WorldWideScience

Sample records for contextual fear learning

  1. The Future of Contextual Fear Learning for PTSD Research: A Methodological Review of Neuroimaging Studies.

    Science.gov (United States)

    Glenn, Daniel E; Risbrough, Victoria B; Simmons, Alan N; Acheson, Dean T; Stout, Daniel M

    2017-10-21

    There has been a great deal of recent interest in human models of contextual fear learning, particularly due to the use of such paradigms for investigating neural mechanisms related to the etiology of posttraumatic stress disorder. However, the construct of "context" in fear conditioning research is broad, and the operational definitions and methods used to investigate contextual fear learning in humans are wide ranging and lack specificity, making it difficult to interpret findings about neural activity. Here we will review neuroimaging studies of contextual fear acquisition in humans. We will discuss the methodology associated with four broad categories of how contextual fear learning is manipulated in imaging studies (colored backgrounds, static picture backgrounds, virtual reality, and configural stimuli) and highlight findings for the primary neural circuitry involved in each paradigm. Additionally, we will offer methodological recommendations for human studies of contextual fear acquisition, including using stimuli that distinguish configural learning from discrete cue associations and clarifying how context is experimentally operationalized.

  2. Effects of postretrieval-extinction learning on return of contextually controlled cued fear.

    Science.gov (United States)

    Meir Drexler, Shira; Merz, Christian J; Hamacher-Dang, Tanja C; Marquardt, Veronica; Fritsch, Nathalie; Otto, Tobias; Wolf, Oliver T

    2014-08-01

    Reactivation of an already consolidated memory makes it labile for a period of several hrs, which are required for its reconsolidation. Evidence suggests that the return of conditioned fear through spontaneous recovery, reinstatement, or renewal can be prevented by blockading this reconsolidation process using pharmacological or behavioral interventions. Postretrieval-extinction learning has been shown to prevent the return of cued fear in humans using fear-irrelevant stimuli, as well as cued and contextual fear in rodents. The effects of postretrieval extinction on human contextually controlled cued fear to fear-relevant stimuli remain unknown, and are the focus of the present study. The experimental design was based on 3 consecutive days: acquisition, reactivation and extinction, and re-extinction. For the fear conditioning, 2 zoo frames served as different contexts, 5 fear-relevant stimuli (aversive animal pictures) served as conditioned stimuli (CS), electric shocks served as unconditioned stimuli (UCS). Expectancy ratings and skin-conductance response (SCR) were used as measures of fear responses; spontaneous recovery and renewal were used as indicators of the return of fear. The expectancy ratings and SCR results indicated spontaneous recovery on the third day, regardless of retrieval prior to extinction. No robust renewal effect was seen. It is suggested that the use of fear-relevant stimuli, the context salience, or reactivation context may explain the lack of reconsolidation effect. Our study indicates that the beneficial effects of postretrieval-extinction learning are sensitive to subtle methodological changes.

  3. Contextual Change After Fear Acquisition Affects Conditioned Responding and the Time Course of Extinction Learning-Implications for Renewal Research.

    Science.gov (United States)

    Sjouwerman, Rachel; Niehaus, Johanna; Lonsdorf, Tina B

    2015-01-01

    Context plays a central role in retrieving (fear) memories. Accordingly, context manipulations are inherent to most return of fear (ROF) paradigms (in particular renewal), involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g., in ABC and ABA renewal). Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e., renewal). Thus, the possibility of a general effect of context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied. Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36) was compared with a group without a contextual change from acquisition to extinction (AA; n = 149), while measuring physiological (skin conductance and fear potentiated startle) measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e., contextual switch after extinction). Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  4. Contextual change after fear acquisition affects conditioned responding and the time course of extinction learning – Implications for renewal research

    Directory of Open Access Journals (Sweden)

    Rachel eSjouwerman

    2015-12-01

    Full Text Available Context plays a central role in retrieving (fear memories. Accordingly, context manipulations are inherent to most return of fear (ROF paradigms (in particular renewal, involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g. in ABC and ABA renewal. Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e. renewal. Thus, the possibility of a general effect of a context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied.Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36 was compared with a group without a contextual change from acquisition to extinction (AA; n = 149, while measuring autonomic (skin conductance and fear potentiated startle measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e. contextual switch after extinction. Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  5. Role of the hippocampus in contextual modulation of fear extinction

    Institute of Scientific and Technical Information of China (English)

    Lingzhi Kong; Xihong Wu; Liang Li

    2008-01-01

    Fear extinction is an important form of emotional learning, and affects neural plasticity. Cue fear extinction is a classical form of inhibitory learning that can be used as an exposure-based treatment for phobia, because the long-term extinction memory produced during cue fear extinction can limit the over-expression of fear. The expression of this inhibitory memory partly depends on the context in which the extinction learning occurs. Studies such as transient inhibition, electrophysiology and brain imaging have proved that the hippocampus - an important structure in the limbic system - facilitates memory retrieval by contextual cues.Mediation of the hippocampus-medial prefrontal lobe circuit may be the neurobiological basis of this process.This article has reviewed the role of the hippocampus in the learning and retrieval of fear extinction.Contextual modulation of fear extinction may rely on a neural network consisting of the hippocampus, the medial prefrontal cortex and the amygdala.

  6. Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.

    Science.gov (United States)

    Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael

    2017-07-01

    The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.

  7. Inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear.

    Science.gov (United States)

    Jiang, Lizhu; Mao, Rongrong; Tong, Jianbin; Li, Jinnan; Chai, Anping; Zhou, Qixin; Yang, Yuexiong; Wang, Liping; Li, Lingjiang; Xu, Lin

    2016-10-01

    Promoting extinction of fear memory is the main treatment of fear disorders, especially post-traumatic stress disorder (PTSD). However, fear extinction is often incomplete in these patients. Our previous study had shown that Rac1 activity in hippocampus plays a crucial role in the learning of contextual fear memory in rats. Here, we further investigated whether Rac1 activity also modulated the extinction of contextual fear memory. We found that massed extinction obviously upregulated hippocampal Rac1 activity and induced long-term extinction of contextual fear in rats. Intrahippocampal injection of the Rac1 inhibitor NSC23766 prevents extinction of contextual fear in massed extinction training rats. In contrast, long-spaced extinction downregulated Rac1 activity and caused less extinction. And Rac1 activator CN04-A promotes extinction of contextual fear in long-spaced extinction rats. Our study demonstrates that inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear, suggesting that modulating Rac1 activity of the hippocampus may be promising therapy of fear disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Unilateral hippocampal inactivation or lesion selectively impairs remote contextual fear memory.

    Science.gov (United States)

    Zhou, Heng; Zhou, Qixin; Xu, Lin

    2016-10-01

    Contextual fear memory depends on the hippocampus, but the role of unilateral hippocampus in this type of memory remains unclear. Herein, pharmacological inactivation or excitotoxic lesions were used to study the role of unilateral hippocampus in the stages of contextual fear memory. The pharmacological experiments revealed that compared with the control groups, unilateral hippocampal blockade did not impair 1-day recent memory following learning, whereas bilateral hippocampal blockade significantly impaired this memory. The lesion experiments showed that compared with the control groups, the formed contextual fear memory was retained for 7 days and that 30-day remote memory was markedly reduced in unilateral hippocampal lesion groups. These results indicate that an intact bilateral hippocampus is required for the formation of remote memory and that unilateral hippocampus is sufficient for recent contextual fear memory.

  9. The roles of Eph receptors in contextual fear conditioning memory formation.

    Science.gov (United States)

    Dines, Monica; Grinberg, Svetlana; Vassiliev, Maria; Ram, Alon; Tamir, Tal; Lamprecht, Raphael

    2015-10-01

    Eph receptors regulate glutamate receptors functions, neuronal morphology and synaptic plasticity, cellular events believed to be involved in memory formation. In this study we aim to explore the roles of Eph receptors in learning and memory. Toward that end, we examined the roles of EphB2 and EphA4 receptors, key regulators of synaptic functions, in fear conditioning memory formation. We show that mice lacking EphB2 (EphB2(-/-)) are impaired in short- and long-term contextual fear conditioning memory. Mice that express a carboxy-terminally truncated form of EphB2 that lacks forward signaling, instead of the full EphB2, are impaired in long-term, but not short-term, contextual fear conditioning memory. Long-term contextual fear conditioning memory is attenuated in CaMKII-cre;EphA4(lx/-) mice where EphA4 is removed from all pyramidal neurons of the forebrain. Mutant mice with targeted kinase-dead EphA4 (EphA4(KD)) exhibit intact long-term contextual fear conditioning memory showing that EphA4 kinase-mediated forward signaling is not needed for contextual fear memory formation. The ability to form long-term conditioned taste aversion (CTA) memory is not impaired in the EphB2(-/-) and CaMKII-cre;EphA4(lx/-) mice. We conclude that EphB2 forward signaling is required for long-term contextual fear conditioning memory formation. In contrast, EphB2 mediates short-term contextual fear conditioning memory formation in a forward signaling-independent manner. EphA4 mediates long-term contextual fear conditioning memory formation in a kinase-independent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    OpenAIRE

    Poplawski, Shane G.; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has recei...

  11. Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning.

    Science.gov (United States)

    Holliday, Erica D; Gould, Thomas J

    2017-01-01

    Adolescent onset of nicotine abuse is correlated with worse chances at successful abstinence in adulthood. One reason for this may be due to enduring learning deficits resulting from nicotine use during adolescence. Previous work has indicated that chronic nicotine administration beginning in late adolescence (PND38) caused learning deficits in contextual fear when tested in adulthood. The purpose of this study was to determine if chronic nicotine treatment during adolescence would alter sensitivity to nicotine's cognitive enhancing properties in adulthood. C57BL/6J mice received saline or chronic nicotine (12.6mg/kg/day) during adolescence (postnatal day 38) or adulthood (postnatal day 54) for a period of 12 days. Following a 30-day protracted abstinence, mice received either an acute injection of saline or nicotine (0.045, 0.18, and 0.36mg/kg) prior to training and testing a mouse model of contextual fear. It was found that chronic nicotine administration in adult mice did not alter sensitivity to acute nicotine following a protracted abstinence. In adolescent mice, chronic nicotine administration disrupted adult learning and decreased sensitivity to acute nicotine in adulthood as only the highest dose tested (0.36mg/kg) was able to enhance contextual fear learning. These results suggest that adolescent nicotine exposure impairs learning in adulthood, which could increase the risk for continued nicotine use in adulthood by requiring administration of higher doses of nicotine to reverse learning impairments caused by adolescent nicotine exposure. Results from this study add to the growing body of literature suggesting chronic nicotine exposure during adolescence leads to impaired learning in adulthood and demonstrates that nicotine exposure during adolescence attenuates the cognitive enhancing effects of acute nicotine in adulthood, which suggests altered cholinergic function. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  12. Chronic fluoxetine dissociates contextual from auditory fear memory.

    Science.gov (United States)

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    Science.gov (United States)

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    Science.gov (United States)

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  15. Contextual control over expression of fear is affected by cortisol

    Directory of Open Access Journals (Sweden)

    Vanessa Anna Van Ast

    2012-10-01

    Full Text Available At the core of anxiety disorders is the inability to use contextual information to modulate behavioral responses to potentially threatening events. Models of the pathogenesis of anxiety disorders incorporate stress and concomitant stress hormones as important vulnerability factors, while others emphasize sex as an important factor. However, translational basic research has not yet investigated the effects of stress hormones and sex on the ability to use contextual information to modulate responses to threat. Therefore, the purpose of the present study was threefold: first, we aimed at developing an experimental paradigm specifically capable of capturing contextual modulation of the expression of fear. Second, we tested whether cortisol would alter the contextualization of fear expression. Third, we aimed at assessing whether alterations in contextualization due to cortisol were different for men and women. Healthy participants (n = 42 received placebo or hydrocortisone (20 mg prior to undergoing a newly developed differential contextual fear conditioning paradigm. The results indicated that people rapidly acquire differential contextual modulation of the expression of fear, as measured by fear potentiated startle and skin conductance responses. In addition, cortisol impaired the contextualization of fear expression leading to increased fear generalization on fear potentiated startle data in women. The opposite pattern was found in men. Finally, as assessed by skin conductance responses, cortisol impaired differential conditioning in men. The results are in line with models suggesting heightened vulnerability in women for developing anxiety disorders after stressful events.

  16. Impairment in extinction of contextual and cued, fear following post-training whole body irradiation

    Directory of Open Access Journals (Sweden)

    Reid HJ Olsen

    2014-07-01

    Full Text Available Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.. To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear-conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation 24 hours later. Animals were given two weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22 days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole body irradiation elevates contextual and cued fear memory recall.

  17. Hypobaric hypoxia impairs cued and contextual fear memory in rats.

    Science.gov (United States)

    Kumari, Punita; Kauser, Hina; Wadhwa, Meetu; Roy, Koustav; Alam, Shahnawaz; Sahu, Surajit; Kishore, Krishna; Ray, Koushik; Panjwani, Usha

    2018-04-26

    Fear memory is essential for survival, and its dysregulation leads to disorders. High altitude hypobaric hypoxia (HH) is known to induce cognitive decline. However, its effect on fear memory is still an enigma. We aimed to investigate the temporal effect of HH on fear conditioning and the underlying mechanism. Adult male Sprague-Dawley rats were trained for fear conditioning and exposed to simulated HH equivalent to 25,000 ft for different durations (1, 3, 7, 14 and 21 days). Subsequently, rats were tested for cued and contextual fear conditioning. Neuronal morphology, apoptosis and DNA fragmentation were studied in the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). We observed significant deficit in cued and contextual fear acquisition (at 1, 3 and 7 days) and consolidation (cued at 1 and 3 days and contextual fear at 1, 3 and 7 days) under HH. HH exposure with retraining showed the earlier restoration of contextual fear memory. Further, we found a gradual increase in the number of pyknotic and apoptotic neurons together with the increase in DNA fragmentation in mPFC, hippocampus, and BLA up to 7 days of HH exposure. The present study concludes that HH exposure equivalent to 25000 ft induced cued and contextual fear memory deficit (acquisition and consolidation) which is found to be correlated with the neurodegenerative changes in the limbic brain regions. Copyright © 2018. Published by Elsevier B.V.

  18. Distinct Contributions of Median Raphe Nucleus to Contextual Fear Conditioning and Fear-Potentiated Startle

    Science.gov (United States)

    Silva, R. C. B.; Cruz, A. P. M.; Avanzi, V.; Landeira-Fernandez, J.; Brandão, M. L.

    2002-01-01

    Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of 5-HT1A somatodendritic auto-receptors of the MRN by microinjections of the 5-HT1A receptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also

  19. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Methylphenidate enhances extinction of contextual fear

    OpenAIRE

    Abraham, Antony D.; Cunningham, Christopher L.; Lattal, K. Matthew

    2012-01-01

    Methylphenidate (MPH, Ritalin) is a norepinephrine and dopamine transporter blocker that is widely used in humans for treatment of attention deficit disorder and narcolepsy. Although there is some evidence that targeted microinjections of MPH may enhance fear acquisition, little is known about the effect of MPH on fear extinction. Here, we show that MPH, administered before or immediately following extinction of contextual fear, will enhance extinction retention in C57BL/6 mice. Animals that ...

  1. Tyrosine receptor kinase B receptor activation reverses the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Cole, Robert D; Connor, David A; Natwora, Brendan; Gould, Thomas J

    2018-03-01

    Anxiety and stress disorders have been linked to deficits in fear extinction. Our laboratory and others have demonstrated that acute nicotine impairs contextual fear extinction, suggesting that nicotine exposure may have negative effects on anxiety and stress disorder symptomatology. However, the neurobiological mechanisms underlying the acute nicotine-induced impairment of contextual fear extinction are unknown. Therefore, based on the previous studies showing that brain-derived neurotrophic factor is central for fear extinction learning and acute nicotine dysregulates brain-derived neurotrophic factor signaling, we hypothesized that the nicotine-induced impairment of contextual fear extinction may involve changes in tyrosine receptor kinase B signaling. To test this hypothesis, we systemically, intraperitoneally, injected C57BL/6J mice sub-threshold doses (2.5 and 4.0 mg/kg) of 7,8-dihydroxyflavone, a small-molecule tyrosine receptor kinase B agonist that fully mimics the effects of brain-derived neurotrophic factor, or vehicle an hour before each contextual fear extinction session. Mice also received injections, intraperitoneally, of acute nicotine (0.18 mg/kg) or saline 2-4 min before extinction sessions. While the animals that received only 7,8-dihydroxyflavone did not show any changes in contextual fear extinction, 4.0 mg/kg of 7,8-dihydroxyflavone ameliorated the extinction deficits in mice administered acute nicotine. Overall, these results suggest that acute nicotine-induced impairment of context extinction may be related to a disrupted brain-derived neurotrophic factor signaling.

  2. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Science.gov (United States)

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  3. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    Directory of Open Access Journals (Sweden)

    Munazah F. Qureshi

    2017-11-01

    Full Text Available The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i sleep deprivation on contextual fear conditioned memory, and also (ii contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a non-sleep deprived (NSD; (b stress control (SC; and (c sleep-deprived (SD groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001 on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation.

  4. Oxytocin receptor antagonist atosiban impairs consolidation, but not reconsolidation of contextual fear memory in rats.

    Science.gov (United States)

    Abdullahi, Payman Rasise; Eskandarian, Sharaf; Ghanbari, Ali; Rashidy-Pour, Ali

    2018-05-23

    There is increasing evidence that oxytocin is involved in learning and memory process. This study investigated the effects of blockade of oxytocin receptors using the selective oxytocin receptor antagonist atosiban (ATO) on contextual fear memory consolidation and reconsolidation in male rats. Post-training injections of different doses of ATO (1, 10, 100 or 1000 µg/kg) impaired the 48 h retention performance in a dose-dependent manner. The same doses of ATO following memory reactivation did not impair subsequent expression of contextual fear memories which formed under low or high shock intensities and tested 24 h or one week following memory reactivation. Also, no effect was found when ATO was administrated in the absence of memory reactivation. Our finding is the first report that indicates endogenous oxytocin released during training play an important role in the consolidation, but not reconsolidation of contextual fear memory in rats. Copyright © 2018. Published by Elsevier B.V.

  5. Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors.

    Science.gov (United States)

    Alves, Ester; Lukoyanov, Nikolay; Serrão, Paula; Moura, Daniel; Moreira-Rodrigues, Mónica

    2016-06-01

    Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. Our aim was to study the mechanism of epinephrine-dependent contextual learning. Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.

  6. Pre-Training Reversible Inactivation of the Basal Amygdala (BA Disrupts Contextual, but Not Auditory, Fear Conditioning, in Rats.

    Directory of Open Access Journals (Sweden)

    Elisa Mari Akagi Jordão

    Full Text Available The basolateral amygdala complex (BLA, including the lateral (LA, basal (BA and accessory basal (AB nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.

  7. Post-Training Unilateral Amygdala Lesions Selectively Impair Contextual Fear Memories

    Science.gov (United States)

    Flavell, Charlotte R.; Lee, Jonathan L. C.

    2012-01-01

    The basolateral amygdala (BLA) and the dorsal hippocampus (dHPC) are both structures with key roles in contextual fear conditioning. During fear conditioning, it is postulated that contextual representations of the environment are formed in the hippocampus, which are then associated with foot shock in the amygdala. However, it is not known to what…

  8. Hippocampal Structural Plasticity Accompanies the Resulting Contextual Fear Memory Following Stress and Fear Conditioning

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.

    2013-01-01

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…

  9. Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory.

    Science.gov (United States)

    Jiang, Lizhu; Mao, Rongrong; Zhou, Qixin; Yang, Yuexiong; Cao, Jun; Ding, Yuqiang; Yang, Yuan; Zhang, Xia; Li, Lingjiang; Xu, Lin

    2016-03-01

    Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus.

  10. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors.

    Science.gov (United States)

    Zhang, D; Wang, X; Wang, B; Garza, J C; Fang, X; Wang, J; Scherer, P E; Brenner, R; Zhang, W; Lu, X-Y

    2017-07-01

    Post-traumatic stress disorder (PTSD) is characterized by exaggerated fear expression and impaired fear extinction. The underlying molecular and cellular mechanisms of PTSD are largely unknown. The current pharmacological and non-pharmacological treatments for PTSD are either ineffective or temporary with high relapse rates. Here we report that adiponectin-deficient mice exhibited normal contextual fear conditioning but displayed slower extinction learning. Infusions of adiponectin into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. Whole-cell patch-clamp recordings in brain slices revealed that intrinsic excitability of DG granule neurons was enhanced by adiponectin deficiency and suppressed after treatment with the adiponectin mimetic AdipoRon, which were associated with increased input resistance and hyperpolarized resting membrane potential, respectively. Moreover, deletion of AdipoR2, but not AdipoR1 in the DG, resulted in augmented fear expression and reduced extinction, accompanied by intrinsic hyperexcitability of DG granule neurons. Adiponectin and AdipoRon failed to induce facilitation of fear extinction and elicit inhibition of intrinsic excitability of DG neurons in AdipoR2 knockout mice. These results indicated that adiponectin action via AdipoR2 was both necessary and sufficient for extinction of contextual fear and intrinsic excitability of DG granule neurons, implying that enhancing or dampening DG neuronal excitability may cause resistance to or facilitation of extinction. Therefore, our findings provide a functional link between adiponectin/AdipoR2 activation, DG neuronal excitability and contextual fear extinction, and suggest that targeting adiponectin/AdipoR2 may be used to strengthen extinction-based exposure therapies for PTSD.

  11. The prelimbic cortex directs attention toward predictive cues during fear learning.

    Science.gov (United States)

    Sharpe, Melissa J; Killcross, Simon

    2015-06-01

    The prelimbic cortex is argued to promote conditioned fear expression, at odds with appetitive research implicating this region in attentional processing. Consistent with an attentional account, we report that the effect of prelimbic lesions on fear expression depends on the degree of competition between contextual and discrete cues. Further, when competition from contextual cues is low, we found that PL inactivation resulted in animals expressing fear toward irrelevant discrete cues; an effect selective to inactivation during the learning phase and not during retrieval. These data demonstrate that the prelimbic cortex modulates attention toward cues to preferentially direct fear responding on the basis of their predictive value. © 2015 Sharpe and Killcross; Published by Cold Spring Harbor Laboratory Press.

  12. Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice.

    Science.gov (United States)

    Tumolo, Jessica M; Kutlu, Munir Gunes; Gould, Thomas J

    2018-04-02

    Post-traumatic stress disorder (PTSD) is a devastating disorder with symptoms such as flashbacks, hyperarousal, and avoidance of reminders of the traumatic event. Exposure therapy, which attempts to extinguish fear responses, is a commonly used treatment for PTSD but relapse following successful exposure therapy is a frequent problem. In rodents, spontaneous recovery (SR), where extinguished fear responses resurface following extinction treatment, is used as a model of fear relapse. Previous studies from our lab showed that chronic nicotine impaired fear extinction and acute nicotine enhanced SR of contextual fear in adult male mice. In addition, we showed that acute nicotine's effects were specific to SR as acute nicotine did not affect recall of contextual fear conditioning in the absence of extinction. However, effects of chronic nicotine administration on SR are not known. Therefore, in the present study, we investigated if chronic nicotine administration altered SR or recall of contextual fear in adult male and female C57BL/6J mice. Our results showed that chronic nicotine significantly enhanced SR in female mice and significantly decreased SR in males. Chronic nicotine had no effect on recall of contextual fear in males or females. Female sham mice also had significantly less baseline SR than male sham mice. Overall, these results demonstrate sex differences in SR of fear memories and that chronic nicotine modulates these effects on SR but nicotine does not alter recall of contextual fear. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning.

    Science.gov (United States)

    Alexander, Jon C; McDermott, Carmel M; Tunur, Tumay; Rands, Vicky; Stelly, Claire; Karhson, Debra; Bowlby, Mark R; An, W Frank; Sweatt, J David; Schrader, Laura A

    2009-03-01

    Potassium channel interacting proteins (KChIPs) are members of a family of calcium binding proteins that interact with Kv4 potassium (K(+)) channel primary subunits and also act as transcription factors. The Kv4 subunit is a primary K(+) channel pore-forming subunit, which contributes to the somatic and dendritic A-type currents throughout the nervous system. These A-type currents play a key role in the regulation of neuronal excitability and dendritic processing of incoming synaptic information. KChIP3 is also known as calsenilin and as the transcription factor, downstream regulatory element antagonist modulator (DREAM), which regulates a number of genes including prodynorphin. KChIP3 and Kv4 primary channel subunits are highly expressed in hippocampus, an area of the brain important for learning and memory. Through its various functions, KChIP3 may play a role in the regulation of synaptic plasticity and learning and memory. We evaluated the role of KChIP3 in a hippocampus-dependent memory task, contextual fear conditioning. Male KChIP3 knockout (KO) mice showed significantly enhanced memory 24 hours after training as measured by percent freezing. In addition, we found that membrane association and interaction with Kv4.2 of KChIP3 protein was significantly decreased and nuclear KChIP3 expression was increased six hours after the fear conditioning training paradigm with no significant change in KChIP3 mRNA. In addition, prodynorphin mRNA expression was significantly decreased six hours after fear conditioning training in wild-type (WT) but not in KO animals. These data suggest a role for regulation of gene expression by KChIP3/DREAM/calsenilin in consolidation of contextual fear conditioning memories.

  14. Hippocampal structural plasticity accompanies the resulting contextual fear memory following stress and fear conditioning.

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D; Molina, Victor A

    2013-10-15

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to stress prevented both the enhancement of fear retention and an increase in the density of total and mature dendritic spines in DH. These findings emphasize the role of the stress-induced attenuation of GABAergic neurotransmission in BLA in the promoting influence of stress on fear memory and on synaptic remodeling in DH. In conclusion, the structural remodeling in DH accompanied the facilitated fear memory following a combination of fear conditioning and stressful stimulation.

  15. Selective neuronal degeneration in the retrosplenial cortex impairs the recall of contextual fear memory.

    Science.gov (United States)

    Sigwald, Eric L; Genoud, Manuel E; Giachero, Marcelo; de Olmos, Soledad; Molina, Víctor A; Lorenzo, Alfredo

    2016-05-01

    The retrosplenial cortex (RSC) is one of the largest cortical areas in rodents, and is subdivided in two main regions, A29 and A30, according to their cytoarchitectural organization and connectivities. However, very little is known about the functional activity of each RSC subdivision during the execution of complex cognitive tasks. Here, we used a well-established fear learning protocol that induced long-lasting contextual fear memory and showed that during evocation of the fear memory, the expression of early growth response gene 1 was up-regulated in A30, and in other brain areas implicated in fear and spatial memory, however, was down-regulated in A29, including layers IV and V. To search for the participation of A29 on fear memory, we triggered selective degeneration of neurons within cortical layers IV and V of A29 by using a non-invasive protocol that takes advantage of the vulnerability that these neurons have MK801-toxicity and the modulation of this neurodegeneration by testosterone. Application of 5 mg/kg MK801 in intact males induced negligible neuronal degeneration of A29 neurons and had no impact on fear memory retrieval. However, in orchiectomized rats, 5 mg/kg MK801 induced overt degeneration of layers IV-V neurons of A29, significantly impairing fear memory recall. Degeneration of A29 neurons did not affect exploratory or anxiety-related behavior nor altered unconditioned freezing. Importantly, protecting A29 neurons from MK801-toxicity by testosterone preserved fear memory recall in orchiectomized rats. Thus, neurons within cortical layers IV-V of A29 are critically required for efficient retrieval of contextual fear memory.

  16. Differential effects of α4β2 nicotinic receptor antagonists and partial-agonists on contextual fear extinction in male C57BL/6 mice.

    Science.gov (United States)

    Kutlu, Munir Gunes; Tumolo, Jessica M; Cann, Courtney; Gould, Thomas J

    2018-04-01

    Numerous studies have attributed the psychopathology of post-traumatic stress disorder (PTSD) to maladaptive behavioral responses such as an inability to extinguish fear. While exposure therapies are mostly effective in treating these disorders by enhancing extinction learning, relapse of PTSD symptoms is common. Although several studies indicated a role for cholinergic transmission and nicotinic acetylcholine receptors (nAChRs) in anxiety and stress disorder symptomatology, very little is known about the specific contribution of nAChRs to fear extinction OBJECTIVES: In the present study, we examined the effects of inhibition and desensitization of α4β2 nAChRs via a full antagonist (Dihydro-beta-erythroidine (DhβE)) and two α4β2 nAChR partial-agonists (varenicline and sazetidine-A) on contextual fear extinction, locomotor activity, and spontaneous recovery of contextual fear in mice. We trained and tested the subjects in a contextual fear extinction as well as an open field paradigm and spontaneous recovery following injections of DhβE, varenicline, and sazetidine-A. Our results demonstrated that lower doses of DhβE (1 mg/kg) and sazetidine-A (0.01 mg/kg) enhanced contextual fear extinction whereas higher doses of varenicline (0.1 mg/kg) and sazetidine-A (0.1 mg/kg) resulted in impaired contextual fear extinction. However, the higher dose of sazetidine-A (0.1 mg/kg) decreased locomotor activity, which may contribute to increased freezing response observed during fear extinction. Finally, we found that the low dose of DhβE, but not sazetidine-A, also decreased spontaneous recovery of contextual fear following fear extinction. Overall, these results suggest that inhibition and desensitization of α4β2 nAChRs enhance extinction of contextual fear memories. This suggests that modulation of α4β2 nAChRs may be employed as an alternative pharmacological strategy to aid exposure therapies associated with PTSD by augmenting contextual fear extinction

  17. Serotonergic Modulation of Conditioned Fear

    Directory of Open Access Journals (Sweden)

    Judith R. Homberg

    2012-01-01

    Full Text Available Conditioned fear plays a key role in anxiety disorders as well as depression and other neuropsychiatric conditions. Understanding how neuromodulators drive the associated learning and memory processes, including memory consolidation, retrieval/expression, and extinction (recall, is essential in the understanding of (individual differences in vulnerability to these disorders and their treatment. The human and rodent studies I review here together reveal, amongst others, that acute selective serotonin reuptake inhibitor (SSRI treatment facilitates fear conditioning, reduces contextual fear, and increases cued fear, chronic SSRI treatment reduces both contextual and cued fear, 5-HT1A receptors inhibit the acquisition and expression of contextual fear, 5-HT2A receptors facilitates the consolidation of cued and contextual fear, inactivation of 5-HT2C receptors facilitate the retrieval of cued fear memory, the 5-HT3 receptor mediates contextual fear, genetically induced increases in serotonin levels are associated with increased fear conditioning, impaired cued fear extinction, or impaired extinction recall, and that genetically induced 5-HT depletion increases fear conditioning and contextual fear. Several explanations are presented to reconcile seemingly paradoxical relationships between serotonin levels and conditioned fear.

  18. TRPC3 channels critically regulate hippocampal excitability and contextual fear memory.

    Science.gov (United States)

    Neuner, Sarah M; Wilmott, Lynda A; Hope, Kevin A; Hoffmann, Brian; Chong, Jayhong A; Abramowitz, Joel; Birnbaumer, Lutz; O'Connell, Kristen M; Tryba, Andrew K; Greene, Andrew S; Savio Chan, C; Kaczorowski, Catherine C

    2015-03-15

    Memory formation requires de novo protein synthesis, and memory disorders may result from misregulated synthesis of critical proteins that remain largely unidentified. Plasma membrane ion channels and receptors are likely candidates given their role in regulating neuron excitability, a candidate memory mechanism. Here we conduct targeted molecular monitoring and quantitation of hippocampal plasma membrane proteins from mice with intact or impaired contextual fear memory to identify putative candidates. Here we report contextual fear memory deficits correspond to increased Trpc3 gene and protein expression, and demonstrate TRPC3 regulates hippocampal neuron excitability associated with memory function. These data provide a mechanistic explanation for enhanced contextual fear memory reported herein following knockdown of TRPC3 in hippocampus. Collectively, TRPC3 modulates memory and may be a feasible target to enhance memory and treat memory disorders. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear.

    Science.gov (United States)

    Tronson, Natalie C; Schrick, Christina; Guzman, Yomayra F; Huh, Kyu Hwan; Srivastava, Deepak P; Penzes, Peter; Guedea, Anita L; Gao, Can; Radulovic, Jelena

    2009-03-18

    Learning processes mediating conditioning and extinction of contextual fear require activation of several key signaling pathways in the hippocampus. Principal hippocampal CA1 neurons respond to fear conditioning by a coordinated activation of multiple protein kinases and immediate early genes, such as cFos, enabling rapid and lasting consolidation of contextual fear memory. The extracellular signal-regulated kinase (Erk) additionally acts as a central mediator of fear extinction. It is not known however, whether these molecular events take place in overlapping or nonoverlapping neuronal populations. By using mouse models of conditioning and extinction of fear, we set out to determine the time course of cFos and Erk activity, their cellular overlap, and regulation by afferent cholinergic input from the medial septum. Analyses of cFos(+) and pErk(+) cells by immunofluorescence revealed predominant nuclear activation of either protein during conditioning and extinction of fear, respectively. Transgenic cFos-LacZ mice were further used to label in vivo Fos(+) hippocampal cells during conditioning followed by pErk immunostaining after extinction. The results showed that these signaling molecules were activated in segregated populations of hippocampal principal neurons. Furthermore, immunotoxin-induced lesions of medial septal neurons, providing cholinergic input into the hippocampus, selectively abolished Erk activation and extinction of fear without affecting cFos responses and conditioning. These results demonstrate that extinction mechanisms based on Erk signaling involve a specific population of CA1 principal neurons distinctively regulated by afferent cholinergic input from the medial septum.

  20. Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity.

    Science.gov (United States)

    Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes

    2017-10-01

    Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    Science.gov (United States)

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  2. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Science.gov (United States)

    Kittelberger, Kara A; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  3. Natural Amyloid-Beta Oligomers Acutely Impair the Formation of a Contextual Fear Memory in Mice

    Science.gov (United States)

    Kittelberger, Kara A.; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G.

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss. PMID:22238679

  4. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential.

    Science.gov (United States)

    Uwaya, Akemi; Lee, Hyunjin; Park, Jonghyuk; Lee, Hosung; Muto, Junko; Nakajima, Sanae; Ohta, Shigeo; Mikami, Toshio

    2016-02-24

    Histone acetylation is regulated in response to stress and plays an important role in learning and memory. Chronic stress is known to deteriorate cognition, whereas acute stress facilitates memory formation. However, whether acute stress facilitates memory formation when it is applied after fear stimulation is not yet known. Therefore, this study aimed to investigate the effect of acute stress applied after fear training on memory formation, mRNA expression of brain-derived neurotrophic factor (BDNF), epigenetic regulation of BDNF expression, and corticosterone level in mice in vivo. Mice were subjected to acute immobilization stress for 30 min at 60 or 90 min after contextual fear conditioning training, and acetylation of histone 3 at lysine 14 (H3K14) and level of corticosterone were measured using western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A freezing behavior test was performed 24 h after training, and mRNA expression of BDNF was measured using real-time polymerase chain reactions. Different groups of mice were used for each test. Freezing behavior significantly decreased with the down-regulation of BDNF mRNA expression caused by acute immobilization stress at 60 min after fear conditioning training owing to the reduction of H3K14 acetylation. However, BDNF mRNA expression and H3K14 acetylation were not reduced in animals subjected to immobilization stress at 90 min after the training. Further, the corticosterone level was significantly high in mice subjected to immobilization stress at 60 min after the training. Acute immobilization stress for 30 min at 60 min after fear conditioning training impaired memory formation and reduced BDNF mRNA expression and H3K14 acetylation in the hippocampus of mice owing to the high level of corticosterone.

  5. Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex

    Science.gov (United States)

    Rizzo, Valerio; Touzani, Khalid; Raveendra, Bindu L.; Swarnkar, Supriya; Lora, Joan; Kadakkuzha, Beena M.; Liu, Xin-An; Zhang, Chao; Betel, Doron; Stackman, Robert W.; Puthanveettil, Sathyanarayanan V.

    2016-01-01

    Background Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. Methods Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. Results We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. Conclusions Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC. PMID:28503670

  6. Fearful contextual expression impairs the encoding and recognition of target faces: an ERP study

    Directory of Open Access Journals (Sweden)

    Huiyan eLin

    2015-09-01

    Full Text Available Previous event-related potential (ERP studies have shown that the N170 to faces is modulated by the emotion of the face and its context. However, it is unclear how the encoding of emotional target faces as reflected in the N170 is modulated by the preceding contextual facial expression when temporal onset and identity of target faces are unpredictable. In addition, no study as yet has investigated whether contextual facial expression modulates later recognition of target faces. To address these issues, participants in the present study were asked to identify target faces (fearful or neutral that were presented after a sequence of fearful or neutral contextual faces. The number of sequential contextual faces was random and contextual and target faces were of different identities so that temporal onset and identity of target faces were unpredictable. Electroencephalography (EEG data was recorded during the encoding phase. Subsequently, participants had to perform an unexpected old/new recognition task in which target face identities were presented in either the encoded or the non-encoded expression. ERP data showed a reduced N170 to target faces in fearful as compared to neutral context regardless of target facial expression. In the later recognition phase, recognition rates were reduced for target faces in the encoded expression when they had been encountered in fearful as compared to neutral context. The present findings suggest that fearful compared to neutral contextual faces reduce the allocation of attentional resources towards target faces, which results in limited encoding and recognition of target faces.

  7. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Kara A Kittelberger

    Full Text Available Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD. It has been proposed that soluble amyloid-beta (Abeta oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  8. The Amygdala Is Critical for Trace, Delay, and Contextual Fear Conditioning

    Science.gov (United States)

    Kochli, Daniel E.; Thompson, Elaine C.; Fricke, Elizabeth A.; Postle, Abagail F.; Quinn, Jennifer J.

    2015-01-01

    Numerous investigations have definitively shown amygdalar involvement in delay and contextual fear conditioning. However, much less is known about amygdala contributions to trace fear conditioning, and what little evidence exists is conflicting as noted in previous studies. This discrepancy may result from selective targeting of individual nuclei…

  9. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    Science.gov (United States)

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  10. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    Science.gov (United States)

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood. © 2014 Society for the Study of Addiction.

  11. Cannabidiol regulation of learned fear: implications for treating anxiety-related disorders

    Directory of Open Access Journals (Sweden)

    Regimantas Jurkus

    2016-11-01

    Full Text Available Anxiety and trauma-related disorders are psychiatric diseases with a lifetime prevalence of up to 25%. Phobias and post-traumatic stress disorder (PTSD are characterized by abnormal and persistent memories of fear-related contexts and cues. The effects of psychological treatments such as exposure therapy are often only temporary and medications can be ineffective and have adverse side effects. Growing evidence from human and animal studies indicates that cannabidiol, the main non-psychotomimetic phytocannabinoid present in Cannabis sativa, alleviates anxiety in paradigms assessing innate fear. More recently, the effects of cannabidiol on learned fear have been investigated in preclinical studies with translational relevance for phobias and PTSD. Here we review the findings from these studies, with an emphasis on cannabidiol regulation of contextual fear. The evidence indicates that cannabidiol reduces learned fear in different ways: (1 cannabidiol decreases fear expression acutely, (2 cannabidiol disrupts memory reconsolidation, leading to sustained fear attenuation upon memory retrieval, and (3 cannabidiol enhances extinction, the psychological process by which exposure therapy inhibits learned fear. We also present novel data on cannabidiol regulation of learned fear related to explicit cues, which indicates that auditory fear expression is also reduced acutely by cannabidiol. We conclude by outlining future directions for research to elucidate the neural circuit, psychological, cellular, and molecular mechanisms underlying the regulation of fear memory processing by cannabidiol. This line of investigation may lead to the development of cannabidiol as a novel therapeutic approach for treating anxiety and trauma-related disorders such as phobias and PTSD in the future.

  12. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  13. Acute nicotine disrupts consolidation of contextual fear extinction and alters long-term memory-associated hippocampal kinase activity.

    Science.gov (United States)

    Kutlu, Munir Gunes; Garrett, Brendan; Gadiwalla, Sana; Tumolo, Jessica M; Gould, Thomas J

    2017-11-01

    Previous research has shown that acute nicotine, an agonist of nAChRs, impaired fear extinction. However, the effects of acute nicotine on consolidation of contextual fear extinction memories and associated cell signaling cascades are unknown. Therefore, we examined the effects of acute nicotine injections before (pre-extinction) and after (post-extinction) contextual fear extinction on behavior and the phosphorylation of dorsal and ventral hippocampal ERK1/2 and JNK1 and protein levels on the 1st and 3rd day of extinction. Our results showed that acute nicotine administered prior to extinction sessions downregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but not dorsal hippocampus, and JNK1 in both dorsal and ventral hippocampus on the 3rd extinction day. These effects were absent on the 1st day of extinction. We also showed that acute nicotine administered immediately and 30 min, but not 6 h, following extinction impaired contextual fear extinction suggesting that acute nicotine disrupts consolidation of contextual fear extinction memories. Finally, acute nicotine injections immediately after extinction sessions upregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but did not affect JNK1. These results show that acute nicotine impairs contextual fear extinction potentially by altering molecular processes responsible for the consolidation of extinction memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle

    Directory of Open Access Journals (Sweden)

    Evelyn eGlotzbach-Schoon

    2013-04-01

    Full Text Available The serotonin (5-HT and neuropeptide S (NPS systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through context conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT and the NPS receptor (NPSR1 were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers and NPSR1 rs324981 (T+ vs. AA carriers polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality paradigm. During acquisition, one virtual office room (anxiety context, CXT+ was paired with an unpredictable electric stimulus (unconditioned stimulus, US, whereas another virtual office room was not paired with any US (safety context, CXT-. During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+ exhibited higher startle responses in CXT+ compared to CXT-. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT-. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Contextual fear reflected in potentiated startle responses may be an endophenotype for anxiety disorders.

  15. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    Science.gov (United States)

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced

  16. Sexual behavior modulates contextual fear memory through dopamine D1/D5 receptors.

    Science.gov (United States)

    Bai, Hua-Yi; Cao, Jun; Liu, Na; Xu, Lin; Luo, Jian-Hong

    2009-03-01

    Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable experiences, especially instinctive behaviors such as sex, might modulate traumatic memory through a memory competition mechanism. Here, we first report that male rats persistently expressed much lower fear responses when exposed to females, but not when exposed to males, for 24 h immediately after contextual fear conditioning. Remarkably, this effect of sexual behavior was blocked by either systemic or intrahippocampal injection of the dopamine D1/D5 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) and was mimicked by systemic but not intrahippocampal injection of the D1/D5 receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol hydrochloride (SKF39393). Furthermore, as a candidate mechanism underlying contextual fear memory, the impaired induction of hippocampal long-term potentiation (LTP) elicited by conditioned fear was rescued in male rats immediately exposed to female but not male rats for 24 h. Systemic injection of the dopamine D1/D5 receptor antagonist SCH23390 or agonist SKF38393 prevented or mimicked the effect of sexual behavior on the impaired induction of hippocampal LTP. Thus, our finding suggests that dopaminergic functions may, at least partially, govern competition between contextual fear and enjoyable memories through the modulation of hippocampal LTP.

  17. Toll-like receptor 7-mediated enhancement of contextual fear memory in mice.

    Science.gov (United States)

    Kubo, Yasunori; Yanagawa, Yoshiki; Matsumoto, Machiko; Hiraide, Sachiko; Kobayashi, Masanobu; Togashi, Hiroko

    2012-10-01

    Toll-like receptor (TLR) 7 recognizes viral single-stranded RNA and triggers production of the type I interferons (IFNs) IFN-α and IFN-β. Imiquimod, a synthetic TLR7 ligand, induces production of type I IFNs and is used clinically as an antiviral and antitumor drug. In the present study, we examined the effect of imiquimod on conditioned and innate fear behaviors in mice. Imiquimod was administered 2, 4, or 15 h before contextual fear conditioning. Imiquimod treatment 4 or 15 h before fear conditioning significantly enhanced context-dependent freezing behavior. This imiquimod-induced enhancement of fear-related behaviors was observed 120 h after fear conditioning. In contrast, imiquimod failed to enhance context-dependent freezing behavior in TLR7 knockout mice. Imiquimod had no significant effect on pain threshold or on innate fear-related behavior, as measured by the elevated plus-maze. The levels of type I IFN mRNA in the brain were significantly increased at 2 h after imiquimod treatment. Imiquimod also increased interleukin (IL)-1β mRNA expression in the brain at 4 h following administration, while mRNA expression of F4/80, a macrophage marker, was unaffected by imiquimod treatment. Our findings suggest that TLR7-mediated signaling enhances contextual fear memory in mice, possibly by inducing the expression of type I IFNs and IL-1β in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice

    Science.gov (United States)

    Poole, Rachel L.; Braak, David; Gould, Thomas J.

    2015-01-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, this suggests that the developing hippocampus may be sensitive to the effects of caffeine. PMID:25827925

  19. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice.

    Science.gov (United States)

    Poole, Rachel L; Braak, David; Gould, Thomas J

    2016-02-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, which suggests that the developing hippocampus may be sensitive to the effects of caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear

    Directory of Open Access Journals (Sweden)

    Dennis R. Sparta

    2014-05-01

    Full Text Available The development of excessive fear and/or stress responses to environmental cues such as contexts associated with a traumatic event is a hallmark of post-traumatic stress disorder (PTSD. The basolateral amygdala (BLA has been implicated as a key structure mediating contextual fear conditioning. In addition, the hippocampus has an integral role in the encoding and processing of contexts associated with strong, salient stimuli such as fear. Given that both the BLA and hippocampus play an important role in the regulation of contextual fear conditioning, examining the functional connectivity between these two structures may elucidate a role for this pathway in the development of PTSD. Here, we used optogenetic strategies to demonstrate that the BLA sends a strong glutamatergic projection to the hippocampal formation through the entorhinal cortex (EC. Next, we photoinhibited glutamatergic fibers from the BLA terminating in the EC during the acquisition or expression of contextual fear conditioning. In mice that received optical inhibition of the BLA-to-EC pathway during the acquisition session, we observed a significant decrease in freezing behavior in a context re-exposure session. In contrast, we observed no differences in freezing behavior in mice that were only photoinhibited during the context re-exposure session. These data demonstrate an important role for the BLA-to-EC glutamatergic pathway in the acquisition of contextual fear conditioning.

  2. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  3. Withdrawal from Chronic Nicotine Administration Impairs Contextual Fear Conditioning in C57BL/6 Mice

    OpenAIRE

    Davis, Jennifer A.; James, John R.; Siegel, Steven J.; Gould, Thomas J.

    2005-01-01

    The effects of acute nicotine administration (0.09 mg/kg nicotine), chronic nicotine administration (6.3 mg/kg/d nicotine for 14 d), and withdrawal from chronic nicotine administration on fear conditioning in C57BL/6 mice were examined. Mice were trained using two coterminating conditioned stimulus (30 s; 85 dB white noise)– unconditioned stimulus (2 s; 0.57 mA foot shock) pairings and tested 24 h later for contextual and cued fear conditioning. Acute nicotine administration enhanced contextu...

  4. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory.

    Science.gov (United States)

    Vetere, Gisella; Barbato, Christian; Pezzola, Silvia; Frisone, Paola; Aceti, Massimiliano; Ciotti, MariaTeresa; Cogoni, Carlo; Ammassari-Teule, Martine; Ruberti, Francesca

    2014-12-01

    Post-transcriptional gene regulation mediated by microRNAs (miRNAs) is implicated in memory formation; however, the function of miR-92 in this regulation is uncharacterized. The present study shows that training mice in contextual fear conditioning produces a transient increase in miR-92 levels in the hippocampus and decreases several miR-92 gene targets, including: (i) the neuronal Cl(-) extruding K(+) Cl(-) co-transporter 2 (KCC2) protein; (ii) the cytoplasmic polyadenylation protein (CPEB3), an RNA-binding protein regulator of protein synthesis in neurons; and (iii) the transcription factor myocyte enhancer factor 2D (MEF2D), one of the MEF2 genes which negatively regulates memory-induced structural plasticity. Selective inhibition of endogenous miR-92 in CA1 hippocampal neurons, by a sponge lentiviral vector expressing multiple sequences imperfectly complementary to mature miR-92 under the control of the neuronal specific synapsin promoter, leads to up-regulation of KCC2, CPEB3 and MEF2D, impairs contextual fear conditioning, and prevents a memory-induced increase in the spine density. Taken together, the results indicate that neuronal-expressed miR-92 is an endogenous fine regulator of contextual fear memory in mice. © 2014 Wiley Periodicals, Inc.

  5. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno

    2012-01-01

    There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883

  6. Prior stress promotes the generalization of contextual fear memories: Involvement of the gabaergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Bender, C L; Otamendi, A; Calfa, G D; Molina, V A

    2018-04-20

    Fear generalization occurs when a response, previously acquired with a threatening stimulus, is transferred to a similar one. However, it could be maladaptive when stimuli that do not represent a real threat are appraised as dangerous, which is a hallmark of several anxiety disorders. Stress exposure is a major risk factor for the occurrence of anxiety disorders and it is well established that it influences different phases of fear memory; nevertheless, its impact on the generalization of contextual fear memories has been less studied. In the present work, we have characterized the impact of acute restraint stress prior to contextual fear conditioning on the generalization of this fear memory, and the role of the GABAergic signaling within the basolateral amygdala complex (BLA) on the stress modulatory effects. We have found that a single stress exposure promoted the generalization of this memory trace to a different context that was well discriminated in unstressed conditioned animals. Moreover, this effect was dependent on the formation of a contextual associative memory and on the testing order (i.e., conditioning context first vs generalization context first). Furthermore, we observed that increasing GABA-A signaling by intra-BLA midazolam administration prior to the stressful session exposure prevented the generalization of fear memory, whereas intra-BLA administration of the GABA-A antagonist (Bicuculline), prior to fear conditioning, induced the generalization of fear memory in unstressed rats. We concluded that stress exposure, prior to contextual fear conditioning, promotes the generalization of fear memory and that the GABAergic transmission within the BLA has a critical role in this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structuring mobile and contextual learning

    NARCIS (Netherlands)

    Glahn, Christian; Specht, Marcus

    2011-01-01

    Glahn, C., & Specht, M. (2011). Structuring mobile and contextual learning. In Proceedings of the 10th World Conference on Mobile and Contextual Learning (pp. 188-195). October, 18-21, 2011, Beijing, China.

  8. Blocking mineralocorticoid receptors prior to retrieval reduces contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Ming Zhou

    Full Text Available BACKGROUND: Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs and glucocorticoid receptors (GRs respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. METHODOLOGY/PRINCIPAL FINDINGS: Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2; tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3 and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. CONCLUSIONS/SIGNIFICANCE: We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.

  9. Extinction after retrieval: effects on the associative and nonassociative components of remote contextual fear memory.

    Science.gov (United States)

    Costanzi, Marco; Cannas, Sara; Saraulli, Daniele; Rossi-Arnaud, Clelia; Cestari, Vincenzo

    2011-01-01

    Long-lasting memories of adverse experiences are essential for individuals' survival but are also involved, in the form of recurrent recollections of the traumatic experience, in the aetiology of anxiety diseases (e.g., post-traumatic stress disorder [PTSD]). Extinction-based erasure of fear memories has long been pursued as a behavioral way to treat anxiety disorders; yet, such a procedure turns out to be transient, context-dependent, and ineffective unless it is applied immediately after trauma. Recent evidence indicates that, in both rats and humans, extinction training can prevent the return of fear if administered within the reconsolidation window, when memories become temporarily labile and susceptible of being updated. Here, we show that the reconsolidation-extinction procedure fails to prevent the spontaneous recovery of a remote contextual fear memory in a mouse model of PTSD, as well as the long-lasting behavioral abnormalities induced by traumatic experience on anxiety and in both social and cognitive domains (i.e., social withdrawal and spatial learning deficits). Such a failure appears to be related to the ineffectiveness of the reconsolidation-extinction procedure in targeting the pathogenic process of fear sensitization, a nonassociative component of traumatic memory that causes animals to react aberrantly to harmless stimuli. This indicates fear sensitization as a major target for treatments aimed at mitigating anxiety and the behavioral outcomes of traumatic experiences.

  10. Differential role of Rac in the basolateral amygdala and cornu ammonis 1 in the reconsolidation of auditory and contextual Pavlovian fear memory in rats.

    Science.gov (United States)

    Wu, Ping; Ding, Zeng-Bo; Meng, Shi-Qiu; Shen, Hao-Wei; Sun, Shi-Chao; Luo, Yi-Xiao; Liu, Jian-Feng; Lu, Lin; Zhu, Wei-Li; Shi, Jie

    2014-08-01

    A conditioned stimulus (CS) is associated with a fearful unconditioned stimulus (US) in the traditional fear conditioning model. After fear conditioning, the CS-US association memory undergoes the consolidation process to become stable. Consolidated memory enters an unstable state after retrieval and requires the reconsolidation process to stabilize again. Evidence indicates the important role of Rac (Ras-related C3 botulinum toxin substrate) in the acquisition and extinction of fear memory. In the present study, we hypothesized that Rac in the amygdala is crucial for the reconsolidation of auditory and contextual Pavlovian fear memory. Auditory and contextual fear conditioning and microinjections of the Rac inhibitor NSC23766 were used to explore the role of Rac in the reconsolidation of auditory and contextual Pavlovian fear memory in rats. A microinjection of NSC23766 into the basolateral amygdala (BLA) but not central amygdala (CeA) or cornu ammonis 1 (CA1) immediately after memory retrieval disrupted the reconsolidation of auditory Pavlovian fear memory. A microinjection of NSC23766 into the CA1 but not BLA or CeA after memory retrieval disrupted the reconsolidation of contextual Pavlovian fear memory. Our experiments demonstrate that Rac in the BLA is crucial for the reconsolidation of auditory Pavlovian fear memory, whereas Rac in the CA1 is critical for the reconsolidation of contextual Pavlovian fear memory.

  11. Noradrenergic Modulation of Fear Conditioning and Extinction.

    Science.gov (United States)

    Giustino, Thomas F; Maren, Stephen

    2018-01-01

    The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.

  12. Noradrenergic Modulation of Fear Conditioning and Extinction

    Directory of Open Access Journals (Sweden)

    Thomas F. Giustino

    2018-03-01

    Full Text Available The locus coeruleus norepinephrine (LC-NE system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning the locus coeruleus (LC promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP. Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.

  13. Instructed fear learning, extinction, and recall: additive effects of cognitive information on emotional learning of fear.

    Science.gov (United States)

    Javanbakht, Arash; Duval, Elizabeth R; Cisneros, Maria E; Taylor, Stephan F; Kessler, Daniel; Liberzon, Israel

    2017-08-01

    The effects of instruction on learning of fear and safety are rarely studied. We aimed to examine the effects of cognitive information and experience on fear learning. Fourty healthy participants, randomly assigned to three groups, went through fear conditioning, extinction learning, and extinction recall with two conditioned stimuli (CS+). Information was presented about the presence or absence of conditioned stimulus-unconditioned stimulus (CS-US) contingency at different stages of the experiment. Information about the CS-US contingency prior to fear conditioning enhanced fear response and reduced extinction recall. Information about the absence of CS-US contingency promoted extinction learning and recall, while omission of this information prior to recall resulted in fear renewal. These findings indicate that contingency information can facilitate fear expression during fear learning, and can facilitate extinction learning and recall. Information seems to function as an element of the larger context in which conditioning occurs.

  14. Observational fear learning in degus is correlated with temporal vocalization patterns.

    Science.gov (United States)

    Lidhar, Navdeep K; Insel, Nathan; Dong, June Yue; Takehara-Nishiuchi, Kaori

    2017-08-14

    Some animals learn to fear a situation after observing another individual come to harm, and this learning is influenced by the animals' social relationship and history. An important but sometimes overlooked factor in studies of observational fear learning is that social context not only affects observers, but may also influence the behavior and communications expressed by those being observed. Here we sought to investigate whether observational fear learning in the degu (Octodon degus) is affected by social familiarity, and the degree to which vocal expressions of alarm or distress contribute. 'Demonstrator' degus underwent contextual fear conditioning in the presence of a cagemate or stranger observer. Among the 15 male pairs, observers of familiar demonstrators exhibited higher freezing rates than observers of strangers when returned to the conditioning environment one day later. Observer freezing during testing was, however, also related to the proportion of short- versus long- inter-call-intervals (ICIs) in vocalizations recorded during prior conditioning. In a regression model that included both social relationship and ICI patterns, only the latter was significant. Further investigation of vocalizations, including use of a novel, directed k-means clustering approach, suggested that temporal structure rather than tonal variations may have been responsible for communicating danger. These data offer insight into how different expressions of distress or fear may impact an observer, adding to the complexity of social context effects in studies of empathy and social cognition. The experiments also offer new data on degu alarm calls and a potentially novel methodological approach to complex vocalizations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Stimulus fear-relevance and the vicarious learning pathway to childhood fears.

    Science.gov (United States)

    Askew, Chris; Dunne, Güler; Özdil, Zehra; Reynolds, Gemma; Field, Andy P

    2013-10-01

    Enhanced fear learning for fear-relevant stimuli has been demonstrated in procedures with adults in the laboratory. Three experiments investigated the effect of stimulus fear-relevance on vicarious fear learning in children (aged 6-11 years). Pictures of stimuli with different levels of fear-relevance (flowers, caterpillars, snakes, worms, and Australian marsupials) were presented alone or together with scared faces. In line with previous studies, children's fear beliefs and avoidance preferences increased for stimuli they had seen with scared faces. However, in contrast to evidence with adults, learning was mostly similar for all stimulus types irrespective of fear-relevance. The results support a proposal that stimulus preparedness is bypassed when children observationally learn threat-related information from adults.

  16. The prelimbic cortex uses contextual cues to modulate responding towards predictive stimuli during fear renewal.

    Science.gov (United States)

    Sharpe, Melissa; Killcross, Simon

    2015-02-01

    Previous research suggests the prelimbic (PL) cortex is involved in expression of conditioned fear (Burgos-Robles, Vidal-Gonzalez, & Quirk, 2009; Corcoran & Quirk, 2007). However, there is a long history of research in the appetitive domain which implicates this region in using higher-order cues to modulate a behavioural response (Birrell & Brown, 2000; Floresco, Block, & Tse, 2008; Marquis, Killcross, & Haddon, 2007; Sharpe & Killcross, 2014). For example, the PL cortex is necessary to allow animals to use contextual cues to disambiguate response conflict in ambiguous circumstances (Marquis et al., 2007). Using an ABA fear renewal procedure, we assessed the role of the PL cortex in using contextual cues to modulate a response towards a conditioned stimulus (CS) in an aversive setting. We found that pre-training lesions of the PL cortex did not impact on the expression or extinction of conditioned fear. Rather, they selectively abolished renewal. Functional inactivation of the PL cortex during extinction did not disrupt the subsequent renewal of conditioned fear or the ability of animals to exhibit fear towards a CS during the extinction session. However, PL inactivation during the renewal test session disrupted the ability of animals to demonstrate a reinstatement of responding in the renewal context. An analysis of orienting responses showed that renewal deficits were accompanied by a lack of change in attentional responding towards the CS. These data suggest the PL cortex uses contextual cues to modulate both a behavioural and an attentional response during aversive procedures. We argue that the role of the PL cortex in the expression of conditioned fear is to use higher-order information to modulate responding towards predictive cues in ambiguous circumstance. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning.

    Directory of Open Access Journals (Sweden)

    Sabiha K Barot

    2009-07-01

    Full Text Available Associative conditioning is a ubiquitous form of learning throughout the animal kingdom and fear conditioning is one of the most widely researched models for studying its neurobiological basis. Fear conditioning is also considered a model system for understanding phobias and anxiety disorders. A fundamental issue in fear conditioning regards the existence and location of neurons in the brain that receive convergent information about the conditioned stimulus (CS and unconditioned stimulus (US during the acquisition of conditioned fear memory. Convergent activation of neurons is generally viewed as a key event for fear learning, yet there has been almost no direct evidence of this critical event in the mammalian brain.Here, we used Arc cellular compartmental analysis of temporal gene transcription by fluorescence in situ hybridization (catFISH to identify neurons activated during single trial contextual fear conditioning in rats. To conform to temporal requirements of catFISH analysis we used a novel delayed contextual fear conditioning protocol which yields significant single- trial fear conditioning with temporal parameters amenable to catFISH analysis. Analysis yielded clear evidence that a population of BLA neurons receives convergent CS and US information at the time of the learning, that this only occurs when the CS-US arrangement is supportive of the learning, and that this process requires N-methyl-D-aspartate receptor activation. In contrast, CS-US convergence was not observed in dorsal hippocampus.Based on the pattern of Arc activation seen in conditioning and control groups, we propose that a key requirement for CS-US convergence onto BLA neurons is the potentiation of US responding by prior exposure to a novel CS. Our results also support the view that contextual fear memories are encoded in the amygdala and that the role of dorsal hippocampus is to process and transmit contextual CS information.

  18. Cat odor causes long-lasting contextual fear conditioning and increased pituitary-adrenal activation, without modifying anxiety.

    Science.gov (United States)

    Muñoz-Abellán, Cristina; Daviu, Nuria; Rabasa, Cristina; Nadal, Roser; Armario, Antonio

    2009-10-01

    A single exposure to a cat or cat odors has been reported by some groups to induce contextual and auditory fear conditioning and long-lasting changes in anxiety-like behaviour, but there is no evidence for parallel changes in biological stress markers. In the present study we demonstrated in male rats that exposure to a novel environment containing a cloth impregnated with cat fur odor resulted in avoidance of the odor, lower levels of activity and higher pituitary-adrenal (PA) response as compared to those exposed to the novel environment containing a clean cloth, suggesting increased levels of stress in the former animals. When re-exposed 9 days later to the same environment with a clean cloth, previously cat fur exposed rats again showed avoidance of the cloth area and lower levels of activity, suggesting development of contextual fear conditioning, which again was associated with a higher PA activation. In contrast, unaltered both anxiety-like behaviour and PA responsiveness to an elevated plus-maze were found 7 days after cat odor exposure. It is concluded that: (i) PA activation is able to reflect both the stressful properties of cat fur odor and odor-induced contextual fear conditioning; (ii) development of cat odor-induced contextual fear conditioning is independent of the induction of long-lasting changes in anxiety-like behaviour; and (iii) greater PA activation during exposure to the odor context is not explained by non-specific sensitization of the PA axis caused by previous exposure to cat fur odor.

  19. Pre-exposure and retrieval effects on generalization of contextual fear

    NARCIS (Netherlands)

    Sevenster, D.; de Oliveira Alvares, L.; D'Hooge, R.

    2018-01-01

    The degree of generalization from a fearful context to other contexts is determined by precision of the original fear memory. Experiences before and after fear learning affect memory precision. Pre-exposure to a similar context before context conditioning results in increased generalization to the

  20. Neuroimaging of Fear-Associated Learning

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  1. Inhaled Lavandula angustifolia essential oil inhibits consolidation of contextual- but not tone-fear conditioning in rats.

    Science.gov (United States)

    Coelho, Laura Segismundo; Correa-Netto, Nelson Francisco; Masukawa, Marcia Yuriko; Lima, Ariadiny Caetano; Maluf, Samia; Linardi, Alessandra; Santos-Junior, Jair Guilherme

    2018-04-06

    Although the current treatment for anxiety is effective, it promotes a number of adverse reactions and medical interactions. Inhaled essential oils have a prominent action on the central nervous system, with minimal systemic effects, primarily because of reduced systemic bioavailability. The effects of drugs on the consolidation of fear conditioning reflects its clinical efficacy in preventing a vicious cycle of anticipatory anxiety leading to fearful cognition and anxiety symptoms. In this study, we investigated the effects of inhaled Lavandula angustifolia essential oil on the consolidation of aversive memories and its influence on c-Fos expression. Adult male Wistar rats were subjected to a fear conditioning protocol. Immediately after the training session, the rats were exposed to vaporized water or essential oil (1%, 2.5% and 5% solutions) for 4h. The next day, the rats underwent contextual- or tone-fear tests and 90min after the test they were euthanized and their brains processed for c-Fos immunohistochemistry. In the contextual-fear test, essential oil at 2.5% and 5% (but not 1%) reduced the freezing response and its respective c-Fos expression in the ventral hippocampus and amygdala. In the tone-fear test, essential oil did not reduce the freezing response during tone presentation. However, rats that inhaled essential oil at 2.5% and 5% (but not 1%) showed decreased freezing in the three minutes after tone presentation, as well as reduced c-Fos expression in the prefrontal cortex and amygdala. These results show that the inhalation of L. angustifolia essential oil inhibited the consolidation of contextual- but not tone-fear conditioning and had an anxiolytic effect in a conditioned animal model of anxiety. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Contextual Approach with Guided Discovery Learning and Brain Based Learning in Geometry Learning

    Science.gov (United States)

    Kartikaningtyas, V.; Kusmayadi, T. A.; Riyadi

    2017-09-01

    The aim of this study was to combine the contextual approach with Guided Discovery Learning (GDL) and Brain Based Learning (BBL) in geometry learning of junior high school. Furthermore, this study analysed the effect of contextual approach with GDL and BBL in geometry learning. GDL-contextual and BBL-contextual was built from the steps of GDL and BBL that combined with the principles of contextual approach. To validate the models, it uses quasi experiment which used two experiment groups. The sample had been chosen by stratified cluster random sampling. The sample was 150 students of grade 8th in junior high school. The data were collected through the student’s mathematics achievement test that given after the treatment of each group. The data analysed by using one way ANOVA with different cell. The result shows that GDL-contextual has not different effect than BBL-contextual on mathematics achievement in geometry learning. It means both the two models could be used in mathematics learning as the innovative way in geometry learning.

  3. Stimulus fear relevance and the speed, magnitude, and robustness of vicariously learned fear.

    Science.gov (United States)

    Dunne, Güler; Reynolds, Gemma; Askew, Chris

    2017-08-01

    Superior learning for fear-relevant stimuli is typically indicated in the laboratory by faster acquisition of fear responses, greater learned fear, and enhanced resistance to extinction. Three experiments investigated the speed, magnitude, and robustness of UK children's (6-10 years; N = 290; 122 boys, 168 girls) vicariously learned fear responses for three types of stimuli. In two experiments, children were presented with pictures of novel animals (Australian marsupials) and flowers (fear-irrelevant stimuli) alone (control) or together with faces expressing fear or happiness. To determine learning speed the number of stimulus-face pairings seen by children was varied (1, 10, or 30 trials). Robustness of learning was examined via repeated extinction procedures over 3 weeks. A third experiment compared the magnitude and robustness of vicarious fear learning for snakes and marsupials. Significant increases in fear responses were found for snakes, marsupials and flowers. There was no indication that vicarious learning for marsupials was faster than for flowers. Moreover, vicariously learned fear was neither greater nor more robust for snakes compared to marsupials, or for marsupials compared to flowers. These findings suggest that for this age group stimulus fear relevance may have little influence on vicarious fear learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stimulus fear-relevance and the vicarious learning pathway to childhood fears

    OpenAIRE

    Askew, C.; Dunne, G.; Ozdil, A.; Reynolds, G.; Field, A.P.

    2013-01-01

    Enhanced fear learning for fear-relevant stimuli has been demonstrated in procedures with adults in the laboratory. Three experiments investigated the effect of stimulus fear-relevance on vicarious fear learning in children (aged 6-11 years). Pictures of stimuli with different levels of fear-relevance (flowers, caterpillars, snakes, worms, and Australian marsupials) were presented alone or together with scared faces. In line with previous studies, children's fear beliefs and avoidance prefere...

  5. Loss of Ensemble Segregation in Dentate Gyrus, but Not in Somatosensory Cortex, during Contextual Fear Memory Generalization

    Directory of Open Access Journals (Sweden)

    Marie Yokoyama

    2016-11-01

    Full Text Available The details of contextual or episodic memories are lost and generalized with the passage of time. Proper generalization may underlie the formation and assimilation of semantic memories and enable animals to adapt to ever-changing environments, whereas overgeneralization of fear memory evokes maladaptive fear responses to harmless stimuli, which is a symptom of anxiety disorders such as post-traumatic stress disorder (PTSD. To understand the neural basis of fear memory generalization, we investigated the patterns of neuronal ensemble reactivation during memory retrieval when contextual fear memory expression is generalized using transgenic mice that allowed us to visualize specific neuronal ensembles activated during memory encoding and retrieval. We found preferential reactivations of neuronal ensembles in the primary somatosensory cortex, when mice were returned to the conditioned context to retrieve their memory 1 day after conditioning. In the hippocampal dentate gyrus (DG, exclusively separated ensemble reactivation was observed when mice were exposed to a novel context. These results suggest that the DG as well as the somatosensory cortex were likely to distinguish the two different contexts at the ensemble activity level when memory is not generalized at the behavioral level. However, 9 days after conditioning when animals exhibited generalized fear, the unique reactivation pattern in the DG, but not in the somatosensory cortex, was lost. Our results suggest that the alternations in the ensemble representation within the DG, or in upstream structures that link the sensory cortex to the hippocampus, may underlie generalized contextual fear memory expression.

  6. Hippocampal Administration of Levothyroxine Impairs Contextual Fear Memory Consolidation in Rats.

    Science.gov (United States)

    Yu, Dafu; Zhou, Heng; Zou, Lin; Jiang, Yong; Wu, Xiaoqun; Jiang, Lizhu; Zhou, Qixin; Yang, Yuexiong; Xu, Lin; Mao, Rongrong

    2017-01-01

    Thyroid hormone (TH) receptors are highly distributed in the hippocampus, which plays a vital role in memory processes. However, how THs are involved in the different stages of memory process is little known. Herein, we used hippocampus dependent contextual fear conditioning to address the effects of hippocampal THs on the different stages of fear memory. First, we found that a single systemic levothyroxine (LT 4 ) administration increased the level of free triiodothyronine (FT 3 ) and free tetraiodothyroxine (FT 4 ) not only in serum but also in hippocampus. In addition, a single systemic LT 4 administration immediately after fear conditioning significantly impaired fear memory. These results indicated the important role of hippocampal THs in fear memory process. To further confirm the effects of hippocampal THs on the different stages of fear memory, LT 4 (0.4 μg/μl, 1 μl/side) was injected bilaterally into hippocampus. Rats given LT 4 into hippocampus before training or tests had no effect on the acquisition or retrieval of fear memory, however rats given LT 4 into hippocampus either immediately or 2 h after training showed being significantly impaired fear memory, which demonstrated LT 4 administration into hippocampus impairs the consolidation but has no effect on the acquisition and retrieval of fear memory. Furthermore, hippocampal injection of LT 4 did not affect rats' locomotor activity, thigmotaxis and THs level in prefrontal cortex (PFC) and serum. These findings may have important implications for understanding mechanisms underlying contribution of THs to memory disorders.

  7. Differential Effects of Cannabinoid Receptor Agonist on Social Discrimination and Contextual Fear in Amygdala and Hippocampus

    Science.gov (United States)

    Segev, Amir; Akirav, Irit

    2011-01-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 [mu]g/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval.…

  8. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  9. Learning to fear a second-order stimulus following vicarious learning.

    Science.gov (United States)

    Reynolds, Gemma; Field, Andy P; Askew, Chris

    2017-04-01

    Vicarious fear learning refers to the acquisition of fear via observation of the fearful responses of others. The present study aims to extend current knowledge by exploring whether second-order vicarious fear learning can be demonstrated in children. That is, whether vicariously learnt fear responses for one stimulus can be elicited in a second stimulus associated with that initial stimulus. Results demonstrated that children's (5-11 years) fear responses for marsupials and caterpillars increased when they were seen with fearful faces compared to no faces. Additionally, the results indicated a second-order effect in which fear-related learning occurred for other animals seen together with the fear-paired animal, even though the animals were never observed with fearful faces themselves. Overall, the findings indicate that for children in this age group vicariously learnt fear-related responses for one stimulus can subsequently be observed for a second stimulus without it being experienced in a fear-related vicarious learning event. These findings may help to explain why some individuals do not recall involvement of a traumatic learning episode in the development of their fear of a specific stimulus.

  10. Immunization against social fear learning.

    Science.gov (United States)

    Golkar, Armita; Olsson, Andreas

    2016-06-01

    Social fear learning offers an efficient way to transmit information about potential threats; little is known, however, about the learning processes that counteract the social transmission of fear. In three separate experiments, we found that safety information transmitted from another individual (i.e., demonstrator) during preexposure prevented subsequent observational fear learning (Experiments 1-3), and this effect was maintained in a new context involving direct threat confrontation (Experiment 3). This protection from observational fear learning was specific to conditions in which information about both safety and danger was transmitted from the same demonstrator (Experiments 2-3) and was unaffected by increasing the number of the safety demonstrators (Experiment 3). Collectively, these findings demonstrate that observational preexposure can limit social transmission of fear. Future research is needed to better understand the conditions under which such effects generalize across individual demonstrators. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. A Time for Learning and a Time for Sleep : The Effect of Sleep Deprivation on Contextual Fear Conditioning at Different Times of the Day

    NARCIS (Netherlands)

    Hagewoud, Roelina; Whitcomb, Shamiso N.; Heeringa, Amarins N.; Havekes, Robbert; Koolhaas, Jaap M.; Meerlo, Peter

    2010-01-01

    Study Objectives: Sleep deprivation negatively affects memory consolidation, especially in the case of hippocampus-dependent memories. Studies in rodents have shown that 5 hours of sleep deprivation immediately following footshock exposure selectively impairs the formation of a contextual fear

  12. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats.

    Science.gov (United States)

    Nagaya, Naomi; Acca, Gillian M; Maren, Stephen

    2015-01-01

    Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD). Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO), is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST). To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response) to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS). In Experiment 2, intra-BNST infusion of either finasteride (FIN), an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α)-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry.

  13. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats

    Directory of Open Access Journals (Sweden)

    Naomi eNagaya

    2015-08-01

    Full Text Available Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD. Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO, is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST. To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS. In Experiment 2, intra-BNST infusion of either finasteride, an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry.

  14. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    Science.gov (United States)

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (ploss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short

  15. Running rescues a fear-based contextual discrimination deficit in aged mice

    Directory of Open Access Journals (Sweden)

    Melody V. Wu

    2015-08-01

    Full Text Available Normal aging and exercise exert extensive, often opposing, effects on the dentate gyrus (DG of the hippocampus altering volume, synaptic function, and behaviors. The DG is especially important for behaviors requiring pattern separation—a cognitive process that enables animals to differentiate between highly similar contextual experiences. To determine how age and exercise modulate pattern separation in an aversive setting, young, aged, and aged mice provided with a running wheel were assayed on a fear-based contextual discrimination task. Aged mice showed a profound impairment in contextual discrimination compared to young animals. Voluntary exercise rescued this deficit to such an extent that behavioral pattern separation of aged-run mice was now similar to young animals. Running also resulted in a significant increase in the number of immature neurons with tertiary dendrites in aged mice. Despite this, neurogenesis levels in aged-run mice were still considerably lower than in young animals. Thus, mechanisms other than DG neurogenesis likely play significant roles in improving behavioral pattern separation elicited by exercise in aged animals.

  16. Administration of riluzole to the basolateral amygdala facilitates fear extinction in rats.

    Science.gov (United States)

    Sugiyama, Azusa; Yamada, Misa; Saitoh, Akiyoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2018-01-15

    A general understanding exists that inhibition of glutamatergic neurotransmission in the basolateral amygdala (BLA) impairs fear extinction in rodents. Surprisingly, we recently found that systemic administration of riluzole, which has been shown to inhibit the glutamatergic system, facilitates extinction learning in rats with a preconditioned contextual fear response. However, the mechanisms underlying this paradoxical effect of riluzole remain unclear. In this study, adult male Wistar rats were bilaterally cannulated in the BLA to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine-binding region of the N-methyl-d-aspartate (NMDA) receptor. In this study, intra-BLA administration of either riluzole or d-cycloserine facilitated extinction learning of contextual fear in conditioned rats. In addition, both riluzole and d-cycloserine enhanced the acquisition of recognition memory in the same model. However, intra-BLA injections of riluzole, but not d-cycloserine, had a potent anxiolytic-like effect when investigated using an elevated plus-maze test. Our findings suggest that riluzole-induced facilitation of extinction learning in rats with a preconditioned contextual fear reflects an indirect effect, resulting from the intra-BLA administration of the drug, and might not be directly related to inhibition of glutamatergic signaling. Further research is needed to clarify the mechanisms underlying the paradoxical effect of riluzole on fear extinction learning observed in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Learning to fear a second-order stimulus following vicarious learning

    OpenAIRE

    Reynolds, G; Field, AP; Askew, C

    2015-01-01

    Vicarious fear learning refers to the acquisition of fear via observation of the fearful responses of others. The present study aims to extend current knowledge by exploring whether second-order vicarious fear learning can be demonstrated in children. That is, whether vicariously learnt fear responses for one stimulus can be elicited in a second stimulus associated with that initial stimulus. Results demonstrated that children’s (5–11 years) fear responses for marsupials and caterpillars incr...

  18. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Role of the orexin (hypocretin) system in contextual fear conditioning in rats.

    Science.gov (United States)

    Wang, Huiying; Li, Sa; Kirouac, Gilbert J

    2017-01-01

    Orexin (hypocretin) neurons located in the posterior hypothalamus send projections to multiple areas of the brain involved in arousal and experimental evidence indicates that these neurons play a role in the physiological and behavioral responses to stress. This study was done to determine if the orexin system was involved in mediating the fear associated with shock context (5×2s of 1.5mA). First, real-time RT-PCR was used to examine changes in the mRNA levels for prepro-orexin (ppOX), the orexin-1 receptor (OX1R) and the orexin-2 receptor (OX2R) at two weeks post-shock. We found that the mRNA levels for ppOX and OX1R were increased in the posterior hypothalamus of shocked rats. In contrast, no significant difference was found in the midline thalamus or the locus coeruleus/parabrachial region. Second, the study examined if systemic injections of antagonists for orexin receptors attenuated the freezing related to contextual fear. The OX1R antagonist SB334867 (20 or 30mg/kg; i.p.) decreased freezing while the same doses of the OX2R antagonist TCSOX229 had no effect. The dual orexin antagonist TCS1102 (20mg/kg; i.p.) also decreased the freezing to the shock context. The results of the present study show upregulation of orexin activity and of the OX1R in the hypothalamus following exposure of rats to footshocks and highlight a specific role of OX1R in contextual fear. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Revealing context-specific conditioned fear memories with full immersion virtual reality

    Directory of Open Access Journals (Sweden)

    Nicole eHuff

    2011-11-01

    Full Text Available The extinction of conditioned fear is known to be context specific, and often referred to as more robustly contextually bound than the fear memory itself (Bouton, 2004. Yet, recent findings in rodents have challenged the notion that contextual fear retention is initially generalized. The context specificity of a cued-fear memory to the learning context has not been addressed in the human literature largely due to limitations in methodology. Here we adapt a novel technology to test the context specificity of cued fear conditioning using full immersion 3-dimensional virtual reality (VR. During acquisition training, healthy participants navigated through virtual environments containing dynamic snake and spider conditioned stimuli (CSs, one of which was paired with electrical wrist stimulation. During a 24-hour delayed retention test, one group returned to the same context as acquisition training whereas another group experienced the CSs in a novel context. Unconditioned stimulus (US expectancy ratings were assayed on-line during fear acquisition as an index of contingency awareness. Skin conductance responses (SCR time-locked to CS onset were the dependent measure of cued fear, and skin conductance levels during the interstimulus interval were an index of context fear. Findings indicate that early in acquisition training, participants express contingency awareness as well as differential contextual fear, whereas differential cued fear emerged later in acquisition. During the retention test, differential cued fear retention was enhanced in the group who returned to the same context as acquisition training relative to the context shift group. The results extend recent rodent work to illustrate differences in cued and context fear acquisition and the contextual specificity of recent fear memories. Findings support the use of full immersion VR as a novel tool in cognitive neuroscience to bridge rodent models of contextual phenomena underlying human

  1. Nicotine Withdrawal Disrupts Contextual Learning but Not Recall of Prior Contextual Associations: Implications for Nicotine Addiction

    OpenAIRE

    Portugal, George S.; Gould, Thomas J.

    2008-01-01

    Interactions between nicotine and learning could contribute to nicotine addiction. Although previous research indicates that nicotine withdrawal disrupts contextual learning, the effects of nicotine withdrawal on contextual memories acquired before withdrawal are unknown. The present study investigated whether nicotine withdrawal disrupted recall of prior contextual memories by examining the effects of nicotine withdrawal on recall of nicotine conditioned place preference (CPP) and contextual...

  2. Cellular and oscillatory substrates of fear extinction learning.

    Science.gov (United States)

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-11-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  3. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  4. SAD-B kinase regulates pre-synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory.

    Science.gov (United States)

    Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa

    2016-01-01

    Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International

  5. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  6. Molecular mechanisms of fear learning and memory.

    Science.gov (United States)

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Extinction of conditioned fear is better learned and recalled in the morning than in the evening.

    Science.gov (United States)

    Pace-Schott, Edward F; Spencer, Rebecca M C; Vijayakumar, Shilpa; Ahmed, Nafis A K; Verga, Patrick W; Orr, Scott P; Pitman, Roger K; Milad, Mohammed R

    2013-11-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N = 109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCRs) to 2 differently colored lamps (CS+), but not a third color (CS-), within the computer image of a room (conditioning context). One CS+ (CS + E) but not the other (CS + U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 h (within AM or PM), 12 h (morning-to-evening or evening-to-morning) or 24 h (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p = .002). Collapsing across CS + type, there was smaller morning differential SCR at both extinction recall (p = .003) and fear renewal (p = .005). Morning extinction recall showed better generalization from the CS + E to CS + U with the response to the CS + U significantly larger than to the CS + E only in the evening (p = .028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicted better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Activation of the Infralimbic Cortex in a Fear Context Enhances Extinction Learning

    Science.gov (United States)

    Thompson, Brittany M.; Baratta, Michael V.; Biedenkapp, Joseph C.; Rudy, Jerry W.; Watkins, Linda R.; Maier, Steven F.

    2010-01-01

    Activation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) reduces conditioned fear in a variety of situations, and the IL is thought to play an important role in the extinction of conditioned fear. Here we report a series of experiments using contextual fear conditioning in which the IL is activated with the GABAa antagonist…

  9. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    Science.gov (United States)

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  10. The Prelimbic Cortex Directs Attention toward Predictive Cues during Fear Learning

    Science.gov (United States)

    Sharpe, Melissa J.; Killcross, Simon

    2015-01-01

    The prelimbic cortex is argued to promote conditioned fear expression, at odds with appetitive research implicating this region in attentional processing. Consistent with an attentional account, we report that the effect of prelimbic lesions on fear expression depends on the degree of competition between contextual and discrete cues. Further, when…

  11. Are fear memories erasable? –reconsolidation of learned fear with fear relevant and fear-irrelevant stimuli

    OpenAIRE

    Armita eGolkar; Martin eBellander; Andreas eOlsson; Arne eÖhman

    2012-01-01

    Recent advances in the field of fear learning have demonstrated that a single reminder exposure prior to extinction training can prevent the return of extinguished fear by disrupting the process of reconsolidation. These findings have however proven hard to replicate in humans. Given the significant implications of preventing the return of fear, the purpose of the present study was to further study the prerequisites for the putative effects of disrupting reconsolidation. In two experiments, w...

  12. Enhanced discriminative fear learning of phobia-irrelevant stimuli in spider-fearful individuals

    Directory of Open Access Journals (Sweden)

    Carina eMosig

    2014-10-01

    Full Text Available Avoidance is considered as a central hallmark of all anxiety disorders. The acquisition and expression of avoidance which leads to the maintenance and exacerbation of pathological fear is closely linked to Pavlovian and operant conditioning processes. Changes in conditionability might represent a key feature of all anxiety disorders but the exact nature of these alterations might vary across different disorders. To date, no information is available on specific changes in conditionability for disorder-irrelevant stimuli in specific phobia (SP. The first aim of this study was to investigate changes in fear acquisition and extinction in spider-fearful individuals as compared to non-fearful participants by using the de novo fear conditioning paradigm. Secondly, we aimed to determine whether differences in the magnitude of context-dependent fear retrieval exist between spider-fearful and non-fearful individuals. Our findings point to an enhanced fear discrimination in spider-fearful individuals as compared to non-fearful individuals at both the physiological and subjective level. The enhanced fear discrimination in spider-fearful individuals was neither mediated by increased state anxiety, depression, nor stress tension. Spider-fearful individuals displayed no changes in extinction learning and/or fear retrieval. Surprisingly, we found no evidence for context-dependent modulation of fear retrieval in either group. Here we provide first evidence that spider-fearful individuals show an enhanced discriminative fear learning of phobia-irrelevant (de novo stimuli. Our findings provide novel insights into the role of fear acquisition and expression for the development and maintenance of maladaptive responses in the course of SP.

  13. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.

    Science.gov (United States)

    Li, Susan Shi Yuan; McNally, Gavan P

    2014-02-01

    A key insight of associative learning theory is that learning depends on the actions of prediction error: a discrepancy between the actual and expected outcomes of a conditioning trial. When positive, such error causes increments in associative strength and, when negative, such error causes decrements in associative strength. Prediction error can act directly on fear learning by determining the effectiveness of the aversive unconditioned stimulus or indirectly by determining the effectiveness, or associability, of the conditioned stimulus. Evidence from a variety of experimental preparations in human and non-human animals suggest that discrete neural circuits code for these actions of prediction error during fear learning. Here we review the circuits and brain regions contributing to the neural coding of prediction error during fear learning and highlight areas of research (safety learning, extinction, and reconsolidation) that may profit from this approach to understanding learning. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  14. Individual differences in learning predict the return of fear.

    Science.gov (United States)

    Gershman, Samuel J; Hartley, Catherine A

    2015-09-01

    Using a laboratory analogue of learned fear (Pavlovian fear conditioning), we show that there is substantial heterogeneity across individuals in spontaneous recovery of fear following extinction training. We propose that this heterogeneity might stem from qualitative individual differences in the nature of extinction learning. Whereas some individuals tend to form a new memory during extinction, leaving their fear memory intact, others update the original threat association with new safety information, effectively unlearning the fear memory. We formalize this account in a computational model of fear learning and show that individuals who, according to the model, are more likely to form new extinction memories tend to show greater spontaneous recovery compared to individuals who appear to only update a single memory. This qualitative variation in fear and extinction learning may have important implications for understanding vulnerability and resilience to fear-related psychiatric disorders.

  15. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning

    Science.gov (United States)

    Keifer, Orion P.; Hurt, Robert C.; Ressler, Kerry J.

    2015-01-01

    The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively. PMID:26328883

  16. A comparison of positive vicarious learning and verbal information for reducing vicariously learned fear.

    Science.gov (United States)

    Reynolds, Gemma; Wasely, David; Dunne, Güler; Askew, Chris

    2017-10-19

    Research with children has demonstrated that both positive vicarious learning (modelling) and positive verbal information can reduce children's acquired fear responses for a particular stimulus. However, this fear reduction appears to be more effective when the intervention pathway matches the initial fear learning pathway. That is, positive verbal information is a more effective intervention than positive modelling when fear is originally acquired via negative verbal information. Research has yet to explore whether fear reduction pathways are also important for fears acquired via vicarious learning. To test this, an experiment compared the effectiveness of positive verbal information and positive vicarious learning interventions for reducing vicariously acquired fears in children (7-9 years). Both vicarious and informational fear reduction interventions were found to be equally effective at reducing vicariously acquired fears, suggesting that acquisition and intervention pathways do not need to match for successful fear reduction. This has significant implications for parents and those working with children because it suggests that providing children with positive information or positive vicarious learning immediately after a negative modelling event may prevent more serious fears developing.

  17. Vicarious extinction learning during reconsolidation neutralizes fear memory.

    Science.gov (United States)

    Golkar, Armita; Tjaden, Cathelijn; Kindt, Merel

    2017-05-01

    Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether consolidated long-term fear memories could be updated with safety learning accomplished through vicarious extinction learning initiated within the reconsolidation time-window. We assessed this in a final sample of 19 participants that underwent a three-day within-subject fear-conditioning design, using fear-potentiated startle as our primary index of fear learning. On day 1, two fear-relevant stimuli (reinforced CSs) were paired with shock (US) and a third stimulus served as a control (CS). On day 2, one of the two previously reinforced stimuli (the reminded CS) was presented once in order to reactivate the fear memory 10 min before vicarious extinction training was initiated for all CSs. The recovery of the fear memory was tested 24 h later. Vicarious extinction training conducted within the reconsolidation time window specifically prevented the recovery of the reactivated fear memory (p = 0.03), while leaving fear-potentiated startle responses to the non-reactivated cue intact (p = 0.62). These findings are relevant to both basic and clinical research, suggesting that a safe, non-invasive model-based exposure technique has the potential to enhance the efficiency and durability of anxiolytic therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Different role of the ventral medial prefrontal cortex on modulation of innate and associative learned fear.

    Science.gov (United States)

    Lisboa, S F; Stecchini, M F; Corrêa, F M A; Guimarães, F S; Resstel, L B M

    2010-12-15

    Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LDB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LDB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Saravana R K Murthy

    Full Text Available Small-conductance, Ca2+ activated K+ channels (SK channels are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP in hippocampal brain slices. Using the selective SK2 antagonist Lei-Dab7 or SK2 antisense probes, we found that hippocampal SK2 channels are critical during two different time windows: 1 blockade of SK2 channels before the training impaired fear memory, whereas, 2 blockade of SK2 channels immediately after the training enhanced contextual fear memory. We provided the evidence that the post-training cleavage of the SK2 channels was responsible for the observed bidirectional effect of SK2 channel blockade on memory consolidation. Thus, Lei-Dab7-injection before training impaired the C-terminal cleavage of SK2 channels, while Lei-Dab7 given immediately after training facilitated the C-terminal cleavage. Application of the synthetic peptide comprising a leucine-zipper domain of the C-terminal fragment to Jurkat cells impaired SK2 channel-mediated currents, indicating that the endogenously cleaved fragment might exert its effects on memory formation by blocking SK2 channel-mediated currents. Our present findings suggest that SK2 channel proteins contribute to synaptic plasticity and memory not only as ion channels but also by additionally generating a SK2 C-terminal fragment, involved in both processes. The modulation of fear memory by down-regulating SK2 C-terminal cleavage might have applicability in the treatment of anxiety disorders in which fear conditioning is enhanced.

  20. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  1. Brain based learning with contextual approach to mathematics achievement

    Directory of Open Access Journals (Sweden)

    V Kartikaningtyas

    2017-12-01

    Full Text Available The aim of this study was to know the effect of Brain Based Learning (BBL with a contextual approach to mathematics achievement. BBL-contextual is the learning model that designed to develop and optimize the brain ability for getting a new concept and solving the real life problem. This study method was a quasi-experiment. The population was the junior high school students. The sample chosen by using stratified cluster random sampling. The sample was 109 students. The data collected through a mathematics achievement test that was given after the treatment. The data analyzed by using one way ANOVA. The results of the study showed that BBL-contextual is better than direct learning on mathematics achievement. It means BBL-contextual could be an effective and innovative model.

  2. Inhibition of PKA anchoring to A-kinase anchoring proteins impairs consolidation and facilitates extinction of contextual fear memories

    NARCIS (Netherlands)

    Nijholt, Ingrid M.; Ostroveanu, Anghelus; Scheper, Wouter A.; Penke, Botond; Luiten, Paul G. M.; Van der Zee, Eddy A.; Eisel, Ulrich L. M.

    Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial

  3. One-trial overshadowing: Evidence for fast specific fear learning in humans.

    Science.gov (United States)

    Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram

    2017-03-01

    Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Object based implicit contextual learning: a study of eye movements.

    Science.gov (United States)

    van Asselen, Marieke; Sampaio, Joana; Pina, Ana; Castelo-Branco, Miguel

    2011-02-01

    Implicit contextual cueing refers to a top-down mechanism in which visual search is facilitated by learned contextual features. In the current study we aimed to investigate the mechanism underlying implicit contextual learning using object information as a contextual cue. Therefore, we measured eye movements during an object-based contextual cueing task. We demonstrated that visual search is facilitated by repeated object information and that this reduction in response times is associated with shorter fixation durations. This indicates that by memorizing associations between objects in our environment we can recognize objects faster, thereby facilitating visual search.

  5. Infralimbic Neurotrophin-3 Infusion Rescues Fear Extinction Impairment in a Mouse Model of Pathological Fear.

    Science.gov (United States)

    D'Amico, Davide; Gener, Thomas; de Lagrán, Maria Martínez; Sanchez-Vives, Maria V; Santos, Mónica; Dierssen, Mara

    2017-01-01

    The inability to properly extinguish fear memories constitutes the foundation of several anxiety disorders, including panic disorder. Recent findings show that boosting prefrontal cortex synaptic plasticity potentiates fear extinction, suggesting that therapies that augment synaptic plasticity could prove useful in rescue of fear extinction impairments in this group of disorders. Previously, we reported that mice with selective deregulation of neurotrophic tyrosine kinase receptor, type 3 expression (TgNTRK3) exhibit increased fear memories accompanied by impaired extinction, congruent with an altered activation pattern of the amygdala-hippocampus-medial prefrontal cortex fear circuit. Here we explore the specific role of neurotrophin 3 and its cognate receptor in the medial prefrontal cortex, and its involvement in fear extinction in a pathological context. In this study we combined molecular, behavioral, in vivo pharmacology and ex vivo electrophysiological recordings in TgNTRK3 animals during contextual fear extinction processes. We show that neurotrophin 3 protein levels are increased upon contextual fear extinction in wild-type animals but not in TgNTRK3 mice, which present deficits in infralimbic long-term potentiation. Importantly, infusion of neurotrophin 3 to the medial prefrontal cortex of TgNTRK3 mice rescues contextual fear extinction and ex vivo local application improves medial prefrontal cortex synaptic plasticity. This effect is blocked by inhibition of extracellular signal-regulated kinase phosphorylation through peripheral administration of SL327, suggesting that rescue occurs via this pathway. Our results suggest that stimulating neurotrophin 3-dependent medial prefrontal cortex plasticity could restore contextual fear extinction deficit in pathological fear and could constitute an effective treatment for fear-related disorders.

  6. Dreaming Your Fear Away: A Computational Model for Fear Extinction Learning During Dreaming

    NARCIS (Netherlands)

    Treur, J.; Lu et al., B.L.

    2011-01-01

    In this paper a computational model is presented that models how dreaming is used to learn fear extinction. The approach addresses dreaming as internal simulation incorporating memory elements in the form of sensory representations and their associated fear. During dream episodes regulation of fear

  7. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning

    Directory of Open Access Journals (Sweden)

    Marco eCostanzi

    2014-08-01

    Full Text Available Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD. Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold. The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g. hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment (i significantly mitigates the abnormal behavioral outcomes induced by trauma, (ii persistently attenuates fear expression without erasing contextual memory, (iii prevents fear reinstatement, (iv reduces amygdala activity and (v requires an intact lOFC to be effective.The results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of traumatic experiences

  8. Propranolol–induced Impairment of Contextual Fear Memory Reconsolidation in Rats: A similar Effect on Weak and Strong Recent and Remote Memories

    Science.gov (United States)

    Taherian, Fatemeh; Vafaei, Abbas Ali; Vaezi, Gholam Hassan; Eskandarian, Sharaf; Kashef, Adel; Rashidy-Pour, Ali

    2014-01-01

    Introduction Previous studies have demonstrated that the β-adrenergic receptor antagonist propranolol impairs fear memory reconsolidation in experimental animals. There are experimental parameters such as the age and the strength of memory that can interact with pharmacological manipulations of memory reconsolidation. In this study, we investigated the ability of the age and the strength of memory to influence the disrupting effects of propranolol on fear memory reconsolidation in rats. Methods The rats were trained in a contextual fear conditioning using two (weak training) or five (strong training) footshocks (1mA). Propranolol (10mg/kg) injection was immediately followed retrieval of either a one-day recent (weak or strong) or 36-day remote (weak or strong) contextual fear memories. Results We found that propranolol induced a long-lasting impairment of subsequent expression of recent and remote memories with either weak or strong strength. We also found no memory recovery after a weak reminder shock. Furthermore, no significant differences were found on the amount of memory deficit induced by propranolol among memories with different age and strength. Discussion Our data suggest that the efficacy of propranolol in impairing fear memory reconsolidation is not limited to the age or strength of the memory. PMID:25337385

  9. Multimodal assessment of long-term memory recall and reinstatement in a combined cue and context fear conditioning and extinction paradigm in humans.

    Directory of Open Access Journals (Sweden)

    Jan Haaker

    Full Text Available Learning to predict danger via associative learning processes is critical for adaptive behaviour. After successful extinction, persisting fear memories often emerge as returning fear. Investigation of return of fear phenomena, e.g. reinstatement, have only recently began and to date, many critical questions with respect to reinstatement in human populations remain unresolved. Few studies have separated experimental phases in time even though increasing evidence shows that allowing for passage of time (and consolidation between experimental phases has a major impact on the results. In addition, studies have relied on a single psychophysiological dimension only (SCRs/SCL or FPS which hampers comparability between different studies that showed both differential or generalized return of fear following a reinstatement manipulation. In 93 participants, we used a multimodal approach (fear-potentiated startle, skin conductance responses, fear ratings to asses fear conditioning (day 1, extinction (day 2 as well as delayed memory recall and reinstatement (day 8 in a paradigm that probed contextual and cued fear intra-individually. Our findings show persistence of conditioning and extinction memory over time and demonstrate that reinstated fear responses were qualitatively different between dependent variables (subjective fear ratings, FPS, SCRs as well as between cued and contextual CSs. While only the arousal-related measurement (SCRs showed increasing reactions following reinstatement to the cued CSs, no evidence of reinstatement was observed for the subjective ratings and fear-related measurement (FPS. In contrast, for contextual CSs, reinstatement was evident as differential and generalized reinstatement in fear ratings as well as generally elevated physiological fear (FPS and arousal (SCRs related measurements to all contextual CSs (generalized non-differential reinstatement. Returning fear after reinstatement likely depends on a variety of variables

  10. Impairment in extinction of cued fear memory in syntenin-1 knockout mice.

    Science.gov (United States)

    Talukdar, Gourango; Inoue, Ran; Yoshida, Tomoyuki; Mori, Hisashi

    2018-03-01

    Syntenin-1 is a PDZ domain-containing intracellular scaffold protein involved in exosome production, synapse formation, and synaptic plasticity. We tested whether syntenin-1 can regulate learning and memory through its effects on synaptic plasticity. Specifically, we investigated the role of syntenin-1 in contextual and cued fear conditioning and extinction of conditioned fear using syntenin-1 knockout (KO) mice. Genetic disruption of syntenin-1 had little effect on contextual and cued fear memory. However, syntenin-1 KO mice exhibited selective impairment in cued fear extinction retention. This extinction retention deficit in syntenin-1 KO mice was associated with reduced c-Fos-positive neurons in the basolateral amygdala (BLA) and infralimbic cortex (IL) after extinction training and increased c-Fos-positive neurons in the BLA after an extinction retention test. Our results suggest that syntenin-1 plays an important role in extinction of cued fear memory by modulating neuronal activity in the BLA and IL. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Contextual diversity facilitates learning new words in the classroom.

    Directory of Open Access Journals (Sweden)

    Eva Rosa

    Full Text Available In the field of word recognition and reading, it is commonly assumed that frequently repeated words create more accessible memory traces than infrequently repeated words, thus capturing the word-frequency effect. Nevertheless, recent research has shown that a seemingly related factor, contextual diversity (defined as the number of different contexts [e.g., films] in which a word appears, is a better predictor than word-frequency in word recognition and sentence reading experiments. Recent research has shown that contextual diversity plays an important role when learning new words in a laboratory setting with adult readers. In the current experiment, we directly manipulated contextual diversity in a very ecological scenario: at school, when Grade 3 children were learning words in the classroom. The new words appeared in different contexts/topics (high-contextual diversity or only in one of them (low-contextual diversity. Results showed that words encountered in different contexts were learned and remembered more effectively than those presented in redundant contexts. We discuss the practical (educational [e.g., curriculum design] and theoretical (models of word recognition implications of these findings.

  12. Mobile Contextualized learning games for decision support training

    NARCIS (Netherlands)

    Klemke, Roland; Börner, Dirk; Suarez, Angel; Schneider, Jan; Antonaci, Alessandra

    2015-01-01

    This interactive workshop session introduces mobile serious games as situated, contextualized learning games. Example cases for mobile serious games for decision support training are introduced and discussed. Participants will get to know contextualization techniques used in modern mobile

  13. Mobile Contextualized learning games for decision support training

    NARCIS (Netherlands)

    Klemke, Roland

    2014-01-01

    This interactive workshop session introduces mobile serious games as situated, contextualized learning games. Example cases for mobile serious games for decision support training are introduced and discussed. Participants will get to know contextualization techniques used in modern mobile devices

  14. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    Science.gov (United States)

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  15. Acute ethanol has biphasic effects on short- and long-term memory in both foreground and background contextual fear conditioning in C57BL/6 mice.

    Science.gov (United States)

    Gulick, Danielle; Gould, Thomas J

    2007-09-01

    Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)-foot shock (US; 2 seconds, 0.57 mA) pairings. For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context.

  16. Impaired spatial and contextual memory formation in galectin-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Sakaguchi Masanori

    2011-09-01

    Full Text Available Abstract Galectins are a 15 member family of carbohydrate-binding proteins that have been implicated in cancer, immunity, inflammation and development. While galectins are expressed in the central nervous system, little is known about their function in the adult brain. Previously we have shown that galectin-1 (gal-1 is expressed in the adult hippocampus, and, in particular, in putative neural stem cells in the subgranular zone. To evaluate how gal-1 might contribute to hippocampal memory function here we studied galectin-1 null mutant (gal-1-/- mice. Compared to their wildtype littermate controls, gal-1-/- mice exhibited impaired spatial learning in the water maze and contextual fear learning. Interestingly, tone fear conditioning was normal in gal-1-/- mice suggesting that loss of gal-1 might especially impact hippocampal learning and memory. Furthermore, gal-1-/- mice exhibited normal motor function, emotion and sensory processing in a battery of other behavioral tests, suggesting that non-mnemonic performance deficits are unlikely to account for the spatial and contextual learning deficits. Together, these data reveal a role for galectin-carbohydrate signalling in hippocampal memory function.

  17. Impact of Contextuality on Mobile Learning Acceptance: An Empirical Study Based on a Language Learning App

    Science.gov (United States)

    Böhm, Stephan; Constantine, Georges Philip

    2016-01-01

    Purpose: This paper aims to focus on contextualized features for mobile language learning apps. The scope of this paper is to explore students' perceptions of contextualized mobile language learning. Design/Methodology/Approach: An extended Technology Acceptance Model was developed to analyze the effect of contextual app features on students'…

  18. Hippocampal dendritic spines remodeling and fear memory are modulated by GABAergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D; Molina, Victor A

    2015-05-01

    GABAergic signaling in the basolateral amygdala complex (BLA) plays a crucial role on the modulation of the stress influence on fear memory. Moreover, accumulating evidence suggests that the dorsal hippocampus (DH) is a downstream target of BLA neurons in contextual fear. Given that hippocampal structural plasticity is proposed to provide a substrate for the storage of long-term memories, the main aim of this study is to evaluate the modulation of GABA neurotransmission in the BLA on spine density in the DH following stress on contextual fear learning. The present findings show that prior stressful experience promoted contextual fear memory and enhanced spine density in the DH. Intra-BLA infusion of midazolam, a positive modulator of GABAa sites, prevented the facilitating influence of stress on both fear retention and hippocampal dendritic spine remodeling. Similarly to the stress-induced effects, the blockade of GABAa sites within the BLA ameliorated fear memory emergence and induced structural remodeling in the DH. These findings suggest that GABAergic transmission in BLA modulates the structural changes in DH associated to the influence of stress on fear memory. © 2015 Wiley Periodicals, Inc.

  19. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  20. The effects of acute nicotine on contextual safety discrimination.

    Science.gov (United States)

    Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J

    2014-11-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients. © The Author(s) 2014.

  1. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats.

    Science.gov (United States)

    Daviu, Núria; Andero, Raül; Armario, Antonio; Nadal, Roser

    2014-11-01

    In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Contextual learning and context effects during infancy: 30 years of controversial research revisited.

    Science.gov (United States)

    Revillo, D A; Cotella, E; Paglini, M G; Arias, C

    2015-09-01

    Over the last 30years a considerable number of reports have explored learning about context during infancy in both humans and rats. This research was stimulated by two different theoretical frameworks. The first, known as the neuromaturational model, postulates that learning and behavior are context-independent during early ontogeny, a hypothesis based on the idea that contextual learning is dependent on the hippocampal function, and that this brain structure does not reach full maturity until late in infancy. The second theoretical framework views infants not as immature organisms, but rather as perfectly matured ones, given that their behavioral and cognitive capacities allow them to adapt appropriately to the demands of their specific environment in accordance with their maturational level. This model predicts significant ontogenetic variations in learning and memory due to developmental differences in what is perceived and attended to during learning episodes, which can result in ontogenetic differences in contextual learning depending on the specific demands of the task. The present manuscript reviews those studies that have examined potential developmental differences in contextual learning and context effects in rats. The reviewed results show that, during infancy, context can exert a similar influence over learning and memory as that described for the adult rat. Moreover, in some cases, contextual learning and context effects were greater in infants than in adults. In contrast, under other experimental conditions, no evidence of contextual learning or context effects was observed. We analyzed the procedural factors of these studies with the aim of detecting those that favor or impede contextual learning during infancy, and we discussed whether existing empirical evidence supports the claim that the functionality of the hippocampus is a limiting factor for this type of learning during infancy. Finally, conclusions from human research into contextual learning

  3. Social Fear Learning: from Animal Models to Human Function.

    Science.gov (United States)

    Debiec, Jacek; Olsson, Andreas

    2017-07-01

    Learning about potential threats is critical for survival. Learned fear responses are acquired either through direct experiences or indirectly through social transmission. Social fear learning (SFL), also known as vicarious fear learning, is a paradigm successfully used for studying the transmission of threat information between individuals. Animal and human studies have begun to elucidate the behavioral, neural and molecular mechanisms of SFL. Recent research suggests that social learning mechanisms underlie a wide range of adaptive and maladaptive phenomena, from supporting flexible avoidance in dynamic environments to intergenerational transmission of trauma and anxiety disorders. This review discusses recent advances in SFL studies and their implications for basic, social and clinical sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A comparison of positive vicarious learning and verbal information for reducing vicariously learned fear

    OpenAIRE

    Reynolds, Gemma; Wasely, David; Dunne, Guler; Askew, Chris

    2017-01-01

    Research with children has demonstrated that both positive vicarious learning (modelling) and positive verbal information can reduce children’s acquired fear responses for a particular stimulus. However, this fear reduction appears to be more effective when the intervention pathway matches the initial fear learning pathway. That is, positive verbal information is a more effective intervention than positive modelling when fear is originally acquired via negative verbal information. Research ha...

  5. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    Science.gov (United States)

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  6. Inhibition of vicariously learned fear in children using positive modeling and prior exposure.

    Science.gov (United States)

    Askew, Chris; Reynolds, Gemma; Fielding-Smith, Sarah; Field, Andy P

    2016-02-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions-psychoeducation, factual information, or no information (control)-prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions-positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)-before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. (c) 2016 APA, all rights reserved).

  7. Contextual learning theory: Concrete form and a software prototype to improve early education.

    NARCIS (Netherlands)

    Mooij, Ton

    2016-01-01

    In 'contextual learning theory' three types of contextual conditions (differentiation of learning procedures and materials, integrated ICT support, and improvement of development and learning progress) are related to four aspects of the learning process (diagnostic, instructional, managerial, and

  8. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning.

    Science.gov (United States)

    Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Belda, Xavier; Armario, Antonio; Nadal, Roser

    2018-05-30

    Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  9. Vicarious learning and the development of fears in childhood.

    Science.gov (United States)

    Askew, Chris; Field, Andy P

    2007-11-01

    Vicarious learning has long been assumed to be an indirect pathway to fear; however, there is only retrospective evidence that children acquire fears in this way. In two experiments, children (aged 7-9 years) were exposed to pictures of novel animals paired with pictures of either scared, happy or no facial expressions to see the impact on their fear cognitions and avoidance behavior about the animals. In Experiment 1, directly (self-report) and indirectly measured (affective priming) fear attitudes towards the animals changed congruent with the facial expressions with which these were paired. The indirectly measured fear beliefs persisted up to 3 months. Experiment 2 showed that children took significantly longer to approach a box they believed to contain an animal they had previously seen paired with scared faces. These results support theories of fear acquisition that suppose that vicarious learning affects cognitive and behavioral fear emotion, and suggest possibilities for interventions to weaken fear acquired in this way.

  10. Vicarious Learning and Reduction of Fear in Children via Adult and Child Models.

    Science.gov (United States)

    Dunne, Güler; Askew, Chris

    2017-06-01

    Children can learn to fear stimuli vicariously, by observing adults' or peers' responses to them. Given that much of school-age children's time is typically spent with their peers, it is important to establish whether fear learning from peers is as effective or robust as learning from adults, and also whether peers can be successful positive models for reducing fear. During a vicarious fear learning procedure, children (6 to 10 years; N = 60) were shown images of novel animals together with images of adult or peer faces expressing fear. Later they saw their fear-paired animal again together with positive emotional adult or peer faces. Children's fear beliefs and avoidance for the animals increased following vicarious fear learning and decreased following positive vicarious counterconditioning. There was little evidence of differences in learning from adults and peers, demonstrating that for this age group peer models are effective models for both fear acquisition and reduction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization.

    Science.gov (United States)

    Daviu, Núria; Delgado-Morales, Raúl; Nadal, Roser; Armario, Antonio

    2012-01-01

    Exposure of animals to footshocks (FS) in absence of any specific cue results in the development of fear to the compartment where shocks were given (contextual fear conditioning), and this is usually evaluated by time spent freezing. However, the extent to which contextual fear conditioning always develops when animals are exposed to other stressors is not known. In the present work we firstly demonstrated, using freezing, that exposure of adult rats to a single session of FS resulted in short-term and long-term contextual fear conditioning (freezing) that was paralleled by increased hypothalamic-pituitary-adrenal (HPA) activation. In contrast, using a similar design, no HPA or behavioral evidence for such conditioning was found after exposure to immobilization on boards (IMO), despite this stressor being of similar severity as FS on the basis of standard physiological measures of stress, including HPA activation. In a final experiment we directly compared the exposure to the two stressors in the same type of context and tested for the development of conditioning to the context and to a specific cue for IMO (the board). We observed the expected high levels of freezing and the conditioned HPA activation after FS, but not after IMO, regardless of the presence of the board during testing. Therefore, it can be concluded that development of fear conditioning to context or particular cues, as evaluated by either behavioral or endocrine measures, appears to be dependent on the nature of the aversive stimuli, likely to be related to biologically preparedness to establish specific associations.

  12. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation.

    Science.gov (United States)

    Soya, Shingo; Shoji, Hirotaka; Hasegawa, Emi; Hondo, Mari; Miyakawa, Tsuyoshi; Yanagisawa, Masashi; Mieda, Michihiro; Sakurai, Takeshi

    2013-09-04

    The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.

  13. Learning strategies during fear conditioning

    OpenAIRE

    Carpenter, Russ E.; Summers, Cliff H.

    2009-01-01

    This paper describes a model of fear learning, in which subjects have an option of behavioral responses to impending social defeat. The model generates two types of learning: social avoidance and classical conditioning, dependent upon 1) escape from or 2) social subordination to an aggressor. We hypothesized that social stress provides the impetus as well as the necessary information to stimulate dichotomous goal-oriented learning. Specialized tanks were constructed to subject rainbow trout t...

  14. Post-Retrieval Late Process Contributes to Persistence of Reactivated Fear Memory

    Science.gov (United States)

    Nakayama, Daisuke; Yamasaki, Yoshiko; Matsuki, Norio; Nomura, Hiroshi

    2013-01-01

    Several studies have demonstrated the mechanisms involved in memory persistence after learning. However, little is known about memory persistence after retrieval. In this study, a protein synthesis inhibitor, anisomycin, was infused into the basolateral amygdala of mice 9.5 h after retrieval of contextual conditioned fear. Anisomycin attenuated…

  15. Direct Neuronal Glucose Uptake Is Required for Contextual Fear Acquisition in the Dorsal Hippocampus

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-11-01

    Full Text Available The metabolism of glucose is a nearly exclusive source of energy for maintaining neuronal survival, synaptic transmission and information processing in the brain. Two glucose metabolism pathways have been reported, direct neuronal glucose uptake and the astrocyte-neuron lactate shuttle (ANLS, which can be involved in these functions simultaneously or separately. Although ANLS in the dorsal hippocampus (DH has been proved to be required for memory consolidation, the specific metabolic pathway involved during memory acquisition remains unclear. The DH and amygdala are two key brain regions for acquisition of contextual fear conditioning (CFC. In 2-NBDG experiments, we observed that 2-NBDG-positive neurons were significantly increased during the acquisition of CFC in the DH. However, in the amygdala and cerebellum, 2-NBDG-positive neurons were not changed during CFC training. Strikingly, microinjection of a glucose transporter (GLUT inhibitor into the DH decreased freezing values during CFC training and 1 h later, while injection of a monocarboxylate transporter (MCT inhibitor into the amygdala also reduced freezing values. Therefore, we demonstrated that direct neuronal glucose uptake was the primary means of energy supply in the DH, while ANLS might supply energy in the amygdala during acquisition. Furthermore, knockdown of GLUT3 by a lentivirus in the DH impaired the acquisition of CFC. Taken together, the results indicated that there were two different glucose metabolism pathways in the DH and amygdala during acquisition of contextual fear memory and that direct neuronal glucose uptake in the DH may be regulated by GLUT3.

  16. Repeated Recall and PKM? Maintain Fear Memories in Juvenile Rats

    Science.gov (United States)

    Oliver, Chicora F.; Kabitzke, Patricia; Serrano, Peter; Egan, Laura J.; Barr, Gordon A.; Shair, Harry N.; Wiedenmayer, Christoph

    2016-01-01

    We examined the neural substrates of fear memory formation and maintenance when repeated recall was used to prevent forgetting in young animals. In contrast to adult rats, juveniles failed to show contextual fear responses at 4 d post-fear conditioning. Reconsolidation sessions 3 and 6 d after conditioning restored contextual fear responses in…

  17. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    Science.gov (United States)

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  18. 5-HT2C receptors in the BNST are necessary for the enhancement of fear learning by selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Pelrine, Eliza; Pasik, Sara Diana; Bayat, Leyla; Goldschmiedt, Debora; Bauer, Elizabeth P

    2016-12-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed to treat anxiety and depression, yet they paradoxically increase anxiety during initial treatment. Acute administration of these drugs prior to learning can also enhance Pavlovian cued fear conditioning. This potentiation has been previously reported to depend upon the bed nucleus of the stria terminalis (BNST). Here, using temporary inactivation, we confirmed that the BNST is not necessary for the acquisition of cued or contextual fear memory. Systemic administration of the SSRI citalopram prior to fear conditioning led to an upregulation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) in the oval nucleus of the BNST, and a majority of these neurons expressed the 5-HT2C receptor. Finally, local infusions of a 5-HT2C receptor antagonist directly into the oval nucleus of the BNST prevented the fear memory-enhancing effects of citalopram. These findings highlight the ability of the BNST circuitry to be recruited into gating fear and anxiety-like behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories.

    Directory of Open Access Journals (Sweden)

    Jun Liu

    Full Text Available Heart physiology is a highly useful indicator for measuring not only physical states, but also emotional changes in animals. Yet changes of heart rate variability during fear conditioning have not been systematically studied in mice. Here, we investigated changes in heart rate and heart rate variability in both short-term and long-term contextual and cued fear conditioning. We found that while fear conditioning could increase heart rate, the most significant change was the reduction in heart rate variability which could be further divided into two distinct stages: a highly rhythmic phase (stage-I and a more variable phase (stage-II. We showed that the time duration of the stage-I rhythmic phase were sensitive enough to reflect the transition from short-term to long-term fear memories. Moreover, it could also detect fear extinction effect during the repeated tone recall. These results suggest that heart rate variability is a valuable physiological indicator for sensitively measuring the consolidation and expression of fear memories in mice.

  20. Methylphenidate Enhances Extinction of Contextual Fear

    Science.gov (United States)

    Abraham, Antony D.; Cunningham, Christopher L.; Lattal, K. Matthew

    2012-01-01

    Methylphenidate (MPH, Ritalin) is a norepinephrine and dopamine transporter blocker that is widely used in humans for treatment of attention deficit disorder and narcolepsy. Although there is some evidence that targeted microinjections of MPH may enhance fear acquisition, little is known about the effect of MPH on fear extinction. Here, we show…

  1. Contextual Teaching and Learning for Practitioners

    Directory of Open Access Journals (Sweden)

    Clemente Charles Hudson

    2008-08-01

    Full Text Available Contextual Teaching and Learning (CTL is defined as a way to introduce content using a variety of activelearning techniques designed to help students connect what they already know to what they are expected to learn, and to construct new knowledge from the analysis and synthesis of this learning process. A theoretical basis for CTL is outlined, with a focus on Connection, Constructivist, and Active Learning theories. A summary of brain activity during the learning process illustrates the physiological changes and connections that occur during educational activities. Three types of learning scenarios (project-based, goal-based, and inquiry-oriented are presented to illustrate how CTL can be applied by practitioners.

  2. Forming competing fear learning and extinction memories in adolescence makes fear difficult to inhibit

    OpenAIRE

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages. We examined neural correlates of impaired extinction retention by detection of phosphorylated mitogen-activated protein kinase immunoreactivity (pMA...

  3. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Effectiveness of Using Contextual Clues, Dictionary Strategy and Computer Assisted Language Learning (Call In Learning Vocabulary

    Directory of Open Access Journals (Sweden)

    Zuraina Ali

    2013-07-01

    Full Text Available This study investigates the effectiveness of three vocabulary learning methods that are Contextual Clues, Dictionary Strategy, and Computer Assisted Language Learning (CALL in learning vocabulary among ESL learners. First, it aims at finding which of the vocabulary learning methods namely Dictionary Strategy, Contextual Clues, and CALL that may result in the highest number of words learnt in the immediate and delayed recall tests. Second, it compares the results of the Pre-test and the Delayed Recall Post-test to determine the differences of learning vocabulary using the methods. A quasi-experiment that tested the effectiveness of learning vocabulary using Dictionary Strategy, Contextual clues, and CALL involved 123 first year university students. Qualitative procedures included the collection of data from interviews which were conducted to triangulate the data obtain from the quantitative inquiries. Findings from the study using ANOVA revealed that there were significant differences when students were exposed to Dictionary Strategy, Contextual Clues and CALL in the immediate recall tests but not in the Delayed Recall Post-test. Also, there were significant differences when t test was used to compare the scores between the Pre-test and the Delayed Recall Post-test in using the three methods of vocabulary learning. Although many researchers have advocated the relative effectiveness of Dictionary Strategy, Contextual Clues, and CALL in learning vocabulary, the study however, is still paramount since there is no study has ever empirically investigated the relative efficacy of these three methods in a single study.

  5. Vicarious learning and unlearning of fear in childhood via mother and stranger models.

    Science.gov (United States)

    Dunne, Güler; Askew, Chris

    2013-10-01

    Evidence shows that anxiety runs in families. One reason may be that children are particularly susceptible to learning fear from their parents. The current study compared children's fear beliefs and avoidance preferences for animals following positive or fearful modeling by mothers and strangers in vicarious learning and unlearning procedures. Children aged 6 to 10 years (N = 60) were exposed to pictures of novel animals either alone (control) or together with pictures of their mother or a stranger expressing fear or happiness. During unlearning (counterconditioning), children saw each animal again with their mother or a stranger expressing the opposite facial expression. Following vicarious learning, children's fear beliefs increased for animals seen with scared faces and this effect was the same whether fear was modeled by mothers or strangers. Fear beliefs and avoidance preferences decreased following positive counterconditioning and increased following fear counterconditioning. Again, learning was the same whether the model was the child's mother or a stranger. These findings indicate that children in this age group can vicariously learn and unlearn fear-related cognitions from both strangers and mothers. This has implications for our understanding of fear acquisition and the development of early interventions to prevent and reverse childhood fears and phobias.

  6. Anxiety symptoms and children's eye gaze during fear learning.

    Science.gov (United States)

    Michalska, Kalina J; Machlin, Laura; Moroney, Elizabeth; Lowet, Daniel S; Hettema, John M; Roberson-Nay, Roxann; Averbeck, Bruno B; Brotman, Melissa A; Nelson, Eric E; Leibenluft, Ellen; Pine, Daniel S

    2017-11-01

    The eye region of the face is particularly relevant for decoding threat-related signals, such as fear. However, it is unclear if gaze patterns to the eyes can be influenced by fear learning. Previous studies examining gaze patterns in adults find an association between anxiety and eye gaze avoidance, although no studies to date examine how associations between anxiety symptoms and eye-viewing patterns manifest in children. The current study examined the effects of learning and trait anxiety on eye gaze using a face-based fear conditioning task developed for use in children. Participants were 82 youth from a general population sample of twins (aged 9-13 years), exhibiting a range of anxiety symptoms. Participants underwent a fear conditioning paradigm where the conditioned stimuli (CS+) were two neutral faces, one of which was randomly selected to be paired with an aversive scream. Eye tracking, physiological, and subjective data were acquired. Children and parents reported their child's anxiety using the Screen for Child Anxiety Related Emotional Disorders. Conditioning influenced eye gaze patterns in that children looked longer and more frequently to the eye region of the CS+ than CS- face; this effect was present only during fear acquisition, not at baseline or extinction. Furthermore, consistent with past work in adults, anxiety symptoms were associated with eye gaze avoidance. Finally, gaze duration to the eye region mediated the effect of anxious traits on self-reported fear during acquisition. Anxiety symptoms in children relate to face-viewing strategies deployed in the context of a fear learning experiment. This relationship may inform attempts to understand the relationship between pediatric anxiety symptoms and learning. © 2017 Association for Child and Adolescent Mental Health.

  7. A Molecular Dissociation between Cued and Contextual Appetitive Learning

    Science.gov (United States)

    Kheirbek, Mazen A.; Beeler, Jeff A.; Chi, Wanhao; Ishikawa, Yoshihiro; Zhuang, Xiaoxi

    2010-01-01

    In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific…

  8. Vicarious Fear Learning Depends on Empathic Appraisals and Trait Empathy.

    Science.gov (United States)

    Olsson, Andreas; McMahon, Kibby; Papenberg, Goran; Zaki, Jamil; Bolger, Niall; Ochsner, Kevin N

    2016-01-01

    Empathy and vicarious learning of fear are increasingly understood as separate phenomena, but the interaction between the two remains poorly understood. We investigated how social (vicarious) fear learning is affected by empathic appraisals by asking participants to either enhance or decrease their empathic responses to another individual (the demonstrator), who received electric shocks paired with a predictive conditioned stimulus. A third group of participants received no appraisal instructions and responded naturally to the demonstrator. During a later test, participants who had enhanced their empathy evinced the strongest vicarious fear learning as measured by skin conductance responses to the conditioned stimulus in the absence of the demonstrator. Moreover, this effect was augmented in observers high in trait empathy. Our results suggest that a demonstrator's expression can serve as a "social" unconditioned stimulus (US), similar to a personally experienced US in Pavlovian fear conditioning, and that learning from a social US depends on both empathic appraisals and the observers' stable traits. © The Author(s) 2015.

  9. Predicting Contextual Informativeness for Vocabulary Learning

    Science.gov (United States)

    Kapelner, Adam; Soterwood, Jeanine; Nessaiver, Shalev; Adlof, Suzanne

    2018-01-01

    Vocabulary knowledge is essential to educational progress. High quality vocabulary instruction requires supportive contextual examples to teach word meaning and proper usage. Identifying such contexts by hand for a large number of words can be difficult. In this work, we take a statistical learning approach to engineer a system that predicts…

  10. Vicarious extinction learning during reconsolidation neutralizes fear memory

    NARCIS (Netherlands)

    Golkar, A.; Tjaden, C.; Kindt, M.

    Background: Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether

  11. Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments

    NARCIS (Netherlands)

    Börner, Dirk

    2010-01-01

    Börner, D. (2009). Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments. Presented at the Doctoral Consortium of the Fourth European Conference on Technology Enhanced Learning (EC-TEL 2009). September, 29-October, 2, 2009, Nice, France.

  12. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Science.gov (United States)

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  13. Contextual Mobile Learning Strongly Related to Industrial Activities: Principles and Case Study

    OpenAIRE

    David, Bertrand; Yin, Chuantao; Chalon, René

    2010-01-01

    M-learning (mobile learning) can take various forms. We are interested in contextualized M-learning, i.e. the training related to the situation physically or logically localized. Contextualization and pervasivity are important aspects of our approach. We propose in particular MOCOCO principles (Mobility - COntextualisation - COoperation) using IMERA platform (Mobile Interaction in the Augmented Real Environment) covering our university campus in which we prototype and test our approach. We ar...

  14. Learning to avoid spiders: fear predicts performance, not competence.

    Science.gov (United States)

    Luo, Xijia; Becker, Eni S; Rinck, Mike

    2018-01-05

    We used an immersive virtual environment to examine avoidance learning in spider-fearful participants. In 3 experiments, participants were asked to repeatedly lift one of 3 virtual boxes, under which either a toy car or a spider appeared and then approached the participant. Participants were not told that the probability of encountering a spider differed across boxes. When the difference was large (Exps. 1 and 2), spider-fearfuls learned to avoid spiders by lifting the few-spiders-box more often and the many-spiders-box less often than non-fearful controls did. However, they hardly managed to do so when the probability differences were small (Exp. 3), and they did not escape from threat more quickly (Exp. 2). In contrast to the observed performance differences, spider-fearfuls and non-fearfuls showed equal competence, that is comparable post-experimental knowledge about the probability to encounter spiders under the 3 boxes. The limitations and implications of the present study are discussed.

  15. Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2010-01-01

    Börner, D., & Specht, M. (2009). Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments. Proceedings of the Doctoral Consortium of the Fourth European Conference on Technology Enhanced Learning (EC-TEL 2009). September, 29-October, 2, 2009, Nice, France. [unpublished

  16. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior.

    Science.gov (United States)

    Lach, Gilliard; de Lima, Thereza Christina Monteiro

    2013-07-01

    Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    Science.gov (United States)

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Contingency learning in human fear conditioning involves the ventral striatum.

    Science.gov (United States)

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  19. Integration of contextual cues into memory depends on "prefrontal" N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Starosta, Sarah; Bartetzko, Isabelle; Stüttgen, Maik C; Güntürkün, Onur

    2017-10-01

    Every learning event is embedded in a context, but not always does the context become an integral part of the memory; however, for extinction learning it usually does, resulting in context-specific conditioned responding. The neuronal mechanisms underlying contextual control have been mainly investigated for Pavlovian fear extinction with a focus on hippocampal structures. However, the initial acquisition of novel responses can be subject to contextual control as well, although the neuronal mechanisms are mostly unknown. Here, we tested the hypothesis that contextual control of acquisition depends on glutamatergic transmission underlying executive functions in forebrain areas, e.g. by shifting attention to critical cues. Thus, we antagonized N-methyl-D-aspartate (NMDA) receptors with 2-amino-5-phosphonovaleric acid (AP5) in the pigeon nidopallium caudolaterale, the functional analogue of mammalian prefrontal cortex, during the concomitant acquisition and extinction of conditioned responding to two different stimuli. This paradigm has previously been shown to lead to contextual control over extinguished as well as non-extinguished responding. NMDA receptor blockade resulted in an impairment of extinction learning, but left the acquisition of responses to a novel stimulus unaffected. Critically, when responses were tested in a different context in the retrieval phase, we observed that NMDA receptor blockade led to the abolishment of contextual control over acquisition performance. This result is predicted by a model describing response inclination as the product of associative strength and contextual gain. In this model, learning under AP5 leads to a change in the contextual gain on the learned association, possibly via the modulation of attentional mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dimensions of organizational learning: contextual variables in companies under lean manufacturing implementation

    Directory of Open Access Journals (Sweden)

    Guilherme Luz Tortorella

    2014-08-01

    Full Text Available The Lean Production (LP is an approach that encompasses a variety of management practices to reduce losses and improve operational efficiency. Due to this fact, the ability to innovate, change and learn continuously presents itself as a key element in the implementation of the LP. Several contextual variables were mentioned in the literature as potential impediments to implementing lean. However, little is known about the influence of these variables on the dimensions of Organizational Learning (OL. This study aims to examine the relationship between six contextual variables and the frequency of occurrence of problems in companies that are implementing the LP. Furthermore, the identification of relevant relationships between dimensions of OL and contextual variables contribute to the identification of the contexts in which problems can be expected to occur. The sample contains thirteen companies implementing the LP. The results indicate that the same contextual variables, which are deemed as influential to implement LP, have a different influence on the ability of organizational learning.

  1. Contextual Mobile Learning: A Step Further to Mastering Professional Appliances

    Directory of Open Access Journals (Sweden)

    René Chalon

    2007-10-01

    Full Text Available In this paper we describe our approach whose objective is to apply MOCOCO concepts to e-learning. After a short presentation of MOCOCO (Mobility, Cooperation, Contextualization and IMERA (Mobile Interaction in the Augmented Real Environment principles we will discuss their use in a project called HMTD (Help Me To Do whose aim is to use wearable computer for a framework of activities of better use, maintenance and repairing of professional appliances. We will successively describe m-learning scope, contextualization and cooperation advantages as well as learning methods. A case study of configuration of wearable computer and its peripherals, taking into account context, in-situ storage, traceability and regulation in these activities finishes this paper.

  2. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    Science.gov (United States)

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  3. Neural correlates of fear: insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Garfinkel SN

    2014-12-01

    Full Text Available Sarah N Garfinkel,1,2 Hugo D Critchley1,2 1Sackler Centre for Consciousness Science, 2Department of Psychiatry, Brighton and Sussex Medical School, University of Sussex, Brighton, UK Abstract: Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions, and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of

  4. Stress following extinction learning leads to a context-dependent return of fear.

    Science.gov (United States)

    Hamacher-Dang, Tanja C; Merz, Christian J; Wolf, Oliver T

    2015-04-01

    It has been suggested that extinction-based therapy benefits from administration of the stress hormone cortisol. However, it is unclear whether similar effects can be obtained by inducing stress instead of administering cortisol, and whether the effects also persist if memory is tested in a different context (renewal test) or after exposure to an aversive stimulus (reinstatement). The present study therefore applied a fear conditioning (context A, day 1) and extinction (context B, day 2) paradigm in healthy men. After fear extinction, participants were exposed to a stress or control procedure (n = 20 each). Fear retrieval was tested in contexts A and B on day 3. Postextinction stress increased skin conductance responses to the extinguished stimulus in the retrieval and reinstatement test especially in the acquisition context. The context-dependent return of fear may reflect enhancing effects of stress on the consolidation of contextual cues. Copyright © 2014 Society for Psychophysiological Research.

  5. Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear

    Science.gov (United States)

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P.

    2010-01-01

    Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…

  6. Does learning performance in horses relate to fearfulness, baseline stress hormone, and social rank?

    DEFF Research Database (Denmark)

    Christensen, Janne Winther; Ahrendt, Line Peerstrup; Lintrup, Randi

    2012-01-01

    The ability of horses to learn and remember new tasks is fundamentally important for their use by humans. Fearfulness may, however, interfere with learning, because stimuli in the environment can overshadow signals from the rider or handler. In addition, prolonged high levels of stress hormones c...... to behavioural responses in a standardised fear test. Learning performance in the home environment, however, appears unrelated to fearfulness, social rank and baseline FCM levels.......The ability of horses to learn and remember new tasks is fundamentally important for their use by humans. Fearfulness may, however, interfere with learning, because stimuli in the environment can overshadow signals from the rider or handler. In addition, prolonged high levels of stress hormones can...... affect neurons within the hippocampus; a brain region central to learning and memory. In a series of experiments, we aimed to investigate the link between performance in two learning tests, the baseline level of stress hormones, measured as faecal cortisol metabolites (FCM), fearfulness, and social rank...

  7. Fear in the Classroom: An Examination of Teachers' Use of Fear Appeals and Students' Learning Outcomes

    Science.gov (United States)

    Sprinkle, Rose; Hunt, Stephen; Simonds, Cheri; Comadena, Mark

    2006-01-01

    This study examined the impact of teachers' use of fear appeals and efficacy statements on student affective learning, motivation, likelihood of taking a course with the instructor, and likelihood of visiting with the instructor for help. The results suggest that fear and efficacy interact to more positively influence students' perceptions of…

  8. Juvenile neurogenesis makes essential contributions to adult brain structure and plays a sex-dependent role in fear memories

    Directory of Open Access Journals (Sweden)

    Jesse Daniel Cushman

    2012-02-01

    Full Text Available Postnatal-neurogenesis (PNN contributes neurons to olfactory bulb (OB and dentate gyrus (DG throughout juvenile development, but the quantitative amount, temporal dynamics and functional roles of this contribution have not been defined. By using transgenic mouse models for cell lineage tracing and conditional cell ablation, we found that juvenile neurogenesis gradually increased the total number of granule neurons by approximately 40% in OB, and by 25% in DG, between two weeks and two months of age, and that total numbers remained stable thereafter. These findings indicate that the overwhelming majority of net postnatal neuronal addition in these regions occurs during the juvenile period and that adult neurogenesis contributes primarily to replacement of granule cells in both regions. Behavioral analysis in our conditional cell ablation mouse model showed that complete loss of PNN throughout both the juvenile and adult period produced a specific set of sex-dependent cognitive changes. We observed normal hippocampus-independent delay fear conditioning, but excessive generalization of fear to a novel auditory stimulus, which is consistent with a role for PNN in psychopathology. Standard contextual fear conditioning was intact, however, pre-exposure dependent contextual fear was impaired suggesting a specific role for PNN in incidental contextual learning. Contextual discrimination between two highly similar contexts was enhanced; suggesting either enhanced contextual pattern separation or impaired temporal integration. We also observed a reduced reliance on olfactory cues, consistent with a role for OB PNN in the efficient processing of olfactory information. Thus, juvenile neurogenesis adds substantively to the total numbers of granule neurons in OB and DG during periods of critical juvenile behavioral development, including weaning, early social interactions and sexual maturation, and plays a sex-dependent role in fear memories.

  9. The vicarious learning pathway to fear 40 years on.

    Science.gov (United States)

    Askew, Chris; Field, Andy P

    2008-10-01

    Forty years on from the initial idea that fears could be learnt vicariously through observing other people's responses to a situation or stimulus, this review looks at the evidence for this theory as an explanatory model of clinical fear. First, we review early experimental evidence that fears can be learnt vicariously before turning to the evidence from both primate and human research that clinical fears can be acquired in this way. Finally, we review recent evidence from research on non-anxious children. Throughout the review we highlight problems and areas for future research. We conclude by exploring the likely underlying mechanisms in the vicarious learning of fear and the resulting clinical implications.

  10. The Formation of Conservation-Based Behaviour of Mechanical Engineering Students through Contextual Learning Approach

    Science.gov (United States)

    Sudarman; Djuniadi; Sutopo, Yeri

    2017-01-01

    This study was aimed to figure out: (1) the implementation of contextual learning approaches; (2) the learning outcome of conservation education using contextual approach on the internship program preparation class; (3) the conservation-based behaviour of the internship program participants; (4) the contribution of conservation education results…

  11. A Comparative Study of Paper-based and Computer-based Contextualization in Vocabulary Learning of EFL Students

    Directory of Open Access Journals (Sweden)

    Mousa Ahmadian

    2015-04-01

    Full Text Available Vocabulary acquisition is one of the largest and most important tasks in language classes. New technologies, such as computers, have helped a lot in this way. The importance of the issue led the researchers to do the present study which concerns the comparison of contextualized vocabulary learning on paper and through Computer Assisted Language Learning (CALL. To this end, 52 Pre-university EFL learners were randomly assigned in two groups: a paper-based group (PB and a computer-based (CB group each with 26 learners. The PB group received PB contextualization of vocabulary items, while the CB group received CB contextualization of the vocabulary items thorough PowerPoint (PP software. One pretest, posttest, along with an immediate and a delayed posttest were given to the learners. Paired samples t-test of pretest and posttest and independent samples t-test of the delayed and immediate posttest were executed by SPSS software. The results revealed that computer-based contextualization had more effects on vocabulary learning of Iranian EFL learners than paper-based contextualization of the words. Keywords: Computer-based contextualization, Paper-based contextualization, Vocabulary learning, CALL

  12. DREAM (Downstream Regulatory Element Antagonist Modulator contributes to synaptic depression and contextual fear memory

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2010-01-01

    Full Text Available Abstract The downstream regulatory element antagonist modulator (DREAM, a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM, we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD but not long-term potentiation (LTP, was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory.

  13. Age-related changes in contextual associative learning.

    Science.gov (United States)

    Luu, Trinh T; Pirogovsky, Eva; Gilbert, Paul E

    2008-01-01

    The hippocampus plays a critical role in processing contextual information. Although age-related changes in the hippocampus are well documented in humans, nonhuman primates, and rodents, few studies have examined contextual learning deficits in old rats. The present study investigated age-related differences in contextual associative learning in young (6 mo) and old (24 mo) rats using olfactory stimuli. Stimuli consisted of common odors mixed in sand and placed in clear plastic cups. Testing was conducted in two boxes that represented two different contexts (Context 1 and Context 2). The contexts varied based on environmental features of the box such as color (black vs. white), visual cues on the walls of the box, and flooring texture. Each rat was simultaneously presented with two cups, one filled with Odor A and one filled with Odor B in each context. In Context 1, the rat received a food reward for digging in the cup containing Odor A, but did not receive a food reward for digging in the cup containing Odor B. In Context 2, the rat was rewarded for digging in the cup containing Odor B, but did receive a reward for digging in the cup containing Odor A. Therefore, the rat learned to associate Context 1 with Odor A and Context 2 with Odor B. The rat was tested for eight days using the same odor problem throughout all days of testing. The results showed no significant difference between young and old rats on the first two days of testing; however, young rats significantly outperformed old rats on Day 3. Young rats continued to maintain superior performance compared to old rats on Days 4-8. The results suggest that aging results in functional impairments in brain regions that support memory for associations between specific cues and their respective context.

  14. Learning and judgment can be affected by predisposed fearfulness in laying hens

    NARCIS (Netherlands)

    Haas, de Elske N.; Lee, Caroline; Rodenburg, Bas

    2017-01-01

    High fearfulness could disrupt learning and likely affects judgment in animals, especially when it is part of an animals' personality, i.e., trait anxiety. Here, we tested whether high fearfulness affects discrimination learning and judgment bias (JB) in laying hens. Based on the response to an open

  15. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    Science.gov (United States)

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  16. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning.

    Science.gov (United States)

    Young, M B; Andero, R; Ressler, K J; Howell, L L

    2015-09-15

    Acutely administered 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') has been proposed to have long-term positive effects on post-traumatic stress disorder (PTSD) symptoms when combined with psychotherapy. No preclinical data support a mechanistic basis for these claims. Given the persistent nature of psychotherapeutic gains facilitated by MDMA, we hypothesized that MDMA improves fear extinction learning, a key process in exposure-based therapies for PTSD. In these experiments, mice were first exposed to cued fear conditioning and treated with drug vehicle or MDMA before extinction training 2 days later. MDMA was administered systemically and also directly targeted to brain structures known to contribute to extinction. In addition to behavioral measures of extinction, changes in mRNA levels of brain-derived neurotrophic factor (Bdnf) and Fos were measured after MDMA treatment and extinction. MDMA (7.8 mg kg(-1)) persistently and robustly enhanced long-term extinction when administered before extinction training. MDMA increased the expression of Fos in the amygdala and medial prefrontal cortex (mPFC), whereas increases in Bdnf expression were observed only in the amygdala after extinction training. Extinction enhancements were recapitulated when MDMA (1 μg) was infused directly into the basolateral complex of the amygdala (BLA), and enhancement was abolished when BDNF signaling was inhibited before extinction. These findings suggest that MDMA enhances fear memory extinction through a BDNF-dependent mechanism, and that MDMA may be a useful adjunct to exposure-based therapies for PTSD and other anxiety disorders characterized by altered fear learning.

  17. Neural correlates of contextual cueing are modulated by explicit learning.

    Science.gov (United States)

    Westerberg, Carmen E; Miller, Brennan B; Reber, Paul J; Cohen, Neal J; Paller, Ken A

    2011-10-01

    Contextual cueing refers to the facilitated ability to locate a particular visual element in a scene due to prior exposure to the same scene. This facilitation is thought to reflect implicit learning, as it typically occurs without the observer's knowledge that scenes repeat. Unlike most other implicit learning effects, contextual cueing can be impaired following damage to the medial temporal lobe. Here we investigated neural correlates of contextual cueing and explicit scene memory in two participant groups. Only one group was explicitly instructed about scene repetition. Participants viewed a sequence of complex scenes that depicted a landscape with five abstract geometric objects. Superimposed on each object was a letter T or L rotated left or right by 90°. Participants responded according to the target letter (T) orientation. Responses were highly accurate for all scenes. Response speeds were faster for repeated versus novel scenes. The magnitude of this contextual cueing did not differ between the two groups. Also, in both groups repeated scenes yielded reduced hemodynamic activation compared with novel scenes in several regions involved in visual perception and attention, and reductions in some of these areas were correlated with response-time facilitation. In the group given instructions about scene repetition, recognition memory for scenes was superior and was accompanied by medial temporal and more anterior activation. Thus, strategic factors can promote explicit memorization of visual scene information, which appears to engage additional neural processing beyond what is required for implicit learning of object configurations and target locations in a scene. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The effect of brain based learning with contextual approach viewed from adversity quotient

    Science.gov (United States)

    Kartikaningtyas, V.; Kusmayadi, T. A.; Riyadi, R.

    2018-05-01

    The aim of this research was to find out the effect of Brain Based Learning (BBL) with contextual approach viewed from adversity quotient (AQ) on mathematics achievement. BBL-contextual is the model to optimize the brain in the new concept learning and real life problem solving by making the good environment. Adversity Quotient is the ability to response and faces the problems. In addition, it is also about how to turn the difficulties into chances. This AQ classified into quitters, campers, and climbers. The research method used in this research was quasi experiment by using 2x3 factorial designs. The sample was chosen by using stratified cluster random sampling. The instruments were test and questionnaire for the data of AQ. The results showed that (1) BBL-contextual is better than direct learning on mathematics achievement, (2) there is no significant difference between each types of AQ on mathematics achievement, and (3) there is no interaction between learning model and AQ on mathematics achievement.

  19. Joy, Distress, Hope, and Fear in Reinforcement Learning (Extended Abstract)

    NARCIS (Netherlands)

    Jacobs, E.J.; Broekens, J.; Jonker, C.M.

    2014-01-01

    In this paper we present a mapping between joy, distress, hope and fear, and Reinforcement Learning primitives. Joy / distress is a signal that is derived from the RL update signal, while hope/fear is derived from the utility of the current state. Agent-based simulation experiments replicate

  20. The effects of contextual learning instruction on science achievement of male and female tenth-grade students

    Science.gov (United States)

    Ingram, Samantha Jones

    The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest

  1. Learned Helplessness and "Fear of Success" in College Women.

    Science.gov (United States)

    Ris, Martin D.; Woods, Donald J.

    1983-01-01

    Examines anagram performance of 90 high, medium, and low fear-of-success (FOS) women, after the subjects had experienced conditions within the traditional triadic learned helplessness design. Concluded that increased attention should be given to personality variables within the learned helplessness paradigm. (CMG)

  2. Myosin light chain kinase regulates synaptic plasticity and fear learning in the lateral amygdala.

    Science.gov (United States)

    Lamprecht, R; Margulies, D S; Farb, C R; Hou, M; Johnson, L R; LeDoux, J E

    2006-01-01

    Learning and memory depend on signaling molecules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the training stimuli were presented in a non-associative manner. Anatomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically implicated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nucleus of the amygdala. When ML-7 was applied without associative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the circuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

  3. Associative learning versus fear habituation as predictors of long-term extinction retention.

    Science.gov (United States)

    Brown, Lily A; LeBeau, Richard T; Chat, Ka Yi; Craske, Michelle G

    2017-06-01

    Violation of unconditioned stimulus (US) expectancy during extinction training may enhance associative learning and result in improved long-term extinction retention compared to within-session habituation. This experiment examines variation in US expectancy (i.e., expectancy violation) as a predictor of long-term extinction retention. It also examines within-session habituation of fear-potentiated startle (electromyography, EMG) and fear of conditioned stimuli (CS) throughout extinction training as predictors of extinction retention. Participants (n = 63) underwent fear conditioning, extinction and retention and provided continuous ratings of US expectancy and EMG, as well as CS fear ratings before and after each phase. Variation in US expectancy throughout extinction and habituation of EMG and fear was entered into a regression as predictors of retention and reinstatement of levels of expectancy and fear. Greater variation in US expectancy throughout extinction training was significantly predictive of enhanced extinction performance measured at retention test, although not after reinstatement test. Slope of EMG and CS fear during extinction did not predict retention of extinction. Within-session habituation of EMG and self-reported fear is not sufficient for long-term retention of extinction learning, and models emphasizing expectation violation may result in enhanced outcomes.

  4. Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory.

    Science.gov (United States)

    Sigurdsson, Torfi; Doyère, Valérie; Cain, Christopher K; LeDoux, Joseph E

    2007-01-01

    Much of the research on long-term potentiation (LTP) is motivated by the question of whether changes in synaptic strength similar to LTP underlie learning and memory. Here we discuss findings from studies on fear conditioning, a form of associative learning whose neural circuitry is relatively well understood, that may be particularly suited for addressing this question. We first review the evidence suggesting that fear conditioning is mediated by changes in synaptic strength at sensory inputs to the lateral nucleus of the amygdala. We then discuss several outstanding questions that will be important for future research on the role of synaptic plasticity in fear learning. The results gained from these studies may shed light not only on fear conditioning, but may also help unravel more general cellular mechanisms of learning and memory.

  5. Learning-dependent and -independent enhancement of mitral/tufted cell glomerular odor responses following olfactory fear conditioning in awake mice.

    Science.gov (United States)

    Ross, Jordan M; Fletcher, Max L

    2018-04-18

    Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing non-specifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and non-conditioned odors, potentially priming the system towards generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings. SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning- independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important

  6. D-Cycloserine Does Not Facilitate Fear Extinction by Reducing Conditioned Stimulus Processing or Promoting Conditioned Inhibition to Contextual Cues

    Science.gov (United States)

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2012-01-01

    The NMDA receptor partial agonist d-cycloserine (DCS) enhances the extinction of learned fear in rats and exposure therapy in humans with anxiety disorders. Despite these benefits, little is known about the mechanisms by which DCS promotes the loss of fear. The present study examined whether DCS augments extinction retention (1) through reductions…

  7. Early-life inflammation with LPS delays fear extinction in adult rodents.

    Science.gov (United States)

    Doenni, V M; Song, C M; Hill, M N; Pittman, Q J

    2017-07-01

    A large body of evidence has been brought forward connecting developmental immune activation to abnormal fear and anxiety levels. Anxiety disorders have extremely high lifetime prevalence, yet susceptibility factors that contribute to their emergence are poorly understood. In this research we investigated whether an inflammatory insult early in life can alter the response to fear conditioning in adulthood. Fear learning and extinction are important and adaptive behaviors, mediated largely by the amygdala and its interconnectivity with cortico-limbic circuits. Male and female rat pups were given LPS (100μg/kg i.p.) or saline at postnatal day 14; LPS activated cFos expression in the central amygdala 2.5h after exposure, but not the basal or lateral nuclei. When tested in adulthood, acquisition of an auditory cued or contextual learned fear memory was largely unaffected as was the extinction of fear to a conditioned context. However, we detected a deficit in auditory fear extinction in male and female rats that experienced early-life inflammation, such that there is a significant delay in fear extinction processes resulting in more sustained fear behaviors in response to a conditioned cue. This response was specific to extinction training and did not persist into extinction recall. The effect could not be explained by differences in pain threshold (unaltered) or in baseline anxiety, which was elevated in adolescent females only and unaltered in adolescent males and adult males and females. This research provides further evidence for the involvement of the immune system during development in the shaping of fear and anxiety related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Other people as means to a safe end: vicarious extinction blocks the return of learned fear.

    Science.gov (United States)

    Golkar, Armita; Selbing, Ida; Flygare, Oskar; Ohman, Arne; Olsson, Andreas

    2013-11-01

    Information about what is dangerous and safe in the environment is often transferred from other individuals through social forms of learning, such as observation. Past research has focused on the observational, or vicarious, acquisition of fears, but little is known about how social information can promote safety learning. To address this issue, we studied the effects of vicarious-extinction learning on the recovery of conditioned fear. Compared with a standard extinction procedure, vicarious extinction promoted better extinction and effectively blocked the return of previously learned fear. We confirmed that these effects could not be attributed to the presence of a learning model per se but were specifically driven by the model's experience of safety. Our results confirm that vicarious and direct emotional learning share important characteristics but that social-safety information promotes superior down-regulation of learned fear. These findings have implications for emotional learning, social-affective processes, and clinical practice.

  9. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Directory of Open Access Journals (Sweden)

    Marc S. Stieglitz

    2018-01-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/− mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure.

  10. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Science.gov (United States)

    Stieglitz, Marc S.; Fenske, Stefanie; Hammelmann, Verena; Becirovic, Elvir; Schöttle, Verena; Delorme, James E.; Schöll-Weidinger, Martha; Mader, Robert; Deussing, Jan; Wolfer, David P.; Seeliger, Mathias W.; Albrecht, Urs; Wotjak, Carsten T.; Biel, Martin; Michalakis, Stylianos; Wahl-Schott, Christian

    2018-01-01

    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure. PMID:29375299

  11. A novel perceptual discrimination training task: Reducing fear overgeneralization in the context of fear learning.

    Science.gov (United States)

    Ginat-Frolich, Rivkah; Klein, Zohar; Katz, Omer; Shechner, Tomer

    2017-06-01

    Generalization is an adaptive learning mechanism, but it can be maladaptive when it occurs in excess. A novel perceptual discrimination training task was therefore designed to moderate fear overgeneralization. We hypothesized that improvement in basic perceptual discrimination would translate into lower fear overgeneralization in affective cues. Seventy adults completed a fear-conditioning task prior to being allocated into training or placebo groups. Predesignated geometric shape pairs were constructed for the training task. A target shape from each pair was presented. Thereafter, participants in the training group were shown both shapes and asked to identify the image that differed from the target. Placebo task participants only indicated the location of each shape on the screen. All participants then viewed new geometric pairs and indicated whether they were identical or different. Finally, participants completed a fear generalization test consisting of perceptual morphs ranging from the CS + to the CS-. Fear-conditioning was observed through physiological and behavioural measures. Furthermore, the training group performed better than the placebo group on the assessment task and exhibited decreased fear generalization in response to threat/safety cues. The findings offer evidence for the effectiveness of the novel discrimination training task, setting the stage for future research with clinical populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fear learning and memory across adolescent development Hormones and Behavior Special Issue: Puberty and Adolescence

    Science.gov (United States)

    Pattwell, Siobhan S.; Lee, Francis S.; Casey, B.J.

    2013-01-01

    Throughout the past several decades, studies have uncovered a wealth of information about the neural circuitry underlying fear learning and extinction that has helped to inform treatments for fear-related disorders such as post-traumatic stress and anxiety. Yet, up to 40 percent of people do not respond to such treatments. Adolescence, in particular, is a developmental stage during which anxiety disorders peak, yet little is known about the development of fear-related neural circuitry during this period. Moreover, pharmacological and behavioral therapies that have been developed are based on mature circuitry and function. Here, we review neural circuitry implicated in fear learning and data from adolescent mouse and human fear learning studies. In addition, we propose a developmental model of fear neural circuitry that may optimize current treatments and inform when, during development, specific treatments for anxiety may be most effective. PMID:23998679

  13. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    Science.gov (United States)

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. Copyright © 2015. Published by Elsevier B.V.

  14. Suppression of neurotoxic lesion-induced seizure activity: evidence for a permanent role for the hippocampus in contextual memory.

    Directory of Open Access Journals (Sweden)

    Fraser T Sparks

    Full Text Available Damage to the hippocampus (HPC using the excitotoxin N-methyl-D-aspartate (NMDA can cause retrograde amnesia for contextual fear memory. This amnesia is typically attributed to loss of cells in the HPC. However, NMDA is also known to cause intense neuronal discharge (seizure activity during the hours that follow its injection. These seizures may have detrimental effects on retrieval of memories. Here we evaluate the possibility that retrograde amnesia is due to NMDA-induced seizure activity or cell damage per se. To assess the effects of NMDA induced activity on contextual memory, we developed a lesion technique that utilizes the neurotoxic effects of NMDA while at the same time suppressing possible associated seizure activity. NMDA and tetrodotoxin (TTX, a sodium channel blocker, are simultaneously infused into the rat HPC, resulting in extensive bilateral damage to the HPC. TTX, co-infused with NMDA, suppresses propagation of seizure activity. Rats received pairings of a novel context with foot shock, after which they received NMDA-induced, TTX+NMDA-induced, or no damage to the HPC at a recent (24 hours or remote (5 weeks time point. After recovery, the rats were placed into the shock context and freezing was scored as an index of fear memory. Rats with an intact HPC exhibited robust memory for the aversive context at both time points, whereas rats that received NMDA or NMDA+TTX lesions showed a significant reduction in learned fear of equal magnitude at both the recent and remote time points. Therefore, it is unlikely that observed retrograde amnesia in contextual fear conditioning are due to disruption of non-HPC networks by propagated seizure activity. Moreover, the memory deficit observed at both time points offers additional evidence supporting the proposition that the HPC has a continuing role in maintaining contextual memories.

  15. Individual differences in discriminatory fear learning under conditions of ambiguity: A vulnerability factor for anxiety disorders?

    Directory of Open Access Journals (Sweden)

    Inna eArnaudova

    2013-05-01

    Full Text Available Complex fear learning procedures might be better suited than the common differential fear conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their comparison allows for the examination of discriminatory fear learning under conditions of ambiguity. The present study examined the role of individual differences in such discriminatory fear learning. We hypothesized that heightened trait anxiety would be related to a deficit in discriminatory fear learning. Participants gave US-expectancy ratings as an index for the threat value of individual CSs following blocking and protection-from-overshadowing training. The difference in threat value at test between the protected-from-overshadowing CS and the blocked CS was negatively correlated with scores on a self-report tension-stress scale that approximates facets of generalized anxiety disorder (DASS-S, but not with other individual difference variables. In addition, a behavioral test showed that only participants scoring high on the DASS-S avoided the protected-from-overshadowing CS. This observed deficit in discriminatory fear learning for participants with high levels of tension-stress might be an underlying mechanism for fear overgeneralization in diffuse anxiety disorders such as generalized anxiety disorder.

  16. Respon Belajar Penerapan Model Contextual Teaching And Learning Dibandingkan Dengan Think Pair Share Pada Siswa

    Directory of Open Access Journals (Sweden)

    Atan Pramana

    2017-10-01

    Full Text Available Penelitian ini dilaksanakan dengan tujuan untuk mengetahui sebagai berikutrespon belajar karena penerapan model Contextual Teaching And Learning dibandingkan dengan Think Pair Share terhadap hasil belajar perawatan PC siswa kelas X TKJ. Penelitian ini merupakan penelitian eksperimen semu (quasi eksperimen. Populasi penelitian ini adalah seluruh siswa kelas X SMK Negeri 3 Malang. Sampel ditentukan kelas X TKJ 3 dengan perlakuan model Contextual Teaching And Learning dan kelas X TKJ 1 dengan perlakuan model pembelajaran Think Pair Share. Instrumen pengukuran hasil belajar meliputi penilaian test, rubrik afektif, dan rubrik psikomotor yang sebelumnya dilakukan uji validasi instrumen. Teknik analisis data menggunakan uji-t berbantuan SPSS 20 yang digunakan untuk mengetahui respon belajar terhadap hasil belajar yaitu regresi linear sederhana untuk mengetahui besar sumbangan. Berdasarkan hasil penelitian dan analisis data yang dilakukan. Terdapat sumbangan respon belajar penerapan model pembelajaran Contextual Teaching and Learning sebesar 71,5%, sedangkan sumbangan respon belajar penerapan model pembelajaran Think Pair Share sebesar 67,8%. Dari besarnya persentase diketahui bahwa respon belajar siswa terhadap penerapan model Contextual Teaching And Learning lebih tinggi dari pada respon belajar siswa terhadap penerapan model pembelajaran Think Pair Share.

  17. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits : Reversal by blockade of CRF1 receptors

    NARCIS (Netherlands)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-01-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the

  18. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction

    Science.gov (United States)

    Long, Virginia A.; Fanselow, Michael S.

    2014-01-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning “erased” learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial’s procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments. PMID:22176467

  19. (+)-Borneol suppresses conditioned fear recall and anxiety-like behaviors in mice.

    Science.gov (United States)

    Cao, Bo; Ni, Huan-Yu; Li, Jun; Zhou, Ying; Bian, Xin-Lan; Tao, Yan; Cai, Cheng-Yun; Qin, Cheng; Wu, Hai-Yin; Chang, Lei; Luo, Chun-Xia; Zhu, Dong-Ya

    2018-01-08

    Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABA A receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Proceedings of the 11th World Conference on Mobile and Contextual Learning

    OpenAIRE

    Specht, Marcus; Sharples, Mike; Multisilta, Jari

    2013-01-01

    Specht, M., Sharples, M., & Multisilta, J. (Eds.) (2012). Proceedings of the 11th World Conference on Mobile and Contextual Learning (mLearn 2012). October, 16-18, 2012, Helsinki, Finland. Published by CEUR Workshop Proceedings, 2012, Vol. 995. Retrieved from http://ceur-ws.org/Vol-955/

  1. Facilitating influence of stress on the consolidation of fear memory induced by a weak training: reversal by midazolam pretreatment.

    Science.gov (United States)

    Maldonado, Noelia Martina; Martijena, Irene Delia; Molina, Víctor Alejandro

    2011-11-20

    It is well known that an emotionally arousing experience usually results in a robust and persistent memory trace. The present study explored the potential mechanisms involved in the influence of stress on the consolidation of a contextual fear memory in animals subjected to a weak fear training protocol, and whether pretreatment with intra-basolateral amygdala or systemic administration of midazolam (MDZ) prevents the potential stress-induced influence on fear memory formation. A previous restraint session facilitated fear retention, this effect was not due to a sensitized effect of restraint on the footshock experience. MDZ, both systemically or intra-basolateral amygdala infusion prior to the restraint, attenuated the stress-induced promoting influence on fear memory formation. In addition, stress exposure activated the ERK1/2 pathway in basolateral amygdala (BLA) after the weak training procedure but not after the immediate footshock protocol. Similar to our behavioral findings, MDZ attenuated stress-induced elevation of phospho-ERK2 (p-ERK2) in BLA following the acquisition session. Given that the activation of ERK1/2 pathway is essential for associative learning, we propose that stress-induced facilitation of p-ERK2 in BLA is an important mechanism for the promoting influence of stress on the consolidation of contextual fear memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The time course of location-avoidance learning in fear of spiders.

    Science.gov (United States)

    Rinck, Mike; Koene, Marieke; Telli, Sibel; Moerman-van den Brink, Wiltine; Verhoeven, Barbara; Becker, Eni S

    2016-01-01

    Two experiments were designed to study the time course of avoidance learning in spider fearfuls (SFs) under controlled experimental conditions. To achieve this, we employed an immersive virtual environment (IVE): While walking freely through a virtual art museum to search for specific paintings, the participants were exposed to virtual spiders. Unbeknown to the participants, only two of four museum rooms contained spiders, allowing for avoidance learning. Indeed, the more SF the participants were, the faster they learned to avoid the rooms that contained spiders (Experiment. 1), and within the first six trials, high fearfuls already developed a preference for starting their search task in rooms without spiders (Experiment 2). These results illustrate the time course of avoidance learning in SFs, and they speak to the usefulness of IVEs in fundamental anxiety research.

  3. Impaired Auditory and Contextual Fear Conditioning in Soman-Exposed Rats

    Science.gov (United States)

    2011-01-01

    Hymowitz et al., 1985, 1990; Modrow and Jaax, 1989). Pavlovian fear conditioning is a useful procedure often used to elucidate the neural substrates...Stitcher DL, Lennox WJ. Protection against both lethal and behavioral effects of soman. Drug Chem Toxicol 1984;7:605–24. Hasselmo ME. The role of...Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear

  4. Enhancing Argumentative Writing Skill through Contextual Teaching and Learning

    Science.gov (United States)

    Hasani, Aceng

    2016-01-01

    This study aims to describe the influence of contextual learning model and critical thinking ability toward argumentative writing skill on university students. The population of the research was 147 university students, and 52 university students were used as sample with multi stage sampling. The results of the research indicate that; group of…

  5. Encoding of Fear Memory in High and Low Fear Mice

    Science.gov (United States)

    2013-11-18

    contextual fear conditioning and retrieval. Brain structure & function   15.  Black AH, Young GA. 1972.  Electrical  activity of the hippocampus and cortex...0 Cara Olsen Statistician 0.12 0 SUBTOTALS 0

  6. Behavioural memory reconsolidation of food and fear memories.

    Science.gov (United States)

    Flavell, Charlotte R; Barber, David J; Lee, Jonathan L C

    2011-10-18

    The reactivation of a memory through retrieval can render it subject to disruption or modification through the process of memory reconsolidation. In both humans and rodents, briefly reactivating a fear memory results in effective erasure by subsequent extinction training. Here we show that a similar strategy is equally effective in the disruption of appetitive pavlovian cue-food memories. However, systemic administration of the NMDA receptor partial agonist D-cycloserine, under the same behavioural conditions, did not potentiate appetitive memory extinction, suggesting that reactivation does not enhance subsequent extinction learning. To confirm that reactivation followed by extinction reflects a behavioural analogue of memory reconsolidation, we show that prevention of contextual fear memory reactivation by the L-type voltage-gated calcium channel blocker nimodipine interferes with the amnestic outcome. Therefore, the reconsolidation process can be manipulated behaviourally to disrupt both aversive and appetitive memories. © 2011 Macmillan Publishers Limited. All rights reserved.

  7. The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events.

    Directory of Open Access Journals (Sweden)

    Grasielle C Kincheski

    Full Text Available The dorsolateral column of the periaqueductal gray (dlPAG integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US for the acquisition of olfactory fear conditioning (OFC using amyl acetate odor as conditioned stimulus (CS. Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using β-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders.

  8. Attentional Control and Fear Extinction in Subclinical Fear: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Eduard Forcadell

    2017-09-01

    Full Text Available Attentional control (AC and fear extinction learning are known to be involved in pathological anxiety. In this study we explored whether individual differences in non-emotional AC were associated with individual differences in the magnitude and gradient of fear extinction (learning and recall. In 50 individuals with fear of spiders, we collected measures of non-emotional AC by means of self-report and by assessing the functioning of the major attention networks (executive control, orienting, and alerting. The participants then underwent a paradigm assessing fear extinction learning and extinction recall. The two components of the orienting network functioning (costs and benefits were significantly associated with fear extinction gradient over and above the effects of trait anxiety. Specifically, participants with enhanced orienting costs (i.e., difficulties in disengaging attention from cues not relevant for the task showed faster extinction learning, while those with enhanced orienting benefits (i.e., attention facilitated by valid cues exhibited faster extinction recall as measured by fear-potentiated startle and Unconditioned Stimulus expectancies, respectively. Our findings suggest that, in non-emotional conditions, the orienting component of attention may be predictive of fear extinction. They also show that the use of fear extinction gradients and the exploration of individual differences in non-emotional AC (using performance-based measures of attentional network functioning can provide a better understanding of individual differences in fear learning. Our findings also may help to understand differences in exposure therapy outcomes.

  9. Interoceptive fear learning to mild breathlessness as a laboratory model for unexpected panic attacks

    Directory of Open Access Journals (Sweden)

    Meike ePappens

    2015-08-01

    Full Text Available Fear learning is thought to play an important role in panic disorder. Benign interoceptive sensations can become predictors (conditioned stimuli - CSs of massive fear when experienced in the context of an initial panic attack (unconditioned stimulus – US. The mere encounter of these CSs on a later moment can induce anxiety and fear, and precipitate a new panic attack. It has been suggested that fear learning to interoceptive cues would result in unpredictable panic. The present study aimed to investigate whether fear learning to an interoceptive CS is possible without declarative knowledge of the CS-US contingency. The CS consisted of mild breathlessness (or: dyspnea, the US was a suffocation experience. During acquisition, the experimental group received 6 presentations of mild breathlessness immediately followed by suffocation; for the control group both experiences were always separated by an intertrial interval. In the subsequent extinction phase, participants received 6 unreinforced presentations of the CS. Expectancy of the US was rated continuously and startle eyeblink EMG, skin conductance and respiration were measured. Declarative knowledge of the CS-US relationship was also assessed with a post-experimental questionnaire. At the end of acquisition, both groups displayed the same levels of US expectancy and skin conductance in response to the CS, but the experimental group showed a fear potentiated startle eyeblink and a different respiratory response to the CS compared to the control group. Further analyses on a subgroup of CS-US unaware participants confirmed the presence of startle eyeblink conditioning in the experimental group but not in the control group. Our findings suggest that interoceptive fear learning is not dependent on declarative knowledge of the CS-US relationship. The present interoceptive fear conditioning paradigm may serve as an ecologically valid laboratory model for unexpected panic attacks.

  10. Design of multiple representations e-learning resources based on a contextual approach for the basic physics course

    Science.gov (United States)

    Bakri, F.; Muliyati, D.

    2018-05-01

    This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.

  11. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    Science.gov (United States)

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  12. The BDNF Val66Met polymorphism moderates the relationship between Posttraumatic Stress Disorder and fear extinction learning.

    Science.gov (United States)

    Felmingham, Kim L; Zuj, Daniel V; Hsu, Ken Chia Ming; Nicholson, Emma; Palmer, Matthew A; Stuart, Kimberley; Vickers, James C; Malhi, Gin S; Bryant, Richard A

    2018-05-01

    The low expression Met allele of the BDNF Val66Met polymorphism is associated with impaired fear extinction in healthy controls, and poorer response to exposure therapy in patients with Posttraumatic Stress Disorder (PTSD). Given that fear extinction underlies exposure therapy, this raises the question of the impact of BDNFVal66Met polymorphism on fear extinction in PTSD, yet this question has not yet been examined. One hundred and six participants (22 PTSD, 46 trauma-exposed controls (TC) and 38 non-trauma exposed controls (NTC)) completed a fear conditioning and extinction task and saliva samples were taken for DNA extraction and genotyped for the BDNF Val66Met polymorphism. Moderation analyses using PROCESS examined whether BDNF genotype (Val-Val vs Met carriers) moderated the relationship between PTSD symptom severity (and diagnostic status) and skin conductance response (SCR) amplitude during fear extinction. The PTSD group displayed significantly slower fear extinction learning compared to TC and NTC in the early extinction phase. The BDNF Val66Met polymorphism moderated the relationship between PTSD and fear extinction learning, such that poorer fear extinction learning was associated with greater PTSD symptom severity (and PTSD diagnostic status) in individuals with the low-expression Met allele, but no relationship was demonstrated in individuals with the Val-Val allele. This study reveals that impaired fear extinction learning is particularly evident in individuals with PTSD who carry the low-expression BDNF Met allele and importantly not in those with the Val-Val allele. This provides novel evidence of a link between BDNF and impaired fear extinction learning in PTSD, which may contribute to poorer response to exposure therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Implicit Sequence Learning and Contextual Cueing Do Not Compete for Central Cognitive Resources

    Science.gov (United States)

    Jimenez, Luis; Vazquez, Gustavo A.

    2011-01-01

    Sequence learning and contextual cueing explore different forms of implicit learning, arising from practice with a structured serial task, or with a search task with informative contexts. We assess whether these two learning effects arise simultaneously when both remain implicit. Experiments 1 and 2 confirm that a cueing effect can be observed…

  14. Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-07-01

    Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.

  15. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    Science.gov (United States)

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  16. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Dai Mitsushima

    2015-01-01

    Full Text Available Although the hippocampus is processing temporal and spatial information in particular context, the encoding rule creating memory is completely unknown. To examine the mechanism, we trained rats on an inhibitory avoidance (IA task, a hippocampus-dependent rapid one-trial contextual learning paradigm. By combining Herpes virus-mediated in vivo gene delivery with in vitro patch-clamp recordings, I reported contextual learning drives GluR1-containing AMPA receptors into CA3-CA1 synapses. The molecular event is required for contextual memory, since bilateral expression of delivery blocker in CA1 successfully blocked IA learning. Moreover, I found a logarithmic correlation between the number of delivery blocking cells and learning performance. Considering that one all-or-none device can process 1-bit of data per clock (Nobert Wiener 1961, the logarithmic correlation may provides evidence that CA1 neurons transmit essential data of contextual information. Further, I recently reported critical role of acetylcholine as an intrinsic trigger of learning-dependent synaptic plasticity. IA training induced ACh release in CA1 that strengthened not only AMPA receptor-mediated excitatory synapses, but also GABAA receptor-mediated inhibitory synapses on each CA1 neuron. More importantly, IA-trained rats showed individually different excitatory and inhibitory synaptic inputs with wide variation on each CA1 neuron. Here I propose a new hypothesis that the diversity of synaptic inputs on CA1 neurons may depict cell-specific outputs processing experienced episodes after training.

  17. Retrieval cues that trigger reconsolidation of associative fear memory are not necessarily an exact replica of the original learning experience.

    Science.gov (United States)

    Soeter, Marieke; Kindt, Merel

    2015-01-01

    Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.

  18. Retrieval cues that trigger reconsolidation of associative fear memory are not necessarily an exact replica of the original learning experience

    Directory of Open Access Journals (Sweden)

    Marieke eSoeter

    2015-05-01

    Full Text Available Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus. A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15, the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15, an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.

  19. Resting heart rate variability predicts safety learning and fear extinction in an interoceptive fear conditioning paradigm.

    Directory of Open Access Journals (Sweden)

    Meike Pappens

    Full Text Available This study aimed to investigate whether interindividual differences in autonomic inhibitory control predict safety learning and fear extinction in an interoceptive fear conditioning paradigm. Data from a previously reported study (N = 40 were extended (N = 17 and re-analyzed to test whether healthy participants' resting heart rate variability (HRV - a proxy of cardiac vagal tone - predicts learning performance. The conditioned stimulus (CS was a slight sensation of breathlessness induced by a flow resistor, the unconditioned stimulus (US was an aversive short-lasting suffocation experience induced by a complete occlusion of the breathing circuitry. During acquisition, the paired group received 6 paired CS-US presentations; the control group received 6 explicitly unpaired CS-US presentations. In the extinction phase, both groups were exposed to 6 CS-only presentations. Measures included startle blink EMG, skin conductance responses (SCR and US-expectancy ratings. Resting HRV significantly predicted the startle blink EMG learning curves both during acquisition and extinction. In the unpaired group, higher levels of HRV at rest predicted safety learning to the CS during acquisition. In the paired group, higher levels of HRV were associated with better extinction. Our findings suggest that the strength or integrity of prefrontal inhibitory mechanisms involved in safety- and extinction learning can be indexed by HRV at rest.

  20. The effect of disgust and fear modeling on children's disgust and fear for animals.

    Science.gov (United States)

    Askew, Chris; Cakır, Kübra; Põldsam, Liine; Reynolds, Gemma

    2014-08-01

    Disgust is a protective emotion associated with certain types of animal fears. Given that a primary function of disgust is to protect against harm, increasing children's disgust-related beliefs for animals may affect how threatening they think animals are and their avoidance of them. One way that children's disgust beliefs for animals might change is via vicarious learning: by observing others responding to the animal with disgust. In Experiment 1, children (ages 7-10 years) were presented with images of novel animals together with adult faces expressing disgust. Children's fear beliefs and avoidance preferences increased for these disgust-paired animals compared with unpaired control animals. Experiment 2 used the same procedure and compared disgust vicarious learning with vicarious learning with fear faces. Children's fear beliefs and avoidance preferences for animals again increased as a result of disgust vicarious learning, and animals seen with disgust or fear faces were also rated more disgusting than control animals. The relationship between increased fear beliefs and avoidance preferences for animals was mediated by disgust for the animals. The experiments demonstrate that children can learn to believe that animals are disgusting and threatening after observing an adult responding with disgust toward them. The findings also suggest a bidirectional relationship between fear and disgust with fear-related vicarious learning leading to increased disgust for animals and disgust-related vicarious learning leading to increased fear and avoidance. (c) 2014 APA, all rights reserved.

  1. Sensitive periods in affective development: nonlinear maturation of fear learning.

    Science.gov (United States)

    Hartley, Catherine A; Lee, Francis S

    2015-01-01

    At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development.

  2. Personalization and Contextualization of Learning Experiences based on Semantics

    Directory of Open Access Journals (Sweden)

    Nicola Capuano

    2014-04-01

    Full Text Available Context-aware e-learning is an educational model that foresees the selection of learning resources to make the e-learning content more relevant and suitable for the learner in his/her situation. The purpose of this paper is to demonstrate that an ontological approach can be used to define leaning contexts and to allow contextualizing learning experiences finding out relevant topics for each context. To do that, we defined a context model able to formally describe a learning context, an ontology-based model enabling the representation of a teaching domain (including context information and a methodology to generate personalized and context-aware learning experiences starting from them. Based on these theoretical components we improved an existing system for personalized e-learning with contextualisation features and experimented it with real users in two University courses. The results obtained from this experimentation have been compared with those achieved by similar systems.

  3. Fear memory consolidation in sleep requires protein kinase A.

    Science.gov (United States)

    Cho, Jiyeon; Sypniewski, Krzysztof A; Arai, Shoko; Yamada, Kazuo; Ogawa, Sonoko; Pavlides, Constantine

    2018-05-01

    It is well established that protein kinase A (PKA) is involved in hippocampal dependent memory consolidation. Sleep is also known to play an important role in this process. However, whether sleep-dependent memory consolidation involves PKA activation has not been clearly determined. Using behavioral observation, animals were categorized into sleep and awake groups. We show that intrahippocampal injections of the PKA inhibitor Rp-cAMPs in post-contextual fear conditioning sleep produced a suppression of long-term fear memory, while injections of Rp-cAMPs during an awake state, at a similar time point, had no effect. In contrast, injections of the PKA activator Sp-cAMPs in awake state, rescued sleep deprivation-induced memory impairments. These results suggest that following learning, PKA activation specifically in sleep is required for the consolidation of long-term memory. © 2018 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  4. The Role of BDNF in the Development of Fear Learning.

    Science.gov (United States)

    Dincheva, Iva; Lynch, Niccola B; Lee, Francis S

    2016-10-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. © 2016 Wiley Periodicals, Inc.

  5. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  6. Fear learning alterations after traumatic brain injury and their role in development of posttraumatic stress symptoms.

    Science.gov (United States)

    Glenn, Daniel E; Acheson, Dean T; Geyer, Mark A; Nievergelt, Caroline M; Baker, Dewleen G; Risbrough, Victoria B

    2017-08-01

    It is unknown how traumatic brain injury (TBI) increases risk for posttraumatic stress disorder (PTSD). One potential mechanism is via alteration of fear-learning processes that could affect responses to trauma memories and cues. We utilized a prospective, longitudinal design to determine if TBI is associated with altered fear learning and extinction, and if fear processing mediates effects of TBI on PTSD symptom change. Eight hundred fifty two active-duty Marines and Navy Corpsmen were assessed before and after deployment. Assessments included TBI history, PTSD symptoms, combat trauma and deployment stress, and a fear-potentiated startle task of fear acquisition and extinction. Startle response and self-reported expectancy and anxiety served as measures of fear conditioning, and PTSD symptoms were measured with the Clinician-Administered PTSD Scale. Individuals endorsing "multiple hit" exposure (both deployment TBI and a prior TBI) showed the strongest fear acquisition and highest fear expression compared to groups without multiple hits. Extinction did not differ across groups. Endorsing a deployment TBI was associated with higher anxiety to the fear cue compared to those without deployment TBI. The association of deployment TBI with increased postdeployment PTSD symptoms was mediated by postdeployment fear expression when recent prior-TBI exposure was included as a moderator. TBI associations with increased response to threat cues and PTSD symptoms remained when controlling for deployment trauma and postdeployment PTSD diagnosis. Deployment TBI, and multiple-hit TBI in particular, are associated with increases in conditioned fear learning and expression that may contribute to risk for developing PTSD symptoms. © 2017 Wiley Periodicals, Inc.

  7. Integrated and Contextual Basic Science Instruction in Preclinical Education: Problem-Based Learning Experience Enriched with Brain/Mind Learning Principles

    Science.gov (United States)

    Gülpinar, Mehmet Ali; Isoglu-Alkaç, Ümmühan; Yegen, Berrak Çaglayan

    2015-01-01

    Recently, integrated and contextual learning models such as problem-based learning (PBL) and brain/mind learning (BML) have become prominent. The present study aimed to develop and evaluate a PBL program enriched with BML principles. In this study, participants were 295 first-year medical students. The study used both quantitative and qualitative…

  8. Effect of the coadministration of citalopram with mirtazapine or atipamezole on rat contextual conditioned fear

    Directory of Open Access Journals (Sweden)

    Masuda T

    2014-02-01

    Full Text Available Takahiro Masuda,1,2 Takeshi Inoue,1 Yan An,1 Naoki Takamura,1,3 Shin Nakagawa,1 Yuji Kitaichi,1 Tsukasa Koyama,1 Ichiro Kusumi1 1Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo Japan; 2Medical Affairs, Dainippon Sumitomo Pharma, Co, Ltd, Tokyo, Japan; 3Regenerative and Cellular Medicine Office, Dainippon Sumitomo Pharma, Co, Ltd, Osaka, Japan Background: Mirtazapine, a noradrenergic and specific serotonergic antidepressant, which blocks the α2-adrenergic autoreceptors and heteroreceptors, has shown anxiolytic properties in clinical trials and preclinical animal experiments. The addition of mirtazapine to selective serotonin reuptake inhibitors (SSRIs is clinically suggested to be more effective for anxiety disorders. In this study, we examined the combined effects of mirtazapine and citalopram, an SSRI, on the freezing behavior of rats, which was induced by contextual conditioned fear as an index of anxiety or fear. Methods: Male Sprague Dawley rats individually received footshocks in a shock chamber, and 24 hours later, they were given citalopram and/or mirtazapine injections. One hour after citalopram and 30 minutes after mirtazapine administration, freezing behavior was analyzed in the same shock chamber without shocks. Results: Mirtazapine decreased freezing in a dose-dependent manner, which is consistent with a previous report; it also enhanced an anxiolytic-like effect at a high dose (30 mg/kg of citalopram. Because mirtazapine blocks α2-adrenoreceptors, the combined effect of atipamezole, a selective α2 receptor antagonist, with citalopram was also examined. Similar to mirtazapine, atipamezole reduced freezing dose-dependently, but the enhancement of citalopram's effects by atipamezole was not clear when compared with mirtazapine. Conclusion: The present findings suggest that mirtazapine has an anxiolytic-like effect and may enhance the anxiolytic-like effect of SSRIs, but this enhancement may not be

  9. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  10. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning

    OpenAIRE

    Young, M B; Andero, R; Ressler, K J; Howell, L L

    2015-01-01

    Acutely administered 3,4-methylenedioxymethamphetamine (MDMA, ?ecstasy') has been proposed to have long-term positive effects on post-traumatic stress disorder (PTSD) symptoms when combined with psychotherapy. No preclinical data support a mechanistic basis for these claims. Given the persistent nature of psychotherapeutic gains facilitated by MDMA, we hypothesized that MDMA improves fear extinction learning, a key process in exposure-based therapies for PTSD. In these experiments, mice were ...

  11. Do Learners Fear More than Fear Itself: The Role of Fear in Law Students Educational Experiences

    Science.gov (United States)

    Perrin, Jeffrey; O'Neil, Jennifer; Grimes, Ashley; Bryson, Laura

    2014-01-01

    While previous research has examined the various relationships between fear and learning in K-12 academic settings, the relationship is surprisingly unexplored amongst law students. Using a descriptive qualitative approach, we examine the role fear plays in law students' learning experiences. Through a series of semi-structured interviews a few…

  12. Contextual approach using VBA learning media to improve students’ mathematical displacement and disposition ability

    Science.gov (United States)

    Chotimah, Siti; Bernard, M.; Wulandari, S. M.

    2018-01-01

    The main problems of the research were the lack of reasoning ability and mathematical disposition of students to the learning of mathematics in high school students in Cimahi - West Java. The lack of mathematical reasoning ability in students was caused by the process of learning. The teachers did not train the students to do the problems of reasoning ability. The students still depended on each other. Sometimes, one of patience teacher was still guiding his students. In addition, the basic ability aspects of students also affected the ability the mathematics skill. Furthermore, the learning process with contextual approach aided by VBA Learning Media (Visual Basic Application for Excel) gave the positive influence to the students’ mathematical disposition. The students are directly involved in learning process. The population of the study was all of the high school students in Cimahi. The samples were the students of SMA Negeri 4 Cimahi class XIA and XIB. There were both of tested and non-tested instruments. The test instrument was a description test of mathematical reasoning ability. The non-test instruments were questionnaire-scale attitudes about students’ mathematical dispositions. This instrument was used to obtain data about students’ mathematical reasoning and disposition of mathematics learning with contextual approach supported by VBA (Visual Basic Application for Excel) and by conventional learning. The data processed in this study was from the post-test score. These scores appeared from both of the experimental class group and the control class group. Then, performing data was processed by using SPSS 22 and Microsoft Excel. The data was analyzed using t-test statistic. The final result of this study concluded the achievement and improvement of reasoning ability and mathematical disposition of students whose learning with contextual approach supported by learning media of VBA (Visual Basic Application for Excel) was better than students who got

  13. The Effect of Disgust and Fear Modeling on Children’s Disgust and Fear for Animals

    Science.gov (United States)

    2014-01-01

    Disgust is a protective emotion associated with certain types of animal fears. Given that a primary function of disgust is to protect against harm, increasing children’s disgust-related beliefs for animals may affect how threatening they think animals are and their avoidance of them. One way that children’s disgust beliefs for animals might change is via vicarious learning: by observing others responding to the animal with disgust. In Experiment 1, children (ages 7–10 years) were presented with images of novel animals together with adult faces expressing disgust. Children’s fear beliefs and avoidance preferences increased for these disgust-paired animals compared with unpaired control animals. Experiment 2 used the same procedure and compared disgust vicarious learning with vicarious learning with fear faces. Children’s fear beliefs and avoidance preferences for animals again increased as a result of disgust vicarious learning, and animals seen with disgust or fear faces were also rated more disgusting than control animals. The relationship between increased fear beliefs and avoidance preferences for animals was mediated by disgust for the animals. The experiments demonstrate that children can learn to believe that animals are disgusting and threatening after observing an adult responding with disgust toward them. The findings also suggest a bidirectional relationship between fear and disgust with fear-related vicarious learning leading to increased disgust for animals and disgust-related vicarious learning leading to increased fear and avoidance. PMID:24955571

  14. Biologically based neural circuit modelling for the study of fear learning and extinction

    Science.gov (United States)

    Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra

    2016-11-01

    The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.

  15. Contextual Teaching and Learning Approach of Mathematics in Primary Schools

    Science.gov (United States)

    Selvianiresa, D.; Prabawanto, S.

    2017-09-01

    The Contextual Teaching and Learning (CTL) approach is an approach involving active students in the learning process to discover the concepts learned through to knowledge and experience of the students. Similar to Piaget’s opinion that learning gives students an actives trying to do new things by relating their experiences and building their own minds. When students to connecting mathematics with real life, then students can looking between a conceptual to be learned with a concept that has been studied. So that, students can developing of mathematical connection ability. This research is quasi experiment with a primary school in the city of Kuningan. The result showed that CTL learning can be successful, when learning used a collaborative interaction with students, a high level of activity in the lesson, a connection to real-world contexts, and an integration of science content with other content and skill areas. Therefore, CTL learning can be applied by techer to mathematics learning in primary schools.

  16. Biased Intensity Judgements of Visceral Sensations After Learning to Fear Visceral Stimuli: A Drift Diffusion Approach.

    Science.gov (United States)

    Zaman, Jonas; Madden, Victoria J; Iven, Julie; Wiech, Katja; Weltens, Nathalie; Ly, Huynh Giao; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Van Diest, Ilse

    2017-10-01

    A growing body of research has identified fear of visceral sensations as a potential mechanism in the development and maintenance of visceral pain disorders. However, the extent to which such learned fear affects visceroception remains unclear. To address this question, we used a differential fear conditioning paradigm with nonpainful esophageal balloon distensions of 2 different intensities as conditioning stimuli (CSs). The experiment comprised of preacquisition, acquisition, and postacquisition phases during which participants categorized the CSs with respect to their intensity. The CS+ was always followed by a painful electrical stimulus (unconditioned stimulus) during the acquisition phase and in 60% of the trials during postacquisition. The second stimulus (CS-) was never associated with pain. Analyses of galvanic skin and startle eyeblink responses as physiological markers of successful conditioning showed increased fear responses to the CS+ compared with the CS-, but only in the group with the low-intensity stimulus as CS+. Computational modeling of response times and response accuracies revealed that differential fear learning affected perceptual decision-making about the intensities of visceral sensations such that sensations were more likely to be categorized as more intense. These results suggest that associative learning might indeed contribute to visceral hypersensitivity in functional gastrointestinal disorders. This study shows that associative fear learning biases intensity judgements of visceral sensations toward perceiving such sensations as more intense. Learning-induced alterations in visceroception might therefore contribute to the development or maintenance of visceral pain. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. A "Fear" Studies Perspective and Critique: Analyzing English and Stengel's Progressive Study of Fear and Learning in "Education Theory." Technical Paper No. 37

    Science.gov (United States)

    Fisher, R. Michael

    2011-01-01

    The author critiques the progressive approach of two contemporary educational philosophers (English and Stengel) on the topic of fear and learning. Using a postmodern integral approach, this article examines the tendency of reductionism, individualism, and psychologism as part of a hegemonic liberalism and modernism in discourses on fear and…

  18. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Intact memory for implicit contextual information in Korsakoff's amnesia

    NARCIS (Netherlands)

    Oudman, Erik; Van der Stigchel, Stefan; Wester, Arie J.; Kessels, Roy P. C.; Postma, Albert

    Implicit contextual learning is the ability to acquire contextual information from our surroundings without conscious awareness. Such contextual information facilitates the localization of objects in space. In a typical implicit contextual learning paradigm, subjects need to find a target among a

  20. Intact memory for implicit contextual information in Korsakoff's amnesia

    NARCIS (Netherlands)

    Oudman, E.; Stigchel, S. van der; Wester, A.J.; Kessels, R.P.C.; Postma, A.

    2011-01-01

    Implicit contextual learning is the ability to acquire contextual information from our surroundings without conscious awareness. Such contextual information facilitates the localization of objects in space. In a typical implicit contextual learning paradigm, subjects need to find a target among a

  1. Effect of vicarious fear learning on children's heart rate responses and attentional bias for novel animals.

    Science.gov (United States)

    Reynolds, Gemma; Field, Andy P; Askew, Chris

    2014-10-01

    Research with children has shown that vicarious learning can result in changes to 2 of Lang's (1968) 3 anxiety response systems: subjective report and behavioral avoidance. The current study extended this research by exploring the effect of vicarious learning on physiological responses (Lang's final response system) and attentional bias. The study used Askew and Field's (2007) vicarious learning procedure and demonstrated fear-related increases in children's cognitive, behavioral, and physiological responses. Cognitive and behavioral changes were retested 1 week and 1 month later, and remained elevated. In addition, a visual search task demonstrated that fear-related vicarious learning creates an attentional bias for novel animals, which is moderated by increases in fear beliefs during learning. The findings demonstrate that vicarious learning leads to lasting changes in all 3 of Lang's anxiety response systems and is sufficient to create attentional bias to threat in children. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain

    OpenAIRE

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M.; Bussey, Timothy J.; Singewald, Nicolas; Holmes, Andrew

    2008-01-01

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally-occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C5...

  3. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Science.gov (United States)

    Vlachos, Ioannis; Herry, Cyril; Lüthi, Andreas; Aertsen, Ad; Kumar, Arvind

    2011-03-01

    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  4. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Directory of Open Access Journals (Sweden)

    Ioannis Vlachos

    2011-03-01

    Full Text Available The basal nucleus of the amygdala (BA is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS-related input from the adjacent lateral nucleus (LA and contextual input from the hippocampus or medial prefrontal cortex (mPFC. We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  5. Cocaine and Pavlovian fear conditioning: dose-effect analysis.

    Science.gov (United States)

    Wood, Suzanne C; Fay, Jonathan; Sage, Jennifer R; Anagnostaras, Stephan G

    2007-01-25

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1-15mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine's anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine's reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning.

  6. Effects of sleep on memory for conditioned fear and fear extinction

    Science.gov (United States)

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  7. Effects of sleep on memory for conditioned fear and fear extinction.

    Science.gov (United States)

    Pace-Schott, Edward F; Germain, Anne; Milad, Mohammed R

    2015-07-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Glycyrrhizin Treatment Facilitates Extinction of Conditioned Fear Responses After a Single Prolonged Stress Exposure in Rats

    Directory of Open Access Journals (Sweden)

    Shuhua Lai

    2018-03-01

    Full Text Available Background/Aims: Impaired fear memory extinction is widely considered a key mechanism of post-traumatic stress disorder (PTSD. Recent studies have suggested that neuroinflammation after a single prolonged stress (SPS exposure may play a critical role in the impaired fear memory extinction. Studies have shown that high mobility group box chromosomal protein 1 (HMGB-1 is critically involved in neuroinflammation. However, the role of HMGB-1 underlying the development of impairment of fear memory extinction is still not known. Methods: Thus, we examined the levels of HMGB-1 in the basolateral amygdala (BLA following SPS using Western blot and evaluated the levels of microglia and astrocytes activation in the BLA after SPS using immunohistochemical staining. We then examined the effects of pre-SPS intra-BLA administration of glycyrrhizin, an HMGB1 inhibitor, or LPS-RS, a competitive TLR4 antagonist, on subsequent post-SPS fear extinction. Results: We found that SPS treatment prolonged the extinction of contextual fear memory after the SPS. The impairment of SPS-induced extinction of contextual fear memory was associated with increased HMGB1 and Toll-like receptor 4 (TLR4 levels in the BLA. Additionally, the impairment of SPS-induced extinction of contextual fear memory was associated with increased activation of microglia and astrocyte in the BLA. Intra-BLA administrations of glycyrrhizin (HMGB-1 inhibitor or LPS-RS (TLR4 antagonist can prevent the development of SPS-induced fear extinction impairment. Conclusion: Taken together, these results suggested that SPS treatment may not only produce short term effects on the HMGB1/TLR4-mediated pro-inflammation, but alter the response of microglia and astrocytes to the exposure to fear associated contextual stimuli.

  9. Glycyrrhizin Treatment Facilitates Extinction of Conditioned Fear Responses After a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Lai, Shuhua; Wu, Gangwei; Jiang, Zhixian

    2018-01-01

    Impaired fear memory extinction is widely considered a key mechanism of post-traumatic stress disorder (PTSD). Recent studies have suggested that neuroinflammation after a single prolonged stress (SPS) exposure may play a critical role in the impaired fear memory extinction. Studies have shown that high mobility group box chromosomal protein 1 (HMGB-1) is critically involved in neuroinflammation. However, the role of HMGB-1 underlying the development of impairment of fear memory extinction is still not known. Thus, we examined the levels of HMGB-1 in the basolateral amygdala (BLA) following SPS using Western blot and evaluated the levels of microglia and astrocytes activation in the BLA after SPS using immunohistochemical staining. We then examined the effects of pre-SPS intra-BLA administration of glycyrrhizin, an HMGB1 inhibitor, or LPS-RS, a competitive TLR4 antagonist, on subsequent post-SPS fear extinction. We found that SPS treatment prolonged the extinction of contextual fear memory after the SPS. The impairment of SPS-induced extinction of contextual fear memory was associated with increased HMGB1 and Toll-like receptor 4 (TLR4) levels in the BLA. Additionally, the impairment of SPS-induced extinction of contextual fear memory was associated with increased activation of microglia and astrocyte in the BLA. Intra-BLA administrations of glycyrrhizin (HMGB-1 inhibitor) or LPS-RS (TLR4 antagonist) can prevent the development of SPS-induced fear extinction impairment. Taken together, these results suggested that SPS treatment may not only produce short term effects on the HMGB1/TLR4-mediated pro-inflammation, but alter the response of microglia and astrocytes to the exposure to fear associated contextual stimuli. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. Effects of sleep on memory for conditioned fear and fear extinction

    OpenAIRE

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with th...

  11. MENINGKATKAN MINAT BELAJAR BIOLOGI MENGGUNAKAN PEMBELAJARAN CTL (Contextual Teaching and Learning PADA SISWA DI KELAS VII-B MTs NEGERI PURWOKERTO

    Directory of Open Access Journals (Sweden)

    Teguh Julianto

    2010-09-01

    Full Text Available Improving Student’s Interest in Biology lesson by using contextual teaching and learning (CLT methods is n action research study which had an aim to improve student’s interest in biology. The indicator of student’s interest covers the student’s diligence in learning process, active in following teaching and learning process, active in doing a task, the facility and the sources of learning. The result of this researched showed that there were an improvement of students learning interest. The percentage result in cycle I was 39.5%, in cycle 2 was 72.67% and in Cycle 3 was 80.92%. The improvement of students learning interests gave a positive effect toward the students achievement. The students learning achievement in cycle 1 I was 39%, in cycle II was 82% and in cycle III was 93%. In conclusion Contextual Teaching and Learning (CLT can improve the students learning interest in Biology at the Second Grade Students of MTs Negeri Purwokerto. Key words : Improving, Student’s learning interest, Contextual Teaching and Learning (CTL

  12. Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Acca, Gillian M; Mathew, Abel S; Jin, Jingji; Maren, Stephen; Nagaya, Naomi

    2017-03-01

    Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Artificial theta stimulation impairs encoding of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Arto Lipponen

    Full Text Available Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.

  14. Intranasal Cotinine Plus Krill Oil Facilitates Fear Extinction, Decreases Depressive-Like Behavior, and Increases Hippocampal Calcineurin A Levels in Mice.

    Science.gov (United States)

    Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Mendoza, Cristhian; Perez-Urrutia, Nelson; Echeverria, Florencia; Iarkov, Alexandre; Barreto, George E; Echeverria, Valentina

    2018-02-27

    Failure in fear extinction is one of the more troublesome characteristics of posttraumatic stress disorder (PTSD). Cotinine facilitates fear memory extinction and reduces depressive-like behavior when administered 24 h after fear conditioning in mice. In this study, it was investigated the behavioral and molecular effects of cotinine, and other antidepressant preparations infused intranasally. Intranasal (IN) cotinine, IN krill oil, IN cotinine plus krill oil, and oral sertraline were evaluated on depressive-like behavior and fear retention and extinction after fear conditioning in C57BL/6 mice. Since calcineurin A has been involved in facilitating fear extinction in rodents, we also investigated changes of calcineurin in the hippocampus, a region key on contextual fear extinction. Short-term treatment with cotinine formulations was superior to krill oil and oral sertraline in reducing depressive-like behavior and fear consolidation and enhancing contextual fear memory extinction in mice. IN krill oil slowed the extinction of fear. IN cotinine preparations increased the levels of calcineurin A in the hippocampus of conditioned mice. In the light of the results, the future investigation of the use of IN cotinine preparations for the extinction of contextual fear memory and treatment of treatment-resistant depression (TRD) in PTSD is discussed.

  15. The Impacts of Demographic Variables on Technological and Contextual Challenges of E-learning Implementation

    Science.gov (United States)

    Aldowah, Hanan; Ghazal, Samar; Naufal Umar, Irfan; Muniandy, Balakrishnan

    2017-09-01

    Information technology has achieved robust growth which has made it possible for learning to occur quickly. The rapid development of information, communication and technologies (ICT) has initiated an unparalleled transformation in universities all over the world. This development of technology and learning is offering new techniques to represent knowledge, new practices, and new global communities of learners. As a result, today’s economic and social changes force universities to try to find new learning approaches and systems. E-learning seems to be an appropriate approach in this aspect. However, the implementation of e-learning systems in universities is not an easy task because of some challenges related to context, technology, and other challenges. This paper studied the impacts of demographic data and reported the critical points for the decision makers to consider when planning and implementing e-learning in universities. A quantitative approach was used to study the effects of technological and contextual challenges on e-learning implementation in which a questionnaire was used for the data collection. According to the findings of the study, the most important challenges of the implementation of e-learning are related either to organizational (Contextual) and technological (technical) issues. The demographic variables have been found to play a direct and indirect role with the technological and contextual challenges of implementing e-learning. This paper showed that there are some significant differences in the two challenges faced by instructors in terms of the demographic variables. The result revealed that some significant differences exist between demographic variables and the two challenges of e-learning in terms of gender, age, teaching experience, ICT experience and e-learning experience. However, there is no significant difference in terms of e-learning experience. The obtained data, from such study, can provide information about what academic

  16. Brain-wide maps of Fos expression during fear learning and recall.

    Science.gov (United States)

    Cho, Jin-Hyung; Rendall, Sam D; Gray, Jesse M

    2017-04-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. © 2017 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Effect of Vicarious Fear Learning on Children’s Heart Rate Responses and Attentional Bias for Novel Animals

    Science.gov (United States)

    2014-01-01

    Research with children has shown that vicarious learning can result in changes to 2 of Lang’s (1968) 3 anxiety response systems: subjective report and behavioral avoidance. The current study extended this research by exploring the effect of vicarious learning on physiological responses (Lang’s final response system) and attentional bias. The study used Askew and Field’s (2007) vicarious learning procedure and demonstrated fear-related increases in children’s cognitive, behavioral, and physiological responses. Cognitive and behavioral changes were retested 1 week and 1 month later, and remained elevated. In addition, a visual search task demonstrated that fear-related vicarious learning creates an attentional bias for novel animals, which is moderated by increases in fear beliefs during learning. The findings demonstrate that vicarious learning leads to lasting changes in all 3 of Lang’s anxiety response systems and is sufficient to create attentional bias to threat in children. PMID:25151521

  18. Brain derived neurotrophic factor mediated learning, fear acquisition and extinction as targets for developing novel treatments for anxiety

    Directory of Open Access Journals (Sweden)

    Karina Soares de Oliveira

    Full Text Available ABSTRACT Anxiety and obsessive-compulsive related disorders are highly prevalent and disabling disorders for which there are still treatment gaps to be explored. Fear is a core symptom of these disorders and its learning is highly dependent on the activity of the neurotrophin brain-derived neurotrophic factor (BDNF. Should BDNF-mediated fear learning be considered a target for the development of novel treatments for anxiety and obsessive-compulsive related disorders? We review the evidence that suggests that BDNF expression is necessary for the acquisition of conditioned fear, as well as for the recall of its extinction. We describe the findings related to fear learning and genetic/epigenetic manipulation of Bdnf expression in animals and BDNF allelic variants in humans. Later, we discuss how manipulation of BDNF levels represents a promising potential treatment target that may increase the benefits of therapies that extinguish previously conditioned fear.

  19. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  20. Culture-Based Contextual Learning to Increase Problem-Solving Ability of First Year University Student

    Science.gov (United States)

    Samo, Damianus Dao; Darhim; Kartasasmita, Bana G.

    2018-01-01

    The purpose of this study is to show the differences in problem-solving ability between first-year University students who received culture-based contextual learning and conventional learning. This research is a quantitative research using quasi-experimental research design. Samples were the First-year students of mathematics education department;…

  1. Social Salience Discriminates Learnability of Contextual Cues in an Artificial Language.

    Science.gov (United States)

    Rácz, Péter; Hay, Jennifer B; Pierrehumbert, Janet B

    2017-01-01

    We investigate the learning of contextual meaning by adults in an artificial language. Contextual meaning here refers to the non-denotative contextual information that speakers attach to a linguistic construction. Through a series of short games, played online, we test how well adults can learn different contextual meanings for a word-formation pattern in an artificial language. We look at whether learning contextual meanings depends on the social salience of the context, whether our players interpret these contexts generally, and whether the learned meaning is generalized to new words. Our results show that adults are capable of learning contextual meaning if the context is socially salient, coherent, and interpretable. Once a contextual meaning is recognized, it is readily generalized to related forms and contexts.

  2. Fear acquisition and liking of out-group and in-group members: Learning bias or attention?

    Science.gov (United States)

    Koenig, Stephan; Nauroth, Peter; Lucke, Sara; Lachnit, Harald; Gollwitzer, Mario; Uengoer, Metin

    2017-10-01

    The present study explores the notion of an out-group fear learning bias that is characterized by facilitated fear acquisition toward harm-doing out-group members. Participants were conditioned with two in-group and two out-group faces as conditioned stimuli. During acquisition, one in-group and one out-group face was paired with an aversive shock whereas the other in-group and out-group face was presented without shock. Psychophysiological measures of fear conditioning (skin conductance and pupil size) and explicit and implicit liking exhibited increased differential responding to out-group faces compared to in-group faces. However, the results did not clearly indicate that harm-doing out-group members were more readily associated with fear than harm-doing in-group members. In contrast, the out-group face not paired with shock decreased conditioned fear and disliking at least to the same extent that the shock-associated out-group face increased these measures. Based on these results, we suggest an account of the out-group fear learning bias that relates to an attentional bias to process in-group information. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory.

    Science.gov (United States)

    Blundell, Jacqueline; Blaiss, Cory A; Lagace, Diane C; Eisch, Amelia J; Powell, Craig M

    2011-05-01

    The pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction. Male C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N=10-12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals. Corticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone. We demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats.

    Science.gov (United States)

    Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott

    2016-04-13

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal

  5. Constructive, collaborative, contextual, and self-directed learning in surface anatomy education.

    Science.gov (United States)

    Bergman, Esther M; Sieben, Judith M; Smailbegovic, Ida; de Bruin, Anique B H; Scherpbier, Albert J J A; van der Vleuten, Cees P M

    2013-01-01

    Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self-directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self-directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Copyright © 2012 American Association of Anatomists.

  6. Left Prefrontal Activity Reflects the Ability of Vicarious Fear Learning: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Qingguo Ma

    2013-01-01

    Full Text Available Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants’ hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being was receiving a classical fear conditioning. A neutral colored square paired with shocks (CSshock and another colored square paired with no shocks (CSno-shock were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CSshock compared with that exposed to CSno-shock. In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others’ mental state, is associated with social fear transmission.

  7. Left prefrontal activity reflects the ability of vicarious fear learning: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ma, Qingguo; Huang, Yujing; Wang, Lei

    2013-01-01

    Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants' hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being) was receiving a classical fear conditioning. A neutral colored square paired with shocks (CS(shock)) and another colored square paired with no shocks (CS(no-shock)) were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CS(shock) compared with that exposed to CS(no-shock). In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others' mental state, is associated with social fear transmission.

  8. Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data

    OpenAIRE

    Wang, Jing; Cheng, Yu; Feris, Rogerio Schmidt

    2016-01-01

    The way people look in terms of facial attributes (ethnicity, hair color, facial hair, etc.) and the clothes or accessories they wear (sunglasses, hat, hoodies, etc.) is highly dependent on geo-location and weather condition, respectively. This work explores, for the first time, the use of this contextual information, as people with wearable cameras walk across different neighborhoods of a city, in order to learn a rich feature representation for facial attribute classification, without the c...

  9. Interaction between scene-based and array-based contextual cueing.

    Science.gov (United States)

    Rosenbaum, Gail M; Jiang, Yuhong V

    2013-07-01

    Contextual cueing refers to the cueing of spatial attention by repeated spatial context. Previous studies have demonstrated distinctive properties of contextual cueing by background scenes and by an array of search items. Whereas scene-based contextual cueing reflects explicit learning of the scene-target association, array-based contextual cueing is supported primarily by implicit learning. In this study, we investigated the interaction between scene-based and array-based contextual cueing. Participants searched for a target that was predicted by both the background scene and the locations of distractor items. We tested three possible patterns of interaction: (1) The scene and the array could be learned independently, in which case cueing should be expressed even when only one cue was preserved; (2) the scene and array could be learned jointly, in which case cueing should occur only when both cues were preserved; (3) overshadowing might occur, in which case learning of the stronger cue should preclude learning of the weaker cue. In several experiments, we manipulated the nature of the contextual cues present during training and testing. We also tested explicit awareness of scenes, scene-target associations, and arrays. The results supported the overshadowing account: Specifically, scene-based contextual cueing precluded array-based contextual cueing when both were predictive of the location of a search target. We suggest that explicit, endogenous cues dominate over implicit cues in guiding spatial attention.

  10. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training

    Science.gov (United States)

    Raber, Jacob; Weber, Sydney J.; Kronenberg, Amy; Turker, Mitchell S.

    2016-06-01

    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to 28Si ions (263 MeV/n, LET = 78keV / μ m ; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to 48Ti ions (1 GeV/n, LET = 107keV / μ m ; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used 40Ca ion beams (942 MeV/n, LET = 90keV / μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. 40Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to 40Ca ions had sex-dependent effects on response to shock. 40Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, 40Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus 40Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of 40Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions.

  11. Low-Dose Sevoflurane Promotes Hippocampal Neurogenesis and Facilitates the Development of Dentate Gyrus-Dependent Learning in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2015-04-01

    Full Text Available Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8% sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6 were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  12. Neural circuitry of abdominal pain-related fear learning and reinstatement in irritable bowel syndrome.

    Science.gov (United States)

    Icenhour, A; Langhorst, J; Benson, S; Schlamann, M; Hampel, S; Engler, H; Forsting, M; Elsenbruch, S

    2015-01-01

    Altered pain anticipation likely contributes to disturbed central pain processing in chronic pain conditions like irritable bowel syndrome (IBS), but the learning processes shaping the expectation of pain remain poorly understood. We assessed the neural circuitry mediating the formation, extinction, and reactivation of abdominal pain-related memories in IBS patients compared to healthy controls (HC) in a differential fear conditioning paradigm. During fear acquisition, predictive visual cues (CS(+)) were paired with rectal distensions (US), while control cues (CS(-)) were presented unpaired. During extinction, only CSs were presented. Subsequently, memory reactivation was assessed with a reinstatement procedure involving unexpected USs. Using functional magnetic resonance imaging, group differences in neural activation to CS(+) vs CS(-) were analyzed, along with skin conductance responses (SCR), CS valence, CS-US contingency, state anxiety, salivary cortisol, and alpha-amylase activity. The contribution of anxiety symptoms was addressed in covariance analyses. Fear acquisition was altered in IBS, as indicated by more accurate contingency awareness, greater CS-related valence change, and enhanced CS(+)-induced differential activation of prefrontal cortex and amygdala. IBS patients further revealed enhanced differential cingulate activation during extinction and greater differential hippocampal activation during reinstatement. Anxiety affected neural responses during memory formation and reinstatement. Abdominal pain-related fear learning and memory processes are altered in IBS, mediated by amygdala, cingulate cortex, prefrontal areas, and hippocampus. Enhanced reinstatement may contribute to hypervigilance and central pain amplification, especially in anxious patients. Preventing a 'relapse' of learned fear utilizing extinction-based interventions may be a promising treatment goal in IBS. © 2014 John Wiley & Sons Ltd.

  13. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction.

    Science.gov (United States)

    Bernier, Brian E; Lacagnina, Anthony F; Ayoub, Adam; Shue, Francis; Zemelman, Boris V; Krasne, Franklin B; Drew, Michael R

    2017-06-28

    Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear. SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a

  14. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    Science.gov (United States)

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  15. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation

    DEFF Research Database (Denmark)

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano

    2018-01-01

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report...... pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling...... the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation....

  16. Individual differences in discriminatory fear learning under conditions of ambiguity: a vulnerability factor for anxiety disorders?

    NARCIS (Netherlands)

    Arnaudova, I.; Krypotos, A.M.; Effting, M.; Boddez, Y.; Kindt, M.; Beckers, T.

    2013-01-01

    Complex fear learning procedures might be better suited than the common differential fear-conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their

  17. Extinction of Conditioned Fear is Better Learned and Recalled in the Morning than in the Evening

    OpenAIRE

    Pace-Schott, Edward F.; Spencer, Rebecca M.C.; Vijayakumar, Shilpa; Ahmed, Nafis; Verga, Patrick W.; Orr, Scott P.; Pitman, Roger K.; Milad, Mohammed R.

    2013-01-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N=109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCR) to 2 d...

  18. Effectiveness of Adaptive Contextual Learning Model of Integrated Science by Integrating Digital Age Literacy on Grade VIII Students

    Science.gov (United States)

    Asrizal, A.; Amran, A.; Ananda, A.; Festiyed, F.

    2018-04-01

    Educational graduates should have good competencies to compete in the 21st century. Integrated learning is a good way to develop competence of students in this century. Besides that, literacy skills are very important for students to get success in their learning and daily life. For this reason, integrated science learning and literacy skills are important in 2013 curriculum. However, integrated science learning and integration of literacy in learning can’t be implemented well. Solution of this problem is to develop adaptive contextual learning model by integrating digital age literacy. The purpose of the research is to determine the effectiveness of adaptive contextual learning model to improve competence of grade VIII students in junior high school. This research is a part of the research and development or R&D. Research design which used in limited field testing was before and after treatment. The research instruments consist of three parts namely test sheet of learning outcome for assessing knowledge competence, observation sheet for assessing attitudes, and performance sheet for assessing skills of students. Data of student’s competence were analyzed by three kinds of analysis, namely descriptive statistics, normality test and homogeneity test, and paired comparison test. From the data analysis result, it can be stated that the implementation of adaptive contextual learning model of integrated science by integrating digital age literacy is effective to improve the knowledge, attitude, and literacy skills competences of grade VIII students in junior high school at 95% confidence level.

  19. Contextual Influences on Concordance between Maternal Report and Laboratory Observation of Toddler Fear

    Science.gov (United States)

    Kiel, Elizabeth J.; Hummel, Alexandra C.

    2016-01-01

    Emotion and temperament researchers have faced an enduring issue of how to best measure children’s tendencies to express specific emotions. Inconsistencies between laboratory observation and parental report have made it challenging for researchers to determine the utility of these different forms of measurement. The current study examined the effect of laboratory episode characteristics (i.e., threat-level of the episode, maternal involvement) on concordance between maternal report and laboratory observation of toddler fear. The sample included 111 mother-toddler dyads who participated in a laboratory assessment when toddlers were approximately 24-months-old. Toddler fear was assessed both via maternal report and observation from a number of laboratory episodes that varied in their level of threat and whether mothers were free or constrained in their involvement in the task. Results indicated that maternal report related to the observed fear composites for low-threat, but not high-threat episodes. On the other hand, maternal involvement in the laboratory episodes did not moderate the relation between maternal report and laboratory observation of fear. These results suggest that the threat-level of laboratory episodes designed to elicit fear, but not maternal involvement in these episodes, may be important to take into consideration when assessing their relation to maternal report of fear and fearful temperament. PMID:27606826

  20. The Effect of Contextual Teaching and Learning Combined with Peer Tutoring towards Learning Achievement on Human Digestive System Concept

    Directory of Open Access Journals (Sweden)

    Farhah Abadiyah

    2017-11-01

    Full Text Available This research aims to know the influence of contextual teaching and learning (CTL combined with peer tutoring toward learning achievement on human digestive system concept. This research was conducted at one of State Senior High School in South Tangerang in the academic year of 2016/2017. The research method was quasi experiment with nonequivalent pretest-postest control group design. The sample was taken by simple random sampling. The total of the sampels were 86 students which consisted of 44 students as a controlled group and 42 students as an experimental group. The research instrument was objective test which consisted of 25 multiple choice items of each pretest and posttest. The research also used observation sheets for teacher and students activity. The result of data analysis using t-test on the two groups show that the value of tcount was 2.40 and ttable was 1.99 on significant level α = 0,05, so that tcount > ttable.. This result indicated that there was influence of contextual teaching and learning (CTL combined with peer tutoring toward learning achievement on human digestive system concept.

  1. Contextual remapping in visual search after predictable target-location changes.

    Science.gov (United States)

    Conci, Markus; Sun, Luning; Müller, Hermann J

    2011-07-01

    Invariant spatial context can facilitate visual search. For instance, detection of a target is faster if it is presented within a repeatedly encountered, as compared to a novel, layout of nontargets, demonstrating a role of contextual learning for attentional guidance ('contextual cueing'). Here, we investigated how context-based learning adapts to target location (and identity) changes. Three experiments were performed in which, in an initial learning phase, observers learned to associate a given context with a given target location. A subsequent test phase then introduced identity and/or location changes to the target. The results showed that contextual cueing could not compensate for target changes that were not 'predictable' (i.e. learnable). However, for predictable changes, contextual cueing remained effective even immediately after the change. These findings demonstrate that contextual cueing is adaptive to predictable target location changes. Under these conditions, learned contextual associations can be effectively 'remapped' to accommodate new task requirements.

  2. PERBANDINGAN HASIL BELAJAR IPA SEKOLAH DASAR MELALUI PENGGUNAAN PENDEKATAN GUIDED DISCOVERY DAN PENDEKATAN CTL (CONTEXTUAL TEACHING AND LEARNING

    Directory of Open Access Journals (Sweden)

    Fiky Ernawati

    2016-09-01

    Full Text Available Abstrak. Penelitian ini bertujuan untuk mengetahui perbandingan hasil belajar pada mata pelajaran IPA setelah menggunakan pendekatan pembelajaran Guided Discovery dengan pendekatan pembelajaran CTL (Contextual Teaching and Learning pada siswa  kelas  IV SD Negeri  3  Kramatwatu.  Metode  penelitian yang digunakan adalah metode kuasi ekpserimen, sedangkan desain penelitian yang digunakan adalah non equivalent control group design. Ada dua kelas dalam penelitian ini, yaitu kelompok eksperimen dan kelompok kontrol. Kelompok eksperimen yaitu siswa  kelas  IV-A  terdiri  dari  35  siswa  yang  diberikan  perlakuan  dengan pendekatan pembelajaran Guided Discovery dan kelas kontrol yaitu siswa kelas IV-B terdiri dari 33 siswa yang diberikan perlakuan pendekatan pembelajaran CTL (Contextual Teaching and Learning. Ada pun teknik pengumpulan data yang dilakukan meliputi tes hasil belajar berupa posttest serta nontes berupa dokumentasi.   Berdasarkan   hasil   penelitian   menunjukkan   bahwa   terdapat perbedaan hasil belajar siswa kelas eksperimen dan siswa kelas kontrol. Hasil belajar IPA siswa kelas eksperimen lebih tinggi daripada hasil belajar IPA siswa kelas kontrol. Rata-rata hasil belajar IPA kelas eksperimen yaitu 76,07 dan kelas kontrol memperoleh rata-rata 69,34. Kata Kunci : Hasil Belajar IPA, Guided Discovery, Contextual Teaching and Learning   Abstract. This research attempts to know the comparison of the results learning on subject’s science  class  after  using  learning  guided  discovery  approach  with  contextual teaching  and  learning  approach  to  their  student’s  grade  4  of  public  school Kramatwatu  7.  Research methodology used  is the method quasi  experiments, while design research used is non equivalent control group design.There are two classes  in  this  research,  namely  experiment  group  and  control  groups.  The experiment group that is a

  3. Contextual attributes promote or hinder self-regulated learning: A qualitative study contrasting rural physicians with undergraduate learners in Japan.

    Science.gov (United States)

    Matsuyama, Yasushi; Nakaya, Motoyuki; Okazaki, Hitoaki; Leppink, Jimmie; van der Vleuten, Cees

    2018-03-01

    Previous studies support the notion that East Asian medical students do not possess sufficient self-regulation for postgraduate clinical training. However, some East Asian physicians who are employed in geographically isolated and educationally underserved rural settings can self-regulate their study during the early phase of their postgraduate career. To explore the contextual attributes that contribute to self-regulated learning (SRL), we examined the differences in self-regulation between learning as an undergraduate and in a rural context in East Asia. We conducted interviews and diary data collection among rural physicians (n = 10) and undergraduates (n = 11) in Japan who undertook self-study of unfamiliar diseases. We analyzed three domains of Zimmerman's definition of SRL: learning behaviors, motivation, and metacognition using constructivist grounded theory. Rural physicians recognized their identity as unique, and as professionals with a central role of handling diseases in the local community by conducting self-study. They simultaneously found themselves being at risk of providing inappropriate aid if their self-study was insufficient. They developed strategic learning strategies to cope with this high-stakes task. Undergraduates had a fear of being left behind and preferred to remain as one of the crowd with students in the same school year. Accordingly, they copied the methods of other students for self-study and used monotonous and homogeneous strategies. Different learning contexts do not keep East Asian learners from being self-regulated. Awareness of their unique identity leads them to view learning tasks as high-stakes, and to initiate learning strategies in a self-regulated manner. Teacher-centered education systems cause students to identify themselves as one of the crowd, and tasks as low-stakes, and to accordingly employ non-self-regulated strategies.

  4. Adaptive gain modulation in V1 explains contextual modifications during bisection learning.

    Directory of Open Access Journals (Sweden)

    Roland Schäfer

    2009-12-01

    Full Text Available The neuronal processing of visual stimuli in primary visual cortex (V1 can be modified by perceptual training. Training in bisection discrimination, for instance, changes the contextual interactions in V1 elicited by parallel lines. Before training, two parallel lines inhibit their individual V1-responses. After bisection training, inhibition turns into non-symmetric excitation while performing the bisection task. Yet, the receptive field of the V1 neurons evaluated by a single line does not change during task performance. We present a model of recurrent processing in V1 where the neuronal gain can be modulated by a global attentional signal. Perceptual learning mainly consists in strengthening this attentional signal, leading to a more effective gain modulation. The model reproduces both the psychophysical results on bisection learning and the modified contextual interactions observed in V1 during task performance. It makes several predictions, for instance that imagery training should improve the performance, or that a slight stimulus wiggling can strongly affect the representation in V1 while performing the task. We conclude that strengthening a top-down induced gain increase can explain perceptual learning, and that this top-down signal can modify lateral interactions within V1, without significantly changing the classical receptive field of V1 neurons.

  5. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cortical Dynamics of Contextually Cued Attentive Visual Learning and Search: Spatial and Object Evidence Accumulation

    Science.gov (United States)

    Huang, Tsung-Ren; Grossberg, Stephen

    2010-01-01

    How do humans use target-predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, humans can learn that a certain combination of objects may define a context for a kitchen and trigger a more efficient…

  7. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    Science.gov (United States)

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  8. A single footshock causes long-lasting hypoactivity in unknown environments that is dependent on the development of contextual fear conditioning.

    Science.gov (United States)

    Daviu, Núria; Fuentes, Silvia; Nadal, Roser; Armario, Antonio

    2010-09-01

    Exposure to a single session of footshocks induces long-lasting inhibition of activity in unknown environments that markedly differ from the shock context. Interestingly, these effects are not necessarily associated to an enhanced anxiety and interpretation of this hypoactivity remains unclear. In the present experiment we further studied this phenomenon in male Sprague-Dawley rats. In a first experiment, a session of three shocks resulted in hypoactivity during exposure, 6-12days later, to three different unknown environments. This altered behaviour was not accompanied by a greater hypothalamic-pituitary-adrenal (HPA) activation, although greater HPA activation paralleling higher levels of freezing was observed in the shock context. In a second experiment we used a single shock and two procedures, one with pre-exposure to the context before the shock and another with immediate shock that did not induce contextual fear conditioning. Hypoactivity and a certain level of generalization of fear (freezing) to the unknown environments only appeared in the group that developed fear conditioning, but no evidence for enhanced anxiety in the elevated plus-maze was found in any group. The results suggest that if animals are able to associate an aversive experience with a distinct unknown environment, they would display more cautious behaviour in any unknown environment and such strategy persists despite repeated experience with different environments. This long-lasting cautious behaviour was not associated to greater HPA response to the unknown environment that was however observed in the shock context. The present findings raised some concerns about interpretation of long-lasting behavioural changes caused by brief stressors. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Failure to condition to a cue is associated with sustained contextual fear

    NARCIS (Netherlands)

    Baas, J. M. P.; van Ooijen, L.; Goudriaan, A.; Kenemans, J. L.

    2008-01-01

    The acquisition of a conditioned fear response is adaptive, as it enables the organism to appropriately respond to predictors of aversive events. Consequently, the absence of predictive cues can be used as a signal for safety. We aimed to study whether deficient fear conditioning might lead to

  10. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  11. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    Science.gov (United States)

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. © The Author(s) 2016.

  12. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    Science.gov (United States)

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  13. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732

  14. Coping with Fear of Recurrence

    Science.gov (United States)

    ... What Comes Next After Finishing Treatment Coping With Fear of Recurrence Having a Baby After Cancer: Pregnancy ... treatment and preparing for the future. Coping With Fear of Recurrence Learn ways to manage the fear ...

  15. Dopamine Regulates Aversive Contextual Learning and Associated In Vivo Synaptic Plasticity in the Hippocampus

    Directory of Open Access Journals (Sweden)

    John I. Broussard

    2016-03-01

    Full Text Available Dopamine release during reward-driven behaviors influences synaptic plasticity. However, dopamine innervation and release in the hippocampus and its role during aversive behaviors are controversial. Here, we show that in vivo hippocampal synaptic plasticity in the CA3-CA1 circuit underlies contextual learning during inhibitory avoidance (IA training. Immunohistochemistry and molecular techniques verified sparse dopaminergic innervation of the hippocampus from the midbrain. The long-term synaptic potentiation (LTP underlying the learning of IA was assessed with a D1-like dopamine receptor agonist or antagonist in ex vivo hippocampal slices and in vivo in freely moving mice. Inhibition of D1-like dopamine receptors impaired memory of the IA task and prevented the training-induced enhancement of both ex vivo and in vivo LTP induction. The results indicate that dopamine-receptor signaling during an aversive contextual task regulates aversive memory retention and regulates associated synaptic mechanisms in the hippocampus that likely underlie learning.

  16. Evidence for a developmental role for TLR4 in learning and memory.

    Directory of Open Access Journals (Sweden)

    Eitan Okun

    Full Text Available Toll-like receptors (TLRs play essential roles in innate immunity and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain where they mediate responses to infection, stress and injury. Very little is known about the roles of TLRs in cognition. To test the hypothesis that TLR4 has a role in hippocampus-dependent spatial learning and memory, we used mice deficient for TLR4 and mice receiving chronic TLR4 antagonist infusion to the lateral ventricles in the brain. We found that developmental TLR4 deficiency enhances spatial reference memory acquisition and memory retention, impairs contextual fear-learning and enhances motor functions, traits that were correlated with CREB up-regulation in the hippocampus. TLR4 antagonist infusion into the cerebral ventricles of adult mice did not affect cognitive behavior, but instead affected anxiety responses. Our findings indicate a developmental role for TLR4 in shaping spatial reference memory, and fear learning and memory. Moreover, we show that central TLR4 inhibition using a TLR4 antagonist has no discernible physiological role in regulating spatial and contextual hippocampus-dependent cognitive behavior.

  17. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    Science.gov (United States)

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks. © The Author(s) 2015.

  19. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  20. Vicarious birth experiences and childbirth fear: does it matter how young canadian women learn about birth?

    Science.gov (United States)

    Stoll, Kathrin; Hall, Wendy

    2013-01-01

    In our secondary analysis of a cross-sectional survey, we explored predictors of childbirth fear for young women (n = 2,676). Young women whose attitudes toward pregnancy and birth were shaped by the media were 1.5 times more likely to report childbirth fear. Three factors that were associated with reduced fear of birth were women's confidence in reproductive knowledge, witnessing a birth, and learning about pregnancy and birth through friends. Offering age-appropriate birth education during primary and secondary education, as an alternative to mass-mediated information about birth, can be evaluated as an approach to reduce young women's childbirth fear.

  1. Social learning of fear and safety is determined by the demonstrator's racial group.

    Science.gov (United States)

    Golkar, Armita; Castro, Vasco; Olsson, Andreas

    2015-01-01

    Social learning offers an efficient route through which humans and other animals learn about potential dangers in the environment. Such learning inherently relies on the transmission of social information and should imply selectivity in what to learn from whom. Here, we conducted two observational learning experiments to assess how humans learn about danger and safety from members ('demonstrators') of an other social group than their own. We show that both fear and safety learning from a racial in-group demonstrator was more potent than learning from a racial out-group demonstrator. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus.

    Science.gov (United States)

    Connor, David A; Kutlu, Munir G; Gould, Thomas J

    2017-07-01

    Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.

  3. A Conceptual Framework over Contextual Analysis of Concept Learning within Human-Machine Interplays

    DEFF Research Database (Denmark)

    Badie, Farshad

    2016-01-01

    This research provides a contextual description concerning existential and structural analysis of ‘Relations’ between human beings and machines. Subsequently, it will focus on conceptual and epistemological analysis of (i) my own semantics-based framework [for human meaning construction] and of (ii......) a well-structured machine concept learning framework. Accordingly, I will, semantically and epistemologically, focus on linking those two frameworks for logical analysis of concept learning in the context of human-machine interrelationships. It will be demonstrated that the proposed framework provides...

  4. Differential influence of social versus isolate housing on vicarious fear learning in adolescent mice.

    Science.gov (United States)

    Panksepp, Jules B; Lahvis, Garet P

    2016-04-01

    Laboratory rodents can adopt the pain or fear of nearby conspecifics. This phenotype conceptually lies within the domain of empathy, a bio-psycho-social process through which individuals come to share each other's emotion. Using a model of cue-conditioned fear, we show here that the expression of vicarious fear varies with respect to whether mice are raised socially or in solitude during adolescence. The impact of the adolescent housing environment was selective: (a) vicarious fear was more influenced than directly acquired fear, (b) "long-term" (24-h postconditioning) vicarious fear memories were stronger than "short-term" (15-min postconditioning) memories in socially reared mice whereas the opposite was true for isolate mice, and (c) females were more fearful than males. Housing differences during adolescence did not alter the general mobility of mice or their vocal response to receiving the unconditioned stimulus. Previous work with this mouse model underscored a genetic influence on vicarious fear learning, and the present study complements these findings by elucidating an interaction between the adolescent social environment and vicarious experience. Collectively, these findings are relevant to developing models of empathy amenable to mechanistic exploitation in the laboratory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Improving Teaching Quality and Problem Solving Ability through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

    Science.gov (United States)

    Khotimah, Rita Pramujiyanti; Masduki

    2016-01-01

    Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…

  6. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  7. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    Science.gov (United States)

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Psychomotor skills acquisition of novice learners: a case for contextual learning.

    Science.gov (United States)

    DeBourgh, Gregory A

    2011-01-01

    Deficiencies in procedural competency compromise patient safety and the quality of care provided. Educators in prelicensure nursing programs are challenged to design effective instruction to develop psychomotor skills abilities among novice learners. Highly contextualized learning and frequent opportunities for performance rehearsal promote knowledge retention and procedural competence. The author discusses data from an evaluation study that explored students' perceptions of the effectiveness of skills instruction and suggests strategies for curricular integration and effective instruction.

  9. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  10. Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala

    OpenAIRE

    Abiri, Dina; Douglas, Christina E.; Calakos, Katina C.; Barbayannis, Georgia; Roberts, Andrea; Bauer, Elizabeth P.

    2014-01-01

    The neuropeptide corticotropin-releasing factor (CRF) is released during periods of anxiety and modulates learning and memory formation. One region with particularly dense concentrations of CRF receptors is the basolateral nucleus of the amygdala (BLA), a critical structure for both Pavlovian fear conditioning and fear extinction. While CRF has the potential to modify amygdala-dependent learning, its effect on fear extinction has not yet been assessed. In the present study, we examined the mo...

  11. Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression.

    Directory of Open Access Journals (Sweden)

    Dominic Landgraf

    Full Text Available The state of being helpless is regarded as a central aspect of depression, and therefore the learned helplessness paradigm in rodents is commonly used as an animal model of depression. The term 'learned helplessness' refers to a deficit in escaping from an aversive situation after an animal is exposed to uncontrollable stress specifically, with a control/comparison group having been exposed to an equivalent amount of controllable stress. A key feature of learned helplessness is the transferability of helplessness to different situations, a phenomenon called 'trans-situationality'. However, most studies in mice use learned helplessness protocols in which training and testing occur in the same environment and with the same type of stressor. Consequently, failures to escape may reflect conditioned fear of a particular environment, not a general change of the helpless state of an animal. For mice, there is no established learned helplessness protocol that includes the trans-situationality feature. Here we describe a simple and reliable learned helplessness protocol for mice, in which training and testing are carried out in different environments and with different types of stressors. We show that with our protocol approximately 50% of mice develop learned helplessness that is not attributable to fear conditioning.

  12. Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression.

    Science.gov (United States)

    Landgraf, Dominic; Long, Jaimie; Der-Avakian, Andre; Streets, Margo; Welsh, David K

    2015-01-01

    The state of being helpless is regarded as a central aspect of depression, and therefore the learned helplessness paradigm in rodents is commonly used as an animal model of depression. The term 'learned helplessness' refers to a deficit in escaping from an aversive situation after an animal is exposed to uncontrollable stress specifically, with a control/comparison group having been exposed to an equivalent amount of controllable stress. A key feature of learned helplessness is the transferability of helplessness to different situations, a phenomenon called 'trans-situationality'. However, most studies in mice use learned helplessness protocols in which training and testing occur in the same environment and with the same type of stressor. Consequently, failures to escape may reflect conditioned fear of a particular environment, not a general change of the helpless state of an animal. For mice, there is no established learned helplessness protocol that includes the trans-situationality feature. Here we describe a simple and reliable learned helplessness protocol for mice, in which training and testing are carried out in different environments and with different types of stressors. We show that with our protocol approximately 50% of mice develop learned helplessness that is not attributable to fear conditioning.

  13. Gradients of fear: How perception influences fear generalization.

    Science.gov (United States)

    Struyf, Dieter; Zaman, Jonas; Hermans, Dirk; Vervliet, Bram

    2017-06-01

    The current experiment investigated whether overgeneralization of fear could be due to an inability to perceptually discriminate the initial fear-evoking stimulus from similar stimuli, as fear learning-induced perceptual impairments have been reported but their influence on generalization gradients remain to be elucidated. Three hundred and sixty-eight healthy volunteers participated in a differential fear conditioning paradigm with circles of different sizes as conditioned stimuli (CS), of which one was paired to an aversive IAPS picture. During generalization, each subject was presented with one of 10 different sized circles including the CSs, and were asked to categorize the stimulus as either a CS or as novel after fear responses were recorded. Linear mixed models were used to investigate differences in fear generalization gradients depending on the participant's perception of the test stimulus. We found that the incorrect perception of a novel stimulus as the initial fear-evoking stimulus strongly boosted fear responses. The current findings demonstrate that a significant number of novel stimuli used to assess generalization are incorrectly identified as the initial fear-evoking stimulus, providing a perceptual account for the observed overgeneralization in panic and anxiety disorders. Accordingly, enhancing perceptual processing may be a promising treatment for targeting excessive fear generalization. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. PENERAPAN MODEL PEMBELAJARAN CONTEXTUAL TEACHING AND LEARNING DENGAN MENGGUNAKAN MEDIA MODUL DALAM MENINGKATKAN HASIL BELAJAR MATA PELAJARAN AKUNTANSI PADA SISWA SMA SE-KOTA BANDUNG

    Directory of Open Access Journals (Sweden)

    Imas Purnamasari

    2014-04-01

    Full Text Available The results of student learning is a combination of various factors that affect the overall learning process. The phenomenon in this study is the lack of student learning outcomes are seen from the results of the national exam on economic subjects, especially the material accounting, one of the causes of the problems in the learning process, namely on how to give lessons conducted by teachers, and the use of instructional media, especially the media module. This study, use the method of the experiment to make a difference between the results of the study on the student teaching and learning by contextual the use of the media, the students are not using the models of the contextual teaching and learning to use media. Results of the analysis of 10 schools in the city of bandung at 8 school with the influence of contextual teaching and learning module, using this hypothesis can be seen from the increase is the result of study to students.

  15. Promoting Creative Thinking Ability Using Contextual Learning Model in Technical Drawing Achievement

    Science.gov (United States)

    Mursid, R.

    2018-02-01

    The purpose of this study is to determine whether there is influence; the differences in the results between students that learn drawing techniques taught by the Contextual Innovative Model (CIM) and taught by Direct Instructional Model (DIM), the differences in achievement among students of technical drawing that have High Creative Thinking Ability (HCTA) with Low Creative Thinking Ability (LCTA), and the interaction between the learning model with the ability to think creatively to the achievement technical drawing. Quasi-experimental research method. Results of research appoint that: the achievement of students that learned technical drawing by using CIM is higher than the students that learned technical drawing by using DIM, the achievement of students of technical drawings HCTA is higher than the achievement of students who have technical drawing LCTA, and there are interactions between the use of learning models and creative thinking abilities in influencing student achievement technical drawing.

  16. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    Science.gov (United States)

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. On the limits of statistical learning: Intertrial contextual cueing is confined to temporally close contingencies.

    Science.gov (United States)

    Thomas, Cyril; Didierjean, André; Maquestiaux, François; Goujon, Annabelle

    2018-04-12

    Since the seminal study by Chun and Jiang (Cognitive Psychology, 36, 28-71, 1998), a large body of research based on the contextual-cueing paradigm has shown that the cognitive system is capable of extracting statistical contingencies from visual environments. Most of these studies have focused on how individuals learn regularities found within an intratrial temporal window: A context predicts the target position within a given trial. However, Ono, Jiang, and Kawahara (Journal of Experimental Psychology, 31, 703-712, 2005) provided evidence of an intertrial implicit-learning effect when a distractor configuration in preceding trials N - 1 predicted the target location in trials N. The aim of the present study was to gain further insight into this effect by examining whether it occurs when predictive relationships are impeded by interfering task-relevant noise (Experiments 2 and 3) or by a long delay (Experiments 1, 4, and 5). Our results replicated the intertrial contextual-cueing effect, which occurred in the condition of temporally close contingencies. However, there was no evidence of integration across long-range spatiotemporal contingencies, suggesting a temporal limitation of statistical learning.

  18. Time-dependent effects of cortisol on the contextualization of emotional memories

    NARCIS (Netherlands)

    van Ast, V.A.; Cornelisse, S.; Meeter, M.; Joëls, M.; Kindt, M.

    2013-01-01

    Background: The inability to store fearful memories into their original encoding context is considered to be an important vulnerability factor for the development of anxiety disorders like posttraumatic stress disorder. Altered memory contextualization most likely involves effects of the stress

  19. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Edward G Meloni

    Full Text Available Xenon (Xe is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD. Because glutamate receptors also have been shown to play a role in fear memory reconsolidation--a state in which recalled memories become susceptible to modification--we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.

  1. Tools of Contextualization

    DEFF Research Database (Denmark)

    Bouvin, Niels Olof; Brodersen, Ann Christina; Hansen, Frank Allan

    2005-01-01

    Project based education is growing in importance in elementary schools though it is still quite poorly technologically supported, particularly with respect to actively taking advantage of contextual information. Based on an empirical study of teaching and in particular project based education...... in Danish elementary schools, we present the HyConExplorer, a geospatial hypermedia system supporting project based education and learning outside of the classroom through contextualization of information. More specifically, the HyCon-Explorer provides means for: browsing with your feet, annotating...

  2. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer's disease patients.

    Science.gov (United States)

    Nakagawa, Toshiyuki; Itoh, Masanori; Ohta, Kazunori; Hayashi, Yuichi; Hayakawa, Miki; Yamada, Yasushi; Akanabe, Hiroshi; Chikaishi, Tokio; Nakagawa, Kiyomi; Itoh, Yoshinori; Muro, Takato; Yanagida, Daisuke; Nakabayashi, Ryo; Mori, Tetsuya; Saito, Kazuki; Ohzawa, Kaori; Suzuki, Chihiro; Li, Shimo; Ueda, Masashi; Wang, Miao-Xing; Nishida, Emika; Islam, Saiful; Tana; Kobori, Masuko; Inuzuka, Takashi

    2016-06-15

    Patients with Alzheimer's disease (AD) experience a wide array of cognitive deficits, which typically include the impairment of explicit memory. In previous studies, the authors reported that a flavonoid, quercetin, reduces the expression of ATF4 and delays memory deterioration in an early-stage AD mouse model. In the present study, the effects of long-term quercetin intake on memory recall were assessed using contextual fear conditioning in aged wild-type mice. In addition, the present study examined whether memory recall was affected by the intake of quercetin-rich onion (a new cultivar of hybrid onion 'Quergold') powder in early-stage AD patients. In-vivo analysis indicated that memory recall was enhanced in aged mice fed a quercetin-containing diet. Memory recall in early-stage AD patients, determined using the Revised Hasegawa Dementia Scale, was significantly improved by the intake of quercetin-rich onion (Quergold) powder for 4 weeks compared with the intake of control onion ('Mashiro' white onion) powder. These results indicate that quercetin might influence memory recall.

  3. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults.

    Science.gov (United States)

    Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul

    2016-05-01

    Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  4. Help me if I can't: Social interaction effects in adult contextual word learning.

    Science.gov (United States)

    Verga, Laura; Kotz, Sonja A

    2017-11-01

    A major challenge in second language acquisition is to build up new vocabulary. How is it possible to identify the meaning of a new word among several possible referents? Adult learners typically use contextual information, which reduces the number of possible referents a new word can have. Alternatively, a social partner may facilitate word learning by directing the learner's attention toward the correct new word meaning. While much is known about the role of this form of 'joint attention' in first language acquisition, little is known about its efficacy in second language acquisition. Consequently, we introduce and validate a novel visual word learning game to evaluate how joint attention affects the contextual learning of new words in a second language. Adult learners either acquired new words in a constant or variable sentence context by playing the game with a knowledgeable partner, or by playing the game alone on a computer. Results clearly show that participants who learned new words in social interaction (i) are faster in identifying a correct new word referent in variable sentence contexts, and (ii) temporally coordinate their behavior with a social partner. Testing the learned words in a post-learning recall or recognition task showed that participants, who learned interactively, better recognized words originally learned in a variable context. While this result may suggest that interactive learning facilitates the allocation of attention to a target referent, the differences in the performance during recognition and recall call for further studies investigating the effect of social interaction on learning performance. In summary, we provide first evidence on the role joint attention in second language learning. Furthermore, the new interactive learning game offers itself to further testing in complex neuroimaging research, where the lack of appropriate experimental set-ups has so far limited the investigation of the neural basis of adult word learning in

  5. Age-dependent changes in autophosphorylation of alpha calcium/calmodulin dependent kinase II in hippocampus and amygdala after contextual fear conditioning.

    Science.gov (United States)

    Fang, Ton; Kasbi, Kamillia; Rothe, Stephanie; Aziz, Wajeeha; Giese, K Peter

    2017-09-01

    The hippocampus and amygdala are essential brain regions responsible for contextual fear conditioning (CFC). The autophosphorylation of alpha calcium-calmodulin kinase II (αCaMKII) at threonine-286 (T286) is a critical step implicated in long-term potentiation (LTP), learning and memory. However, the changes in αCaMKII levels with aging and training in associated brain regions are not fully understood. Here, we studied how aging and training affect the levels of phosphorylated (T286) and proportion of phosphorylated:total αCaMKII in the hippocampus and amygdala. Young and aged mice, naïve (untrained) and trained in CFC, were analysed by immunohistochemistry for the levels of total and phosphorylated αCaMKII in the hippocampus and amygdala. We found that two hours after CFC training, young mice exhibited a higher level of phosphorylated and increased ratio of phosphorylated:total αCaMKII in hippocampal CA3 stratum radiatum. Furthermore, aged untrained mice showed a higher ratio of phosphorylated:total αCaMKII in the CA3 region of the hippocampus when compared to the young untrained group. No effect of training or aging were seen in the central, lateral and basolateral amygdala regions, for both phosphorylated and ratio of phosphorylated:total αCaMKII. These results show that aging impairs the training-induced upregulation of autophosphorylated (T286) αCaMKII in the CA3 stratum radiatum of the hippocampus. This indicates that distinct age-related mechanisms underlie CFC that may rely more heavily on NMDA receptor-dependent plasticity in young age. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Vicarious learning of children's social-anxiety-related fear beliefs and emotional Stroop bias.

    Science.gov (United States)

    Askew, Chris; Hagel, Anna; Morgan, Julie

    2015-08-01

    Models of social anxiety suggest that negative social experiences contribute to the development of social anxiety, and this is supported by self-report research. However, there is relatively little experimental evidence for the effects of learning experiences on social cognitions. The current study examined the effect of observing a social performance situation with a negative outcome on children's (8 to 11 years old) fear-related beliefs and cognitive processing. Two groups of children were each shown 1 of 2 animated films of a person trying to score in basketball while being observed by others; in 1 film, the outcome was negative, and in the other, it was neutral. Children's fear-related beliefs about performing in front of others were measured before and after the film and children were asked to complete an emotional Stroop task. Results showed that social fear beliefs increased for children who saw the negative social performance film. In addition, these children showed an emotional Stroop bias for social-anxiety-related words compared to children who saw the neutral film. The findings have implications for our understanding of social anxiety disorder and suggest that vicarious learning experiences in childhood may contribute to the development of social anxiety. (c) 2015 APA, all rights reserved).

  7. BOX MEDIA MODEL THROUGH THE USE OF CONTEXTUAL UNDERSTANDING TO IMPROVE STUDENT LEARNING CONCEPTS IN VOLUME BEAM

    Directory of Open Access Journals (Sweden)

    Dede Rohaeni

    2016-05-01

    Full Text Available Abstract. This research is motivated Cilengkrang Elementary School fifth grade students in the learning of the beam volume is still experiencing difficulties. This happens because the learning process that takes place is conventional. Learning by applying a contextual model chosen researchers by reason students will know if the learning is associated with the real world of students. The method used in this research is a classroom action research methods to the design of the research procedure refers to the spiral model Kemmis and MC. Tujuanpenelitianini is to obtain an overview of the planning, implementation and improvement of students' understanding of the results of the application of the concept model of contextual learning in the classroom beam volume V Elementary School Cilengkrang. The method used in this research is a classroom action research methods to the design of the research procedure refers to the spiral model Kemmis and MC. Taggart. Based on the implementation of the actions performed by three cycles, as a whole has shown an increase from the initial data, both process and outcomes of learning. So that the application of contextual models can enhance students' understanding of class V SDN Cilengkrang Northern District of Sumedang Sumedang district of the concept of the beam volume.   Keywords: Contextual Model, Mathematics, Mathematics Learning Objectives     Abstrak. Penelitian ini dilatarbelakangi siswa kelas V SDN Cilengkrang dalam pembelajaran volume balok masih mengalami kesulitan. Ini terjadi karena proses pembelajaran yang berlangsung bersifat konvensional. Pembelajaran dengan menerapkan model kontekstual dipilih peneliti dengan alasan siswa akan paham jika pembelajaran dikaitkan dengan dunia nyata siswa. Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian tindakan kelas dengan rancangan prosedur penelitiannya mengacu pada model spiral Kemmis dan MC. Tujuanpenelitianini yaitu untuk memperoleh

  8. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation.

    Science.gov (United States)

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano; Alviña, Karina; Zhang, Yuxiang; Dushko, Margaret; Ku, Taeyun; Zemoura, Khaled; Rich, David; Garcia-Dominguez, Dario; Hung, Matthew; Yelhekar, Tushar D; Sørensen, Andreas Toft; Xu, Weifeng; Chung, Kwanghun; Castillo, Pablo E; Lin, Yingxi

    2018-03-07

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Contextualizing symbol, symbolizing context

    Science.gov (United States)

    Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang

    2017-08-01

    When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.

  10. Beyond Extinction: Prolonged Conditioning and Repeated Threat Exposure Abolish Contextual Renewal of Fear-Potentiated Startle Discrimination but Leave Expectancy Ratings Intact.

    Science.gov (United States)

    Leer, Arne; Haesen, Kim; Vervliet, Bram

    2018-01-01

    Extinction treatments decrease fear via repeated exposures to the conditioned stimulus (CS) and are associated with a return of fear. Alternatively, fear can be reduced via reductions in the perceived intensity of the unconditioned stimulus (US), e.g., through repeated exposures to the US. Promisingly, the few available studies show that repeated US exposures outperform standard extinction. US exposure treatments can decrease fear via two routes: (1) by weakening the CS-US association (extinction-like mechanism), and/or (2) by weakening the subjective US aversiveness (habituation-like mechanism). The current study further investigated the conditions under which US exposure treatment may reduce renewal, by adding a group in which CS-US pairings continued following fear acquisition. During acquisition, participants learned that one of two visual stimuli (CS+/CS-) predicted the occurrence of an aversive electrocutaneous stimulus (US). Next, the background context changed and participants received one of three interventions: repeated CS exposures, (2) repeated US exposures, or (3) continued CS-US pairings. Following repeated CS exposures, test presentations of the CSs in the original conditioning context revealed intact CS+/CS- differentiation in the fear-potentiated startle reflex, while the differentiation was abolished in the other two groups. Differential US expectancy ratings, on the other hand, were intact in all groups. Skin conductance data were inconclusive because standard context renewal following CS exposures did not occur. Unexpectedly, there was no evidence for a habituation-like process having taken place during US exposures or continued CS-US pairings. The results provide further evidence that US exposures outperform the standard extinction treatment and show that effects are similar when US exposures are part of CS-US pairings.

  11. Early experience of a novel-environment in isolation primes a fearful phenotype characterized by persistent amygdala activation.

    Science.gov (United States)

    Daskalakis, Nikolaos P; Diamantopoulou, Anastasia; Claessens, Sanne E F; Remmers, Elisa; Tjälve, Marika; Oitzl, Melly S; Champagne, Danielle L; de Kloet, E Ronald

    2014-01-01

    Prolonged maternal separation (MS) activates the neonate's hypothalamus-pituitary-adrenal axis causing elevated basal and stress-induced corticosterone levels that may initiate amygdala-dependent fear learning. Here we test the hypothesis that the adult fearful phenotype is programmed by the pup's stressful experience during prolonged MS rather than by prolonged maternal absence per se. For this purpose, Wistar rat pups were exposed, on postnatal-day (pnd) 3, to: (i) repeated-MS in home-environment (HOME-SEP), 8h-MS daily for three days with the pups remaining together in the home-cage; (ii) repeated-MS in a novel-environment (NOVEL-SEP), with the same separation procedure, but now the pups were individually housed in a novel-environment during the 8h dam's absence; (iii) repeated handling, which consisted of daily brief (15 min instead of 8h) MS in the home-altogether or in a novel-environment individually (HOME-HAN and NOVEL-HAN, respectively); (iv) no-separation/no-handling (NON-SEP/NON-HAN) control condition, in which pups were left undisturbed in their home-cage. Compared to HOME-SEP rats, the NOVEL-SEP rats showed one day after the last MS enhanced stress-induced amygdala c-Fos expression and ACTH-release, despite of reduced adrenal corticosterone secretion. The higher amygdala c-Fos expression, ACTH-release and reduced corticosterone output observed postnatally, persisted into adulthood of the NOVEL-SEP animals. Behaviorally, NOVEL-SEP juvenile rats displayed deficits in social play, had intact spatial memory in the peri-pubertal period and showed more contextual fear memory compared to HOME-SEP in adulthood. Finally, NOVEL-HAN, compared to HOME-HAN, displayed increased stress-induced corticosterone output, no deficits in social play and reduced contextual fear. In conclusion, programming of an adult fearful phenotype linked to amygdala priming develops if pups are repeatedly isolated from peers in a novel-environment, while away from the dam for a prolonged

  12. The central amygdala circuits in fear regulation

    Science.gov (United States)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  13. Systemic or Intra-Amygdala Infusion of the Benzodiazepine, Midazolam, Impairs Learning, but Facilitates Re-Learning to Inhibit Fear Responses in Extinction

    Science.gov (United States)

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2010-01-01

    A series of experiments used rats to study the effect of a systemic or intra-amygdala infusion of the benzodiazepine, midazolam, on learning and re-learning to inhibit context conditioned fear (freezing) responses. Rats were subjected to two context-conditioning episodes followed by extinction under drug or vehicle, or to two cycles of context…

  14. Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats.

    Science.gov (United States)

    Graham, Bronwyn M; Richardson, Rick

    2010-06-01

    Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.

  15. Developing a Contextual Consciousness: Learning to Address Gender, Societal Power, and Culture in Clinical Practice

    Science.gov (United States)

    Esmiol, Elisabeth E.; Knudson-Martin, Carmen; Delgado, Sarah

    2012-01-01

    Despite the growing number of culturally sensitive training models and considerable literature on the importance of training clinicians in larger contextual issues, research examining how students learn to apply these issues is limited. In this participatory action research project, we systematically studied our own process as marriage and family…

  16. French Nursery Schools and German Kindergartens: Effects of Individual and Contextual Variables on Early Learning

    Science.gov (United States)

    Tazouti, Youssef; Viriot-Goeldel, Caroline; Matter, Cornelie; Geiger-Jaillet, Anemone; Carol, Rita; Deviterne, Dominique

    2011-01-01

    The present article investigates the effects of individual and contextual variables on children's early learning in French nursery schools and German kindergartens. Our study of 552 children at preschools in France (299 children from French nursery schools) and Germany (253 children from German kindergartens) measured skills that facilitate the…

  17. Individual variation in working memory is associated with fear extinction performance.

    Science.gov (United States)

    Stout, Daniel M; Acheson, Dean T; Moore, Tyler M; Gur, Ruben C; Baker, Dewleen G; Geyer, Mark A; Risbrough, Victoria B

    2018-03-01

    PTSD has been associated consistently with abnormalities in fear acquisition and extinction learning and retention. Fear acquisition refers to learning to discriminate between threat and safety cues. Extinction learning reflects the formation of a new inhibitory-memory that competes with a previously learned threat-related memory. Adjudicating the competition between threat memory and the new inhibitory memory during extinction may rely, in part, on cognitive processes such as working memory (WM). Despite significant shared neural circuits and signaling pathways the relationship between WM, fear acquisition, and extinction is poorly understood. Here, we analyzed data from a large sample of healthy Marines who underwent an assessment battery including tests of fear acquisition, extinction learning, and WM (N-back). Fear potentiated startle (FPS), fear expectancy ratings, and self-reported anxiety served as the primary dependent variables. High WM ability (N = 192) was associated with greater CS + fear inhibition during the late block of extinction and greater US expectancy change during extinction learning compared to individuals with low WM ability (N = 204). WM ability was not associated with magnitude of fear conditioning/expression. Attention ability was unrelated to fear acquisition or extinction supporting specificity of WM associations with extinction. These results support the conclusion that individual differences in WM may contribute to regulating fear responses. Copyright © 2018. Published by Elsevier Ltd.

  18. PENINGKATAN HASIL BELAJAR MATA PELAJARAN EKONOMI DENGAN PENERAPAN MODEL PEMBELAJARAN CONTEXTUAL TEACHING AND LEARNING (CTL

    Directory of Open Access Journals (Sweden)

    Nur Alifah Fitriana

    2013-02-01

    Full Text Available Proses pembelajaran yang variatif akan membantu siswa dalam pemahaman materi pembelajaran yang diberikan oleh guru. Pada sekolah MA Yasis AT-Taqwa Pahesan, model pembelajaran yang digunakan masih menggunakan model pembelajaran yang konvensional. Disini siswa kurang berperan aktif dalam proses belajar mengajar dan siswa akan cenderung merasa bosan. Untuk menyelesaikan masalah tersebut peneliti mencoba menerapkan model pembelajaran Contextual Teaching and Learning (CTLsebagai upaya meningkatkan hasil belajar siswa. Rancangan penelitian ini merupakan penelitian tindakan kelas dengan dua siklus, setiap siklus meliputi perencanaan, pelaksanaan, pengamatan dan refleksi. Hasil penelitian diperoleh nilai rata-rata pada siklus I yaitu 64,58 dengan ketuntasan klasikal 54,16%, sedangkan untuk siklus II nilai rata-ratanya 79,79 dengan ketuntasan klasikal 79,16%. Pada siklus I aktivitas siswa 55,47% dan siklus II menjadi 76,54%. Sedangkan kinerja guru pada siklus I 51,42% dan meningkat disiklus II 91,42%. Abstract ___________________________________________________________________ The learning processwill help studentsvariedin understandinglearning materialsprovided bythe teacher. AtschoolMAYasisAT-Taqwa Pahesan, learning modelused is stillusingconventionallearning models. Here thestudents areactively involved inthe learning processand students willtend to feelbored. To solvethe problem, the researcher tried toapply thelearning modelContextual Teaching andLearning(CTL as an effort toimprove student learning outcomes. The design ofthis studyisaction researchwithtwocycles, each cycleincluding planning, implementation, observationand reflection. The result showedthe average valuein the first cycleis64.58withclassical completeness54.16%, while forthe second cycleaverage value79.79withclassical completeness79.16%. In the first cycleof student activityand55.47% to76.54% the second cycle. While theperformance of teachersin the first cycleincreased51

  19. Emotional Perseveration: An Update on Prefrontal-Amygdala Interactions in Fear Extinction

    Science.gov (United States)

    Sotres-Bayon, Francisco; Bush, David E. A.; LeDoux, Joseph E.

    2004-01-01

    Fear extinction refers to the ability to adapt as situations change by learning to suppress a previously learned fear. This process involves a gradual reduction in the capacity of a fear-conditioned stimulus to elicit fear by presenting the conditioned stimulus repeatedly on its own. Fear extinction is context-dependent and is generally considered…

  20. Efektivitas Layanan Informasi dengan Pendekatan Contextual Teaching And Learning dalam Meningkatkan Arah Perencanaan Karier Siswa SMK

    Directory of Open Access Journals (Sweden)

    Ramtia Darma Putri

    2015-09-01

    Full Text Available Direction of career planning become very important because it can guidelines students in decisions making of his career in the future.  Direction of career planning should be prepared and improved considering that not all students have a mature direction of career planning. Central Statistics Agency (BPS of West Sumatera in August 2014 recorded the open unemployment of about 6.99%  or reach 150 thousand people are more dominated by graduates SMK as much as 11.15%. In addition, the results of AUM umum in one of the SMK was indicated problems in careers and jobs as much to 33.56%. This demonstrates that students do not have a clear understanding about direction of career planning that will be chosen. One of the efforts to improve the students direction of career planning is the information service.  This research was intended to find out the effectiveness of information service with contextual teaching and learning approach to improve the direction of career planning student of SMK.This study uses quantitative methods. This type of research is Quasi Experiment with Nonrandomized Control Group Pretest-posttest Design. The subjects were students of SMK Padang Nusatama as an experimental group and the SMK Nasional Padang as a control group. The research instrument used Likert Scale models, and then analyzed using Paired Samples t-test and Independent Sample t-test with SPSS version 17.00.In general the study's findings that information service with contextual teaching and learning approach is effective in improving direction of career planning student of SMK. Specifically: (1 there was a significant differences between direction of career planning in the experimental group before and after the given information service with contextual teaching and learning approach, (2 there was a significant differences between direction of career planning in the control group before and after the given conventional information service, and (3 there was a

  1. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    Science.gov (United States)

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  2. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    Science.gov (United States)

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  3. How trait anxiety, interpretation bias and memory affect acquired fear in children learning about new animals.

    Science.gov (United States)

    Field, Zoë C; Field, Andy P

    2013-06-01

    Cognitive models of vulnerability to anxiety propose that information processing biases such as interpretation bias play a part in the etiology and maintenance of anxiety disorders. However, at present little is known about the role of memory in information processing accounts of child anxiety. The current study investigates the relationships between interpretation biases, memory and fear responses when learning about new stimuli. Children (aged 8-11 years) were presented with ambiguous information regarding a novel animal, and their fear, interpretation bias, and memory for the information was measured. The main findings were: (1) trait anxiety and interpretation bias significantly predicted acquired fear; (2) interpretation bias did not significantly mediate the relationship between trait anxiety and acquired fear; (3) interpretation bias appeared to be a more important predictor of acquired fear than trait anxiety per se; and (4) the relationship between interpretation bias and acquired fear was not mediated by the number of negative memories but was mediated by the number of positive and false-positive memories. The findings suggest that information processing models of child anxiety need to explain the role of positive memory in the formation of fear responses.

  4. Social inference and social anxiety: evidence of a fear-congruent self-referential learning bias.

    Science.gov (United States)

    Button, Katherine S; Browning, Michael; Munafò, Marcus R; Lewis, Glyn

    2012-12-01

    Fears of negative evaluation characterise social anxiety, and preferential processing of fear-relevant information is implicated in maintaining symptoms. Little is known, however, about the relationship between social anxiety and the process of inferring negative evaluation. The ability to use social information to learn what others think about one, referred to here as self-referential learning, is fundamental for effective social interaction. The aim of this research was to examine whether social anxiety is associated with self-referential learning. 102 Females with either high (n = 52) or low (n = 50) self-reported social anxiety completed a novel probabilistic social learning task. Using trial and error, the task required participants to learn two self-referential rules, 'I am liked' and 'I am disliked'. Participants across the sample were better at learning the positive rule 'I am liked' than the negative rule 'I am disliked', β = -6.4, 95% CI [-8.0, -4.7], p learning positive self-referential information was strongest in the lowest socially anxious and was abolished in the most symptomatic participants. Relative to the low group, the high anxiety group were better at learning they were disliked and worse at learning they were liked, social anxiety by rule interaction β = 3.6; 95% CI [+0.3, +7.0], p = 0.03. The specificity of the results to self-referential processing requires further research. Healthy individuals show a robust preference for learning that they are liked relative to disliked. This positive self-referential bias is reduced in social anxiety in a way that would be expected to exacerbate anxiety symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Recognizing Student Fear: The Elephant in the Classroom

    Science.gov (United States)

    Bledsoe, T. Scott; Baskin, Janice J.

    2014-01-01

    Understanding fear, its causes, and its impact on students can be important for educators who seek ways to help students manage their fears. This paper explores common types of student fears such as performance-based anxiety, fear of failure, fear of being laughed at, and cultural components of fear that impact learning. The cognitive, emotional,…

  6. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice.

    Science.gov (United States)

    Fortes-Marco, Lluís; Lanuza, Enrique; Martínez-García, Fernando; Agustín-Pavón, Carmen

    2015-01-01

    Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively) than 2-HP (35 μmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish

  7. Behavioural, neurochemical and neuroendocrine effects of the endogenous β-carboline harmane in fear-conditioned rats.

    Science.gov (United States)

    Smith, Karen L; Ford, Gemma K; Jessop, David S; Finn, David P

    2013-02-01

    The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.

  8. From the Push of Fear, to the Pull of Hope: Learning by design ...

    African Journals Online (AJOL)

    From the Push of Fear, to the Pull of Hope: Learning by design. S Sterling. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

  9. The Effect of D-Cycloserine on Immediate vs. Delayed Extinction of Learned Fear

    Science.gov (United States)

    Langton, Julia M.; Richardson, Rick

    2010-01-01

    We compared the effect of D-cycloserine (DCS) on immediate (10 min after conditioning) and delayed (24 h after conditioning) extinction of learned fear in rats. DCS facilitated both immediate and delayed extinction when the drug was administered after extinction training. However, DCS did not facilitate immediate extinction when administered prior…

  10. D-cycloserine enhances generalization of fear extinction in children.

    Science.gov (United States)

    Byrne, Simon P; Rapee, Ronald M; Richardson, Rick; Malhi, Gin S; Jones, Michael; Hudson, Jennifer L

    2015-06-01

    For exposure therapy to be successful, it is essential that fear extinction learning extends beyond the treatment setting. D-cycloserine (DCS) may facilitate treatment gains by increasing generalization of extinction learning, however, its effects have not been tested in children. We examined whether DCS enhanced generalization of fear extinction learning across different stimuli and contexts among children with specific phobias. The study was a double-blind placebo-controlled randomized controlled trial among dog or spider phobic children aged 6-14. Participants ingested either 50 mg of DCS (n = 18) or placebo (n = 17) before receiving a single prolonged exposure session to their feared stimulus. Return of fear was examined 1 week later to a different stimulus (a different dog or spider), presented in both the original treatment context and an alternate context. Avoidance and fear were measured with Behavior Approach Tests (BATs), where the child was asked to increase proximity to the stimulus while reporting their fear level. There were no differences in BAT performance between groups during the exposure session or when a new stimulus was later presented in the treatment context. However, when the new stimulus was presented in a different context, relative to placebo, the DCS group showed less avoidance (P = .03) and less increase in fear (P = .04) with moderate effect sizes. DCS enabled children to better retain their fear extinction learning. This new learning generalized to different stimuli and contexts. © 2015 Wiley Periodicals, Inc.

  11. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Masanori Sakaguchi

    Full Text Available The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.

  12. The Trans-Contextual Model: Perceived Learning and Performance Motivational Climates as Analogues of Perceived Autonomy Support

    Science.gov (United States)

    Barkoukis, Vassilis; Hagger, Martin S.

    2013-01-01

    The trans-contextual model of motivation (TCM) proposes that perceived autonomy support in physical education (PE) predicts autonomous motivation within this context, which, in turn, is related to autonomous motivation and physical activity in leisure-time. According to achievement goal theory perceptions of learning and performance, motivational…

  13. The impact of signal-to-noise ratio on contextual cueing in children and adults.

    Science.gov (United States)

    Yang, Yingying; Merrill, Edward C

    2015-04-01

    Contextual cueing refers to a form of implicit spatial learning where participants incidentally learn to associate a target location with its repeated spatial context. Successful contextual learning produces an efficient visual search through familiar environments. Despite the fact that children exhibit the basic ability of implicit spatial learning, their general effectiveness in this form of learning can be compromised by other development-dependent factors. Learning to extract useful information (signal) in the presence of various amounts of irrelevant or distracting information (noise) characterizes one of the most important changes that occur with cognitive development. This research investigated whether signal-to-noise ratio (S/N) affects contextual cueing differently in children and adults. S/N was operationally defined as the ratio of repeated versus new displays encountered over time. Three ratio conditions were created: high (100%), medium (67%), and low (33%) conditions. Results suggested no difference in the acquisition of contextual learning effects in the high and medium conditions across three age groups (6- to 8-year-olds, 10- to 12-year-olds, and young adults). However, a significant developmental difference emerged in the low S/N condition. As predicted, adults exhibited significant contextual cueing effects, whereas older children showed marginally significant contextual cueing and younger children did not show cueing effects. Group differences in the ability to exhibit implicit contextual learning under low S/N conditions and the implications of this difference are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Coming to terms with fear

    Science.gov (United States)

    LeDoux, Joseph E.

    2014-01-01

    The brain mechanisms of fear have been studied extensively using Pavlovian fear conditioning, a procedure that allows exploration of how the brain learns about and later detects and responds to threats. However, mechanisms that detect and respond to threats are not the same as those that give rise to conscious fear. This is an important distinction because symptoms based on conscious and nonconscious processes may be vulnerable to different predisposing factors and may also be treatable with different approaches in people who suffer from uncontrolled fear or anxiety. A conception of so-called fear conditioning in terms of circuits that operate nonconsciously, but that indirectly contribute to conscious fear, is proposed as way forward. PMID:24501122

  15. The effect of left frontal transcranial direct-current stimulation on propranolol-induced fear memory acquisition and consolidation deficits.

    Science.gov (United States)

    Nasehi, Mohammad; Khani-Abyaneh, Mozhgan; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-07-28

    Accumulating evidence supports the efficacy of transcranial direct current stimulation (tDCS) in modulating numerous cognitive functions. Despite the fact that tDCS has been used for the enhancement of memory and cognition, very few animal studies have addressed its impact on the modulation of fear memory. This study was designed to determine whether pre/post-training frontal tDCS application would alter fear memory acquisition and/or consolidation deficits induced by propranolol in NMRI mice. Results indicated that administration of β1-adrenoceptor blocker propranolol (0.1mg/kg) impaired fear memory retrieval. Pre/post-training application of anodal tDCS when propranolol was administered prior to training reversed contextual memory retrieval whereas only the anodal application prior to training could induce the same result in the auditory test. Meanwhile, anodal stimulation had no effect on fear memories by itself. Moreover, regardless of when cathode was applied and propranolol administered, their combination restored contextual memory retrieval, while only cathodal stimulation prior to training facilitated the contextual memory retrieval. Also, auditory memory retrieval was restored when cathodal stimulation and propranolol occurred prior to training but it was abolished when stimulation occurred after training and propranolol was administered prior to training. Collectively, our findings show that tDCS applied on the left frontal cortex of mice affects fear memory performance. This alteration seems to be task-dependent and varies depending on the nature and timing of the stimulation. In certain conditions, tDCS reverses the effect of propranolol. These results provide initial evidence to support the timely use of tDCS for the modulation of fear-related memories. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Optimalisasi Pembelajaran IPS Pada Siswa Kelas VI Melalui Metode Contextual Teaching And Learning (CTL

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2014-08-01

    Full Text Available Peranan guru dalam pembelajaran IPS mempunyai hubungan erat dengan dengan cara mengaktifkan siswa dalam belajar, terutama dalam proses pengembangan kemampuan dan keterampilan.Untuk mengurangi sifat verbalisme siswa dan membantah pemahaman konsep yang terdapat dalam materi IPS yang terdapat di SD, guru diharapkan memiliki kemampuan untuk mengembangkan model interaktif dalam pembelajaran IPS serta mengidentifikasi sumber-sumber pelajaran. Salah satu model interaktif yang bisa diterapkan guru salah satunya adalah model pembelajaran kontekstual atau Contextual Teaching and Learning (CTL. Pembelajarn kontekstual merupakan suatu proses yang bertujuan untuk membantu siswa memahami materi pelajaran yang sedang mereka pelajari dengan menghubungkan pokok materi pelajaran dengan penerapannya dalam kehidupan sehari-hari.Dari hasil kegiatan penelitian tindakan kelas yang telah dilakukan dalam dua siklus terhadap siswa kelas VIA di SDN Pinggir Papas 1 Kecamatan Kalianget Kabupaten Sumenep, dan berdasarkan seluruh pembahasan dari hasil analisis yang telah dilakukan, dapat disimpulkan bahwaOptimalisasi Pembelajaran IPS pada Siswa Kelas VIAmelalui Metode Contextual Teaching And Learning(CTL dapat meningkatkan kemampuan siswa memahami materi pembelajaran IPS, sehingga berpengaruh terhadap peningkatan prestasi belajar siswa, serta siswa menjadi aktif dan tertarik mengikuti proses pembelajaranyang dilaksanakan oleh guru di kelas.

  17. Improving Academic Writing Skills through Contextual Teaching Learning for Students of Bosowa University Makassar

    Directory of Open Access Journals (Sweden)

    Syahriah Madjid

    2017-10-01

    Full Text Available The purpose of this research is for helping students to improve their academic writing skills by changing the existing strategies which were considered ineffective at solving this kind of problem. This research was about how to improve student’s academic writing skills through contextual teaching and learning. The clientele of this research was the students of Civil Engineering Department of Bosowa University of Makassar. To gain the final result in this research there are three periods were needed. The result for the first period is only 26.67% or only 8 from 30 students could pass the standard qualifying. The students which passed the standard qualifying becomes 80% from 30 students in next period and in the final period the result was already succeeded, all of the students could pass the standard qualifying. Those experiments prove that this research showed that contextual teaching and learning effects can be used in helping students improve their academic writing skills. This research recommends the lecturer to conduct intensive training in the process of planning to write, the evaluation of sources of references, and the development of writing based on academic writing strategy.

  18. Effect of vicarious fear learning on children's heart rate responses and attentional bias for novel animals

    OpenAIRE

    Reynolds, G; Field, AP; Askew, C

    2014-01-01

    Research with children has shown that vicarious learning can result in changes to 2 of Lang's (1968) 3 anxiety response systems: subjective report and behavioral avoidance. The current study extended this research by exploring the effect of vicarious learning on physiological responses (Lang's final response system) and attentional bias. The study used Askew and Field's (2007) vicarious learning procedure and demonstrated fear-related increases in children's cognitive, behavioral, and physiol...

  19. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning

    DEFF Research Database (Denmark)

    Wilensky, Ann E; Schafe, Glenn E; Kristensen, Morten Pilgaard

    2006-01-01

    of the amygdala (CE), which serves as the principal output nucleus for the expression of conditioned fear responses. In the present study, we reexamined the roles of LA and CE. Specifically, we asked whether CE, like LA, might also be involved in fear learning and memory consolidation. Using functional...... inactivation methods, we first show that CE is involved not only in the expression but also the acquisition of fear conditioning. Next, we show that inhibition of protein synthesis in CE after training impairs fear memory consolidation. These findings indicate that CE is not only involved in fear expression...... but, like LA, is also involved in the learning and consolidation of pavlovian fear conditioning....

  20. Flexibility in the face of fear: Hippocampal-prefrontal regulation of fear and avoidance.

    Science.gov (United States)

    Moscarello, Justin M; Maren, Stephen

    2018-02-01

    Generating appropriate defensive behaviors in the face of threat is essential to survival. Although many of these behaviors are 'hard-wired', they are also flexible. For example, Pavlovian fear conditioning generates learned defensive responses, such as conditioned freezing, that can be suppressed through extinction. The expression of extinguished responses is highly context-dependent, allowing animals to engage behavioral responses appropriate to the contexts in which threats are encountered. Likewise, animals and humans will avoid noxious outcomes if given the opportunity. In instrumental avoidance learning, for example, animals overcome conditioned defensive responses, including freezing, in order to actively avoid aversive stimuli. Recent work has greatly advanced understanding of the neural basis of these phenomena and has revealed common circuits involved in the regulation of fear. Specifically, the hippocampus and medial prefrontal cortex play pivotal roles in gating fear reactions and instrumental actions, mediated by the amygdala and nucleus accumbens, respectively. Because an inability to adaptively regulate fear and defensive behavior is a central component of many anxiety disorders, the brain circuits that promote flexible responses to threat are of great clinical significance.

  1. Social Modulation of Associative Fear Learning by Pheromone Communication

    Science.gov (United States)

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  2. Global Repetition Influences Contextual Cueing

    Science.gov (United States)

    Zang, Xuelian; Zinchenko, Artyom; Jia, Lina; Li, Hong

    2018-01-01

    Our visual system has a striking ability to improve visual search based on the learning of repeated ambient regularities, an effect named contextual cueing. Whereas most of the previous studies investigated contextual cueing effect with the same number of repeated and non-repeated search displays per block, the current study focused on whether a global repetition frequency formed by different presentation ratios between the repeated and non-repeated configurations influence contextual cueing effect. Specifically, the number of repeated and non-repeated displays presented in each block was manipulated: 12:12, 20:4, 4:20, and 4:4 in Experiments 1–4, respectively. The results revealed a significant contextual cueing effect when the global repetition frequency is high (≥1:1 ratio) in Experiments 1, 2, and 4, given that processing of repeated displays was expedited relative to non-repeated displays. Nevertheless, the contextual cueing effect reduced to a non-significant level when the repetition frequency reduced to 4:20 in Experiment 3. These results suggested that the presentation frequency of repeated relative to the non-repeated displays could influence the strength of contextual cueing. In other words, global repetition statistics could be a crucial factor to mediate contextual cueing effect. PMID:29636716

  3. Does fear extinction in the laboratory predict outcomes of exposure therapy? A treatment analog study.

    Science.gov (United States)

    Forcadell, Eduard; Torrents-Rodas, David; Vervliet, Bram; Leiva, David; Tortella-Feliu, Miquel; Fullana, Miquel A

    2017-11-01

    Fear extinction models have a key role in our understanding of anxiety disorders and their treatment with exposure therapy. Here, we tested whether individual differences in fear extinction learning and fear extinction recall in the laboratory were associated with the outcomes of an exposure therapy analog (ETA). Fifty adults with fear of spiders participated in a two-day fear-learning paradigm assessing fear extinction learning and fear extinction recall, and then underwent a brief ETA. Correlational analyses indicated that enhanced extinction learning was associated with better ETA outcome. Our results partially support the idea that individual differences in fear extinction learning may be associated with exposure therapy outcome, but suggest that further research in this area is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Engaging Pre-Service Teachers to Teach Science Contextually with Scientific Approach Instructional Video

    Science.gov (United States)

    Susantini, E.; Kurniasari, I.; Fauziah, A. N. M.; Prastowo, T.; Kholiq, A.; Rosdiana, L.

    2018-01-01

    Contextual teaching and learning/CTL presents new concepts in real-life experiences and situations where students can find out the meaningful relationship between abstract ideas and practical applications. Implementing contextual teaching by using scientific approach will foster teachers to find the constructive ways of delivering and organizing science content. This research developed an instructional video that represented a modeling of using a scientific approach in CTL. The aim of this research are to engage pre-service teachers in learning how to teach CTL and to show how pre-service teachers’ responses about learning how to teach CTL using an instructional video. The subjects of this research were ten pre-service teachers in Department of Natural Sciences, Universitas Negeri Surabaya, Indonesia. All subjects observed the instructional video which demonstrated contextual teaching and learning combined with the scientific approach as they completed a worksheet to analyze the video content. The results showed that pre-service teachers could learn to teach contextually as well as applying the scientific approach in science classroom through a modeling in the instructional video. They also responded that the instructional video could help them to learn to teach each component contextual teaching as well as scientific approach.

  5. Viewpoint-independent contextual cueing effect

    Directory of Open Access Journals (Sweden)

    taiga etsuchiai

    2012-06-01

    Full Text Available We usually perceive things in our surroundings as unchanged despite viewpoint changes caused by self-motion. The visual system therefore must have a function to process objects independently of viewpoint. In this study, we examined whether viewpoint-independent spatial layout can be obtained implicitly. For this purpose, we used a contextual cueing effect, a learning effect of spatial layout in visual search displays known to be an implicit effect. We compared the transfer of the contextual cueing effect between cases with and without self-motion by using visual search displays for 3D objects, which changed according to the participant’s assumed location for viewing the stimuli. The contextual cueing effect was obtained with self-motion but disappeared when the display changed without self-motion. This indicates that there is an implicit learning effect in spatial coordinates and suggests that the spatial representation of object layouts or scenes can be obtained and updated implicitly. We also showed that binocular disparity play an important role in the layout representations.

  6. Transformations in Kenyan Science Teachers' Locus of Control: The Influence of Contextualized Science and Emancipated Student Learning

    Science.gov (United States)

    Anderson, D.; Nashon, S.; Namazzi, E.; Okemwa, P.; Ombogo, P.; Ooko, S.; Beru, F.

    2015-01-01

    This study investigated Kenyan science teachers' pedagogical transformations, which manifested as they enacted and experienced a reformed contextualized science curriculum in which students' learning experiences were critical catalysts of teacher change. Twelve high school teachers voluntarily participated in the study and were interviewed about…

  7. The Coming Challenge: Are Community Colleges Ready for the New Wave of Contextual Learners?

    Science.gov (United States)

    Hull, Dan; Souders, John C., Jr.

    1996-01-01

    Defines contextual learning, or presenting new information to students in familiar contexts. Argues that community colleges must be ready for an anticipated increase in contextual learners due to its use in tech prep programs. Describes elements of contextual learning, its application in the classroom, and ways that colleges can prepare for…

  8. The potential of epigenetics in stress-enhanced fear learning models of PTSD.

    Science.gov (United States)

    Blouin, Ashley M; Sillivan, Stephanie E; Joseph, Nadine F; Miller, Courtney A

    2016-10-01

    Prolonged distress and dysregulated memory processes are the core features of post-traumatic stress disorder (PTSD) and represent the debilitating, persistent nature of the illness. However, the neurobiological mechanisms underlying the expression of these symptoms are challenging to study in human patients. Stress-enhanced fear learning (SEFL) paradigms, which encompass both stress and memory components in rodents, are emerging as valuable preclinical models of PTSD. Rodent models designed to study the long-term mechanisms of either stress or fear memory alone have identified a critical role for numerous epigenetic modifications to DNA and histone proteins. However, the epigenetic modifications underlying SEFL remain largely unknown. This review will provide a brief overview of the epigenetic modifications implicated in stress and fear memory independently, followed by a description of existing SEFL models and the few epigenetic mechanisms found to date to underlie SEFL. The results of the animal studies discussed here highlight neuroepigenetics as an essential area for future research in the context of PTSD through SEFL studies, because of its potential to identify novel candidates for neurotherapeutics targeting stress-induced pathogenic memories. © 2016 Blouin et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Enrichment Rescues Contextual Discrimination Deficit Associated With Immediate Shock

    Science.gov (United States)

    Clemenson, Gregory D.; Lee, Star W.; Deng, Wei; Barrera, Vanessa R.; Iwamoto, Kei S.; Fanselow, Michael S.; Gage, Fred H.

    2015-01-01

    Adult animals continue to modify their behavior throughout life, a process that is highly influenced by past experiences. To shape behavior, specific mechanisms of neural plasticity to learn, remember, and recall information are required. One of the most robust examples of adult plasticity in the brain occurs in the dentate gyrus (DG) of the hippocampus, through the process of adult neurogenesis. Adult neurogenesis is strongly upregulated by external factors such as voluntary wheel running (RUN) and environmental enrichment (EE); however, the functional differences between these two factors remain unclear. Although both manipulations result in increased neurogenesis, RUN dramatically increases the proliferation of newborn cells and EE promotes their survival. We hypothesize that the method by which these newborn neurons are induced influences their functional role. Furthermore, we examine how EE-induced neurons may be primed to encode and recognize features of novel environments due to their previous enrichment experience. Here, we gave mice a challenging contextual fear-conditioning (FC) procedure to tease out the behavioral differences between RUN-induced neurogenesis and EE-induced neurogenesis. Despite the robust increases in neurogenesis seen in the RUN mice, we found that only EE mice were able to discriminate between similar contexts in this task, indicating that EE mice might use a different cognitive strategy when processing contextual information. Furthermore, we showed that this improvement was dependent on EE-induced neurogenesis, suggesting a fundamental functional difference between RUN-induced neurogenesis and EE-induced neurogenesis. PMID:25330953

  10. Hierarchical acquisition of visual specificity in spatial contextual cueing.

    Science.gov (United States)

    Lie, Kin-Pou

    2015-01-01

    Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.

  11. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  12. Spontaneous eye movements and trait empathy predict vicarious learning of fear.

    Science.gov (United States)

    Kleberg, Johan L; Selbing, Ida; Lundqvist, Daniel; Hofvander, Björn; Olsson, Andreas

    2015-12-01

    Learning to predict dangerous outcomes is important to survival. In humans, this kind of learning is often transmitted through the observation of others' emotional responses. We analyzed eye movements during an observational/vicarious fear learning procedure, in which healthy participants (N=33) watched another individual ('learning model') receiving aversive treatment (shocks) paired with a predictive conditioned stimulus (CS+), but not a control stimulus (CS-). Participants' gaze pattern towards the model differentiated as a function of whether the CS was predictive or not of a shock to the model. Consistent with our hypothesis that the face of a conspecific in distress can act as an unconditioned stimulus (US), we found that the total fixation time at a learning model's face increased when the CS+ was shown. Furthermore, we found that the total fixation time at the CS+ during learning predicted participants' conditioned responses (CRs) at a later test in the absence of the model. We also demonstrated that trait empathy was associated with stronger CRs, and that autistic traits were positively related to autonomic reactions to watching the model receiving the aversive treatment. Our results have implications for both healthy and dysfunctional socio-emotional learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Contextual control of attentional allocation in human discrimination learning.

    Science.gov (United States)

    Uengoer, Metin; Lachnit, Harald; Lotz, Anja; Koenig, Stephan; Pearce, John M

    2013-01-01

    In 3 human predictive learning experiments, we investigated whether the allocation of attention can come under the control of contextual stimuli. In each experiment, participants initially received a conditional discrimination for which one set of cues was trained as relevant in Context 1 and irrelevant in Context 2, and another set was relevant in Context 2 and irrelevant in Context 1. For Experiments 1 and 2, we observed that a second discrimination based on cues that had previously been trained as relevant in Context 1 during the conditional discrimination was acquired more rapidly in Context 1 than in Context 2. Experiment 3 revealed a similar outcome when new stimuli from the original dimensions were used in the test stage. Our results support the view that the associability of a stimulus can be controlled by the stimuli that accompany it.

  14. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference.

    Science.gov (United States)

    Boersma, Gretha J; Treesukosol, Yada; Cordner, Zachary A; Kastelein, Anneke; Choi, Pique; Moran, Timothy H; Tamashiro, Kellie L

    2016-02-01

    Relapse rates are high amongst cases of anorexia nervosa (AN) suggesting that some alterations induced by AN may remain after weight restoration. To study the consequences of AN without confounds of environmental variability, a rodent model of activity-based anorexia (ABA) can be employed. We hypothesized that exposure to ABA during adolescence may have long-term consequences in taste function, cognition, and anxiety-like behavior after weight restoration. To test this hypothesis, we exposed adolescent female rats to ABA (1.5 h food access, combined with voluntary running wheel access) and compared their behavior to that of control rats after weight restoration was achieved. The rats were tested for learning/memory, anxiety, food preference, and taste in a set of behavioral tests performed during the light period. Our data show that ABA exposure leads to reduced performance during the novel object recognition task, a test for contextual learning, without altering performance in the novel place recognition task or the Barnes maze, both tasks that test spatial learning. Furthermore, we do not observe alterations in unconditioned lick responses to sucrose nor quinine (described by humans as "sweet" and "bitter," respectively). Nor Do we find alterations in anxiety-like behavior during an elevated plus maze or an open field test. Finally, preference for a diet high in fat is not altered. Overall, our data suggest that ABA exposure during adolescence impairs contextual learning in adulthood without altering spatial leaning, taste, anxiety, or fat preference. © 2015 Wiley Periodicals, Inc.

  15. Postreactivation glucocorticoids impair recall of established fear memory.

    Science.gov (United States)

    Cai, Wen-Hui; Blundell, Jacqueline; Han, Jie; Greene, Robert W; Powell, Craig M

    2006-09-13

    Pavlovian fear conditioning provides one of the best rodent models of acquired anxiety disorders, including posttraumatic stress disorder. Injection of a variety of drugs after training in fear-conditioning paradigms can impair consolidation of fear memories. Indeed, early clinical trials suggest that immediate administration of such drugs after a traumatic event may decrease the risk of developing posttraumatic stress disorder in humans (Pitman et al., 2002; Vaiva et al., 2003). The use of such a treatment is limited by the difficulty of treating every patient at risk and by the difficulty in predicting which patients will experience chronic adverse consequences. Recent clinical trials suggest that administration of glucocorticoids may have a beneficial effect on established posttraumatic stress disorder (Aerni et al., 2004) and specific phobia (Soravia et al., 2006). Conversely, glucocorticoid administration after training is known to enhance memory consolidation (McGaugh and Roozendaal, 2002; Roozendaal, 2002). From a clinical perspective, enhancement of a fear memory or a reactivated fear memory would not be desirable. We report here that when glucocorticoids are administered immediately after reactivation of a contextual fear memory, subsequent recall is significantly diminished. Additional experiments support the interpretation that glucocorticoids not only decrease fear memory retrieval but, in addition, augment consolidation of fear memory extinction rather than decreasing reconsolidation. These findings provide a rodent model for a potential treatment of established acquired anxiety disorders in humans, as suggested by others (Aerni et al., 2004; Schelling et al., 2004), based on a mechanism of enhanced extinction.

  16. The fragrant power of collective fear.

    Directory of Open Access Journals (Sweden)

    Roa Harb

    Full Text Available Fear is a well-characterized biological response to threatening or stressful situations in humans and other social animals. Importantly, fearful stimuli in the natural environment are likely to be encountered concurrently by a group of animals. The modulation of fear acquisition and fear memory by a group as opposed to an individual experience, however, remains largely unknown. Here, we demonstrate a robust reduction in fear memory to an aversive event undertaken in a group despite similar fear learning between individually- and group-conditioned rats. This reduction persists outside the group confines, appears to be a direct outcome of group cognizance and is counteracted by loss of olfactory signaling among the group members. These results show that a group experience of fear can be protective and suggest that distinct neural pathways from those classically studied in individuals modulate collective fear memories.

  17. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    OpenAIRE

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to ...

  18. The neural dynamics of fear memory

    NARCIS (Netherlands)

    Visser, R.M.

    2016-01-01

    While much of what we learn will be forgotten over time, fear memory appears to be particularly resilient to forgetting. Our understanding of how fearful events are transformed into durable memory, and how this memory subsequently influences the processing of (novel) stimuli, is limited. Studying

  19. Testing knowledge of human gross anatomy in medical school: an applied contextual-learning theory method.

    Science.gov (United States)

    Clough, R W; Lehr, R P

    1996-01-01

    The traditional gross anatomy laboratory experience, with modifications in evaluations that we outline later, meets the criteria of contextual-learning theory, expands the repertoire of core objectives we identify for our students, and may increase the likelihood of cognitive permanence of anatomical data. Our subjects included approximately 54 first-year medical students from each of three sequential class years (1996, 1997, 1998). As an alternative to more typical written and practical exams, examinations in a major portion of our gross anatomy program consist of two approximately 30 minute oral expositions by each student to his or her peers and a faculty member. Students demonstrate specific detail on cadaver, x-ray, cross sections, or a model. Clinical applications, spatial relationships, nomenclature, and functions are strongly emphasized. The results of this teaching approach to the utilization of anatomical knowledge in clinical situations requires further assessment: however, new attributes have been afforded our students with implementation of the present program: First, students learn anatomical detail equally well as the students of the more traditional system (based on board exam results). Second, students who completed the program indicate that this approach provides a useful simulation of what is expected later in their training. Third, students gradually gain confidence in verbal presentation, they demonstrate cognitive synthesis of separate conceptual issues, they retain information, and they are quite visibly more enthusiastic about anatomy and its importance in medicine. Our program demonstrates that the learning of applicable human anatomy is facilitated in a contextual-learning environment. Moreover, by learning anatomy in this way, other equally beneficial attributes are afforded the medical student, including, but not limited to, increases in communication skills, confidence in verbal presentation, synthesis of anatomical concepts

  20. A Fear Management Approach to Counter-Terrorism

    Directory of Open Access Journals (Sweden)

    Tinka Veldhuis

    2012-02-01

    Full Text Available Spreading fear is the essence of terrorism. Terrorists exploit fear by terrorising the target audience into concessions. Understanding how feelings of fear influence the way people feel, think and act is therefore an important starting point to explore how individuals and societies can learn how to cope with fear of terrorism. In this Policy Brief, Research Fellows Prof. Dr. Edwin Bakker and Dr. Tinka Veldhuis explore the dynamics of fear in response to terrorism, and emphasise the importance of integrating initiatives to manage fear of terrorism and reduce its negative consequences into overarching counter-terrorism strategies. It argues that societies can benefit greatly from promoting resilience and a fear management approach to counter-terrorism.

  1. BDNFval66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall.

    Science.gov (United States)

    Lonsdorf, Tina B; Golkar, Armita; Lindström, Kara M; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin

    2015-05-01

    Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition 'and' extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS- comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Differential effects of controllable stress exposure on subsequent extinction learning in adult rats

    Directory of Open Access Journals (Sweden)

    Osnat eHadad-Ophir

    2016-01-01

    Full Text Available Deficits in fear extinction are thought to be related to various anxiety disorders. While failure to extinguish conditioned fear may result in pathological anxiety levels, the ability to quickly and efficiently attenuate learned fear through extinction processes can be extremely beneficial for the individual. One of the factors that may affect the efficiency of the extinction process is prior experience of stressful situations. In the current study, we examined whether exposure to controllable stress, which is suggested to induce stress resilience, can affect subsequent fear extinction. Here, following prolonged two-way shuttle (TWS avoidance training and a validation of acquired stress controllability, adult rats underwent either cued or contextual fear-conditioning (FC, followed by an extinction session. We further evaluated long lasting alterations of GABAergic targets in the medial pre-frontal cortex (mPFC, as these were implicated in FC and extinction and stress controllability. In cued, but not in contextual fear extinction, within-session extinction was enhanced following controllable stress compared to a control group. Interestingly, impaired extinction recall was detected in both extinction types following the stress procedure. Additionally, stress controllability-dependent alterations in GABAergic markers expression in infralimbic (IL, but not prelimbic (PL cortex, were detected. These alterations are proposed to be related to the within-session effect, but not the recall impairment. The results emphasize the contribution of prior experience on coping with subsequent stressful experiences. Moreover, the results emphasize that exposure to controllable stress does not generally facilitate future stress coping as previously claimed, but its effects are dependent on specific features of the events taking place.

  3. Contextualizing learning to improve care using collaborative communities of practices.

    Science.gov (United States)

    Jeffs, Lianne; McShane, Julie; Flintoft, Virginia; White, Peggy; Indar, Alyssa; Maione, Maria; Lopez, A J; Bookey-Bassett, Sue; Scavuzzo, Lauren

    2016-09-02

    apply new learnings in local contexts. Study findings offer insights into collaborative, inter-organizational CoP learning approaches to build QI capabilities amongst clinicians, staff, and managers. In particular, our study delineates the need to contextualize QI learning by using deliberate learning activities to balance systematic and structured approaches alongside pragmatic and accommodating approaches with expert mentors.

  4. Individual and Contextual Factors Influencing Engagement in Learning Activities after Errors at Work: A Replication Study in a German Retail Bank

    Science.gov (United States)

    Leicher, Veronika; Mulder, Regina H.

    2016-01-01

    Purpose: The purpose of this replication study is to identify relevant individual and contextual factors influencing learning from errors at work and to determine if the predictors for learning activities are the same for the domains of nursing and retail banking. Design/methodology/approach: A cross-sectional replication study was carried out in…

  5. The roles of the actin cytoskeleton in fear memory formation

    Directory of Open Access Journals (Sweden)

    Raphael eLamprecht

    2011-07-01

    Full Text Available The formation and storage of fear memory is needed to adapt behavior and avoid danger during subsequent fearful events. However, fear memory may also play a significant role in stress and anxiety disorders. When fear becomes disproportionate to that necessary to cope with a given stimulus, or begins to occur in inappropriate situations, a fear or anxiety disorder exists. Thus, the study of cellular and molecular mechanisms underpinning fear memory may shed light on the formation of memory and on anxiety and stress related disorders. Evidence indicates that fear learning leads to changes in neuronal synaptic transmission and morphology in brain areas underlying fear memory formation including the amygdala and hippocampus. The actin cytoskeleton has been shown to participate in these key neuronal processes. Recent findings show that the actin cytoskeleton is needed for fear memory formation and extinction. Moreover, the actin cytoskeleton is involved in synaptic plasticity and in neuronal morphogenesis in brain areas that mediate fear memory. The actin cytoskeleton may therefore mediate between synaptic transmission during fear learning and long-term cellular alterations mandatory for fear memory formation.

  6. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear.

    Science.gov (United States)

    Marek, Roger; Jin, Jingji; Goode, Travis D; Giustino, Thomas F; Wang, Qian; Acca, Gillian M; Holehonnur, Roopashri; Ploski, Jonathan E; Fitzgerald, Paul J; Lynagh, Timothy; Lynch, Joseph W; Maren, Stephen; Sah, Pankaj

    2018-03-01

    The medial prefrontal cortex (mPFC) has been implicated in the extinction of emotional memories, including conditioned fear. We found that ventral hippocampal (vHPC) projections to the infralimbic (IL) cortex recruited parvalbumin-expressing interneurons to counter the expression of extinguished fear and promote fear relapse. Whole-cell recordings ex vivo revealed that optogenetic activation of vHPC input to amygdala-projecting pyramidal neurons in the IL was dominated by feed-forward inhibition. Selectively silencing parvalbumin-expressing, but not somatostatin-expressing, interneurons in the IL eliminated vHPC-mediated inhibition. In behaving rats, pharmacogenetic activation of vHPC→IL projections impaired extinction recall, whereas silencing IL projectors diminished fear renewal. Intra-IL infusion of GABA receptor agonists or antagonists, respectively, reproduced these effects. Together, our findings describe a previously unknown circuit mechanism for the contextual control of fear, and indicate that vHPC-mediated inhibition of IL is an essential neural substrate for fear relapse.

  7. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice

    Directory of Open Access Journals (Sweden)

    Lluís eFortes-Marco

    2015-10-01

    Full Text Available Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP, a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT, a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA, unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively than 2-HP (35 μmol. All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g. hormonal levels or neural measures (e.g. immediate early gene expression to

  8. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory.

    Science.gov (United States)

    Liao, Zhaohui; Tao, Yezheng; Guo, Xiaomu; Cheng, Deqin; Wang, Feifei; Liu, Xing; Ma, Lan

    2017-01-01

    Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.

  9. Using Retrieval Cues to Attenuate Return of Fear in Individuals With Public Speaking Anxiety.

    Science.gov (United States)

    Shin, Ki Eun; Newman, Michelle G

    2018-03-01

    Even after successful exposure, relapse is not uncommon. Based on the retrieval model of fear extinction (e.g., Vervliet, Craske, & Hermans, 2013), return of fear can occur after exposure due to an elapse of time (spontaneous recovery) or change in context (contextual renewal). The use of external salient stimuli presented throughout extinction (i.e., retrieval cues [RCs]) has been suggested as a potential solution to this problem (Bouton, 2002). The current study examined whether RCs attenuated return of fear in individuals with public speaking anxiety. Sixty-five participants completed a brief exposure while presented with two RC stimuli aimed at a variety of senses (visual, tactile, olfactory, and auditory). Later, half the participants were tested for return of fear in a context different from the exposure context, and the other half in the same context. Half of each context group were presented with the same cues as in exposure, while the other half were not. Return of fear due to an elapse of time, change in context, and effects of RCs were evaluated on subjective, behavioral, and physiological measures of anxiety. Although contextual renewal was not observed, results supported effects of RCs in reducing spontaneous recovery on behavioral and physiological measures of anxiety. There was also evidence that participants who were reminded of feeling anxious during exposure by the RCs benefited more from using them at follow-up, whereas those who perceived the cues as comforting (safety signals) benefited less. Clinical implications of the findings are discussed. Copyright © 2017. Published by Elsevier Ltd.

  10. A Teaching-Learning Sequence for the Special Relativity Theory at High School Level Historically and Epistemologically Contextualized

    Science.gov (United States)

    Arriassecq, Irene; Greca, Ileana Maria

    2012-01-01

    This paper discusses some topics that stem from recent contributions made by the History, the Philosophy, and the Didactics of Science. We consider these topics relevant to the introduction of the Special Relativity Theory (SRT) in high school within a contextualized approach. We offer an outline of a teaching-learning sequence dealing with the…

  11. Neural circuits involved in the renewal of extinguished fear.

    Science.gov (United States)

    Chen, Weihai; Wang, Yan; Wang, Xiaqing; Li, Hong

    2017-07-01

    The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  12. A reinforcement learning model of joy, distress, hope and fear

    Science.gov (United States)

    Broekens, Joost; Jacobs, Elmer; Jonker, Catholijn M.

    2015-07-01

    In this paper we computationally study the relation between adaptive behaviour and emotion. Using the reinforcement learning framework, we propose that learned state utility, ?, models fear (negative) and hope (positive) based on the fact that both signals are about anticipation of loss or gain. Further, we propose that joy/distress is a signal similar to the error signal. We present agent-based simulation experiments that show that this model replicates psychological and behavioural dynamics of emotion. This work distinguishes itself by assessing the dynamics of emotion in an adaptive agent framework - coupling it to the literature on habituation, development, extinction and hope theory. Our results support the idea that the function of emotion is to provide a complex feedback signal for an organism to adapt its behaviour. Our work is relevant for understanding the relation between emotion and adaptation in animals, as well as for human-robot interaction, in particular how emotional signals can be used to communicate between adaptive agents and humans.

  13. Extinction of fear is facilitated by social presence: Synergism with prefrontal oxytocin.

    Science.gov (United States)

    Brill-Maoz, Naama; Maroun, Mouna

    2016-04-01

    This study addressed the question of whether extinction in pairs would have a beneficial effect on extinction of fear conditioning. To that end, we established an experimental setting for extinction in which we trained animals to extinguish contextual fear memory in pairs. Taking advantage of the role of oxytocin (OT) in the medial prefrontal cortex (mPFC) in the mediation of memory extinction and social interaction, we also sought to study its role in social interaction-induced effects on extinction. Our results clearly show that the social presence of another animal in the extinction context facilitates extinction, and that this facilitation is mediated through mPFC-OT. Our results suggest that social interaction may be a positive regulator of fear inhibition, implying that social interaction may be an easy, accessible therapeutic tool for the treatment of fear-associated disorders. Copyright © 2016. Published by Elsevier Ltd.

  14. Pharmacological Enhancement of mGluR5 Facilitates Contextual Fear Memory Extinction

    Science.gov (United States)

    Sethna, Ferzin; Wang, Hongbing

    2014-01-01

    Behavioral exposure therapy, which involves extinction of the previously acquired fear, has been used to treat anxiety-related symptoms such as post-traumatic stress disorder. It has been hypothesized that proextinction pharmacotherapeutics may enhance the efficacy of exposure therapy. Systemic administration of the metabotropic glutamate receptor…

  15. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning

    Directory of Open Access Journals (Sweden)

    Julie eBoulanger Bertolus

    2014-05-01

    Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.

  16. The effect of chronic corticosterone on fear learning and memory depends on dose and the testing protocol.

    Science.gov (United States)

    Marks, W N; Fenton, E Y; Guskjolen, A J; Kalynchuk, L E

    2015-03-19

    Chronic exposure to the stress hormone corticosterone (CORT) is known to alter plasticity within hippocampal and amygdalar circuits that mediate fear learning and memory. The purpose of this experiment was to clarify the effects of chronic CORT on Pavlovian fear conditioning, which is dependent on intact hippocampal and amygdalar activity. In particular, we assessed whether the effect of chronic CORT on fear learning and memory is influenced by two factors-the dose of CORT and the order in which rats are tested for freezing to context versus tone cues. Male Long-Evans rats received low-dose CORT (5mg/kg), high-dose CORT (40mg/kg), or vehicle injections once daily for 21days. On day 22, the rats were trained in a fear-conditioning paradigm. On days 23 and 24, the rats were tested for the retrieval of fear memories to context and tone cues in a counterbalanced way-half the rats received context testing on day 23 and then tone testing on day 24 and half the rats received tone testing on day 23 followed by context testing on day 24. Our results revealed dose-dependent effects of CORT on memory retrieval: Rats injected with high-dose CORT froze significantly more than control rats to both context and tone cues regardless of what testing day these cues were presented. However, rats injected with low-dose CORT froze significantly more than control rats to tone cues only. We also found an order effect in that the effects of CORT on freezing were greater on the second day of testing, regardless of whether that testing was to context or tones cues. This order effect may be due to a lack of extinction in the CORT rats. Overall, these results suggest a relationship between stress intensity and testing conditions that should be taken into account when assessing the effect of stress on fear memories. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Entering into dialogue about the mathematical value of contextual mathematising tasks

    Science.gov (United States)

    Yoon, Caroline; Chin, Sze Looi; Moala, John Griffith; Choy, Ban Heng

    2018-03-01

    Our project seeks to draw attention to the rich mathematical thinking that is generated when students work on contextual mathematising tasks. We use a design-based research approach to create ways of reporting that raise the visibility of this rich mathematical thinking while retaining and respecting its complexity. These reports will be aimed for three classroom stakeholders: (1) students, who wish to reflect on and enhance their mathematical learning; (2) teachers, who wish to integrate contextual mathematising tasks into their teaching practice and (3) researchers, who seek rich tasks for generating observable instances of mathematical thinking and learning. We anticipate that these reports and the underlying theoretical framework for creating them will contribute to greater awareness of and appreciation for the mathematical value of contextual mathematising tasks in learning, teaching and research.

  18. Fearful, but not angry, expressions diffuse attention to peripheral targets in an attentional blink paradigm.

    Science.gov (United States)

    Taylor, James M; Whalen, Paul J

    2014-06-01

    We previously demonstrated that fearful facial expressions implicitly facilitate memory for contextual events whereas angry facial expressions do not. The current study sought to more directly address the implicit effect of fearful expressions on attention for contextual events within a classic attentional paradigm (i.e., the attentional blink) in which memory is tested on a trial-by-trial basis, thereby providing subjects with a clear, explicit attentional strategy. Neutral faces of a single gender were presented via rapid serial visual presentation (RSVP) while bordered by four gray pound signs. Participants were told to watch for a gender change within the sequence (T1). It is critical to note that the T1 face displayed a neutral, fearful, or angry expression. Subjects were then told to detect a color change (i.e., gray to green; T2) at one of the four peripheral pound sign locations appearing after T1. This T2 color change could appear at one of six temporal positions. Complementing previous attentional blink paradigms, participants were told to respond via button press immediately when a T2 target was detected. We found that, compared with the neutral T1 faces, fearful faces significantly increased target detection ability at four of the six temporal locations (all ps enhance environmental monitoring above and beyond explicit attentional effects related to task instructions.

  19. Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during response inhibition.

    Science.gov (United States)

    van Rooij, Sanne J H; Rademaker, Arthur R; Kennis, Mitzy; Vink, Matthijs; Kahn, René S; Geuze, Elbert

    2014-09-01

    Posttraumatic stress disorder (PTSD) is often associated with impaired fear inhibition and decreased safety cue processing; however, studies capturing the cognitive aspect of inhibition and contextual cue processing are limited. In this fMRI study, the role of contextual cues in response inhibition was investigated. Male medication-naive war veterans with PTSD, male control veterans (combat controls) and healthy nonmilitary men (healthy controls) underwent fMRI while performing the stop-signal anticipation task (SSAT). The SSAT evokes 2 forms of response inhibition: reactive inhibition (outright stopping) and proactive inhibition (anticipation of stopping based on contextual cues). We enrolled 28 veterans with PTSD, 26 combat controls and 25 healthy controls in our study. Reduced reactive inhibition was observed in all veterans, both with and without PTSD, but not in nonmilitary controls, whereas decreased inhibition of the left pre/postcentral gyrus appeared to be specifically associated with PTSD. Impaired behavioural proactive inhibition was also specific to PTSD. Furthermore, the PTSD group showed a reduced right inferior frontal gyrus response during proactive inhibition compared with the combat control group. Most patients with PTSD had comorbid psychiatric disorders, but such comorbidity is common in patients with PTSD. Also, the education level (estimate of intelligence) of participants, but not of their parents, differed among the groups. Our findings of reduced proactive inhibition imply that patients with PTSD show reduced contextual cue processing. These results complement previous findings on fear inhibition and demonstrate that contextual cue processing in patients with PTSD is also reduced during cognitive processes, indicating a more general deficit.

  20. Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder.

    Science.gov (United States)

    Matsumoto, Yasutaka; Morinobu, Shigeru; Yamamoto, Shigeto; Matsumoto, Tomoya; Takei, Shiro; Fujita, Yosuke; Yamawaki, Shigeto

    2013-09-01

    Given that impairment of fear extinction plays a pivotal role in the pathophysiology of posttraumatic stress disorder (PTSD), drugs that facilitate fear extinction may be useful as novel treatments for PTSD. Histone deacetylase (HDAC) inhibitors have recently been shown to enhance fear extinction in animal studies. Using a single prolonged stress (SPS) paradigm, an animal model of PTSD, we examined whether the HDAC inhibitor vorinostat can facilitate fear extinction in rats, and elucidated the mechanism by which vorinostat enhanced fear extinction, focusing on the N-methyl-D-aspartate (NMDA) receptor signals in the hippocampus. Seven days after SPS, rats received contextual fear conditioning, followed by 2-day extinction training. Vorinostat was intraperitoneally injected immediately after second extinction training session. Contextual fear response was assessed 24 h after vorinostat injection. Hippocampal tissues were dissected 2 h after vorinostat injection. The levels of mRNA and protein tested were measured by RT-PCR or western blotting, respectively. Systemic administration of vorinostat with extinction training significantly enhanced fear extinction in SPS rats as compared with the controls. Furthermore, vorinostat enhanced the hippocampal levels of NR2B and calcium/calmodulin kinase II (CaMKII) α and β proteins, accompanied by increases in the levels of acetylated histone H3 and H4. These findings suggest that vorinostat ameliorated the impaired fear extinction in SPS rats, and this effect was associated with an increase in histone acetylation and thereby enhancement of NR2B and CaMKII in the hippocampus. Our results may provide new insight into the molecular and therapeutic mechanisms of PTSD.

  1. Heightened fear in response to a safety cue and extinguished fear cue in a rat model of maternal immune activation

    Directory of Open Access Journals (Sweden)

    Susan eSangha

    2014-05-01

    Full Text Available Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia and autism in the offspring. Hence, changes in an array of behaviors, including behavioral flexibility, consistent with altered functioning of cortico-limbic circuits have been reported in rodent models of maternal immune activation. Surprisingly, previous studies have not examined the effect of maternal immune activation on the extinction of fear conditioning which depends on cortico-limbic circuits. Thus, we tested the effects of treating pregnant Long Evans rats with the viral mimetic polyI:C (gestational day 15; 4 mg/kg; i.v. on fear conditioning and extinction in the male offspring using two different tasks. In the first experiment, we observed no effect of polyI:C treatment on the acquisition or extinction of a classically conditioned fear memory in a non-discriminative auditory cue paradigm. However, polyI:C-treated offspring did increase contextual freezing during the recall of fear extinction in this non-discriminative paradigm. The second experiment utilized a recently developed task to explicitly test the ability of rats to discriminate among cues signifying fear, reward, and safety; a task that requires behavioral flexibility. To our surprise, polyI:C-treated rats acquired the task in a manner similar to saline-treated rats. However, upon subsequent extinction training, they showed significantly faster extinction of the freezing response to the fear cue. In contrast, during the extinction recall test, polyI:C-treated offspring showed enhanced freezing behavior before and after presentation of the fear cue, suggesting an impairment in their ability to regulate fear behavior. These behavioral results are integrated into the literature suggesting impairments in cortico-limbic brain function in the offspring of rats treated with polyI:C during pregnancy.

  2. Declarative virtual water maze learning and emotional fear conditioning in primary insomnia.

    Science.gov (United States)

    Kuhn, Marion; Hertenstein, Elisabeth; Feige, Bernd; Landmann, Nina; Spiegelhalder, Kai; Baglioni, Chiara; Hemmerling, Johanna; Durand, Diana; Frase, Lukas; Klöppel, Stefan; Riemann, Dieter; Nissen, Christoph

    2018-05-02

    Healthy sleep restores the brain's ability to adapt to novel input through memory formation based on activity-dependent refinements of the strength of neural transmission across synapses (synaptic plasticity). In line with this framework, patients with primary insomnia often report subjective memory impairment. However, investigations of memory performance did not produce conclusive results. The aim of this study was to further investigate memory performance in patients with primary insomnia in comparison to healthy controls, using two well-characterized learning tasks, a declarative virtual water maze task and emotional fear conditioning. Twenty patients with primary insomnia according to DSM-IV criteria (17 females, three males, 43.5 ± 13.0 years) and 20 good sleeper controls (17 females, three males, 41.7 ± 12.8 years) were investigated in a parallel-group study. All participants completed a hippocampus-dependent virtual Morris water maze task and amygdala-dependent classical fear conditioning. Patients with insomnia showed significantly delayed memory acquisition in the virtual water maze task, but no significant difference in fear acquisition compared with controls. These findings are consistent with the notion that memory processes that emerge from synaptic refinements in a hippocampal-neocortical network are particularly sensitive to chronic disruptions of sleep, while those in a basic emotional amygdala-dependent network may be more resilient. © 2018 European Sleep Research Society.

  3. Contextual cueing based on the semantic-category membership of the environment

    OpenAIRE

    GOUJON, A

    2005-01-01

    During the analysis of a visual scene, top-down processing is constantly directing the subject's attention to the zones of interest in the scene. The contextual cueing paradigm developed by Chun and Jiang (1998) shows how contextual regularities can facilitate the search for a particular element via implicit learning mechanisms. In the proposed study, contextual cueing task with lexical displays was used. The semantic-category membership of the contextual words predicted the location of the t...

  4. The roles of endogenous CaMKII inhibitors in learning and memory.

    Directory of Open Access Journals (Sweden)

    Fabio Antonio Borges Vigil

    2014-03-01

    Full Text Available Calcium/ Calmodulin-dependent kinase 2 (CaMK2 is a serine/threonine kinase with a wide range of substrates. In the dendrites this kinase is the major post-synaptic density protein. A number of studies have established that CaMK2 is a fundamentally important for various learning and memory processes. Given this importance the activity of CaMK2 must be tightly regulated. Recently two endogenous inhibitor proteins of CaMK2, CaMK2N1 and CaMK2N2, have been identified. During contextual fear memory formation CaMK2N1 and CaMK2N2 increase in brain regions that are related to the task. However, the functions of CaMK2Ns are still unknown. Our aim was to study the physiological roles of these inhibitors in memory and learning process. For that purpose we used adeno-associated virus vector to either knockdown or overexpress one of the inhibitors. Animals were trained in contextual fear conditioning and their memory of the context was tested in two different time points. Treatment knocking down one of the inhibitors had no effect on memory formation but it inhibits memory maintenance. Overexpression of the other inhibitor prior to training blocked memory formation. On the other hand, overexpression of the same inhibitor after training had no effect on learning or memory of the task. We are currently studying the molecular effects of both treatments. We expect to be able to present data obtain with these experiments at the DENDRITES 2014.

  5. COCAINE AND PAVLOVIAN FEAR CONDITIONING: DOSE-EFFECT ANALYSIS

    OpenAIRE

    Wood, Suzanne C.; Fay, Jonathon; Sage, Jennifer R.; Anagnostaras, Stephan G.

    2006-01-01

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1 – 15 mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15 mg/kg) displayed significantly less cont...

  6. Learning from the coffee shop: increasing junior high school students’ self-confidence through contextual learning based on local culture of Aceh

    Science.gov (United States)

    Sarmini; Supriono, A.; Ridwan

    2018-01-01

    Teachers should be able to provide meaningful learning, create a fun learning, and encourage the self-confidence of students. The reality is learning in Junior High School still teacher-centered learning that results the level of self-confidence of students is low. Pre-action showed 30% of students do not have self-confidence. The research aims to improve the self-confidence of students through contextual learning in the course from the social studies of Aceh based on the local culture. This type of research is classroom action research that conducted in two cycles. The research focus is the students’ responses. The coffee shop is a source of learning social studies. Students Involved in the coffee shop interact with villagers who have made the coffee shop as social media. Students participate meetings to address issues of rural villagers. The coffee shop as a public share with characteristics of particularly subject as a gathering place for many people regardless of social strata, convey information, chat, and informal atmosphere that stimulates self-confidence.

  7. A critical role of glutamate transporter type 3 in the learning and memory of mice.

    Science.gov (United States)

    Wang, Zhi; Park, Sang-Hon; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2014-10-01

    Hippocampus-dependent learning and memory are associated with trafficking of excitatory amino acid transporter type 3 (EAAT3) to the plasma membrane. To assess whether this trafficking is an intrinsic component of the biochemical responses underlying learning and memory, 7- to 9-week old male EAAT3 knockout mice and CD-1 wild-type mice were subjected to fear conditioning. Their hippocampal CA1 regions, amygdalae and entorhinal cortices were harvested before, or 30 min or 3 h after the fear conditioning stimulation. We found that EAAT3 knockout mice had worse contextual and tone-related learning and memory than did the wild-type mice. The expression of EAAT3, glutamate receptor (GluR)1 and GluR2 in the plasma membrane and of phospho-GluR1 (at Ser 831) and phospho-CaMKII in the hippocampus of the wild-type mice was increased at 30 min after the fear conditioning stimulation. Similar biochemical changes occurred in the amygdala. Fear conditioning also increased the expression of c-Fos and activity-regulated cytoskeleton-associated protein (Arc) in the CA1 regions and of Arc in the entorhinal cortices of the wild-type mice. These biochemical responses were attenuated in the EAAT3 knockout mice. These results suggest that EAAT3 plays a critical role in learning and memory. Our results also provide initial evidence that EAAT3 may have receptor-like functions to participate in the biochemical reactions underlying learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning.

    Science.gov (United States)

    Wasser, Catherine R; Masiulis, Irene; Durakoglugil, Murat S; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E; Herz, Joachim

    2014-11-25

    Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. Copyright © 2014, American Association for the Advancement of Science.

  9. Contextual influences on reverse knowledge transfer

    DEFF Research Database (Denmark)

    Søberg, Peder Veng

    2010-01-01

    Further development of theories about how contextual factors influence the beneficial reverse knowledge transfer from subsidiary to head quarters in disparate national country contexts, is the aim of our study. Earlier studies do not fully capture the different effects national country cultures can....... A proposition model is developed where the dependent variable is beneficial reverse knowledge transfer. The independent variables are: higher relative knowledge level in subsidiaty than in HQ, authority respect, activity fit with contextual learning preference. The conclusion suggest that different contexts...

  10. Brain mechanisms of flavor learning

    Directory of Open Access Journals (Sweden)

    Takashi eYamamoto

    2011-09-01

    Full Text Available Once the flavor of the ingested food (conditioned stimulus, CS is associated with a preferable (e.g., good taste or nutritive satisfaction or aversive (e.g., malaise with displeasure signal (unconditioned stimulus, US, animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammilary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.

  11. Brain mechanisms of flavor learning.

    Science.gov (United States)

    Yamamoto, Takashi; Ueji, Kayoko

    2011-01-01

    Once the flavor of the ingested food (conditioned stimulus, CS) is associated with a preferable (e.g., good taste or nutritive satisfaction) or aversive (e.g., malaise with displeasure) signal (unconditioned stimulus, US), animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning) are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammillary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.

  12. Cortisol modifies extinction learning of recently acquired fear in men

    Science.gov (United States)

    Hermann, Andrea; Stark, Rudolf; Wolf, Oliver Tobias

    2014-01-01

    Exposure therapy builds on the mechanism of fear extinction leading to decreased fear responses. How the stress hormone cortisol affects brain regions involved in fear extinction in humans is unknown. For this reason, we tested 32 men randomly assigned to receive either 30 mg hydrocortisone or placebo 45 min before fear extinction. In fear acquisition, a picture of a geometrical figure was either partially paired (conditioned stimulus; CS+) or not paired (CS−) with an electrical stimulation (unconditioned stimulus; UCS). In fear extinction, each CS was presented again, but no UCS occurred. Cortisol increased conditioned skin conductance responses in early and late extinction. In early extinction, higher activation towards the CS− than to the CS+ was found in the amygdala, hippocampus and posterior parahippocampal gyrus. This pattern might be associated with the establishment of a new memory trace. In late extinction, the placebo compared with the cortisol group displayed enhanced CS+/CS− differentiation in the amygdala, medial frontal cortex and nucleus accumbens. A change from early deactivation to late activation of the extinction circuit as seen in the placebo group seems to be needed to enhance extinction and to reduce fear. Cortisol appears to interfere with this process thereby impairing extinction of recently acquired conditioned fear. PMID:23945999

  13. Equal pain – Unequal fear response: Enhanced susceptibility of tooth pain to fear conditioning

    Directory of Open Access Journals (Sweden)

    Michael Lukas Meier

    2014-07-01

    Full Text Available Experimental fear conditioning in humans is widely used as a model to investigate the neural basis of fear learning and to unravel the pathogenesis of anxiety disorders. It has been observed that fear conditioning depends on stimulus salience and subject vulnerability to fear. It is further known that the prevalence of dental-related fear and phobia is exceedingly high in the population. Dental phobia is unique as no other body part is associated with a specific phobia. Therefore, we hypothesized that painful dental stimuli exhibit an enhanced susceptibility to fear conditioning when comparing to equal perceived stimuli applied to other body sites. Differential susceptibility to pain-related fear was investigated by analyzing responses to an unconditioned stimulus (UCS applied to the right maxillary canine (UCS-c versus the right tibia (UCS-t. For fear conditioning, UCS-c and USC-t consisted of painful electric stimuli, carefully matched at both application sites for equal intensity and quality perception. UCSs were paired to simple geometrical forms which served as conditioned stimuli (CS+. Unpaired CS+ were presented for eliciting and analyzing conditioned fear responses. Outcome parameter were 1 skin conductance changes and 2 time-dependent brain activity (BOLD responses in fear-related brain regions such as the amygdala, anterior cingulate cortex, insula, thalamus, orbitofrontal cortex and medial prefrontal cortex.A preferential susceptibility of dental pain to fear conditioning was observed, reflected by heightened skin conductance responses and enhanced time-dependent brain activity (BOLD responses in the fear network. For the first time, this study demonstrates fear-related neurobiological mechanisms that point towards a superior conditionability of tooth pain. Beside traumatic dental experiences our results offer novel evidence that might explain the high prevalence of dental-related fears in the population.

  14. Enhanced discrimination between threatening and safe contexts in high-anxious individuals

    Science.gov (United States)

    Glotzbach-Schoon, Evelyn; Tadda, Regina; Andreatta, Marta; Tröger, Christian; Ewald, Heike; Grillon, Christian; Pauli, Paul; Mühlberger, Andreas

    2014-01-01

    Trait anxiety, a stable personality trait associated with increased fear responses to threat, is regarded as a risk factor for the development and maintenance of anxiety disorders. Although the effect of trait anxiety has been examined with regard to explicit threat cues, little is known about the effect of trait anxiety on contextual threat learning. To assess this issue, extreme groups of low and high trait anxiety underwent a contextual fear conditioning protocol using virtual reality. Two virtual office rooms served as the conditioned contexts. One virtual office room (CXT+) was paired with unpredictable electrical stimuli. In the other virtual office room, no electrical stimuli were delivered (CXT−). High-anxious participants tended to show faster acquisition of startle potentiation in the CXT+ versus the CXT− than low-anxious participants. This enhanced contextual fear learning might function as a risk factor for anxiety disorders that are characterized by sustained anxiety. PMID:23384512

  15. Pattern Analyses Reveal Separate Experience-Based Fear Memories in the Human Right Amygdala.

    Science.gov (United States)

    Braem, Senne; De Houwer, Jan; Demanet, Jelle; Yuen, Kenneth S L; Kalisch, Raffael; Brass, Marcel

    2017-08-23

    Learning fear via the experience of contingencies between a conditioned stimulus (CS) and an aversive unconditioned stimulus (US) is often assumed to be fundamentally different from learning fear via instructions. An open question is whether fear-related brain areas respond differently to experienced CS-US contingencies than to merely instructed CS-US contingencies. Here, we contrasted two experimental conditions where subjects were instructed to expect the same CS-US contingencies while only one condition was characterized by prior experience with the CS-US contingency. Using multivoxel pattern analysis of fMRI data, we found CS-related neural activation patterns in the right amygdala (but not in other fear-related regions) that dissociated between whether a CS-US contingency had been instructed and experienced versus merely instructed. A second experiment further corroborated this finding by showing a category-independent neural response to instructed and experienced, but not merely instructed, CS presentations in the human right amygdala. Together, these findings are in line with previous studies showing that verbal fear instructions have a strong impact on both brain and behavior. However, even in the face of fear instructions, the human right amygdala still shows a separable neural pattern response to experience-based fear contingencies. SIGNIFICANCE STATEMENT In our study, we addressed a fundamental problem of the science of human fear learning and memory, namely whether fear learning via experience in humans relies on a neural pathway that can be separated from fear learning via verbal information. Using two new procedures and recent advances in the analysis of brain imaging data, we localized purely experience-based fear processing and memory in the right amygdala, thereby making a direct link between human and animal research. Copyright © 2017 the authors 0270-6474/17/378116-15$15.00/0.

  16. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning.

    Science.gov (United States)

    Arico, Carolyn; Bagley, Elena E; Carrive, Pascal; Assareh, Neda; McNally, Gavan P

    2017-10-01

    The midbrain periaqueductal gray (PAG) has been implicated in the generation and transmission of a prediction error signal that instructs amygdala-based fear and extinction learning. However, the PAG also plays a key role in the expression of conditioned fear responses. The evidence for a role of the PAG in fear learning and extinction learning has been obtained almost exclusively using PAG-dependent fear responses. It is less clear whether the PAG regulates fear learning when other measures of learned fear are used. Here we combined a chemogenetic approach, permitting excitation or inhibition of neurons in the ventrolateral PAG (VLPAG), with conditioned suppression as the measure of learned fear to assess the role of VLPAG in the acquisition and extinction of fear learning. We show that chemogenetic excitation of VLPAG (with some encroachment on lateral PAG [LPAG]) impairs acquisition of fear and, conversely, chemogenetic inhibition impairs extinction of fear. These effects on fear and extinction learning were specific to the combination of DREADD expression and injection of CNO because they were observed relative to both eYFP controls injected with CNO as well as DREADD expressing controls injected with vehicle. Taken together, these results show that activity of L/VLPAG neurons regulates both the acquisition and extinction of Pavlovian fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Involving Customer Relations in Contextual Design

    DEFF Research Database (Denmark)

    Simonsen, Jesper

    1996-01-01

    This paper presents a case study in the form of a contextual design project, the aim of which was to design a system for a particular organization. The starting point in the case was a need in the organization for a specific system. The case involved an analysis of the organizations customer...... point of the design project, how the project was conducted, and which results it ended up with. This is followed by a discussion of the effects of, and lessons learned by, involving customer relations in contextual design....

  18. The impact of a context switch and context instructions on the return of verbally conditioned fear

    NARCIS (Netherlands)

    Mertens, Gaëtan; De Houwer, Jan

    BACKGROUND AND OBJECTIVES: Repeated exposure to a conditioned stimulus can lead to a reduction of conditioned fear responses towards this stimulus (i.e., extinction). However, this reduction is often fragile and sensitive to contextual changes. In the current study, we investigated whether

  19. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.

    Science.gov (United States)

    Kim, Woong Bin; Cho, Jun-Hyeong

    2017-08-30

    In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Empathy and contextual social cognition.

    Science.gov (United States)

    Melloni, Margherita; Lopez, Vladimir; Ibanez, Agustin

    2014-03-01

    Empathy is a highly flexible and adaptive process that allows for the interplay of prosocial behavior in many different social contexts. Empathy appears to be a very situated cognitive process, embedded with specific contextual cues that trigger different automatic and controlled responses. In this review, we summarize relevant evidence regarding social context modulation of empathy for pain. Several contextual factors, such as stimulus reality and personal experience, affectively link with other factors, emotional cues, threat information, group membership, and attitudes toward others to influence the affective, sensorimotor, and cognitive processing of empathy. Thus, we propose that the frontoinsular-temporal network, the so-called social context network model (SCNM), is recruited during the contextual processing of empathy. This network would (1) update the contextual cues and use them to construct fast predictions (frontal regions), (2) coordinate the internal (body) and external milieus (insula), and (3) consolidate the context-target associative learning of empathic processes (temporal sites). Furthermore, we propose these context-dependent effects of empathy in the framework of the frontoinsular-temporal network and examine the behavioral and neural evidence of three neuropsychiatric conditions (Asperger syndrome, schizophrenia, and the behavioral variant of frontotemporal dementia), which simultaneously present with empathy and contextual integration impairments. We suggest potential advantages of a situated approach to empathy in the assessment of these neuropsychiatric disorders, as well as their relationship with the SCNM.

  1. Neuronal Correlates of Fear Conditioning in the Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Haufler, Darrell; Nagy, Frank Z.; Pare, Denis

    2013-01-01

    Lesion and inactivation studies indicate that the central amygdala (CeA) participates in the expression of cued and contextual fear, whereas the bed nucleus of the stria terminalis (BNST) is only involved in the latter. The basis for this functional dissociation is unclear because CeA and BNST form similar connections with the amygdala and…

  2. Contextual Bandits for Information Retrieval

    NARCIS (Netherlands)

    Hofmann, K.; Whiteson, S.; de Rijke, M.

    2011-01-01

    In this paper we give an overview of and outlook on research at the intersection of information retrieval (IR) and contextual bandit problems. A critical problem in information retrieval is online learning to rank, where a search engine strives to improve the quality of the ranked result lists it

  3. [Effect of object consistency in a spatial contextual cueing paradigm].

    Science.gov (United States)

    Takeda, Yuji

    2008-04-01

    Previous studies demonstrated that attention can be quickly guided to a target location in a visual search task when the spatial configurations of search items and/or the object identities were repeated in the previous trials. This phenomenon is termed contextual cueing. Recently, it was reported that spatial configuration learning and object identity learning occurred independently, when novel contours were used as search items. The present study examined whether this learning occurred independently even when the search items were meaningful. The results showed that the contextual cueing effect was observed even if the relationships between the spatial locations and object identities were jumbled (Experiment 1). However, it disappeared when the search items were changed into geometric patterns (Experiment 2). These results suggest that the spatial configuration can be learned independent of the object identities; however, the use of the learned configuration is restricted by the learning situations.

  4. Childhood Fears: What Children Are Afraid of and Why.

    Science.gov (United States)

    Crosser, Sandra

    1995-01-01

    It is important for early childhood professionals to learn about childhood fears so that they can help children cope with them. Children's fears are normal, the nature of preschoolers' fears is related to their cognitive development, and a child's temperament and sense of autonomy may influence the extent of and manner of reaction to a fearful…

  5. Fear inhibition in high trait anxiety.

    Directory of Open Access Journals (Sweden)

    Merel Kindt

    Full Text Available Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  6. The impact of natural science contextual teaching through project method to students’ achievement in MTsN Miri Sragen

    Directory of Open Access Journals (Sweden)

    Anik Sunarsih

    2017-12-01

    Full Text Available This study aims to describe the science learning skills among students’ who follow contextual learning through project method with experiment method. The population of this research is the students’ of class VII MTS Negeri Miri Kab. Sragen on the teaching period of 2016/2017. Cluster random sampling technique is used as sample. This research was designed using contextual teaching through project method as an independent variable. The results of this Improvement show that there is a difference in the achievement of students' learning skill that follows contextual learning through the project method with the experimental method with Fobs = 8,83 and significant number 4,04 (p <0,05. Based on these findings contextual learning through the project is one of the learning methods that provide a positive influence on improving the achievement of science learning skills. This ain increase, because CTL is can help students’ understand the material by relating the problems that exist. Project methods are used by students’ in solving problems.

  7. Time-dependent effects of cortisol on the contextualization of emotional memories.

    Science.gov (United States)

    van Ast, Vanessa A; Cornelisse, Sandra; Meeter, Martijn; Joëls, Marian; Kindt, Merel

    2013-12-01

    The inability to store fearful memories into their original encoding context is considered to be an important vulnerability factor for the development of anxiety disorders like posttraumatic stress disorder. Altered memory contextualization most likely involves effects of the stress hormone cortisol, acting via receptors located in the memory neurocircuitry. Cortisol via these receptors induces rapid nongenomic effects followed by slower genomic effects, which are thought to modulate cognitive function in opposite, complementary ways. Here, we targeted these time-dependent effects of cortisol during memory encoding and tested subsequent contextualization of emotional and neutral memories. In a double-blind, placebo-controlled design, 64 men were randomly assigned to one of three groups: 1) received 10 mg hydrocortisone 30 minutes (rapid cortisol effects) before a memory encoding task; 2) received 10 mg hydrocortisone 210 minutes (slow cortisol) before a memory encoding task; or 3) received placebo at both times. During encoding, participants were presented with neutral and emotional words in unique background pictures. Approximately 24 hours later, context dependency of their memories was assessed. Recognition data revealed that cortisol's rapid effects impair emotional memory contextualization, while cortisol's slow effects enhance it. Neutral memory contextualization remained unaltered by cortisol, irrespective of the timing of the drug. This study shows distinct time-dependent effects of cortisol on the contextualization of specifically emotional memories. The results suggest that rapid effects of cortisol may lead to impaired emotional memory contextualization, while slow effects of cortisol may confer protection against emotional memory generalization. © 2013 Society of Biological Psychiatry.

  8. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  9. Flexible attention deployment in threatening contexts: an instructed fear conditioning study.

    Science.gov (United States)

    Shechner, Tomer; Pelc, Tatiana; Pine, Daniel S; Fox, Nathan A; Bar-Haim, Yair

    2012-10-01

    Factors leading humans to shift attention away from danger cues remain poorly understood. Two laboratory experiments reported here show that context interacts with learning experiences to shape attention avoidance of mild danger cues. The first experiment exposed 18 participants to contextual threat of electric shock. Attention allocation to mild danger cues was then assessed with the dot-probe task. Results showed that contextual threat caused subjects to avert attention from danger cues. In the second experiment, 36 participants were conditioned to the same contextual threat used in Experiment 1. These subjects then were randomly assigned to either an experimental group, trained to shift attention toward danger cues, or a placebo group exposed to the same stimuli without the training component. As in Experiment 1, contextual threat again caused attention allocation away from danger in the control group. However, this did not occur in the experimental group. These experiments show that acute contextual threat and learning experiences interact to shape the deployment of attention away from danger cues.

  10. Optogenetic stimulation of a hippocampal engram activates fear memory recall.

    Science.gov (United States)

    Liu, Xu; Ramirez, Steve; Pang, Petti T; Puryear, Corey B; Govindarajan, Arvind; Deisseroth, Karl; Tonegawa, Susumu

    2012-03-22

    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.

  11. ENHANCING STUDENTS‟ MOTIVATION AND ACHIEVEMENT IN LEARNING GRAMMAR THROUGH CONTEXTUAL TEACHING AND LEARNING THROUGH RELATING, EXPERIENCING, APPLYING, COOPERATING AND TRANSFERRING (REACT STRATEGY

    Directory of Open Access Journals (Sweden)

    Mashlihatul Umami Umami

    2017-04-01

    Full Text Available This research addresses the issue of whether Contextual Teaching and Learning (CTL through REACT (Relating, Experiencing, Applying, Cooperating and Transferring strategy is able to enhance motivation and achievement of English Department students‘ in learning grammar. The researcher uses a classroom action research in which it was held for about two cycles. The instruments of collecting the data are observation, rubric, questionaire and test. The researcher analyzes the data using three steps, i.e. students‘ motivation to learn are analyzed by the sheet of observation, each of individuals is also analyzed by fulfilling the questionnaire of self assessment, the progress of students‘ motivation and achievement are all monitored by rubric assessment tool, seven components of REACT strategy in learning is also recorded by the sheets of observation and the statistical analysis using t-test measures the improvement occurred. In addition, the researcher prepares field note and questionnaire to monitor the process of learning. Based on the results of qualitative-quantitative analysis, it can be found that the use of CTL approach especially using project based and cooperative learning improves the students‘ motivation and achievement in learning grammar.

  12. Light exposure before learning improves memory consolidation at night

    Science.gov (United States)

    Shan, Li-Li; Guo, Hao; Song, Ning-Ning; Jia, Zheng-Ping; Hu, Xin-Tian; Huang, Jing-Fei; Ding, Yu-Qiang; Richter-Levine, Gal; Zhou, Qi-Xin; Xu, Lin

    2015-01-01

    Light is recently recognized as a modulator able to activate the hippocampus and modulate memory processing, but little is known about the molecular mechanisms. Here, we report that in mice, a short pulse of white light before learning dramatically improves consolidation of contextual fear memory during the night. The light exposure increases hippocampal active p21-activated kinase 1 (PAK1) and CA1 long-term potentiation (LTP). These light effects are abolished in PAK1 knockout and dominant-negative transgenic mice, but preserved by expression of constitutively active PAK1 in the hippocampus. Our results indicate that light can act as a switch of PAK1 activity that modulate CA1 LTP and thereby memory consolidation without affecting learning and short-term memory. PMID:26493375

  13. More than just noise: Inter-individual differences in fear acquisition, extinction and return of fear in humans - Biological, experiential, temperamental factors, and methodological pitfalls.

    Science.gov (United States)

    Lonsdorf, Tina B; Merz, Christian J

    2017-09-01

    Why do only some individuals develop pathological anxiety following adverse events? Fear acquisition, extinction and return of fear paradigms serve as experimental learning models for the development, treatment and relapse of anxiety. Individual differences in experimental performance were however mostly regarded as 'noise' by researchers interested in basic associative learning principles. Our work for the first time presents a comprehensive literature overview and methodological discussion on inter-individual differences in fear acquisition, extinction and return of fear. We tell a story from noise that steadily develops into a meaningful tune and converges to a model of mechanisms contributing to individual risk/resilience with respect to fear and anxiety-related behavior. Furthermore, in light of the present 'replicability crisis' we identify methodological pitfalls and provide suggestions for study design and analyses tailored to individual difference research in fear conditioning. Ultimately, synergistic transdisciplinary and collaborative efforts hold promise to not only improve our mechanistic understanding but can also be expected to contribute to the development of specifically tailored ('individualized') intervention and targeted prevention programs in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of the Stimulus and Chamber Size on Unlearned Fear Across Development

    OpenAIRE

    Kabitzke, Patricia A.; Wiedenmayer, Christoph P.

    2011-01-01

    Predator odors have been found to induce unconditioned fear in adult animals and provide the opportunity to study the mechanisms underlying unlearned and learned fear. Predator threats change across an animal’s lifetime, as do abilities that enable the animal to learn or engage in different defensive behaviors. Thus, the objective of this study was to determine the combination of factors that successfully induce unlearned fear to predator odor across development. Infant, juvenile, adolescent,...

  15. The effects of cognitive load during intertrial intervals on judgements of control: The role of working memory and contextual learning.

    Science.gov (United States)

    Cavus, H A; Msetfi, Rachel M

    2016-11-01

    When there is no contingency between actions and outcomes, but outcomes occur frequently, people tend to judge that they have control over those outcomes, a phenomenon known as the outcome density (OD) effect. Recent studies show that the OD effect depends on the duration of the temporal interval between action-outcome conjunctions, with longer intervals inducing stronger effects. However, under some circumstances OD effect is reduced, for example when participants are mildly depressed. We reasoned that working memory (WM) plays an important role in learning of context; with reduced WM capacity to process contextual information during intertrial intervals (ITIs) during contingency learning might lead to reduced OD effects (limited capacity hypothesis). To test this, we used a novel dual-task procedure that increases the WM load during the ITIs of an operant (e.g., action-outcome) contingency learning task to impact contextual learning. We tested our hypotheses in groups of students with zero (Experiments 1, N=34), and positive contingencies (Experiment 2, N=34). The findings indicated that WM load during the ITIs reduced the OD effects compared to no load conditions (Experiment 1 and 2). In Experiment 2, we observed reduced OD effects on action judgements under high load in zero and positive contingencies. However, the participants' judgements were still sensitive to the difference between zero and positive contingencies. We discuss the implications of our findings for the effects of depression and context in contingency learning. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Context-specific attentional sampling: Intentional control as a pre-requisite for contextual control.

    Science.gov (United States)

    Brosowsky, Nicholaus P; Crump, Matthew J C

    2016-08-01

    Recent work suggests that environmental cues associated with previous attentional control settings can rapidly and involuntarily adjust attentional priorities. The current study tests predictions from adaptive-learning and memory-based theories of contextual control about the role of intentions for setting attentional priorities. To extend the empirical boundaries of contextual control phenomena, and to determine whether theoretical principles of contextual control are generalizable we used a novel bi-dimensional stimulus sampling task. Subjects viewed briefly presented arrays of letters and colors presented above or below fixation, and identified specific stimuli according to a dimensional (letter or color) and positional cue. Location was predictive of the cued dimension, but not the position or identity. In contrast to previous findings, contextual control failed to develop through automatic, adaptive-learning processes. Instead, previous experience with intentionally changing attentional sampling priorities between different contexts was required for contextual control to develop. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Increases in extracellular zinc in the amygdala in acquisition and recall of fear experience and their roles in response to fear.

    Science.gov (United States)

    Takeda, A; Tamano, H; Imano, S; Oku, N

    2010-07-14

    The amygdala is enriched with histochemically reactive zinc, which is dynamically coupled with neuronal activity and co-released with glutamate. The dynamics of the zinc in the amygdala was analyzed in rats, which were subjected to inescapable stress, to understand the role of the zinc in emotional behavior. In the communication box, two rats were subjected to foot shock stress and anxiety stress experiencing emotional responses of foot-shocked rat under amygdalar perfusion. Extracellular zinc was increased by foot shock stress, while decreased by anxiety stress, suggesting that the differential changes in extracellular zinc are associated with emotional behavior. In rats conditioned with foot shock, furthermore, extracellular zinc was increased again in the recall of fear (foot shock) in the same box without foot shock. When this recall was performed under perfusion with CaEDTA, a membrane-impermeable zinc chelator, to examine the role of the increase in extracellular zinc, the time of freezing behavior was more increased, suggesting that zinc released in the lateral amygdala during the recall of fear participates in freezing behavior. To examine the role of the increase in extracellular zinc during fear conditioning, fear conditioning was also performed under perfusion with CaEDTA. The time of freezing behavior was more increased in the contextual recall, suggesting that zinc released in the lateral nucleus during fear conditioning also participates in freezing behavior in the recall. In brain slice experiment, CaEDTA enhanced presynaptic activity (exocytosis) in the lateral nucleus after activation of the entorhinal cortex. The present paper demonstrates that zinc released in the lateral amygdala may participate in emotional behavior in response to fear. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    Science.gov (United States)

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  19. Stressor controllability modulates fear extinction in humans

    Science.gov (United States)

    Hartley, Catherine A.; Gorun, Alyson; Reddan, Marianne C.; Ramirez, Franchesca; Phelps, Elizabeth A.

    2014-01-01

    Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans. PMID:24333646

  20. Central Ghrelin Resistance Permits the Overconsolidation of Fear Memory.

    Science.gov (United States)

    Harmatz, Elia S; Stone, Lauren; Lim, Seh Hong; Lee, Graham; McGrath, Anna; Gisabella, Barbara; Peng, Xiaoyu; Kosoy, Eliza; Yao, Junmei; Liu, Elizabeth; Machado, Nuno J; Weiner, Veronica S; Slocum, Warren; Cunha, Rodrigo A; Goosens, Ki A

    2017-06-15

    There are many contradictory findings about the role of the hormone ghrelin in aversive processing, with studies suggesting that ghrelin signaling can both inhibit and enhance aversion. Here, we characterize and reconcile the paradoxical role of ghrelin in the acquisition of fearful memories. We used enzyme-linked immunosorbent assay to measure endogenous acyl-ghrelin and corticosterone at time points surrounding auditory fear learning. We used pharmacological (systemic and intra-amygdala) manipulations of ghrelin signaling and examined several aversive and appetitive behaviors. We also used biotin-labeled ghrelin to visualize ghrelin binding sites in coronal brain sections of amygdala. All work was performed in rats. In unstressed rodents, endogenous peripheral acyl-ghrelin robustly inhibits fear memory consolidation through actions in the amygdala and accounts for virtually all interindividual variability in long-term fear memory strength. Higher levels of endogenous ghrelin after fear learning were associated with weaker long-term fear memories, and pharmacological agonism of the ghrelin receptor during the memory consolidation period reduced fear memory strength. These fear-inhibitory effects cannot be explained by changes in appetitive behavior. In contrast, we show that chronic stress, which increases both circulating endogenous acyl-ghrelin and fear memory formation, promotes profound loss of ghrelin binding sites in the amygdala and behavioral insensitivity to ghrelin receptor agonism. These studies provide a new link between stress, a novel type of metabolic resistance, and vulnerability to excessive fear memory formation and reveal that ghrelin can regulate negative emotionality in unstressed animals without altering appetite. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    Science.gov (United States)

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  3. Preventing the Development of Observationally Learnt Fears in Children by Devaluing the Model's Negative Response.

    Science.gov (United States)

    Reynolds, Gemma; Field, Andy P; Askew, Chris

    2015-10-01

    Vicarious learning has become an established indirect pathway to fear acquisition. It is generally accepted that associative learning processes underlie vicarious learning; however, whether this association is a form of conditioned stimulus-unconditioned stimulus (CS-US) learning or stimulus-response (CS-CR) learning remains unclear. Traditionally, these types of learning can be dissociated in a US revaluation procedure. The current study explored the effects of post-vicarious learning US revaluation on acquired fear responses. Ninety-four children (46 males and 48 females) aged 6 to 10 years first viewed either a fear vicarious learning video or a neutral vicarious learning video followed by random allocation to one of three US revaluation conditions: inflation; deflation; or control. Inflation group children were presented with still images of the adults in the video and told that the accompanying sound and image of a very fast heart rate monitor belonged to the adult. The deflation group were shown the same images but with the sound and image of a normal heart rate. The control group received no US revaluation. Results indicated that inflating how scared the models appeared to be did not result in significant increases in children's fear beliefs, avoidance preferences, avoidance behavior or heart rate for animals above increases caused by vicarious learning. In contrast, US devaluation resulted in significant decreases in fear beliefs and avoidance preferences. Thus, the findings provide evidence that CS-US associations underpin vicarious learning and suggest that US devaluation may be a successful method for preventing children from developing fear beliefs following a traumatic vicarious learning episode with a stimulus.

  4. Mobile and contextual learning

    Directory of Open Access Journals (Sweden)

    Agnes Kukulska-Hulme

    2009-12-01

    Full Text Available Is mobile learning just a part of everyday learning? This is a relevant question in an age when most people throughout the world now have access to mobile phones and mobility is increasingly taken for granted. In one sense, mobile learning is no different to carrying a textbook or learning through conversations at home, as part of formal education or in the workplace. The technology may be more engaging, but is the learning any different? Despite the ubiquity of mobile phones, smartphones, mp3 players and, increasingly, access to Wi-Fi connections and GPS navigation, the reasons for using mobile and wireless technologies in education are not yet widely known. There is significant specialist expertise, built from ten years of research (and more recently, reflective practice to demonstrate the unique characteristics of mobile learning, which include orchestrating shared learning with personal devices across formal and informal settings, providing immediately useful information, offering timely revision and reflection, connecting real and virtual locations, and enriching field trips and cultural visits. This knowledge needs to be disseminated and examined from new perspectives.

  5. Agency in the Darkness: 'Fear of the Unknown', Learning Disability and Teacher Education for Inclusion

    Science.gov (United States)

    Robinson, Deborah; Goodey, Chris

    2018-01-01

    This paper proposes inclusion phobia as a sharper and more operative definition of the 'fear of the unknown' often cited as an explanation for resistance to inclusive education. Using 'severe and profound learning disability' as the paradigm case, we situate the phobia surrounding this label in its social and historical context. Our hypothesis is…

  6. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    Science.gov (United States)

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  7. Diminuer la Peur D'apprendre: Le Role de la Mediation Culturelle. [Diminishing the Fear of Learning: The Role of Cultural Mediation.

    Science.gov (United States)

    Boimare, Serge

    2001-01-01

    Discusses ways to reduce children's fear and discomfort in the learning situation by accommodating the children's interests through cultural themes that represent emotions and anxieties preventing the organization of thought. (JPB)

  8. Task-relevant information is prioritized in spatiotemporal contextual cueing.

    Science.gov (United States)

    Higuchi, Yoko; Ueda, Yoshiyuki; Ogawa, Hirokazu; Saiki, Jun

    2016-11-01

    Implicit learning of visual contexts facilitates search performance-a phenomenon known as contextual cueing; however, little is known about contextual cueing under situations in which multidimensional regularities exist simultaneously. In everyday vision, different information, such as object identity and location, appears simultaneously and interacts with each other. We tested the hypothesis that, in contextual cueing, when multiple regularities are present, the regularities that are most relevant to our behavioral goals would be prioritized. Previous studies of contextual cueing have commonly used the visual search paradigm. However, this paradigm is not suitable for directing participants' attention to a particular regularity. Therefore, we developed a new paradigm, the "spatiotemporal contextual cueing paradigm," and manipulated task-relevant and task-irrelevant regularities. In four experiments, we demonstrated that task-relevant regularities were more responsible for search facilitation than task-irrelevant regularities. This finding suggests our visual behavior is focused on regularities that are relevant to our current goal.

  9. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2017-01-01

    We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention. PMID:28588466

  10. Behavioral tagging of extinction learning.

    Science.gov (United States)

    de Carvalho Myskiw, Jociane; Benetti, Fernando; Izquierdo, Iván

    2013-01-15

    Extinction of contextual fear in rats is enhanced by exposure to a novel environment at 1-2 h before or 1 h after extinction training. This effect is antagonized by administration of protein synthesis inhibitors anisomycin and rapamycin into the hippocampus, but not into the amygdala, immediately after either novelty or extinction training, as well as by the gene expression blocker 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole administered after novelty training, but not after extinction training. Thus, this effect can be attributed to a mechanism similar to synaptic tagging, through which long-term potentiation can be enhanced by other long-term potentiations or by exposure to a novel environment in a protein synthesis-dependent fashion. Extinction learning produces a tag at the appropriate synapses, whereas novelty learning causes the synthesis of plasticity-related proteins that are captured by the tag, strengthening the synapses that generated this tag.

  11. Fear and Guilt in HIV and AIDS Prevention | Gwandure | Africa Insight

    African Journals Online (AJOL)

    The social learning theory concepts of fear and guilt are regarded as inhibitory factors in disease prevention, and this article examines the possibility of incorporating fear and guilt training courses into HIV and AIDS prevention programmes. HIV and AIDS educators could help participants understand the role of fear and guilt ...

  12. Spectral characteristics of the hippocampal LFP during contextual fear conditioning

    Directory of Open Access Journals (Sweden)

    Birajara Soares Machado

    2012-06-01

    Full Text Available Objective: The hippocampus has an important role in the acquisitionand recall of aversive memories. The objective of this study was toinvestigate the relationship among hippocampal rhythms. Methods:Microeletrodes arrays were implanted in the hippocampus of Wistarrats. The animals were trained and tested in a contextual fearconditioning task. The training consisted in applying shocks in thelegs. The memory test was performed 1 day (recent memory or 18days (remote memory after training. We proposed a measure basedon the FFT power spectrum, denominated “delta-theta ratio”, tocharacterize the different behaviors (active exploration and freezingand the memories types. Results: The delta-theta ratio was able todistinguish recent and remote memories. In this study, the ratio forthe 18-day group was smaller than for the 1-day group. Moreover,this measure was useful to distinguish the different behavior states– active exploration and freezing. Conclusions: The results suggestdelta-theta oscillations could reflect the demands on informationprocessing during recent and remote memory recalls.

  13. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    Directory of Open Access Journals (Sweden)

    Sarah Boukezzi

    2017-06-01

    Full Text Available Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD. Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS during eye movement desensitization and reprocessing (EMDR therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to determine if these previous results found in animals can be reproduced in humans. Twenty-two healthy participants took part in a classical fear conditioning, extinction, and extinction recall paradigm. Behavioral responses (fear expectations as well as psychophysiological measures (skin conductance responses, SCRs were recorded. The results showed a significant fear expectation decrease during fear extinction with BLS. Additionally, SCR for fear extinction retrieval were significantly lower with BLS. Our results demonstrate the importance of BLS to reduce negative emotions, and provide a successful model to further explore the neural mechanisms underlying the sole BLS effect in the EMDR.

  14. Effects of alcoholic beverage treatment on spatial learning and fear memory in mice.

    Science.gov (United States)

    Hashikawa-Hobara, Narumi; Mishima, Shuta; Nagase, Shotaro; Morita, Keishi; Otsuka, Ami; Hashikawa, Naoya

    2018-04-24

    Although chronic ethanol treatment is known to impair learning and memory, humans commonly consume a range of alcoholic beverages. However, the specific effects of some alcoholic beverages on behavioral performance are largely unknown. The present study compared the effects of a range of alcoholic beverages (plain ethanol solution, red wine, sake and whiskey; with a matched alcohol concentration of 10%) on learning and memory. 6-week-old C57BL6J mice were orally administered alcohol for 7 weeks. The results revealed that red wine treatment exhibited a trend toward improvement of spatial memory and advanced extinction of fear memory. Additionally, red wine treatment significantly increased mRNA levels of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA) receptors in mice hippocampus. These results support previous reports that red wine has beneficial effects.

  15. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    Science.gov (United States)

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    Science.gov (United States)

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  17. Contextual Clues Vocabulary Strategies Choice among Business Management Students

    Science.gov (United States)

    Ahmad, Siti Nurshafezan; Muhammad, Ahmad Mazli; Kasim, Aini Mohd

    2018-01-01

    New trends in vocabulary learning focus on strategic vocabulary learning to create more active and independent language learners. Utilising suitable contextual clues strategies is seen as vital in enabling and equipping language learners with the skill to guess word meaning accurately, moving away from dependency on a dictionary to improve their…

  18. Fear in the Palestinian Classroom: Pedagogy, Authoritarianism and Transformation

    Science.gov (United States)

    Affouneh, Saida; Hargreaves, Eleanore

    2015-01-01

    Drawing on pictures, written sentences and interview contributions, this article explores some Palestinian children's perspectives in order to gain insights into some children's classroom fear in the light of its potential influence on learning. After presenting some existing research indicating a negative relationship between fear and young…

  19. The Narrow Fellow in the Grass: Human Infants Associate Snakes and Fear

    Science.gov (United States)

    DeLoache, Judy S.; LoBue, Vanessa

    2009-01-01

    Why are snakes such a common target of fear? One current view is that snake fear is one of several innate fears that emerge spontaneously. Another is that humans have an evolved predisposition to learn to fear snakes. In the first study reported here, 9- to 10-month-old infants showed no differential spontaneous reaction to films of snakes versus…

  20. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus.

    Science.gov (United States)

    Bogovyk, Ruslan; Lunko, Oleksii; Fedoriuk, Mihail; Isaev, Dmytro; Krishtal, Oleg; Holmes, Gregory L; Isaeva, Elena

    2017-02-01

    Protease-activated receptor 1 (PAR1) is an important contributor to the pathogenesis of a variety of brain disorders associated with a risk of epilepsy development. Using the lithium-pilocarpine model of temporal lobe epilepsy (TLE), we recently showed that inhibition of this receptor during the first ten days after pilocarpine-induced status epilepticus (SE) results in substantial anti-epileptogenic and neuroprotective effects. As PAR1 is expressed in the central nervous system regions of importance for processing emotional reactions, including amygdala and hippocampus, and TLE is frequently associated with a chronic alteration of the functions of these regions, we tested the hypothesis that PAR1 inhibition could modulate emotionally driven behavioral responses of rats experiencing SE. We showed that SE induces a chronic decrease in the animals' anxiety-related behavior and an increase of locomotor activity. PAR1 inhibition after SE abolished the alteration of the anxiety level but does not affect the increase of locomotor activity in the open field and elevated plus maze tests. Moreover, while PAR1 inhibition produces an impairment of memory recall in the context fear conditioning paradigm in the control group, it substantially improves contextual and cued fear learning in rats experiencing SE. These data suggest that PAR1-dependent signaling is involved in the mechanisms underlying emotional disorders in epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The neural circuits of innate fear: detection, integration, action, and memorization

    Science.gov (United States)

    Silva, Bianca A.; Gross, Cornelius T.

    2016-01-01

    How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system. PMID:27634145

  2. Contextual Fraction as a Measure of Contextuality

    Science.gov (United States)

    Abramsky, Samson; Barbosa, Rui Soares; Mansfield, Shane

    2017-08-01

    We consider the contextual fraction as a quantitative measure of contextuality of empirical models, i.e., tables of probabilities of measurement outcomes in an experimental scenario. It provides a general way to compare the degree of contextuality across measurement scenarios; it bears a precise relationship to violations of Bell inequalities; its value, and a witnessing inequality, can be computed using linear programing; it is monotonic with respect to the "free" operations of a resource theory for contextuality; and it measures quantifiable advantages in informatic tasks, such as games and a form of measurement-based quantum computing.

  3. Growth hormone biases amygdala network activation after fear learning.

    Science.gov (United States)

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-11-29

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.

  4. Stress Enables Reinforcement-Elicited Serotonergic Consolidation of Fear Memory.

    Science.gov (United States)

    Baratta, Michael V; Kodandaramaiah, Suhasa B; Monahan, Patrick E; Yao, Junmei; Weber, Michael D; Lin, Pei-Ann; Gisabella, Barbara; Petrossian, Natalie; Amat, Jose; Kim, Kyungman; Yang, Aimei; Forest, Craig R; Boyden, Edward S; Goosens, Ki A

    2016-05-15

    Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. PEMBELAJARAN PENJUMLAHAN BILANGAN PECAHAN DENGAN METODE CONTEXTUAL TEACHING AND LEARNING (CTL DI SD MUHAMMADIYAH PROGRAM KHUSUS, KOTA BARAT, SURAKARTA

    Directory of Open Access Journals (Sweden)

    Yulia Maftuhah Hidayati

    2015-07-01

    Full Text Available This study is aimed to describe the lesson plan, teaching learning process of sum of fractions based of Contextual Teaching and Learning (CTL, and the motivation of learners attend classes in learning. This study used a qualitative approach. The type of research is a case study. Validation of data is done through triangulation. Data were collected through interviews, observation, documentation, and testing. The technique of data analysis is descriptive, entrepretative. The results of this study indicate that (1 the development of lesson plan has been implemented routinely in every new school year, (2 the process of learning mathematics goes through three stages, namely preinstructional phase (preliminary / initial activity, instructional phase (core activities, and appraisal, (3 during the learning process, the students have a high motivation to participate in activities  because of the method used by teachers is fun and enjoyable

  6. Memory reconsolidation mediates the updating of hippocampal memory content

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  7. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.

    Directory of Open Access Journals (Sweden)

    Dawn H Loh

    Full Text Available BACKGROUND: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD cycle. Such "jet lag" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. METHODOLOGY/PRINCIPAL FINDINGS: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. CONCLUSIONS/SIGNIFICANCE: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

  8. Easy to remember, difficult to forget: The development of fear regulation

    Directory of Open Access Journals (Sweden)

    D.C. Johnson

    2015-02-01

    Full Text Available Fear extinction learning is a highly adaptive process that involves the integrity of frontolimbic circuitry. Its disruption has been associated with emotional dysregulation in stress and anxiety disorders. In this article we consider how age, genetics and experiences shape our capacity to regulate fear in cross-species studies. Evidence for adolescent-specific diminished fear extinction learning is presented in the context of immature frontolimbic circuitry. We also present evidence for less neural plasticity in fear regulation as a function of early-life stress and by genotype, focusing on the common brain derived neurotrophin factor (BDNF Val66Met polymorphism. Finally, we discuss this work in the context of exposure-based behavioral therapies for the treatment of anxiety and stress disorders that are based on principles of fear extinction. We conclude by speculating on how such therapies may be optimized for the individual based on the patient's age, genetic profile and personal history to move from standard treatment of care to personalized and precision medicine.

  9. The role of sleep and sleep deprivation in consolidating fear memories.

    Science.gov (United States)

    Menz, M M; Rihm, J S; Salari, N; Born, J; Kalisch, R; Pape, H C; Marshall, L; Büchel, C

    2013-07-15

    Sleep, in particular REM sleep, has been shown to improve the consolidation of emotional memories. Here, we investigated the role of sleep and sleep deprivation on the consolidation of fear memories and underlying neuronal mechanisms. We employed a Pavlovian fear conditioning paradigm either followed by a night of polysomnographically monitored sleep, or wakefulness in forty healthy participants. Recall of learned fear was better after sleep, as indicated by stronger explicitly perceived anxiety and autonomous nervous responses. These effects were positively correlated with the preceding time spent in REM sleep and paralleled by activation of the basolateral amygdala. These findings suggest REM sleep-associated consolidation of fear memory in the human amygdala. In view of the critical participation of fear learning mechanisms in the etiology of anxiety and post-traumatic stress disorder, deprivation of REM sleep after exposure to distressing events is an interesting target for further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. An organization of visual and auditory fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Bergstrom, Hadley C; Johnson, Luke R

    2014-12-01

    Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA. Copyright © 2014. Published by Elsevier Inc.

  11. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  12. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    Science.gov (United States)

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  13. Noradrenergic stimulation modulates activation of extinction-related brain regions and enhances contextual extinction learning without affecting renewal

    Directory of Open Access Journals (Sweden)

    Silke eLissek

    2015-02-01

    Full Text Available Renewal in extinction learning describes the recovery of an extinguished response if the extinction context differs from the context present during acquisition and recall. Attention may have a role in contextual modulation of behavior and contribute to the renewal effect, while noradrenaline is involved in attentional processing. In this functional magnetic resonance imaging (fMRI study we investigated the role of the noradrenergic system for behavioral and brain activation correlates of contextual extinction and renewal, with a particular focus upon hippocampus and ventromedial PFC, which have crucial roles in processing of renewal. Healthy human volunteers received a single dose of the NA reuptake inhibitor atomoxetine prior to extinction learning. During extinction of previously acquired cue-outcome associations, cues were presented in a novel context (ABA or in the acquisition context (AAA. In recall, all cues were again presented in the acquisition context. Atomoxetine participants (ATO showed significantly faster extinction compared to placebo (PLAC. However, atomoxetine did not affect renewal. Hippocampal activation was higher in ATO during extinction and recall, as was ventromedial PFC activation, except for ABA recall. Moreover, ATO showed stronger recruitment of insula, anterior cingulate, and dorsolateral/orbitofrontal PFC. Across groups, cingulate, hippocampus and vmPFC activity during ABA extinction correlated with recall performance, suggesting high relevance of these regions for processing the renewal effect. In summary, the noradrenergic system appears to be involved in the modification of established associations during extinction learning and thus has a role in behavioral flexibility. The assignment of an association to a context and the subsequent decision on an adequate response, however, presumably operate largely independently of noradrenergic mechanisms.

  14. Fear of death.

    Science.gov (United States)

    Penson, Richard T; Partridge, Rosamund A; Shah, Muhammad A; Giansiracusa, David; Chabner, Bruce A; Lynch, Thomas J

    2005-02-01

    Shortly before his death in 1995, Kenneth B. Schwartz, a cancer patient at Massachusetts General Hospital (MGH) founded The Kenneth B. Schwartz Center at MGH. The Schwartz Center is a nonprofit organization dedicated to supporting and advancing compassionate health care delivery, which provides hope to the patient and support to caregivers and encourages the healing process. The center sponsors the Schwartz Center Rounds, a monthly multidisciplinary forum where caregivers reflect on important psychosocial issues faced by patients, their families, and their caregivers, and gain insight and support from fellow staff members. For many, cancer is synonymous with death. Fearing death is a rational response. For too long, medicine has ignored this primeval fear. Increasingly, clinicians recognize and address end-of-life issues, facing patients' and our own emotional vulnerabilities in order to connect and explore problems and fears. Listening and learning from the patient guides us as we acknowledge much of the mystery that still surrounds the dying process. Rarely is there a simple or right answer. An empathetic response to suffering patients is the best support. Support is vital in fostering the adjustment of patients. A silent presence may prove more helpful than well-meant counsel for many patients. Through an examination of eight caregiver narratives of their patients' experiences, the role of the health care provider in the dying process, particularly in regard to challenging fear, is reviewed.

  15. The time course of attentional deployment in contextual cueing.

    Science.gov (United States)

    Jiang, Yuhong V; Sigstad, Heather M; Swallow, Khena M

    2013-04-01

    The time course of attention is a major characteristic on which different types of attention diverge. In addition to explicit goals and salient stimuli, spatial attention is influenced by past experience. In contextual cueing, behaviorally relevant stimuli are more quickly found when they appear in a spatial context that has previously been encountered than when they appear in a new context. In this study, we investigated the time that it takes for contextual cueing to develop following the onset of search layout cues. In three experiments, participants searched for a T target in an array of Ls. Each array was consistently associated with a single target location. In a testing phase, we manipulated the stimulus onset asynchrony (SOA) between the repeated spatial layout and the search display. Contextual cueing was equivalent for a wide range of SOAs between 0 and 1,000 ms. The lack of an increase in contextual cueing with increasing cue durations suggests that as an implicit learning mechanism, contextual cueing cannot be effectively used until search begins.

  16. Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity

    Science.gov (United States)

    Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-jin

    2017-01-01

    Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available. PMID:28912739

  17. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  18. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  19. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Directory of Open Access Journals (Sweden)

    Stephan Koenig

    2017-05-01

    Full Text Available We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L, partial (P, and high (H shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L < P < H and the uncertainty of their prediction (L < P > H. During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention.

  20. Extinction partially reverts structural changes associated with remote fear memory

    DEFF Research Database (Denmark)

    Vetere, Gisella; Restivo, Leonardo; Novembre, Giovanni

    2011-01-01

    Structural synaptic changes occur in medial prefrontal cortex circuits during remote memory formation. Whether extinction reverts or further reshapes these circuits is, however, unknown. Here we show that the number and the size of spines were enhanced in anterior cingulate (aCC) and infralimbic...... (ILC) cortices 36 d following contextual fear conditioning. Upon extinction, aCC spine density returned to baseline, but the enhanced proportion of large spines did not. Differently, ILC spine density remained elevated, but the size of spines decreased dramatically. Thus, extinction partially erases...