WorldWideScience

Sample records for continental slope sediments

  1. Storm-driven delivery of sediment to the continental slope: Numerical modeling for the northern Gulf of Mexico

    Science.gov (United States)

    Harris, C. K.; Kniskern, T. A.; Arango, H.

    2016-02-01

    The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.

  2. Geochemistry of zinc in the sediments of the western continental shelf and slope of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, P.S.N.; Paropkari, A.L.; Rao, Ch.M.

    The bulk geochemistry of zinc in the sediments of the western continental shelf and slope of India and also the partition geochemistry of the sediments of the shelf and slope regions between Ratnagiri and Mangalore have been studied. The studies...

  3. Manganese cycling and its implication on methane related processes in the Andaman continental slope sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; Gonsalves, M.J.B.D.; Rajkumar, V.; Sheba, M.

    In the deep subsurface sediments of the Andaman continental slope, in situ methane generation/oxidation could be coupled to the cycling of Mn, as the fluid flow characterized by high methane and Mn could occur in accretionary wedge sediments...

  4. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    Science.gov (United States)

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  5. Clay sediment accumulation rates on the monsoon-dominated western continental shelf and slope region of India

    Digital Repository Service at National Institute of Oceanography (India)

    Borole, D.V.

    Clay accumulation rates shown in sediment cores from the nearshore to outer continental shelf and slope regions in water depths of 10-1246 m on the western continental margins of India were determined by the 210Pb dating technique. The 210Pb excess...

  6. Biogeochemistry of southern Australian continental slope sediments

    International Nuclear Information System (INIS)

    Veeh, H.H.; Crispe, A.J.; Heggie, D.T.

    1999-01-01

    Sediment cores from the middle to lower slope of the southern continental margin of Australia between the Great Australian Bight and western Tasmania are compared in terms of marine and terrigenous input signals during the Holocene. The mass accumulation rates of carbonate, organic carbon, biogenic Ba. and Al are corrected for lateral sediment input (focusing), using the inventory of excess 230 Th in the sediment normalised to its known production rate in the water column above each site. The biogenic signal is generally higher in the eastern part of the southern margin probably due to enhanced productivity associated with seasonal upwelling off southeastern South Australia and the proximity of the Subtropical Front, which passes just south of Tasmania. The input of Al, representing the terrigenous signal, is also higher in this region reflecting the close proximity of river runoff from the mountainous catchment of southeastern Australia. The distribution pattern of Mn and authigenic U, together with pore-water profiles of Mn ++ , indicate diagenetic reactions driven by the oxidation of buried organic carbon in an oxic to suboxic environment. Whereas Mn is reduced at depth and diffuses upwards to become immobilised in a Mn-rich surface layer. U is derived from seawater and diffuses downward into the sediment, driven by reduction and precipitation at a depth below the reduction zone of Mn. The estimated removal rate of U from seawater by this process is within the range of U removal measured in hemipelagic sediments from other areas, and supports the proposition that hemipelagic sediments are a major sink of U in the global ocean. Unlike Mn, the depth profile of sedimentary Fe appears to be little affected by diagenesis, suggesting that little of the total Fe inventory in the sediment is remobilised and redistributed as soluble Fe. Copyright (1999) Blackwell Science Pty Ltd

  7. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope

    Science.gov (United States)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.

    2014-02-01

    Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from winnowing and/or dilution) on the shelf and progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to OM enrichment at some sites within the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution.

  8. Assessment of submarine landslides hazard through geotechnical and rheological analysis of sediments on the French Atlantic continental slope

    Science.gov (United States)

    Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.

    2016-12-01

    In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.

  9. Origin and significance of high-grade phosphorite in a sediment core from the continental slope off Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Rao, Ch.M.; Thamban, M.; Natarajan, R.; Rao, B.R.

    A phosphorite crust was found at 380-390 cm depth interval of a sediment core collected from the topographic high occurring on the continental slope off Goa. This crust is fragile and grey to light brown in colour. Carbonate fluorapatite...

  10. A Spatial Model of Erosion and Sedimentation on Continental Margins

    National Research Council Canada - National Science Library

    Pratson, Lincoln

    1999-01-01

    .... A computer model that simulates the evolution of continental slope morphology under the interaction of sedimentation, slope failure, and sediment flow erosion has been constructed and validated...

  11. Benthic foraminiferal distribution in surface sediments along continental slope of the southern Okinawa Trough:dependance on water masses and food supply

    Institute of Scientific and Technical Information of China (English)

    向荣; 李铁刚; 杨作升; 阎军; 曹奇原

    2003-01-01

    Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Oki-nawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidlywith increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm themodem shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to thebottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corre-sponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, domi-nated by Cassidulina carinata, Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower con-tinental slope- trough bottom assemblage, dominated by Pullenia bulloides, Epistominella exigua andCibicidoides hyalinus, corresponds to deep water mass of the Okinawa Trough; and (5) trough bottomagglutinated assemblage, dominated by Rhabdammina spp., Bathysiphon flavidus, corresponds tostrongly dissolved environment of the trough bottom. The benthic foraminiferal fauna in the southemOkinawa Trough are controlled jointly by water masses and food supply. Water temperature, oxygenconcentration and carbonate dissolution of the water masses are important controlling factors especiallyfor the continental shelf break and trough bottom assemblages. The food supply also plays an importantrole in these benthic foraminiferal assemblages along the westem slope of the Okinawa Trough. Both theabundance and the 5 assemblages of benthic foraminifera correspond well to the organic matter supplyalong the continental slope and a lateral transport of TSM (total suspended matter) and POC (particulateorganic

  12. Can sea level rise cause large submarine landslides on continental slopes?

    Science.gov (United States)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  13. {sup 210}Pb-Excess and Sediment Accumulation Rates at the Iberian Continental Margin

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. P.; Oliveira, J. M.; Soares, A. M. [Nuclear and Technological Institute, Sacavem (Portugal)

    2013-07-15

    Sediments from the continental shelf, slope, and rise at the continental margin of northern Portugal and the adjacent Iberian abyssal basin were analysed for 210Pb, {sup 226}Ra, {sup 137}Cs and {sup 14}C. Pb-210 derived sedimentation rates at the continental shelf off the Portuguese coast were 0.2-0.6 cm/a. In some cores from fine sediment deposits at the outer shelf, the {sup 210}Pb excess continuum was interrupted and sediment layers were missing, suggesting that events such as sediment slides could have occurred. Higher sedimentation rates were determined in locations at the rise of the continental slope, confirming enhanced deposition by sediment slides. In the deeper Iberian Abyssal Basin, using the {sup 14}C age of sediment layers the sedimentation rate was determined at 3.2 cm/ka, thus four orders of magnitude lower than at the continental shelf. The spatial distribution of sedimentation rates determined by radionuclide based chronologies, suggested that fine sediments from river discharges are deposited mainly at the outer continental shelf. These deposits may became unstable with time and, occasionally, originate sediment slides that are drained by the canyons and reach the deep sea. The Iberian abyssal basin receives some advective contribution of these sediment slides and the sedimentation rate is one order of magnitude higher than in other abyssal basins of the NE Atlantic Ocean. (author)

  14. Clay mineral distribution on the Kerala continental shelf and slope

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nair, R.R.; Hashimi, N.H.

    Seventy-five sediment samples collected from the Kerala continental shelf and slope during the 17th and 71st Cruises of @iRV gaveshani@@ were analysed by X-ray diffraction for clay mineral cntent. The distribution of total clay (< 4~k fraction...

  15. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa). Consequences for sedimentation and southeast Atlantic upwelling

    Science.gov (United States)

    Séranne, Michel; Nzé Abeigne, César-Rostand

    1999-10-01

    Seismic reflection profiles on the slope of the south Gabon continental margin display furrows 2 km wide and some 200 m deep, that develop normal to the margin in 500-1500 m water depth. Furrows are characterised by an aggradation/progradation pattern which leads to margin-parallel, northwestward migration of their axes through time. These structures, previously interpreted as turbidity current channels, display the distinctive seismic image and internal organisation of sediment drifts, constructed by the activity of bottom currents. Sediment drifts were initiated above a major Oligocene unconformity, and they developed within a Oligocene to Present megasequence of general progradation of the margin, whilst they are markedly absent from the underlying Late Cretaceous-Eocene aggradation megasequence. The presence of upslope migrating sediment waves, and the northwest migration of the sediment drifts indicate deposition by bottom current flowing upslope, under the influence of the Coriolis force. Such landwards-directed bottom currents on the slope probably represent coastal upwelling, which has been active along the west Africa margin throughout the Neogene.

  16. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    Science.gov (United States)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  17. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    Science.gov (United States)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  18. Submarine slope failures along the convergent continental margin of the Middle America Trench

    Science.gov (United States)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but

  19. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  20. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    Science.gov (United States)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  1. Neogene sedimentation on the outer continental margin, southern Bering Sea

    Science.gov (United States)

    Vallier, T.L.; Underwood, M.B.; Gardner, J.V.; Barron, J.A.

    1980-01-01

    Neogene sedimentary rocks and sediments from sites on the outer continental margin in the southern Bering Sea and on the Alaska Peninsula are dominated by volcanic components that probably were eroded from an emergent Aleutian Ridge. A mainland continental source is subordinate. Most sediment in the marine environment was transported to the depositional sites by longshore currents, debris flows, and turbidity currents during times when sea level was near the outermost continental shelf. Fluctuations of sea level are ascribed both to worldwide glacio-eustatic effects and to regional vertical tectonics. Large drainage systems, such as the Yukon and Kuskokwim Rivers, had little direct influence on sedimentation along the continental slope and Unmak Plateau in the southern Bering Sea. Sediments from those drainage systems probably were transported to the floor of the Aleutian Basin, to the numerous shelf basins that underlie the outer continental shelf, and to the Arctic Ocean after passing through the Bering Strait. Environments of deposition at the sites along the outer continental margin have not changed significantly since the middle Miocene. The site on the Alaska Peninsula, however, is now emergent following shallow-marine and transitional sedimentation during the Neogene. ?? 1980.

  2. Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge

    Science.gov (United States)

    Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.

    2013-12-01

    We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean

  3. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  4. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: Estuary to continental slope

    Digital Repository Service at National Institute of Oceanography (India)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S.W.A.; Kitazato, H.

    %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water O2 concentrations. A strong re- lationship between %Corg and sediment grain size was seen for sediments within the OMZ, but lower relative Corg con- tents were found... by O2 availability, can explain the large ma- jority of %Corg variability when the shelf and slope are con- sidered as a whole. However, while O2 becomes the primary influence on %Corg for sediments below the OMZ, %Silt is the primary influence across...

  5. Transport and transfer rates in the waters of the continental shelf and slope: SEEP

    International Nuclear Information System (INIS)

    Biscaye, P.E.; Anderson, R.F.

    1993-01-01

    The overall Shelf Edge Exchange Processes (SEEP) Program, which began in 1980 or 1981, had as its goal the testing of a hypothesis with respect to the fate of particulate matter formed in and introduced into the waters of the continental shelf adjacent to the northern east coast of the US, i.e., the MAB. The original hypothesis was that a large proportion of the particles in general, and of the particulate organic carbon (POC) in particular, was exported from the shelf, across the shelf/slope break and front, into the waters of, and, to some degree, deposited in the sediments of the continental slope. This hypothesis was based on budgets of organic carbon and lead-210 that did not account for a large proportion of those species in the waters or sediments of the shelf, and on a carbon-rich band of sediments centered on the slope at ∼1,000 m water depth. The results of the first SEEP experiment, south of New England and Long Island (SEEP-1) suggested, but did not prove, that there was only a relatively small proportion of the carbon which was exported from the shelf to the slope. The objective of the second experiment -- SEEP-2 -- done under the subject grant, was to tighten the experiment in terms of the kinds of data collected, and to focus it more on the shelf and only the upper slope, where shelf-derived particles were thought to be deposited

  6. Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland

    Science.gov (United States)

    Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.

    2016-01-01

    Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.

  7. Filamentous fungal population and species diversity from the continental slope of Bay of Bengal, India

    Science.gov (United States)

    Das, Surajit; Lyla, Parameswari Somasundharan; Khan, Syed Ajmal

    2009-03-01

    Filamentous fungal diversity from the sediments of the continental slope of Bay of Bengal was studied. Sediment samples were collected during two voyages in 2004 and 2005. Filamentous fungal population from both the cruises showed a range of 5.17-59.51 CFU/g and 3.47-29.68 CFU/g, respectively. Totally 16 fungal genera were recorded from both the cruises. Aspergillus was found to be the dominant genus and the overall percentage occurrence was as follows: Deuteromycotina 74%, Ascomycotina 17%, Basidiomycotina 4% and non-sporulating 5%. Diversity indices were calculated and during both the cruises species richness ( d) varied from 0.912 to 3.622 and 1.443 to 4.588; evenness ( J') varied from 0.9183 to 1.000 and 0.8322 to 1.000 and Shannon-Wiener index ( H' log 2) varied from 0.9183 to 1.000 and 1.000 to 3.690. The higher diversity was found in Divipoint transect (northern Bay of Bengal). 95% confidence interval and ellipse showed that the stations were well lying within the funnel. Cluster analysis and MDS grouped the northern transects which showed higher diversity. BVSTEP resulted in isolation of 23 species which were most influential in the marine filamentous fungal diversity of the continental slope of Bay of Bengal. Thus, a lower population range and higher diversity of marine filamentous marine fungi in the sediments of the continental slope of Bay of Bengal was recorded.

  8. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico

    Science.gov (United States)

    Roberts, Harry H.; Feng, Dong; Joye, Samantha B.

    2010-11-01

    Authigenic carbonates from cold seeps on the middle and lower continental slope of the northern Gulf of Mexico (GOM) exhibit a wide range of mineralogical and stable isotopic compositions. These carbonates consist of concretions and nodules in surface sediments, hardgrounds of crusts and isolated slabs, and mounded buildups of blocks and slabs of up to over 10 meters in relief above the surrounding seafloor. Mineralogically, the carbonates are dominated by high-Mg calcite (HMC) and aragonite. However, low levels (oil, seawater CO2, and 13C-enriched residual CO2 from methanogenesis. A similarly large variability in δ18O values (2.5 to 6.7‰ PDB) demonstrates the geochemical complexity of the slope, with some samples pointing toward an 18O-enriched oxygen source that is possibly related to advection of 18O-enriched formation water and/or to the decomposition of gas hydrate. A considerable range of mineralogical and isotopic variations in cold-seep carbonate composition was noted even within individual study sites. However, common trends occur across multiple geographic areas. This situation suggests that local controls on fluid and gas flux, types of seep hydrocarbons, the presence or absence of gas hydrate in the near-surface sediment, and chemosynthetic communities, as well as the temporal evolution of the local hydrocarbon reservoir, all may play a part in determining carbonate mineralogy and isotope geochemistry. The carbon isotope data clearly indicate that between-site variation is greater than within-site variation. Seep carbonates formed on the middle and lower continental slope of the GOM do not appear to be substantially different from those found on the upper slope (<1000-m water depth). The highly variable fluids and gases that leave their geochemical imprints on seep carbonate of the middle and lower continental slope are similar to their outer shelf and upper slope counterparts.

  9. Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition

    Science.gov (United States)

    Lamy, F.; Hebbeln, D.; Wefer, G.

    The regional patterns of texture and composition of modern continental slope and pelagic sediments off Chile between 25°S and 43°S reflect the latitudinal segmentation of geological, morphological, and climatic features of the continental hinterland. Grain-size characteristics are controlled by the grain-size of source rocks, the weathering regime, and mode of sediment input (eolian off northern Chile vs fluvial further south). Bulk-mineral assemblages reveal a low grade of maturity. Regional variations are governed by the source-rock composition of the different geological terranes and the relative source-rock contribution of the Coastal Range and Andes, as controlled by the continental hydrology. The relative abundance of clay minerals is also predominantly influenced by the source-rock composition and partly by continental smectite neoformation. Latitudinal variations of illite crystallinities along the Chilean continental slope (and west of the Peru-Chile trench) clearly reflect modifications of the weathering regime which correspond to the strong climatic zonation of Chile.

  10. Characterising weak layers that accommodate submarine landslides on the Northwest African continental slope

    Science.gov (United States)

    Urlaub, M.; Krastel, S.; Geersen, J.; Schwenk, T.

    2017-12-01

    Numerous studies invoke weak layers to explain the occurrence of large submarine landslides (>100 km³), in particular those on very gentle slopes (translational, such that failure takes place along bedding-parallel surfaces at different stratigraphic depths. This suggests that failure occurs along weak layers, which are deposited repeatedly over time. Using high resolution seismic reflection data we trace several failure surfaces of the Cap Blanc Slide complex offshore Northwest Africa to ODP-Site 658. Core-seismic integration shows that the failure surfaces coincide with diatom oozes that are topped by clay. Along Northwest Africa diatom-rich sediments are typically deposited at the end of glacial periods. In the seismic data these oozes show up as distinct high amplitude reflectors due to their characteristic low densities. Similar high-amplitude reflectors embedded into low-reflective seismic units are commonly observed in shallow sediments (<100 m below seafloor) along the entire Northwest African continental slope. The failure surfaces of at least three large landslides coincide with such reflectors. As the most recent Pleistocene glacial periods likely influenced sediment deposition along the entire Northwest African margin in a similar manner we hypothesize that diatom oozes play a critical role for the generation of submarine landslides off Northwest Africa as well as globally within subtropical regions. An initiative to drill the Northwest African continental slope with IODP is ongoing, within which this hypothesis shall be tested.

  11. Polycyclic aromatic hydrocarbon concentrations across the Florida Panhandle continental shelf and slope after the BP MC 252 well failure

    International Nuclear Information System (INIS)

    Snyder, Richard A.; Ederington-Hagy, Melissa; Hileman, Fredrick; Moss, Joseph A.; Amick, Lauren; Carruth, Rebecca; Head, Marie; Marks, Joel; Tominack, Sarah; Jeffrey, Wade H.

    2014-01-01

    Graphical abstract: The R/V Bellows, Florida Institute of Oceanography (FIO), with faculty and students from the University of West Florida (UWF), sampling mats of oil floating over the continental shelf south of Pensacola Florida during the BP MC 252 well failure. PAH concentrations in sediments on the shelf declined over time after the well was capped with a half life of ∼200 days. - Highlights: • PAHs concentrations were highest in slope sediments near the failed well site. • PAH concentrations in the shelf sediments were highest during the oil spill. • PAHs concentrations declined over time since the spill. - Abstract: The Florida Panhandle continental shelf environment was exposed to oil from the BP oil well failure in the Gulf of Mexico during 2010. Floating mats of oil were documented by satellite, but the distribution of dissolved components of the oil in this region was unknown. Shipek® grab samples of sediments were taken during repeated cruises between June 2010 and June 2012 to test for selected polycyclic aromatic hydrocarbons (PAHs) as indicators of this contamination. Sediments were collected as composite samples, extracted using standard techniques, and PAHs were quantified by GC/MS-SIM. PAHs in samples from the continental slope in May 2011 were highest near to the failed well site and were reduced in samples taken one year later. PAHs from continental shelf sediments during the spill (June 2010) ranged from 10 to 165 ng g −1 . Subsequent cruises yielded variable and reduced amounts of PAHs across the shelf. The data suggest that PAHs were distributed widely across the shelf, and their subsequent loss to background levels suggests these compounds were of oil spill origin. PAH half-life estimates by regression were 70–122 days for slope and 201 days for shelf stations

  12. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    Science.gov (United States)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study

  13. Architecture and sedimentary processes on the mid-Norwegian continental slope: A 2.7 Myr record from extensive seismic evidence

    Science.gov (United States)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2018-07-01

    Quaternary architectural evolution and sedimentary processes on the mid-Norwegian continental slope are investigated using margin-wide three- and two-dimensional seismic datasets. Of ∼100,000 km3 sediments delivered to the mid-Norwegian shelf and slope over the Quaternary, ∼75,000 km3 comprise the slope succession. The structural high of the Vøring Plateau, characterised by initially low (∼1-2°) slope gradients and reduced accommodation space, exerted a strong control over the long-term architectural evolution of the margin. Slope sediment fluxes were higher on the Vøring Plateau area, increasing up to ∼32 km3 ka-1 during the middle Pleistocene, when fast-flowing ice streams advanced to the palaeo-shelf edge. Resulted in a more rapid slope progradation on the Vøring Plateau, these rates of sediment delivery are high compared to the maximum of ∼7 km3 ka-1 in the adjacent sectors of the slope, characterised by steeper slope (∼3-5°), more available accommodation space and smaller or no palaeo-ice streams on the adjacent shelves. In addition to the broad-scale architectural evolution, identification of more than 300 buried slope landforms provides an unprecedented level of detailed, process-based palaeoenvironmental reconstruction. Channels dominate the Early Pleistocene record (∼2.7-0.8 Ma), during which glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Morphologic signature of glacigenic debris-flows appear within the Middle-Late Pleistocene (∼0.8-0 Ma) succession. Their abundance increases towards Late Pleistocene, marking a decreasing role for channelized turbidity currents and dense water flows. This broad-scale palaeo-environmental shift coincides with the intensification of Northern Hemispheric glaciations, highlighting first-order climate control on the sedimentary processes in high-latitude continental slopes.

  14. Investigation of the shelf break and continental slope in the Western part of the Black Sea using acoustic methods

    Science.gov (United States)

    Dutu, F.; Ion, G.; Jugaru Tiron, L.

    2009-04-01

    The Black Sea is a large marginal sea surrounded by a system of Alpine orogenic chains, including the Balkanides-Pontides, Caucasus, Crimea and North Dobrogea located to the south, northeast, north and northwest, respectively (Dinu et al., 2005). The north-western part of the Black Sea is the main depocentre for sediment supply from Central Europe via the Danube River, but also from Eastern Europe through the Ukrainian rivers Dniepr, Dniestr and Southern Bug (Popescu et al., 2004). The shelfbreak is located at water depths of 120-140 m southward of the Danube Canyon, and up to 170 m northward of the canyon possibly due to recent faulting which is very common in this area. The continental slope is dissected by numerous canyons, each of which is fed by several tributaries. The Danube Canyon (also known as Viteaz Canyon) is a large shelf-indenting canyon located in the north-western Black Sea and connected to the youngest channel-levee system of the Danube Fan (Popescu et al., 2004). The acoustic methods are a useful way for investigate the shelf break and the continental slope giving us information about landslides on the continental slope, the topography of the investigated area, the sedimentary zones affected by instability and to quantify the geometry of the underwater landslides. The measurements made on the continental slope from north-western part of the Black Sea gave us the possibility to make a digital terrain model. After processing the data the model offer information about the main access ways of the sediments through gravitational slide on the submarines canyons, with forming of turbidity currents, debris flows and also other transport/transformation phenomena of the sediments on the continental slope like submarine landslides and submarine collapse. References Dinu, C., Wong, H.K., Tambrea, D., Matenco, L., 2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics 410, 417-435. Popescu, I., Lericolais, G., Panin

  15. Submarine landslides on the north continental slope of the South China Sea

    Science.gov (United States)

    Wang, Weiwei; Wang, Dawei; Wu, Shiguo; Völker, David; Zeng, Hongliu; Cai, Guanqiang; Li, Qingping

    2018-02-01

    Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.

  16. Paleomagnetism and rock magnetism from sediments along a continental shelf-to-slope transect in the NW Barents Sea: Implications for geomagnetic and depositional changes during the past 15 thousand years

    Science.gov (United States)

    Caricchi, C.; Lucchi, R. G.; Sagnotti, L.; Macrì, P.; Morigi, C.; Melis, R.; Caffau, M.; Rebesco, M.; Hanebuth, T. J. J.

    2018-01-01

    Paleomagnetic and rock magnetic data were measured on glaciomarine silty-clay successions along an E-W sediment-core transect across the continental shelf and slope of the Kveithola paleo-ice stream system (south of Svalbard, north-western Barents Sea), representing a stratigraphic interval spanning the last deglaciation and the Holocene. The records indicate that magnetite is the main magnetic mineral and that magnetic minerals are distinctly less abundant on the shelf than at the continental slope. The paleomagnetic properties allow for the reconstruction of a well-defined characteristic remanent magnetization (ChRM) throughout the sedimentary successions. The stratigraphic trends of rock magnetic and paleomagnetic parameters are used for a shelf-slope core correlation and sediment facies analysis is applied for depositional processes reconstruction. The new paleomagnetic records compare to the PSV and RPI variation predicted for the core sites by a simulation using the global geomagnetic field variation models SHA.DIF.14k and CALS7K.2 and closest PSV and RPI regional stack curves. The elaborated dataset, corroborated by available 14C ages, provides a fundamental chronological framework to constrain the coupling of shelf-slope sedimentary processes and environmental changes in the NW Barents Sea region during and after deglaciation.

  17. Is there a distinct continental slope fauna in the Antarctic?

    Science.gov (United States)

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.

  18. The biogeochemistry of carbon in continental slope sediments: The North Carolina margin

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Levin, L.; DeMaster, D.; Plaia, G.; Martin, C.; Fornes, W.; Thomas, C.; Pope, R.

    1999-12-01

    The responses of the continental slope benthos to organic detritus deposition were studied with a multiple trace approach. Study sites were offshore of Cape Fear (I) and Cape Hatteras (III), N.C. (both 850 m water depth) and were characterized by different organic C deposition rates, macrofaunal densities (III>I in both cases) and taxa. Natural abundances of {sup 13}C and {sup 12}C in particulate organic carbon (POC), dissolved inorganic carbon (DIC) and macrofauna indicate that the reactive organic detritus is marine in origin. Natural abundance levels of {sup 14}C and uptake of {sup 13}C-labeled diatoms by benthic animals indicate that they incorporate a relatively young component of carbon into their biomass. {sup 13}C-labeled diatoms (Thalassiorsira pseudonana) tagged with {sup 210}Pb, slope sediment tagged with {sup 113}Sn and {sup 228}Th-labeled glass beads were emplaced in plots on the seafloor at both locations and the plots were sampled after 30 min., 1-1.5 d and 14 mo. At Site I, tracer diatom was intercepted at the surface primarily by protozoans and surface-feeding annelids. Little of the diatom C penetrated below 2 cm even after 14 months. Oxidation of organic carbon appeared to be largely aerobic. At Site III, annelids were primarily responsible for the initial uptake of tracer. On the time scale of days, diatom C was transported to a depth of 12 cm and was found in animals collected between 5-10 cm. The hoeing of tracer from the surface by the maldanid Praxillela sp. may have been responsible for some of the rapid nonlocal transport. Oxidation of the diatom organic carbon was evident to at least 10 cm depth. Anaerobic breakdown of organic matter is more important at Site III. Horizontal transport, which was probably biologically mediated, was an order of magnitude more rapid than vertical displacement over a year time scale. If the horizontal transport was associated with biochemical transformations of the organic matter, it may represent an

  19. Hydrocarbon prospects of the western continental slope of India as indicatEd. by surficial enrichment of organic carbon

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    The sediments from the continental mid-slope (150-1500 m depth) of the western margin are highly enriched in organic carbon (upto 16%) occurring as a long and wide band off Bombay to southern tip of India. Organic carbon is essentially of marine...

  20. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea)

    Science.gov (United States)

    Santín, Andreu; Grinyó, Jordi; Ambroso, Stefano; Uriz, Maria J.; Gori, Andrea; Dominguez-Carrió, Carlos; Gili, Josep-Maria

    2018-01-01

    Sponge assemblages on continental shelves and slopes around the world have been known about for centuries. However, due to limitations of the traditional sampling systems, data about individual sponge species rather than assemblages have been reported. This study characterizes sponge assemblages over a wide bathymetric range ( 50-350 m depth) and covering the entire continental shelf and the upper slope of the Menorca Channel, an area soon to be declared a Marine Protected Area (MPA) as part of the Natura 2000 Network. Quantitative analysis of 85 video-transects (a total linear distance of 75 km), together with representative collections to confirm species identifications, allowed us to discriminate six major assemblages. Differences in the assemblages mainly corresponded to differences in substrate type and depth. On the inner continental shelf, a semi-sciaphilous Axinellid assemblage dominated the rocky outcrops. Maërl beds on the inner continental shelf were dominated by Haliclona (Reniera) mediterranea, whereas the horny sponge Aplysina cavernicola and several other haliclonids mostly dominated maërl beds and rocky substrates of the outer shelf. Soft sediments on the shelf break hosted a monospecific Thenea muricata assemblage, whereas rocky substrates of the shelf break were characterized by a mixture of encrusting, columnar and fan-shaped sponges. Finally, the upper slope was dominated by Hamacantha (Vomerula) falcula and the hexactinellid Tretodictyum reiswigi. Overall, sponge diversity showed its highest values above the shelf break, plummeting severely on the upper slope. Despite this diversity decrease, we found very high densities (> 70 ind./m2) of sponges over vast areas of both the shelf break and the upper slope.

  1. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    Science.gov (United States)

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  2. Vertical and lateral flux on the continental slope off Pakistan: correlation of sediment core and trap results

    Science.gov (United States)

    Schulz, H.; von Rad, U.

    2014-06-01

    Due to the lack of bioturbation, the varve-laminated muds from the oxygen minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the nearshore part of the northeastern Arabian Sea. West of Karachi (Hab area), the results of two sediment trap stations (EPT and WPT) were correlated with 16 short sediment cores on a depth transect crossing the OMZ. The top of a distinct, either reddish- or light-gray silt layer, 210Pb-dated as AD 1905 ± 10, was used as an isochronous stratigraphic marker bed to calculate sediment accumulation rates. In one core, the red and gray layer were separated by a few (5-10) thin laminae. According to our varve model, this contributes water column above. All traps on the steep Makran continental slope show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1. Based on core results, the flux at the seafloor amounts to 4000 mg m-2 d-1 and agrees remarkably well with the bulk winter flux of material, as well as with the flux of the individual bulk components of organic carbon, calcium carbonate and opal. However, due to the extreme mass of remobilized matter, the high winter flux events exceeded the capacity of the shallow traps. Based on our comparisons, we argue that high-flux events must occur regularly during winter within the upper OMZ off Pakistan to explain the high accumulations rates. These show distribution patterns that are a negative function of water depth and distance from the shelf. Some of the sediment fractions show marked shifts in accumulation rates near the lower boundary of the OMZ. For instance, the flux of benthic foraminifera is lowered but stable below ~1200-1300 m. However, flux and sedimentation in the upper eastern Makran area are dominated by the large amount of laterally advected fine-grained material and by the pulsed nature of the resuspension events at the upper margin during winter.

  3. Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil.

    Science.gov (United States)

    Araujo, Beatriz Ferreira; Hintelmann, Holger; Dimock, Brian; Almeida, Marcelo Gomes; Rezende, Carlos Eduardo

    2017-07-01

    Mercury (Hg) may originate from both anthropogenic and natural sources. The measurement of spatial and temporal variations of Hg isotope ratios in sediments may enable source identification and tracking of environmental processes. In this study we establish the distribution of mercury concentrations and mercury isotope ratios in surface sediments of three transects along the continental shelf and slope in Campos Basin-RJ-Brazil. The shelf showed on average lower total Hg concentrations (9.2 ± 5.3 ng g -1 ) than the slope (24.6 ± 8.8 ng g -1 ). MMHg average concentrations of shelf 0.15 ± 0.12 ng g -1 and slope 0.13 ± 0.06 ng g -1 were not significantly different. Distinct differences in Hg isotope ratio signatures were observed, suggesting that the two regions were impacted by different sources of Hg. The shelf showed more negative δ 202 Hg and Δ 199 Hg values ranging from -0.59 to -2.19‰ and from -0.76 to 0.08‰, respectively. In contrast, the slope exhibited δ 202 Hg values from -0.29 to -1.82‰ and Δ 199 Hg values from -0.23 to 0.09‰. Mercury found on the shelf, especially along the "D" and "I" transects, is depleted in heavy isotopes resulting in more negative δ 202 Hg compared to the slope. Isotope ratios observed in the "D" and "I" shelf region are similar to Hg ratios commonly associated with plants and vegetation and very comparable to those detected in the estuary and adjoining mangrove forest, which suggests that Hg exported from rivers may be the dominating source of Hg in near coastal regions along the northern part of the shelf. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Distribution of some biochemical compounds in sediments of the shelf and slope regions of the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Dhargalkar, V.K.; Braganca, A.

    Surficial sediment samples collected from the continental shelf and slope of the Bay of Bengal were studied for the distribution of organic carbon and its constituent fractions such as carbohydrates, proteins, amino acids and lipids. Organic carbon...

  5. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    OpenAIRE

    A. Goswami; P. L. Olson; L. A. Hinnov; A. Gnanadesikan

    2015-01-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in th...

  6. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling

    Science.gov (United States)

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.

    1998-01-01

    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist of basal transgressive sands overlain by regressive highstand silts and quartz sands; and (2) although slope lithofacies variations are subdued, reworked sediments constitute lowstand deposits, causing the strongest, most extensive seismic reflections. Despite a primary eustatic control on sequence boundaries, New Jersey sequences were also influenced by changes in tectonics, sediment supply, and climate. During the early to middle Eocene, low siliciclastic and

  7. Shallow structure and stratigraphy of the carbonate West Florida continental slope and their implications to sedimentation and geohazards

    Science.gov (United States)

    Doyle, Larry J.

    1983-01-01

    An 1800-joule sparker survey of the West Florida continental slope between about 26?N and 29?15?N showed a top bed of Pleistocene age forming an irregular drape over a surface that is probably Pliocene. The contact between the top two layers is unconformable in the south and, in some places, shows karst collapse and solution features. Karst topography grades into a more hummocky erosional surface to the north, which in turn smoothes out; the contact become conformable still further north. A period of folding, which is widespread over the outer portion of the study area and which may be related to large scale mass wasting, occurred at about the same time represented by the unconformity. Significant subsidence has occurred as late as Pleistocene. The surface layer thins to a minimum (0 in the south) at about 525-meters water depth and then thickens again dramatically to the west, downslope. This thinning is interpreted to be due to the Loop Current, which flows from north to south in the area and which acts to block deposition and scour the bottom. Despite the fact that the margin is dominated by carbonates, usually associated with low sedimentation rates, there is widespread evidence of mass wasting affecting ancient and surficial deposits on the outer part of the upper slope. Three potential groups of geohazards identified are: 1. Potential bottom failure in areas where a thin top layer overlies the karst surface. 2. Potential for sliding and slumping. 3. Scour due to currents which could also affect drilling and engineering activities.

  8. Contributions to knowledge of the continental margin of Uruguay. Uruguayan continental margin: morphology, geology and identification of the base of the slope

    International Nuclear Information System (INIS)

    Preciozzi, F.

    2014-01-01

    This work is about the morphology, geology and the identification of the base of the slope in the The Uruguayan continental margin which corresponds to the the type of divergent, volcanic and segmented margins. Morphologically is constituted by a clearly defined continental shelf, as well as a continental slope that presents configuration changes from north to south and passes directly to the abyssal plain

  9. Evidence for submarine landslides and continental slope erosion related to fault reactivation during the last glaciation offshore eastern Canada

    Science.gov (United States)

    Saint-Ange, F.; Campbell, C.; MacKillop, K.; Mosher, D. C.; Piper, D. J.; Roger, J.

    2012-12-01

    Many studies have proposed that reactivation of dormant faults during deglaciation is a source of neotectonic activity in glaciated regions, but few have demonstrated the relationship to submarine landslides. In this study, seabed morphology and shallow geology of the outer continental margin adjacent to the Charlie Gibbs Fracture Zone off Newfoundland, Canada was investigated for evidence of this relationship. The glacial history and morphology of the margin suggest that the entire continental shelf in the area, coincident with major continental crustal lineaments, was ice-covered during the Last glacial cycle, and transverse troughs delineate the paleo-icestream drainage patterns. A recent investigation of Notre Dame Trough revealed the existence of large sediment failures on the shelf. The current study investigates complex seafloor erosion and widespread mass transport deposition (MTD) on the continental slope seaward of Notre Dame Trough, using recently-acquired high resolution seismic reflection data and piston cores. The new data reveal that a trough mouth fan (TMF) is present on the slope seaward of Notre Dame Trough. The Notre Dame TMF is characterized by a succession of stacked debris flows, but does not show a lobate shape in plan view like other classic TMFs. Instead, the Notre Dame TMF has abruptly-truncated margins suggesting post-depositional failure and erosion of the fan deposits. Seismic reflection data show that the locations of the failures along the TMF margin are coincident with a set of shallow faults; however the current dataset does not image the deeper portion of the faults. On the upper slope immediately south of the TMF, a narrow and deeply incised canyon is located along-trend with the Notre Dame Trough. The location of this canyon appears to be controlled by a fault. Downslope from this canyon, along the southern margin of the TMF, a 25 km wide, flat-floored, U-shaped valley was eroded into a succession of stacked MTD-filled channels

  10. Budget and residence time of 210Pb along the Gulf of Lion's continental slope (Northwestern Mediterranean Sea)

    International Nuclear Information System (INIS)

    Abassi, A.; Radakovitch, O.; Heussner, S.; Monaco, A.

    1997-01-01

    Concentration of 210 Pb has been measured in water and sediment trap samples collected on 7 experimental sites representative of the Gulf of Lion's continental margin. This marine system is characterised by a major continental input through the Rhone river and a powerful along-slope cyclonic current (Northern Current). From the distribution of bulk 210 Pb activities, it was intended to gain some information on the processes controlling the transport of trace metals at the ocean/continent boundary. Residence times of 210 Pb relative to scavenging in surface waters (0-100 m) showed a constant along-slope (i.e., downstream) decrease that can be related to increasing concentrations in suspended particles. Annual time-series of 210 Pb activities in settling particles were determined on samples collected by traps at 500 and 1000 m depth. From this data set, a budget for 210 Pb on this margin was established which permitted to determine the flux of 210 Pb theoretically adsorbed onto particles. This theoretical flux was compared, at each site, with fluxes effectively measured by traps and revealed that exchange processes - mainly in the form of large inputs of this nuclide (import of 47 to 93% of measured flux) - largely affect the 210 Pb distribution on this continental margin. (author)

  11. A benthic carbon budget for the continental slope off Cape Hatteras, N.C.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.J.; Blair, N.E.; DeMaster, D.J.; Jahnke, R.A.; Martens, C.S.

    1999-01-31

    The continental slope off Cape Hatteras, N.C. from approximately 36{degree} 00 minutes N to 35{degree} 20 minutes N is a region of relatively rapid sediment accumulation, organic matter deposition and subsequent remineralization. The measured fluxes are the highest reported for the slope off the eastern US Sediment accumulation rates range from 40 to 140 cm ky{sup -1}. Organic carbon deposition rates range from 3.5 to 7.4 moles C m{sup -2} yr{sup -1}. The areal coverage of this ''depocenter'' is probably controlled by interactions between physical oceanographic processes and the rugged topography of the seafloor. The organic matter deposited on the seafloor is primarily marine in origin and a mix of old and fresh particles. 73-93% of the depositing detritus is rapidly oxidized near the sediment/water interface. The controls on subsurface remineralization appear to be a complex function of the relative amount of metabolizable carbon delivered to the seabed both now and in the distant past (>=500ybp) and the extent of seabed irrigation. The age of DIC and CH{sub 4} produced within the seabed indicates that relatively young, reactive carbon is advected below the sediment surface and fuels subsurface remineralization. The stable isotopic composition of DIC produced within the seabed indicates the selective degradation of {sup 13}C-enriched fractions of the organic matter. The metabolizable fraction has a carbon isotopic signature of approx. -18{per_thousand};, while the organic matter that survives degradation and is buried has a d{sup 13}C closer to -20{per_thousand}.

  12. Manmade and natural radionuclides in north east Atlantic shelf and slope sediments: Implications for rates of sedimentary processes and for contaminant dispersion

    International Nuclear Information System (INIS)

    MacKenzie, A.B.; Stewart, A.; Cook, G.T.; Mitchell, L.; Ellet, D.J.; Griffiths, C.R.

    2006-01-01

    Results are presented for a study of manmade and natural radionuclides in north east Atlantic continental shelf and slope sediments to the west of Scotland. The data are interpreted in the context of sediment mixing and accumulation processes and are used to establish the westward extent of contamination of the sediment system. Offshore shelf and slope sediments were found to have post-glacial sedimentation rates of the order of 1 cm ky -1 but nearshore sediments had much higher accumulation rates of the order of 0.1 cm y -1 . Surface mixed layer depths of up to 6 cm were observed and non-local mixing affected most of the slope sediments, resulting in advective transport of surface sediment to depths of up to 10 cm. Biodiffusion coefficients for offshore shelf and slope sediments were dominantly in the range 10 -8 to 10 -9 cm 2 s -1 . The study confirmed that seawater contaminated with Sellafield waste radionuclides is dominantly entrained to the east of 7 deg. W and, consistent with this, higher levels of Sellafield derived radionuclides were confined to nearshore sediments, with lower levels to the west of 7 deg. W. 238 Pu/ 239,24 Pu data indicated that Sellafield contributed 75-91% of the total plutonium in coastal sediment but only about 4-8% of the total in slope sediments. By analogy, it can be concluded that a similar situation will apply to other contaminants in seawater entering the north east Atlantic via the North Channel

  13. Supervised classification of continental shelf sediment off western Donegal, Ireland

    Science.gov (United States)

    Monteys, X.; Craven, K.; McCarron, S. G.

    2017-12-01

    Managing human impacts on marine ecosystems requires natural regions to be identified and mapped over a range of hierarchically nested scales. In recent years (2000-present) the Irish National Seabed Survey (INSS) and Integrated Mapping for the Sustainable Development of Ireland's Marine Resources programme (INFOMAR) (Geological Survey Ireland and Marine Institute collaborations) has provided unprecedented quantities of high quality data on Ireland's offshore territories. The increasing availability of large, detailed digital representations of these environments requires the application of objective and quantitative analyses. This study presents results of a new approach for sea floor sediment mapping based on an integrated analysis of INFOMAR multibeam bathymetric data (including the derivatives of slope and relative position), backscatter data (including derivatives of angular response analysis) and sediment groundtruthing over the continental shelf, west of Donegal. It applies a Geographic-Object-Based Image Analysis software package to provide a supervised classification of the surface sediment. This approach can provide a statistically robust, high resolution classification of the seafloor. Initial results display a differentiation of sediment classes and a reduction in artefacts from previously applied methodologies. These results indicate a methodology that could be used during physical habitat mapping and classification of marine environments.

  14. Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea

    Science.gov (United States)

    Gardner, J.V.; Dean, W.E.; Vallier, T.L.

    1980-01-01

    Islands and the outer continental shelf and slope, indicates that Holocene sediment dynamics cannot be used to explain the observed distribution of surface sediment derived from the Aleutian Islands. We suggest that this pattern is relict and resulted from sediment dynamics during lower sea levels of the Pleistocene. ?? 1980.

  15. Glacier-influenced sedimentation on high-latitude continental margins

    National Research Council Canada - National Science Library

    Dowdeswell, J. A; Cofaigh, C. Ó

    2002-01-01

    This book examines the process and patterns of glacier-influenced sedimentation on high-latitude continental margins and the geophysical and geological signatures of the resulting sediments and landform...

  16. Assessment of Submarine Slope Stability on the Continental Margin off SW Taiwan

    Science.gov (United States)

    Hsu, Huai-Houh; Dong, Jia-Jyun; Cheng, Win-Bin; Su, Chih-Chieh

    2017-04-01

    The abundant gas hydrate reservoirs are distributed in the southwest (SW) off Taiwan. To explore this new energy, geological methods were systematically used and mainly emphasized on the storage potential evaluation. On the other hand, the correlation between gas hydrate dissociation and submarine slope stability is also an important issue. In this study, three submarine profiles on the active and passive continental margin were selected and assessed their slope stabilities by considering two influence factors (seismic forces and number of sedimentary layers). The gravity corers obtained from these three sites (Xiaoliuqiu, Yuan-An Ridge, and Pointer Ridge) to conduct soil laboratory tests. The physical property tests and isotropically consolidated undrained (CIU) triaxial tests were carried out to establish reference properties and shear strength parameters. Before the stability analysis is performed, it is also necessary to construct the seabed profile. For each submarine profile, data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along one line of ocean bottom seismometers were used to construct 2-D velocity sections. The seabed strata could be simplified to be only one sedimentary layer or to be multilayer in accordance with the velocity structure profile. Results show the safety factors (FS) of stability analysis are obviously different in considering the number of sedimentary layers, especially for a very thin layer of sediments on a steep slope. The simplified strata condition which treated all seabed strata as only one sedimentary layer might result in the FS lower than 1 and the slope was in an unstable state. On the contrary, the FS could be higher than 10 in a multilayer condition.

  17. Budget and residence time of {sup 210}Pb along the Gulf of Lion`s continental slope (Northwestern Mediterranean Sea)

    Energy Technology Data Exchange (ETDEWEB)

    Abassi, A.; Radakovitch, O.; Heussner, S.; Monaco, A. [Perpignan Univ., 66 (France). Lab. de Sedimentologie et Geochimie Marines

    1997-12-31

    Concentration of {sup 210}Pb has been measured in water and sediment trap samples collected on 7 experimental sites representative of the Gulf of Lion`s continental margin. This marine system is characterised by a major continental input through the Rhone river and a powerful along-slope cyclonic current (Northern Current). From the distribution of bulk {sup 210}Pb activities, it was intended to gain some information on the processes controlling the transport of trace metals at the ocean/continent boundary. Residence times of {sup 210}Pb relative to scavenging in surface waters (0-100 m) showed a constant along-slope (i.e., downstream) decrease that can be related to increasing concentrations in suspended particles. Annual time-series of {sup 210}Pb activities in settling particles were determined on samples collected by traps at 500 and 1000 m depth. From this data set, a budget for {sup 210}Pb on this margin was established which permitted to determine the flux of {sup 210}Pb theoretically adsorbed onto particles. This theoretical flux was compared, at each site, with fluxes effectively measured by traps and revealed that exchange processes - mainly in the form of large inputs of this nuclide (import of 47 to 93% of measured flux) - largely affect the {sup 210}Pb distribution on this continental margin. (author) 12 refs.

  18. Mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil

    Science.gov (United States)

    Araujo, Beatriz; Hintelmann, Holger; Dimock, Brian; Gomes de Almeida, Marcelo; Falcão, Ana Paula; de Rezende, Carlos Eduardo

    2016-04-01

    Mercury (Hg) is a global pollutant due to its ability to undergo long-range transport from source regions to remote parts of the world, and its ubiquitous presence in aquatic ecosystems. The Hg isotope ratios could be an effective tool for tracing the sources and process of Hg in the environment. This study aimed to establish the distribution of mercury in surface sediments of three transects (25- 3000m water depth) in continental shelf and slope in Campos Basin-RJ-Brazil, using the Hg isotopes to understand the geochemical processes relating to Hg cycling that occur in a subtropical coastal environment. The study area was divided into three transects: A (located to the south and close to a upwelling area), D (located opposite the mouth of the Paraiba do Sul River) and I (located north near the top of Vitória-ES). Sampling isobaths were 25, 50, 75, 100, 150, 400, 700, 1000, 1300, 1900, 2500 and 3000m. The Total Hg, MMHg and Hg stable isotopes were determined based on EPA Method 1631, EPA method 1630 and Foucher and Hintelmann (2006), respectively. The silt/clay ranged from 0.05 to 95%, and the organic carbon (OC) from 0.07 to 1.43 % for all transects. THg and MMHg concentrations in the shelf were 11.9 ± 7.2 (1.7- 22.2) ng.g-1 and 0.15 ± 0.12 (0.02 - 0.40) ng.g-1; in the slope 30.3 ± 9.2 (11.6 - 51.6) ng.g-1 and 0.13 ± 0.06 (0.03 -0.29) ng.g-1 , respectively. The δ202Hg and Δ199Hg varied from -0.32 to -1.85 ‰ (-0.79 ± 0.44‰) and -0.41 to 0.09 ‰ (-0.03 ± 0.12 ‰) for all transects, respectively. The delta values between both regions are significantly different, the shelf region showed δ202Hg from -0.59 to -2.19 ‰ (mean: -1.52 ±0.65) and Δ199Hg from - 0.53 to 0.08 ‰ (mean: -0.27 ±0.55) and the slope region were observed δ202Hg values from -0.32 to -1.82 ‰ (mean: -0.73 ±0.39 ‰ n=18) and gΔ199Hg from -0.23 to 0.09‰ (mean: -0.02 ±0.08‰ n=5). The slope appears to be enriched with heavier isotopes compared to the shelf, however, in the

  19. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  20. Geometry and significance of stacked gullies on the northern California slope

    Science.gov (United States)

    Field, M.E.; Gardner, J.V.; Prior, D.B.

    1999-01-01

    Recent geophysical surveys off northern California reveal patterns of gullies on the sea floor and preserved within continental-slope deposits that represent both erosional and aggradational processes. These surveys, conducted as part of the STRATAFORM project, combined multibeam bathymetry and backscatter with high-resolution seismic profiles. These data provide a new basis for evaluating gully morphology, distribution, and their significance to slope sedimentation and evolution. The continental margin off northern California exhibits an upper slope that has undergone both progradation and aggradation. The slope surface, which dips at sea floor. These erosional gullies locally truncate individual reflectors, have small depositional levees, and exhibit greater relief than do overlying gullies exposed on the sea floor. The older subsurface gullies document a period of widespread, but minor, erosion and downslope transport, presumably from a large, proximal sediment source. The cycles of downcutting and gully excavation are a minor part of the stratigraphic section, and are likely related to the combined influence of lower sea levels and higher sediment yields. During aggradation of the slope depositional sequences, sediment was draped over the gully features, producing sediment layers that mimic the underlying gully form. Consequently, gully morphology and geometries were preserved and migrated upwards with time. The processes that produce aggraded gully drape also resulted in laterally continuous strata and were most likely related to a period when the sediment source was dispersed from a more distal (10s of km) source, such as during present conditions. The draped sequences also contain a few new gullies, which indicates that gullies can be initiated at all or most stages of slope growth.

  1. Organic geochemistry of continental margin and deep ocean sediments

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, J.K.; Hunt, J.M.; Eglinton, T.; Dickinson, P.; Johnson, C.; Buxton, L.; Tarafa, M.E.

    1990-08-01

    The objective of this research continues to be the understanding of the complex processes of fossil fuel formation and migration. DOE funded research to date has focused on case histories'' of down-hole well profiles of light hydrocarbons, pyrograms, pyrolysis-GC and -GCMS parameters, and biomarker data from wells in the Louisiana and Texas Gulf Coasts the Alaskan North Slope. In the case of the Alaskan North Slope, geological data and one-dimensional maturation modeling have been integrated in order to better constrain possible source rocks, timing, and migration routes for oil and gas generation and expulsion processes.This period, biomarker analyses and organic petrographic analyses were completed for the Ikpikpuk well. In the case of the Gulf Coast, we have obtained a one-dimensional maturation model of the Cost B-1 well in E. Cameron field of the Louisiana Gulf Coast. The completed E. Cameron data set adds to the enigma of the Gulf Coast oils found on the continental shelf of Louisiana. If significant quantities of the oil are coming from relatively organic lean Tertiary rocks, then non-conventional'' expulsion and migration mechanisms, such as gas dissolved in oil must be invoked to explain the Gulf Coast oils reservoired on the Louisiana continental shelf. We are designing and starting to assemble a hydrous pyrolysis apparatus to follow, the laboratory, rates of generation and expulsion of sediment gases. Initiation of some new research to examine {delta}{sup 13}C of individual compounds from pyrolysis is also described. We are beginning to examine both the laboratory and field data from the Gulf Coast in the context of a Global Basin Research Network (GBRN). The purpose is to better understand subsurface fluid flow processes over geologic time in sedimentary basins and their relation to resource accumulation (i.e., petroleum and metal ores). 58 refs.

  2. The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin

    Science.gov (United States)

    Storlazzi, Curt D.; Reid, Jane A.

    2010-01-01

    Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.

  3. Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow

    Directory of Open Access Journals (Sweden)

    L. Merino-Martín

    2012-05-01

    Full Text Available Hydrological heterogeneity is recognized as a fundamental ecosystem attribute in drylands controlling the flux of water and energy through landscapes. Therefore, mosaics of runoff and sediment source patches and sinks are frequently identified in these dry environments. There is a remarkable scarcity of studies about hydrological spatial heterogeneity in restored slopes, where ecological succession and overland flow are interacting. We conducted field research to study the hydrological role of patches and slopes along an "overland flow gradient" (gradient of overland flow routing through the slopes caused by different amounts of run-on coming from upslope in three reclaimed mining slopes of Mediterranean-continental climate. We found that runoff generation and routing in non-rilled slopes showed a pattern of source and sink areas of runoff. Such hydrological microenvironments were associated with seven vegetation patches (characterized by plant community types and cover. Two types of sink patches were identified: shrub Genista scorpius patches could be considered as "deep sinks", while patches where the graminoids Brachypodium retusum and Lolium perenne dominate were classified as "surface sinks" or "runoff splays". A variety of source patches were also identified spanning from "extreme sources" (Medicago sativa patches; equivalent to bare soil to "poor sources" (areas scattered by dwarf-shrubs of Thymus vulgaris or herbaceous tussocks of Dactylis glomerata. Finally, we identified the volume of overland flow routing along the slope as a major controlling factor of "hydrological diversity" (heterogeneity of hydrological behaviours quantified as Shannon diversity index: when overland flow increases at the slope scale hydrological diversity diminishes.

  4. Environmental controls on the distribution of living (stained) benthic foraminifera on the continental slope in the Campos Basin area (SW Atlantic)

    Science.gov (United States)

    Yamashita, Cintia; Mello e Sousa, Silvia Helena de; Vicente, Thaisa Marques; Martins, Maria Virgínia; Nagai, Renata Hanae; Frontalini, Fabrizio; Godoi, Sueli Susana; Napolitano, Dante; Burone, Letícia; Carreira, Renato; Figueira, Rubens Cesar Lopes; Taniguchi, Nancy Kazumi; Rezende, Carlos Eduardo de; Koutsoukos, Eduardo Apostolos Machado

    2018-05-01

    Living (stained) benthic foraminifera from deep-sea stations in the Campos Basin, southeastern Brazilian continental margin, were investigated to understand their distribution patterns and ecology, as well as the oceanographic processes that control foraminiferal distribution. Sediments were collected from 1050 m to 1950 m of water depth during the austral winter of 2003, below the Intermediate Western Boundary Current (IWBC) and the Deep Water Boundary Current (DWBC). Based on statistical analysis, vertical flux of particulate organic matter and the grain size of sediment seem to be the main factors controlling the spatial distribution of benthic foraminifera. The middle slope (1050 m deep) is characterized by relatively high foraminiferal density and a predominance of phytodetritus-feeding foraminifera such as Epistominella exigua and Globocassidulina subglobosa. The occurrence of these species seems to reflect the Brazil Current System (BCS). The above-mentioned currents are associated with the relatively high vertical flux of particulate organic matter and the prevalence of sandy sediments, respectively. The lower slope (between 1350 and 1950 m of water depth) is marked by low foraminiferal density and assemblages composed of Bolivina spp. and Brizalina spp., with low particulate organic matter flux values, muddy sediments, and more refractory organic matter. The distribution of this group seems to be related to episodic fluxes of food particles to the seafloor, which are influenced by the BCS at the surface and are deposited under low deep current activity (DWBC).

  5. A multi-factor approach for process-based seabed characterization: example from the northeastern continental margin of the Korean peninsula (East Sea)

    Science.gov (United States)

    Cukur, Deniz; Um, In-Kwon; Chun, Jong-Hwa; Kim, So-Ra; Lee, Gwang-Soo; Kim, Yuri; Kong, Gee-Soo; Horozal, Senay; Kim, Seong-Pil

    2018-04-01

    This study investigates sediment transport and depositional processes from a newly collected dataset comprising sub-bottom chirp profiles, multibeam bathymetry, and sediment cores from the northeastern continental margin of Korea in the East Sea (Japan Sea). Twelve echo-types and eleven sedimentary facies have been defined and interpreted as deposits formed by shallow-marine, hemipelagic sedimentation, bottom current, and mass-movement processes. Hemipelagic sedimentation, which is acoustically characterized by undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. The inner and outer continental shelf (shallow-marine sedimentary processes. Two slope-parallel canyons, 0.2-2 km wide and up to 30 km long, appear to have acted as possible conduits for turbidity currents from the shallower shelf into the deep basins. Bottom current deposits, expressed as erosional moats immediately below topographic highs, are prevalent on the southern lower slope at water depths of 400-450 m. Mass-movements (i.e., slides/slumps, debris flow deposits) consisting of chaotic facies characterize the lower slope and represent one of the most important sedimentary processes in the study area. Piston cores confirm the presence of mass-transport deposits (MTDs) that are characterized by mud clasts of variable size, shape, and color. Multibeam bathymetry shows that large-scale MTDs are chiefly initiated on the lower slope (400-600 m) with gradients up to 3° and where they produce scarps on the order of 100 m in height. Sandy MTDs also occur on the upper continental slope adjacent to the seaward edge of the shelf terrace. Earthquakes associated with tectonic activity and the development of fluid overpressure is considered as the main conditioning factor for destabilizing the slope sediments. Overall, the sedimentary processes show typical characteristics of a fine-grained clastic slope apron and change down-slope and differ within each

  6. Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison

    Science.gov (United States)

    Wang, Yan; Stewart, Andrew L.

    2018-01-01

    Mesoscale eddies are ubiquitous in the ocean and play a key role in exchanges across continental slopes. In this study the properties of wind-driven baroclinic turbulence are investigated using eddy-resolving process simulations, focusing on the case of retrograde winds that arises around the margins of the subtropical gyres. In contrast to a flat-bottomed ocean, over steep slopes eddies develop from baroclinic instabilities are confined to the top few hundred meters. Deeper in the water column baroclinic instability and vertical momentum transfer are suppressed, so wind-input momentum is exported toward the open ocean by eddies before traversing down to the ocean bed. Close to the sloping topography, eddy energy sourced from the upper ocean is converted to potential energy, steepening isopycnals and driving bottom-trapped prograde flows. This process is associated with upgradient lateral buoyancy fluxes and downgradient isopycnal potential vorticity fluxes, and cannot be reproduced via linear stability calculations. These properties of wind-driven shelf/slope turbulence are contrasted against simulations with flat bathymetry. The key differences described above hinge on the flow close to the steep topographic slope, which may be sensitive to the model's vertical coordinate system. The simulations are therefore replicated using models that employ geopotential coordinates, terrain-following coordinates, and isopycnal coordinates. Quantitative inter-model discrepancies in the momentum and energy budgets are much more pronounced in the presence of a steep bottom slope. However, the key findings of this study are consistent across the models, suggesting that they are robust and warrant incorporation into parameterizations of eddy transfer across continental slopes.

  7. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    Science.gov (United States)

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  8. Clay mineral distribution in the continental shelf and slope off Saurashtra, West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    Clay mineral distribution in the sediments of the west coast of India indicates that the illite and chlorite-rich sediments, derived from the Indus, occupy the continental shelf of the northern part of the Gulf of Kutch. Montmorillonite derived from...

  9. Furrowed outcrops of Eocene chalk on the lower continental slop offshore New Jersey

    Science.gov (United States)

    Robb, James M.; Kirby, John R.; Hampson, John C., Jr.; Gibson, Patricia R.; Hecker, Barbara

    1983-01-01

    A sea bottom of middle Eocene calcareous claystone cut by downslope-trending furrows was observed during an Alvin dive to the mouth of Berkeley Canyon on the continental slope off New Jersey. The furrows are 10 to 50 m apart, 4 to 13 m deep, linear, and nearly parallel in water depths of 2,000 m. They have steep walls and flat floors 3 to 5 m wide, of fine-grained sediment. Mid-range sidescan-sonar images show that similarly furrowed surfaces are found on nearby areas of the lower continental slope, not associated with canyons. The furrows are overlain in places by Pleistocene sediments. Although they show evidence of erosional origin, they do not appear to be related to observed structures, and their straight, parallel pattern is not well understood. A general cover of flocky unconsolidated sediments implies that bottom-current erosion is not active now.

  10. Denitrification pathways and rates in the sandy sediments of the Georgia continental shelf, USA

    Directory of Open Access Journals (Sweden)

    Ingall Ellery

    2005-02-01

    Full Text Available Denitrification in continental shelf sediments has been estimated to be a significant sink of oceanic fixed nitrogen (N. The significance and mechanisms of denitrification in organic-poor sands, which comprise 70% of continental shelf sediments, are not well known. Core incubations and isotope tracer techniques were employed to determine processes and rates of denitrification in the coarse-grained, sandy sediments of the Georgia continental shelf. In these sediments, heterotrophic denitrification was the dominant process for fixed N removal. Processes such as coupled nitrification-denitrification, anammox (anaerobic ammonium oxidation, and oxygen-limited autotrophic nitrification-denitrification were not evident over the 24 and 48 h time scale of the incubation experiments. Heterotrophic denitrification processes produce 22.8–34.1 μmole N m-2 d-1 of N2 in these coarse-grained sediments. These denitrification rates are approximately two orders of magnitude lower than rates determined in fine-grained shelf sediments. These lower rates may help reconcile unbalanced marine N budgets which calculate global N losses exceeding N inputs.

  11. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    Science.gov (United States)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role

  12. Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Qian Feng

    2016-09-01

    Full Text Available Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20° were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1. The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w, stream power was the best predictor of sediment yield rate (R2 = 0.884. Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897. The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.

  13. Early diagenesis of phosphorus in continental margin sediments

    NARCIS (Netherlands)

    Slomp, C.P.

    1997-01-01

    Most of the organic material in the oceans that reaches the sea floor is deposited on continental margins and not in the deep sea. This organic matter is the principal carrier of phosphorus (P) to sediments. A part of the organic material is buried definitely. The other part decomposes,

  14. Water masses transform at mid-depths over the Antarctic Continental Slope

    Science.gov (United States)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  15. Rapid sediment accumulation results in high methane effluxes from coastal sediments

    NARCIS (Netherlands)

    Egger, M.J.|info:eu-repo/dai/nl/372629199; Lenstra, W.K.|info:eu-repo/dai/nl/411295977; Jong, Dirk; Meysman, Filip; Sapart, C.J.|info:eu-repo/dai/nl/31400596X; van der Veen, C.; Röckmann, Thomas|info:eu-repo/dai/nl/304838233; Gonzalez, Santiago; Slomp, C.P.|info:eu-repo/dai/nl/159424003

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings,

  16. Filling of a Salt-withdrawal Minibasin on the Continental Slope by Turbidity Currents: Experimental study

    Science.gov (United States)

    Violet, J.; Evans, C.; Sheets, B.; Paola, C.; Pratson, L.; Parker, G.

    2001-12-01

    We report on the transport and deposition of sediment by turbidity currents in an experimental basin designed to model salt-withdrawal minibasins found along the northern continental slope of the Gulf of Mexico. The experiment was performed in two stages in the subsiding EXperimental EarthScape facility (XES) at St. Anthony Falls Laboratory, University of Minnesota. Stage I consisted of 15 turbidity-current events in the following sequence: one 36-minute continuous event, six 1.85-minute small pulses, one 3.8-minute large pulse, six more small pulses, one more large pulse, and finally one more continuous event. The continuous events and the small pulses had a flow discharge of 1.5 liters/s and the large pulse had a flow discharge of 4.5 liters/s. The flows all had a volume concentration of sediment of 0.05. The sediment comprised three grades of silica with nominal diameters of 20 microns (45%), 45 microns (40%) and 110 microns (15%). The basin subsided continuously during Stage I. Stage II consisted of the same sequence of events as Stage I, but with no further subsidence. The sand content was eliminated during the latter part of Stage II. The deposit was imaged as it developed during the experiment using high-frequency sonar. The sonar records show indications of incipient self-channelization as well as clear erosion, bypass, and deposition. Erosion was promoted by large pulse events and the absence of sand. The deposit shows well developed lamination and normal grading.

  17. Final Scientific/Technical Report: Characterizing the Response of the Cascadia Margin Gas Hydrate Reservoir to Bottom Water Warming Along the Upper Continental Slope

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Evan A. [Univ. of Washington, Seattle, WA (United States); Johnson, H. Paul [Univ. of Washington, Seattle, WA (United States); Salmi, Marie [Univ. of Washington, Seattle, WA (United States); Whorley, Theresa [Univ. of Washington, Seattle, WA (United States)

    2017-11-10

    The objective of this project is to understand the response of the WA margin gas hydrate system to contemporary warming of bottom water along the upper continental slope. Through pre-cruise analysis and modeling of archive and recent geophysical and oceanographic data, we (1) inventoried bottom simulating reflectors along the WA margin and defined the upper limit of gas hydrate stability, (2) refined margin-wide estimates of heat flow and geothermal gradients, (3) characterized decadal scale temporal variations of bottom water temperatures at the upper continental slope of the Washington margin, and (4) used numerical simulations to provide quantitative estimates of how the shallow boundary of methane hydrate stability responds to modern environmental change. These pre-cruise results provided the context for a systematic geophysical and geochemical survey of methane seepage along the upper continental slope from 48° to 46°N during a 10-day field program on the R/V Thompson from October 10-19, 2014. This systematic inventory of methane emissions along this climate-sensitive margin corridor and comprehensive sediment and water column sampling program provided data and samples for Phase 3 of this project that focused on determining fluid and methane sources (deep-source vs. shallow; microbial, thermogenic, gas hydrate dissociation) within the sediment, and how they relate to contemporary intermediate water warming. During the 2014 research expedition, we sampled nine seep sites between ~470 and 520 m water depth, within the zone of predicted methane hydrate retreat over the past 40 years. We imaged 22 bubble plumes with heights commonly rising to ~300 meters below sea level with one reaching near the sea surface. We collected 22 gravity cores and 20 CTD/hydrocasts from the 9 seeps and at background locations (no acoustic evidence of seepage) within the depth interval of predicted downslope retreat of the methane hydrate stability zone. Approximately 300 pore water

  18. Texture, mineralogy and geochemistry of the continental slope sediments in front of Los Tuxtlas, Gulf of Mexico, Mexico: implications on weathering, origin and depositional environments

    Science.gov (United States)

    Marca-Castillo, M. E.; Armstrong-Altrin, J.

    2017-12-01

    The textural analysis, mineralogy and geochemistry of two sediment cores recovered from the deep water zone of the southwestern part of the Gulf of Mexico ( 1666 and 1672 m water depth) were studied to infer the provenance and depositional behavior. The textural analysis revealed that both cores are dominated by silt, which occupy more than 50% in both samples and the clay occupy 40%. The petrographic analysis revealed remains of biogenic origin sediments and lithic fragments with an angular shape and low sphericity, indicating a low energy environment and therefore a low level of weathering in the sediment, which suggests that the sediments were not affected by transport and derived from a nearby source rock. In both cores quartz fragments were identified; also volcanic lithic and pyroxenes fragments, which are rocks of intermediate composition and are generally associated with the volcanic activity of the continental margins. SEM-EDS studies showed that the analysed samples have concentrations of minerals such as barite, gibbsite, kaolinite, grossular, magnetite, plagioclase and chlorite, which are probably derived from the mainland to the deep sea zone. In the trace element analysis it was observed a low Sc content, while Co, Ni, V and Cu are slightly enriched with respect to the upper continental crust; this enrichment is related to sediments from intermediate sources. The sediments are classified as shale in the log (SiO2 / Al2O3) - log (Fe2O / K2O) diagram. The fine particles of the shale indicate that a deposit occurred as a result of the gradual sedimentation due to relatively non-turbulent currents, which is consistent with the petrographic analysis. The geochemical features of major and trace elements suggest sediments were derived largely from the natural andesite erosion of coastal regions along the Gulf of Mexico. High values of Fe2O3 and MnO are observed in the upper intervals, reflecting the influence of volcanic sediments. The major element

  19. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    Science.gov (United States)

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  20. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

    Directory of Open Access Journals (Sweden)

    V. Brüchert

    2018-01-01

    Full Text Available The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC; δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC ∕ NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr−1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3

  1. Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea

    Science.gov (United States)

    Durán, Ruth; Canals, Miquel; Sanz, José Luis; Lastras, Galderic; Amblas, David; Micallef, Aaron

    2014-01-01

    The northern Catalan continental shelf, in the northwestern Mediterranean Sea, extends along 200 km from the Cap de Creus submarine canyon to the Llobregat Delta, in the vicinity of the city of Barcelona. In this paper we present the results of a systematic investigation of this area by means of very high-resolution multibeam bathymetry to fully assess its morphological variability. The causative factors and processes determining such variability are subsequently interpreted. The shelf is divided in three segments by two prominent submarine canyons: the northernmost Roses Shelf is separated from the intermediate La Planassa Shelf by the La Fonera Canyon, while the boundary between the La Planassa Shelf and the southernmost Barcelona Shelf is marked by the Blanes Canyon. These two canyons are deeply incised in the continental margin, with their heads located at only 0.8 and 5 km from the shore, respectively. The seafloor character reflects the influence of external controlling factors on the geomorphology and sediment dynamics of the northern continental shelf of Catalonia. These factors are the geological setting, the volume and nature of sediment input, and the type and characteristics of processes leading to sediment redistribution, such as dense shelf water cascading (DSWC) and eastern storms. The interaction of all these factors determines sediment dynamics and allows subdividing the northern Catalan continental shelf into three segments: the erosional-depositional Roses Shelf to the north, the non-depositional La Planassa Shelf in the middle, and the depositional Barcelona Shelf to the south. Erosional features off the Cap de Creus Peninsula and an along-shelf subdued channel in the outer shelf illustrate prevailing sediment dynamics in the Roses segment, which is dominated by erosional processes, local sediment accumulations and the southward bypass of sediment. The rocky character of the seafloor immediately north of the Blanes Canyon head demonstrates that

  2. Geochronology of sediments in the Cananeia-Iguape estuary and in southern continental shelf of Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Saito, R.T.; Figueira, R.C.L.; Cunha, I.I.L.; Tessler, M.G.

    2001-01-01

    Instrumental analysis methods for 210 Pb, 226 Ra and 137 Cs by gamma-spectrometry in sediments, as well as the sedimentation rates in cores collected from Brazilian coastal region are presented. Sampling locations have covered the Cananeia-Iguape estuary and the continental shelf of southern Sao Paulo State. Values for 210 Pb ranged from 122.5 to 14.3 Bq x kg -1 for estuarine sediments and from 195.5 to 23.6 Bq x kg -1 at the continental shelf. For 226 Ra the values obtained in sediments varied from 15.2 to 2.3 Bq x kg -1 in the estuary and from 30.1 to 16.1 Bq x kg -1 at the continental shelf. Sedimentation rates are variable, ranging from 0.53 to 0.98 cm x y -1 in estuary sediments and from 0.18 to 0.40 cm x y -1 at the continental shelf. (author)

  3. Sediments of the western continental shelf of India - Environmental significance

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.

    The degree of fragmentation and colour of the skeletal fragments, colouration in benthic foraminifers have been studied in surficial sediment samples collected from forty stations from the continental shelf region between Ratnagiri in the south...

  4. Instability and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay

    Directory of Open Access Journals (Sweden)

    Eliane Gonthier

    2006-06-01

    Full Text Available Acoustic and core data have recently been collected on the shelf break and the upper part of the slope of the south Aquitaine continental margin. They reveal the major role played by mass-flow gravity processes in deposit erosion and redistribution, modelling of the sea-bed, and transfer of sediment toward the deep-sea. The study region is bounded in the south by the Capbreton canyon. The northern area, which shows a smooth morphology, is characterised by small-scale deformations due to sediment creep or low-amplitude slide processes. The deformations are associated with mini listric-like faults that bound packets of sediments in which the deposit geometry is typical of constructional sediment waves. These sediment waves result from the interaction of depositional and gravity deformation processes. In the southern area, closer to the canyon, wave-like structures are still present but mostly of smaller size. They only result from gravity deformation processes without any evidence of constructional processes. In the vicinity of the Capbreton canyon, the shelf break and upper slope have a much more uneven morphology with sedimentary reliefs, escarpments and depressions directed toward the canyon thalweg. The depressions look like slide scars, and could be the result of regressive slides initiated at the top of the canyon flank. The age of the sliding event responsible for the formation of the depression observed today could be middle to upper Quaternary. Since their formation, these depressions act as conduits that channel the transfer of shelf sediment into the canyon, as demonstrated by the occurrence of a meandering channel on the sea-floor of one depression.

  5. Sediment accumulation on the Southern California Bight continental margin during the twentieth century

    Science.gov (United States)

    Alexander, C.R.; Lee, H.J.

    2009-01-01

    Sediment discharged into the portion of the Southern California Bight extending from Santa Barbara to Dana Point enters a complex system of semi-isolated coastal cells, narrow continental shelves, submarine canyons, and offshore basins. On both the Santa Monica and San Pedro margins, 210Pb accumulation rates decrease in an offshore direction (from ??0.5 g cm-2yr-1 to 0.02 g cm-2yr -1), in concert with a fining in sediment grain size (from 4.5?? to 8.5??), suggesting that offshore transport of wave-resuspended material occurs as relatively dilute nepheloid layers and that hemiplegic sedimentation dominates the supply of sediment to the outer shelf, slope, and basins. Together, these areas are effectively sequestering up to 100% of the annual fluvial input. In contrast to the Santa Monica margin, which does not display evidence of mass wasting as an important process of sediment delivery and redistribution, the San Pedro margin does provide numerous examples of failures and mass wasting, suggesting that intraslope sediment redistribution may play a more important role there. Basin deposits in both areas exhibit evidence of turbidites tentatively associated with both major floods and earthquakes, sourced from either the Redondo Canyon (San Pedro Basin) or Dume Canyon (Santa Monica Basin). On the Palos Verdes shelf, sediment-accumulation rates decrease along and across the shelf away from the White's Point outfall, which has been a major source of contaminants to the shelf deposits. Accumulation rates prior to the construction of the outfall were ??0.2 g cm-2yr-1 and increased 1.5-3.7 times during peak discharges from the outfall in 1971. The distal rate of accumulation has decreased by ??50%, from 0.63 g cm -2yr-1 during the period 1971-1992 to 0.29 g cm -2yr-1 during the period 1992-2003. The proximal rate of accumulation, however, has only decreased ??10%, from 0.83 g cm -2yr-1 during the period 1971-1992 to 0.73 g cm -2yr-1 during the period 1992-2003. Effluent

  6. Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic

    Science.gov (United States)

    Dando, P. R.; Southward, A. J.; Southward, E. C.; Lamont, P.; Harvey, R.

    2008-08-01

    The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 48°N to 75°N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.

  7. Mineralogy of the carbonate sediments - western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.

    An X-ray diffraction study of forty-six sediment samples and three oolitic limestone samples from the western continental shelf of India shows that aragonite is the dominant carbonate mineral (99% maximum), followed by low-magnesium calcite (77...

  8. Morphology and sedimentology of glacigenic submarine fans on the west Greenland continental margin

    Science.gov (United States)

    O'Cofaigh, Colm; Hogan, Kelly A.; Dowdeswell, Julian A.; Jennings, Anne E.; Noormets, Riko; Evans, Jeffrey

    2014-05-01

    Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross-shelf troughs. Two of these fans, the Uummannaq Fan and the Disko Fan are trough-mouth fans built largely of debris delivered from ice sheet outlets of the Greenland Ice Sheet during past glacial maxima. On the Uummannaq Fan glacigenic debris flow deposits occur on the upper slope and extend to at least 1800 m water depth in front of the trough-mouth. The debris flow deposits are related to the remobilisation of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterised by hemipelagic and ice-rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Further south along the Greenland continental margin the surface of the Disko Fan is prominently channelised and associated sediments are acoustically stratified. Although glacigenic debris flow deposits do occur on the upper Disko Fan, sediments recovered in cores from elsewhere on the fan record the influence of turbidity current and meltwater sedimentation. The channelised form of the Disko fan contrasts markedly with that of the Uummannaq Fan and, more widely, with trough mouth fans from the Polar North Atlantic. Collectively these data highlight the variability of glacimarine depositional processes operating on trough-mouth fans on high-latitude continental slopes and show that glacigenic debris flows are but one of a number of mechanisms by which such large glacially-influenced depocentres form.

  9. Geochemistry of sediments of the western Canadian continental shelf

    Science.gov (United States)

    Macdonald, R. W.; Pedersen, T. F.

    1991-08-01

    Few chemical data exist for the sedimentary environment off the Canadian west coast. Here we define the chemical nature of the shelf sediments by examining the important sources of material (natural and anthropogenic) to the region and processes relevant to diagenesis. Slightly more data exist for the continental shelf to the south (Washington) and north (Alaska), however it is clear that the sedimentary environment of these neighbouring shelves differs importantly from the Canadian portion. The British Columbia shelf receives little modern terrigenous detritus due mainly to isolation from terrestrial sediment sources by fiords, inland seas, or bypassing by shelf canyons. The chemical state of the sediments depends on the rate of supply of material, the energy of the depositional or erosional environment and the organic and inorganic composition of the material. These features in concert with bottom water characteristics control the redox state. Although no basins hosting continuous depositional records for the Holocene on the open British Columbia shelf have been identified or studied in a manner described by BUCKLEY ( Continental Shelf Research, 11, 1099-1122), some coastal embayments and fiords provide valuable historical records of post-glacial sedimentation. Such environments will prove to be increasingly useful in future studies of changes in regional climate and in establishing the chronology of natural disasters and anthropogenic impacts. Recommendations are given for a variety of research projects that would help us to understand better both chemical interactions at the seabed and Late Quaternary depositional history.

  10. Recent Sedimentary Processes Along the Western Continental Margin of the South Korea Plateau, East Sea of Korea

    Science.gov (United States)

    Cukur, D.; Um, I. K.; Bahk, J. J.; Chun, J. H.; Lee, G. S.; Soo, K. G.; Horozal, S.; Kim, S. P.

    2017-12-01

    The continental margins of the marginal seas is largely shaped by a complex interplay of sediment transport processes directed both downslope and along-slope. Factors influence the sediment transport from shelf to the deep basin include: (i) seabed morphology, (ii) climate, (iii) sea level changes, (iv) slope stability, (v) oceanographic regime, and (vi) sediment sources. In order to understand the recent sedimentary processes along the western margin of the South Korea Plateau in the East Sea, we collected multiple geophysical datasets including the subbottom profiler and multibeam echosounder as well as geological sampling. Twelve echo types have been defined and interpreted as deposits formed by shallow marine, hemipelagic sedimentation, bottom currents, combined- (mass-movement/hemipelagic and hemipelagic/turbidites) and mass-movement-processes. Hemipelagic sedimentation, which is reflected as undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. Two major slope-parallel channels appear to have acted as major conduits for turbidity currents from shallower shelf into the deep basins. Bottom current deposits, which is expressed as undulating seafloor morphology, are prevalent in the southern mid-slope at water depths between 250 to 450 m. Mass-transport deposits, consisting of chaotic seismic facies, occur in the upper and lower parts of the continental slope. Piston cores confirm the presence of MTDs that are characterized by mud clasts of variable size and shape. Multibeam bathymetry data show that these MTDs chiefly initiate on lower-slopes (400-600 m) where the gradient is up to 3°. In addition, subbottom profiles suggest the presence of numerous faults in close vicinity of headwall scarps; some are extending to the seafloor suggesting their recent activity. Earthquakes associated with tectonic activity are considered as the main triggering mechanism for these MTDs. Overall, the acoustic facies

  11. Western Ross Sea continental slope gravity currents

    Science.gov (United States)

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real

  12. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts

    Science.gov (United States)

    Palomino, Desirée; Vázquez, Juan-Tomás; Somoza, Luis; León, Ricardo; López-González, Nieves; Medialdea, Teresa; Fernández-Salas, Luis-Miguel; González, Francisco-Javier; Rengel, Juan Antonio

    2016-02-01

    The margin of the continental slope of the Volcanic Province of Canary Islands is characterised by seamounts, submarine hills and large landslides. The seabed morphology including detailed morphology of the seamounts and hills was analysed using multibeam bathymetry and backscatter data, and very high resolution seismic profiles. Some of the elevation data are reported here for the first time. The shape and distribution of characteristics features such as volcanic cones, ridges, slides scars, gullies and channels indicate evolutionary differences. Special attention was paid to recent geological processes that influenced the seamounts. We defined various morpho-sedimentary units, which are mainly due to massive slope instability that disrupt the pelagic sedimentary cover. We also studied other processes such as the role of deep bottom currents in determining sediment distribution. The sediments are interpreted as the result of a complex mixture of material derived from a) slope failures on seamounts and submarine hills; and b) slides and slumps on the continental slope.

  13. Rapid sedimentation and overpressure in shallow sediments of the Bering Trough, offshore southern Alaska

    Science.gov (United States)

    Daigle, Hugh; Worthington, Lindsay L.; Gulick, Sean P. S.; Van Avendonk, Harm J. A.

    2017-04-01

    Pore pressures in sediments at convergent margins play an important role in driving chemical fluxes and controlling deformation styles and localization. In the Bering Trough offshore Southern Alaska, extreme sedimentation rates over the last 140 kyr as a result of glacial advance/retreats on the continental shelf have resulted in elevated pore fluid pressures in slope sediments overlying the Pamplona Zone fold and thrust belt, the accretionary wedge resulting from subduction of the Yakutat microplate beneath the North American Plate. Based on laboratory experiments and downhole logs acquired at Integrated Ocean Drilling Program Site U1421, we predict that the overpressure in the slope sediments may be as high as 92% of the lithostatic stress. Results of one-dimensional numerical modeling accounting for changes in sedimentation rate over the last 130 kyr predicted overpressures that are consistent with our estimates, suggesting that the overpressure is a direct result of the rapid sedimentation experienced on the Bering shelf and slope. Comparisons with other convergent margins indicate that such rapid sedimentation and high overpressure are anomalous in sediments overlying accretionary wedges. We hypothesize that the shallow overpressure on the Bering shelf/slope has fundamentally altered the deformation style within the Pamplona Zone by suppressing development of faults and may inhibit seismicity by focusing faulting elsewhere or causing deformation on existing faults to be aseismic. These consequences are probably long-lived as it may take several million years for the excess pressure to dissipate.

  14. WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.

    Science.gov (United States)

    Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.

    2017-12-01

    The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand

  15. Geochemistry of sediments of the eastern continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.; Paropkari, A.L.; Murty, P.S.N.

    The bulk and partition geochemistry of Al, Fe, Ti, Mn, Zn, and Cu have been investigated in sediments of the eastern continental shelf of India. The results show that (1) the bulk geochemistry varies from one shelf unit to the other, (2) all...

  16. Sediment Dynamics and Geohazards offshore Uruguay and Northern Argentina: First Results from the multi-disciplinary Meteor-Cruise M78-3

    Science.gov (United States)

    Krastel, Sebastian; Freudenthal, Tim; Hanebuth, Till; Preu, Benedict; Schwenck, Tilmann; Strasser, Michael; Violante, Roberto; Wefer, Gerold; Winkelmann, Daniel

    2010-05-01

    About 90% of the sediments generated by weathering and erosion on land get finally deposited at the ocean margins. The sediment distribution processes and landscape evolution on land are relatively well understood, but comparably little is known about the role and relative importance of marine sediment dynamics in controlling the architectural evolution of ocean margins. Important players include hemi-pelagic settling, down-slope and current-controlled along-slope sediment transport, depositional and post-depositional sedimentary processes (e.g. consolidation and diagenesis), as well as the destabilization of sediment bodies and their erosion. Submarine landslides in this context thus may represent an important sediment transport process, but also a major geo-hazard due to the increasing number of offshore constructions as well as their potential to instantaneously displace large water masses triggering waves in densely populated coastal areas. Here we present first results from a seagoing expedition that aimed at investigating the interaction processes of sediment redistribution, partitioning, deposition and diagenesis from the coast to the deep-sea along the western South-Atlantic passive continental margin. During RV Meteor Cruise M78/3 in May-July 2009 the shelf, slope and rise offshore Argentina and Uruguay have been investigated by means of hydroacoustic and seismic mapping as well as geological sampling with conventional coring tools as well as the new MARUM seafloor drill rig (MeBo) that revealed recovery of geological strata sampled from up to 50m below seafloor. The working area is characterized by a high amount of fluvial input by the Rio de la Plata river. The continental slope is relatively wide and shows average slope gradients between 1 and 2.5 but locally higher slope gradients may occur (>5). The transition for the continental rise with low slope gradients is found in ~ 3000m water depth. The working area is located in a highly dynamic

  17. Nutrient regeneration and oxygen demand in Bering Sea continental shelf sediments

    Science.gov (United States)

    Rowe, Gilbert T.; Phoel, William C.

    1992-04-01

    Measurements of seabed oxygen demand and nutrient regeneration were made on continental shelf sediments in the southeast Bering Sea from 1 to 15 June 1981. The mean seabed oxygen demand was relatively modest (267 μM O 2 m -2 h -1), equivalent to a utilization of 60 mg organic carbon m -2 day -1. The seasonal build up of ammonium over the mid-shelf domain was generated at least in part by the bottom biota, as previously suggested ( WHITLEDGEet al., 1986 , Continental Shelf Research, 5, 109-132), but on the outer shelf nitrate replaced ammonium as the dominant inorganic nitrogen compound that was regenerated from the sediments. Comparison of oxygen consumption with the organic matter in sedimenting particulate matter (sampled with sediment traps) could imply that benthic processes were not accounting for the fate of considerable quantities of organic matter. Benthic oxygen demand rates, however, probably lag behind the input of the spring bloom to the bottom, thus extending the remineralization process out over time. Consumption by small microheterotrophs in the water column was also a likely sink, although shelf export and advective transport north were possible as well. Estimated nitrification rates in surface sediments could account for only a small fraction of the abrupt increase in nitrate observed in the water column over the shelf just prior to the spring bloom.

  18. Late-stage development of the Bryant Canyon turbidite pathway on the Louisiana continental slope

    Science.gov (United States)

    Twichell, David C.; Nelson, Hans; Damuth, John E.

    2000-01-01

    GLORIA sidescan imagery, multibeam bathymetry, seismic profiles, and piston cores (3–5 m penetration) reveal the near-surface geology of the Bryant Canyon turbidite pathway on the continental margin of Louisiana. This pathway extends from the continental shelf edge, across the continental slope, to a deep-sea fan on the continental rise. The pathway is narrow (thalweg no longer has a continuous down-slope gradient. Some mini-basin floors along the pathway are now more than 500 m deeper than their basin’s spill point. We propose a 6-stage conceptual model to explain our observations for the evolution of a mini-basin along this turbidite pathway. In this model, an active channel feeds sand to a mini-basin (Stabe B). Once the mini-basin is filled, the sand deposit is entrenched by a bypass channel (Stage C). When the turbidite system shuts off, salt migration oversteepens the mini-basin walls (Stage D) which collapse and create a layer of mass-transport deposits on the mini-basin floor (Stage E). The depositional succession is capped by a layer of highstand hemipelagic drape (Stage F). The Bryant Canyon turbidite pathway provides a recent example of a large turbidite pathway in the Gulf of Mexico that crosses an area of active salt tectonics thus providing a conceptual model for older systems in similar settings. In Bryant Canyon, thick turbidite sands presumably are found in mini-basins however, they are sealed by thick, fine-grained, mass-transport deposits which terminate mini-basin turbidite deposition cycles. The importance of mass-transport deposits in basins along this turbidite pathway is in startling contrast to the Trinity-Brazos pathway whose shallow subsurface expression is virtually free of mass-transport deposits and has undergone minimal deformation by salt movement.

  19. Radiocarbon dates of sediment cores from inner continental shelf off Taingapatnam, southwest coast of India

    International Nuclear Information System (INIS)

    Nambiar, A.R.; Rajagopalan, G.

    1995-01-01

    Radiocarbon dating of carbonized wood samples from three sediment cores from the inner continental shelf off Taingapatnam, in the southwestern coast of India, indicates ages in the bracket 8400-9400 YBP. These radiometric ages correlate well with the ages of carbonized wood from inner continental shelf off Ponnani, Kerala and Karwar, Karnataka. The occurrence of carbonized wood in widely spread offshore areas probably represents a regional transgressive event in the west coast which resulted in submergence and destruction of coastal mangroves. The rate of sedimentation in the study area varies between 0.12 and 0.37 mm/yr, much lower than those reported from shelf areas north of Mangalore. The slow accumulation of sediments in the southern parts of the western continental shelf of India, as exemplified from the present study, may be due to very poor discharge and low bed load sediments of the west-flowing small rivers of this part of the peninsula and low concentration of suspended particulate matter in them. (author). 24 refs., 2 tabs., 2 figs

  20. Detection of gas-charged sediments and gas hydrate horizons along the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.; Karisiddaiah, S.M.; Vora, K.H.; Wagle, B.G.; Almeida, F.

    in the inner shelf. These maskings suggest the presence of gas-charged sediments. Further seaward on the outer shelf-middle slope, pockmarks and prominent plumes in the overlying water column indicate a significant seepage of gas from the slope sediments...

  1. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  2. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance

    Directory of Open Access Journals (Sweden)

    Norliana Rosli

    2016-07-01

    Full Text Available Studies of deep-sea benthic communities have largely focused on particular (macro habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure. Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty at four water depths (700, 1,000, 1,200 and 1,500 m. We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm to meso- (0.1–10 km, and regional scales (> 100 km. We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.

  3. Mass-physical properties of surficial sediments on the Rhoˆne continental margin: implications for the nepheloid benthic layer

    Science.gov (United States)

    Chassefiere, Bernard

    1990-09-01

    Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.

  4. Influence of marginal highs on the accumulation of organic carbon along the continental slope off western India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.R.; Veerayya, M.

    and 743E (after De Sousa, unpublished data). by the gasometric method using the &karbonate-bombe’ (Muller and Gastner, 1971) and organic carbon by the wet oxidation method (El Wakeel and Riley, 1957). Some samples from the upper continental slope, marginal...

  5. Sediment Transport on Continental Shelves: Storm Bed Formation and Preservation in Heterogeneous Sediments

    Science.gov (United States)

    2012-01-01

    occurred during the Cretaceous period. The simulated storm bed for such an extratropical cyclone that lasts 4 days was deposited as deep as 75 m and had...Int. Assoc. Sedimentol. Spec. Publ. (2012) 44, 295-310 Sediment transport on continental shelves: storm bed formation and preservation in...xDept. of Earth Science, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada ABSTRACT Many storm beds are constructed of silt/sand

  6. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil.

    Science.gov (United States)

    Wu, Lei; Peng, Mengling; Qiao, Shanshan; Ma, Xiao-Yi

    2018-02-01

    Soil erosion is a universal phenomenon on the Loess Plateau but it exhibits complex and typical mechanism which makes it difficult to understand soil loss laws on slopes. We design artificial simulated rainfall experiments including six rainfall intensities (45, 60, 75, 90, 105, 120 mm/h) and five slopes (5°, 10°, 15°, 20°, 25°) to reveal the fundamental changing trends of runoff and sediment yield on bare loess soil. Here, we show that the runoff yield within the initial 15 min increased rapidly and its trend gradually became stable. Trends of sediment yield under different rainfall intensities are various. The linear correlation between runoff and rainfall intensity is obvious for different slopes, but the correlations between sediment yield and rainfall intensity are weak. Runoff and sediment yield on the slope surface both presents an increasing trend when the rainfall intensity increases from 45 mm/h to 120 mm/h, but the increasing trend of runoff yield is higher than that of sediment yield. The sediment yield also has an overall increasing trend when the slope changes from 5° to 25°, but the trend of runoff yield is not obvious. Our results may provide data support and underlying insights needed to guide the management of soil conservation planning on the Loess Plateau.

  7. Depositional turbidity currents in diapiric minibasins on the continental slope: Formulation and theory

    OpenAIRE

    Toniolo, Horacio; Lamb, Michael; Parker, Gary

    2006-01-01

    The northern continental slope of the Gulf of Mexico is riddled with numerous subsiding diapiric minibasins bounded by ridges, many but not all of which are connected by channels created by turbidity currents. The region is economically relevant in that many of these diapiric minibasins constitute focal points for the deposition of sand. Some of these sandy deposits in turn serve as excellent reservoirs for hydrocarbons. A better understanding of the "fill and spill" process by which minibasi...

  8. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    Science.gov (United States)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift

  9. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications

    Science.gov (United States)

    Liao, Wei-Zhi; Lin, Andrew T.; Liu, Char-Shine; Oung, Jung-Nan; Wang, Yunshuen

    2014-10-01

    Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.

  10. A Holocene record of ocean productivity and upwelling from the northern California continental slope

    Science.gov (United States)

    Addison, Jason A.; Barron, John A.; Finney, Bruce P.; Kusler, Jennifer E.; Bukry, David; Heusser, Linda E.; Alexander, Clark R.

    2018-01-01

    The Holocene upwelling history of the northern California continental slope is examined using the high-resolution record of TN062-O550 (40.9°N, 124.6°W, 550 m water depth). This 7-m-long marine sediment core spans the last ∼7500 years, and we use it to test the hypothesis that marine productivity in the California Current System (CCS) driven by coastal upwelling has co-varied with Holocene millennial-scale warm intervals. A combination of biogenic sediment concentrations (opal, total organic C, and total N), stable isotopes (organic matter δ13C and bulk sedimentary δ15N), and key microfossil indicators of upwelling were used to test this hypothesis. The record of biogenic accumulation in TN062-O550 shows considerable Holocene variability despite being located within 50 km of the mouth of the Eel River, which is one of the largest sources of terrigenous sediment to the Northeast Pacific Ocean margin. A key time interval beginning at ∼2900 calibrated years before present (cal yr BP) indicates the onset of modern upwelling in the CCS, and this period also corresponds to the most intense period of upwelling in the last 7500 years. When these results are placed into a regional CCS context during the Holocene, it was found that the timing of upwelling intensification at TN062-O550 corresponds closely to that seen at nearby ODP Site 1019, as well as in the Santa Barbara Basin of southern California. Other CCS records with less refined age control show similar results, which suggest late Holocene upwelling intensification may be synchronous throughout the CCS. Based on the strong correspondence between the alkenone sea surface temperature record at ODP Site 1019 and the onset of late Holocene upwelling in northern California, we suggest that CCS warming may be conducive to upwelling intensification, though future changes are unclear as the mechanisms forcing SST variability may differ.

  11. Organic carbon-sulfur relationships in sediment cores from the western and eastern continental margins of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Mascarenhas, A.; Paropkari, A.L.; Rao, Ch.M.

    Two sediment cores from the western continental margin (WMI, WM2) and one core from the eastern continental margin (EM) of India have been analysed to determine the relativ importance of factors such as oxidizing/reducing environment, mass...

  12. Particle flux across the mid-European continental margin

    CERN Document Server

    Antia, A N; Peinert, R

    1999-01-01

    Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49 degrees N within the Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid- slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off- slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of partic...

  13. Aeolian deposition of Arabia and Somalia sediments on the southwestern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.

    Kaolinite, smectite, illite and chlorite as major clay minerals and palygorskite and gibbsite in minor quantities have been recorded from the slope of southwestern continental margin of India. Contribution of kaolinite, smectite and gibbsite is from...

  14. Conditions for the occurrence of intense turbidity currents in the benthic boundary layer over a sloping bottom

    NARCIS (Netherlands)

    Zhmur, VV

    2003-01-01

    The evolution of density currents over the continental slope of the ocean is investigated with allowance for the entrainment of the bottom sediments and background liquid in motion. A simple criterion is proposed for determining the possibility of evolving initially weak density currents into bottom

  15. Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope.

    Science.gov (United States)

    Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi

    2018-05-01

    Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our

  16. Relief evolution of the Continental Rift of Southeast Brazil revealed by in situ-produced 10Be concentrations in river-borne sediments

    Science.gov (United States)

    Salgado, André Augusto Rodrigues; Rezende, Eric de Andrade; Bourlès, Didier; Braucher, Régis; da Silva, Juliana Rodrigues; Garcia, Ricardo Alexandrino

    2016-04-01

    This study aims to quantify the denudation dynamics of the Brazilian passive margin along a segment of the Continental Rift of Southeast Brazil. The denudation rates of 30 basins that drain both horsts of the continental rift, including the mountain ranges of the Serra do Mar (seaside horst); and the Serra da Mantiqueira (continental horst); were derived from 10Be concentrations measured in sand-sized river sediment. The mean denudation rate ranges from 9.2 m Ma-1 on the plateau of the Serra do Mar to 37.1 m Ma-1 along the oceanic escarpment of the Serra do Mar. The seaward-facing scarps of both mountain ranges exhibit mean denudation rates that are approximately 1.5 times those of the inland-facing scarps. The escarpments of the horst nearer to the ocean (Serra do Mar) exhibit higher denudation rates (mean 30.2 m Ma-1) than the escarpments of the continental horst (Serra da Mantiqueira) (mean 16.5 m Ma-1). The parameters that impact these denudation rates include the catchment relief, the slope gradient, the rock and the climate. The incongruent combination of a mountainous landscape and moderate to low 10Be-based denudation rates averaging at ∼20 m Ma-1 suggests a reduction in intraplate tectonic activity beginning in the Middle Quaternary or earlier.

  17. Stability of submarine slopes in the northern South China Sea: a numerical approach

    Science.gov (United States)

    Zhang, Liang; Luan, Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is 13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.

  18. Distributed specific sediment yield estimations in Japan attributed to extreme-rainfall-induced slope failures under a changing climate

    Directory of Open Access Journals (Sweden)

    K. Ono

    2011-01-01

    Full Text Available The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy, geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan.

    Time series analyses of annual sediment yields covering 15–20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5–7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 = 0.65. The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment

  19. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation

    Science.gov (United States)

    Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.

    2013-12-01

    We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.

  20. Pacific Proving Grounds radioisotope imprint in the Philippine Sea sediments

    DEFF Research Database (Denmark)

    Pittauer, Daniela; Roos, Per; Qiao, Jixin

    2018-01-01

    Radionuclide concentrations were studied in sediment cores taken at the continental slope of the Philippine Sea off Mindanao Island in the equatorial Western Pacific. High resolution deposition records of anthropogenic radionuclides were collected at this site. Excess 210Pb together with excess 2...

  1. Geology of the continental margin beneath Santa Monica Bay, Southern California, from seismic-reflection data

    Science.gov (United States)

    Fisher, M.A.; Normark, W.R.; Bohannon, R.G.; Sliter, R.W.; Calvert, A.J.

    2003-01-01

    We interpret seismic-reflection data, which were collected in Santa Monica Bay using a 70-in3 generator-injector air gun, to show the geologic structure of the continental shelf and slope and of the deep-water, Santa Monica and San Pedro Basins. The goal of this research is to investigate the earthquake hazard posed to urban areas by offshore faults. These data reveal that northwest of the Palos Verdes Peninsula, the Palos Verdes Fault neither offsets the seafloor nor cuts through an undeformed sediment apron that postdates the last sea level rise. Other evidence indicates that this fault extends northwest beneath the shelf in the deep subsurface. However, other major faults in the study area, such as the Dume and San Pedro Basin Faults, were active recently, as indicated by an arched seafloor and offset shallow sediment. Rocks under the lower continental slope are deformed to differing degrees on opposite sides of Santa Monica Canyon. Northwest of this canyon, the continental slope is underlain by a little-deformed sediment apron; the main structures that deform this apron are two lower-slope anticlines that extend toward Point Dume and are cored by faults showing reverse or thrust separation. Southeast of Santa Monica Canyon, lower-slope rocks are deformed by a complex arrangement of strike-slip, normal, and reverse faults. The San Pedro Escarpment rises abruptly along the southeast side of Santa Monica Canyon. Reverse faults and folds underpinning this escarpment steepen progressively southeastward. Locally they form flower structures and cut downward into basement rocks. These faults merge downward with the San Pedro Basin fault zone, which is nearly vertical and strike slip. The escarpment and its attendant structures diverge from this strike-slip fault zone and extend for 60 km along the margin, separating the continental shelf from the deep-water basins. The deep-water Santa Monica Basin has large extent but is filled with only a thin (less than 1.5-km

  2. Filling of a Salt-withdrawal Minibasin on the Continental Slope by Turbidity Currents: Futher Research and Results

    Science.gov (United States)

    Violet, J. A.; Sheets, B. A.; Paola, C.; Pratson, L. F.; Parker, G.

    2002-12-01

    We illustrate further research results on the transport and deposition of sediment by turbidity currents in an experimental basin, designed to model salt-withdrawal minibasins found along the northern continental slope of the Gulf of Mexico. The experiment was performed in 2001 in the subsiding EXperimental EarthScape facility (XES) at St. Anthony Falls Laboratory, University of Minnesota. The run consisted of two stages that each contained the same sequence of events, which were of three different variations (1.85-minute pulses of 1.5 liters/s discharges, 3.8-minute pulses of 4.5 liters/s discharges, or 36 minute events of 1.5 liters/s discharges). The sediment comprised three grades of silica with nominal diameters of 20 microns (45%), 45 microns (40%) and 110 microns (15%) and all flows had a volume concentration of sediment of 5%. The only difference between stage I and II was that no subsidence occurred during stage II, and that the 110 micron sand was removed from the flows late in stage II to study the effects of a smaller mean flow-grainsize. Research since the run has focused on the correction of high-frequency sonar data taken during the run, digital photography taken of dried deposit stratigraphy and grainsize data also taken at various locations in the dried deposit. The sonar data is utilized in the creation of post-event topographies and isopach maps to illustrate what the controls on erosion, deposition, flow path, deposit thickness and even the channelization of early flow events are. Comparisons of the stratigraphy and the grainsize data with the conclusions from the sonar data are made, as sonar is also constructed in a manner that exhibits synthetic or predicted stratigraphy (before compaction). Finally the stratigraphy is structurally described in the proximal, medial, and distal segments of the deposit and comparisons to the field are made.

  3. A Preliminary Study on the Measurement of Sediment Concentration in Hill-Slope Runoff with an Electrolyte Tracer

    Directory of Open Access Journals (Sweden)

    Xiaonan Shi Fan Zhang

    2012-01-01

    Full Text Available Sediment concentration in hill-slope runoff is an important index for soil erosion. Developing a reliable and portable measuring system of sediment concentration is a core issue for soil and water conservation study, especially for the Tibetan Plateau under unfavorable climate and terrain conditions for field investigation. Challenges include uneven distribution of sediment across a runoff section as well as difficulty in detecting a wide range of particle sizes. An electrolyte tracer, with the advantage of uniform distribution and its widely used electric-conductivity sensor, can avoid the problems of direct measurement of sediment. A new measurement method of sediment concentration in runoff with an electrolyte tracer is proposed based on a premise that sediment concentration is closely correlated with hydrodynamic dispersion coefficient of solute in runoff. In this study, an experiment system of hill-slope runoff with an electrolyte tracer and sediments is first designed. Second, two model parameters in the advective-dispersive equation of solute transport, flow velocity and diffusion coefficient, are inversely estimated by calibrating the observed concentrations of an electrolyte tracer. And third, the relationship between sediment concentrations and hydrodynamic dispersion coefficients are defined through specified regression. As a result, a measurement system of sediment concentration in hill-slope runoff with an electrolyte tracer is primarily established by integrating the relationship of variables, experiment system, and model theory.

  4. A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes

    Science.gov (United States)

    Mehta, A. J.; Krishna, G.

    2009-12-01

    Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density

  5. Trophic model of the outer continental shelf and upper slope demersal community of the southeastern Brazilian Bight

    Directory of Open Access Journals (Sweden)

    Marcela C. Nascimento

    2012-10-01

    Full Text Available It is increasingly recognized that demersal communities are important for the functioning of continental shelf and slope ecosystems around the world, including tropical regions. Demersal communities are most prominent in areas of high detritus production and transport, and they link benthic and pelagic biological communities. To understand the structure and role of the demersal community on the southeastern Brazilian Bight, we constructed a trophodynamic model with 37 functional groups to represent the demersal community of the outer continental shelf and upper slope of this area, using the Ecopath with Ecosim 6 (EwE approach and software. The model indicates high production and biomass of detritus and benthic invertebrates, and strong linkages of these components to demersal and pelagic sub-webs. The level of omnivory indexes in this ecosystem was high, forming a highly connected trophic web reminiscent of tropical land areas. Although high levels of ascendency may indicate resistance and resilience to disturbance, recent and present fisheries trends are probably degrading the biological community and related ecosystem services.

  6. Distribution of some biochemical compounds in the sediments of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Dhople, V.M.

    Surficial sediment samples collected from the continental shelf and slope of the Bay of Bengal were studied for the distribution of organic carbon and its constituent fractions such as carbohydrates, proteins, amino acids and lipids. Organic carbon...

  7. Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: Implications for anthropogenic influences on coastal marine environment

    International Nuclear Information System (INIS)

    Liu Liangying; Wang Jizhong; Wei Gaoling; Guan Yufeng; Zeng, Eddy Y.

    2012-01-01

    Sediments collected from the continental shelf of China, embracing Yellow Sea, inner shelf of the East China Sea (ECS), and the South China Sea (SCS), were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of anthropogenic PAHs (Σ 18 PAH) were 27–224 ng/g dry weight, with an average of 82 ng/g. Sedimentary PAHs in the continental shelf off China were mainly derived from mixed residues of biomass, coal, and petroleum combustion. Fluvial transport and atmospheric deposition mainly accounted for sediment PAHs in the ECS inner shelf and Yellow Sea (and the SCS), respectively. Furthermore, statistically higher levels of Σ 18 PAH (28–224 ng/g; mean 110 ng/g) in the Yellow Sea sediment than in the SCS sediment (28–109 ng/g; mean 58 ng/g) were probably resulted from higher PAH emissions from coke industry and domestic coal combustion in North China than in South China. - Highlights: ► Coal and biomass combustion was the main origin of PAHs in coastal marine sediment of China. ► Fluvial transport was the main mode for transporting PAHs to the East China Sea inner shelf. ► Atmospheric deposition largely accounted for sediment PAHs in Yellow Sea and the South China Sea. ► Regional energy use pattern in China was responsible for the spatial distribution of PAHs in coastal marine sediment. - Sources, compositions and spatial distributions of PAHs in continental shelf sediments off China are analyzed to estimate anthropogenic influences.

  8. The Role of the Submarine Channel Pernambuco in the Brazilian Continental Margin East

    International Nuclear Information System (INIS)

    Torres, L.; Villena, H.

    2010-01-01

    The Brazilian Continental Margin, which coastline measures more than 8,500km gives to Brazil continental dimensions. This huge region is conditioned by the action of process such as, sedimentals, tectonics, geomorphological and climatical, as example, which direct or in conjunction with other ones, since of continental break up between South America and Africa are going on and may be responsible for the current morphology of the margin. In accordance with this point of view, the Oriental part of the Brazilian Continental Margin, presents characteristics of a passive margin and fisiographically ''starved'', in which the continental break occur no more than 100km from de coastline and the sedimentary coverage is mainly carbonatic. The continental slope does not present great extension if compared with other parts of the Brazilian Margin and sharp gradient. The remark presence of the continental plateaus (Rio Grande Plateau and Pernambuco Plateau), which link with the continental rise and additionally the Paraiba, Pernambuco e Bahia seamounts, are the majors features in the morphology of the region between the slope and the continental rise. This paper will concentrate its focus on Bahia Seamount, with emphasis in the mainly erosive feature which cut transversally the seamounts, named Pernambuco Submarine Channel. It will be employed bathymetric multibeam and seismic data carried out by the Brazilian Continental Shelf Project (LEPLAC) in the current year and pieces of information from bibliographic researches in order to present a discussion by the hole of the Pernambuco Submarine Channel in the Occidental region of the Brazilian Continental Margin

  9. Diversity and Distribution Patterns of Cetaceans in the Subtropical Southwestern Atlantic Outer Continental Shelf and Slope

    Science.gov (United States)

    Di Tullio, Juliana Couto; Gandra, Tiago B. R.; Zerbini, Alexandre N.; Secchi, Eduardo R.

    2016-01-01

    Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern

  10. Sedimentation on continental margins: An integrated program for innovative studies during the 1990s

    Science.gov (United States)

    Nittrourer, Charles A.; Coleman, James M.; Rouge, Baton; Flood, Roger D.; Ginsburg, Robert N.; Gorsline, Donn S.; Hine, Albert C.; Sternberg, Richard W.; Swift, Donald J. P.; Wright, L. Donelson

    Continental margins are of great scientific interest, and they represent the focus of human interaction with the ocean. Their deep structure forms the transition from continental to oceanic crust, and their surface expression extends from coastal environments of estuaries and shorelines across the continental shelf and slope to either the base of a continental rise or a marginal trough. Modern continental margins represent natural laboratories for investigation of complex relationships between physical, chemical, and biological phenomena, which are sensitive to environmental conditions both on the land and in the ocean. The history of these conditions is preserved within the sedimentary deposits of continental margins. The deposits form repositories for much of the particulate material transported off the world's land masses and produced from dissolved components in the world ocean. Past deposits of continental margins have been uplifted to form many mountain ranges and sedimentary terrains of the world, which record details of Earth history and contain valuable natural resources, such as petroleum and natural gas. Modern deposits of continental margins record the more recent events that have influenced Earth and also contain natural resources (for instance, minerals, sand, and gravel), as well as anthropogenic pollutants (for example, heavy metals and pesticides). The fates of many materials beneficial and deleterious to humans are dependent on the pathways followed by sedimentary particles on continental margins.

  11. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts.

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2018-01-09

    Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.

  12. Organic storage of CO/sub 2/ on the continental slope off the mid-Atlantic bight, the southeastern Bering Sea, and the Peru coast

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.J.; Premuzic, E.T.; Gaffney, J.S.; Rowe, G.T.; Harbottle, G.; Stoenner, R.W.; Balsam, W.L.; Betzer, P.R.; Macko, S.A.

    1985-01-01

    A comparison is made of organic content, sedimentation rates derived from /sup 14/C and /sup 210/Pb analyses, /sup 13/C and /sup 15/N isotope ratios, amorphous silica, particle size, and calcium carbonate within sediments from slopes off the mid-Atlantic bight, the southeastern Bering Sea, and the Peru coast. These sediments are mainly marine, diatom-rich, and about one-third of the organic carbon is recent, reflecting a possible transient of shelf export in response to man's increased activities since the industrial revolution. Using a combination of sedimentation and mixing rates of carbon, the C:N ratio of sediments within the upper 50 cm, and the amount of nitrogen thought to be released from the coastal zone, independent estimates suggest a carbon loading to world slopes of approx. 0.3 to 0.5 x 10/sup 9/ tons C y/sup -1/. The Bering slope exhibits no anthropogenic transients, however, while increased carbon loading may have occurred off Peru in response to overfishing and off the mid-Atlantic bight in response to eutrophication. The generality of their results depends on which of the three systems is most representative of world slopes.

  13. The interaction of a vortex ring with a sloped sediment layer: Critical criteria for incipient grain motion

    Science.gov (United States)

    Munro, R. J.

    2012-02-01

    Experiments were performed to analyse the interaction between a vortex ring and a sloped sediment layer. Attention focussed on interactions under "critical" conditions, in which sediment motion was only just induced by the ring's flow field. Both hydraulically smooth and hydraulically rough bedforms were analysed, using near-spherical monodisperse sediments with relative densities of 1.2 and 2.5 and mean diameters (dp) ranging between 80 and 1087 μm. Measurements of the vortex-ring flow field were obtained, during the interaction, using two-dimensional particle imaging velocimetry. The threshold conditions for incipient sediment motion were analysed in terms of the critical Shields parameter (Nc), defined in terms of the peak tangential velocity measured adjacent to the bed surface. Bed-slope effects were investigated by tilting the sediment layer at various angles between the horizontal and the repose limit for the sediment. In all cases, the propagation axis of the vortex ring was aligned normal to the bed surface. The measured values of Nc were compared with a force-balance model based on the conditions for incipient grain motion on a sloping bed. For hydraulically smooth bedforms, where the bed roughness is small compared to the boundary-layer depth, the model was derived to account for how viscous stresses affect the drag and lift forces acting on the near surface sediment. For hydraulically rough bedforms, where this viscous-damping effect is not present, the model assumes the drag and lift forces scale with the square of the near-bed (inviscid) velocity scale. In both cases, the model predicts that bedforms become more mobile as the bed slope is increased. However, the damping effect of the viscous sublayer acts as a stabilizing influence for hydraulically smooth bedforms, to reduce the rate at which the bed mobility increases with bed slope. The measured values of Nc were in agreement with the trends predicted by this model, and exhibit a transition in

  14. Transport and transfer rates in the waters of the continental shelf. Annual report

    International Nuclear Information System (INIS)

    Biscaye, P.E.

    1980-09-01

    The goal of govern project is to understand and quantify the processes that the transport and dispersal of energy-related pollutants introduced to the waters of the continental shelf and slope. The report is divided into sections dealing with processes associated with suspended solids; processes associated with sediments sinks for radionuclides and other pollutants; and spreading of water characteristics and species in solution

  15. Recent sediment transport and deposition in the Nazaré Canyon, Portuguese continental margin.

    NARCIS (Netherlands)

    de Stigter, H.C.; Boer, W.; de Jesus Mendes, P.A.; Jesus, C.C.; Thomsen, L.; van den Bergh, G.D.; van Weering, T.C.E.

    2007-01-01

    Processes, pathways and fluxes of sediment transport and deposition in the Nazaré submarine canyon, Portuguese continental margin, were investigated by water column profiling of suspended particulate matter, recording of near-bottom currents and suspended particulate matter fluxes with benthic

  16. Controls on organic carbon distribution in sediments from the eastern Arabian Sea margin

    Digital Repository Service at National Institute of Oceanography (India)

    Thamban, M.; Rao, V.P.; Raju, S.V.

    Sediment cores from the upper continental slope of the eastern Arabian Sea have high organic carbon (OC), CaCO sub(3), and sand content at the top. The values decrease with increasing depth in the Holocene and Upper Pleistocene. Topographic highs...

  17. Benthic assemblages of mega epifauna on the Oregon continental margin

    Science.gov (United States)

    Hemery, Lenaïg G.; Henkel, Sarah K.; Cochrane, Guy R.

    2018-01-01

    Environmental assessment studies are usually required by a country's administration before issuing permits for any industrial activities. One of the goals of such environmental assessment studies is to highlight species assemblages and habitat composition that could make the targeted area unique. A section of the Oregon continental slope that had not been previously explored was targeted for the deployment of floating wind turbines. We carried out an underwater video survey, using a towed camera sled, to describe its benthic assemblages. Organisms were identified to the lowest taxonomic level possible and assemblages described related to the nature of the seafloor and the depth. We highlighted six invertebrate assemblages and three fish assemblages. For the invertebrates within flat soft sediments areas we defined three different assemblages based on primarily depth: a broad mid-depth (98–315 m) assemblage dominated by red octopus, sea pens and pink shrimps; a narrower mid-depth (250–270 m) assemblage dominated by box crabs and various other invertebrates; and a deeper (310–600 m) assemblage dominated by sea urchins, sea anemones, various snails and zoroasterid sea stars. The invertebrates on mixed sediments also were divided into three different assemblages: a shallow (~100 m deep) assemblage dominated by plumose sea anemones, broad mid-depth (170–370 m) assemblage dominated by sea cucumbers and various other invertebrates; and, again, a narrower mid-depth (230–270 m) assemblage, dominated by crinoids and encrusting invertebrates. For the fish, we identified a rockfish assemblage on coarse mixed sediments at 170–370 m and another fish assemblage on smaller mixed sediments within that depth range (250–370 m) dominated by thornyheads, poachers and flatfishes; and we identified a wide depth-range (98–600 m) fish assemblage on flat soft sediments dominated by flatfishes, eelpouts and thornyheads. Three of these assemblages (the two

  18. Benthic assemblages of mega epifauna on the Oregon continental margin

    Science.gov (United States)

    Hemery, Lenaïg G.; Henkel, Sarah K.; Cochrane, Guy R.

    2018-05-01

    Environmental assessment studies are usually required by a country's administration before issuing permits for any industrial activities. One of the goals of such environmental assessment studies is to highlight species assemblages and habitat composition that could make the targeted area unique. A section of the Oregon continental slope that had not been previously explored was targeted for the deployment of floating wind turbines. We carried out an underwater video survey, using a towed camera sled, to describe its benthic assemblages. Organisms were identified to the lowest taxonomic level possible and assemblages described related to the nature of the seafloor and the depth. We highlighted six invertebrate assemblages and three fish assemblages. For the invertebrates within flat soft sediments areas we defined three different assemblages based on primarily depth: a broad mid-depth (98-315 m) assemblage dominated by red octopus, sea pens and pink shrimps; a narrower mid-depth (250-270 m) assemblage dominated by box crabs and various other invertebrates; and a deeper (310-600 m) assemblage dominated by sea urchins, sea anemones, various snails and zoroasterid sea stars. The invertebrates on mixed sediments also were divided into three different assemblages: a shallow ( 100 m deep) assemblage dominated by plumose sea anemones, broad mid-depth (170-370 m) assemblage dominated by sea cucumbers and various other invertebrates; and, again, a narrower mid-depth (230-270 m) assemblage, dominated by crinoids and encrusting invertebrates. For the fish, we identified a rockfish assemblage on coarse mixed sediments at 170-370 m and another fish assemblage on smaller mixed sediments within that depth range (250-370 m) dominated by thornyheads, poachers and flatfishes; and we identified a wide depth-range (98-600 m) fish assemblage on flat soft sediments dominated by flatfishes, eelpouts and thornyheads. Three of these assemblages (the two broad fish assemblages and the deep

  19. Holocene and Late Glacial sedimentation near steep slopes in southern Lake Baikal

    Directory of Open Access Journals (Sweden)

    Michael Sturm

    2015-07-01

    Full Text Available We here present new data on sedimentation at and near the steep north-slopes of southern Lake Baikal. Short sediment cores were taken at 550 m and at 1366 m water depth, within 3600 m offshore Cape Ivanovskii at the station of the Baikal Deep Underwater NEUTRINO Telescope. The sediments within 3600 m off the northern coast of Southern Lake Baikal are dominated by pelagic deposition. Our data reveal surprisingly little influence from terrigenous material from adjacent coastal areas, tributaries and their catchment. At the shallow-water site (at 550 m water depth, 700 m off shore just 27 cm thick homogenous sediments have accumulated during the Holocene on top of Pleistocene deposits resulting in Holocene sedimentation rates of 0.003 cm a-1. The very low rates are caused by long-term persistent winnowing of fine particles caused by week contour currents along the slope. The uppermost sediments are oxidized down to 22 cm. Very low concentrations of Corg, Sibio and Ntot in Pleistocene sediments increase dramatically within the Holocene. The heavy mineral fraction of the shallow-water sediments contains up to 33.6 % olivine and up to 2.4 % spinel. These rare minerals originate from white marbles of the nearby coastal outcrop Belaya Vyemka of the Early Precambrian Sharyzalgaiskaya Series. At the deep-water site (at 1366 m water depth, 3600 m off shore Holocene sedimentation rates are 10-times higher (0.036 cm a-1. Sediment oxidation occurs just within the uppermost 2 cm. Of the two rare type minerals of the Sharyzalgaiskaya Series spinel does not occur at all and olivine is represented by very diminished concentrations. This indicates insignificant influx of terrestrial material from the nearby shore to the deep-water site . Distal turbidites of far-off sources are intercalated to pelagic sediments at the deep-water site. Breakdown events of deltas at the SE- and S-coast of the basin are suggested to be responsible for the formation of the turbidites

  20. Non-aromatic hydrocarbons in surface sediments near the Pearl River estuary in the South China Sea

    International Nuclear Information System (INIS)

    Gao Xuelu; Chen Shaoyong; Xie Xueliang; Long Aimin; Ma Fujun

    2007-01-01

    Surface sediment samples at 4 sites along an offshore transect from outer continental shelf off the Pearl River estuary to the shelf slope region of the northern South China Sea, have been analyzed for total organic carbon (TOC), total nitrogen (TN), solvent extractable organic matter (EOM) and non-aromatic hydrocarbons. TOC, TN and EOM show distinct spatial variations. Their highest values are all recorded at the shelf slope region. EOM varies from 18.70-38.58 μg g -1 dry sediment and accounts for 0.20-0.72% of the TOC contents. The non-aromatic hydrocarbons are an important fraction of EOM. Their contents range from 3.43-7.06 μg g -1 dry sediment. n-Alkanes with carbon number ranging from 15-38 are identified. They derive from both biogenic and petrogenic sources in different proportions. Results of isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. - Anthropogenic activities have influences on the composition of non-aromatic hydrocarbons in the surface sediments of the northern South China Sea outer continental shelf

  1. Continental shelf sediment dynamics in the Anthropocene: A global shift

    Science.gov (United States)

    Oberle, Ferdinand K. J.; Puig, Pere; Martin, Jacobo

    2017-04-01

    Recent technological advances in remote sensing and deep marine sampling have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.

  2. The continental slope current system between Cape Verde and the Canary Islands

    Directory of Open Access Journals (Sweden)

    Jesús Peña-Izquierdo

    2012-08-01

    Full Text Available We use hydrographic, velocity and drifter data from a cruise carried out in November 2008 to describe the continental slope current system in the upper thermocline (down to 600 m between Cape Verde and the Canary Islands. The major feature in the region is the Cape Verde Frontal Zone (CVFZ, separating waters from tropical (southern and subtropical (northern origin. The CVFZ is found to intersect the slope north of Cape Blanc, between 22°N and 23°N, but we find that southern waters are predominant over the slope as far north as 24°N. South of Cape Blanc (21.25°N the Poleward Undercurrent (PUC is a prominent northward jet (50 km wide, reaching down to 300 m and indistinguishable from the surface Mauritanian Current. North of Cape Blanc the upwelling front is found far offshore, opening a near-slope northward path to the PUC. Nevertheless, the northward PUC transport decreases from 2.8 Sv at 18°N to 1.7 Sv at 24°N, with about 1 Sv recirculating ofshore just south of Cape Blanc, in agreement with the trajectory of subsurface drifters. South of the CVFZ there is an abrupt thermohaline transition at σϴ=26.85 kg m–3, which indicates the lower limit of the relatively pure (low salt and high oxygen content South Atlantic Central Water (SACW variety that coexists with the dominant locally-diluted (salinity increases through mixing with North Atlantic Central Water but oxygen diminishes because of enhanced remineralization Cape Verde (SACWcv variety. At 16°N about 70% of the PUC transport corresponds to the SACW variety but but this is transformed into 40% SACWcv at 24°N. However, between Cape Verde and Cape Blanc and in the 26.85 < σϴ < 27.1 layer, we measure up to 0.8 Sv of SACWcv being transported south. The results strongly endorse the idea that the slope current system plays a major role in tropical-subtropical water-mass exchange.

  3. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    M. B. Defersha

    2011-07-01

    Full Text Available Soil erosion is a two-phase process consisting of the detachment of individual particles and their transport by the flowing water. This study discusses the results of laboratory experiments in which for three soils, the runoff depth, sediment yield, splash erosion and sediment size were measured. Rainfall intensity, slope and antecedent moisture contents were varied in the experiment. The soil types ranged from clay to sandy clay loam (Alemaya Black soil, Regosols and Cambisols. Rainfall was applied for six sequential 15-min periods with rainfall intensities varying between 55 and 120 mm h−1. The three slopes tested were 9, 25, and 45 %. Results show that as slope increased from 9 to 25 %, splash erosion and sediment yield increased. An increase in slope from 25 to 45 % generally decreases in splash erosion. Sediment yield for one soil increased and one soil decreased with slope and for the third soil the trend was different between the two initial moisture contents. Sediment yield was correlated (r = 0.66 with runoff amounts but not with splash erosion. Interrill erosion models that were based on the flowing water and rainfall intensity fitted the data better than when based on rainfall intensity solely. Models that assume a positive linear relationship between erosion and slope may overestimate sediment yield.

  4. Sources of organic carbon in the Portuguese continental shelf sediments during the Holocene period

    International Nuclear Information System (INIS)

    Burdloff, D.; Araujo, M.F.; Jouanneau, J.-M.; Mendes, I.; Monge Soares, A.M.; Dias, J.M.A.

    2008-01-01

    Organic C (OC) and total N (TN) concentrations, and stable isotope ratios (δ 13 C) in muddy deposit sediments of the Northern and Southern Portuguese continental shelf were used to identify sources of fine-sized organic matter ( 13 C ranging, respectively, from 8.5 to 21 and from -22.4 per mille to -27 per mille ). Intense supplies to the Guadiana continental shelf of fine terrigenous particles during the Younger-Dryas Event are closely linked with higher OC/TN values and lower δ 13 C ratios. During the postglacial transgression phase, an increasing contribution of marine supplies (up to 80%) occurred. Higher δ 13 C (up to -22.4 per mille ) values and low OC/TN ratios (down to 8.5) are found as the sea level approaches the current one. The Upper Holocene records emphasize the return to enhanced terrestrial supplies except for the Little Climatic Optimum between the 11th and 15th centuries AD. This climatic event is especially obvious in the three cores as a return to marine production and a decrease in terrestrial sediment supply to the continental shelf. The return to a cooling event, the Little Ice Age, between the 15th and 19th centuries AD, is mirrored by decreased terrigenous supplies in core KSGX 57. Gradually increasing sedimentation in estuaries, as well as formation of coastal dune fields, have been hypothesized on the basis of increasing δ 13 C and decreasing OC, TN and OC/TN values

  5. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    Science.gov (United States)

    von Huene, Roland E.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  6. Nitrogen and Phosphorous Flow in Atlantic Forest Covered Watersheds on the Oceanic and Continental Slopes at Serra dos Órgãos mountain, Southeast of Brazil

    Science.gov (United States)

    Vidal, M. M.; De Souza, P.; De Mello, W. Z.; Damaceno, I.; Bourseau, L.; Rodrigues, R. D. A.; Mattos, B. B.

    2017-12-01

    Concentration of nutrients above natural levels are found even at remote or protected environments due to atmospheric transportation from biomass burning emissions, urban and industrial areas. This study evaluate N and P atmospheric deposition at the oceanic and continental slopes of Serra dos Órgãos mountain, which are influenced by the pollutants emission from the Metropolitan Region of Rio de Janeiro. Flux of dissolved forms of N and P were measured in three watersheds in headwaters of Piabanha basin, southeastern Brazil, to understand the dynamics of the biogeochemical processes of these elements, related to anthropic influences of atmospheric inputs and export via stream flow. Samples of bulk precipitation (weekly; n=47) and stream water (monthly; n=13) were collected along one year (Sept 2014 - Sept 2015). During that period the annual rainfall in the oceanic slope (2163 mm) was the double of the continental one. It is important to stress that the rainfall in the oceanic slope was 13 % and 28% in 2014/15, respectively, lower than the long term average. Atmospheric deposition of total dissolved nitrogen (TDN) on the oceanic and continental slopes were, respectively, 15 and 8.6 kg N ha-1 year-1. The TDN outputs by stream water were 5-7 times lower in oceanic slope and 28 times lower on the continental one. The relative contribution of dissolved organic nitrogen (DON; 65%-70%) was higher than the one of dissolved inorganic nitrogen (DIN; 30-35%) to TDN deposition. Atmospheric deposition of total dissolved phosphorus (TDP) in oceanic and continental slopes were 1.4 and 0.95 kg P ha-1 year-1. Dissolved Organic Phosphorus (DOP; 89-96%) was higher than the inorganic one (PO43-; 5-11%). TDP outputs were 2-4 times lower, regarding to atmospheric contribution. The contribution of DOP (73-77 %) was higher than DIP (23-27 %). Results show variations in quantities and forms of N and P species due to natural and anthropogenic processes which contribute to the cycling of

  7. Velocity-porosity relationships for slope apron and accreted sediments in the Nankai Trough Seismogenic Zone Experiment, Integrated Ocean Drilling Program Expedition 315 Site C0001

    Science.gov (United States)

    Hashimoto, Y.; Tobin, H. J.; Knuth, M.

    2010-12-01

    In this study, we focused on the porosity and compressional wave velocity of marine sediments to examine the physical properties of the slope apron and the accreted sediments. This approach allows us to identify characteristic variations between sediments being deposited onto the active prism and those deposited on the oceanic plate and then carried into the prism during subduction. For this purpose we conducted ultrasonic compressional wave velocity measurements on the obtained core samples with pore pressure control. Site C0001 in the Nankai Trough Seismogenic Zone Experiment transect of the Integrated Ocean Drilling Program is located in the hanging wall of the midslope megasplay thrust fault in the Nankai subduction zone offshore of the Kii peninsula (SW Japan), penetrating an unconformity at ˜200 m depth between slope apron sediments and the underlying accreted sediments. We used samples from Site C0001. Compressional wave velocity from laboratory measurements ranges from ˜1.6 to ˜2.0 km/s at hydrostatic pore pressure conditions estimated from sample depth. The compressional wave velocity-porosity relationship for the slope apron sediments shows a slope almost parallel to the slope for global empirical relationships. In contrast, the velocity-porosity relationship for the accreted sediments shows a slightly steeper slope than that of the slope apron sediments at 0.55 of porosity. This higher slope in the velocity-porosity relationship is found to be characteristic of the accreted sediments. Textural analysis was also conducted to examine the relationship between microstructural texture and acoustic properties. Images from micro-X-ray CT indicated a homogeneous and well-sorted distribution of small pores both in shallow and in deeper sections. Other mechanisms such as lithology, clay fraction, and abnormal fluid pressure were found to be insufficient to explain the higher velocity for accreted sediments. The higher slope in velocity-porosity relationship for

  8. The clay mineral and Sr-Nd isotopic composition for fine-grained fraction of sediments from northwestern South China Sea: implications for sediment provenance

    Science.gov (United States)

    Cai, G.

    2013-12-01

    *Guanqiang Cai caiguanqiang@sina.com Guangzhou Marine Geological Survey, Guangzhou, 510760, P.R. China As the largest marginal sea in the western pacific, the South China Sea (SCS) receives large amount of terrigenous material annually through numerous rivers from surrounding continents and islands, which make it as the good place for the study of source to sink process. Yet few studies put emphasis on the northwestern continental shelf and slope in the SCS, even though most of the detrital materials derived from the Red River and Hainan Island are deposited in this area, and northwestern shelf plays a significant role in directly linking the South China, the Indochina and the South China Sea and thus controlling the source to sink process of terrestrial sediment. We presented the clay mineral and Sr-Nd isotopic composition of fine-grained fraction for sediments from northwestern SCS, in order to identify sediment source and transportation. The results show that the clay mineral of northwestern SCS sediments are mainly illite (30%~59%), smectite (20%~40%) and kaolinite (8%~35%), with minor chlorite. The illite chemical index varies between 0.19 and 0.75 with an average of 0.49, indicating an intensive hydrolysis in the source region. The 87Sr/86Sr ratios of sediments range from 0.716288 to 0.734416 (average of 0.724659), and ɛ Nd(0) values range from -10.31 to -11.62 (average of -10.93), which suggest that the source rocks of these sediments are derived from continental crust. The Hainan Island is an important source for sediments deposited in the nearshore and western shelf, especially for illite, kaolinite and smectite clay minerals. Furthermore, the relatively high contents of kaolinite and smectite in sediments from eastern shelf and southern slope of Hainan Island are also controlled by the supply of terrigenous materials from Hainan, which cannot be resulted from sedimentary differentiation of the Pearl and Red river sediments. And the correlation analysis

  9. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina

    Science.gov (United States)

    Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.

    2012-01-01

    -pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.

  10. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments

    NARCIS (Netherlands)

    Schenau, S.J.; Reichart, G.-J.; Lange, G.J. de

    2005-01-01

    Abstract—In this study the response of sedimentary phosphorus (P) burial to changes in primary productivity and bottom water oxygen concentrations during the Late Quaternary is investigated, using two sediment cores from the Arabian Sea, one recovered from the continental slope and the other from

  11. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  12. Variation Trend Analysis of Runoff and Sediment Time Series Based on the R/S Analysis of Simulated Loess Tilled Slopes in the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Ju Zhang

    2017-12-01

    Full Text Available The objective of this study was to illustrate the temporal variation of runoff and sediment of loess tilled slopes under successive rainfall conditions. Loess tilled slopes with four microtopography types (straight cultivated slope, artificial backhoe, artificial digging, and contour tillage under five slope gradients (5°, 10°, 15°, 20°, 25° were simulated and a rainfall intensity of 60 mm/h was adopted. The temporal trends of runoff and sediment yield were predicted based on the Rescaled Range (R/S analysis method. The results indicate that the Hurst indices of runoff time series and sediment time series are higher than 0.5, and a long-term positive correlation exists between the future and the past. This means that runoff and sediment of loess tilled slopes in the future will have the same trends as in the past. The results obtained by the classical R/S analysis method were the same as those of the modified R/S analysis method. The rationality and reliability of the R/S analysis method were further identified and the method can be used for predicting the trend of runoff and sediment yield. The correlation between the microtopography and the Hurst indices of the runoff and sediment yield time series, as well as between the slopes and the Hurst indices, were tested, and the result was that there was no significant correlation between them. The microtopography and slopes cannot affect the correlation and continuity of runoff and sediment yield time series. This study provides an effective method for predicting variations in the trends of runoff and sediment yield on loess tilled slopes.

  13. Runoff generation and routing on artificial slopes in a Mediterranean-continental environment: the Teruel coalfield, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, J.M. [Universidad de Alcala de Henares, Alcala de Henares (Spain)

    2002-07-01

    The aim of the study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean-continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable - at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities explain runoff at the inter-rill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors.

  14. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    Science.gov (United States)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  15. Mesozoic Continental Sediment-dispersal Systems of Mexico Linked to Development of the Gulf of Mexico

    Science.gov (United States)

    Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.

    2013-05-01

    Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the

  16. Sediment underthrusting within a continental magmatic arc: Coast Mountains batholith, British Columbia

    Science.gov (United States)

    Pearson, David M.; MacLeod, Douglas R.; Ducea, Mihai N.; Gehrels, George E.; Jonathan Patchett, P.

    2017-10-01

    Though continental magmatic arcs are factories for new continental crust, a significant proportion of continental arc magmas are recycled from supracrustal material. To evaluate the relative contributions of retroarc underthrusting and trench side partial sediment subduction for introducing supracrustal rocks to the middle and lower crust of continental magmatic arcs, we present results from the deeply exposed country rocks of the Coast Mountains batholith of western British Columbia. Prior work demonstrates that these rocks underwent widespread partial melting that contributed to the Coast Mountains batholith. We utilize U-Pb zircon geochronology, Sm-Nd thermochronology, and field-based studies to document the protoliths and early burial history of amphibolite and granulite-facies metasedimentary rocks in the Central Gneiss Complex. U-Pb detrital zircon data from the structurally highest sample localities yielded 190 Ma unimodal age peaks and suggest that retroarc rocks of the Stikine terrane constitute a substantial portion of the Central Gneiss Complex. These supracrustal rocks underwent thrust-related burial and metamorphism at >25 km depths prior to 80 Ma. These rocks may also be underlain at the deepest exposed structural levels by Upper Cretaceous metasedimentary rocks, which may have been emplaced as a result of trench side underplating or intraarc burial. These results further our understanding of the mechanisms of material transport within the continental lithosphere along Cordilleran subduction margins.

  17. Influences of Holocene sea level, regional tectonics, and fluvial, gravity and slope currents induced sedimentation on the regional geomorphology of the continental slope off northwestern India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Almeida, F.

    the Holocene sea level. The Bombay high area has slope breaks between 400 and 600 m, whereas off Saurashtra steep breaks in the slope occur between 560 and 960 m depth. Further southwards, at the slope, elevations and depressions are present. Variations...

  18. Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: implications for anthropogenic influences on coastal marine environment.

    Science.gov (United States)

    Liu, Liang-Ying; Wang, Ji-Zhong; Wei, Gao-Ling; Guan, Yu-Feng; Zeng, Eddy Y

    2012-08-01

    Sediments collected from the continental shelf of China, embracing Yellow Sea, inner shelf of the East China Sea (ECS), and the South China Sea (SCS), were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of anthropogenic PAHs (Σ(18)PAH) were 27-224 ng/g dry weight, with an average of 82 ng/g. Sedimentary PAHs in the continental shelf off China were mainly derived from mixed residues of biomass, coal, and petroleum combustion. Fluvial transport and atmospheric deposition mainly accounted for sediment PAHs in the ECS inner shelf and Yellow Sea (and the SCS), respectively. Furthermore, statistically higher levels of Σ(18)PAH (28-224 ng/g; mean 110 ng/g) in the Yellow Sea sediment than in the SCS sediment (28-109 ng/g; mean 58 ng/g) were probably resulted from higher PAH emissions from coke industry and domestic coal combustion in North China than in South China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Geochemistry of the continental margin sediments of the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.M.; Murty, P.S.N.

    organic carbonI~ntent{< I%J and organic carbon rich (upto 12%) carbonate sediments in the slope regionl The b'ulk and partition geocfiemistry of the surface sediments renect the complex intermixture of several sedimentary components (lithogenic. authigenic.... The elements Fe, Mn, Ni, Cu, Zn and Sr :ue determined using a Hilger and Watts Model M 1550 atomic absorption spectrophotometer. Titanium and Phosphorus are detennined on all samples by colorimeter (Riley, 1958; Strickland and Parsons, 1971). Following bulk...

  20. Megabenthic assemblages in the continental shelf edge and upper slope of the Menorca Channel, Western Mediterranean Sea

    Science.gov (United States)

    Grinyó, Jordi; Gori, Andrea; Greenacre, Michael; Requena, Susana; Canepa, Antonio; Lo Iacono, Claudio; Ambroso, Stefano; Purroy, Ariadna; Gili, Josep-Maria

    2018-03-01

    Highly diverse megabenthic assemblages dominated by passive and active suspension feeders have been recently reported in shelf edge environments of the Mediterranean Sea. Due to their frequent association with species of commercial interest, these assemblages have been heavily impacted by fishing. The vulnerability and low resilience of these assemblages, composed mainly by long-living and slow-growing species, have motivated the implementation of management measures such as the restriction of bottom trawling, and the establishment of large protected areas embracing these environments. The Menorca Channel is one of such areas recently included in the European Union Natura 2000 network. Quantitative analysis of video transects recorded at 95-360 m depth by manned submersible and remotely operated vehicles were used to characterize megabenthic assemblages and to assess their geographical and bathymetric distribution. Six different assemblages were identified, mainly segregated by substrate type and depth. Hard substrates hosted coral gardens and sponge grounds, whereas soft sediments were mainly characterized by large extensions of the crinoid Leptometra phalangium and the brachiopod Gryphus vitreus. The good preservation of most of the observed assemblages is probably related to a low bottom trawling pressure, which mainly concentrates deeper on the adjacent continental slope. Because of their biological and ecological value, management and conservation measures need to be established to preserve these benthic assemblages.

  1. Sedimentation across the central California oxygen minimum zone: an alternative coastal upwelling sequence.

    Science.gov (United States)

    Vercoutere, T.L.; Mullins, H.T.; McDougall, K.; Thompson, J.B.

    1987-01-01

    Distribution, abundance, and diversity of terrigenous, authigenous, and biogenous material provide evidence of the effect of bottom currents and oxygen minimum zone (OMZ) on continental slope sedimentation offshore central California. Three major OMZ facies are identified, along the upper and lower edges of OMZ and one at its core.-from Authors

  2. Mineralogy and Origin of Sediments From Drill Holes on the Continental Margin Off Florida, 1965-1969 (NODC Accession 7100714)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drill cores obtained during the Joint Oceanographic Institutions' Deep Earth Sampling Program from the continental shelf, the Florida-Hatteras Slope, and the Blake...

  3. The Deposition and Accumulation of Microplastics in Marine Sediments and Bottom Water from the Irish Continental Shelf.

    Science.gov (United States)

    Martin, Jake; Lusher, Amy; Thompson, Richard C; Morley, Audrey

    2017-09-07

    Microplastics are widely dispersed throughout the marine environment. An understanding of the distribution and accumulation of this form of pollution is crucial for gauging environmental risk. Presented here is the first record of plastic contamination, in the 5 mm-250 μm size range, of Irish continental shelf sediments. Sixty-two microplastics were recovered from 10 of 11 stations using box cores. 97% of recovered microplastics were found to reside shallower than 2.5 cm sediment depth, with the area of highest microplastic concentration being the water-sediment interface and top 0.5 cm of sediments (66%). Microplastics were not found deeper than 3.5 ± 0.5 cm. These findings demonstrate that microplastic contamination is ubiquitous within superficial sediments and bottom water along the western Irish continental shelf. Results highlight that cores need to be at least 4-5 cm deep to quantify the standing stock of microplastics within marine sediments. All recovered microplastics were classified as secondary microplastics as they appear to be remnants of larger items; fibres being the principal form of microplastic pollution (85%), followed by broken fragments (15%). The range of polymer types, colours and physical forms recovered suggests a variety of sources. Further research is needed to understand the mechanisms influencing microplastic transport, deposition, resuspension and subsequent interactions with biota.

  4. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin

    Science.gov (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  5. Internal tide transformation across a continental slope off Cape Sines, Portugal

    Science.gov (United States)

    Small, Justin

    2002-04-01

    During the INTIFANTE 99 experiment in July 1999, observations were made of a prominent internal undular bore off Cape Sines, Portugal. The feature was always present and dominant in a collection of synthetic aperture radar (SAR) images of the area covering the period before, during and after the trial. During the trial, rapid dissemination of SAR data to the survey ship enabled assessment of the progression of the feature, and the consequent planning of a survey of the bore coincident with a new SAR image. Large amplitude internal waves of 50 m amplitude in 250 m water depth, and 40 m in 100 m depth, were observed. The images show that the position of the feature is linked to the phase of the tide, suggesting an internal tide origin. The individual packets of internal waves contain up to seven waves with wavelengths in the range of 500-1500 m, and successive packets are separated by internal tide distances of typically 16-20 km, suggesting phase speeds of 0.35-0.45 m s -1. The internal waves were coherent over crest lengths of between 15 and 70 km, the longer wavefronts being due to the merging of packets. This paper uses the SAR data to detail the transformation of the wave packet as it passes across the continental slope and approaches the coast. The generation sites for the feature are discussed and reasons for its unusually large amplitude are hypothesised. It is concluded that generation at critical slopes of the bathymetry and non-linear interactions are the likely explanations for the large amplitudes.

  6. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    Science.gov (United States)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and

  7. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India

    Science.gov (United States)

    Nair, Nisha; Pandey, Dhananjai K.

    2018-02-01

    Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.

  8. True Volumes of Slope Failure Estimated From a Quaternary Mass-Transport Deposit in the Northern South China Sea

    Science.gov (United States)

    Sun, Qiliang; Alves, Tiago M.; Lu, Xiangyang; Chen, Chuanxu; Xie, Xinong

    2018-03-01

    Submarine slope failure can mobilize large amounts of seafloor sediment, as shown in varied offshore locations around the world. Submarine landslide volumes are usually estimated by mapping their tops and bases on seismic data. However, two essential components of the total volume of failed sediments are overlooked in most estimates: (a) the volume of subseismic turbidites generated during slope failure and (b) the volume of shear compaction occurring during the emplacement of failed sediment. In this study, the true volume of a large submarine landslide in the northern South China Sea is estimated using seismic, multibeam bathymetry and Ocean Drilling Program/Integrated Ocean Drilling Program well data. The submarine landslide was evacuated on the continental slope and deposited in an ocean basin connected to the slope through a narrow moat. This particular character of the sea floor provides an opportunity to estimate the amount of strata remobilized by slope instability. The imaged volume of the studied landslide is 1035 ± 64 km3, 406 ± 28 km3 on the slope and 629 ± 36 km3 in the ocean basin. The volume of subseismic turbidites is 86 km3 (median value), and the volume of shear compaction is 100 km3, which are 8.6% and 9.7% of the landslide volume imaged on seismic data, respectively. This study highlights that the original volume of the failed sediments is significantly larger than that estimated using seismic and bathymetric data. Volume loss related to the generation of landslide-related turbidites and shear compaction must be considered when estimating the total volume of failed strata in the submarine realm.

  9. Initial Quantification of Suspended Sediment Loads for Three Alaska North Slope Rivers

    Directory of Open Access Journals (Sweden)

    Erica Lamb

    2016-09-01

    Full Text Available This study provides an initial assessment of suspended sediment transport in three rivers on the Alaska North Slope. From 2011 to 2013, the Anaktuvuk (69°27′51.00′′ N, 151°10′07.00′′ W, Chandler (69°17′0.30′′ N, 151°24′16.14′′ W, and Itkillik (68°51′59.46′′ N, 150°2′24.00′′ W Rivers were monitored for a variety of hydrologic, meteorologic, and sedimentologic characteristics. Watershed response to summer precipitation events was examined for each river. Bed sediment grain-size distribution was calculated using a photographic grid technique. Mean sediment diameters were 27.1 and 41.5 mm (Samples A and B for the Chandler, 35.8 mm for the Anaktuvuk, and 65.0 mm for the Itkillik. Suspended sediment rating curves were developed for each river. Suspended sediment discharge was analyzed. In 2011 and 2013, most of the total annual suspended sediment transport occurred during spring melt and widespread rainfall events, respectively. The results show that each river reacts differently to environmental inputs such as rain and basin characteristics.

  10. Continental slope sea level and flow variability induced by lateral movements of the Gulf Stream in the Middle Atlantic Bight

    Science.gov (United States)

    Böhm, E.; Hopkins, T. S.; Pietrafesa, L. J.; Churchill, J. H.

    2006-08-01

    As described by [Csanady, G.T., Hamilton, P., 1988. Circulation of slope water. Continental Shelf Research 8, 565-624], the flow regime over the slope of the southern Middle Atlantic Bight (MAB) includes a current reversal in which southwestward flow over the upper and middle slope becomes entrained in the northeastward current adjacent to the Gulf Stream. In this paper we use satellite-derived data to quantify how lateral motions of the Gulf Stream impact this current system. In our analysis, the Gulf Stream’s thermal front is delineated using a two-year time series of sea surface temperature derived from NOAA/AVHRR satellite data. Lateral motions of the Gulf Stream are represented in terms of temporal variations of the area, east of 73°W, between the Gulf Stream thermal front and the shelf edge. Variations of slope water flow within this area are represented by anomalies of geostrophic velocity as derived from the time series of the sea level anomaly determined from TOPEX/POSEIDON satellite altimeter data. A strong statistical relationship is found between Gulf Stream displacements and parabathic flow over the continental slope. It is such that the southwestward flow over the slope is accelerated when the Gulf Stream is relatively far from the shelf edge, and is decelerated (and perhaps even reversed) when the Gulf Stream is close to the shelf edge. This relationship between Gulf Stream displacements and parabathic flow is also observed in numerical simulations produced by the Miami Isopycnic Coordinate Model. In qualitative terms, it is consistent with the notion that when the Gulf Stream is closer to the 200-m isobath, it is capable of entraining a larger fraction of shelf water masses. Alternatively, when the Gulf Stream is far from the shelf-break, more water is advected into the MAB slope region from the northeast. Analysis of the diabathic flow indicates that much of the cross-slope transport by which the southwestward flow entering the study region is

  11. A new method to identify the foot of continental slope based on an integrated profile analysis

    Science.gov (United States)

    Wu, Ziyin; Li, Jiabiao; Li, Shoujun; Shang, Jihong; Jin, Xiaobin

    2017-06-01

    A new method is proposed to identify automatically the foot of the continental slope (FOS) based on the integrated analysis of topographic profiles. Based on the extremum points of the second derivative and the Douglas-Peucker algorithm, it simplifies the topographic profiles, then calculates the second derivative of the original profiles and the D-P profiles. Seven steps are proposed to simplify the original profiles. Meanwhile, multiple identification methods are proposed to determine the FOS points, including gradient, water depth and second derivative values of data points, as well as the concave and convex, continuity and segmentation of the topographic profiles. This method can comprehensively and intelligently analyze the topographic profiles and their derived slopes, second derivatives and D-P profiles, based on which, it is capable to analyze the essential properties of every single data point in the profile. Furthermore, it is proposed to remove the concave points of the curve and in addition, to implement six FOS judgment criteria.

  12. Fluctuation in glacial and interglacial sediment discharge of the River Indus as seen in the core from the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Hashimi, N.H.

    Sediment core from the upper continental slope off Saurashtra Coast has been analysed for CaCO sub(3) and coarse fraction contents in addition to planktonic foraminifera and clay mineralogy. Based on CaCO sub(3) and planktonic foraminiferal data a...

  13. Mesobathic chondrichthyes of the Juan Fernández seamounts: are they different from those of the central Chilean continental slope?

    Directory of Open Access Journals (Sweden)

    Isabel Andrade

    2008-03-01

    Full Text Available We compared the geographic distribution of groups of chondrychthid fishes of two physically proximal, although geographically different, regions that include the Juan Fernández seamounts and the central Chilean continental slope, both sampled at mesopelagic and mesobenthonic depths. The ridge is in the Nazca Plate, while the slope region in on the South American Plate, and is closer to the South American continent. We found six species of Chondrichthyes for the seamounts (four orders, four families. The slope sampling produced ten species of Chondrichthyes, of which Torpedo tremens De Buen 1959, was the only species in common with the Juan Fernández area. There are clear differences between the Chondrichthyes of the two regions. These fisheries require adequate administrative modes. Rev. Biol. Trop. 56 (1: 181-190. Epub 2008 March 31.

  14. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    Science.gov (United States)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort

  15. The effects of thick sediment upon continental breakup: seismic imaging and thermal modeling of the Salton Trough, southern California

    Science.gov (United States)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.

    2015-12-01

    Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is

  16. Geomorphic Thresholds of Submarine Canyons Along the U.S. Atlantic Continental Margin

    Science.gov (United States)

    Brothers, D. S.; ten Brink, U. S.; Andrews, B. D.; Chaytor, J. D.

    2011-12-01

    Vast networks of submarine canyons and associated channels are incised into the U.S. Atlantic continental slope and rise. Submarine canyons form by differential erosion and deposition, primarily from sedimentary turbidity flows. Theoretical and laboratory studies have investigated the initiation of turbidity flows and their capacity to erode and entrain sedimentary material at distances far from the shelf edge. The results have helped understand the nature of turbidite deposits on the continental slope and rise. Nevertheless, few studies have examined the linkages between down-canyon sediment transport and the morphology of canyon/channel networks using mesoscale analyses of swath bathymetry data. We present quantitative analysis of 100-m resolution multibeam bathymetry data spanning ~616,000 km2 of the slope and rise between Georges Banks and the Blake Plateau (New England to North Carolina). Canyons are categorized as shelf-indenting or slope-confined based on spatial scale, vertical relief and connection with terrestrial river systems during sea level low stands. Shelf-indenting canyons usually represent the trunk-canyon of submerged channel networks. On the rise, shelf-indenting canyons have relatively well-developed channel-levees and sharp inner-thalwag incision suggesting much higher frequency and volume of turbidity flows. Because of the similarities between submarine canyon networks and terrestrial river systems, we apply methods originally developed to study fluvial morphology. Along-canyon profiles are extracted from the bathymetry data and the power-law relationship between thalwag gradient and drainage area is examined for more than 180 canyons along an ~1200 km stretch of the US Atlantic margin. We observe distinct thresholds in the power-law relationship between drainage area and gradient. Almost all canyons with heads on the upper slope contain at least two linear segments when plotted in log-log form. The first segment along the upper slope is flat

  17. Pathways of carbon oxidation in continental margin sediments off central Chile

    DEFF Research Database (Denmark)

    Thamdrup, B; Canfield, Donald Eugene

    1996-01-01

    Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations...... the shelf was rich in NO3- and depleted of O2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (>3 micromol cm-3 d-1) and decreased exponentially...... C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO4(2-) reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides...

  18. Contributions to knowledge of the continental margin of Uruguay. Description of background samples in the continental margin of Uruguay

    International Nuclear Information System (INIS)

    Preciozzi, F

    2015-01-01

    This study provide data concerning of the background sediments of the continental margin of Uruguay. There were carried out different works with witnesses in order to extract various sediment samples from the continental shelf

  19. Minimization of gully erosion on reclaimed surface mines using the stable slope and sediment transport computer model

    International Nuclear Information System (INIS)

    McKenney, R.A.; Gardner, T.G.

    1992-01-01

    Disequilibrium between slope form and hydrologic and erosion processes on reclaimed surface coal mines in the humid temperate northeastern US, can result in gully erosion and sediment loads which are elevated above natural, background values. Initial sheetwash erosion is surpassed by gully erosion on reclamation sites which are not in equilibrium with post-mining hydrology. Long-term stability can be attained by designing a channel profile which is in equilibrium with the increased peak discharges found on reclaimed surface mines. The Stable Slope and Sediment transport model (SSAST) was developed to design stable longitudinal channel profiles for post-mining hydrologic and erosional processes. SSAST is an event based computer model that calculates the stable slope for a channel segment based on the post-mine hydrology and median grain size of a reclaimed surface mine. Peak discharge, which drives post-mine erosion, is calculated from a 10-year, 24-hour storm using the Soil Conservation Service curve number method. Curve number calibrated for Pennsylvania surface mines are used. Reclamation sites are represented by the rectangle of triangle which most closely fits the shape of the site while having the same drainage area and length. Sediment transport and slope stability are calculated using a modified Bagnold's equation with a correction factor for the irregular particle shapes formed during the mining process. Data from three reclaimed Pennsylvania surface mines were used to calibrate and verify SSAST. Analysis indicates that SSAST can predict longitudinal channel profiles for stable reclamation of surface mines in the humid, temperate northeastern US

  20. Investigation of the role of gas hydrates in continental slope stability west of Fiordland, New Zealand

    OpenAIRE

    Crutchley, Gareth; Gorman, Andrew R.; Fohrmann, Miko

    2007-01-01

    Sediment weakening due to increased local pore fluid pressure is interpreted to be the cause of a submarine landslide that has been seismically imaged off the southwest coast of New Zealand. Data show a distinct and continuous bottom‐simulating reflection (BSR)—a seismic phenomena indicative of the presence of marine gas hydrate—below the continental shelf from water depths of c. 2400 m to c. 750 m, where it intersects the seafloor. Excess pore fluid pressure (EPP) generated in a free gas zon...

  1. Change in morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York between 2011 and 2014: Analysis of hurricane impact

    Science.gov (United States)

    Schwab, William C.; Baldwin, Wayne E.; Warner, John C.; List, Jeffrey; Denny, Jane F.; Liste Munoz, Maria; Safak, Ilgar

    2017-01-01

    Seafloor mapping investigations conducted on the lower shoreface and inner continental shelf offshore of Fire Island, New York in 2011 and 2014, the period encompassing the impacts of Hurricanes Irene and Sandy, provide an unprecedented perspective regarding regional inner continental shelf sediment dynamics during large storm events. Analyses of these studies demonstrate that storm-induced erosion and sediment transport occurred throughout the study area in water depths up to 30 m. Acoustic backscatter patterns were observed to move from ~1 m to 450 m with a mean of 20 m and movement tended to decrease with increasing water depth. These patterns indicate that both of the primary inner continental shelf sedimentary features in the study area, linear sorted bedforms offshore of eastern Fire Island and shoreface-attached sand ridges offshore of central and western Fire island, migrated alongshore to the southwest. The migration of the sorted bedforms represents the modification of an active ravinement surface and is thought to have liberated a significant volume of sediment. Comparison of isopach maps of sediment thickness show that the volume of modern sediment composing the lower shoreface and shoreface-attached sand ridges decreased by ~2.8 × 106 m3 across the ~73 km2 of common seafloor mapped in both surveys. However, a similar analysis for the relatively calmer 15-yr period prior to 2011 revealed significant accretion. This allows speculation that the shoreface-attached sand ridges are maintained over decadal timescales via sediment supplied through erosion of Pleistocene outwash and lower Holocene transgressive channel-fill deposits exposed on the inner continental shelf, but that the sand ridges also periodically erode and move to the southwest during large storm events. Analyses show that significant storminduced erosion and sediment transport occurs far seaward of the 5 to 9 m depth of closure assumed for Fire Island, where it is thought that an onshore

  2. 137Cs as tracer of the origin of allochthonous sediments in the Southeast Continental Margin of Brazil

    International Nuclear Information System (INIS)

    Ferreira, Paulo A.L.; Mahiques, Michel M.; FIgueira, Rubens C.L.

    2015-01-01

    The distribution of 137 Cs, artificial radionuclide for which there is no current source, can inform on the origin and destination of sediments. This study analyzed about 60 samples of surface sediment to generate a model of spatial distribution of 137 Cs in the Southeast Continental Margin of Brazil and surroundings for evaluating possible sediment sources for this region. The model showed that the levels of 137 Cs in the southern compartment of the Southeast Brazilian Margin (south of Sao Sebastiao Island) are statistically similar to those of the Rio de la Plata river mouth region, indicating sediment entry due to the seasonal intrusion of the plume of Rio de la Plata, a phenomenon already studied by other authors

  3. Paleohydrology of tropical South America and paleoceanography of the tropical Atlantic as deduced from two new sediment cores on the Brazilian continental slope

    Science.gov (United States)

    Nace, T.; Baker, P. A.; Dwyer, G. S.; Silva, C. G.; Hollander, D. J.; Rigsby, C. A.; Giosan, L.; Burns, S. J.

    2011-12-01

    Paleoclimate/paleoceanographic reconstructions of the Amazon Basin, Brazilian Nordeste, and western equatorial Atlantic have been undertaken on two new sediment cores located on the Brazilian continental slope (Core CDH-5 at 1708 mbsl, 4N, 48W, 32m long, ~30 ka record; Core CDH-86 at 3708 mbsl, 0N/S, 44W, 30m long, ~100ka record). High-resolution XRF analyses of Fe, Ti, and Ca are used to define the paleohydrologic history of the adjacent continent at both sites. Large and abrupt excursions of Ti/Ca ratios are observed in both cores, but are significantly better defined in the southern core, representative of Nordeste conditions. In this core there are a total of 9 Ti/Ca excursions, the oldest recovered dating to ~98ka. These excursions correlate well with Heinrich events from the North Atlantic. High-resolution stable oxygen isotopic analysis and Mg/Ca paleothermometry undertaken on the near-surface-dwelling planktic foraminiferal species Globierinoides ruber provide a picture of paleoceanographic forcings in the western equatorial Atlantic. The northern and southern cores respectively exhibit rapid warming of ~3C and ~3.5C between the last glacial maximum and the early Holocene. Furthermore, in almost all cases, during the last glacial stage, there was a 0.5C to 2C warming of the western equatorial Atlantic during the periods of high Ti/Ca ratios that correlate with Heinrich events. Thus, as observed in some previous studies, the western equatorial Atlantic was warm and the adjacent southern tropical continent was wet at the same time that the high-latitude North Atlantic was cold. The largely accepted paradigm is that Northern hemisphere cold events result in a southward migration of the Intertropical Convergence Zone (ITCZ), contributing to drier conditions at the northern extent of the ITCZ annual range (Cariaco Basin) and increased precipitation in the southern tropics of South America. The ITCZ appears to have been influenced by millennial variability of

  4. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Directory of Open Access Journals (Sweden)

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  5. Detailed analysis of the Valdes slide: a landward facing slope failure off Chile

    Science.gov (United States)

    Anasetti, Andrea; Krastel, Sebastian; Weinrebe, Willy; Klaucke, Ingo; Bialas, Jorge

    2010-05-01

    The Chilean continental margin is a very active area interested by important tectonic movements and characterized by a fast morphological evolution. Geophysical data acquired during cruise JC 23, aboard RV JAMES COOK in March/April 2008 and previous cruises cover most of the active Chilean continental margin between 33° and 37° S. Integrated interpretation of multi-beam bathymetric, sub-bottom profiles, side-scan sonar and seismic data allowed the identification of a number of slope failures. The main topic of this project is the morphological and sedimentological analysis of the Valdes slide, a medium-sized submarine landslide offshore the city of Talcahuano (300 km south of Santiago). In contrast to most other slides along continental margins, the Valdes slide is located on the landward facing eastern slope of a submarine ridge. This setting has important implications for the associated tsunami wave field (first arrival of positive amplitude). We measured geometrical parameters of the failure and adjacent slope. The slide affected an area of 19 km2 between ~1060 m and >1700 m water depths. Its is ~ 6 km long, up to 3 km wide and involved a total sedimentary volume of about 0,8 km3. The failure process was characterized by a multiple-event and we assume its tsunami potential to be high. Using the high resolution bathymetric data and the seismic profiles along the slide deposit it was possible to reconstruct the original morphology of the area in order to understand the relation between the slide event and the structural evolution of the ridge. Through the analysis of the data and bibliographic information about the Chilean margin, we analyzed potential trigger mechanisms for the landslide. The Valdes slide is situated on a steep ridge flank. The ridge follows an elongated fault zone running app. parallel to the margin. This fault zone has a dextral component which in combination with the faults elongation results in a compressional regime that is superimposed on

  6. Sediment flux and airflow on the stoss slope of a barchan dune

    Science.gov (United States)

    Lancaster, N.; Nickling, W. G.; Neuman, C. K. McKenna; Wyatt, V. E.

    1996-09-01

    Measurements of sediment flux on the windward slope of an isolated barchan using an array of 30 sand traps provide new data that can constrain models of dune dynamics. The data show that at low wind incident speeds, flux increases up the dune exponentially, whereas at higher wind speeds the increase with distance approaches linearity. Wind profile measurements, conducted at the same time as the flux measurements, indicate that, although wind speed at a given height increases by 1.2 times from dune toe to brinkline, wind shear velocity derived from the profile data decreases up the dune and is in many cases below transport threshold values. This demonstrates that conventional wind profiles, derived from anemometry on dunes, do not measure the part of the boundary layer that is significant for sediment transport.

  7. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    Science.gov (United States)

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-11-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  8. Changes in abundance and composition of anthropogenic marine debris on the continental slope off the Pacific coast of northern Japan, after the March 2011 Tohoku earthquake

    International Nuclear Information System (INIS)

    Goto, Tomoaki; Shibata, Haruka

    2015-01-01

    Highlights: • Benthic marine debris on continental slope off northeastern Japan quantified. • Low density of sea-base sourced debris dominant until 2011 Tohoku earthquake. • Increase in marine debris after the earthquake indicated by post-2011 tsunami survey. • Much increase in land-base sourced debris mainly due to 2011 tsunami. • Additional sources of land-based debris during post-tsunami survey implied. - Abstract: Abundance and composition of anthropogenic marine debris were assessed on the basis of six bottom trawl surveys conducted on the continental slope off Iwate Prefecture, Pacific coast of northern Japan, in 2003, 2004 and 2011, and the temporal changes due to the Tohoku earthquake and tsunami in March 2011 evaluated. In 2003 and 2004, 54–94 items km −2 of marine debris, dominated by sea-base sourced items mainly comprising fishing gear and related items from adjacent fishing grounds on the continental shelf, were quantified. In the post-earthquake period, the density increased drastically to 233–332 items km −2 , due to an increase in land-base sourced items generated by the tsunami. However, a major increase in abundance after the disaster, compared to the total amount of tsunami debris swept into the sea, was not found. Additional sources of land-based debris from the adjacent continental shelf are suggested in the present waters

  9. Sediment movement along the U.S. east coast continental shelf—II. Modelling suspended sediment concentration and transport rate during storms

    Science.gov (United States)

    Lyne, Vincent D.; Butman, Bradford; Grant, William D.

    1990-05-01

    Long-term near-bottom wave and current observations and a one-dimensional sediment transport model are used to calculate the concentration and transport of sediment during winter storms at 60-80 m water depth along the southern flank of Georges Bank and in the Mid-Atlantic Bight. Calculations are presented for five stations, separated by more than 600 km alongshelf, that have different bottom sediment texture, bedforms and current conditions. A modified version of the sediment transport model presented by GRANT and GLENN (1983, Technical Report to the American Gas Association), GLENN (1983, D.Sc. Thesis, M.I.T.), and GLENN and GRANT (1987, Journal of Geophysical Research, 92, 8244-8264) is used to examine the influence of wave-current interaction, sediment stratification, and limitations on the erodibility of the bottom sediments on the concentration of sediment in the water column and on transport. Predicted suspended sediment concentrations are higher than observed, based on beam transmissometer measurements, unless an erosion limit of order a few millimeters for sediments finer than 94 μm is imposed. The agreement between predicted and measured beam attenuation is better at stations that have significant amounts of silt plus clay in the surficial sediments than for stations with sandy sediments. Sediment concentrations during storms estimated by MOODYet al. (1987, Continental Shelf Research, 7, 609-628) are within 50% of the model predictions. Sediment transport rates for sediments 94 μm and finer are determined largely by the concentrations in the surficial sediment and the erosion depth limit. Large alongshelf transports in the direction of storm-driven currents are inferred for stations in the Mid-Atlantic Bight. During a 115-day period in winter 1979-1980, the net transport of sediment along the shelf was westward; benthic storms (defined as periods when the bottom wave stress exceeded the current stress by 2 dyn cm -2) occurred between 23 and 73% of the

  10. Distribution patterns and enrichment of lead, zinc and copper in surface sediments of the central Portuguese shelf and upper slope

    NARCIS (Netherlands)

    Jesus, C.C.; de Stigter, H.; Miranda, P.; Oliveira, A.; Rocha, F.

    2013-01-01

    Geographic patterns of Cu, Pb and Zn enrichment on the Lisbon-Setúbal-Sines continental shelf and upper slope (central Portuguese margin) were studied in this paper to gain insight into current pathways of trace metal dispersal. Our study is based on the analysis of elemental concentrations and

  11. Dating recent sediments from the subaqueous Yangtze Delta and adjacent continental shelf, China

    Directory of Open Access Journals (Sweden)

    Zhang-Hua Wang

    2014-04-01

    Full Text Available In this study we analyzed sediment lithology, fallout of 210Pb and 137Cs, and spheroidal carbonaceous particles (SCPs for two short cores, YZE and CX38, obtained by gravity corer from the Yangtze River mouth offshore and adjacent continental shelf, to compare geochronological methods on the recent sediments of this area. Lithology and grain size changes in YZE suggested the re-discharging of the North Channel of the Yangtze River mouth by flood events during 1949–1954 and associated accretion in the offshore area. This event was validated by a remarkable zone of declination in both 137Cs and 210Pb activities and the absolute ages derived from the 137Cs and SCPs. In contrast, 210Pb results show obvious disturbance of grain size by sediment mixing and cannot be interpreted above 100 cm. In CX38, absolute ages for the early- and mid-1950s were derived by the 137Cs and the SCP profile respectively, which occurred in a reasonable sequence. The excess 210Pb distribution shows exponentially decreasing activities with depth, and the mean sedimentation rate agrees roughly with the one inferred from the SCP profile. We suggest that the limitation of the 210Pb method needs consideration while the SCP profile has the potential to provide a useful and independent dating method for recent Yangtze offshore and adjacent shelf sediments.

  12. Development and sexual dimorphism of the sonic system in three deep-sea neobythitine fishes and comparisons between upper mid and lower continental slope

    Science.gov (United States)

    Fine, Michael L.; Ali, Heba A.; Nguyen, Thanh Kim; Mok, Hin-Kiu; Parmentier, Eric

    2018-01-01

    Based on morphology, NB Marshall identified cusk-eels (family Ophidiidae) as one of the chief sound-producing groups on the continental slope. Due to food scarcity, we hypothesized that sonic systems will be reduced at great depths despite their potential importance in sexual reproduction. We examined this hypothesis in the cusk-eel subfamily Neobythitinae by comparing sonic morphology in Atlantic species from the upper-mid (Dicrolene intronigra) and deeper continental slope (Porogadus miles and Bathyonus pectoralis) with three Taiwanese species previously described from the upper slope (Hoplobrotula armatus, Neobythites longipes and N. unimaculatus). In all six species, medial muscles are heavier in males than in females. Dicrolene has four pairs of sonic muscles similar to the shallow Pacific species, suggesting neobythitine sonic anatomy is conservative and sufficient food exists to maintain a well-developed system at depths exceeding 1 km. The sonic system in Porogadus and Bathyonus was reduced to a single pair of ventral medial muscles that connects to a smaller and thinner swimbladder via a long tendon. Small muscle fiber diameters, a likely indicator of rapid contraction, were present in males of five of the species. However, in Bathyonus, the deepest species (pale coloration, reduced eye size, shorter sonic muscles and longer tendons), muscle fibers were larger suggesting an adaptation to facilitate rapid bladder movement for sound production while using slower contractions and less metabolic energy. The six species separate into three groups in length-weight regressions: the three upper slope species have the greatest weights per unit length, Dicrolene is lower, and the two deep species are further reduced consistent with the hypothesis that food limitation affects sonic anatomy at great depths.

  13. Heavy minerals in the sediments on the outer continental shelf between Vengurla and Mangalore on the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Kidwai, R.M.; Nair, R.R.; Hashimi, N.H.

    Fifty-eight sediment samples from the outer continental shelf between Vengurla and Mangalore were analysed for heavy minerals consist of principally opaques, hornblende, epidote, garnet, sillimanite, hypersthene and zircon, with minor amounts...

  14. Clay mineral distribution in the continental shelf sediments from Krishna to Ganges river mouth, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    Ninety six sediment samples (less than 2 mu m fractions) of the eastern continental shelf of India between Ganges in the north and Krishna in the south have been studiEd. by X-ray diffraction. On the basis of nature and abundance of different clay...

  15. Structure and petroleum potential of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska

    Science.gov (United States)

    Bruns, T.R.

    1982-01-01

    Major structural features of the Yakutat segment, the segment of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska, are delineated by multichannel seismic reflection data. A large structural high is centered on Fairweather Ground and lies generally at the edge of the shelf from Cross Sound to west of the Alsek Valley. A basement uplift, the Dangerous River zone, along which the seismic acoustic basement shallows by up to two kilometers, extends north from the western edge of Fairweather Ground towards the mouth of the Dangerous River. The Dangerous River zone separates the Yakutat segment into two distinct subbasins. The eastern subbasin has a maximum sediment thickness of about 4 km, and the axis of the basin is near and parallel to the coast. Strata in this basin are largely of late Cenozoic age (Neogene and Quaternary) and approximately correlate with the onshore Yakataga Formation. The western subbasin has a maximum of at least 9 km of sediment, comprised of a thick (greater than 4.5 km) Paleogene section overlain by late Cenozoic strata. The Paleogene section is truncated along the Dangerous River zone by a combination of erosion, faulting, and onlap onto the acoustic basement. Within the western subbasin, the late Cenozoic basin axis is near and parallel to the coast, but the Paleogene basin axis appears to trend in a northwest direction diagonally across the shelf. Sedimentary strata throughout the Yakutat shelf show regional subsidence and only minor deformation except in the vicinity of the Fairweather Ground structural high, near and along the Dangerous River zone, and at the shoreline near Lituya Bay. Seismic data across the continental slope and adjacent deep ocean show truncation at the continental slope of Paleogene strata, the presence of a thick (to 6 km) undeformed or mildly deformed abyssal sedimentary section at the base of the slope that in part onlaps the slope, and a relatively narrow zone along the slope or at

  16. Potential of radioactive and other waste disposals on the continental margin by natural dispersal processes

    International Nuclear Information System (INIS)

    Ryan, W.B.F.; Farre, J.A.

    1983-01-01

    Mass wasting, an erosional process, has recently been active at deepwater waste disposal sites on the mid-Atlantic margin of the United States. On the continental slope there is a subsea drainage network consisting of canyons, gullies, and chutes, and there are meandering channels, erosional scars, and debris aprons present on the continental rise. Fresh-looking blocks of 40 to 45 million-year-old marl and chalk (from cobble to boulder size) are strewn among canisters of low-level radioactive wastes. Some of the blocks have traveled from their original place of deposition for distances in excess of 170 km. Waste containers on the continental slope and rise cannot be considered to be disposed of permanently. The drainage network of the slope provides a natural process for collecting wastes over a catchment area, and for concentrating it with interim storage in canyons. Erosion by slumping, sliding, and debris flows ultimately will transport the wastes from the continental slope and disperse it over potentially large areas on the continental rise and abyssal plain. If it is desirable that the wastes be buried in the seafloor and isolated from the environment, then the continental slope and rise are not attractive repositories. If, however, it is deemed beneficial that the wastes ultimately be dispersed over a wide area, then the continental slope could be used as a disposal site

  17. Hydraulic-based empirical model for sediment and soil organic carbon loss on steep slopes for extreme rainstorms on the Chinese loess Plateau

    Science.gov (United States)

    Liu, L.; Li, Z. W.; Nie, X. D.; He, J. J.; Huang, B.; Chang, X. F.; Liu, C.; Xiao, H. B.; Wang, D. Y.

    2017-11-01

    Building a hydraulic-based empirical model for sediment and soil organic carbon (SOC) loss is significant because of the complex erosion process that includes gravitational erosion, ephemeral gully, and gully erosion for loess soils. To address this issue, a simulation of rainfall experiments was conducted in a 1 m × 5 m box on slope gradients of 15°, 20°, and 25° for four typical loess soils with different textures, namely, Ansai, Changwu, Suide, and Yangling. The simulated rainfall of 120 mm h-1 lasted for 45 min. Among the five hydraulic factors (i.e., flow velocity, runoff depth, shear stress, stream power, and unit stream power), flow velocity and stream power showed close relationships with SOC concentration, especially the average flow velocity at 2 m from the outlet where the runoff attained the maximum sediment load. Flow velocity controlled SOC enrichment by affecting the suspension-saltation transport associated with the clay and silt contents in sediments. In consideration of runoff rate, average flow velocity at 2 m location from the outlet, and slope steepness as input variables, a hydraulic-based sediment and SOC loss model was built on the basis of the relationships of hydraulic factors to sediment and SOC loss. Nonlinear regression models were built to calculate the parameters of the model. The difference between the effective and dispersed median diameter (δD50) or the SOC content of the original soil served as the independent variable. The hydraulic-based sediment and SOC loss model exhibited good performance for the Suide and Changwu soils, that is, these soils contained lower amounts of aggregates than those of Ansai and Yangling soils. The hydraulic-based empirical model for sediment and SOC loss can serve as an important reference for physical-based sediment models and can bring new insights into SOC loss prediction when serious erosion occurs on steep slopes.

  18. Vertical and horizontal resolution dependency in the model representation of tracer dispersion along the continental slope in the northern Gulf of Mexico

    Science.gov (United States)

    Bracco, Annalisa; Choi, Jun; Kurian, Jaison; Chang, Ping

    2018-02-01

    A set of nine regional ocean model simulations at various horizontal (from 1 to 9 km) and vertical (from 25 to 150 layers) resolutions with different vertical mixing parameterizations is carried out to examine the transport and mixing of a passive tracer released near the ocean bottom over the continental slope in the northern Gulf of Mexico. The release location is in proximity to the Deepwater Horizon oil well that ruptured in April 2010. Horizontal and diapycnal diffusivities are calculated and their dependence on the model set-up and on the representation of mesoscale and submesoscale circulations is discussed. Horizontal and vertical resolutions play a comparable role in determining the modeled horizontal diffusivities. Vertical resolution is key to a proper representation of passive tracer propagation and - in the case of the Gulf of Mexico - contributes to both confining the tracer along the continental slope and limiting its vertical spreading. The choice of the tracer advection scheme is also important, with positive definiteness in the tracer concentration being achieved at the price of spurious mixing across density surfaces. In all cases, however, the diapycnal mixing coefficient derived from the model simulations overestimates the observed value, indicating an area where model improvement is needed.

  19. Benthic Foraminifers identify the source of displaced sediment from a sediment density flow at 1840 m near the Seafloor Instrument Node of the Monterey Coordinated Canyon Experiment

    Science.gov (United States)

    McGann, M.; Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Barry, J.; Carvajal, C.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Parsons, D. R.; O'Reilly, T. C.; Rosenberger, K. J.; Wolfson-Schwehr, M.; Simmons, S.; Sumner, E.; Talling, P.; Xu, J.

    2017-12-01

    Submarine canyons are found along the slopes of most continental margins and turbidity currents are thought to be the primary mechanism responsible for transporting sediment through them to deep-sea fans. The initiation sites of these flows are difficult to locate with any degree of precision from lithology alone. Fortunately, the presence of allochthonous microscopic remains, such as benthic foraminifers, can aid in the identification of the source of the displaced sediments. In Monterey Canyon, offshore California, a Seafloor Instrument Node (SIN) and adjacent mooring in the Coordinated Canyon Experiment indicate that a February 2017 turbidity current reached 1840 m water depth. In April 2017, one push core was obtained on each of four sides of the SIN just outside its frame and six others from 30-100 m away. Each was cut into 1 cm slices, stained with rose Bengal, washed, and analyzed for their microscopic constituents. Material recovered included terrestrial debris (wood, leaves, seeds, highway safety spheres, and volcanic glass) as well as foraminiferal tests. Dead benthic foraminifers from the estuarine (0-10 m), inner shelf (0-50 m), outer shelf (50-150 m), slope break (150 m), upper bathyal (150-500 m), and middle bathyal (500-2000 m) biofacies were present, suggesting a staged progression of sediment downslope from the continental shelf and slope. Living (rose Bengal stained) foraminifers recovered represent estuarine (Ammonia tepida, Elphidium excavatum), inner shelf (Buccella frigida, B. tenerrima, Buliminella elegantissima, Cibicides fletcheri, Nonionella spp., Rotorbinella turbinata), and upper bathyal (Bolivina pacifica, B. spissa, Epistominella exigua, Uvigerina peregrina) species as well as an in-situ middle bathyal biofacies (Bolivina argentea, B. spissa, Buliminella tenuata, Epistominella pacifica, Globobulimina spp., Uvigerina peregrina, U. hispida). The presence of living allochthonous benthic foraminifers from these shallower biofacies suggests

  20. Calcareous nannofossil biostratigraphy and geochronology of Neogene trench-slope cover sediments in the south Boso Peninsula, central Japan: Implications for the development of a shallow accretionary complex

    Science.gov (United States)

    Chiyonobu, Shun; Yamamoto, Yuzuru; Saito, Saneatsu

    2017-07-01

    The geological structure and calcareous nannofossil biostratigraphy of the Middle to Late Miocene trench-slope succession in the southern Boso Peninsula, central Japan, were examined to obtain chronological constraints on the accretion and formation of the trench-slope architecture. As a result, trench-slope cover sediments (Kinone and Amatsu Formations) are clearly distinguishable from the Early Miocene Hota accretionary complex (Hota Group). The Hota accretionary complex was deposited below the carbonate compensation depth (CCD) and was affected by intense shearing, forming an east-west trending and south-verging fold and thrust belt. In contrast, the trench-slope cover sediments basically have a homoclinal dip, except at the northern rim where they are bounded by fault contact. They contain many species of calcareous nannofossils and foraminifers, which are indicative of their depositional environment above the CCD, and they show shallowing-upward sedimentary structures. Biostratigraphy revealed that the depositional age of the trench-slope sediments is ca. 15-5.5 Ma, suggesting that there is an approximately 2 myr hiatus beween the Miura Group and the underlying accretionary prism. Based on these results, the age of accretion of the Hota Group is inferred to be between ca. 17-15 Ma, and the group is covered by trench-slope sediments overlain on it after ca. 15 Ma. The timing of accretion and the age of the trench-slope basin tend to be younger southward of the Boso Peninsula. The accretionary system of the Boso Peninsula apparently developed in two stages, in the Middle Miocene and in the Late Miocene to Pliocene.

  1. The Myanmar continental shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Rao, P.S.

    reveal a minimum of 18 m thick strata of modern muds (Fig. 2g). At the outer boundary of the Gulf of Myanmar Continental Shelf 8 Martaban (15oN Latitude), brown muds overlie coarse sands indicating that modern deltaic sediments... on the Myeik Bank (Rodolfo, 1969a). Modern sediments on the Ayeyarwady shelf General composition, Texture and Grain-size: The distribution and sediment texture on the Ayeyarwady shelf shows fine-grained sediments comprising silty-clay and clayey...

  2. The geostatistics of the metal concentrations in sediments from the eastern Brazilian continental shelf in areas of gas and oil production

    Science.gov (United States)

    Aguiar, Jose Edvar; de Lacerda, Luiz Drude; Miguens, Flavio Costa; Marins, Rozane Valente

    2014-04-01

    Geostatistical techniques were used to evaluate the differences in the geochemistry of metals in the marine sediments along the Eastern Brazilian continental margin along the states of Ceará and Rio Grande do Norte (Northeastern sector) and Espírito Santo (Southeastern sector). The concentrations of Al, Fe, Mn, Ba, Cd, Cu, Cr, Ni, Pb, V, Hg, and Zn were obtained from acid digestion and quantified using flame atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The metals showed a similar order of concentration: Al > Fe > Ba > Mn > V > Ni > Pb > Cr > Zn > Cu, in both the Ceará; and Rio Grande do Norte shelf regions but different in the Espírito Santo shelf (Fe > Al > Mn > Ba > Zn > V > Cr > Ni > Pb > Cu. The concentrations of Hg and Cd were below the detection limit in all areas. A multivariate analysis revealed that the metals of siliciclastic origin on the continental shelf of Ceará are carried by Al. In addition, a large portion of metal deposits is connected to the iron and manganese oxides on the continental margin of Rio Grande do Norte. The metals from the continental supply on the coast of Espírito Santo (Cu, Ni, Ba, and Mn) are associated with Al; whereas Cr, Pb, V, and Zn are associated with iron in this southern area. Geochemical evaluations are needed to distinguish the origin and mineralogical differences of marine sediments within the regions. Scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) applied to the sediments from the coast of Ceará showed the morphological diversity of sediment grains: biological fragments, multifaceted particles, aggregates, and crystals occurred in the three regions analyzed. Among these grains, calcite, Mg-calcite, and aragonite were predominant in the northeastern sector, whereas silicates and other minerals were predominant the southeastern sector. Mg, K, Ti, and Zr as well as the

  3. Benthic oxygen consumption on continental shelves off eastern Canada

    Science.gov (United States)

    Grant, Jonathan; Emerson, Craig W.; Hargrave, Barry T.; Shortle, Jeannette L.

    1991-08-01

    The consumption of phytoplankton production by the benthos is an important component of organic carbon budgets for continental shelves. Sediment texture is a major factor regulating benthic processes because fine sediment areas are sites of enhanced deposition from the water column, resulting in increased organic content, bacterial biomass and community metabolism. Although continental shelves at mid- to high latitudes consist primarily of coarse relict sediments ( PIPER, Continental Shelf Research, 11, 1013-1035), shelf regions of boreal and subarctic eastern Canada contain large areas of silt and clay sediments ( FADER, Continental Shelf Research, 11, 1123-1153). We collated estimates of benthic oxygen consumption in coarse (<20% silt-clay, <0.5% organic matter) and fine sediments (20% silt-clay, 0.5% organic matter) for northwest Atlantic continental shelves including new data for Georges Bank, the Scotian Shelf, the Grand Banks of Newfoundland and Labrador Shelf. Estimates were applied to the areal distribution of sediment type on these shelves to obtain a general relationship between sediment texture and benthic carbon consumption. Mean benthic oxygen demand was 2.7 times greater in fine sediment than in coarse sediment, when normalized to mean annual temperature. In terms of carbon equivalents, shelf regions with minimal fine sediment (Georges Bank, the Grand Banks of Newfoundland-northeast Newfoundland) consumed only 5-8% of annual primary production. Benthos of the Gulf of Maine (100% fine sediment) and the Scotian Shelf (35% fine sediment) utilized 16-19% of primary production. Although 32% of the Labrador Shelf area contained fine sediments, benthic consumption of pelagic production (8%) was apparently limited by low mean annual temperature (2°C). These results indicate that incorporation of sediment-specific oxygen uptake into shelf carbon budgets may increase estimates of benthic consumption by 50%. Furthermore, respiration and production by large

  4. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    Science.gov (United States)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the

  5. Sediment trace metal profiles in lakes of Killarney Park, Canada from regional to continental influence

    International Nuclear Information System (INIS)

    Belzile, Nelson; Chen Yuwei; Gunn, John M.; Dixit, Sushil S.

    2004-01-01

    The lakes in Killarney Provincial Park (KPP) located 40-60 km southwest of Sudbury, Ontario are beginning to recover after decades of being severely affected by acidification and atmospheric pollutants. Detailed profiles of acid-recoverable trace elements (As. Cd, Cu, Co. Fe, Mn, Ni, Pb and Zn) were obtained after aqua regia digestion and ICP-OES analysis of sediment cores taken from six Park lakes. Results permitted the identification of two types of profiles. The first type applies to elements such as Fe, Mn, As and Co for which historical deposition and recent recovery are strongly masked by diagenetic remobilization. The second type of profile applies to elements such as Cd, Cu, Ni, Pb and Zn on which the history of industrialisation in North America and mining activities in Sudbury can be superimposed. Based on sediment data of trace elements less affected by diagenetic remobilization (Cd, Cu, Ni, Pb, Zn), chemical recovery indices can be estimated from depth profiles. Indices of maximum (C p ) and surface (C s ) contamination were calculated by dividing the concentration of a given metal by the pre-industrial level. The ratio of the two indices provided a simple estimation of the chemical recovery of lakes that does not consider the influence of the watershed or the lake pH. Profiles of metals in sediment of KPP complement the water quality monitoring data and tend to indicate that this area is in transition from dominant influence of regional pollution sources to becoming controlled by continental atmospheric deposition. - Lakes in Killarney Park are in transition from being impacted by regional pollution to being controlled by continental atmospheric deposition

  6. Sources and distribution of polycyclic aromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessment of spatial and temporal trends

    International Nuclear Information System (INIS)

    Vinas, Lucia; Angeles Franco, M.; Antonio Soriano, J.; Jose Gonzalez, J.; Pon, Jordi; Albaiges, Joan

    2010-01-01

    The distribution of polycyclic aromatic hydrocarbons was determined in surface sediments collected at 36 stations along the Spanish Northern continental shelf in March and September 2003, and February 2005. Concentrations of PAHs (Σ13 parent components) were in the range of 22-47528 μg/kg dw, the highest values corresponding to coastal urban-industrial hotspots and decreasing offshore. Sediment quality guidelines (SQGs) showed that concentrations of total PAHs were below the threshold effect level (TEC) in 27 stations (81%) and above in 7, two of which (Gijon and Bilbao) were above the probable effect concentration (PEC). The detailed study of diagnostic ratios suggested a rather uniform mixture of petrogenic and pyrolytic PAH sources along the continental shelf, with a slight decrease of the latter moving westwards and offshore. In order to assess the incidence of sediment sampling on the variability of the results, selected stations were also monitored in February and September 2004 and September 2005. The average field variance of the values obtained for each station was 31% that decreased to 23% when the values were normalized to TOC. - PAHs in the Spanish Atlantic coastal sediments reflect chronic inputs of petrogenic and pyrolytic hydrocarbons, with a decrease of the latter moving westwards and offshore and representing low to moderate pollution according to established sediment quality guidelines.

  7. Sources and distribution of polycyclic aromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessment of spatial and temporal trends

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, Lucia, E-mail: lucia.vinas@vi.ieo.e [Instituto Espanol de Oceanografia, Centro Oceanografico de Vigo, Cabo Estai - Canido, 36200 Vigo (Spain); Angeles Franco, M.; Antonio Soriano, J.; Jose Gonzalez, J. [Instituto Espanol de Oceanografia, Centro Oceanografico de Vigo, Cabo Estai - Canido, 36200 Vigo (Spain); Pon, Jordi [Department of Environmental Chemistry, CID-CSIC, Jordi Girona Salgado, 18-26, 08034-Barcelona (Spain); Albaiges, Joan, E-mail: albqam@cid.csic.e [Department of Environmental Chemistry, CID-CSIC, Jordi Girona Salgado, 18-26, 08034-Barcelona (Spain)

    2010-05-15

    The distribution of polycyclic aromatic hydrocarbons was determined in surface sediments collected at 36 stations along the Spanish Northern continental shelf in March and September 2003, and February 2005. Concentrations of PAHs (SIGMA13 parent components) were in the range of 22-47528 mug/kg dw, the highest values corresponding to coastal urban-industrial hotspots and decreasing offshore. Sediment quality guidelines (SQGs) showed that concentrations of total PAHs were below the threshold effect level (TEC) in 27 stations (81%) and above in 7, two of which (Gijon and Bilbao) were above the probable effect concentration (PEC). The detailed study of diagnostic ratios suggested a rather uniform mixture of petrogenic and pyrolytic PAH sources along the continental shelf, with a slight decrease of the latter moving westwards and offshore. In order to assess the incidence of sediment sampling on the variability of the results, selected stations were also monitored in February and September 2004 and September 2005. The average field variance of the values obtained for each station was 31% that decreased to 23% when the values were normalized to TOC. - PAHs in the Spanish Atlantic coastal sediments reflect chronic inputs of petrogenic and pyrolytic hydrocarbons, with a decrease of the latter moving westwards and offshore and representing low to moderate pollution according to established sediment quality guidelines.

  8. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf

    International Nuclear Information System (INIS)

    Zhu, Mao-Xu; Hao, Xiao-Chen; Shi, Xiao-Ning; Yang, Gui-Peng; Li, Tie

    2012-01-01

    Speciation and reactivity characterization of solid-phase Fe in marine sediments are of significance to understanding its heterogeneous mineralogy and crystallinity, the diagenetic cycling of Fe and its regulating roles on many other elements in sediments. In this study, a combination of sequential and single-step extractions was used for the determination of seven Fe pools in surface sediments of the East China Sea (ECS) continental shelf: (1) carbonate associated Fe (Fe(II) carb ) plus acid volatile sulfide-Fe (Fe(II) AVS ), (2) easily reducible amorphous/poorly crystalline Fe oxides (Fe ox1 ), (3) reducible crystalline Fe oxides (Fe ox2 ), (4) magnetite (Fe mag ), (5) poorly reactive sheet silicate Fe (Fe PRS ), (6) pyrite-Fe (Fe py ), and (7) unreactive silicate Fe (Fe U ). Total Fe (Fe T ) in the sediments is largely determined by terrestrial aluminosilicate particles as indicated by a great similarity of the Fe T with that of the Yangtze River and global riverine particulates. The size of Fe PRS is found to be the largest pool, followed by Fe U , Fe ox2 , Fe mag , Fe(II) AVS+carb , Fe ox1 and Fe py . The large Fe PRS may result from neoformation of Fe-rich clay minerals via reverse weathering and subsequent ageing. The small sizes of Fe(II) AVS+carb and Fe py pools is believed to be the result of low SO 4 reduction due to generally low labile organic matter together with the oxic/suboxic, dynamic environments of the surface sediments. The occurrence of Fe ox1 , Fe ox2 and Fe PRS in the sediments is closely associated with the clay fraction as indicated by a high spatial correlation between the former and the latter. Highly reactive Fe(Fe HR ) in the sediments is comparable to that in global marine sediments, but apparently lower than in the Yangtze River and global riverine particulates due probably to sequestration in the Yangtze Estuary. The ratios of Fe HR /Fe T , Fe PR /Fe T and Fe U /Fe T in the ECS surface sediments consistently show more similarity to

  9. Surficial sediment character of the New York-New Jersey offshore continental shelf region: a GIS compilation

    Science.gov (United States)

    Williams, S. Jeffress; Arsenault, Matthew A.; Poppe, Lawrence J.; Reid, Jane A.; Reid, Jamey M.; Jenkins, Chris J.

    2007-01-01

    Broad continental shelf regions such as the New York Bight are the product of a complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression (>100 m sea-level rise) following the end of the last Pleistocene ice advance ~ 20,000 years ago. The area of the U.S. Exclusive Economic Zone (U.S. EEZ) territory, extending 200 nautical miles seaward from the coast, is larger than the continental U.S. and contains submerged landforms that provide a variety of natural functions and societal benefits, such as: critical habitats for fisheries, ship navigation and homeland security, and engineering activities (i.e. oil and gas platforms, pipeline and cable routes, potential wind-energy-generation sites). Some parts of the continental margins, particularly inner-continental shelf regions, also contain unconsolidated hard-mineral deposits such as sand and gravel that are regarded as potential aggregate resources to meet or augment needs not met by onshore deposits (Williams, 1992). The present distribution of surficial sediment off the northeastern United States is shaped from the deposits left by the last glaciation and reflects the cumulative effects of sediment erosion, transport, sorting, and deposition by storm and tidal processes during the Holocene rise in sea level. As a result, the sediments on the sea floor represent both an historical record of former conditions and a guide to possible future sedimentary environments. The U.S. Geological Survey (USGS) through the Coastal and Marine Geology Program, in cooperation with the University of Colorado and other partners, has compiled extant sediment character and textural data as well as other geologic information on the sea floor from all regions around the U.S. into the usSEABED data system (Reid and others, 2005; Buczkowski and others, 2006; Reid and others, 2006). The usSEABED system, which contains information on sediment grain size and lithology for more than 340

  10. C:N:P Molar Ratios, Sources and 14C Dating of Surficial Sediments from the NW Slope of Cuba.

    Directory of Open Access Journals (Sweden)

    Guadalupe de la Lanza Espino

    Full Text Available The surficial sediments recovered from 12 sites located near the channel axis of the Florida Straits and the lower slope off NW Cuba were analyzed for total organic carbon (TOC, nitrogen (TN, phosphorus (TP, elemental C:N:P ratios, C and N isotopic values, and 14C dating. The depth profiles of TOC, TN, and TP (0-18 cm displayed a downcore trend and a significant variation. The TOC values were low (0.15 to 0.62%; 66 to 516 µmol g(-1. Sites near the island's lower slope had lower TOC average concentrations (158-333 µmol g(-1 than those closer to the channel axis (averaging 341-516 µmol g(-1; p <0.05. The TN concentrations near the lower slope attained 0.11% (80 µmol g(-1, whereas, towards the channel axis, they decreased to 0.07% (55 µmol g(-1; p<0.05. The C:N ratios ranged from 1.9 to 10.2. The mean molar C:N ratio (5.4 indicated a marine hemipelagic deposition. The TP was lower at sites near the lower slope (38.4 to 50.0 µmol gv; 0.12% to 0.16% than those near the channel axis (50.0 to 66 µmol g(-1; 0.15 to 0.21%. C:P fluctuated from 7.7 to 14.1 in the surficial sediment layer. The bulk organic δ13Corg and δ15N values confirmed pelagic organic sources, and the 14C dating revealed that the sediments were deposited during the Holocene (1000-5000 yr BP. We suggest that the hydrodynamic conditions in the Straits influence vertical and advective fluxes of particulate organic material trapped in the mixed-layer, which reduces the particulate matter flux to the seabed.

  11. Rifting-to-drifting transition of the South China Sea: Moho reflection characteristics in continental-ocean transition zone

    Science.gov (United States)

    Wen, Y.; Li, C.

    2017-12-01

    Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of

  12. Effects of rye grass coverage on soil loss from loess slopes

    Directory of Open Access Journals (Sweden)

    Yuequn Dong

    2015-09-01

    Full Text Available Vegetative coverage is commonly used to reduce urban slope soil erosion. Laboratory experimental study on soil erosion under grass covered slopes is conventionally time and space consuming. In this study, a new method is suggested to study the influences of vegetation coverage on soil erosion from a sloped loess surface under three slope gradients of 5°, 15°, and 25°; four rye grass coverages of 0%, 25%, 50%, and 75%; and three rainfall intensities of 60, 90, and 120 mm/h with a silt-loamy loess soil. Rye grasses were planted in the field with the studied soil before being transplanted into a laboratory flume. Grass was allowed to resume growth for a period before the rain simulation experiment. Results showed that the grass cover reduced soil erosion by 63.90% to 92.75% and sediment transport rate by 80.59% to 96.17% under different slope gradients and rainfall intensities. The sediment concentration/sediment transport rate from bare slope was significantly higher than from a grass-covered slope. The sediment concentration/transport rate from grass-covered slopes decreased linearly with grass coverage and increased with rainfall intensity. The sediment concentration/transport rate from the bare slope increased as a power function of slope and reached the maximum value at the gradient of about 25°, whereas that from grass-covered slope increased linearly and at much lower levels. The results of this study can be used to estimate the effect of vegetation on soil erosion from loess slopes.

  13. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    Science.gov (United States)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  14. Atmospheric lead fallout over the last century recorded in Gulf of Lions sediments (Mediterranean Sea)

    International Nuclear Information System (INIS)

    Miralles, J. . E-mail jmiralles@wanadoo.fr; Veron, A.J.; Radakovitch, O.; Deschamps, P.; Tremblay, T.; Hamelin, B.

    2006-01-01

    Six marine sediment cores from the Gulf of Lions continental slope (700-1700 m water depth) were analyzed for stable lead isotopes and 21 Pb geochronology in order to reconstruct lead atmospheric fallout pattern during the last century. The detrital lead contribution is 25 μg g -1 and the mean sediment anthropogenic inventory is 110 ± 7 μg cm -2 , a little bit higher than atmospheric deposition estimate. Anthropogenic lead accumulation in sediments peaked in early 1970s (1973 ± 2) in agreement with lead emissions features. For the period 1986-1997, the sediment signal also reflect the decrease of atmospheric lead described by independent atmospheric fallout investigations. The anthropogenic Pb deposition in the late 1990s was similar to the 1950s deposition, attesting thus of the output of European environmental policies

  15. Aeromagnetic and gravity investigations of the Coastal Area and Continental Shelf of Liberia, West Africa, and their relation to continental drift

    Science.gov (United States)

    Behrendt, John C.; Wotorson, Cletus S.

    1970-01-01

    anomalies exist over two Cretaceous basins in the coastal area; a negative Bouguer anomaly exists over one of the basins southwest of Monrovia, as shown by a marine traverse, suggesting that Cretaceous or younger sedimentary rocks fill these basins also. A 50 to 60 mgal positive Bouguer anomaly area exists along the coast from Sierra Leone to Ivory Coast. This anomaly correlates with mafic granulites in the Monrovia region, where the gradient is too steep to be entirely due to crustal thickening at the continental margin and may be related to tectonic activity associated with the basins. The only major break in this positive anomaly above basement rocks along the entire coast of Liberia is over granite gneiss adjacent to (and presumably underlying) the only onshore basins on the Liberian coast. Three seismic reflection profiles support the interpretation of a substantial section of sedimentary rock offshore. A suggested sequence of events indicates tectonic activity in the periods about 2700, about 2000, and about 550 m.y. B.P.; uplift and exposure of deep crustal rocks; deposition of Paleozoic sediments; intrusion of diabase dikes in inland zones; intrusion of 176 to 192 m.y.-old dikes and sills accompanying separation of Africa and South and North America; block faulting along coast and continental shelf, and active sea-floor spreading; filling of basins in Cretaceous and Tertiary(?) time; basaltic extrusion on spreading sea floor and sedimentation on continental shelf and slope.

  16. Methane Migration and Its Influence on Sulfate Reduction in the Good Weather Ridge Region, South China Sea Continental Margin Sediments

    Directory of Open Access Journals (Sweden)

    Saulwood Lin

    2006-01-01

    Full Text Available Bacteria sulfate reduction is a major pathway for organic carbon oxidation in marine sediments. Upward diffusion of methane from gas hydrate deep in the sedimentary strata might be another important source of carbon for sulfate reducing bacteria and subsequently induce higher rates of sulfate reduction in sediments. Since abundant gas may migrate upward to the surface as a result of tectonic activity occurring in the accretionary wedge, this study investigates the effect of methane migration on the sulfate reduction process in continental margin sediments offshore southwestern Taiwan. Piston and gravity core samples were taken in order to evaluate vertical and spatial variations of sulfate and methane. Pore water sulfate, sulfide, methane, sediment pyrite, and organic carbon were extracted and analyzed.

  17. Peruvian sediments as recorders of an evolving hiatus for the last 22 thousand years

    Science.gov (United States)

    Erdem, Zeynep; Schönfeld, Joachim; Glock, Nicolaas; Dengler, Marcus; Mosch, Thomas; Sommer, Stefan; Elger, Judith; Eisenhauer, Anton

    2016-04-01

    The Peruvian continental margin is characterized by the presence of one of the strongest and most distinct Oxygen Minimum Zones (OMZs) in today's oceans. Therefore, it has long been in the focus of oceanographic and geological investigations. Observations indicate that OMZs are expanding in relation with currently changing climate. To advance understanding of the temporal evolution of OMZs and climate change, complete paleoceanographic and palaeoclimatological reconstructions are needed. However, the development of paleoenvironmental scenarios for the period since the Last Glacial Maximum at this region was hampered by a ubiquitous hiatus and short-term interruptions of the stratigraphical record. In the present study, we combined the stratigraphical information from 31 sediment cores from the Peruvian margin located between 3 and 18°S and water depths of 90 to 1300 m within and below today's OMZ, in order to determine the extent of the hiatus and assess the responsible mechanisms. A widespread unconformity and related erosional features, omission surfaces and phosphorites, were observed in sediment cores from the area south of 7°S, depicting a prograding feature on the continental slope from south to north during the deglaciation. Combining recent oceanographic and sedimentological observations, it is inferred that, tide-topography interaction and resulting non-linear internal waves (NLIWs) shape the slope by erosion, carry sediments upslope or downslope and leave widespread phosphoritic lag sediments, while the Peru Chile Undercurrent (PCUC) transports the resuspended sediments southward causing non-deposition. This exceptional sedimentary regime makes the Peruvian margin a modern analogue for such environments. Overall, our compilation of downcore records showed that enhanced bottom currents due to tide-topography interaction were progressively evolving and affected a wider area with the onset of the last deglaciation. Elevated tidal amplitudes and variability

  18. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea

    Science.gov (United States)

    Limmer, David R.; BöNing, Philipp; Giosan, Liviu; Ponton, Camilo; KöHler, Cornelia M.; Cooper, Matthew J.; Tabrez, Ali R.; Clift, Peter D.

    2012-01-01

    We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ˜100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higherɛNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. HigherɛNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.

  19. Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains

    Science.gov (United States)

    Llave, Estefanía; Jané, Gloria; Maestro, Adolfo; López-Martínez, Jerónimo; Hernández-Molina, F. Javier; Mink, Sandra

    2018-07-01

    The offshore region of northwestern Iberia offers an opportunity to study the impacts of along-slope processes on the morphology of a glacially influenced continental margin, which has traditionally been conceptually characterised by predominant down-slope sedimentary processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-resolution seismic reflection profile data are integrated and analysed to describe the present-day and recent geomorphological features and to interpret their associated sedimentary processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, interpreted as structural features (escarpments, marginal platforms and related fluid escape structures) and depositional and erosional bedforms developed either by the influence of bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), are identified for the first time in the study area (spanning 90,000 km2 and water depths of 300 m to 5 km). Different types of slope failures and turbidity currents are mainly observed on the upper and lower slopes and along submarine canyons and deep-sea channels. The middle slope morphologies are mostly determined by the actions of bottom currents (North Atlantic Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep Water), which thereby define the margin morphologies and favour the reworking and deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite features are also observed at the foot of the slope due to the influence of the deepest water masses (i.e., the North Atlantic Deep Water and Lower Deep Water). This work shows that the study area is the result of Mesozoic to present-day tectonics (e.g. the marginal platforms

  20. Provenance, Source Rock Characteristics And Paleoweathering Conditions Of The Nearshore Continental Sediments Off Pondicherry, South East Coast Of India

    Science.gov (United States)

    Natarajan, T.; Seshachalam, S.; Ponniah, J.; Varadhan, R.; M, S.

    2008-05-01

    Geochemical studies, comprising major elements and trace elements, including the Rare Earth Elements (REE), have been carried out on the modern sediments of inner continental shelf representing nearshore marine environments. Concentrations were normalized with Chondrite and PAAS show LREE enriched and flat HREE patterns with slight positive Eu anomaly which is due to the influence of feldspar rich source materials. The LREE enriched and flat HREE patterns with positive Eu anomaly have been considered as the typical character of post- Archaean Sediments. The La/Th ratio ranges from 1.66 to 8.84 with an average value of 4.09, which indicates a heterogenitic source for the sediments of the study area. The La-Th-Sc ternary plot suggests all the samples fall close to the field dominated by tonalite to granite and away from the basalt and komatiite compositions and appear to be derived from sources enriched in felsic components. The transition metal ratios such as Cr/V, Ni/CO and V/Ni indicate both Archaean and Post-Archaean nature to the sediments indicating that the sediments have been derived from heterogenitic sources. The ternary diagram plot of Th-Hf-Co and La-Th-Sc falls in the field of upper continental crust of post Archaean age. This clearly indicates the terrestrial source for the sediments from the nearby landmass. The data are slightly offset from the upper crustal composition away from the Hf apex. This is probably a result of Zircon concentration. Geochemical data have also helped in ascertaining the weathering trends. The Chemical Index of Alteration (CIA) has been used to quantify the degree of weathering. The calculated CIA values for sediments demonstrate both low CIA values of less than 50 percent (low silicate weathering) and intermediate CIA values (60-70 percent) indicating that the sediments are possibly the product of sedimentary and metasedimentary rocks that have undergone intermediate chemical weathering. On an A—CN—K diagram, the data

  1. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Gaye, B.; Shirodkar, P.V.; Rao, P.S.; Chivas, A.R.; Wheeler, D.; Thwin, S.

    Total organic carbon (TOC), total nitrogen (TN) and their delta sup(13) C and delta sup (15) N values were determined from 110 sediment samples from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea to decipher the concentration...

  2. Geochemistry of marine sediments of the Brazilian Northeastern continental shelf

    Directory of Open Access Journals (Sweden)

    Fernanda Souza do Nascimento

    2010-01-01

    Full Text Available The marine sediment samples collected from the northeastern Brazilian continental shelf, at water depths between 20 and 80 m, consisted mainly of sands with an almost total absence of gravel and granules. Medium, coarse and very coarse sand grains are mostly composed of halimeda, lithothamnium, rodoliths and bioclastic sands with a carbonate content varying between 77 and 96 %. The chemistry in general shows a decreasing content of Ca (86.1 % >Si (6 % > Cl (3.6 % > Sr (0.8 % > K (0.66 % > S (0.62 % > Al (0.6 % > Na (0.55% > Mg (0.43 % > Fe (0.4 % > P (0.2 % > Br (0.04 % in the samples. There was no correlation between CaCO3 and chemical contents and grain size with depth and bio-components. With the exception of Sr of marine origin, all other elements (P, S, Br, Cl, Fe are of continental origin. The lithothamnium of some offshore samples shows higher CaCO3 content, while Mg and Na are present only in halimedas. Bioclastic sands contain no Br, and silt and clay fractions are rare and characterize samples closer to the coast. These marine bioclastic granulates are of very pure biogenic calcium carbonates and are thus highly to be recommended for economic purposes.Os granulados marinhos, da Plataforma Continental do nordeste brasileiro, coletados de profundidades entre 20 e 80 m, são predominantemente areias cascalhosas constituídas de halimedas, litotames, rodolitos e areias bioclásticas, cujos teores de carbonatos variam de 77 a 96 %. A concentração média geral de elementos químicos na ordem decrescente é Ca (86.1 % > Si (6 % > Cl (3.6 % > Sr (0.8 % > K (0.66 % > S (0.62 % > Al (0.6 % > Na (0.55 % > Mg (0.43 % > Fe (0.4 % > P (0.2 % > Br (0,04 %, independentemente da profundidade e tipo de bio-componente. Com exceção do Sr, que é de origem marinha, os demais elementos (P, S, Br, Cl, Fe são de origem continental. Elementos como Mg e Na foram restritos às halimedas em apenas duas amostras, enquanto Br não foi detectado nas areias

  3. Sound Propagation from the Continental Slope to the Continental Shelf: Remote Sensing Component

    National Research Council Canada - National Science Library

    Kelly, Kathryn

    2000-01-01

    ... along the East Coast of North America. The AVHRR images were used to show the location and orientation of the shelf I/slope front and the altimeter was used to study the fluctuations of the geostrophic currents...

  4. Footwall degradation styles and associated sedimentary facies distribution in SE Crete: Insights into tilt-block extensional basins on continental margins

    Science.gov (United States)

    Alves, Tiago M.; Cupkovic, Tomas

    2018-05-01

    Depositional facies resulting from footwall degradation in extensional basins of SE Crete are studied based on detailed geological maps, regional transects, lithological columns and outcrop photos. During an extensional episode affecting Crete in the late Miocene-early Pliocene, depocentres trending N20°E and N70°E were filled with fan deltas, submarine mass-wasting deposits, sandy turbidites and fine-grained hemipelagites sourced from both nearby and distal sediment sources. Deposition of proximal continental and shallow-marine units, and relatively deep (marine) turbidites and mass-transport deposits, occurred within a complex mosaic of tectonically controlled depocentres. The new geological maps and transects in this work reveal that depositional facies in SE Crete were controlled by: a) their relative proximity to active faults and uplifting footwall blocks, b) the relative position (depth and relative height above sea level) of hanging-wall basins, and c) the nature of the basement units eroded from adjacent footwall blocks. Distal sediment sources supplied background siliciclastic sediment ('hemipelagites'), which differ markedly from strata sourced from local footwalls. In parallel, mass-transport of sediment was ubiquitous on tectonically active slopes, and so was the presence of coarse-grained sediment with sizes varying from large blocks > 50 m-wide to heterolithic mass-transport deposits and silty-sandy turbidites. We expect similar tectono-sedimentary settings to have predominated in tectonically active Miocene basins of the eastern Mediterranean, in which hydrocarbon exploration is occurring at present, and on rifted continental margins across the world.

  5. {sup 137}Cs as tracer of the origin of allochthonous sediments in the Southeast Continental Margin of Brazil; {sup 137}Cs como tracador da origem de sedimentos aloctones na Margem Continental Sudeste do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Paulo A.L.; Mahiques, Michel M.; FIgueira, Rubens C.L., E-mail: paulo.alves.ferreira@usp.br, E-mail: mahiques@usp.br, E-mail: rfigueira@usp.br [Universidade de Sao Paulo (IO/USP), SP (Brazil). Instituto Oceanografico; Franca, Elvis J., E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    The distribution of {sup 137}Cs, artificial radionuclide for which there is no current source, can inform on the origin and destination of sediments. This study analyzed about 60 samples of surface sediment to generate a model of spatial distribution of {sup 137}Cs in the Southeast Continental Margin of Brazil and surroundings for evaluating possible sediment sources for this region. The model showed that the levels of {sup 137}Cs in the southern compartment of the Southeast Brazilian Margin (south of Sao Sebastiao Island) are statistically similar to those of the Rio de la Plata river mouth region, indicating sediment entry due to the seasonal intrusion of the plume of Rio de la Plata, a phenomenon already studied by other authors.

  6. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.

    Directory of Open Access Journals (Sweden)

    Matthias Egger

    Full Text Available Globally, the methane (CH4 efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands, we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2-0.8 mol m-2 yr-1 during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50-170 nmol cm-3 d-1 both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1 reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years, thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1 allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments.

  7. Development and sexual dimorphism of the sonic system in deep sea neobythitine fishes: The upper continental slope

    Science.gov (United States)

    Ali, Heba A.; Mok, Hin-Kiu; Fine, Michael L.

    2016-09-01

    The anatomy of sound production in continental-slope fishes has been ignored since the work of NB Marshall in the 1960s. Due to food scarcity at great depths, we hypothesize that sonic muscles will be reduced in deep-water neobythitine cusk-eels (family Ophidiidae). Here we describe and quantify dimensions of the swimbladder and sonic muscles of three species from the upper slope. They have four pairs of well-developed sonic muscles (two medial and two lateral) with origins on the skull and insertions on the medial swimbladder (medial pair) or on modified epineural ribs that attach to the lateral swimbladder (lateral pair). Despite minor differences, relatively similar swimbladder dimensions, muscle length and external morphology suggest a conservative body plan. However, there are major differences in sonic muscle mass: medial muscles are heavier in males and made of relatively small fibers (ca 10 μm in diameter). Lateral muscles are generally larger in females and consist of larger fibers, as in epaxial trunk muscle. Muscle weight varies between species, and we suggest males produce advertisement calls that vary in amplitude and duration in different species. Due to differences in fiber size, we hypothesize that lateral muscles with larger fibers remain contracted during sound production, and medial muscles with smaller fibers will oscillate to drive swimbladder sound production.

  8. The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin

    Directory of Open Access Journals (Sweden)

    M. O'Regan

    2017-09-01

    Full Text Available Ice sheets extending over parts of the East Siberian continental shelf have been proposed for the last glacial period and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean have left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish – Russian – US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions. The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a  >  65 m thick sequence of glacio-genic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough – the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than ∼ 50 cal kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage (MIS 6.

  9. Variability of PCB burden in 5 fish and sharks species of the French Mediterranean continental slope.

    Science.gov (United States)

    Cresson, Pierre; Fabri, Marie Claire; Miralles, Françoise Marco; Dufour, Jean-Louis; Elleboode, Romain; Sevin, Karine; Mahé, Kelig; Bouchoucha, Marc

    2016-05-01

    Despite being generally located far from contamination sources, deep marine ecosystems are impacted by chemicals like PCB. The PCB contamination in five fish and shark species collected in the continental slope of the Gulf of Lions (NW Mediterranean Sea) was measured, with a special focus on intra- and interspecific variability and on the driving factors. Significant differences occurred between species. Higher values were measured in Scyliorhinus canicula, Galeus melastomus and Helicolenus dactylopterus and lower values in Phycis blennoides and Lepidorhombus boscii. These differences might be explained by specific abilities to accumulate and eliminate contaminant, mostly through cytochrome P450 pathway. Interindividual variation was also high and no correlation was observed between contamination and length, age or trophic level. Despite its major importance, actual bioaccumulation of PCB in deep fish is not as documented as in other marine ecosystems, calling for a better assessment of the factors driving individual bioaccumulation mechanisms and originating high variability in PCB contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    Science.gov (United States)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  11. Holocene limestones of part of the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.; Guptha, M.V.S.

    , while those on te upper continental slope (130-180 m) are algal bryozoan limestones. The limestones have a radiocarbon age ranging between 9,000 and 11,000 years. Depositional environmental on the continental shelf during the Holocene appears...

  12. Verdine and other associated authigenic (glaucony, phosphate) facies from the surficial sediments of the southwestern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Lamboy, M.; Dupeuble, P.A.

    spaced contorted clay blades and globules. X-ray mineralogy suggests that these grains are a mixture of verdine dominated minerals. Phyllite C is the principal verdine mineral in the shelf zone. On the continental slope phyllite V dominates between 100... grains from the shelf are mostly homogeneous at low magnification (Fig. 4A). However, at high magnification the authigenic clays are characterized by small con- torted blades (1 Ixm long) at some places and compact clays (Fig. 4B and C) at others...

  13. Quantitative distribution of metazoan meiofauna in continental margin sediments of the Skagerrak (Northeastern North Sea)

    Science.gov (United States)

    De Bovée, F.; Hall, P. O. J.; Hulth, S.; Hulthe, G.; Landén, A.; Tengberg, A.

    1996-02-01

    A quantitative survey of metazoan meiofauna in continental-margin sediments of the Skagerrak was carried out using virtually undisturbed sediment samples collected with a multiple corer. Altogether 11 stations distributed along and across the Norwegian Trench were occupied during three cruises. Abundance ranged from 155 to 6846 ind·10 cm -2 and revealed a sharply decreasing trend with increasing water depth. The densities were high on the upper part of the Danish margin (6846 ind·10 cm -2 at 194 m depth) and low in the central part of the deep Skagerrak (155 ind·10 cm -2 at 637 m depth). Also body lengths were significantly shorter on the Danish margin then elsewhere in the Skagerrak, indicating a greater importance of juveniles in this area. We suggest that the high densities may be explained by a stimulated renewal of the fauna, possibly induced by an adequate food supply. The low abundances found in sediments from the deepest part of the Norwegian Trench cannot be attributed to any lack of oxygen. We suggest that the low meiofaunal abundances are caused by a decrease in the food supply (accentuated in this area by lower sedimentation rates) and/or by the very high concentrations of dissolved manganese in the pore water of these sediments. The metazoan meiofauna was largely dominated by nematodes. Comparison of the respiration rates of the nematode population with the total benthic respiration (0.5 to 14%) suggests that the relative importance of metazoan meiofauna decreased with water depth.

  14. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.P.; Irifune, T.; Shimizu, N.; Nishiyama, N.; Norman, M.D.; Inoue, T. (Ehime U); (WHOI); (UC); (ANU)

    2008-10-08

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as

  15. Modern sedimentary processes along the Doce river adjacent continental shelf

    Directory of Open Access Journals (Sweden)

    Valéria da Silva Quaresma

    Full Text Available In areas of the continental shelf where sediment supply is greater than the sediment dispersion capacity, an extensive terrigenous deposits and consequently submerged deltas can be formed. The Eastern Brazilian shelf is characterized by the occurrence of river feed deltas in between starving coasts. Herein, modern sedimentary processes acting along the Doce river adjacent continental shelf are investigated. The main objective was to understand the shelf sediment distribution, recognizing distinct sedimentary patterns and the major influence of river sediment discharge in the formation of shelf deposits. The study used 98 surficial samples that were analyzed for grain size, composition and bulk density. Results revealed 3 distinct sectors: south - dominated by mud fraction with a recent deposition from riverine input until 30 m deep and from this depth bioclastic sands dominate; central north - sand mud dominated, been recognized as a bypass zone of resuspended sediment during high energy events; and north - relict sands with high carbonate content. The modern sedimentation processes along the Doce river continental shelf is dominated by distinct sedimentary regimes, showing a strong fluvial influence associated with wave/wind induced sediment dispersion and a carbonate regime along the outer shelf. These regimes seem to be controlled by the distance from the river mouth and bathymetric gradients.

  16. Modeling sediment concentration of rill flow

    Science.gov (United States)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  17. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    Science.gov (United States)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  18. Beryllium-10 in continental sediments

    International Nuclear Information System (INIS)

    Brown, L.; Sacks, I.S.; Tera, F.; Klein, J.; Middleton, R.

    1981-01-01

    The concentration of 10 Be has been measured in 10 samples taken from a transect of surface sediments beginning in the Atchafalaya River and extending across the Bay 136 km into the Gulf of Mexico. If corrected for a lower retentivity of sand for Be, they have a concentration that is constant within 13%. This concentration is about an order of magnitude smaller than that of deep ocean sediments. For comparison, measurements of 10 Be in rainwater, in a sample of soil and in a deep ocean core were made. (orig.)

  19. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  20. Update on GPS-Acoustics Measurements on the Continental Slope of the Cascadia Subduction Zone

    Science.gov (United States)

    Chadwell, C. D.

    2017-12-01

    Land-based GPS measurements suggest the megathrust is locked offshore along the Cascadia Subduction Zone. However, land-based data alone lack geometric resolution to constrain the how the slip is distributed. GPS-Acoustic measurements can provide these constraints, but using traditional GPS-Acoustic approaches employing a ship is costly. Wave Gliders, a wave- and solar-powered, remotely-piloted sea surface platform, provide a low cost method for collecting GPS-A data. We have adapted GPS-Acoustic technology to the Wave Glider and in 2016 began annual measurements at three sites in the Cascadia Subduction Zone (CSZ). Here, we review positioning results collected during summer 2017 at two sites on the continental slope of the Cascadia Subduction Zone: One site is approximately 45 NM offshore central Oregon and the other approximately 50 NM offshore central Washington State. A third site is approximately 90 NM offshore central Oregon on the incoming Juan de Fuca plate. We will report on initial results of the GPS-A data collection and operational experiences of the missions in 2016 and 2017. Wave Glider based GPS-A measurement have the potential to significantly increase the number and frequency of measurements of strain accumulation in Cascadia Subduction Zone and elsewhere.

  1. The establishment of Atlantic Water transport as a topographically trapped slope current off Scotland

    Directory of Open Access Journals (Sweden)

    Qin Zhou

    2013-05-01

    Full Text Available Atlantic Water, with its origin in the western Atlantic, enters the Nordic Seas partly as a barotropic current following the continental slope. This water mass is carried across the Atlantic by the baroclinic North Atlantic Current (NAC. When the NAC meets the continental slope at the east side of the Atlantic, some of the transport is converted to barotropic transport over the slope before continuing northward. Here, we show that this baroclinic to barotropic conversion is in agreement with geostrophic theory. Historical observations show that the transport of the slope current increases significantly from the Rockall Channel (RC to the Faroe–Shetland Channel (FSC. Geostrophy predicts that with a northward decreasing buoyancy, baroclinic currents from the west will be transferred into northward topographically steered barotropic flow. We use hydrographic data from two sections crossing the continental slope, one located in the RC and another in the FSC, to estimate baroclinic and barotropic transport changes over the slope, within the framework of geostrophic dynamics. Our results indicate that ~1 Sv of the cross-slope baroclinic flow is mainly converted to northward barotropic transport above the 200–500m isobaths, which is consistent with observed transport changes between the RC and the FSC. Similar processes are also likely to occur further south, along the eastern Atlantic margin. This shows that AW within the slope current in the FSC is derived from both the eastern and the western Atlantic, in agreement with earlier studies of AW inflow to the Nordic Seas.

  2. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    Science.gov (United States)

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  3. A preliminary assessment of geologic framework and sediment thickness studies relevant to prospective US submission on extended continental shelf

    Science.gov (United States)

    Hutchinson, Deborah R.; Childs, Jonathan R.; Hammar-Klose, Erika; Dadisman, Shawn; Edgar, N. Terrence; Barth, Ginger A.

    2004-01-01

    Under the provisions of Articles 76 and 77 of the United Nations Convention on the Law of the Sea (UNCLOS), coastal States have sovereign rights over the continental shelf territory beyond 200-nautical mile (nm) from the baseline from which the territorial sea is measured if certain conditions are met regarding the geologic and physiographic character of the legal continental shelf as defined in those articles. These claims to an extended continental shelf must be supported by relevant bathymetric, geophysical and geological data according to guidelines established by the Commission on the Limits of the Continental Shelf (CLCS, 1999). In anticipation of the United States becoming party to UNCLOS, Congress in 2001 directed the Joint Hydrographic Center/Center for Coastal and Ocean Mapping at the University of New Hampshire to conduct a study to evaluate data relevant to establishing the outer limit of the juridical continental shelf beyond 200 nm and to recommend what additional data might be needed to substantiate such an outer limit (Mayer and others, 2002). The resulting report produced an impressive and sophisticated GIS database of data sources. Because of the short time allowed to complete the report, all seismic reflection data were classified together; the authors therefore recommended that USGS perform additional analysis on seismic and related data holdings. The results of this additional analysis are the substance of this report, including the status of geologic framework, sediment isopach research, and resource potential in the eight regions1 identified by Mayer and others (2002) where analysis of seismic data might be crucial for establishing an outer limit . Seismic reflection and refraction data are essential in determining sediment thickness, one of the criteria used in establishing the outer limits of the juridical continental shelf. Accordingly, the initial task has been to inventory public-domain seismic data sources, primarily those regionally

  4. Gamma spectrometry for chronology of recent sediments

    International Nuclear Information System (INIS)

    Pittauerova, Daniela

    2013-01-01

    This thesis deals with several aspects of gamma spectrometric analysis of natural and artificial isotopes in sediments and their use as tracers for qualification and quantification of accumulation and mixing processes in different aquatic environments. Sediment cores from three distinct areas including terrigenous sediments deposited on the continental slope off NW Africa, deep sea sediments off Sumba Island and five stations from the Gulf of Eilat in the Red Sea area were measured and interpreted within this dissertation. The main concern in gamma spectrometry of voluminous environmental samples is a reliable efficiency calibration. This is specially relevant for the analysis of low energy gamma emitters (<100 keV). 210 Pb, an important isotopic tracer to cover the period of the last century, is one of them. Within this work mathematical efficiency calibration was applied using a commercial software package. A series of validation tests was performed and evaluated for point and voluminous samples. When using 210 Pb as a tracer it is necessary to determine its excess portion, which is not supported by ingrowth from the parent nuclide 226 Ra. Its analysis is mostly performed via short lived daughter isotopes that follow after the intermediate gaseous member 222 Rn. Preventing the escape of radon from the sample is a critical step before analysis due to a negative effect of supported 210 Pb underestimation on the chronology, which was also documented in this thesis. Time series registering ingrowth of 214 Pb and 214 Bi towards radioactive equilibrium with 226 Ra in different containers were evaluated for analyses of 226 Ra. Direct analyses of 226 Ra was compared to its detection via daughter products. A method for aligning parallel radionuclide depth profiles was described and applied successfully in two case studies from the continental slope off NW Africa and off Sumba Island, Indonesia. This is primarily important when combined profiles obtained from short

  5. Episodic Sediment Failure in Northern Flemish Pass, Eastern Canadian Margin: Interplay of Seismicity, Contour Current Winnowing, and Excess Pore Pressures

    Science.gov (United States)

    Piper, D.

    2015-12-01

    Episodic sediment failures are recognised on continental slopes around Flemish Pass and Orphan Basin from multibeam bathymetry, seismic reflection profiles and piston cores. Seismic stratigraphy is tied to published long cores with O-isotope data back to before MIS 6 and carbonate rich Heinrich layers in places produce marker reflections in high-resolution sparker profiles. Heinrich layers, radiocarbon dates and peaks in diatom abundance provide core chronology. Slope sedimentation was strongly influenced by the Labrador Current and the silty muds show architecture characteristic of contourites. Variation in Labrador Current strength is known from the sortable silt proxy over the past 125 ka. Large slope failures were mapped from seismic reflection profiles and their age estimated from seismic stratigraphy (3-5 ka resolution) and in some cases refined from cores (1-3 ka resolution). Large slope failures occurred apparently synchronously over margin lengths of 50-350 km. Such failures were earthquake triggered: other mechanisms for producing laterally extensive synchronous failure do not apply. Triaxial shear measurements show a Su/σ' ratio of typical slope sediment of 0.48, implying considerable stability. However, some silty muds have Atterberg limits that suggest susceptibility to liquefaction under cyclic loading, particularly in Holocene deposits and by analogy those of past full interglacials. Basal failure planes of some large failures correspond with either the last interglacial or the MIS 6 glacial maximum. Comparison with seismological models suggests that the observed slope failures represent earthquakes ranging from Mw ~5.6 to ~7.6. Mean recurrence interval of M = 7 earthquakes at any point on the margin is estimated at 30 ka from seismological models and 40 ka from the sediment failure record. In northern Flemish Pass, a spatial cluster of several failures over 30 ka preceded by a long interval with no failures suggests that some other mechanism has

  6. Seabed geology of the Canadian eastern continental shelf

    Science.gov (United States)

    Piper, David J. W.

    1991-08-01

    The physiography of the continental shelf off eastern Canada is irregular, developed by glacial erosion of a previously fluvially-dominated landscape. Northern shelves are deeper than southern shelves. Most surficial sediments on the shelf are relict or palimpsest. The principal modern source of sediment to the northern shelves is ice rafting and iceberg scour reworking of Quaternary sediments. Southern shelves receive sediment through erosion of Quaternary sediments; only small amounts of fine-grained sediment derived from coastal erosion and rivers escape from the coastal zone. Regional maps of sediment texture, carbonate content and heavy mineralogy consequently show differences between the northern and southern shelves. Large areas of the shelf show little net deposition. On the northern shelves, there is a surface veneer up to 0.5 m thick derived from ice rafting and iceberg turbation of underlying Quaternary sediment, modified by south-flowing currents [ WOODWORTH-LYNASet al. (this issue) Continental Shelf Research, 11, 939-961]. The overall effects of former iceberg turbation may extend to a depth of 10 m sub-bottom. On the southern shelves, bioturbation and perhaps storm-related currents rework exposed Quaternary sediments more slowly. Muds accumulate in deep basins on the shelves at rates of about 0.5 m per 1000 years; this accumulation is probably episodic and related to major storms reworking sediment from the surface sediment veneer in shallower areas of little net deposition. In water depths less than 110 m sand and gravel have formed as a result of reworking in the coastal zone during the post-glacial transgression. Over large areas of Georges Bank, the eastern Scotian Shelf and the Grand Banks of Newfoundland, such sands are mobilized during storms to form a wide suite of bedforms [ AMOS and JUDGE (this issue) Continental Shelf Research, 11, 1037-1068]. Elsewhere, particularly in deeper water, sandy surfaces appear moribund or inactive and large

  7. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    J. Guillén

    2000-12-01

    Full Text Available The water turbidity measured with optical methods (transmittance and backscattering is usually expressed as beam attenuation coefficient (BAC or formazin turbidity units (FTU. The transformation of these units to volumetric suspended sediment concentration (SSC units is not straightforward, and accurate calibrations are required in order to obtain valuable information on suspended sediment distributions and fluxes. In this paper, data from field calibrations between BAC, FTU and SSC are presented and best-fit calibration curves are shown. These calibrations represent an average from different marine environments of the western Mediterranean (from estuary to continental slope. However, the general curves can only be applied for descriptive or semi-quantitative purposes. Comparison of turbidity measurements using the same sensor with different calibration ranges shows the advantage of simultaneously combining two instruments calibrated in different ranges when significant changes in suspended sediment concentrations are expected.

  8. Direct observations of the Antarctic Slope Current transport at 113°E

    Science.gov (United States)

    Peña-Molino, B.; McCartney, M. S.; Rintoul, S. R.

    2016-10-01

    The Antarctic Slope Current (ASC), defined here as the region of westward flow along the continental slope off Antarctica, forms the southern limb of the subpolar gyres. It regulates the exchange of water across the shelf break and provides a path for interbasin westward transport. Despite its significance, the ASC remains largely unobserved around most of the Antarctic continent. Here we present direct velocity observations from a 17 month current meter moored array deployed across the continental slope between the 1000 and the 4200 m isobaths, in the southeastern Indian Ocean near 113°E. The observed time-mean flow consists of a surface-intensified jet associated with the Antarctic Slope Front (ASF) and a broader bottom-intensified westward flow that extends out to approximately the 4000 m isobath and is strongest along the upper slope. The time-mean transport of the ASC is -29.2 Sv. Fluctuations in the transport are large, typically exceeding the mean by a factor of 2. They are mainly due to changes in the northward extent of the current over the lower slope. However, seasonal changes in the wind also drive variations in the transport of the ASF and the flow in the upper slope. Both mean and variability are largely barotropic, thus invisible to traditional geostrophic methods.

  9. Geological studies of the COST No. B-3 Well, United States Mid-Atlantic continental slope area

    Science.gov (United States)

    Scholle, Peter A.

    1980-01-01

    The COST No. B-3 well is the first deep stratigraphic test to be drilled on the Continental Slope off the Eastern United States. The well was drilled in 2,686 ft (819 m) of water in the Baltimore Canyon trough area to a total depth of 15,820 ft (4,844 m) below the drill platform. It penetrated a section composed of mudstones, calcareous mudstones, and limestones of generally deep water origin to a depth of about 8.200 ft (2,500 m) below the drill floor. Light-colored, medium- to coarse-grained sandstones with intercalated gray and brown shales, micritic limestones, and minor coal and dolomite predominate from about 8,200 to 12,300 ft (2,500 to 3,750 m). From about 12,300 ft (3,750 m) to the bottom, the section consists of limestones (including oolitic and intraclastic grainstones) with interbedded fine-to medium-grained sandstones, dark-colored fissile shales, and numerous coal seams. Biostratigraphic examination has shown that the section down to approximately 6,000 ft (1,830 m) is Tertiary. The boundary between the Lower and Upper Cretaceous sections is placed between 8,600 and 9,200 ft (2,620 and 2,800 m) by various workers. Placement of the Jurassic-Cretaceous boundary shows an even greater range based on different organisms; it is placed variously between 12,250 and 13,450 ft (3,730 and 5,000 m). The oldest unit penetrated in the well is considered to be Upper Jurassic (Kimmeridgian) by some workers and Middle Jurassic (Callovian) by others. The Lower Cretaceous and Jurassic parts of the section represent nonmarine to shallow-marine shelf sedimentation. Upper Cretaceous and Tertiary units reflect generally deeper water conditions at the B-3 well site and show a general transition from deposition at shelf to slope water depths. Examination of cores, well cuttings, and electric logs indicates that potential hydrocarbon-reservoir units are present throughout the Jurassic and Cretaceous section. Porous and moderately permeable limestones and sandstones have been

  10. Organic matter and the geotechnical properties of submarine sediments

    Science.gov (United States)

    Keller, George H.

    1982-09-01

    Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.

  11. Massive Rock Detachments from the Continental slope of the Balsas River Submarine Delta that occur due to Instability of Sediments which Produce Turbidity Currents and Tsunamis

    Science.gov (United States)

    Sandoval-Ochoa, J.; Aguayo-Camargo, J.

    2007-05-01

    During the NOAA oceanographic delivery cruise of the US R/V "Roger Revelle" to the Scripps Institution of Oceanography at the University of California in San Diego, California USA, in July 1996; a well calibrated bathymetric equipment, the SeaBeam* 2012, was tested. Good resolutions in data allowed bathymetric mapping to visualize the sea floor relief. Detailed colorful chartographic images showed a portion of the continental slope between the Balsas River Delta and the Middle America Trench and between the Balsas Canyon and La Necesidad Canyon. The surveyed area covered more than 3 000 square kilometers. After the delivery cruise, one of the goals was to measure and analyze the Morphobathymetry of the uneven lower portion of the Balsas River Submarine Delta. So far some of the findings with the morphometric analyses consist of several isolated slump scars that each comprise more than 12 cubic kilometers in volume and a multiple slump scar with an evident steep hollow about 200 cubic kilometers absent of rock. These volumes of rock apparently underwent a remobilization from the slope during the Late Quaternary. The rock detachments occured in relatively small portions but in instantaneous massive displacements because of their instability as well as other identified factors in the region. Over time more and more authors have accepted that coastal cuts or submarine slump scars have been left by sudden movements of rock and fluids. The phenomena that occur in the region in general, are accompanied on one side by potential and kinetic energies like falling bodies, flows and gravity waves, and on the other side, by mass transfer of rock and fluid mobilization like turbidity currents, accumulations, sea wave surges or tsunamis. In some cases the phenomena is produced by another natural triggering forces or by an earthquake. We propose that events like these, i.e. massive detachments and their products such as accumulations, turbidity currents and depositional debrites

  12. Wind-driven export of Weddell Sea slope water

    Science.gov (United States)

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.

    2016-10-01

    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  13. Determinação dos elementos-traço (Zn, Co e Ni em sedimentos da Plataforma Continental Amazônica sob influência da descarga do rio Amazonas Determination of trace elements (Zn, Co and Ni in sediments at the Amazon Continental Shelf on influence of the Amazon River discharge

    Directory of Open Access Journals (Sweden)

    Gilmar Wanzeller Siqueira

    2006-01-01

    Full Text Available Esta pesquisa foi desenvolvida na Plataforma Continental Amazônica (PCA no trecho compreendido entre os cabos Orange (AP e Maguari (PA, para determinar os teores de Zn, Co e Ni nos sedimentos superficiais, identificando o papel dos sedimentos como fonte ou reserva de elementos-traço. A concentração dos elementos metálicos apresentou a seguinte associação: Zn > Ni > Co. Os sedimentos localizados na PCA podem ser considerados como sítio de ocorrência natural dos elementos metálicos, não havendo influência de fontes poluidoras na liberação destes para o sistema.Determination of trace elements (Zn, Co and Ni in sediments at the Amazon Continental Shelf on influence of the Amazon River discharge This research was developed at Amazon Continental Shelf (ACS between the Orange Cape (Amapá State and the Maguari Cape (Pará State, to determine the levels of zinc, cobalt and nickel in the superficial sediments identifying its inputs and outputs. The rate of these metallic elements in the sediments decreases following Zn> Ni> Co. The concentrations of total metals in the surface sediments range from Zn = 52.8 159.5; Ni = 21.7 47.4 and Co = 14.3 48.8 (mg.kg-1. The levels of trace elements observed in the sediments at ACS are of natural occurrence. Pollution sources of metallic elements were not observed.

  14. Ecological policy, assessment and prediction of the fate of Chernobyl radionuclides in sediments of the Black Sea

    International Nuclear Information System (INIS)

    Kontar, A.E.

    2002-01-01

    The mathematical model has been designed to investigate the fate and distribution of the Chernobyl radionuclides in sediments of the Black Sea. One of the regions of intensive radioactive precipitation during the Chernobyl disaster was the nothwestern Black Sea region. There are some canyon systems in this region, where bottom sediments of the shelf zone are removed to the continental slope region and finally to the abyssal part of the sea. The lack of reliable information on the removal intensity of the shelf sediments, which contain different kinds of radioactive precipitation, does not allow changes in the radioactive situation to be predicted reliably enough in the given region. On the other hand, the surface sedimentary layers dated by characteristic Chernobyl precipitation made it possible to obtain information on sediment movement rates and directions, as well as other quantitative and qualitative parameters for the mechanisms of canyon processes. This region was selected for our study

  15. Infiltration on sloping terrain and its role on runoff generation and slope stability

    Science.gov (United States)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  16. Fate of nutrient enrichment on continental shelves as indicated by the C/N content of bottom sediments

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.J.; Premuzic, E.T.; Whitledge, T.E.

    1980-01-01

    The trajectory and fate of particulate matter are poorly understood processes in a spatially heterogeneous coastal ocean. Parameterization of appropriate hydrodynamics for a quantitative description of these loss processes must thus await definition of the important biological time and space scales. Since the bottom sands tend to record the history of the water column, we have selected the C/N content of shelf sediments as a possible tracer of (1) sites of nutrient introduction to the shelf by various physical mechanisms, of (2) areas of subsequent downstream utilization by the phytoplankton, and of (3) where loss of particulate matter might occur from the water column. An analysis is made of the C/N patterns of bottom surface sediments in relation to the nitrogen sources from upwelling, river runoff, and tidal mixing on the Peruvian, west African, Amazonian, Gulf of Mexico, eastern US, Bering, and North Sea shelves in an initial attempt to proscribe the particle trajectories of organic matter on the continental shelf.

  17. Fate of nutrient enrichment on continental shelves as indicated by the C/N content of bottom sediments

    International Nuclear Information System (INIS)

    Walsh, J.J.; Premuzic, E.T.; Whitledge, T.E.

    1980-01-01

    The trajectory and fate of particulate matter are poorly understood processes in a spatially heterogeneous coastal ocean. Parameterization of appropriate hydrodynamics for a quantitative description of these loss processes must thus await definition of the important biological time and space scales. Since the bottom sands tend to record the history of the water column, we have selected the C/N content of shelf sediments as a possible tracer of (1) sites of nutrient introduction to the shelf by various physical mechanisms, of (2) areas of subsequent downstream utilization by the phytoplankton, and of (3) where loss of particulate matter might occur from the water column. An analysis is made of the C/N patterns of bottom surface sediments in relation to the nitrogen sources from upwelling, river runoff, and tidal mixing on the Peruvian, west African, Amazonian, Gulf of Mexico, eastern US, Bering, and North Sea shelves in an initial attempt to proscribe the particle trajectories of organic matter on the continental shelf

  18. Nonlocal impacts of the Loop Current on cross-slope near-bottom flow in the northeastern Gulf of Mexico

    Science.gov (United States)

    Nguyen, Thanh-Tam; Morey, Steven L.; Dukhovskoy, Dmitry S.; Chassignet, Eric P.

    2015-04-01

    Cross-slope near-bottom motions near De Soto Canyon in the northeastern Gulf of Mexico are analyzed from a multidecadal ocean model simulation to characterize upwelling and downwelling, important mechanisms for exchange between the deep ocean and shelf in the vicinity of the 2010 BP Macondo well oil spill. Across the continental slope, large-scale depression and offshore movement of isopycnals (downwelling) occur more frequently when the Loop Current impinges upon the West Florida Shelf slope farther south. Upwelling and onshore movement of isopycnals occurs with roughly the same likelihood regardless of Loop Current impingement on the slope. The remote influence of Loop Current on the De Soto Canyon region downwelling is a consequence of a high-pressure anomaly that extends along the continental slope emanating from the location of Loop Current impact.

  19. Transformation of PBDE mixtures during sediment transport and resuspension in marine environments (Gulf of Lion, NW Mediterranean Sea)

    International Nuclear Information System (INIS)

    Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Durrieu de Madron, Xavier; Heussner, Serge; Canals, Miquel

    2012-01-01

    Polybromodiphenyl ethers (PBDEs) in superficial sediments from the Gulf of Lion were studied. They were largely predominated by BDE 209 (98.7% of all PBDEs) indicating that the main source of these pollutants was the commercial mixture deca-BDE. This compound and the less brominated BDE exhibited a southwestward decreasing concentration gradient following the dominant marine currents and bottom relief, e.g. the Mud Belt, the submarine canyons and the Open Continental Slope. All PBDEs exhibited statistically significant correlations confirming the common origin. However, a progressive transformation of the dumped BDE 209 was identified showing a depletion paralleled by increases of the less brominated BDEs (from 8.6% to 22%). These less brominated compounds were accumulated at about 100–140 km away from the Rhone prodelta, e.g. at the end of the submarine canyons, evidencing that these transformation compounds can be accumulated at long distances from the dumping sites in the marine system. Highlights: ► Polybromodiphenyl ethers are associated to organic carbon in marine sediments. ► PBDEs in marine sediments can accumulate further away than 140 km from the spill site. ► BDE-209 in marine sediments generate congeners found in banned commercial mixtures. ► BDE-209 in marine sediments generates new congeners not found in commercial mixtures. ► Submarine canyons channel PBDEs from the continental platform to the deep shelf. - Decomposition of decabromodiphenyl ether in marine sediments generates congeners found in banned mixtures in areas located far away from the discharge sites.

  20. Continental Shelf Sediments of Sarawak, Malaysian Borneo

    Science.gov (United States)

    Masron, Tarmiji; Rumpet, Richard; Musel, Jamil

    2017-01-01

    Sediment distributions in deep sea influence the benthic community structure and thus play an important role in shaping the marine ecosystem. Several studies on sediment characteristics had been conducted in South China Sea (SCS), but only limited to coastal areas of regions within SCS territories. Therefore, this study was carried out to analyze the benthic sediment profile in an area beyond 12 nautical miles off the coast of Sarawak, southern SCS. Sediment samples were collected from 31 stations, comprising three depth ranges: (I) 20–50 m, (II) 50–100 m, and (III) 100–200 m. The total organic matter (TOM) contents were determined and subjected to dry and wet sieving methods for particle size analysis. TOM contents in the deep area (>50 m) were significantly higher (p = 0.05) and positively correlated (r = 0.73) with silt-clay fraction. About 55% and 82% of stations in strata II and III, respectively, were dominated by silt-clay fractions (50 m) tend to be poorly sorted, very fine skewed, and platykurtic. Unlike data obtained 20 years ago which reported high content of silt-clay (58%), this study recorded a lower content (35%); therefore, changes in sediment load had been observed in southern SCS. PMID:29075660

  1. Sediment failures within the Peach Slide (Barra Fan, NE Atlantic Ocean) and relation to the history of the British-Irish Ice Sheet

    Science.gov (United States)

    Owen, Matthew J.; Maslin, Mark A.; Day, Simon J.; Long, David

    2018-05-01

    The Peach Slide is the largest known submarine mass movement on the British continental margin and is situated on the northern flank of the glacigenic Barra Fan. The Barra Fan is located on the northwest British continental margin and is subject to cyclonic ocean circulation, with distinct differences between the circulation during stadial and inter-stadial periods. The fan has experienced growth since continental uplift during the mid-Pliocene, with the majority of sediments deposited during the Pleistocene when the fan was a major depocentre for the British-Irish Ice Sheet (BIIS). Surface and shallow sub-surface morphology of the fan has been mapped using newly digitised archival paper pinger and deep towed boomer sub-bottom profile records, side scan sonar and multibeam echosounder data. This process has allowed the interpretation and mapping of a number of different seismic facies, including: contourites, hemipelagites and debrites. Development of a radiocarbon based age model for the seismic stratigraphy constrains the occurrence of two periods of slope failure: the first at circa 21 ka cal BP, shortly after the BIIS's maximum advance during the deglaciation of the Hebrides Ice Stream; and the second between 12 and 11 ka cal BP at the termination of the Younger Dryas stadial. Comparison with other mass movement events, which have similar geological and oceanographic settings, suggests that important roles are played by contouritic and glacigenic sedimentation, deposited in inter-stadial and stadial periods respectively when different thermohaline regimes and sediment sources dominate. The effect of this switch in sedimentation is to rapidly deposit thick, low permeability, glacigenic layers above contourite and hemipelagite units. This process potentially produced excess pore pressure in the fan sediments and would have increased the likelihood of sediment failure via reduced shear strength and potential liquefaction.

  2. U, Th, K content, heat production and thermal conductivity of Sao Paulo, Brazil continental shelf sediments: a reconnaissance work

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.; Furtado, V.V.; Adams, J.A.S.

    1985-01-01

    A reconnaissance of the natural potassium, uranium and thorium content, the radiogenic heat production and the thermal conductivity of 80 bottom surface sediment samples collected from the Brazilian continental shelf off Sao Paulo was made. The average equivalent contents of these radio-elements in an estuarine ambient were 1.21%, 1.75 ppm and 4.29 ppm respectively, and 1.20%, 1.21 ppm and 4.05 ppm, respectively, in the shelf samples. The largest radioelement contents were associated with the more fine-grained sediments. The 234 U to 238 U isotopic ratios varied from 0.60 to 1.75 with an average of 1.11, indicating that the sources for the uranium in these sediments are both terrigenous and from the sea water. An average radiogenic heat production of 0.63 (+ - 0.04) μW.m -3 was calculated from the experimental concentration data. Data for the thermal conductivity measurements ranged from 0.83 to 2.51 μW.m -1 . 0 C -1 , with an average of 1.81 μW.m -1 . 0 C -1 . (Author) [pt

  3. Fluvial Connectivity and Sediment Dispersal within Continental Extensional Basins; Assessment of Controlling Factors using Numerical Modelling

    Science.gov (United States)

    Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.

    2017-12-01

    Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.

  4. Structural lineaments from the magnetic anomaly maps of the eastern continental margin of India (ECMI) and NW Bengal Fan

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Rao, T.C.S.; Subrahmanyam, A; Rao, M.M.M.; Lakshminarayana, S.

    extension of 85 degrees E ridge, abutting the continental shelf off Chilka Lake and (3) trend 3, locted over the continental shelf/slope between Visakhapatnm and Paradip represents a folded (ridges and depressions) nature of the continental basement...

  5. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Rao, B.R.

    -Goa (93 samples) For the convenience of description, the Saurashtra-Goa region has been divided into the Saurashtra, Gulf of Cambay-Ratnagiri and Ratnagiri-Goa sectors based on variations in clay mineral abundances. The boundaries between these sectors... are approximate and variations in the mineral abundances tend to grade one to the other. Smectite is the most abundant mineral in the inner shelf sediments of all the sectors [Fig. 3(Ba), 3(Ca) and Provenance and distribution of clay minerals 1763 0 Sm*ctlt* m...

  6. Gamma spectrometry for chronology of recent sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pittauerova, Daniela

    2013-12-17

    This thesis deals with several aspects of gamma spectrometric analysis of natural and artificial isotopes in sediments and their use as tracers for qualification and quantification of accumulation and mixing processes in different aquatic environments. Sediment cores from three distinct areas including terrigenous sediments deposited on the continental slope off NW Africa, deep sea sediments off Sumba Island and five stations from the Gulf of Eilat in the Red Sea area were measured and interpreted within this dissertation. The main concern in gamma spectrometry of voluminous environmental samples is a reliable efficiency calibration. This is specially relevant for the analysis of low energy gamma emitters (<100 keV). {sup 210}Pb, an important isotopic tracer to cover the period of the last century, is one of them. Within this work mathematical efficiency calibration was applied using a commercial software package. A series of validation tests was performed and evaluated for point and voluminous samples. When using {sup 210}Pb as a tracer it is necessary to determine its excess portion, which is not supported by ingrowth from the parent nuclide {sup 226}Ra. Its analysis is mostly performed via short lived daughter isotopes that follow after the intermediate gaseous member {sup 222}Rn. Preventing the escape of radon from the sample is a critical step before analysis due to a negative effect of supported {sup 210}Pb underestimation on the chronology, which was also documented in this thesis. Time series registering ingrowth of {sup 214}Pb and {sup 214}Bi towards radioactive equilibrium with {sup 226}Ra in different containers were evaluated for analyses of {sup 226}Ra. Direct analyses of {sup 226}Ra was compared to its detection via daughter products. A method for aligning parallel radionuclide depth profiles was described and applied successfully in two case studies from the continental slope off NW Africa and off Sumba Island, Indonesia. This is primarily important

  7. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina

    Science.gov (United States)

    Mangano, M.G.; Buatois, L.A.

    1997-01-01

    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh

  8. Features emergence and development of landslides on the slopes, composed of loess sediments

    Directory of Open Access Journals (Sweden)

    Bida S.V.

    2014-12-01

    Full Text Available The conditions of hollows formation in the waterproof layer during the process of quaternary deposits formation on the territory of Ukraine were being considered. It was shown that even the hollow is the center of landslides due to discharge them through groundwater flow from the plateau. Presented research aimed at studying the stability of slopes, are held within a comprehensive program of anti measures for 2005-2014, approved by the Cabinet of Ministers of Ukraine from September 22, 2004 №1256, ind. 33. Is established that for an effective fight against landslides or prevent their occurrence develop the necessary classifications dells and their detailed description. The study features hollows dedicated studies. In addition with modern relief formation processes in Ukraine are related to geological activity rivers, it should be noted the significant role erosion of surface water flows throughout geological history. Particular attention should be paid to the role of temporary water flows, the result of erosion of which is the formation of depressions in the surface sediments - dells, ravines, gullies. Determined that the origin of hollows most has erosion character, but out denudation, and other glacial basin. Found that movement of groundwater is happening in these basins, leads to suffusion loess soils, causing them to shift fluid-plastic well fluid condition and, consequently, reduce the strength characteristics of soils. Places groundwater withdrawals on the slopes are the most dangerous in terms of the possibility of landslides.

  9. Pollution by petroleum hydrocarbons in sediments from continental shelf of Tabasco State, Mexico

    International Nuclear Information System (INIS)

    Botello, A.V.; Gonzalez, C.; Diaz, G.

    1991-01-01

    The Wider Caribbean is potentially one of the largest oil producing areas in the world. Major petroleum production areas include Louisiana and Texas, USA; the Bay of Campeche, Mexico; Lake Maracaibo, Venezuela; and Gulf of Paria, Trinidad; all of which are classified as production accident high-risk zones. About 5 million of barrels are transported every day in the Caribbean, thus generating an intense tanker traffic. It has been estimated that oil discharges from tank washings within the Wider Caribbean could be as high as 7 million barrels/year. For all those reasons petroleum pollution is considered as the major environmental problem in the Wider Caribbean area and increasing day to day due to the use of petroleum as the main energy source. On the other hand, the continental shelf of Tabasco state actually represents one of the most productive areas for crude oil in the Gulf of Mexico. Sediments were collected from this area and analyzed for hydrocarbons

  10. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  11. Re-assessing the nitrogen signal in continental margin sediments: New insights from the high northern latitudes

    Science.gov (United States)

    Knies, Jochen; Brookes, Steven; Schubert, Carsten J.

    2007-01-01

    Organic and inorganic nitrogen and their isotopic signatures were studied in continental margin sediments off Spitsbergen. We present evidence that land-derived inorganic nitrogen strongly dilutes the particulate organic signal in coastal and fjord settings and accounts for up to 70% of the total nitrogen content. Spatial heterogeneity in inorganic nitrogen along the coast is less likely to be influenced by clay mineral assemblages or various substrates than by the supply of terrestrial organic matter (TOM) within eroded soil material into selected fjords and onto the shelf. The δ15N signal of the inorganic nitrogen ( δ15N inorg) in sediments off Spitsbergen seems to be appropriate to trace TOM supply from various climate- and ecosystem zones and elucidates the dominant transport media of terrigenous sediments to the marine realm. Moreover, we postulate that with the study of sedimentary δ15N inorg in the Atlantic-Arctic gateway, climatically induced changes in catchment's vegetations in high northern latitudes may be reconstructed. The δ15N org signal is primarily controlled by the availability of nitrate in the dominating ocean current systems and the corresponding degree of utilization of the nitrate pool in the euphotic zone. Not only does this new approach allow for a detailed view into the nitrogen cycle for settings with purely primary-produced organic matter supply, it also provides new insights into both the deposition of marine and terrestrial nitrogen and its ecosystem response to (paleo-) climate changes.

  12. Crustal structure and sedimentation history over the Alleppey platform, southwest continental margin of India: Constraints from multichannel seismic and gravity data

    Directory of Open Access Journals (Sweden)

    P. Unnikrishnan

    2018-03-01

    Full Text Available The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that: (1 the Alleppey Platform is associated with a basement high in the west of its present-day geometry (as observed in the time-structure map of the Trap Top (K/T boundary, (2 the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and, (3 both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns (as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region. The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region. The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension, in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment.

  13. How hydrological factors initiate instability in a model sandy slope

    OpenAIRE

    Terajima, Tomomi; Miyahira, Ei-ichiro; Miyajima, Hiroyuki; Ochiai, Hirotaka; Hattori, Katsumi

    2013-01-01

    Knowledge of the mechanisms of rain-induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down-slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the ...

  14. Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf

    Science.gov (United States)

    Traykovski, P.; Wiberg, P. L.; Geyer, W. R.

    2007-02-01

    A mooring and tripod array was deployed from the fall of 2002 through the spring of 2003 on the Po prodelta to measure sediment transport processes associated with sediment delivered from the Po River. Observations on the prodelta revealed wave-supported gravity flows of high concentration mud suspensions that are dynamically and kinematically similar to those observed on the Eel shelf [Traykovski, P., Geyer, W.R., Irish, J.D., Lynch, J.F., 2000. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf. Continental Shelf Research 20, 2113-2140]. Due to the dynamic similarity between the two sites, a simple one-dimensional (1D) across-shelf model with the appropriate bottom boundary condition was used to examine fluxes associated with this transport mechanism at both locations. To calculate the sediment concentrations associated with the wave-dominated and wave-current resuspension, a bottom boundary condition using a reference concentration was combined with an "active layer" formulation to limit the amount of sediment in suspension. Whereas the wave-supported gravity flow mechanism dominated the transport on the Eel shelf, on the Po prodelta flux due to this mechanism is equal in magnitude to transport due to wave resuspension and wind-forced mean currents in the cross-shore direction. Southward transport due to wave resuspension and wind forced mean currents move an order of magnitude more sediment along-shore than the down-slope flux associated wave-supported gravity flows.

  15. 16 Years, 16 Cruises, 1.6 Billion Soundings: a Compilation of High-Resolution Multibeam Bathymetry of the Active Plate Boundary Along the Chilean Continental Margin

    Science.gov (United States)

    Weinrebe, W.; Flueh, E. R.; Hasert, M.; Behrmann, J. H.; Voelker, D.; Geersen, J.; Ranero, C. R.; Diaz-Naveas, J. L.

    2011-12-01

    Chile, a country stranding the active plate boundary between the South-American and the Nazca Plate is afflicted by recurrent earthquakes and hazardous volcanic eruptions. The strongest earthquake ever recorded occurred here, and volcanic hazards are frequent. Consequently, this area has been studied by geoscientists for many years to improve the understanding of subduction zone processes. Swath bathymetry mapping of the ocean floor has proven to bear a large potential for the interpretation of subduction-related processes, such as tectonic deformation of the marine forearc, release and migration of fluids as well as earthquake-triggered mass wasting. Multibeam bathymetry data of 16 major cruises of German, British, and Chilean research vessels recorded between 1995 and December 2010, in total more than 10,000 data files comprising about 1.6 billion soundings, have now been carefully reprocessed, compiled and merged into a unifying set of high-resolution bathymetric maps of the Chilean continental margin from latitude 40°S to 20°S. The imprint of subsurface processes on the surface morphology is well displayed in the case of the Chilean continental margin. The 3,500 km long Chilean convergent margin is not uniform, as various segments with different tectonic characteristics can be distinguished. Major factors that control margin morphology and thus the style of subduction are (1) relief and structure of the incoming oceanic plate, (2) supply of trench sediment, (3) turbidite transport within the trench, and (4) the input of terrigeneous sediments down the continental slope. A major segment boundary occurs at latitude 32°-33° S where the hotspot-related volcanic chain of Juan Fernandez is presently subducting. South of the area of ridge subduction the trench is filled with turbidites, and accretionary ridges develop across the base of the slope along most of the segment, whereas north of this boundary the turbiditic infill is reduced and subduction erosion is

  16. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance

    Science.gov (United States)

    Berra, F.; Felletti, F.

    2011-04-01

    The Lower Permian succession of the Central Southern Alps (Lombardy, Northern Italy) was deposited in fault-controlled continental basins, probably related to transtensional tectonics. We focussed our study on the stratigraphic record of the Lower Permian Orobic Basin, which consists of a 1000 m thick succession of prevailing continental clastics with intercalations of ignimbritic flows and tuffs (Pizzo del Diavolo Formation, PDV) resting on the underlying prevailing pyroclastic flows of the Cabianca Volcanite. The PDV consists of a lower part (composed of conglomerates passing laterally to sandstones and distally to silt and shales), a middle part (pelitic, with carbonates) and an upper part (alternating sandstone, silt and volcanic flows). Syndepositional tectonics during the deposition of the PDV is recorded by facies distribution, thickness changes and by the presence of deformation and liquefaction structures interpreted as seismites. Deformation is recorded by both ductile structures (ball-and-pillow, plastic intrusion, disturbed lamination, convolute stratification and slumps) and brittle structures (sand dykes and autoclastic breccias). Both the sedimentological features and the geodynamic setting of the depositional basin confidently support the interpretation of the described deformation features as related to seismic shocks. The most significant seismically-induced deformation is represented by a slumped horizon (about 4 m thick on average) which can be followed laterally for more than 5 km. The slumped bed consists of playa-lake deposits (alternating pelites and microbial carbonates, associated with mud cracks and vertebrate tracks). The lateral continuity and the evidence of deposition on a very low-angle surface along with the deformation/liquefaction of the sediments suggest that the slump was triggered by a high-magnitude earthquake. The stratigraphic distribution of the seismites allows us to identify time intervals of intense seismic activity

  17. Bottom currents and sediment waves on a shallow carbonate shelf, Northern Carnarvon Basin, Australia

    Science.gov (United States)

    Belde, Johannes; Reuning, Lars; Back, Stefan

    2017-04-01

    The modern seafloor of the Australian Northwest Shelf between Exmouth and Dampier was analyzed for large scale sedimentary bedforms on 3D seismic reflection data. The Carnarvon MegaSurvey of Petroleum Geo-Services (PGS), a merged dataset of multiple industrial 3D seismic reflection surveys with a total size of 49,717 km2, offers an extensive view of the continental shelf, slope and rise of the Northern Carnarvon Basin. Over the shelf two fields of large scale sediment waves were observed in water depths between 55-130 m, where the seafloor may be influenced by different processes including internal waves, tides and storms. Based on the dimensions and orientations of the sediment waves the dominant direction and approximate strength of local bottom currents could be estimated. Information on local sediment grain-size distribution was provided by the auSEABED database allowing a classification of the observed sediment waves into sand- or mudwaves. The first sediment wave field is positioned northwest of the Montebello Islands where the shelf is comparatively narrow and local sediment is mainly sand-sized. It most likely formed by increased bottom currents induced by the diversion of tidal flows around the islands. The second sediment wave field is located north of the Serrurier and Bessieres Islands within a local seafloor depression. Local sediments are poorly sorted, containing significant amounts of mud and gravel in addition to the mainly sand-sized grains. The coarser sediment fraction could have been reworked to sandwaves by cyclone-induced bottom currents. Alternatively, the finer sediment fraction could form mudwaves shaped by less energetic along-slope oriented currents in the topographic depression. The sediment waves consist partially of carbonate grains such as ooids and peloids that formed in shallow water during initial stages of the post glacial sea-level rise. These stranded carbonate grains thus formed in a different environment than the sediment

  18. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    Science.gov (United States)

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  19. Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon river: The role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation

    Science.gov (United States)

    Gensac, Erwan; Martinez, Jean-Michel; Vantrepotte, Vincent; Anthony, Edward J.

    2016-04-01

    Fine-grained sediments supplied to the Ocean by the Amazon River and their transport under the influence of continental and oceanic forcing drives the geomorphic change along the 1500 km-long coast northward to the Orinoco River delta. The aim of this study is to give an encompassing view of the sediment dynamics in the shallow coastal waters from the Amazon River mouth to the Capes region (northern part of the Amapa region of Brazil and eastern part of French Guiana), where large mud banks are formed. Mud banks are the overarching features in the dynamics of the Amazon-Orinoco coast. They start migrating northward in the Capes region. Suspended Particulate Matter (SPM) concentrations were calculated from satellite products (MODIS Aqua and Terra) acquired over the period 2000-2013. The Census-X11 decomposition method used to discriminate short-term, seasonal and long-term time components of the SPM variability has rendered possible a robust analysis of the impact of continental and oceanic forcing. Continental forcing agents considered are the Amazon River water discharge, SPM concentration and sediment discharge. Oceanic forcing comprises modelled data of wind speed and direction, wave height and direction, and currents. A 150 km-long area of accretion is detected at Cabo Norte that may be linked with a reported increase in the river's sediment discharge concurrent with the satellite data study period. We also assess the rate of mud bank migration north of Cabo Norte, and highlight its variability. Although we confirm a 2 km y-1 migration rate, in agreement with other authors, we show that this velocity may be up to 5 km y-1 along the Cabo Orange region, and we highlight the effect of water discharge by major rivers debouching on this coastal mud belt in modulating such rates. Finally, we propose a refined sediment transport pattern map of the region based on our results and of previous studies in the area such as the AMASSEDS programme, and discuss the

  20. Management of turbidity current venting in reservoirs under different bed slopes.

    Science.gov (United States)

    Chamoun, Sabine; De Cesare, Giovanni; Schleiss, Anton J

    2017-12-15

    The lifetime and efficiency of dams is endangered by the process of sedimentation. To ensure the sustainable use of reservoirs, many sediment management techniques exist, among which venting of turbidity currents. Nevertheless, a number of practical questions remain unanswered due to a lack of systematic investigations. The present research introduces venting and evaluates its performance using an experimental model. In the latter, turbidity currents travel on a smooth bed towards the dam and venting is applied through a rectangular bottom outlet. The combined effect of outflow discharge and bed slopes on the sediment release efficiency of venting is studied based on different criteria. Several outflow discharges are tested using three different bed slopes (i.e., 0%, 2.4% and 5.0%). Steeper slopes yield higher venting efficiency. Additionally, the optimal outflow discharge leading to the largest venting efficiency with the lowest water loss increases when moving from the horizontal bed to the inclined positions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Acoustic wipeouts over the continental margins off Krishna, Godavari and Mahanadi river basins, East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Rao, T.C.S.

    wipeouts. Behrens (1988) reported occurrence of gas/oil seepages beneath such ridges associated with underlying salt diapir ofT Gulf of Mexico. Acoustic wipeouts in the sub-surface layers due to a faulted continental slope are also observed of... the figures. References BEHRESS, E. W., (1988) Geology of a continental slope oil seep, Northern Gulf of Mexico. Amer. Assoc. Petrot Geo!. Bulletin. v. 72, pp. 105-114. 568 K. S. R. MURTHY AND T. C. S. RAO BRYANT, W. R. and L. B. ROEMER, (1983) Structure...

  2. Initiation of continental accretion: metamorphic conditions

    Science.gov (United States)

    Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid

    2017-04-01

    The physical processes involved at the beginning of the continental collision are largely unknown because they are transient and therefore hardly identifiable from the rock record. Despite the importance of key parameters for understanding mountain building processes, especially the formation of deep mountain roots and their impacts on earthquakes nucleation, rock/fluid transfers and oil/gas resources in the continental crust, observations from the earliest collision stages remain fragmentary. Here, we focus on the example of Taiwan, a young and active mountain belt where the transition from oceanic subduction, accretion of the first continental margin to mature collision can be followed in space and time. We present preliminary results and provide key questions regarding the reconstruction of time-pressure-temperature paths of rocks & fluids to allow discriminating between rift-related thermal/rheological inheritance and burial/heating phases during convergence. Previous studies have focused on peak temperatures analyzed by Raman Spectrometry of Carbonaceous Matter from the deeper structural layers exposed in the Central Range of Taiwan. In the pre-rift sediments, these studies reported a positive gradient from West to Est, and values from geothermal gradients (up to 60°C/km) known in the region, and higher temperature closer to the pre-rift units. Cross sections and maps with high resolution peak temperatures are in process as well as pressure estimations to determine how the sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.

  3. ISLSCP II Atmospheric Carbon Dioxide Consumption by Continental Erosion

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Continental Atmospheric CO2 Consumption data set represents gridded estimates for the riverine export of carbon and of sediments based on empirical...

  4. Experiences from using Autonomous Underwater Vehicles and Synthetic Aperture Sonar for Sediment and Habitat Mapping

    Science.gov (United States)

    Thorsnes, T.; Bjarnadóttir, L. R.

    2017-12-01

    Emerging platforms and tools like autonomous underwater vehicles and synthetic aperture sonars provide interesting opportunities for making seabed mapping more efficient and precise. Sediment grain-size maps are an important product in their own right and a key input for habitat and biotope maps. National and regional mapping programmes are tasked with mapping large areas, and survey efficiency, data quality, and resulting map confidence are important considerations when selecting the mapping strategy. Since 2005, c. 175,000 square kilometres of the Norwegian continental shelf and continental slope has been mapped with respect to sediments, habitats and biodiversity, and pollution under the MAREANO programme (www.mareano.no). At present the sediment mapping is based on a combination of ship-borne multibeam bathymetry and backscatter, visual documentation using a towed video platform, and grab sampling. We have now tested a new approach, using an Autonomous Underwater Vehicle (AUV) as the survey platform for the collection of acoustic data (Synthetic Aperture Sonar (SAS), EM2040 bathymetry and backscatter) and visual data (still images using a TFish colour photo system). This pilot project was conducted together the Norwegian Hydrographic Service, the Institute of Marine Research (biology observations) and the Norwegian Defence Research Establishment (operation of ship and AUV). The test site reported here is the Vesterdjupet area, offshore Lofoten, northern Norway. The water depth is between 170 and 300 metres, with sediments ranging from gravel, cobbles and boulders to sandy mud. A cold-water coral reef, associated with bioclastic sediments was also present in the study area. The presentation will give an overview of the main findings and experiences gained from this pilot project with a focus on geological mapping and will also discuss the relevance of AUV-based mapping to large-area mapping programmes like MAREANO.

  5. Bottom trawling and oxygen minimum zone influences on continental slope benthic community structure off Vancouver Island (NE Pacific)

    Science.gov (United States)

    De Leo, Fabio C.; Gauthier, Maéva; Nephin, Jessica; Mihály, Steven; Juniper, S. Kim

    2017-03-01

    Understanding responses of benthic ecosystems to cumulative impacts of natural stressors, long-term ocean change and increasing resource exploitation is an emerging area of interest for marine ecologists and environmental managers. Few, if any, studies have quantitatively addressed cumulative effects in the deep sea. We report here on a study from the continental slope off Vancouver Island (Canada) in the northeast Pacific Ocean, where the Oxygen Minimum Zone impinges on seabed habitats that are subjected to widespread bottom trawling, primarily by the fishery for thornyhead (Sebastolobus ssp.). We examined how the benthic megafauna in this area was influenced by varying levels of dissolved oxygen and trawling activity, along a depth gradient that was also likely to shape community composition. Continuous video and sonar records from two ROV surveys (50 linear km total; depth range 300-1400 m) respectively provided data on faunal attributes (composition, abundance and diversity) and the frequency of trawl door marks on the seabed. Faunal and trawl data were compiled in a geo-referenced database along with corresponding dissolved oxygen data, and pooled into 500 m segments for statistical analysis. Trawl mark occurrence peaked between 500 and 1100 m, corresponding to areas of slope subjected to hypoxia (PERMANOVA analyses, with characterizing taxa identified for all three factors. Depth, dissolved oxygen and trawl mark density accounted for 21% to 52% of the variability in benthic community structure according to multiple regression (DISTLM) models. Species richness was highest at intermediate depths and in areas subject to intermediate levels of trawling, and higher under hypoxia than under severe hypoxia. These statistically significant trends demonstrate that the structuring influences of bottom trawling on deep-sea benthic communities can be observed even where communities are being shaped by strong environmental gradients.

  6. Observation of near-inertial internal waves on the continental slope in the northwestern South China Sea

    Science.gov (United States)

    Zheng, Jie; Tian, Jiwei; Liang, Hui

    2017-04-01

    Based on nearly 3 months of moored acoustic Doppler current profiler records on the continental slope in the northwestern South China Sea (SCS) in 2006, this study examines temporal and vertical characteristics of near-inertial internal waves (NIW). Rotary frequency spectrum indicates that motions in the near-inertial frequency are strongly polarized, with clockwise (CW) energy exceeding counterclockwise (CCW) by about a factor of 10. Wavelet analysis exhibits an energy peak exceeding the 95% confidence level at the frequency of local inertial during the passage of typhoon Xangsane (24 September to 4 October). This elevated near-inertial kinetic energy (NIKE) event possesses about a 4 days delay correlation with the time integral of energy flux induced by typhoon, indicating an energy source of wind. Further analysis shows that the upward phase velocity of this event is 3.8 m h-1 approximately, corresponding to a vertical wavelength of about 125 m if not taking the redshift of local inertial frequency into account. Rotary vertical wavenumber spectrum exhibits the dominance of clockwise-with-depth energy, indicating downward energy propagation and implying a surface energy source. Dynamical modes suggest that mode 1 plays a dominant role at the growth stage of NIW, whereas major contribution is from higher modes during the penetration of NIKE into the ocean interior.

  7. Cascadia Onshore-Offshore Site Response, Submarine Sediment Mobilization, and Earthquake Recurrence

    Science.gov (United States)

    Gomberg, J.

    2018-02-01

    Local geologic structure and topography may modify arriving seismic waves. This inherent variation in shaking, or "site response," may affect the distribution of slope failures and redistribution of submarine sediments. I used seafloor seismic data from the 2011 to 2015 Cascadia Initiative and permanent onshore seismic networks to derive estimates of site response, denoted Sn, in low- and high-frequency (0.02-1 and 1-10 Hz) passbands. For three shaking metrics (peak velocity and acceleration and energy density) Sn varies similarly throughout Cascadia and changes primarily in the direction of convergence, roughly east-west. In the two passbands, Sn patterns offshore are nearly opposite and range over an order of magnitude or more across Cascadia. Sn patterns broadly may be attributed to sediment resonance and attenuation. This and an abrupt step in the east-west trend of Sn suggest that changes in topography and structure at the edge of the continental margin significantly impact shaking. These patterns also correlate with gravity lows diagnostic of marginal basins and methane plumes channeled within shelf-bounding faults. Offshore Sn exceeds that onshore in both passbands, and the steepest slopes and shelf coincide with the relatively greatest and smallest Sn estimates at low and high frequencies, respectively; these results should be considered in submarine shaking-triggered slope stability failure studies. Significant north-south Sn variations are not apparent, but sparse sampling does not permit rejection of the hypothesis that the southerly decrease in intervals between shaking-triggered turbidites and great earthquakes inferred by Goldfinger et al. (2012, 2013, 2016) and Priest et al. (2017) is due to inherently stronger shaking southward.

  8. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    Science.gov (United States)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  9. Geomorphic process fingerprints in submarine canyons

    Science.gov (United States)

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  10. Pliocene and Pleistocene chronostratigraphy of continental sediments underlying the Altiplano at La Paz, Bolivia

    Science.gov (United States)

    Roberts, Nicholas J.; Barendregt, René W.; Clague, John J.

    2018-06-01

    Continental sediments underlying the Altiplano plateau provide insight into the late Cenozoic evolution of the Central Andes. We characterize the magnetostratigraphy and lithostratigraphy of the upper part of this fill sequence along a transect extending southwestward from the Cordillera Real at La Paz, Bolivia, where it is best exposed. Multiple polarity reversals and the locally extensive, 2.74-Ma Chijini Tuff enable correlation between our six sections and three previously reported sections. The tuff ties the composite polarity sequence to the geomagnetic polarity time scale, demonstrating that the stratigraphic record extends from the latest Gilbert Chron (ca. 3.8 Ma) to the late Olduvai subchron (ca. 1.8 Ma), or possibly Jaramillo subchron (ca. 1.0 Ma). The sequence provides Earth's longest known record of low-latitude glaciation and the only record of Pliocene tropical glaciation. It includes evidence for 16 late Pliocene and Early Pleistocene glaciations, separated by interglacials of sufficient length (>103-104 a) to produce mature soil profiles. Successively larger ice caps formed directly before, during, and after the globally warm mid-Piacenzian (3.265-3.025 Ma), and throughout Plio-Pleistocene climate deterioration. The late Pliocene glacial units predate the onset of widespread Northern Hemisphere continental glaciation and in most cases unambiguously correspond to specific cool peaks of the astronomically tuned, benthic oxygen isotope (δ18O) record, including marine isotope stages MG2, M2, KM2, and G10. The glacial events broadly coincide with those nearer both poles, suggesting inter-hemispheric climate linkages. The early formation and subsequent expansion of ice caps beyond glacier margins of the Last Glacial Maximum suggest that the Cordillera Real likely attained its modern height before ca. 3.4 Ma. The number and timing of glaciations, and long-term sediment accumulation and incision rates suggest that the local Altiplano surface formed by ca

  11. Geomorfologia, cobertura sedimentar e transporte de sedimentos na plataforma continental interna entre a Ponta de Saquarema e o Cabo Frio (RJ Geomorphology, sediment distribution and transpon on the inner continental shelf between Ponta de Saquarema and Cabo Frio (RJ

    Directory of Open Access Journals (Sweden)

    Dieter Muehe

    1993-01-01

    Full Text Available A plataforma continental interna defronte à restinga da Massambaba - um sistema de duplos cordões litorâneos localizados entre Saquarema e Arraial do Cabo, com 48 km de extensão - apresenta topografia regular, interrompida por raros afloramentos de rochas do embasamento cristalino e por ocorrências localizadas de arenitos de praia. Um amplo afloramento destes últimos ocorre na faixa batimétrica de 48 a 60 m, correspondendo à posição da linha de costa cerca de 10.000 anos atrás. Outro afloramento de arenitos de praia, de reduzida dimensão, ocorre próximo ao perfil S-4, à distância de 50 m da face da praia, em profundidade de 4 m. A cobertura sedimentar, sem aporte significativo de sedimentos terrígenos, é constituída predominantemente por areias quartzosas reliquiares. O gradiente batimétrico apresenta declividade elevada, atípica para uma plataforma passiva, atingindo o limite distai da plataforma continental interna, a isobatimétrica de 60 m, a uma distância da ordem de 4 milhas náuticas da linha de praia. O padrão de distribuição granulométrico apresenta gradientes de decréscimo em direção a leste, isto é, em direção ao Cabo Frio, e em direção a maiores profundidades. A diminuição do tamanho granulométrico em direção ao Cabo Frio é atribuída como sendo resultado do aporte de sedimentos terrígenos através de um sistema de drenagem pleistocênico, interrompido pela construção do cordão litorâneo mais interiorizado, e à remobilização dos sedimentos por ação de ondas e correntes com transporte residual em direção a leste.The inner continental shelf in front of the Massambaba beach, an East-West striking, 48 km long, double barrier beach, located between the towns of Saquarema and Arraial do Cabo presents a monotonous topography with only few outcrops of crystaline rocks, patches of beach rocks and a sediment cover of mainly relict quartz sand. The topographic gradient, steeper as expected for

  12. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    Science.gov (United States)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  13. Factors affecting seismic response of submarine slopes

    Directory of Open Access Journals (Sweden)

    G. Biscontin

    2006-01-01

    Full Text Available The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and 'local' tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event.

  14. Fluxes and budget of organic matter in the benthic boundary layer over the northwestern Mediterranean margin

    Science.gov (United States)

    Buscail, R.; Pocklington, R.; Daumas, R.; Guidi, L.

    1990-09-01

    Sediment traps were deployed at depths of 26 and 645 m at two stations on the continental margin of the Gulf of Lions (northwestern Mediterranean). During the same period, surficial sediments were sampled by box corer. The material collected by bottom sediment traps and in corresponding surface sediments was analysed for total organic carbon, hydrolysable organic carbon, nitrogen, sugars, amino acids and lignin-derived compounds. Seasonal variations in organic inputs and the difference between particles from bottom layers and sediment were compared. For the continental shelf station, the annual averages of organic compound fluxes were found to be: 552 mg m -2 d -1 (orgC), 183 mg m -2 d -1 (N), 283 mg m -2 d -1 (hydrolysable orgC), 181 mg m -2 d -1 (Ceq. glucose) and 478 mg m -2 d -1 (amino acids). These values would have to be reduced by half if the large fluxes of autumn, due to resuspension during storm events, were excluded. For the slope, the average annual fluxes were evaluated as: 92.7 mg m -2 d -1 (orgC); 9.4 mg m -2 d -1 (N); 74.1 mg m -2 d -1 (hydrolysable orgC); 11.8 mg m -2 d -1 (Ceq.glucose); and 68.2 mg m -2 d -1 (amino acids). The values obtained for material trapped over the shelf are 4-7 times (orgC and amino acids) and 15-19 times (sugars and nitrogen) higher than for the slope. In contrast, the content in organic compounds of surficial sediments on the slope is 2-3 times higher than that of the shelf deposits. Budgets of orgC transformation at the sediment-water interface were based on calculations which include bottom orgC fluxes, sedimentation rates and orgC content for the first centimetre of deposits. For the continental shelf area, 5.3 g m -2 y -1 have accumulated and 16.7 g m -2 y -1 are mineralized. For the canyon and adjacent slope, the figures are 0.4 and 0.6 g m -2 y -1, respectively. Over the upper adjacent slope, the major part of organic matter is transported by advective processes, which contribute to the sediment interface

  15. U.S. East Coast Continental Margin (CONMAR) Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS/WHOI Continental Margin (CONMAR) Data set was compiled by the U.S. Geological Survey and the Woods Hole Oceanographic Institution as a joint program of...

  16. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    Science.gov (United States)

    Turowski, Jens Martin

    2018-02-01

    Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  17. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    Directory of Open Access Journals (Sweden)

    J. M. Turowski

    2018-02-01

    Full Text Available Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  18. Thirty-Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences

    Science.gov (United States)

    Kavanaugh, Maria T.; Rheuban, Jennie E.; Luis, Kelly M. A.; Doney, Scott C.

    2017-12-01

    The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.

  19. Turbid Flows and Their Deposits on Slopes with Minibasins : A Modelling Approach

    NARCIS (Netherlands)

    Wang, X.

    2015-01-01

    Passive continental margins display a great diversity of seafloor bathymetries induced by gravity driven extensional faulting and compressional folding, as well as diapiric movements of salt or mud. In many diapirically controlled settings, slope bathymetries are complicated and characterized by

  20. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    Science.gov (United States)

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  1. New Insight Into The Crustal Structure of The Continental Margin Off NW Sabah/borneo

    Science.gov (United States)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere. We found evidence that the continental crust also underlies the continental slope land- ward of the Trough, a fact that raises many questions about the tectonic history and development of this margin. The characteristic pattern of rotated fault blocks and half grabens and the carbon- ates which are observed all over the Dangerous Grounds can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anoma- lies. We suspect that the volcanic activity coincided with the collision of Borneo and the Dangerous Grounds in middle or late Miocene time. The emplacement of an al- lochtonous terrane on top of the extended continental lithosphere could be explained by overthrusting as a result of the collision or it could be related to gravity sliding following a broad uplift of NW Borneo at the same time.

  2. Paleocene Wilcox cross-shelf channel-belt history and shelf-margin growth: Key to Gulf of Mexico sediment delivery

    Science.gov (United States)

    Zhang, Jinyu; Steel, Ronald; Ambrose, William

    2017-12-01

    Shelf margins prograde and aggrade by the incremental addition of deltaic sediments supplied from river channel belts and by stored shoreline sediment. This paper documents the shelf-edge trajectory and coeval channel belts for a segment of Paleocene Lower Wilcox Group in the northern Gulf of Mexico based on 400 wireline logs and 300 m of whole cores. By quantitatively analyzing these data and comparing them with global databases, we demonstrate how varying sediment supply impacted the Wilcox shelf-margin growth and deep-water sediment dispersal under greenhouse eustatic conditions. The coastal plain to marine topset and uppermost continental slope succession of the Lower Wilcox shelf-margin sediment prism is divided into eighteen high-frequency ( 300 ky duration) stratigraphic sequences, and further grouped into 5 sequence sets (labeled as A-E from bottom to top). Sequence Set A is dominantly muddy slope deposits. The shelf edge of Sequence Sets B and C prograded rapidly (> 10 km/Ma) and aggraded modestly ( 80 m/Ma) characterizes Sequence Sets D and E, which is associated with smaller (9-10 m thick on average) and isolated channel belts. This stratigraphic trend is likely due to an upward decreasing sediment supply indicated by the shelf-edge progradation rate and channel size, as well as an upward increasing shelf accommodation indicated by the shelf-edge aggradation rate. The rapid shelf-edge progradation and large rivers in Sequence Sets B and C confirm earlier suggestions that it was the early phase of Lower Wilcox dispersal that brought the largest deep-water sediment volumes into the Gulf of Mexico. Key factors in this Lower Wilcox stratigraphic trend are likely to have been a very high initial sediment flux to the Gulf because of the high initial release of sediment from Laramide catchments to the north and northwest, possibly aided by modest eustatic sea-level fall on the Texas shelf, which is suggested by the early, flat shelf-edge trajectory, high

  3. A 5000km2 data set along western Great Bahama Bank illustrates the dynamics of carbonate slope deposition

    Science.gov (United States)

    Schnyder, Jara S. D.; Jo, Andrew; Eberli, Gregor P.; Betzler, Christian; Lindhorst, Sebastian; Schiebel, Linda; Hebbeln, Dierk; Wintersteller, Paul; Mulder, Thierry; Principaud, Melanie

    2014-05-01

    An approximately 5000km2 hydroacoustic and seismic data set provides the high-resolution bathymetry map of along the western slope of Great Bahama Bank, the world's largest isolated carbonate platform. This large data set in combination with core and sediment samples, provides and unprecedented insight into the variability of carbonate slope morphology and the processes affecting the platform margin and the slope. This complete dataset documents how the interplay of platform derived sedimentation, distribution by ocean currents, and local slope and margin failure produce a slope-parallel facies distribution that is not governed by downslope gradients. Platform-derived sediments produce a basinward thinning sediment wedge that is modified by currents that change directions and strength depending on water depth and location. As a result, winnowing and deposition change with water depth and distance from the margin. Morphological features like the plunge pool and migrating antidunes are the result of currents flowing from the banktop, while the ocean currents produce contourites and drifts. These continuous processes are punctuated by submarine slope failures of various sizes. The largest of these slope failures produce several hundred of km2 of mass transport complexes and could generate tsunamis. Closer to the Cuban fold and thrust belt, large margin collapses pose an equal threat for tsunami generation. However, the debris from margin and slope failure is the foundation for a teeming community of cold-water corals.

  4. Erosion and sediment deposition evaluation on a slope under pasture in Jandaia-GO using the '137Cs fallout' technique

    International Nuclear Information System (INIS)

    Arthur, Robson C.J.; Bacchi, Osny O.S.; Reichardt, Klaus; Oliveira, Carloeme Alves de; Correchel, Vladia

    2009-01-01

    Water erosion is one of the main forms of soil degradation and among the diverse factors that affect it, two of great importance are the soil cover and slope. Estimates of sediment distribution rates associated to the different uses and soil management practices are scarce and the employed methods in these determinations are in general costly and time consuming. Rates of sediment redistribution evaluated by means of the 137 Cs technique are based on the comparison of inventories of individual points of a given position and an inventory of reference, whose value represents the amount of 137 Cs of 'fallout' origin that was added to the local site. This allows evaluating situations of losses and accumulations of sediments by the erosive process. The objective of the present work was to analyze the sediment production in a pasture area and to measure the efficiency of riparian forests in trapping the erosion sediments coming from pasture, through the ' 137 Cs fallout' redistribution analysis. The study was carried out in Jandaia/GO, Brazil, in two dowslope transects located in a pasture area. Samples were taken from seven points of two 140 m long transects, as well as from three soil profiles of a 15 m transect in the downstream riparian forests of each transect. Soil profiles were sampled in three layers of 20 cm (0-20, 20-40 and 40-60). The soil samples were air dried, sieved and then analyzed for 137 Cs activity by a gamma ray detector (GEM-20180P, EG and ORTEC) coupled to a multichannel analyzer at CENA/USP. The results indicate variations of 137 Cs activity in soil profiles and high erosion rates to the riparian forest to the pasture areas of the two transects, showing sediment movement from the pasture area to the riparian forest, which suggests that the current width of the forest is not wide enough to trap the sediments produced upslope in the pasture area. (author)

  5. Present and past microbial life in continental salt pan sediments in Southern Africa

    Science.gov (United States)

    Genderjahn, Steffi; Mangelsdorf, Kai; Alawi, Mashal; Kallmeyer, Jens; Wagner, Dirk

    2015-04-01

    The southwestern African region is characterized by strong climate variability. To get a better understanding on the climate evolution and environmental condition in Namibia and South Africa, terrestrial climate archives are investigated. Since there are almost no lakes, continental salt pans represent the only terrestrial geoarchives with the potential to preserve climate signals during sediment deposition. Climate has a strong impact on the salt pan ecosystem, causing adaptation of salt pan microorganisms to varying temperature, precipitation and salinity conditions. To reconstruct climate variability during the Holocene, the composition, diversity and abundance of indigenous microbial communities with depth and related to different soil parameters are investigated. We are using a combined approach of microbiological and lipid biomarker analyses to demonstrate the response of the microbial communities due to environmental changes. For microbiological analyses outcrops were conducted or short cores (0-100 cm) were drilled at four different salt pans in Aminuis, Koes and Witpan region having rather different geochemical properties. The current work focused on changes within the microbial communities due to the impact of long-term climate variation and the associated environmental changes and is part of the project 'Signals of climate and landscape change preserved in southern African GeoArchives' in the scope of the SPACES program, which is funded by the German Federal Ministry of Education and Research (BMBF). For a quantitative characterization of microbial communities molecular techniques such as polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) based on the 16S rRNA genes are used. Moreover, 454 sequencing technique is utilized to describe the diversity and abundance of microorganisms in detail. Soil parameters are described by standard soil scientific methods. Furthermore, microbial lipid biomarker analyses were done to characterize living

  6. Early interglacial carbonate-dilution events in the South China Sea: Implications for strengthened typhoon activities over subtropical East Asia

    Science.gov (United States)

    Huang, Enqing; Tian, Jun; Qiao, Peijun; Wan, Sui; Xie, Xin; Yang, Wenguang

    2015-10-01

    A compilation of many late Quaternary marine sediment records from the northern South China Sea (SCS) continental slope confirms 15-50% reductions in sedimentary calcium carbonate concentrations between 11.0 and 8.5 ka BP in the early Holocene. This low carbonate% event occurred at a time when the regional sea level rose from -50 m to -10 m, which drowned large areas of continental shelves especially those near and within the Taiwan Strait. This event is associated with a significant increase in bulk sedimentation rates on the upper continental slope and the relative abundance of fine-grained detritus. Sediment provenance analyses suggest a dominant terrigenous input from Taiwan and a minor contribution from Luzon during the low carbonate% event, similar to the background terrigenous deposition in other periods of the Holocene. Two comparable low carbonate% events, respectively from the beginning of marine isotope stages 5.5 and 7.3, have also been recognized, pointing to similar causal factors. While carbonate dissolution and carbonate accumulation rate should not have been responsible, increased terrigenous input and dilution is considered as the main cause for the recurrent low carbonate% events in early interglacials. We further hypothesize that, during early interglacials, fluvial sediment discharge from Taiwan and Luzon intensified due to stronger typhoon activities, and massive fine-grained sediments from these two end members may have been transported to the northern SCS continental slope via surface and deep ocean currents. The conjecture of strengthened typhoon activities over East Asia during the early Holocene is supported by high ocean heat contents in the West Pacific Warm Pool area with the prevailing La Niña-like conditions.

  7. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  8. Deepwater Program: Studies of Gulf of Mexico lower continental slope communities related to chemosynthetic and hard substrate habitats

    Science.gov (United States)

    Ross, Steve W.; Demopoulos, Amanda W.J.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Ames, Cheryl L.; Casazza, Tara L.; Gualtieri, Daniel; Kovacs, Kaitlin; McClain, Jennifer P.; Quattrini, Andrea M.; Roa-Varon, Adela Y.; Thaler, Andrew D.

    2012-01-01

    This report summarizes research funded by the U.S. Geological Survey (USGS) in collaboration with the University of North Carolina at Wilmington (UNCW) on the ecology of deep chemosynthetic communities in the Gulf of Mexico. The research was conducted at the request of the U.S. Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE; formerly Minerals Management Service) to complement a BOEMRE-funded project titled "Deepwater Program: Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico." The overall research partnership, known as "Chemo III," was initiated to increase understanding of the distribution, structure, function, and vulnerabilities of these poorly known associations of animals and microbes for water depths greater than 1,000 meters (m) in the Gulf of Mexico. Chemosynthetic communities rely on carbon sources that are largely independent of sunlight and photosynthetic food webs. Despite recent research directed toward chemosynthetic and deep coral (for example, Lophelia pertusa) based ecosystems, these habitats are still poorly studied, especially at depths greater than 1,000 m. With the progression into deeper waters by fishing and energy industries, developing sufficient knowledge to manage these deep ecosystems is essential. Increased understanding of deep-sea communities will enable sound evaluations of potential impacts and appropriate mitigations.

  9. Is the Critical Shields Stress for Incipient Sediment Motion Dependent on Bed Slope in Natural Channels? No.

    Science.gov (United States)

    Phillips, C. B.; Jerolmack, D. J.

    2017-12-01

    Understanding when coarse sediment begins to move in a river is essential for linking rivers to the evolution of mountainous landscapes. Unfortunately, the threshold of surface particle motion is notoriously difficult to measure in the field. However, recent studies have shown that the threshold of surface motion is empirically correlated with channel slope, a property that is easy to measure and readily available from the literature. These studies have thoroughly examined the mechanistic underpinnings behind the observed correlation and produced suitably complex models. These models are difficult to implement for natural rivers using widely available data, and thus others have treated the empirical regression between slope and the threshold of motion as a predictive model. We note that none of the authors of the original studies exploring this correlation suggested their empirical regressions be used in a predictive fashion, nevertheless these regressions between slope and the threshold of motion have found their way into numerous recent studies engendering potentially spurious conclusions. We demonstrate that there are two significant problems with using these empirical equations for prediction: (1) the empirical regressions are based on a limited sampling of the phase space of bed-load rivers and (2) the empirical measurements of bankfull and critical shear stresses are paired. The upshot of these problems limits the empirical relations predictive capacity to field sites drawn from the same region of the bed-load river phase space and that the paired nature of the data introduces a spurious correlation when considering the ratio of bankfull to critical shear stress. Using a large compilation of bed-load river hydraulic geometry data, we demonstrate that the variation within independently measured values of the threshold of motion changes systematically with bankfull shields stress and not channel slope. Additionally, we highlight using several recent datasets

  10. Evolution of mud-capped dredge pits following excavation: sediment trapping and slope instability

    Science.gov (United States)

    Obelcz, J.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; O'Connor, M. C.; Wang, J.

    2016-02-01

    Many fluvial channels incised the Northern Gulf of Mexico inner continental shelf during the late Quaternary. Mud-capped dredge pits (MCDPs), which are generally elongate and deep (8-10 m) excavations, target sandy fluvial channel deposits for coastal restoration projects. The morphological evolution of dredge excavations in noncohesive sandy substrate is well studied, but MCDPs have up to a several-meter-thick veneer of Holocene shelf mud overlying sandy channel deposits. This stratigraphy is hypothesized to result in more complex post-dredge morphology than pit walls simply slumping to the angle of repose shortly after excavation. Numerical modeling of MCDP post-dredge response conducted prior to excavation indicates pit walls may retrogressively fail, which is accounted for in pit design by assigning no-dredge setback buffers from pipelines or cultural and environmental resources. To validate model results and test effectiveness of setback buffers, a geophysical survey of the Sandy Point MCDP (20 km west of the Mississippi River Delta in 10m deep water), where 1.7 million m3 of sandy sediment was excavated in 2012, was conducted May 2015. A total of 84 line-km of high-resolution chirp subbottom and a 27 km2 grid of swath bathymetry and sidescan sonar were collected. The data indicate the dredge pit walls are differentially slumping, with the western pit wall in a more active state of failure than the eastern wall. The western failures morphologically resemble features observed along the muddy Mississippi River Delta Front at water depths of 20-100 m, including bowl-shaped collapse failures and retrogressive stair-stepped slumps; these failures may play a key role in evaluating the distance of setback buffer zone to pipelines. These features indicate the cohesive mud overlying the sandy infill has a prominent role in pit wall stability. A 0.5-1 m thick acoustically transparent package overlies the entire pit floor (interpreted as a possible fluid mud layer

  11. Interrill soil erosion processes on steep slopes

    Science.gov (United States)

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  12. Transport and transfer rates in the waters of the Continental Shelf. Annual report

    International Nuclear Information System (INIS)

    Biscaye, P.E.

    1978-07-01

    The present contract year has been one of transition from an emphasis on field work and sample gathering to the predominance of sample and data analysis and the formulation of testable hypotheses concerning specific processes in the New York Bight. We have begun to understand the seasonal transition in the role of phytoplankton vs. grazing zooplankton in forming the particles on which some reactive pollutants are removed. Using natural radioactive tracers we have estimated the removal rates of reactive metals from the surface waters and these range over an order of magnitude from most rapid nearshore to least rapid over the upper continental slope. Once removed nearshore, however, these tracers, and the pollutants for which they proxy, do not remain permanently in the sediments but appear to be remobilized (probably by oxidation) during the winter and are reintroduced into the water column. Work on transport and mixing processes of pollutants which are or behave like those in solution has continued along several fronts. Hydrographic data on the structure of the water column continues to give a description of the system that is crucial to understanding geochemical and biological processes which affect pollutants. Hydrographic characterization of water masses from the data sets of cruises has resulted in hypotheses concerning the renewal of shelf water by direct exchange between shelf and upper slope water

  13. Land to ocean transfer of erosion-related organic carbon, Waipaoa sedimentary system, East Coast, New Zealand

    International Nuclear Information System (INIS)

    Brackley, H.L.

    2006-01-01

    Mountainous islands of the Pacific Rim (such as New Zealand) purportedly deliver up to 40% of the suspended sediment load and up to 35% of the riverine particulate organic carbon (POC) load to the world's oceans. On the east coast of New Zealand's North Island, the Waipaoa River drains a steep, 2205 km 2 catchment located on the active collisional East Coast Continental Margin. It has an annual suspended sediment load of 15 Tg (15 x 10 1 2 g), making up ∼ 7% of New Zealand's total yield to the Pacific Ocean, and a mean annual POC discharge to the Pacific Ocean of 86.7 Gg (86.7 x 10 9 g). The annual loss of OC to the floodplain is ∼ 9% of this annual POC discharge (∼ 7.8 Gg). A range of analyses (including organic carbon content (%OC), stable carbon isotopes (δ 1 3C), radiocarbon ( 1 4C), carbon to nitrogen ratios (C/N)a and carbon loadings (OC:SA)) were performed on correlative sediments from a transect of 7 cores from depositional sites located on the Waipaoa River floodplain and adjacent continental shelf and slope. Results were used to determine biogeochemical characteristics of organic carbon (OC) at a range of depositional sites during its transfer from terrestrial source to marine sink, and how large floods impact OC transfer to the marine environment. The high temporal variability in OC content (0.2 to 3.5%) and different source signatures (δ 1 3C of -26.7 to -20.6 permille) of Waipaoa River floodplain deposits prevented the establishment of a clear benchmark signature for flood deposits that may be recognisable in the marine sedimentary record. The high spatial and temporal variability of floodplain sediment OC, combined with the areal extent of floodplains within the catchment, indicates the appreciable modulating effect the floodplain has on OC transfers to the ocean. Since extensive stopbanks were constructed on the main floodplain since the 1940's, sequestration of OC in floodplain sediments has reduced by about half, increasing the overall

  14. Carbon transport in Monterey Submarine Canyon

    Science.gov (United States)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  15. Statistical analysis of planktic foraminifera of the surface Continental ...

    African Journals Online (AJOL)

    Planktic foraminiferal assemblage recorded from selected samples obtained from shallow continental shelf sediments off southwestern Nigeria were subjected to statistical analysis. The Principal Component Analysis (PCA) was used to determine variants of planktic parameters. Values obtained for these parameters were ...

  16. Geophysical studies over the continental margins of the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.C.S.; Rao, V.B.

    . Continuity of surface and subsurface features from profile to profile is indicated. Two major structural elements - viz. The "Marginal High", situated at the foot of the continental slope and extending along the east coast of India, and the "Marginal Basin...

  17. Response of floodplain sedimentation to catchment disturbances in different environments

    Science.gov (United States)

    Notebaert, B.; Houbrechts, G.; Verstraeten, G.; Petit, F.

    2009-04-01

    Holocene floodplain sediments are an important environmental archive, that can be accesed for reconstructing the past landscape dynamics either qualitatively (e.g. palynology) and quantitatively (e.g. sediment budgeting). In this study Holocene alluvial sediment deposition in two contrasting Belgian catchments was quantified and dated: the Lienne (148 km2) in the Ardennes massif and the Dijle (750 km2) in the loess region. These catchments experienced a comparable Holocene climatic variation, but differ in topography and geology with highest relief energy in the Lienne catchment. Land use history also differs with high land use intensities in the Dijle catchment since Roman times, but at least since the Middle Ages there were also large deforestations in the Lienne catchment. Detailed cumulative Holocene sediment deposition was assessed for each catchment using more then 1000 hand augerings. Detailed radiocarbon dating of fluvial deposits was performed in the Dijle catchment, while iron slag was used as a tracer for sediments deposited after 1350 AD in the Lienne catchment. Results show that sediment deposition is much larger in the Dijle catchment (~4.5 Mg ha-1 catchment area) then in the Lienne catchment (~0.2 Mg ha-1 catchment area). Dating results from the Dijle catchment show an increase of sediment deposition in the late Holocene, first starting in the colluvial valleys and later on prograding towards the main valleys. Variations in sedimentation rates can clearly be related to anthropogenous land use pressure, and the majority of the sediments found in colluvial and alluvial valleys were deposited in the last 4000 years, and in many cases even in the last 1000 years. Variations in sediment deposition within the catchment can partially be explained by differences in river valley physical settings (mainly valley slope), while in other cases hill slope sediment delivery (upstream erosion, connectivity between hill slopes and the river system) is the explaining

  18. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.

    Science.gov (United States)

    Li, Tao; Wang, Peng

    2013-05-01

    This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

  19. Grain size controls on sediment supply from debris-mantled dryland hillslopes

    Science.gov (United States)

    Michaelides, K.

    2011-12-01

    Debris-mantled hillslopes are common in arid and semiarid environments where low rates of chemical weathering give rise to thin, non-cohesive soils mantled with a layer of coarse rock fragments derived from weathered bedrock that can reach boulder size. The grain size distributions (GSDs) on the surface of these hillslopes interact with different magnitudes and frequencies of runoff-producing rainfall events that selectively transport grain sizes of different classes depending on flow, grain position on the slope, and hillslope attributes. Sediment transport over many runoff events determines sediment delivery to the slope base, which ultimately modifies the GSD of valley floors. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the topographic evolution of drainage basins over >104 y timescales, but the specific responses of sediment flux across the hillslope and the corresponding changes in GSDs to individual storm events are poorly understood. Sheetwash erosion of coarse fragments presents a particular set of conditions for sediment transport that is poorly resolved in current models. A particle-based model for sheetwash sediment transport on debris-mantled hillslopes was developed within a rainfall-runoff model. The rainfall-runoff model produces spatial values of flow depth and velocity which are used to drive a particle-by-particle force-balance model derived from first principles for grain sizes > 1 mm. Particles on the hillslope surface are represented explicitly and can be composed of mixed grain sizes of any distribution or of uniform sizes of any diameter. The model resolves all the forces on each particle at each time and space step based on the flow hydraulics acting on them, so no assumptions are made about incipient motion using Shield's criterion. This research examines how the interplay between hillslope GSD, hillslope attributes (gradient and length) and runoff

  20. Importance of isotopes for understanding the sedimentation processes

    International Nuclear Information System (INIS)

    Manjunatha, B.R.

    2012-01-01

    Isotopes of either radioactive or stable depending upon radiation emitted or not respectively which have wide applications in understanding not only the history of sedimentation, but also provide information about paleoclimate. Stable isotope mass difference occurs due to changes in physicochemical conditions of the ambient environment, for instance temperature, evaporation, precipitation, redox processes, and changes in the mobility of elements during weathering processes, biological uptake, metabolism, re-mineralization of biogenic material, etc. In contrast, radionuclides emit radiation because of excess of neutrons present in the nucleus when compared to protons of an atom. The decay of radioactive isotopes is unaffected despite changes in physicochemical variations; hence, they are useful for determining ages of different types of materials on earth. The radioisotopes can be classified based on origin and half life into primordial or long-lived, cosmogenic and artificial radionuclides or fission products. In this study, the importance of 137 Cs artificial radionuclides will be highlighted to understand short-term sedimentation processes, particularly in estuaries, deltas/continental shelf of west coast of India. The distribution of 137 Cs in sediments of south-western continental margin of India indicates that coastal marginal environments are filters or sinks for fall-out radionuclides. The sparse of 137 Cs in the open continental shelf environment indicates that most of sediments are either older or sediments being diluted by components generated in the marine environment

  1. Using tetraether lipids archived in North Sea Basin sediments to extract North Western European Pliocene continental air temperatures

    Science.gov (United States)

    Dearing Crampton-Flood, Emily; Peterse, Francien; Munsterman, Dirk; Sinninghe Damsté, Jaap S.

    2018-05-01

    The Pliocene is often regarded as a suitable analogue for future climate, due to an overall warmer climate (2-3 °C) coupled with atmospheric CO2 concentrations largely similar to present values (∼400 ppmv). Numerous Pliocene sea surface temperature (SST) records are available, however, little is known about climate in the terrestrial realm. Here we generated a Pliocene continental temperature record for Northwestern Europe based on branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids stored in a marine sedimentary record from the western Netherlands. The total organic carbon (TOC) content of the sediments and its stable carbon isotopic composition (δ13Corg) indicate a strong transition from primarily marine derived organic matter (OM) during the Pliocene, to predominantly terrestrially derived OM after the transition into the Pleistocene. This trend is supported by the ratio of branched and isoprenoid tetraethers (BIT index). The marine-terrestrial transition indicates a likely change in brGDGT sources in the core, which may complicate the applicability of the brGDGT paleotemperature proxy in this setting. Currently, the application of the brGDGT-based paleothermometer on coastal marine sediments has been hampered by a marine overprint. Here, we propose a method to disentangle terrestrial and marine sources based on the degree of cyclization of tetramethylated brGDGTs (#rings) using a linear mixing model based on the global soil calibration set and a newly developed coastal marine temperature transfer function. Application of this method on our brGDGT record resulted in a 'corrected' terrestrial temperature record (MATterr). This latter record indicates that continental temperatures were ∼12-14 °C during the Early Pliocene, and 10.5-12 °C during the Mid Pliocene, confirming other Pliocene pollen based terrestrial temperature estimates from Northern and Central Europe. Furthermore, two colder (Δ 5-7 °C) periods in the Pliocene MATterr

  2. Denudation of the continental shelf between Britain and France at the glacial–interglacial timescale

    Science.gov (United States)

    Mellett, Claire L.; Hodgson, David M.; Plater, Andrew J.; Mauz, Barbara; Selby, Ian; Lang, Andreas

    2013-01-01

    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial–interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian–Eemian–early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of

  3. Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale.

    Science.gov (United States)

    Mellett, Claire L; Hodgson, David M; Plater, Andrew J; Mauz, Barbara; Selby, Ian; Lang, Andreas

    2013-12-01

    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and 14 C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of

  4. Atlantic continental margin of the United States

    Science.gov (United States)

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  5. Numerical Coupling of River Discharge to Shelf/Slope Sedimentation Models

    National Research Council Canada - National Science Library

    Syvitski, James

    1997-01-01

    Scientific objectives of this project are: (1) Develop a nested set of models to study the interactions of sedimentation processes on the shelf, including the effects of river supply, plume transport and initial deposition of sediments; (2...

  6. Variability in terrigenous sediment supply offshore of the Rio de la Plata (Uruguay) recording the continental climatic history over the past 1200 years

    Science.gov (United States)

    Perez, L.; García-Rodríguez, F.; Hanebuth, T. J. J.

    2015-04-01

    The continental shelf adjacent to the Río de la Plata (RdlP) exhibits extremely complex hydrographic and ecological characteristics which are of great socio-economic importance. Since the long-term environmental variations related to the atmospheric (wind fields), hydrologic (freshwater plume), and oceanographic (currents and fronts) regimes are little known, the aim of this study is to reconstruct the changes in the terrigenous input into the inner continental shelf during the Late Holocene period (associated with the RdlP sediment discharge) and to unravel the climatic forcing mechanisms behind them. To achieve this, we retrieved a 10 m long sediment core from the RdlP mud depocenter at a depth of 57 m (GeoB 13813-4). The radiocarbon age control indicated an extremely high sedimentation rate of 0.8 cm per year, encompassing the past 1200 years (750-2000 AD). We used element ratios (Ti / Ca, Fe / Ca, Ti / Al, Fe / K) as regional proxies for the fluvial input signal, and the variations in relative abundance of salinity-indicative diatom groups (freshwater vs. marine-brackish) to assess the variability in terrigenous water and sediment discharge. Ti / Ca, Fe / Ca, Ti / Al, Fe / K and the freshwater diatom group showed the lowest values between 850 and 1300 AD, while the highest values occurred between 1300 and 1850 AD. The variations in the sedimentary record can be attributed to such regional and global climatic episodes as the Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA), both of which had a significant impact on rainfall and wind patterns over the region. During the MCA, a northward migration of the Intertropical Confluence Zone (ITCZ) could explain the lowest element ratios (indicative of a lower terrigenous input) and a marine-dominated diatom record, both indicative of a reduced RdlP freshwater plume. In contrast during the LIA, the southward migration of the ITCZ accompanied by El Niño-like state conditions may have led to an expansion of

  7. Chlorine-36 dating of continental evaporites

    International Nuclear Information System (INIS)

    Huang Qi

    1990-01-01

    Teh chloring-36 production, principle and experimental method of 36 Cl dating are briefly described. The ages calculated from the 36 Cl/Cl ratios are generally concordant with those obtained by using 14 C, 230 Th and magnetostratigraphic techniques. It confirms the constancy of the chlorine input ratio over the last million years and implys that 36 Cl can provide accurate dates on continental saline sediments

  8. Extensional tectonics and sedimentary response of the Early–Middle Cambrian passive continental margin, Tarim Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Zhiqian Gao

    2012-09-01

    Full Text Available The fact that several half-grabens and normal faults developed in the Lower–Middle Cambrian of Tazhong (central Tarim Basin and Bachu areas in Tarim Basin, northwest China, indicates that Tarim Basin was under extensional tectonic setting at this time. The half-grabens occur within a linear zone and the normal faults are arranged in en echelon patterns with gradually increasing displacement eastward. Extensional tectonics resulted in the formation of a passive continental margin in the southwest and a cratonic margin depression in the east, and most importantly, influenced the development of a three-pronged rift in the northeast margin of the Tarim Basin. The fault system controlled the development of platform – slope – bathyal facies sedimentation of mainly limestone-dolomite-gypsum rock-saline rock-red beds in the half-grabens. The NW-SE trending half-grabens reflect the distribution of buried basement faults.

  9. Slope failures and timing of turbidity flows north of Puerto Rico

    Science.gov (United States)

    ten Brink, Uri S.; Chaytor, Jason D.

    2014-01-01

    The submerged carbonate platform north of Puerto Rico terminates in a high (3,000–4,000 m) and in places steep (>45°) slope characterized by numerous landslide scarps including two 30–50 km-wide amphitheater-shaped features. The origin of the steep platform edge and the amphitheaters has been attributed to: (1) catastrophic failure, or (2) localized failures and progressive erosion. Determining which of the two mechanisms has shaped the platform edge is critically important in understanding landslide-generated tsunami hazards in the region. Multibeam bathymetry, seismic reflection profiles, and a suite sediment cores from the Puerto Rico Trench and the slope between the trench and the platform edge were used to test these two hypotheses. Deposits within trench axis and at the base of the slope are predominantly composed of sandy carbonate turbidites and pelagic sediment with inter-fingering of chaotic debris units. Regionally-correlated turbidites within the upper 10 m of the trench sediments were dated between ∼25 and 22 kyrs and ∼18–19 kyrs for the penultimate and most recent events, respectively. Deposits on the slope are laterally discontinuous and vary from thin layers of fragmented carbonate platform material to thick pelagic layers. Large debris blocks or lobes are absent within the near-surface deposits at the trench axis and the base of slope basins. Progressive small-scale scalloping and self-erosion of the carbonate platform and underlying stratigraphy appears to be the most likely mechanism for recent development of the amphitheaters. These smaller scale failures may lead to the generation of tsunamis with local, rather than regional, impact.

  10. Effect of Slope, Rainfall Intensity and Mulch on Erosion and Infiltration under Simulated Rain on Purple Soil of South-Western Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Muhammad Naeem Khan

    2016-11-01

    Full Text Available Purple soil is widely distributed in the hilly areas of the Sichuan basin, southwest China, and is highly susceptible to water erosion. The triggering of this process is related to slope, rainfall intensity and surface cover. Therefore, this study assesses the effects of different simulated rainfall intensities with different slopes on hydrological and erosional processes in un-mulched and mulched purple soils. Results show that the sediment and water losses increased with an increase of rainfall intensity and slope steepness. Generally, the slope contribution (Sc on water and sediment losses decreased with increasing rainfall intensity and slope steepness under both un-mulched and mulched soil. In un-mulched conditions, water losses were independent of slope steepness (Sc < 50% during the highest rainfall intensity. However, in mulched soil, the higher contributions of slope (Sc and rainfall (Rc were found for water and sediment losses, respectively, i.e., >50%, except during the increase in slope steepness from 15° to 25° under the highest rainfall intensity (120 mm·h−1. The effectiveness of mulch was more pronounced in reducing sediment losses (81%–100% compared with water losses (14%–100%. The conservation effectiveness of mulch both decreased and increased with slope steepness for water and sediment losses, respectively, under higher rainfall intensities. Water infiltration and recharge coefficient (RC decreased with an increase of slope steepness, while with an increase in rainfall intensity, the water infiltration and RC were increased and decreased, respectively, in both un-mulched and mulched soil. On the other hand, mulched soil maintained a significantly (α = 0.05 higher infiltration capacity and RC compared to that of the un-mulched soil.

  11. Shyok Suture Zone, N Pakistan: late Mesozoic Tertiary evolution of a critical suture separating the oceanic Ladakh Arc from the Asian continental margin

    Science.gov (United States)

    Robertson, Alastair H. F.; Collins, Alan S.

    2002-02-01

    The Shyok Suture Zone (Northern Suture) of North Pakistan is an important Cretaceous-Tertiary suture separating the Asian continent (Karakoram) from the Cretaceous Kohistan-Ladakh oceanic arc to the south. In previously published interpretations, the Shyok Suture Zone marks either the site of subduction of a wide Tethyan ocean, or represents an Early Cretaceous intra-continental marginal basin along the southern margin of Asia. To shed light on alternative hypotheses, a sedimentological, structural and igneous geochemical study was made of a well-exposed traverse in North Pakistan, in the Skardu area (Baltistan). To the south of the Shyok Suture Zone in this area is the Ladakh Arc and its Late Cretaceous, mainly volcanogenic, sedimentary cover (Burje-La Formation). The Shyok Suture Zone extends northwards (ca. 30 km) to the late Tertiary Main Karakoram Thrust that transported Asian, mainly high-grade metamorphic rocks southwards over the suture zone. The Shyok Suture Zone is dominated by four contrasting units separated by thrusts, as follows: (1). The lowermost, Askore amphibolite, is mainly amphibolite facies meta-basites and turbiditic meta-sediments interpreted as early marginal basin rift products, or trapped Tethyan oceanic crust, metamorphosed during later arc rifting. (2). The overlying Pakora Formation is a very thick (ca. 7 km in outcrop) succession of greenschist facies volcaniclastic sandstones, redeposited limestones and subordinate basaltic-andesitic extrusives and flow breccias of at least partly Early Cretaceous age. The Pakora Formation lacks terrigenous continental detritus and is interpreted as a proximal base-of-slope apron related to rifting of the oceanic Ladakh Arc; (3). The Tectonic Melange (ocean ridge-type volcanics and recrystallised radiolarian cherts, interpreted as accreted oceanic crust. (4). The Bauma-Harel Group (structurally highest) is a thick succession (several km) of Ordovician and Carboniferous to Permian-Triassic, low

  12. Relationship between radionuclides and sedimentological variables in the South Atlantic Continental Margin; Relacoes entre radionuclideos e variaveis sedimentologicas na Margem Continental do Atlantico Sul

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Paulo A.L.; Figueira, Rubens C.L., E-mail: paulo.alves.ferreira@usp.br, E-mail: rfigueira@usp.br [Universidade de Sao Paulo (IO/USP), SP (Brazil). Instituto Oceanografico

    2015-07-01

    There is a lack of information regarding marine radioactivity in sediments of the Continental Margin of the South Atlantic. {sup 137}Cs and {sup 40}K radioactivity and sedimentological variables were determined in superficial sediment samples. It was demonstrated that {sup 40}K is a good indicator for sediment granulometry, whilst {sup 137}Cs presents a good correlation with its chemical composition. Moreover, it was identified through the radiometric data the occurrence of input of allochtonous matter to the Brazilian southernmost compartment from the Rio de La Plata estuary, as previously reported in the literature. (author)

  13. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    Science.gov (United States)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the

  14. Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, L. [Bulgarian Academy of Science, Varna (Bulgaria). Inst. of Oceanology

    2002-07-01

    This paper provides an estimation of the atmospheric methane flux from Bulgarian Black Sea continental shelf. Potential gas source rocks include Holocene gas-charged sediments, Quaternary peats and sapropels, and deep-lying Palaeocene and Neogene clays, Cretaceous coals, and other sediments of late Jurassic to early Cretaceous age. These cover almost the whole continental shelf and slope and, together with irregularly developed seal rocks and widespread active and conducting faults, provide good conditions for upward gas migration. A total of 5 100 line kilometers of shallow seismic (boomer) and echo-sounder records acquired during the Institute of Oceanology's regional surveys, and several detailed side-scan sonar lines, have been reviewed for water column targets. Four hundred and eighty-two targets were assigned as gas seepage plumes. It is estimated that a total of 19,735 individual seeps exists on the open shelf. The number of seeps in coastal waters was estimated to be 6020; this is based on available public-domain data, specific research, and results of a specially made questionnaire which was distributed to a range of 'seamen'. More than 150 measurements of the seabed flux rates were made in the 'Golden sands' and 'Zelenka' seepage areas between 1976 and 1991. Indirect estimations of flux rates from video and photo materials, and a review of published data have also been undertaken. Based on these data, three types of seepages were identified as the most representative of Bulgarian coastal waters. These have flux rates of 0.4, 1.8, and 3.51/min. The contribution to atmospheric methane is calculated by multiplying the flux rates with the number of seepages, and entering corrections for methane concentration and the survival of gas bubbles as they ascend through seawater of the corresponding water depth. The estimation indicates that between 45,100,000 (0.03 Tg) and 210,650,000 m{sup 3} (0. 15 Tg) methane yr{sup -1} come

  15. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    Science.gov (United States)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  16. Seabottom backscatter studies in the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Pathak, D.

    The study is initiated to observe the interaction effects of the sound signal with three different sediment bottoms in the shelf area between Cochin and Mangalore in the western continental shelf of India. An echo signal acquisition system has been...

  17. Numerical simulation of the observed near-surface East India Coastal Current on the continental slope

    Science.gov (United States)

    Mukherjee, A.; Shankar, D.; Chatterjee, Abhisek; Vinayachandran, P. N.

    2018-06-01

    We simulate the East India Coastal Current (EICC) using two numerical models (resolution 0.1° × 0.1°), an oceanic general circulation model (OGCM) called Modular Ocean Model and a simpler, linear, continuously stratified (LCS) model, and compare the simulated current with observations from moorings equipped with acoustic Doppler current profilers deployed on the continental slope in the western Bay of Bengal (BoB). We also carry out numerical experiments to analyse the processes. Both models simulate well the annual cycle of the EICC, but the performance degrades for the intra-annual and intraseasonal components. In a model-resolution experiment, both models (run at a coarser resolution of 0.25° × 0.25°) simulate well the currents in the equatorial Indian Ocean (EIO), but the performance of the high-resolution LCS model as well as the coarse-resolution OGCM, which is good in the EICC regime, degrades in the eastern and northern BoB. An experiment on forcing mechanisms shows that the annual EICC is largely forced by the local alongshore winds in the western BoB and remote forcing due to Ekman pumping over the BoB, but forcing from the EIO has a strong impact on the intra-annual EICC. At intraseasonal periods, local (equatorial) forcing dominates in the south (north) because the Kelvin wave propagates equatorward in the western BoB. A stratification experiment with the LCS model shows that changing the background stratification from EIO to BoB leads to a stronger surface EICC owing to strong coupling of higher order vertical modes with wind forcing for the BoB profiles. These high-order modes, which lead to energy propagating down into the ocean in the form of beams, are important only for the current and do not contribute significantly to the sea level.

  18. USLE, RUSLE and WEPP models used in mining restored hill slopes

    International Nuclear Information System (INIS)

    Gonzalez Ubierna, S.; Casermeiro Martinez, M. A.; Nicolay Ibarra, J. M.

    2009-01-01

    One of the main problems affecting mining restoration is erosion, which limits the development of functional soils and plant communities. The eroded sediment pollutes and degrades the natural river systems. the objective of this work is to test some of the most used models: USLE (Wischmeier and Smith, 1965, 1978) and RUSLE 1.06 (Toy and Foster, 1998) and WEPP (Nearing et al., 1989), for the case of slopes derived from mining reclamation. The study area is a dump in El Moral coal mine (Utrillas), 60 km. north of Teruel city. We selected three artificial slopes, one with a topsoil substrate and two overburden covered in order to measure the sediment production during a year. After the comparison between estimated and measured erosion rates two conclusions can be stated: a) RUSLE 1.06 gives the best estimations in most of the cases. However WEPP in its annual option and for the top soiled slope, works better than RUSLE 1.06. (Author) 16 refs.

  19. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  20. Large-scale Mass Transport Deposits in the Valencia Basin (Western Mediterranean): slope instability induced by rapid sea-level drawdown?

    Science.gov (United States)

    Cameselle, Alejandra L.; Urgeles, Roger; Llopart, Jaume

    2014-05-01

    The Messinian Salinity Crisis (MSC) strongly affected the physiography of the Mediterranean margins at the end of the Miocene. The sharp sea-level fall gave a new configuration to the Mediterranean basin and created dramatic morphological and sedimentological changes: margins have been largely eroded whereas the deep basins accumulated thick evaporitic and detrital units. Amongst these detrital units, there are evidences on seismic reflection data for major large-scale slope failure of the Mediterranean continental margins. About 2700 km of seismic reflection profiles in the southwestern part of the Valencia Basin (Western Mediterranean) have enabled us the detailed mapping of distinctive Messinian erosional surfaces, evaporites and deep detrital deposits. The detrital deposits occur in a distinct unit that is made of chaotic, roughly-bedded or transparent seismic bodies, which have been mainly mapped in the basin domain. Locally, the seismic unit shows discontinuous high-amplitude reflections and/or an imbricate internal structure. This unit is interpreted to be formed by a series of Mass Transport Deposits (MTDs). Rapid drawdown has long been recognized as one of the most severe loadings conditions that a slope can be subjected to. Several large historical slope failures have been documented to occur due to rapid drawdown in dams, riverbanks and slopes. During drawdown, the stabilizing effect of the water on the upstream face is lost, but the pore-water pressures within the slope may remain high. The dissipation of these pore pressures in the slope is controlled by the permeability and the storage characteristics of the slope sediments. We hypothesize that the MTDs observed in our data formed under similar conditions and represent a large-scale equivalent of this phenomenon. Therefore, these MTDs can be used to put some constraints on the duration of the drawdown phase of the MSC. We have performed a series of slope stability analysis under rapid Messinian sea

  1. Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance

    Science.gov (United States)

    Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.

    2018-01-01

    Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.

  2. Geomorphic response of a continental margin to tectonic and eustatic variations, the Levant margin during the Messinian Salinity Crisis

    Science.gov (United States)

    Ben Moshe, Liran; Ben-Avraham, Zvi; Enzel, Yehouda; Uri, Schattner

    2017-04-01

    During the Messinian Salinity Crisis (MSC, 5.97±0.01-5.33 Ma) the Mediterranean Levant margin experienced major eustatic and sedimentary cycles as well as tectonic motion along the nearby Dead Sea fault plate boundary. New structures formed along this margin with morphology responding to these changes. Our study focuses on changes in this morphology across the margin. It is based on interpretation of three 3D seismic reflection volumes from offshore Israel. Multi-attribute analysis aided the extraction of key reflectors. Morphologic analysis of these data quantified interacting eustasy, sedimentation, and tectonics. Late Messinian morphologic domains include: (a) continental shelf; (b) 'Delta' anticline, forming a ridge diagonal to the strike of the margin; (c) southward dipping 'Hadera' valley, separating between (a) and (b); (d) 'Delta Gap' - a water gap crossing perpendicular to the anticline axis, exhibiting a sinuous thalweg; (e) continental slope. Drainage across the margin developed in several stages. Remains of turbidite flows crossing the margin down-slope were spotted across the 'Delta' anticline. These flows accumulated with the MSC evaporate sequence and prior to the anticline folding. Rising of the anticline, above the then bathymetry, either blocked or diverted the turbidites. That rising also defined the Hadera valley. In-situ evaporates, covering the valley floor, are, in turn covered by a fan-delta at the distal end of the valley. The fan-delta complex contains eroded evaporites and Lago-Mare fauna. Its top is truncated by dendritic fluvial channels that drained towards the Delta Gap. The Delta Gap was carved through the Delta ridge in a morphological and structural transition zone. We propose that during the first stages of the MSC (5.97±0.01-5.59 ma) destabilization of the continental slope due to oscillating sea level produced gravity currents that flowed through the pre-existing Delta anticline. Subsequent folding of the Delta anticline

  3. Morphology and stratal geometry of the Antarctic continental shelf: Insights from models

    Science.gov (United States)

    Cooper, Alan K.; Barker, Peter F.; Brancolini, Giuliano

    1997-01-01

    Reconstruction of past ice-sheet fluctuations from the stratigraphy of glaciated continental shelves requires understanding of the relationships among the stratal geometry, glacial and marine sedimentary processes, and ice dynamics. We investigate the formation of the morphology and the broad stratal geometry of topsets on the Antarctic continental shelf with numerical models. Our models assume that the stratal geometry and morphology are principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the seaward edge of the grounded ice. The location of the grounding line varies with time almost randomly across the shelf. With these simple assumptions, the models can successfully mimic salient features of the morphology and the stratal geometry. The models suggest that the current shelf has gradually evolved to its present geometry by many glacial advances and retreats of the grounding line to different locations across the shelf. The locations of the grounding line do not appear to be linearly correlated with either fluctuations in the 5 l s O record (which presumably represents changes in the global ice volume) or with the global sea-level curve, suggesting that either a more complex relationship exists or local effects dominate. The models suggest that erosion of preglacial sediments is confined to the inner shelf, and erosion decreases and deposition increases toward the shelf edge. Some of the deposited glacial sediments must be derived from continental erosion. The sediments probably undergo extensive transport and reworking obliterating much of the evidence for their original depositional environment. The flexural rigidity and the tectonic subsidence of the underlying lithosphere modify the bathymetry of the shelf, but probably have little effect on the stratal geometry. Our models provide several guidelines for the interpretation of unconformities, the nature of preserved topset deposits, and the

  4. On the accumulation of organic matter on the southeastern Brazilian continental shelf: a case study based on a sediment core from the shelf off Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Renato da Silva Carreira

    2012-03-01

    Full Text Available Sterol and fatty acid biomarkers and isotopic composition (δ13C and δ15N of bulk organic matter (OM were quantified in a sediment core to characterize the accumulation of autochthonous OM in an area on the continental shelf adjacent to Rio de Janeiro State. In the sediment surface (0-1 cm the concentration of total sterols and fatty acids was at least one order of magnitude higher than that measured deeper down in the core and was dominated by labile and planktonic-derived biomarker compounds. These results suggest, as is confirmed by multivariate statistical analysis, the occurrence of an event of enhanced primary production in the water column and efficient export of particles to the bottom. Similar conditions have been observed at Cabo Frio, located 150 km to the north of our study site, during an upwelling event, suggesting that such events may exert a regional influence on primary production on the south-eastern Brazilian continental shelf. Beyond the signatures from this event, the presence of biomarker compounds from vascular plants suggests the additional influence of an outflow from Guanabara Bay at the study site. These results point to the need for further investigation of the relative influence of physical forcings and continental inputs on the biogeochemical processes on the section of the continental shelf considered in the present study.Marcadores moleculares na classe de lipídios (esterois, ácidos graxos e hidrocarbonetos e a composição isotópica (δ13C e δ15N da matéria orgânica bruta foram quantificados em amostras de um testemunho de sedimento para caracterizar o histórico recente de sedimentação da matéria orgânica na plataforma continental adjacente à Baía de Guanabara, no Estado do Rio de Janeiro. Na superfície do sedimento (0-1 cm, a concentração total de esterois e ácidos graxos foi cerca de uma ordem de grandeza maior do que observado nas camadas mais profundas do sedimento, com predominância de lip

  5. Growth of the continental crust: constraints from radiogenic isotope geochemistry

    International Nuclear Information System (INIS)

    Taylor, P.N.

    1988-01-01

    Most models for evolution of continental crust are expressed in the form of a diagram illustrating the cumulative crustal mass (normalized relative to the present crustal mass) as a function of time. Thus, geochronological data inevitably play a major role in either constructing or testing crustal growth models. For all models, determining the start-time for effective crustal accretion is of vital importance. To this end, the continuing search for, and reliable characterization of, the most ancient crustal rock-units remains a worthy enterprise. Another important role for geochronology and radiogenic isotope geochemistry is to assess the status of major geological events as period either of new crust generation or of reworking of earlier formed continental crust. For age characterization of major geological provinces, using the critieria outined, the mass (or volume) of crust surviving to the present day should be determinable as a function of crust formation age. More recent developments, however, appear to set severe limitations on recycling of crust, at least by the process of sediment subduction. In modeling crustal growth without recycling, valuable constaints on growth rate variations through time can be provided if variations in the average age of the continental crust can be monitored through geological history. The question of the average age of the exposed continental crust was addressed by determining Sm-Nd crustal residence model ages (T-CR) for fine-grained sediment loads of many of the world's major rivers

  6. Convergent tectonics and coastal upwelling: a history of the Peru continental margin ( Pacific).

    Science.gov (United States)

    von Huene, Roland E.; Suess, E.; Emeis, K.C.

    1987-01-01

    Late in 1986, scientists on the ODP drillship JOIDES Resolution confirmed that the upper slope of the Peruvian margin consists of continental crust whereas the lower slope comprises an accretionary complex. An intricate history of horizontal and vertical movements can be detected, and the locations of ancient centers of upwelling appear to have varied, partly due to tectonic movements of the margin. In this review of Leg 112, the 3 scientific leaders on this cruise discuss their results. -from Journal Editor

  7. The northern slope of South China Sea: an ideal site for studying passive margin extension and breakup

    Science.gov (United States)

    Zhou, D.; Sun, Z.; Pang, X.; Wu, X.; Xu, H.; Qiu, N.

    2011-12-01

    With the advance of hydrocarbon exploration into deep waters of the northern SCS, structural details from continental slope to deepsea basin have been revealed. A striking feature is the dramatic change in Cenozoic extension along and across the strike as well as with the time. Along strike the slope is seperated by lithospheric faults into segments with different amount of Cenozoic extension. The breakup occurred in the no-extension eastern segment (the Chaoshan depression), the most strongly extended central segment (the Baiyun sag) but failed in the western segment of intermediate extension (the Qingdongnan basin). This pattern violates the expectation that breakup occurs at first where the extension reached the maximum. In the central segment, the style of extension varies significantly in dip direction. Differing from the belts of half grabens in the shelf, the extension is expressed as a large downwarp (the Baiyun sag) in the slope, and as irregularly shaped sags (the Liwan sag) near the continental-oceanic boundary (COB). The Baiyun sag (BYS) is the largest and deepest sag in the Pearl River Mouth basin (PRMB). Long-cable MCS revealed that at the center of the BYS the crust thinned to Mexico where thrust belts developed by gravitational sliding. Multi-staged magmatic activities have contributed to but could not fully explain the structural complexities of the LWS. Perhaps basement structures have played an important role as the sag might be developed upon the relict Mesozoic West Pacific subduction system. In addition, two horizons of deep-seated waving reflectors are identified beneath the LWS, which are suspected to be respectively a detachment surface and the intra-crustal shear zones related to lower-crust flow. A good understanding of these features may help answering the fundamental question on what controls the style, magnitude, and segmentation of passive margin extension and breakup, what is the mechanism, and what differences between marginal sea

  8. Spatial distribution level of land erosion disposition based on the analysis of slope on Central Lematang sub basin

    Science.gov (United States)

    Putranto, Dinar Dwi Anugerah; Sarino, Yuono, Agus Lestari

    2017-11-01

    Soil erosion is a natural process that is influenced by the magnitude of rainfall intensity, land cover, slope, soil type and soil processing system. However, it is often accelerated by human activities, such as improper cultivation of agricultural land, clearing of forest land for mining activities, and changes in topographic area due to use for other purposes such as pile materials, mined pits and so on. The Central Lematang sub-basin is part of the Lematang sub basin, at the Musi River Region Unit, South Sumatra Province, in Indonesia, which has a topographic shape with varying types of slope and altitude. The critical condition of Central Lematang sub basin has been at an alarming rate, as more than 47.5% of topographic and land use changes are dominated by coal mining activities and forest encroachment by communities. The method used in predicting erosion is by USPED (Unit Stream Power Erosion and Disposition). This is because the USPED [1] method can predict not only sediment transport but also the value of peeling (detachment) and sediment deposition. From slope analysis result, it is found that the highest erosion potential value is found on slope (8-15%) and the sediment is carried on a steep slope (15-25%). Meanwhile, the high sediment deposition area is found in the waters of 5.226 tons / ha / year, the steeper area of 2.12 tons / ha / year.

  9. Adsorption of Phosphorus on Sediments of the Balearic Islands (Spain) Related to Their Composition

    Science.gov (United States)

    Lopez, P.; Lluch, X.; Vidal, M.; Morguí, J. A.

    1996-02-01

    The adsorption of phosphorus onto sediment particles has a major role in coastal areas, where continental inputs may increase levels of phosphate in the water mass. This paper reports a study of the adsorption capacity of phosphorus in two coastal areas located in the Balearic Islands: one in Majorca (The Albufera of Alcudia), and the other in Minorca (The Albufera of Es Grau). The range of adsorption capacity was 35-121 μ mol Pg -1in Majorca, and 30-55 μmol Pg -1in Minorca. Considering the slope of the Langmuir equation for low or moderate phosphorus concentrations as a measure of the efficiency of sediments in taking up phosphate, sediments from Minorca were more efficient than those from Majorca (21-36 ml g -1and 14-21 ml g -1, respectively. A horizontal pattern of variation was observed in both areas, with the highest values near the sea and at the points with least marine influence. In Majorca, maximum adsorption capacities ( C max) were positively correlated with concentrations of iron and aluminium, and efficiencies of sorption were related to carbon. In Minorca, C maxand efficiencies were negatively correlated with iron and aluminium, and positively correlated with carbon and calcium.

  10. Chemical and isotopic signature of bulk organic matter and hydrocarbon biomarkers within mid-slope accretionary sediments of the northern Cascadia margin gas hydrate system

    Science.gov (United States)

    Kaneko, Masanori; Shingai, Hiroshi; Pohlman, John W.; Naraoka, Hiroshi

    2010-01-01

    The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (δ13CTOC = −26 to −22‰) and long-chain n-alkanes (C27, C29 and C31, δ13C = −34 to − 29‰) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the δ15NTN values of the bulk sediment (+ 4 to + 8‰) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The δ13C values of archaeal biomarker pentamethylicosane (PMI) (− 46.4‰) and bacterial-sourced hopenes, diploptene and hop-21-ene (− 40.9 to − 34.7‰) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.

  11. Scripps Sediment Description File- OCSEAP Portion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Scripps Institution of Oceanography compiled descriptions of sediment samples in the Alaskan Outer Continental Shelf area, funded through the NOAA Outer...

  12. Sediment Budgets and Sources Inform a Novel Valley Bottom Restoration Practice Impacted by Legacy Sediment: The Big Spring Run, PA, Restoration Experiment

    Science.gov (United States)

    Walter, R. C.; Merritts, D.; Rahnis, M. A.; Gellis, A.; Hartranft, J.; Mayer, P. M.; Langland, M.; Forshay, K.; Weitzman, J. N.; Schwarz, E.; Bai, Y.; Blair, A.; Carter, A.; Daniels, S. S.; Lewis, E.; Ohlson, E.; Peck, E. K.; Schulte, K.; Smith, D.; Stein, Z.; Verna, D.; Wilson, E.

    2017-12-01

    Big Spring Run (BSR), a small agricultural watershed in southeastern Pennsylvania, is located in the Piedmont Physiographic Province, which has the highest nutrient and sediment yields in the Chesapeake Bay watershed. To effectively reduce nutrient and sediment loading it is important to monitor the effect of management practices on pollutant reduction. Here we present results of an ongoing study, begun in 2008, to understand the impact of a new valley bottom restoration strategy for reducing surface water sediment and nutrient loads. We test the hypotheses that removing legacy sediments will reduce sediment and phosphorus loads, and that restoring eco-hydrological functions of a buried Holocene wetland (Walter & Merritts 2008) will improve surface and groundwater quality by creating accommodation space to trap sediment and process nutrients. Comparisons of pre- and post-restoration gage data show that restoration lowered the annual sediment load by at least 118 t yr-1, or >75%, from the 1000 m-long restoration reach, with the entire reduction accounted for by legacy sediment removal. Repeat RTK-GPS surveys of pre-restoration stream banks verified that >90 t yr-1 of suspended sediment was from bank erosion within the restoration reach. Mass balance calculations of 137Cs data indicate 85-100% of both the pre-restoration and post-restoration suspended sediment storm load was from stream bank sources. This is consistent with trace element data which show that 80-90 % of the pre-restoration outgoing suspended sediment load at BSR was from bank erosion. Meanwhile, an inventory of fallout 137Cs activity from two hill slope transects adjacent to BSR yields average modern upland erosion rates of 2.7 t ha-1 yr-1 and 5.1 t ha-1 yr-1, showing modest erosion on slopes and deposition at toe of slopes. We conclude that upland farm slopes contribute little soil to the suspended sediment supply within this study area, and removal of historic valley bottom sediment effectively

  13. Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system productivity, terrestrial runoff and redox conditions

    Science.gov (United States)

    Sifeddine, A.; Gutiérrez, D.; Ortlieb, L.; Boucher, H.; Velazco, F.; Field, D.; Vargas, G.; Boussafir, M.; Salvatteci, R.; Ferreira, V.; García, M.; Valdés, J.; Caquineau, S.; Mandeng Yogo, M.; Cetin, F.; Solis, J.; Soler, P.; Baumgartner, T.

    2008-10-01

    Sedimentological studies including X-ray digital analyses, mineralogy, inorganic contents, and organic geochemistry on cores of laminated sediments accumulated in the oxygen minimum zone of the central Peruvian margin reveal variable oceanographic and climate conditions during the last 500 yr. Coherent upcore variations in sedimentological and geochemical markers in box cores taken off Pisco (B0405-6) and Callao (B0405-13) indicate that variability in the climate proxies examined has regional significance. Most noteworthy is a large shift in proxies at ˜1820 AD, as determined by 210Pb and 14C radiometric dating. This shift is characterized by an increase in total organic carbon (TOC) in parallel with an abrupt increase in the enrichment factor for molybdenum Mo indicating a regional intensification of redox conditions, at least at the sediment water interface. In addition there was lower terrestrial input of quartz, feldspar and clays to the margin. Based on these results, we interpret that during several centuries prior to 1820, which corresponds to the little ice age (LIA), the northern Humboldt current region was less productive and experienced higher terrestrial input related to more humid conditions on the continent. These conditions were probably caused by a southward displacement of the inter-tropical convergence zone and the subtropical high pressure cell during the LIA. Since 1870, increases in TOC and terrigenous mineral fluxes suggest an increase of wind-driven upwelling and higher productivity. These conditions continued to intensify during the late 20th century, as shown by instrumental records of wind forcing.

  14. Tsunami-hazard assessment based on subaquatic slope-failure susceptibility and tsunami-inundation modeling

    Science.gov (United States)

    Anselmetti, Flavio; Hilbe, Michael; Strupler, Michael; Baumgartner, Christoph; Bolz, Markus; Braschler, Urs; Eberli, Josef; Liniger, Markus; Scheiwiller, Peter; Strasser, Michael

    2015-04-01

    Due to their smaller dimensions and confined bathymetry, lakes act as model oceans that may be used as analogues for the much larger oceans and their margins. Numerous studies in the perialpine lakes of Central Europe have shown that their shores were repeatedly struck by several-meters-high tsunami waves, which were caused by subaquatic slides usually triggered by earthquake shaking. A profound knowledge of these hazards, their intensities and recurrence rates is needed in order to perform thorough tsunami-hazard assessment for the usually densely populated lake shores. In this context, we present results of a study combining i) basinwide slope-stability analysis of subaquatic sediment-charged slopes with ii) identification of scenarios for subaquatic slides triggered by seismic shaking, iii) forward modeling of resulting tsunami waves and iv) mapping of intensity of onshore inundation in populated areas. Sedimentological, stratigraphical and geotechnical knowledge of the potentially unstable sediment drape on the slopes is required for slope-stability assessment. Together with critical ground accelerations calculated from already failed slopes and paleoseismic recurrence rates, scenarios for subaquatic sediment slides are established. Following a previously used approach, the slides are modeled as a Bingham plastic on a 2D grid. The effect on the water column and wave propagation are simulated using the shallow-water equations (GeoClaw code), which also provide data for tsunami inundation, including flow depth, flow velocity and momentum as key variables. Combining these parameters leads to so called «intensity maps» for flooding that provide a link to the established hazard mapping framework, which so far does not include these phenomena. The current versions of these maps consider a 'worst case' deterministic earthquake scenario, however, similar maps can be calculated using probabilistic earthquake recurrence rates, which are expressed in variable amounts of

  15. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  16. Sediment delivery estimates in water quality models altered by resolution and source of topographic data.

    Science.gov (United States)

    Beeson, Peter C; Sadeghi, Ali M; Lang, Megan W; Tomer, Mark D; Daughtry, Craig S T

    2014-01-01

    Moderate-resolution (30-m) digital elevation models (DEMs) are normally used to estimate slope for the parameterization of non-point source, process-based water quality models. These models, such as the Soil and Water Assessment Tool (SWAT), use the Universal Soil Loss Equation (USLE) and Modified USLE to estimate sediment loss. The slope length and steepness factor, a critical parameter in USLE, significantly affects sediment loss estimates. Depending on slope range, a twofold difference in slope estimation potentially results in as little as 50% change or as much as 250% change in the LS factor and subsequent sediment estimation. Recently, the availability of much finer-resolution (∼3 m) DEMs derived from Light Detection and Ranging (LiDAR) data has increased. However, the use of these data may not always be appropriate because slope values derived from fine spatial resolution DEMs are usually significantly higher than slopes derived from coarser DEMs. This increased slope results in considerable variability in modeled sediment output. This paper addresses the implications of parameterizing models using slope values calculated from DEMs with different spatial resolutions (90, 30, 10, and 3 m) and sources. Overall, we observed over a 2.5-fold increase in slope when using a 3-m instead of a 90-m DEM, which increased modeled soil loss using the USLE calculation by 130%. Care should be taken when using LiDAR-derived DEMs to parameterize water quality models because doing so can result in significantly higher slopes, which considerably alter modeled sediment loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. New Cheilostomata (Bryozoa from NE Atlantic seamounts, islands, and the continental slope: evidence for deep-sea endemism

    Directory of Open Access Journals (Sweden)

    Björn Berning

    2017-08-01

    Full Text Available Ten new species belonging to three new genera (Atlantisina gen. nov., Bathycyclopora gen. nov., Calvetopora gen. nov. of umbonulomorph bryozoans from northeastern Atlantic seamounts, islands, and the continental slope are introduced. We furthermore erect the new family Atlantisinidae fam. nov. for these genera. Eight new species belong to the new genus Atlantisina: Atlantisina atlantis gen. et sp. nov. (type species, A. acantha gen. et sp. nov., A. gorringensis gen. et sp. nov., A. inarmata gen. et sp. nov., A. lionensis gen. et sp. nov., A. meteor gen. et sp. nov., A. seinensis gen. et sp. nov., and A. tricornis gen. et sp. nov. The genus Bathycyclopora gen. nov. is introduced for ?Phylactella vibraculata Calvet from the Azores, and also includes Bathycyclopora suroiti gen. et sp. nov. The type species of Calvetopora gen. nov. is Lepralia inflata Calvet from the Gulf of Cadiz; this genus also includes Calvetopora otapostasis gen. et sp. nov. and another species left in open nomenclature. Of the 13 species described herein, 11 occur on seamounts and islands, and nine species are endemic to a single seamount, island or station. The present results show that bryozoans provide striking examples of the function of seamounts as areas of endemism, most likely intrinsically linked to the low dispersal abilities of bryozoan larvae.

  18. Submarine slope failures due to pipe structure formation.

    Science.gov (United States)

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  19. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    Science.gov (United States)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  20. Effects of energy-related activities on the Atlantic Continental Shelf

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B [ed.

    1975-01-01

    Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)

  1. Habitat compression and expansion of sea urchins in response to changing climate conditions on the California continental shelf and slope (1994-2013)

    Science.gov (United States)

    Sato, Kirk N.; Levin, Lisa A.; Schiff, Kenneth

    2017-03-01

    Echinoid sea urchins with distributions along the continental shelf and slope of the eastern Pacific often dominate the megafauna community. This occurs despite their exposure to naturally low dissolved oxygen (DO) waters (calcium carbonate (ΩCaCO3<1). Here we present vertical depth distribution and density analyses of historical otter trawl data collected in the Southern California Bight (SCB) from 1994 to 2013 to address the question: Do changes in echinoid density and species' depth distributions along the continental margin in the SCB reflect observed secular or interannual changes in climate? Deep-dwelling burrowing urchins (Brissopsis pacifica, Brisaster spp. and Spatangus californicus), which are adapted to low-DO, low-pH conditions appeared to have expanded their vertical distributions and populations upslope over the past decade (2003-2013), and densities of the deep pink urchin, Strongylocentrotus fragilis, increased significantly in the upper 500 m of the SCB. Conversely, the shallower urchin, Lytechinus pictus, exhibited depth shoaling and density decreases within the upper 200 m of the SCB from 1994 to 2013. Oxygen and pH in the SCB also vary inter-annually due to varying strengths of the El Niño Southern Oscillation (ENSO). Changes in depth distributions and densities were correlated with bi-monthly ENSO climate indices in the region. Our results suggest that both a secular trend in ocean deoxygenation and acidification and varying strength of ENSO may be linked to echinoid species distributions and densities, creating habitat compression in some and habitat expansion in others. Potential life-history mechanisms underlying depth and density changes observed over these time periods include migration, mortality, and recruitment. These types of analyses are needed for a broad suite of benthic species in order to identify and manage climate-sensitive species on the margin.

  2. Erosion and sediment deposition evaluation on slopes under different tillage systems in the Cerrado region using the 137Cs fallout technique

    International Nuclear Information System (INIS)

    Arthur, Robson Clayton Jacques

    2010-01-01

    In Brazil, the expansion of agricultural areas causes several problems on natural resources. With the increasing occupation of the Cerrado region by agriculture, a series of environmental problems like deforestation, soil erosion and soil compaction are appearing and causing radical transformations in the natural landscape due to removing almost all native vegetation. The conventional tillage system (CTS) is considered an inadequate form of soil management for its frequently irremediable consequences of soil compaction and soil erosion, and the no till system (NTS) makes the maintenance of the soil conditions possible, letting them close to the natural environment, thus reducing rates of soil erosion. The objective of this work was to evaluate the efficiency of riparian forests in the retention of sediments originated for three different tillage systems, through the fallout 137 CS redistribution technique, the Universal Soil Loss Equation (USLE) and some physical and chemical parameters that indicate the structural conditions of the soils of Goiatuba and Jandaia-GO. In the three areas, soil profiles were collected in three layers of 20 cm (0-20, 20-40 and 40-60 cm) at distinct points located along linear transects in the direction of the maximum slope until the riparian forest. In the riparian forest of each area, trenches were opened and soil was sampled to evaluate the activity of 137 Cs and the physical and chemical parameters of soil. Detection of the activity of 137 Cs was made with a gamma ray detector model (GEM-20180P, EG and ORTEC) connected to a multichannel analyzer. The comparison of averages was made using the Tukey test at 5% level of significance. The. results indicated that, the three soil tillage systems presented high rates of soil erosion and deposition of sediments and the riparian forest of the areas under CTS, NTS and pasture, located downstream received great amounts of sediments, and that only the riparian forest of CTS was capable to trap

  3. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea

    Science.gov (United States)

    Nelson, C.H.; Maldonado, A.

    1990-01-01

    The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural

  4. The influence of terracettes on surface hydrology and erosion on vegetated Alpine, mountain and steep-sloping environments

    Science.gov (United States)

    Kuhn, Nikolaus; (Phil) Greenwood, Philip

    2014-05-01

    Alpine and mountain slopes represent important pathways that link high altitude grazing areas to meadows and rangelands at lower elevations. Given the often acute gradient of mountain slopes, they represent a convenient and potentially highly efficient runoff conveyance route that facilitates the downslope transfer of fine-sediment and sediment-bound nutrients and contaminants during erosion events. Above a certain gradient, many slopes host small steps, or `terracettes`. As these are generally orientated across slope, their genesis is usually attributed to a combination of soil creep, coupled with (and often accentuated by) grazing animals. Motivated by the prevalence of these distinct landform features and lack of information on their role as runoff conveyance routes, this communication reports preliminary results from an investigation to explore the possibility that terracettes may act as preferential flow-paths, with an as yet undocumented ability to greatly influence surface hydrology in mountainous and steeply-sloping environments. A ca. 40 m2 area of vegetated terracettes and section of adjacent thalweg, with gradients ranging from approximately 25-35o, were scanned using an automated Topcon IS03 Total Station at a resolution of 0.1 * 0.1 m. Data were converted to a Digital Elevation Model (DEM) in ArcGIS 10 Geographical Information System (GIS), and queried using Spatial Analyst (Surface Hydrology; Flow Accumulation function) to identify slope-sections that could act as preferential flow-pathways during runoff events. These data were supplemented by information on soil physical properties that included grain size composition, bulk density and porosity, in order to establish spatial variations in soil characteristics associated with the vertical and horizontal terracette features. Combining the digital and in-situ data indicate that the technique is able to identify preferential surface flow-paths. Such information could greatly benefit the future management

  5. Soil erosion processes and sediment fluxes in a Mediterranean landscape of marls, Campina de Cadiz, SW Spain

    International Nuclear Information System (INIS)

    Faust, D.; Schmidt, M.

    2009-01-01

    Marl landscapes, especially in the Mediterranean, show evident traces of high present-day and past soil erosion rates. The tendency to develop hill slope channels leads even at moderate rainstorm magnitudes to a significant increase of slope-to-slope connectivity, resulting in high amounts of mass transfer from upper parts of the hill slopes towards foot slopes and valley floors. To analyse the intensity of this transfer a study was conducted focussing on late Holocene sediments correlative to modern-time soil erosion in the marl landscape of SW Spain. Based of field observations and sediment analysis several landscape positions within a medium-scale catchment were explored. Depending on landscape constellation, the sediment characteristics reflect either hill slope processes or alluvial processes or an interchange of them. For a temporal context a method to trace young sediments by analysing nutrients originating from modern-time application of mineral fertiliser was applied. Results show high rates of sedimentation (>1 cm/year) for this young period in several profiles. By identifying the predominant geomorphic components and processes in the study area a conceptual model of the studied system was developed. (Author) 17 refs.

  6. Morphodynamics and stratigraphic architecture of shelf-edge deltas subject to constant vs. dynamic environmental forcings

    Science.gov (United States)

    Straub, K. M.

    2017-12-01

    When deltas dock at the edge of continental margins they generally construct thick stratigraphic intervals and activate channelized continental slope systems. Deposits of shelf-edge deltas have the capacity to store detailed paleo-environmental records, given their location in the source to sink system. However, present day highstand sea-level conditions have pushed most deltaic systems well inbound of their shelf-edges, making it difficult to study their space-time dynamics and resulting stratigraphic products. Several competing theories describe how deltas and their downslope environments respond to sea-level cycles of varying magnitude and periodicity. We explore these hypotheses in a physical experiment where the topographic evolution of a coupled delta and downdip slope system was monitored at high temporal and spatial resolution. The experiment had three stages. In the first stage a delta aggraded at the shelf-edge under constant water and sediment supply, in addition to a constant generation of accommodation through a sea-level rise. In the second stage the sediment transport system responded to low magnitude and high frequency sea-level cycles. Finally, in the third stage the transport system responded to a high magnitude and long period sea-level cycle. In each stage, fine sediment from the input grain size distribution and dissolved salt in the input water supply promoted plunging hyperpycnal flows. Specifically, we compare the mean and temporal variability of the sediment delivered to the slope system between stages. In addition, we compare stratigraphic architecture and sediment sizes delivered to the slope system in each stage. These results are used to improve inversion of slope deposits for paleo-environmental forcings.

  7. Unraveling the Illgraben sediment cascade

    Science.gov (United States)

    Bennett, Georgie; Molnar, Peter; McArdell, Brian; Schlunegger, Fritz; Burlando, Paolo

    2013-04-01

    Quantification of the volumes of sediment removed by rock-slope failure and debris flows and identification of their coupling and controls are pertinent to understanding mountain basin sediment yield and landscape evolution. This study captures a multi-decadal period of hillslope erosion and channel change following an extreme rock avalanche in 1961 in the Illgraben, a catchment of high scientific interest in the Swiss Alps due to its extremely high debris-flow dominated sediment yield. We analyzed photogrammetrically-derived datasets of hillslope and channel erosion and deposition along with climatic and seismic variables for a 43-year period from 1963 to 2005. Based on these analyses we identify and discuss (1) patterns of hillslope production, channel transfer and catchment sediment yield, (2) their dominant interactions with climatic and seismic variables, and (3) the nature of hillslope-channel coupling and implications for sediment yield and landscape evolution in this mountain basin. Our results show an increase in the mean hillslope erosion rate in the 1980s from 0.24±0.01 m yr-1 to 0.42±0.03 m yr-1 that coincided with a significant increase in air temperature and decrease in snow cover depth and duration, which we presume led to an increase in the exposure of the slopes to thermal weathering processes. This is indicated by a significant increase in the number of days of subzero air temperature and no snow cover. Conversely, there was no increase in precipitation or seismic activity that would explain the increase in erosion rate. However, the combination of highly fractured slopes close to the threshold angle for failure, and multiple potential triggering mechanisms, means that it is difficult to identify an individual control on slope failure. This is illustrated by our analysis of the 1961 rockfall event, which failed to reveal an individual trigger of the failure given both extreme meteorological conditions and seismic activity in the weeks leading up

  8. Spheroidal Carbonaceous Particles (SCPs) as Chronological Markers in Marine Sediments

    Science.gov (United States)

    Thornalley, D.; Rose, N.; Oppo, D.

    2016-12-01

    Spheroidal carbonaceous particles (SCPs) are a component of fly-ash, the particulate by-product of industrial high-temperature combustion of coal and fuel-oil that is released to the atmosphere with flue-gases. They are morphologically distinct and have no natural sources making them unambiguous markers of contamination from these anthropogenic sources. In naturally accumulating archives, SCPs may be used as a chronological tool as they provide a faithful record of industrial emissions and deposition. While the timing of the first presence of SCP in the 19th century, and the observed sub-surface peak are dependent on factors such as sediment accumulation rates and local industrial history, a rapid increase in SCP inputs in the mid-20thcentury appears to be a global signal corresponding to an acceleration in global electricity demand following the Second World War and the use of fuel-oil in electricity production at an industrial scale for the first time. While this approach has been widely used in lake sediments, it has not been applied to marine sediments, although there is great potential. Improved dating of 19th-20th century marine sediments has particular relevance for developing reconstructions of recent multi-decadal climate and ocean variability, and for studies that aim to place 20thcentury climate change within the context of the last millennium. Here, we present data from three sediment cores from the continental slope south of Iceland to demonstrate the temporal and spatial replicability of the SCP record in the marine environment and compare these data with cores taken from more contaminated areas off the coast of the eastern United States. The improved age model constraints provided by the analysis of SCPs has enabled a more accurate assessment of the timing of recent abrupt climate events recorded in these archives and has thus improved our understanding of likely causal climate mechanisms.

  9. BLM/OCS South Texas Outer Continental Shelf (STOCS) Project Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The South Texas Outer Continental Shelf Project (STOCS) conducted by the University of Texas and the USGS with funding from BLM/NOAA. The USGS produced geochemical...

  10. Influence of sediment recycling on the trace element composition of primitive arc lavas

    Science.gov (United States)

    Collinet, M.; Jagoutz, O. E.

    2017-12-01

    Primitive calc-alkaline lavas from continental arcs are, on average, enriched in incompatible elements compared to those from intra-oceanic arcs. This relative enrichment is observed in different groups of trace elements: LILE (e.g. K, Rb), LREE to MREE (La-Dy) and HFSE (e.g.Zr, Nb) and is thought to result from (1) a transfer of material from the subducting slab to the mantle wedge at higher temperature than in intra-oceanic margins and/or (2) lower average degrees of melting in the mantle wedge, as a consequence of thicker overlying crusts and higher average pressures of melting. In addition to thicker overlying crusts and generally higher slab temperatures, continental margins are characterized by larger volumes of rock exposed above sea level and enhanced erosion rates compared to intra-oceanic arcs. As several geochemical signatures of arc lavas attest to the importance of sediment recycling in subduction zones, we explore the possibility that the high concentrations of incompatible elements in primitive lavas from continental arcs directly reflect a larger input of sediment to the subduction system. Previous efforts to quantify the sediment flux to oceanic trenches focused on the thickness of pelagic and hemipelagic sediments on top of the plate entering the subduction zone (Plank and Langmuir, 1993, Nature). These estimates primarily relied on the sediment layer drilled outboard from the subduction system and likely underestimate the volume of sediment derived from the arc itself. Accordingly, we find that such estimates of sediment flux do not correlate with the concentration of incompatible elements in primitive arc lavas. To account for regional contributions of coarser detrital sediments, usually delivered to oceanic trenches by turbidity currents, we apply to arc segments a model that quantifies the sediment load of rivers based on the average relief, area, temperature and runoff of their respective drainage areas (Syvitski et al., 2003, Sediment. Geol

  11. Asymmetric Effects of Subaerial and Subaqueous Basement Slopes on Self-Similar Morphology of Prograding Deltas

    Science.gov (United States)

    Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun

    2017-12-01

    Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.

  12. Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank

    Science.gov (United States)

    Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.

    2018-01-01

    New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.

  13. Structural highs on the western continental slope of India: Implications for regional tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Rajesh, M.; De, Suritha; Chakraborty, B.; Jauhari, P.

    structural highs of variable height. Four of these highs are located over the Upper Slope Ridge and a similar number on the Prathap Ridge. Of these, four highs have summit height N is greater than 1000 m, two have heights between 500 and 999 m, while...

  14. Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales

    Science.gov (United States)

    Chen, F. X.; Fang, N. F.; Wang, Y. X.; Tong, L. S.; Shi, Z. H.

    2017-02-01

    Long-term sedimentary sequence research can reveal how human activities and climate interact to affect catchment vegetation, flooding, soil erosion, and sediment sources. In this study, a biomarker sediment fingerprinting technique based on n-alkanes was used to identify long timescale (decadal) sediment sources in a small agricultural catchment. However, the highly saline carbonate environment and bacterial and algal activities elevated the levels of even-chain n-alkanes in the sediments, leading to an obvious even-over-odd predominance of short and middle components (C15-C26). Therefore, by analyzing three odd, long-chain n-alkanes (C27, C29 and C31) in 27 source samples from cropland, gully, and steep slope areas and one sediment sequence (one cultivated horizon and 47 flood couplets), a composite fingerprinting method and genetic algorithm optimization were applied to find the optimal source contributions to sediments. The biomarker fingerprinting results demonstrated that the primary sediment source is gullies, followed by cropland and steep slope areas. The average median source contributions associated with 47 flood couples collected from sediment core samples ranged from 0 ± 0.1% to 91.9 ± 0.4% with an average of 45.0% for gullies, 0 ± 0.4% to 95.6 ± 1.6% with an average of 38.2% for cropland, and 0 ± 2.1% to 60.7 ± 0.4% with an average of 16.8% for steep slopes. However, because farmers were highly motivated to manage the cropland after the 1980s, over half the sediments were derived from cropland in the 1980s. Biomarkers have significant advantages in the identification of sediments derived from different landscape units (e.g., gully and steep slope areas), and n-alkanes have considerable potential in high-resolution research of environmental change based on soil erosion in the hilly Loess Plateau region.

  15. New Insight Into the Crustal Structure of the Continental Margin offshore NW Sabah/Borneo

    Science.gov (United States)

    Barckhausen, U.; Franke, D.; Behain, D.; Meyer, H.

    2002-12-01

    The continental margin offshore NW Sabah/Borneo (Malaysia) has been investigated with reflection and refraction seismics, magnetics, and gravity during the recent cruise BGR01-POPSCOMS. A total of 4000 km of geophysical profiles has been acquired, thereof 2900 km with reflection seismics. The focus of investigations was on the deep water areas. The margin looks like a typical accretionary margin and was presumably formed during the subduction of a proto South China Sea. Presently, no horizontal movements between the two plates are being observed. Like in major parts of the South China Sea, the area seaward of the Sabah Trough consists of extended continental lithosphere which is characterised by a pattern of rotated fault blocks and half grabens and a carbonate platform of Early Oligocene to Early Miocene age. We found evidence that the continental crust also underlies the Sabah Trough and the adjacent continental slope, a fact that raises many questions about the tectonic history and development of this margin. The tectonic pattern of the Dangerous Grounds' extended continental crust can be traced a long way landward of the Sabah Trough beneath the sedimentary succession of the upper plate. The magnetic anomalies which are dominated by the magnetic signatures of relatively young volcanic features also continue under the continental slope. The sedimentary rocks of the upper plate, in contrast, seem to generate hardly any magnetic anomalies. Based on the new data we propose the following scenario for the development of the NW Sabah continental margin: Seafloor spreading in the present South China Sea started at about 30 Ma in the Late Oligocene. The spreading process separated the Dangerous Grounds area from the SE Asian continent and ceased in late Early Miocene when the oceanic crust of the proto South China Sea was fully subducted in eastward direction along the Borneo-Palawan Trough. During Lower and/or Middle Miocene, Borneo rotated counterclockwise and was

  16. Hydrology of two slopes in subarctic Yukon, Canada

    Science.gov (United States)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  17. How does slope form affect erosion in CATFLOW-SED?

    Science.gov (United States)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  18. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  19. Relationship between radionuclides and sedimentological variables in the South Atlantic Continental Margin

    International Nuclear Information System (INIS)

    Ferreira, Paulo A.L.; Figueira, Rubens C.L.

    2015-01-01

    There is a lack of information regarding marine radioactivity in sediments of the Continental Margin of the South Atlantic. "1"3"7Cs and "4"0K radioactivity and sedimentological variables were determined in superficial sediment samples. It was demonstrated that "4"0K is a good indicator for sediment granulometry, whilst "1"3"7Cs presents a good correlation with its chemical composition. Moreover, it was identified through the radiometric data the occurrence of input of allochtonous matter to the Brazilian southernmost compartment from the Rio de La Plata estuary, as previously reported in the literature. (author)

  20. Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes

    Science.gov (United States)

    Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele

    2015-04-01

    turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.

  1. The George V Land Continental Margin (East Antarctica): new Insights Into Bottom Water Production and Quaternary Glacial Processes from the WEGA project

    Science.gov (United States)

    Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.

    2004-12-01

    The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary

  2. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    Science.gov (United States)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted

  3. Surficial sediments of the continental shelf off Karnataka

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nair, R.R.

    sediments occur betweenthe water depths of 15 to 50m corresponding to a distance of about 40 km from the coast. Beyond 50 m to the shelf edge are calcareous sands. Non-carbonate components of these deep water sands are essentially quartz, many of which...

  4. Magnesian calcite and the problem of the origin of carbonates in the deep-sea Old Black Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, V M

    1988-04-01

    The Old Black Sea (Lower-Middle Holocene) deep-sea sediments in the Black Sea basin contain carbonate laminae with a fixed position in the section - in the base of the typical sapropelic muds. The areal distribution of these laminae covers the whole continental slope and rise. They are usually lacking in the sediments of the abyssal plain. XRD, SEM and EDS studies show that the laminae comprise mainly authigenic carbonates - aragonite and magnesian calcite. Aragonite occurs as elongated rice-shaped monocrystals or as diverse aggregates of elongated crystal platelets. The magnesian calcite (6-14 mol % MgCO/sub 3/) forms aggregates of isometric grains with submicritic dimensions between the aragonite grains or individual laminae consisting of idiomorphic rhombohedral and/or skeleton crystals. Low-magnesian calcite is also found sometimes. Usually it is related to Holocene coccoliths without traces of recrystallization. The laminae do not show traces of lithification. A hemogenic-synsedimentary genesis of the carbonate laminae is suggested; their mineral composition witnesses marine chemical composition of the initial solutions with a high Mg/Ca ratio.

  5. Sediment waves with a biogenic twist in Pleistocene cool water carbonates, Great Australian Bight

    DEFF Research Database (Denmark)

    Anderskouv, Kresten; Surlyk, Finn; Huuse, Mads

    2010-01-01

    -parallel to contours immediately off the shelf–slope break. They are asymmetrical, showing up-slope migration, and mainly occur in trains. The sediment waves were drilled during ODP leg 182 in 1998, and were interpreted as biogenic reef mounds. New high-quality seismic and multibeam bathymetry data were acquired...... involved growth in glacial periods only. Bryozoans influenced the depositional environment by adding sediment, trapping fine-grained particles, and stabilizing the muddy sea floor. This caused the sediment waves to gain a more prominent sea floor relief than most muddy siliciclastic sediment waves formed...

  6. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

    DEFF Research Database (Denmark)

    Bruchert, V.; Jørgensen, BB; Neumann, K.

    2003-01-01

    The coastal upwelling system off central Namibia is one of the most productive regions of the oceans and is characterized by frequently occurring shelf anoxia with severe effects for the benthic life and fisheries. We present data on water column dissolved oxygen, sulfide, nitrate and nitrite, pore......-depleted bottom waters, the oxygen minimum zone on the continental slope, and the lower continental slope below the oxygen minimum zone. High concentrations of dissolved sulfide, up to 22 mM, in the near-surface sediments of the inner shelf result from extremely high rates of bacterial sulfate reduction...

  7. Sedimentological, mineralogical, and geochemical results from surface sediments and the sediment record from Site 2 of the ICDP drilling project at Lake Towuti, Indonesia

    Science.gov (United States)

    Hasberg, A. K.; Melles, M.; Wennrich, V.; Vogel, H.; Just, J.; Russell, J. M.; Bijaksana, S.; Morlock, M.; Opitz, S.

    2017-12-01

    More than 1000 m of sediment core were recovered in spring 2015 from three different drill sites in tropical Lake Towuti (2.5°S, 121°E), Indonesia, during the Towuti Drilling Project (TDP) of the International Continental Scientific Drilling Program (ICDP). Furthermore, a set of 84 lake surface sediment samples, distributed over the entire lake, was collected in order to better understand modern sedimentary processes. The surface samples were investigated for physical, chemical, mineralogical, and biological properties at the University of Cologne (UoC), Germany. On the sediment cores macro- and microscopical lithological descriptions, line-scan imaging, logging of physical properties (MSCL), and subsampling was conducted at the National Lacustrine Core Facility of the University of Minnesota, USA, in November 2015 and January 2016. Afterwards, the archive core halves and 672 subsamples of TDP Site 2 were shipped to the UoC for X-Ray Fluorescence (XRF) scanning and sedimentological, geochemical, and mineralogical analyses, respectively, supplemented by visible to near-infrared spectroscopy (VNIR) at Brown University, USA. The data from the surface samples evidence that allochthonous sedimentation in Lake Towuti today is dominated by fluvial supply from five distinguishable source areas: (i) the Mahalona River to the north, which drains lakes Mahalona and Matano, (ii) inlets around the village of Timampu to the northwest, (iii) the Loeha River to the east, (iv) the Lengke River to the south, and (v) the Lemo-Lemo River to the northeast of Lake Towuti. Of these, source areas (ii) and (iii) as well as (iv) and (v) have similar geochemical compositions, respectively. In addition, the lake sedimentation is significantly influenced by gravitational sediment supply from steep slopes as well as lake-internal gravitational and density-driven processes. The uppermost 41 m of sediment core 2A consist of pelagic sediments (totaling 11 m) and event layers from mass movement

  8. Geodynamics of sediments in stream and river environments. Value of a policy for regional management of sediments

    International Nuclear Information System (INIS)

    Quelennec, R.E.

    1984-01-01

    The description of processes associated with the genesis, mobilization and transport of sediments in catchments and in hydrographic networks makes it easier to understand, from the ''hydrosedimentary'' viewpoint, the part played by sediments in the build-up and transport of radioactive pollutants in continental waters. In order to evaluate the flux of sediments passing through a watercourse, the author puts forward a number of semi-empirical equations and established mathematical models, while specifying the conditions under which they should be applied. The paper ends with a reminder of the principal objectives of a policy for ''regional management of sediments'' as defined by the author and presented during the Propriano Seminar (France) in May 1981. (author)

  9. [Sediment transport characteristics at different erosion stages for non-hardened roads of the Shenfu Coalfield, west China].

    Science.gov (United States)

    Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting

    2015-02-01

    Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport

  10. Soil erosion processes on sloping land using REE tracer

    International Nuclear Information System (INIS)

    Shen Zhenzhou; Liu Puling; Yang Mingyi; Lian Zhenlong; Ju Tongjun; Yao Wenyi; Li Mian

    2007-01-01

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  11. The flux of 226Ra from estuarine and continental shelf sediments

    International Nuclear Information System (INIS)

    Li, Y.H.; Mathieu, G.; Biscaye, P.; Simpson, H.J.

    1977-01-01

    A pronounced desorption phenomenon of 226 Ra from sediment was observed in the Hudson River estuary. Mass balance calculations indicate that the desorption of 226 Ra from the river-borne sediment in estuarine environment is an important source of 226 Ra to the oceans. (Auth.)

  12. Proceedings of the Integrated Ocean Drilling Program Vol. 341: Expedition reports Southern Alaska margin

    Digital Repository Service at National Institute of Oceanography (India)

    Jaeger, J.M.; Gulick, S.P.S.; LeVay, L.J.; Asahi, H.; Bahlburg, H.; Belanger, C.L.; Berbel, G.B.B.; Childress, L.B.; Cowan, E.A.; Drab, L.; Forwick, M.; Fukumura, A.; Ge, S.; Gupta, S.M.; et. al.

    (Fig. F11, F12). Depositional basins inboard of the Khitrov Ridge along the continental slope west of the Bering Trough contain a sedimentary record of glacial–in- terglacial sedimentation overprinted by active tec- tonic deformation (Fig. F13...

  13. Uranium-polymetallic ore-forming system and mechanism of the black rock series in the southeast continental margin of Yangtze plate

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; He Zhongbo; Li Zhixing; Wang Wenquan; Su Xiangli; Zhang Chao

    2011-01-01

    It is the indisputable fact that the large scale uranium-polymetallic mineralization had happen in the southeast continental margin of Yangtze plate. The rations of Fe/Ti, (Fe+Mn)/Ti, Al/(Al+Fe+Mn), and Ni-Co-Zn diagrams show that the siliceous rocks and phosphorites are the products of hydrothermal sedimentation in these area. In La/Yb-REE diagrams the data of phosphorites are clustered in the area of basales. Obviously, the source of phophorite's ore-forming materials is closely related with the geological processes at depth. REE patterns are characterized by a low content in total and a gradually increasing with the increasing of REE atomic number, and the NASC-normalized value ranging between the upper and the lower limits of typical hydrothermal deposits. The large scale uranium-polymetallic mineralization was controlled by the environment of continental margin rifting. The authors propose that thermal sedimentation or exhalation-sedimentation is the mechanism of the large scale uranium-polymetallic mineralization in the southeast continental margin of the Yangtze plate. (authors)

  14. Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean)

    Science.gov (United States)

    Gambi, C.; Vanreusel, A.; Danovaro, R.

    2003-01-01

    was more evident at genus than at species level. Epistrate feeders dominated and increased their relevance, determining a reduction of the index of trophic diversity at hadal depths. According to trophic diversity, taxonomic diversity and distinctness also decreased with depth. All diversity indices from the Atacama Slope and Trench were lower than in other equally deep areas world wide (e.g. Puerto Rico Trench). We suggest that such reduction was related to the high nutrient loading observed in this system (up to two orders of magnitude higher than in typical oligotrophic deep-sea sediments).

  15. Macrofaunal community structure in the western Indian continental margin including the oxygen minimum zone

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Sautya, S.; Sivadas, S.; Singh, R.; Nanajkar, M.

    (H`) showed a significant negative (P < 0.01) relationship between sediment Chl-a and C sub(org), suggesting food availability as a critical factor in species dominance. Results of multivariate analyses suggest that for continental margin fauna...

  16. Clay mineral distribution on tropical shelf: an example from the western shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nair, R.R.

    Seventy-five sediment samples collected from the Kerala continental shelf and slope during the 17th and 71st Cruises of RV Gaveshani were analysed by X-ray diffraction for clay mineral content. The distribution of total clay ( 4 mu fraction...

  17. Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle Pleistocene to Holocene)

    DEFF Research Database (Denmark)

    Lantzsch, H.; Roth, S.; Reijmer, J.J.G.

    2007-01-01

    -slope depositional environment. The sediment composition indicates sea-level related deposition processes for the past 375000 years (marine isotope stages 1 to 11). The sediments consist of: (i) periplatform ooze (fine-grained particles of shallow-water and pelagic origin) with moderate variations in carbonate...

  18. The Effects of Rapid Sedimentation upon Continental Breakup: Kinematic and Thermal Modeling of the Salton Trough, Southern California, Based upon Recent Seismic Images

    Science.gov (United States)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.

    2016-12-01

    globally, such as the Gulf of Mexico. This type of passive margin consists of mostly new crust created by magmatism and metamorphism of sediment. Along such margins, metamorphosed sediment could be misinterpreted as stretched pre-existing continental crust.

  19. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    Science.gov (United States)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties indicate that the primary method of downslope transport is largely due to tree throw and faunal burrowing. Onset of slope instability at 40-30 ka appears to

  20. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  1. 2 - 4 million years of sedimentary processes in the Labrador Sea: implication for North Atlantic stratigraphy

    Science.gov (United States)

    Mosher, D. C.; Saint-Ange, F.; Campbell, C.; Piper, D. J.

    2012-12-01

    Marine sedimentary records from the western North Atlantic show that a significant portion of sediment deposited since the Pliocene originated from the Canadian Shield. In the Labrador Sea, previous studies have shown that bottom currents .strongly influenced sedimentation during the Pliocene, while during the Quaternary, intensification of turbidity current flows related to meltwater events were a dominant factor in supplying sediment to the basin and in the development of the North Atlantic Mid-Ocean Channel (NAMOC). Despite understanding this general pattern of sediment flux, details regarding the transfer of sediment from the Labrador Shelf to deep water and from the Labrador Sea to the North Atlantic remain poorly understood. Our study focuses on sedimentary processes occurring along the Labrador margin since the Pliocene and their consequences on the margin architecture, connection to the NAMOC, and role in sediment flux from the Labrador basin to the Sohm Abyssal Plain. Piston core and high resolution seismic data reveal that during the Pliocene to mid Pleistocene, widespread slope failures led to mass transport deposition along the entire Labrador continental slope. After the mid Pleistocene, sedimentation along the margin was dominated by the combined effects of glaciation and active bottom currents. On the shelf, prograded sedimentary wedges filled troughs and agraded till sheets form intervening banks. On the slope, stacked glaciogenic fans developed seaward of transverse troughs between 400 and 2800 mbsl. On the lower slope, seismic data show thick sediment drifts capped by glacio-marine mud. This unit is draped by well stratified sediment and marks a switch from a contourite dominated regime to a turbidite dominated regime. This shift occurred around 0.5 - 0.8 ka and correlates to the intensification of glaciations. Late Pleistocene sediments on the upper slope consist of stratified sediments related to proglacial plume fall-out. Coarse grained

  2. Gas hydrate formation in deep-sea sediments - on the role of sediment-mechanical process determination; Gashydratbildung in Tiefseesedimenten - zur Rolle der sedimentmechanischen Prozesssteuerung

    Energy Technology Data Exchange (ETDEWEB)

    Feeser, V. [Kiel Univ. (Germany). Geologisch-Palaeontologisches Inst.

    1997-12-31

    Slope failures in gas hydrate regions are encountered throughout the oceans. The stability of seafloor slopes can be assessed and predicted by means of calculation methods based on mechanical laws and parameters which describe the deformation behaviour and/or mechanical strength of the slope-forming sediments. Thermodynamic conditions conducive to the formation of gas hydrates in marine sediments differ from conditions prevailing in exclusively water-filled systems. The present contribution describes the relevant energetic conditions on the basis of a simple spherical model giving due consideration to petrographic parameters. Depending on pore size distribution, lithological stress conditions, pore water pressure, and sediment strength gas hydrates will either develop as a cementing phase or as segregated lenses. (MSK) [Deutsch] In den Weltmeeren ereignen sich immer wieder Hangrutschungen in Gashydratgebieten. Die zur Beurteilung und Prognonse von Hangstabilitaeten zu verwendenden Berechnungsverfahren erfordern Stoffgesetze und Parameter, welche das Deformations-und/oder Festigkeitsverhalten der hangbildenden Sedimente beschreiben. Die thermodynamischen Bildungsbedingungen von Gashydraten in marinen Sedimenten unterscheiden sich von den Bedingungen in ausschliesslich wassergefuellten Systemen. Unter Einbeziehung petrographischer Eigenschaften werden die energetischen Bedingungen beschrieben. Dazu dient ein einfaches Kugelmodell. Je nach vorhandenem Porenraumspektrum, lithostatischen Spannungsverhaeltnissen, Porenwasserdruck und Sedimentfestigkeit wachsen Gashydrate als Porenraumzement oder als segregierte Linsen.

  3. Sediment characteristics of the 2800 meter Atlantic nuclear waste disposal site: Radionuclide retention potential

    Energy Technology Data Exchange (ETDEWEB)

    Neiheisel, James

    1979-09-01

    The sediments of the abandoned 2800 meter Atlantic nuclear waste dumpsite have been analyzed for texture mineral composition, physical properties, cation exchange capacity and factors effecting sediment deposition, as part of an extensive program by the Environmental Protection Agency to evaluate ocean disposal as an alternative nuclear waste disposal method. The sediments physical and chemical properties are evaluated in the light of the geologic setting for their potential role in retarding radionuclide leachate migration from the waste drums to the water column. The sediments are relatively uniform silty clays and clayey silts comprised of approximately one-third biogenous carbonate materials, one-third terrigenous materials and one-third clay minerals. The biogenous materials in the sand and upper silt-size fraction are predominantly foraminifera with minor amounts of diatoms while coccoliths dominate the finer silt and clay size fractions. The terrigenous materials in the course sediment fractions are predominantly quartz and feldspar with minor amounts of mica, glauconite, and heavy minerals. Clay minerals, of the clay-size fraction, in order of abundance, include illite, kaolinite, chlorite and montmorillonite. Relatively high cation exchange capacity in the sediment (15.2-25.4 meq/100g) is attributed to the clay minerals comprising approximately one-third of the sediment. Correspondingly high Kd values might also be expected as a result of sorption of radionuclides onto clay minerals with most favorable conditions related to pH, Eh, and other environmental factors. The biogenous fraction might also be expected to retain some strontium-90 by isomorphous substitution of this radionuclide for calcium. Diagnostic heavy minerals in the sand-size fraction reflect the source areas as predominantly the adjacent continental shelf, and provide important clues concerning the mechanisms effecting transport and deposition of the sediment. Longshore currents along the

  4. Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.

    Science.gov (United States)

    Kraft, Beate; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin

    2013-04-01

    Sediments of coastal upwelling areas are generally characterized by a high content of organic carbon that is mainly degraded via anaerobic microbial processes including sulfate reduction as a major terminal oxidation step. Despite the high importance of sulfate reduction in these sediments, the identity of sulfate-reducing bacteria (SRB) has remained almost unknown. Here, we applied a cultivation-based approach using selective enrichment conditions to study the diversity and distribution of active SRB in sediments along a transect perpendicular to the continental slope off the coast of Namibia (Meteor-cruise M76/1). To promote growth of the most abundant SRB, dilution series were prepared and amended with hydrogen, acetate, or a mixture of monomers representing typical substrates for SRB. Growth of SRB could be detected in the presence of all electron donors and from sediment down to 4 m depth. 16S rRNA gene-based DGGE analysis and sequencing revealed the predominance of SRB related to psychrophiles in particular to the genus Desulfofrigus, which made up 1 % of the total microbial community, accounting for an absolute abundance of up to 4.8 × 10(7)  cells mL(-1) . In general, the abundance of cultured SRB changed with depth and between the different sampling sites and correlated with the content of organic carbon as previously reported. Growth of chemolithotrophic SRB in relatively high dilution steps and the enrichment of methanogens as well as acetogens from deeper sediment point to a competition between hydrogen-utilizing microbial processes and their biogeochemical significance in deep sediment layers of the Benguela upwelling area. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323)

    DEFF Research Database (Denmark)

    Wehrmann, Laura M.; Risgaard-Petersen, Nils; Schrum, Heather

    2011-01-01

    We studied microbially mediated diagenetic processes driven by carbon mineralization in subseafloor sediment of the northeastern Bering Sea Slope to a depth of 745 meters below seafloor (mbsf). Sites U1343, U1344 and U1345 were drilled during Integrated Ocean Drilling Program (IODP) Expedition 323......) and between 300 and 400 mbsf. The SMTZ at the three sites is located between 6 and 9 mbsf. The upward methane fluxes into the SMTZ are similar to fluxes in SMTZs underlying high-productivity surface waters off Chile and Namibia. Our Bering Sea results show that intense organic carbon mineralization drives...... microbially mediated carbon mineralization leaves DIC isotope composition unaffected. Ongoing carbonate formation between 300 and 400 mbsf strongly influences pore-water DIC and magnesium concentration profiles. The linked succession of organic carbon mineralization and carbonate dissolution and precipitation...

  6. Distribution of clay minerals in marine sediments off Chennai, Bay of Bengal, India: Indicators of sediment sources and transport processes .

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Venkatachalapathy, R.; Ramkumar, T.

    Clay mineralogy, texture size and statistical analyses were carried out on surface sediments from the continental shelf of Chennai, Bay of Bengal, India. The purpose of this study is to characterize the clay mineral distribution and its relation...

  7. Wind forcing controls on river plume spreading on a tropical continental shelf

    NARCIS (Netherlands)

    Tarya, A.; Vegt, van der M.; Hoitink, A.J.F.

    2015-01-01

    The Berau Continental Shelf is located close to the Equator in the Indonesian Archipelago, hosting a complex of coral reefs along its oceanic edge. The Berau coral reefs have a very high biodiversity, but the area is under serious risk due to river-derived nutrients and sediments. The region is

  8. Final Scientific/Technical Report of Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hornbach, Matthew J [Southern Methodist Univ., Dallas, TX (United States); Colwell, Frederick S [Oregon State Univ., Corvallis, OR (United States); Harris, Robert [Oregon State Univ., Corvallis, OR (United States)

    2017-07-06

    Methane Hydrates, a solid form of methane and water, exist at high pressures and low temperatures, occurs on every continental margin on Earth, represents one of the largest reservoirs of carbon on the planet, and, if destabilized, may play an important role in both slope stability and climate change. For decades, researchers have studied methane hydrates with the hope of determining if methane hydrates are destabilizing, and if so, how this destabilization might impact slope stability and ocean/atmosphere carbon budgets. In the past ~5 years, it has become well established that the upper “feather-edge” of methane hydrate stability (intermediate water depths of ~200-500 meters below sea level) represents an important frontier for methane hydrates stability research, as this zone is most susceptible to destabilization due to minor fluctuations in ocean temperature in space and time. The Arctic Ocean—one of the fastest warming regions on Earth—is perhaps the best place to study possible changes to methane hydrate stability due to ocean warming. To address the stability of methane hydrates at intermediate ocean depths, Southern Methodist University in partnership with Oregon State University and The United State Geological Survey at Woods Hole began investigating methane hydrate stability in intermediate water depths below both the US Beaufort Sea and the Atlantic Margin, from 2012-2017. The work was funded by the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). The key goal of the SMU component of this study was to collect the first ever heat flow data in the Beaufort Sea and compare measured shallow (probe-based1) heat flow values with deeper (BSR-derived2) heat flow values, and from this, determine whether hydrates were in thermal equilibrium. In September 2016, SMU/OSU collected the first ever heat flow measurements in the US Beaufort Sea. Despite poor weather and rough seas, the cruise was a success, with 116 heat flow

  9. Transport and transfer rates in the waters of the continental shelf. Annual report

    International Nuclear Information System (INIS)

    Biscaye, P.E.; Broecker, W.S.; Feely, H.W.; Gerard, R.D.

    1976-04-01

    The report is to the Energy Research and Development Administration on accomplishments of the Lamont-Doherty Geological Observatory geochemistry and physical oceanography groups during the 1975-1976 funding period on grant E(11-1)2185. Goals are to obtain detailed, quantitative knowledge of the rates of mixing within coastal waters of the New York Bight and across the continental slope and the exchange of water masses and species transported within them between shelf and Atlantic Ocean waters. The research is aimed at understanding the chemical, physical, and biological processes which control the origin, dispersal, and fate of particulate matter and trace metals, and to ultimately model the impact of energy related pollutants on the continental shelf

  10. Assessing the impact of Hurricanes Irene and Sandy on the morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York

    Science.gov (United States)

    Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.

    2016-01-15

    This report documents the changes in seabed morphology and modern sediment thickness detected on the inner continental shelf offshore of Fire Island, New York, before and after Hurricanes Irene and Sandy made landfall. Comparison of acoustic backscatter imagery, seismic-reflection profiles, and bathymetry collected in 2011 and in 2014 show that sedimentary structures and depositional patterns moved alongshore to the southwest in water depths up to 30 meters during the 3-year period. The measured lateral offset distances range between about 1 and 450 meters with a mean of 20 meters. The mean distances computed indicate that change tended to decrease with increasing water depth. Comparison of isopach maps of modern sediment thickness show that a series of shoreface-attached sand ridges, which are the dominant sedimentary structures offshore of Fire Island, migrated toward the southwest because of erosion of the ridge crests and northeast-facing flanks as well as deposition on the southwest-facing flanks and in troughs between individual ridges. Statistics computed suggest that the modern sediment volume across the about 81 square kilometers of common sea floor mapped in both surveys decreased by 2.8 million cubic meters, which is a mean change of –0.03 meters, which is smaller than the resolution limit of the mapping systems used.

  11. Bacterial biogeography influenced by shelf-basin exchange in the Arctic surface sediment at the Chukchi Borderland.

    Science.gov (United States)

    Han, Dukki; Nam, Seung-Il; Ha, Ho Kyung; Kim, Hyoungjun; Sadowsky, Michael J; Lee, Yoo Kyung; Hur, Hor-Gil

    2016-02-01

    It has been known that continental shelves around the Arctic Ocean play a major role in the ventilation of the deep basins as a consequence of shelf-basin exchange. In the present study, we found that bacterial assemblage of the surface sediment was different from that of seawater while seawater harboured local bacterial assemblages in response to the Arctic hydrography. This finding suggests that the Arctic seafloor sediments may have distinctive bacterial biogeography. Moreover, the distribution of bacterial assemblages and physicochemical properties in surface sediments changed gradually from the Arctic continental shelf to deep-sea basin. Based on the results, bacterial biogeography in the Arctic seafloor sediments may be influenced by winnowing and re-deposition of surface sediments through the sediment gravity flow. The present study offers a deeper understanding of shelf convection and its role for the construction of bacterial assemblages in the Arctic Ocean. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. The flux and recovery of bioactive substances in the surface sediments of deep basins off southern California

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, R.A.

    1990-06-11

    Sediment microbial community biomass and activity in Santa Monica Basin, a nearshore basin in the California Continental Borderland, were examined in October 1985, 1986 and 1987, May 1986, April 1987 and January 1990. Millimeter-scale ATP profiles and incubation of intact cores with {sup 3}H-adenine indicated a high-biomass interface microbial population in the low-oxygen central basin, which was absent in samples from the basin slope sediments. A majority of microbial activity and organic matter mineralization occurred in the top cm of sediment. Comparison of measured ATP and total organic carbon profiles suggest that the C:ATP ratio (wt:wt) ranges between 47:1 and 77:1 in central basin interfacial populations, substantially lower than reported for other aquatic environments. Carbon production estimated from DNA synthesis measurements via {sup 3}H-adenine incorporation was compared with TCO{sub 2} fluxes measured by in situ benthic chamber experiments. Within the uncertainty of the C:ATP ratio, an overall microbial carbon assimilation efficiency of 75--90% was indicated. The low C:ATP ratios and high carbon assimilation efficiencies significantly affect estimates of microbial growth and respiration and are substantially different than those often assumed in the literature. These results suggest that without independent knowledge of these ratios, the uncertainty in tracer-derived microbial growth and respiration rates may be larger than previously reported. 66 refs., 8 figs., 3 tabs.

  13. The flux and recovery of bioactive substances in the surface sediments of deep basins off southern California

    International Nuclear Information System (INIS)

    Jahnke, R.A.

    1990-01-01

    Sediment microbial community biomass and activity in Santa Monica Basin, a nearshore basin in the California Continental Borderland, were examined in October 1985, 1986 and 1987, May 1986, April 1987 and January 1990. Millimeter-scale ATP profiles and incubation of intact cores with 3 H-adenine indicated a high-biomass interface microbial population in the low-oxygen central basin, which was absent in samples from the basin slope sediments. A majority of microbial activity and organic matter mineralization occurred in the top cm of sediment. Comparison of measured ATP and total organic carbon profiles suggest that the C:ATP ratio (wt:wt) ranges between 47:1 and 77:1 in central basin interfacial populations, substantially lower than reported for other aquatic environments. Carbon production estimated from DNA synthesis measurements via 3 H-adenine incorporation was compared with TCO 2 fluxes measured by in situ benthic chamber experiments. Within the uncertainty of the C:ATP ratio, an overall microbial carbon assimilation efficiency of 75--90% was indicated. The low C:ATP ratios and high carbon assimilation efficiencies significantly affect estimates of microbial growth and respiration and are substantially different than those often assumed in the literature. These results suggest that without independent knowledge of these ratios, the uncertainty in tracer-derived microbial growth and respiration rates may be larger than previously reported. 66 refs., 8 figs., 3 tabs

  14. Geological features and geophysical signatures of continental margins of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.

    of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. As years passed, more and more evidences were uncovered to support the idea that the plates were moving... to build-up of the wide and low-relief (flat) continental shelf (covered by shelf seas), slope and rise. Initially passive margins form at divergent plate boundary following break-up of the continent, then they move away with the accretion of new...

  15. Phosphatised limestones and associated sediments from the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Natarajan, R.; Parthiban, G.; Mascarenhas, A.

    Quaternary carbonate sediments: Rao, Ch.M., Paropkari~ A.L., Mascarenhas, A. and Murty, carbonate sediments and reefs, Yucatan shelf, Mexico. Am. P.S.N., 1987. Distribution of phosphorus and phosphatisa- Assoc. Pet. Geol. Mem., 11: 1-128. tion along...

  16. Defining seascapes for marine unconsolidated shelf sediments in an eastern boundary upwelling region: The southern Benguela as a case study

    Science.gov (United States)

    Karenyi, Natasha; Sink, Kerry; Nel, Ronel

    2016-02-01

    Marine unconsolidated sediment habitats, the largest benthic ecosystem, are considered physically controlled ecosystems driven by a number of local physical processes. Depth and sediment type are recognised key drivers of these ecosystems. Seascape (i.e., marine landscape) habitat classifications are based solely on consistent geophysical features and provide an opportunity to define unconsolidated sediment habitats based on processes which may vary in distribution through space and time. This paper aimed to classify unconsolidated sediment seascapes and explore their diversity in an eastern boundary upwelling region at the macro-scale, using the South African west coast as a case study. Physical variables such as sediment grain size, depth and upwelling-related variables (i.e., maximum chlorophyll concentration, austral summer bottom oxygen concentration and sediment organic carbon content) were included in the analyses. These variables were directly measured through sampling, or collated from existing databases and the literature. These data were analysed using multivariate Cluster, Principal Components Ordination and SIMPER analyses (in PRIMER 6 + with PERMANOVA add-in package). There were four main findings; (i) eight seascapes were identified for the South African west coast based on depth, slope, sediment grain size and upwelling-related variables, (ii) three depth zones were distinguished (inner, middle and outer shelf), (iii) seascape diversity in the inner and middle shelves was greater than the outer shelf, and (iv) upwelling-related variables were responsible for the habitat diversity in both inner and middle shelves. This research demonstrates that the inclusion of productivity and its related variables, such as hypoxia and sedimentary organic carbon, in seascape classifications will enhance the ability to distinguish seascapes on continental shelves, where productivity is most variable.

  17. The Peru Margin as an Authigenic Mineral Factory, Evidence From Surface Sediments and Oceanography

    Science.gov (United States)

    Dean, W. E.; Arthur, M. A.

    2004-12-01

    Characteristics of sediments deposited within an intense oxygen-minimum zone (OMZ) on the Peru continental margin were mapped by submersible, and studied in samples collected in deck-deployed box cores and submersible push cores on two east-west transects over water depths of 75 to 1000 m at 12 degrees and 13.5 degrees S. On the basis of sampling of the top 1-2 cm of available cores, three main belts of sediments were identified in each transect with increasing depth: 1) organic-carbon (OC)-rich muds; 2) authigenic phosphatic mineral crusts; and 3) glaucony facies. These facies patterns are primarily controlled by redox conditions and strength of bottom currents. OC-rich sediments on the 12-degree transect were mainly located on the outer shelf and upper slope (150-350 m), but they occurred in much shallower water (ca. 100 m) on the 13.5-degree transect. The organic matter is almost entirely marine, resulting from very high primary productivity. The OC concentrations are highest (up to 18%) in sediments where intermediate water masses with low dissolved oxygen concentrations (less than 5 micromoles/kg) impinge on the slope at water depths between 75 and 450 m. The region between 175 and 350 m depth is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Currents as high as 30 cm/sec were measured over that depth interval. Current-resuspension of surficial organic matter, activity of organisms, and transport to and from more oxygenated zones contribute to greater oxidation and poorer preservation of organic matter than occur under oxygen-deficient conditions. Phosphate-rich sediments occurred at depths of about 300 to 550 m on both transects. Nodular crusts cemented by carbonate-fluorapatite (CFA; phosphorite) or dolomite form within the OMZ. The crusts start by cementation of sediment near the sediment-water interface forming stiff but friable phosphatizes claystone "protocrusts". The protocrusts

  18. Hf Isotope Evidence for Subducted Basalt and Sediment Contributions to the Eastern Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Cai, Y.; Tuena, A. G.; Capra, L.; Straub, S. M.; Goldstein, S. L.; Langmuir, C. H.

    2005-12-01

    Magmas generated at thick crust continental arcs often have enriched continental crust-like trace element patterns and Pb-Sr-Nd isotope ratios that are intermediate to both upper mantle and crustal compositions. Thus it is difficult to distinguish between contributions from (a) the subducted basalt and the upper mantle wedge, and (b) subducted sediment and the continental crust. These issues have been the focus of major controversy. Here we show evidence for subduction contributions to lavas in a classic thick crust environment. In Eastern Trans-Mexican Volcanic Belt, the upper continental crust is 30 km to 45 km thick. However, primitive mafic lavas erupt on many sites across the arc. We have analyzed the subducting sediments as represented by DSDP 487, located seaward of the trench, where the lower third of the sediment column has strongly hydrothermal pelagic features and the upper two-thirds is composed of terrigenous sediments. The pelagic sediments have distinctive features that could be used to identify a subduction component in the volcanics, including high REE/Hf, negative Ce anomalies, and Nd-Hf isotopes that lie on the "seawater array" and offset from the "mantle-crust" array. We have focused on a unique series of lavas from volcano Nevado de Toluca, located southwest of Mexico City. These lavas show negative Ce anomalies coupled with low REE/Hf and Zr/Nd ratios. Hf-Nd isotope ratios show a shallow trend compared to the mantle-crust array, consistent with a pelagic component. In addition, Hf isotopes show a striking positive correlation with Ce anomalies that trend toward the pelagic sediment compositions. These and other observations provide clear evidence for a component from subducted sediment in the lavas. In addition, there is a negative correlation of Lu/Hf and Hf isotopes that requires a mixing endmember with MORB-like Hf isotope ratios but with lower than MORB Lu/Hf. This indicates a melt from eclogitic subducted basalt. Compared to other

  19. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate

    Science.gov (United States)

    Jiang, H.; Lee, C. T.

    2017-12-01

    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  20. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA

    Science.gov (United States)

    Godfrey, Andrew E.; Everitt, Benjamin L.; Duque, José F. Martín

    2008-12-01

    The Fremont River drains about 1000 km 2 of Mancos Shale badlands, which provide a large percentage of the total sediment load of its middle and lower reaches. Factors controlling sediment movement include: weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. Beginning about 1940, the Fremont's channel began to narrow. Sequential aerial photos and cross-sections suggest that floodplain construction since about 1966 has stored about 4000 to 8000 m 3 of sediment per kilometer per year. These data suggest that it will take two centuries to restore the floodplain to its pre-1890 condition, which is in line with geologic studies elsewhere on the Colorado Plateau. The various landscape elements of slope, pediment, and floodplain are semi-independent actors in sediment delivery, each with its own style. Accelerated mass movement on the slopes has an approximate 20-year recurrence. Sediment movement from slope across pediments to master stream is episodic and recurs more frequently. The slope-to-pediment portion of the system appears well connected. However, sediment transport through the floodplain is not well connected in the decadal time scale, but increases in the

  1. Manganese in the shelf sediments off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, P.S.N.; Rao, Ch.M.; Reddy, C.V.G.

    shows that the contribution is practically from land. Higher rates of sedimentation was also observed on the inner shelf particularly between Alleppey and Karwar. The sediments in the slope region were slightly enriched in their manganese content than...

  2. Environmental magnetism and application in the continental shelf sediments of India

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    contamination in soils and sediments and in the investigation of the compositional properties of rocks, sediments and soils (Thompson and Oldfield, 1986; Walden et al., 1999; Maher and Thompson, 1999). Magnetic minerals in soils are derived either from... to the magnetic properties of soils. Accumulation of anthropogenic ferrimagnetic particles, originating during high temperature combustion of fossil fuels (e.g. Vassilev 1992; Dekkers and Pietersen 1992), results in significant enhancement of topsoil magnetic...

  3. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  4. Processes influencing differences in Arctic and Antarctic Trough Mouth Fan sedimentology

    OpenAIRE

    Gales, J; Hillenbrand, C-D; Larter, R; Laberg, J-S; Melles, M; Benetti, S; Passchier, S

    2018-01-01

    Trough Mouth Fans (TMFs) are sediment depocentres that form along high-latitude continental margins at the mouths of some cross-shelf troughs. They reflect the dynamics of past ice sheets over multiple glacial cycles and processes operating on (formerly) glaciated continental shelves and slopes, such as erosion, reworking, transport and deposition. The similarities and differences in TMF morphology and formation processes of the Arctic and Antarctic regions remain poorly constrained. Here, we...

  5. On the relationship between structure, morphology and large coseismic slip: A case study of the Mw 8.8 Maule, Chile 2010 earthquake

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Maksymowicz, Andrei; Lange, Dietrich; Grevemeyer, Ingo; Muñoz-Linford, Pamela; Moscoso, Eduardo

    2017-11-01

    Subduction megathrust earthquakes show complex rupture behaviour and large lateral variations of slip. However, the factors controlling seismic slip are still under debate. Here, we present 2-D velocity-depth tomographic models across four trench-perpendicular wide angle seismic profiles complemented with high resolution bathymetric data in the area of maximum coseismic slip of the Mw 8.8 Maule 2010 megathrust earthquake (central Chile, 34°-36°S). Results show an abrupt lateral velocity gradient in the trench-perpendicular direction (from 5.0 to 6.0 km/s) interpreted as the contact between the accretionary prism and continental framework rock whose superficial expression spatially correlates with the slope-shelf break. The accretionary prism is composed of two bodies: (1) an outer accretionary wedge (5-10 km wide) characterized by low seismic velocities of 1.8-3.0 km/s interpreted as an outer frontal prism of poorly compacted and hydrated sediment, and (2) the middle wedge (∼50 km wide) with velocities of 3.0-5.0 km/s interpreted as a middle prism composed by compacted and lithified sediment. In addition, the maximum average coseismic slip of the 2010 megathrust event is fairly coincident with the region where the accretionary prism and continental slope are widest (50-60 km wide), and the continental slope angle is low (event, published differential multibeam bathymetric data confirms that coseismic slip must have propagated up to ∼6 km landwards of the deformation front and hence practically the entire base of the middle prism. Sediment dewatering and compaction processes might explain the competent rheology of the middle prism allowing shallow earthquake rupture. In contrast, the outer frontal prism made of poorly consolidated sediment has impeded the rupture up to the deformation front as high resolution seismic reflection and multibeam bathymetric data have not showed evidence for new deformation in the trench region.

  6. Origin of Organic Matter in Sediments of the Campos Basin (SE Brazilian Continental Margin) by Means of Stable Isotopes and Molecular Markers

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, A. L.R.; Carreira, R. S.; Baeta, A.; Scofield, A. L. [Departamento de Quimica, Pontificia Universidade Catolica, Rio de Janeiro, RJ (Brazil); Farias, C. O.; Cordeiro, L. G.M.S.; Oliveira, D. R. [Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Rezende, C. E.; Almeida, M. [Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ (Brazil)

    2013-07-15

    Sediment samples were taken from a total of 133 stations in two sampling campaigns (winter 2008/2009 and summer 2009) distributed on the shelf and in transects which extended from 25 m to 3000 m water depth. The region under study is influenced by upwelling, river discharge and beyond the platform by five different water masses. The goal of the work was to examine by means of carbon isotopic composition and lipid biomarkers the provenance of the organic matter pool in the sediments so as to evaluate source strength, degradation and relevance to sustain a benthic community. Isotopic and molecular indicators show the influence of the outflow of the Paraiba do Sul river on the quality and quantity of organic matter (OM) that accumulates on the shelf; however, this influence is dependent on the hydrological regime on the river's basin. In the upwelling region of Cabo Frio, the OM is mainly of autochthonous sources, and evidence of export of labile OM produced on the shelf to the slope was found, which can potentially influence the benthic process at depths between 700 and 1000 m. (author)

  7. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    Science.gov (United States)

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  8. Flow and sediment transport dynamics in a slot and cauldron blowout and over a foredune, Mason Bay, Stewart Island (Rakiura), NZ

    Science.gov (United States)

    Hesp, Patrick A.; Hilton, Michael; Konlecher, Teresa

    2017-10-01

    This study is the first to simultaneously compare flow and sediment transport through a blowout and over an adjacent foredune, and the first study of flow within a highly sinuous, slot and cauldron blowout. Flow across the foredune transect is similar to that observed in other studies and is primarily modulated by across-dune vegetation density differences. Flow within the blowout is highly complex and exhibits pronounced accelerations and jet flow. It is characterised by marked helicoidal coherent vortices in the mid-regions, and topographically vertically forced flow out of the cauldron portion of the blowout. Instantaneous sediment transport within the blowout is significant compared to transport onto and/or over the adjacent foredune stoss slope and ridge, with the blowout providing a conduit for suspended sediment to reach the downwind foredune upper stoss slope and crest. Medium term (4 months) aeolian sedimentation data indicates sand is accumulating in the blowout entrance while erosion is taking place throughout the majority of the slot, and deposition is occurring downwind of the cauldron on the foredune ridge. The adjacent lower stoss slope of the foredune is accreting while the upper stoss slope is slightly erosional. Longer term (16 months) pot trap data shows that the majority of foredune upper stoss slope and crest accretion occurs via suspended sediment delivery from the blowout, whereas the majority of the suspended sediment arriving to the well-vegetated foredune stoss slope is deposited on the mid-stoss slope. The results of this study indicate one mechanism of how marked alongshore foredune morphological variability evolves due to the role of blowouts in topographically accelerating flow, and delivering significant aeolian sediment downwind to relatively discrete sections of the foredune.

  9. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation

    Science.gov (United States)

    Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.

    2016-11-01

    Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.

  10. Amazon estuary - assessment of trace elements in seabed sediments

    International Nuclear Information System (INIS)

    Lara, L.B.L.S.; Fernandes, E.A.N.; Oliveira, H.; Bacchi, M.A.; Ferraz, E.S.B.

    1997-01-01

    The interactive processes operating on the continental shelf to the river mouth control the amount and the characteristics of the Amazon discharge reaching the Atlantic Ocean. In this study, the distribution of trace elemental concentrations, with emphasis to the rare-earth elements, in sediment cores collected at several stations from the Amazon continental shelf during the falling water period was investigated by instrumental neutron activation analysis. Cores from the terrigenous and blue water zones have relatively uniform REE concentrations throughout the profile. Cerium anomalies for samples of the upper section of the eight stations are consistently positive and of high values (normally > 2). Similar variation in the elemental concentration ratios between the seabed sediments and Amazon River suspended sediments was seen for stations located in the biogenic and blue water zones, with an enrichment for Ce, Sm, Fe, Th, and Sc and a depletion for the La, Eu, Tb, Yb, Co, Cr, Cs, Hf, Ta, and Zn. The shale-normalized REE patterns from shelf sediments are enriched in LREE relative to HREE, with enrichment factors varying from 1.5 for stations near the river mouth (terrigenous zone) to 1.9 for station located far in the blue water zone. Published data for the Amazon River suspended sediment agree remarkably well with this observation of LREE-enrichment. (author)

  11. The Q-Slope Method for Rock Slope Engineering

    Science.gov (United States)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  12. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    Science.gov (United States)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments