, John M

    2014-10-01

    • Underutilized crops are potentially valuable resources for meeting increasing food demands. Safflower, an oilseed crop, is an example of one such underutilized crop that thrives in moisture-limited areas. Characterization of the genetic diversity maintained within the gene pools of underutilized crops such as safflower is an important step in their further development.• A total of 190 safflower individuals, including 134 USDA accessions, 48 breeding lines from two private North American safflower breeding companies, and eight wild safflower individuals, were genotyped using 133 single nucleotide polymorphism (SNP) markers. We then used the resulting data to assess the amount and distribution of genetic diversity within and among these collections of safflower.• Although just a modest reduction in gene diversity was observed in the commercial breeding lines (relative to the other safflower groupings), safflower domestication was accompanied by a significant decrease in allelic richness. Further, our results suggest that most safflower breeding lines originated from a single pool of diversity within the Old World safflower germplasm.• Taken together, our results suggest that both the safflower germplasm collection and related, wild species harbor previously undocumented genetic diversity that could help fuel future improvement efforts. Paired with analyses of functional diversity, the molecular resources described herein will be thus be useful in the continued development of safflower as an oilseed crop. © 2014 Botanical Society of America, Inc.

  9. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices.

    Science.gov (United States)

    Eanes, Francis R; Singh, Ajay S; Bulla, Brian R; Ranjan, Pranay; Prokopy, Linda S; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers (n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  10. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices

    Science.gov (United States)

    Eanes, Francis R.; Singh, Ajay S.; Bulla, Brian R.; Ranjan, Pranay; Prokopy, Linda S.; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J.

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers ( n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  11. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Barbara Manachini

    2009-03-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  12. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Anna Corsini

    2011-02-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  13. UAV MULTISPECTRAL SURVEY TO MAP SOIL AND CROP FOR PRECISION FARMING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Sona

    2016-06-01

    Full Text Available New sensors mounted on UAV and optimal procedures for survey, data acquisition and analysis are continuously developed and tested for applications in precision farming. Procedures to integrate multispectral aerial data about soil and crop and ground-based proximal geophysical data are a recent research topic aimed to delineate homogeneous zones for the management of agricultural inputs (i.e., water, nutrients. Multispectral and multitemporal orthomosaics were produced over a test field (a 100 m x 200 m plot within a maize field, to map vegetation and soil indices, as well as crop heights, with suitable ground resolution. UAV flights were performed in two moments during the crop season, before sowing on bare soil, and just before flowering when maize was nearly at the maximum height. Two cameras, for color (RGB and false color (NIR-RG images, were used. The images were processed in Agisoft Photoscan to produce Digital Surface Model (DSM of bare soil and crop, and multispectral orthophotos. To overcome some difficulties in the automatic searching of matching points for the block adjustment of the crop image, also the scientific software developed by Politecnico of Milan was used to enhance images orientation. Surveys and image processing are described, as well as results about classification of multispectral-multitemporal orthophotos and soil indices.

  14. The Development of a Remote Sensor System and Decision Support Systems Architecture to Monitor Resistance Development in Transgenic Crops

    Science.gov (United States)

    Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen

    2008-01-01

    The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.

  15. Using the DNDC model to compare soil organic carbon dynamics under different crop rotation and fertilizer strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.; Liang, Y.; Xue, Q.; Chen, C.; Lin, X.

    2014-06-01

    Soil organic carbon (SOC) plays a vital role in determining soil fertility, water holding capacity and susceptibility to land degradation. On the Chinese Loess Plateau, a large amount of crop residues is regularly removed; therefore, this agricultural area mainly depends on fertilizer inputs to maintain crop yields. This paper aims to use a computer simulation model (DeNitrification and DeComposition, or DNDC) to estimate the changes of SOC content and crop yield from 1998 to 2047 under different cropping systems, providing some strategies to maintain the SOC in balance and to increase crop yields. The results demonstrated that: (i) single manure application or combined with nitrogen fertilizer could significantly enhance the SOC content and crop yield on the sloped land, terraced field and flat land; and (ii) in contrast to sloped land and terraced field, the SOC content and crop yield both continuously increased in flat fields, indicating that the flat field in this region is a good soil surface for carbon sequestration. These results emphasize that application of manure combined with nitrogen fertilizer would be a better management practice to achieve a goal of increasing soil carbon sequestration and food security. (Author)

  16. Test of a solar crop dryer

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S. [Teknologisk Institut. SolEnergiCentret, Taastrup (Denmark); Floejgaard Kristensen, E. [Danmarks JordbrugsForskning, Tjele (Denmark); Forman, T. [Aidt Miljoe A/S, Thorsoe (Denmark)

    2001-01-01

    One of the major goals of the project 'Test and Research Project into the Drying of Food and Wood Products with Solar Heat' was to develop and test a solar crop dryer for use in Ghana. Based on a survey in Ghana (Jensen, Frank and Kristensen, 1999) it was decided to develop a dryer for drying of maize for seed as the increase in value of the crop due the drying here would be high - the dryer may, however, also be used to dry other crops or other items - one unit will e.g. be erected in Ghana to test drying of fish. The capacity of the dryer was defined to be 500 kg having a collector area of approx 25 m{sup 2}. It was decided to let the dryer consist of 5 separate units each with a transparent collector area of 4.77 m{sup 2} and a capacity of approx. 100 kg. The modulized concept has several benfits: If one drying bed is operated improperly this will not affect the total quantity of crops being dried at that time. It is possible to dry different crops (creating different pressure drop) side by side without risking that the crop with the highest pressure drop will be dried improperly. Small dc fans are often cheaper than larger dc fans. The system will be less complex, and an even air distribution over the drying bed is easier obtainable. Finally it is possible to start with only one unit and then gradually increase the capacity of the solar dryer - this will make it easier to invest in a solar dryer. It was further decided that the fans of the dryer should be powered directly by PV-panels in order to make the dryer independent of an often unreliable, missing or expensive grid. The dryer is going to be erected and tested at Silwood Farms situated close to Accra. Silwood Farms has total land acreage of 210 acres where 176 acres are used for cultivating maize - the rest is used for gowing pineapple. A majority of the maize is processed into seed. The main harvest season for maize at Silwood Farms is August/September with a smaller harvest period in January

  17. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  18. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  19. Cutting Out Continuations

    DEFF Research Database (Denmark)

    Bahr, Patrick; Hutton, Graham

    2016-01-01

    In the field of program transformation, one often transforms programs into continuation-passing style to make their flow of control explicit, and then immediately removes the resulting continuations using defunctionalisation to make the programs first-order. In this article, we show how these two...... transformations can be fused together into a single transformation step that cuts out the need to first introduce and then eliminate continuations. Our approach is calculational, uses standard equational reasoning techniques, and is widely applicable....

  20. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    Science.gov (United States)

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life