WorldWideScience

Sample records for contaminated scrap metal

  1. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  2. Catalytic extraction processing of contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M. [Molten Metal Technology, Inc., Waltham, MA (United States)] [and others

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  3. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-01-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT's proprietary elemental recycling technology, to DOE's inventory of low level mixed waste. This includes DOE's inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D ampersand D) of DOE sites

  4. Feasibility of re-melting NORM-contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  5. Economic comparison of management modes for contaminated metal scrap

    International Nuclear Information System (INIS)

    Janberg, K.

    1987-01-01

    This report presents an economic study of the three following management modes for contaminated metal scrap: - decontamination of scrap metal followed by release, - direct melting of scrap metal, followed by release or restricted reuse, - super-compaction followed by disposal as radioactive waste. The present study, which refers to conditions prevailing in Germany, includes reviews of the contaminated scrap arisings, of experience with scrap management and of the licensing conditions for metal recycling. The results obtained during the treatment of more than 140 t of contaminated scrap metal show that: - super-compaction is the best procedure for all mixed metallic wastes of small dimensions and complex geometries, as decontamination is very costly in such a case and the melting would lead to undefined metallurgical products; - decontamination is recommendable for simple geometries and activities higher than the regulatory upper limit for melting in an industrial foundry (74 Bq/g); - direct melting for lower activity levels is gaining in competitiveness and has a good chance to be the best solution, in particular when the free use levels will be reduced below the currently accepted levels in Germany

  6. Transboundary Movement of Radioactively Contaminated Scrap Metal - Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Nizamska, M., E-mail: m.nimzamska@bnra.bg [Emergency Planning and Preparedness Division, Bulgarian Nuclear Regulatory Agency, Sofia (Bulgaria)

    2011-07-15

    Starting in 1989, Bulgaria has undergone a comprehensive transformation of its economy and social conditions. Part of this process is related to the intensive privatization that started in 2001. This privatization included facilities, as well as sites that use radioactive material for different applications - industry, medicine, agriculture, science, etc. The rapid change of property ownership and, in some cases, the resulting bankruptcy, has caused difficulties in tracing and identifying radioactive sources and materials and a deterioration of the system of safety, physical protection, etc. of radioactive material. In some cases, radioactive sources were stolen because of the value of their protective containers and sold for scrap metal. This led to the occurrence of different types of radiation incidents, mainly related to the discovery of radioactive sources in scrap metal. The consequences of these incidents include the risk of radiation exposure of the workers at scrap metal yards or reprocessing facilities and of members of the public and, in addition, radioactive contamination of the environment. The Bulgarian Nuclear Regulatory Agency (BNRA) has been responding to these incidents and has carried out a series of measures to improve the control over materials (e.g. activated or surface contaminated materials) and radioactive sources and to strengthen the preventive, monitoring, emergency preparedness and mitigating measures at facility, national and transboundary levels. This paper presents an analysis of the lessons learned by the BNRA and of the control of the transboundary movement of radioactively contaminated scrap metal through the territory of Bulgaria. (author)

  7. Challenges in the Management of Potentially Contaminated Scrap Metal

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W., E-mail: meehanrw@em.doe.gov [US Department of Energy, National Nuclear Security Administration, Washington, DC (United States)

    2011-07-15

    This paper describes the background and current status of the management of potentially contaminated metals and materials at the US Department of Energy (DOE) sites across the USA. The current DOE policy prohibiting the release of metal scrap for recycling from radiation areas is explained. Finally, a potential path forward to competently assess, characterize and clear material from radiological control is proposed that uses a combination of administrative processes and empirical techniques that are valid irrespective of the standard used for clearance. (author)

  8. Radiation protection aspects of the trafficking radionuclides contaminated metal scrap

    International Nuclear Information System (INIS)

    Prouza, Z.

    1999-01-01

    This paper covers the legal base of the release in the environment of radionuclides containing materials and the radiation protection aspects of trafficking in radionuclides contaminated materials. Materials, substance and objects containing radionuclides or contaminated by them may be released into the environment, if they do not exceed values authorized by SONS (State Office of Nuclear Safety). Legislative measures should be taken against illicit trafficking of the nuclear material in all the areas. The creation of a sophisticated system for the control and regulation of all important radionuclides released into the environment should be based on the radiation protection limits, constraints, reference and exemption levels which are introduced in the legislative documents; the strong supervision of producers and users of the sealed sources by SONS side, in addition to the requirements of the licensing process of their sources; a complete data-base and information exchange system related to illicit trafficking in contaminated material; in this system all the authorities with jurisdiction should be involved. The responsibilities of the persons involved in metal scrap trafficking should include arrangement of appropriate monitoring, rules for transport of the metal scrap, an adequate measuring system to monitor metal scrap including monitoring to prevent processing or smelting of the radioactive material, control measures, etc. All of the above items of legislation are an important challenge for the Czech Republic. (author)

  9. Worker exposures from recycling surface contaminated radioactive scrap metal

    International Nuclear Information System (INIS)

    Kluk, A.; Phillips, J.W.; Culp, J.

    1996-01-01

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10 -8 cancers per year to 10 -6 cancers per year

  10. Considerations in recycling contaminated scrap metal and rubble

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations

  11. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-01-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  12. Contaminated scrap metal management on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hayden, H.W.; Stephenson, M.J.; Bailey, J.K.; Weir, J.R.; Gilbert, W.C.

    1993-01-01

    Large quantities of scrap metal are accumulating at the various Department of Energy (DOE) installations across the country as a result of ongoing DOE programs and missions in concert with present day waste management practices. DOE Oak Ridge alone is presently storing around 500,000 tons of scrap metal. The local generation rate, currently estimated at 1,400 tons/yr, is expected to increase sharply over the next couple of years as numerous environmental restoration and decommissioning programs gain momentum. Projections show that 775,000 tons of scrap metal could be generated at the K-25 Site over the next ten years. The Y-12 Plant and Oak Ridge National Laboratory (ORNL) have similar potentials. The history of scrap metal management at Oak Ridge and future challenges and opportunities are discussed

  13. Analysis of disposition alternatives for radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative

  14. Innovative technologies for recycling contaminated concrete and scrap metal

    International Nuclear Information System (INIS)

    Bossart, S.J.; Moore, J.

    1993-01-01

    Decontamination and decommissioning of US DOE's surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019

  15. Contaminated nickel scrap processing

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include 234 Th, 234 Pa, 137 Cs, 239 Pu (trace), 60 Co, U, 99 Tc, and 237 Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs

  16. Contaminated nickel scrap processing

    Energy Technology Data Exchange (ETDEWEB)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  17. Radiometric monitoring of contaminated scrap metals imported in Italy. Technical and regulatory features

    International Nuclear Information System (INIS)

    Dobici, F.; Piermattei, S.; Susanna, A.

    1996-01-01

    During these last ten years there have been occasional reports of mishaps from trafficking of contaminated scraps or containing radioactive sources. Recently an increase of events indicated that the problem becomes more important as to generate possible consequences, from a radiation protection standpoint, for workers and general public. Following the detection of contaminated metal scraps in some recycling industries and in some consignments entering the Italian borders, the competent Authorities laid down rules to put the matter under control. In this paper technical and regulatory features are discussed. (author)

  18. CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS

    International Nuclear Information System (INIS)

    Watson, Dan; Eyman, Jeff

    2003-01-01

    Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related to this upgrade program have thus far accumulated in nine contiguous radiologically-contaminated and non-contaminated scrap yards covering 1.05E5 m2 (26 acres) located in the northwestern portion of the PGDP. This paper presents the sequencing of field operations and methods used to achieve the safe removal and disposition of over 47,000 tonnes (53,000 tons) of metal and miscellaneous items contained in these yards. The methods of accomplishment consist of mobilization, performing nuclear criticality safety evaluations, moving scrap metal to ground level, inspection and segregation, sampling and characterization, scrap metal sizing, packaging and disposal, and finally demobilization. Preventing the intermingling of characteristically hazardous and non-hazardous wastes promotes waste minimization, allowing for the metal and materials to be segregated into 13 separate waste streams. Low-tech solutions such as using heavy equipment to retrieve, size, and package scrap materials in conjunction with thorough planning that integrates safe work practices, commitment to teamwork, and incorporating lessons learned ensures that field operations will be conducted efficiently and safely

  19. ORO scrap metal decontamination program

    International Nuclear Information System (INIS)

    Jugan, M.

    1987-01-01

    The Oak Ridge Operations Office (ORO) of the US Department of Energy (DOE) has approximately 80,000 tons of contaminated scrap metal at the Oak Ridge Gaseous Diffusion Plant in Oak Ridge, Tennessee; Paducah Gaseous Diffusion Plant in Paducah, Kentucky; Portsmouth Gaseous Diffusion Plant in Piketon, Ohio; and the Feed Materials Production Center in Fernald, Ohio. After unsuccessful in-house attempts to eliminate/recycle the contaminated metal, DOE is allowing private enterprise the opportunity to participate in this program. DOE is making this opportunity available under a two-phase approach, which is being supported by two separate and corresponding Request for Proposals. Phase I, which is nearing completion, is a demonstration phase to establish a group of companies that the DOE will consider qualified to eliminate the scrap at one or more sites. In Phase I, the companies decontaminated 25-50 tons of scrap to demonstrate capabilities to DOE and to gain the knowledge required to plan/bid on elimination of the scrap at one or more sites. Phase II will request proposals for elimination of the total scrap at one or more of the above noted sites. Multiple awards for Phase II are also anticipated. Companies participating in Phase II will be required to take title to the contaminated scrap and decontaminate/process the scrap for beneficial reuse. Radioactive wastes and metal that cannot be successfully decontaminated/processed will be returned to DOE

  20. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, P. E.; Christensen, Thomas Højlund

    2000-01-01

    Field studies were performed at two actual scrap iron and metal recycling facilities in order to evaluate the extent of heavy metal migration into subsoil and groundwater caused by more than 25 years of handling scrap directly on the ground without any measures to prevent leaching. Surface soil...... samples, called `scrap dirt', representing the different activities on the two recycling facilities, all showed very high concentrations of lead (Pb), copper (Cu) and zinc (Zn), high concentrations of cadmium (Cd) , chromium (Cr) and nickel (Ni) and somewhat elevated concentrations of many other metals....... In particular high concentrations were found for Pb at the car-battery salvage locations (13 to 26 g Pb kg±1) and Cu at the cable burning location (22 g Cu kg±1) at one site. The migration of metals below the surface in general (except at the car-battery salvage locations) was very limited even after...

  1. Evaluation of the costs and benefits of recycling radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Durman, E.C.; Tsirigotis, P.; MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is evaluating the economic and technical issues associated with the potential recycling of radioactive scrap metals (RSM). These metals, usually only slightly contaminated, originate primarily from the decommissioning and decontamination (D and D) of federal facilities, licensees of the Nuclear Regulatory Commission, and certain unlicensed industries. EPA conducted a study entitled Analysis of the Potential Recycling of Department of Energy Radioactive Scrap Metal, September 6, 1994, for the U.S. Department of Energy (DOE) to provide information and tools to DOE for assessing DOE's problem with RSM from the D and D of their sites. EPA is now initiating an evaluation of RSM recycling to support a recycling regulation. Although the study prepared for DOE will provide a useful start for the regulatory analysis, additional information must be gathered to analyze the impacts of a recycling regulation that will apply to all potential generators of RSM. This paper summarizes cost-benefit issues related to an RSM recycling regulatory analysis, including: the quantity of potentially recyclable contaminated metals; costs of disposal at federal and private waste repositories; all potential environmental, health, and safety, and market impacts; and the potential for adverse effects on radio-sensitive industries. (author)

  2. Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility.

  3. Recycle of contaminated scrap metal, Volume 1. Semi-annual report, September 1993--January 1996

    International Nuclear Information System (INIS)

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP's off-gas treatment system would capture volatile heavy metals, such as mercury and lead; establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume I covers: executive summary; task 1.1 design CEP system; Task 1.2 experimental test plan; Task 1.3 experimental testing

  4. Recycle of contaminated scrap metal, Volume 1. Semi-annual report, September 1993--January 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume I covers: executive summary; task 1.1 design CEP system; Task 1.2 experimental test plan; Task 1.3 experimental testing.

  5. Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996

    International Nuclear Information System (INIS)

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP's off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility

  6. Legislative and Regulatory Control for the Safety of Radioactively Contaminated Scrap Metals Generated from Mining and Mineral Processing Facilities in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mohajane, E. P.; Shale, K., E-mail: PEMohajane@nnr.co.za [National Nuclear Regulator, Centurion, Gauteng (South Africa)

    2011-07-15

    In South Africa, enhanced levels of naturally occurring radioactive materials (NORM) are associated with many mining and industrial processes. Significant amounts of waste materials are involved which can result in radiation exposure of the workers and the public particularly through the diversion of materials into the public domain. The following operations have been regulated in South Africa for the past twenty years: operating metallurgical plants utilizing NORM, underground mining operations, scrap recyclers and smelters, and rehabilitation and remediation activities involving the above sites. The radioactively contaminated scrap metal generated from the above mentioned facilities is available for recycling in amounts of thousands of tons. The South African government has, to a certain extent, responded to the above-mentioned challenges by introducing regulatory controls to the affected industries. The existing regulatory controls have, however, not provided absolute answers to all issues associated with the management of scrap. (author)

  7. Fernald scrap metal recycling and beneficial reuse

    International Nuclear Information System (INIS)

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the open-quotes beneficial reuseclose quotes concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned

  8. Radioactive scrap metal decontamination technology assessment report

    International Nuclear Information System (INIS)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  9. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smelting radiologically contaminated scrap metal.

  10. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-01-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D ampersand D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE's cleanup of contaminated sites and facilities. The work described here has focused on recycle of the concentrated and high-value contaminated scrap metal resource that will arise from cleanup of DOE's gaseous diffusion plants

  11. Advanced technologies for decontamination and conversion of scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Muth, T.R.; Shasteen, K.E.; Liby, A.L. [Manufacturing Sciences Corp., Oak Ridge, TN (United States)] [and others

    1995-10-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities. The work described here has focused on recycle of the concentrated and high-value contaminated scrap metal resource that will arise from cleanup of DOE`s gaseous diffusion plants.

  12. German experience in recycling of contaminated scrap by melting

    International Nuclear Information System (INIS)

    Quade, U.

    2003-01-01

    Recycling of radioactively contaminated scrap to products for further application in the nuclear cycle is Germany as an economic alternative. It has been shown that recycling within the nuclear industry reduces the collective dose as well as the number of individuals who receive doses. In the future when decommissioning of NPP will increase, a high amount of slightly radioactive steel scrap has to be managed safely. Recycling will play an important role to keep as much of these materials within the nuclear cycle as economically possible. Siempelkamp supplies a broad range of products made of recycled material from the nuclear industry. Containers made of nodular cast iron for transport and storage of radwaste as well as containers made of concrete with iron granules additive to increase the density up to 4 g/cm 3 , are offered. Interim and final disposal volume, having consequences on costs, can be reduced when recycling is applied for slightly contaminated metallic scrap

  13. Radiation protection aspects in importing metallic scraps

    International Nuclear Information System (INIS)

    Risica, S.; Di Ciaccio, P.

    1996-09-01

    The meeting deals with radiation protection problems caused by the possibility that radioactive metal scraps or radioactive sources hidden in the scraps, may arrive in a foundry. The importance of this issue and of rational and systematic solutions is showed by several accidents, happened in the past in numerous countries, by many signals in Italy and by some papers published in international scientific journals or reports issued by authorities and institutions in different countries

  14. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  15. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-01-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D ampersand D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE's cleanup of contaminated sites and facilities

  16. Leachability of heavy metals from scrap dirt sampled at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, Peter Engelund; Christensen, Thomas Højlund

    2000-01-01

    Column and batch leaching experiments were performed to quantify leaching of heavy metals (Pb, Cu, Cd and Zn) from scrap dirt representing different activities at two iron scrap and metal recycling facilities. The scrap dirt is often found directly upon the bare unprotected soil at recycling...... battery salvage locations was different, showing lower pH and signi®cant leaching of lead (up to 8000 mg Pb l±1), cadmium (up to 40 mg Cd l±1), and zinc (up to 2000 mg Zn l±1). The column and batch leaching experiments gave comparable results at the order of magnitude level, and both approaches are......, at that level, useful for evaluation of leaching potentials from scrap dirt. The experiments showed that scrap dirt at recycling facilities constitutes only a modest leaching problem, but a long-term soil pollution problem from a land-use perspective. Leaching experiments with compost solution indicated...

  17. Problems concerned with scrap metal monitoring at borders

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1997-01-01

    Since the early 1980's numerous incidents have been reported in which radioactive material or empty labelled containers for radioactive sources have been found in scrap metal. Apart from the potential health hazard to employees and the general public resulting costs for decontamination, shutdown of production and waste of products already amounted to multi-million dollar figures. Since the opening of the ''iron border'' in Europe, incidents of illicit trafficking of radioactive sources across borders and contamination of scrap metal imported from the former ''Eastern Countries'' have considerably increased, as a result of the lack of a suitable radiation protection infrastructure in some of these countries. This initiated monitoring of scrap metal transports at the borders of several European countries, such as Austria, Finland, Germany and Italy. Up to now neither universally accepted clearance levels for scrap contamination, nor an agreed standardised procedure for its control exist, although the IAEA as well as the European Commission have proposed some recommendations. As a pragmatic solution for border monitoring it is suggested to apply, as practical clearance level, a dose rate on the outside of the vehicle in the order of 0,1 μSv/h, which is approximately equivalent to double natural environmental background. This dose rate would correspond to an activity concentration for 60 Co in the order of 1 kBq/kg and therefore be in a tolerable range, even in view of products coming in close contact with the public. (author)

  18. Assessment of recycling or disposal alternatives for radioactive scrap metal

    International Nuclear Information System (INIS)

    Murphie, W.E.; Lilly, M.J. III; Nieves, L.A.; Chen, S.Y.

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A open-quotes tieredclose quotes concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested

  19. Monitoring system with integrated measuring sensors for radioactively contaminated iron and non-iron scrap metal (MerEN). Final report; Ueberwachungssystem mit integrierter Messsensorik fuer radioaktiv belastete Eisen- und Nichteisenschrotte (MerEN). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Celebic, Enis; Gentes, Sascha [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technologie und Management im Baubetrieb; Rutschmann, Michael; Goerisch, Uwe [Prof. Dr.-Ing. Uwe Goerisch GmbH Ingenieurbuero fuer Abfallwirtschaft, Karlsruhe (Germany); Wetzel, Ramona [Schrott Wetzel GmbH, Mannheim (Germany)

    2015-08-15

    Radioactive sources are used in the industry, in nuclear medicine, the military, as well as in research. Accidents and losses rarely occur, a proper and responsible handling of those sources provided. Radioactive sources represent a risk when divulged, moved, passed on without authorization or lost. Time and again, radioactive sources are found at scrap yards and metal processing facilities. The supervision of these radioactive materials is gaining importance in the light of the worldwide import and export of ferrous and non-ferrous scrap. The aim of the project was to develop a space monitoring system for radioactively contaminated ferrous and non-ferrous scrap, so it can be removed from the operating range and to protect staff. The monitoring system combines technical and application-specific requirements. As part of the research project, the system was designed based on the operational framework conditions, technical and economic possibilities, and the findings from the experimental phase. The prototype mainly consists of a mainframe computer, stationary and mobile detection units, and the data transfer technology. This has successfully been tested at a scrap yard. The effects of vibrations that occur on scrapyards were investigated. This was necessary to obtain functionality of the hardware. The experimental phase was carried out based on a pre-defined set-up. The aim was to test the individual scenarios, processing and logging of the date as well to interpret the test results. In the event of radioactive sources being found in discarded metal, a standard sequence of actions was designed to protect the yard's processes and its personnel against further radioactive damage. For the first time, active radiation monitoring was performed on scrap-processing machines and in the working range of mobile devices. With this, scrap yard operators will have the opportunity to detect radioactively contaminated material at an early stage and before radiation sources are

  20. Feasibility study of a portable smelter for scrap metals

    International Nuclear Information System (INIS)

    Cavendish, J.H.

    1976-06-01

    The use of a portable smelter to process uranium-contaminated scrap metals was studied. Objectives were to convert scrap metal located at many diverse sites into a form which would be suitable for unlicensed sale and reduce the problems associated with storing the scrap. The Foundry Design Company study indicated the portable smelter concept was feasible from an equipment and transportation standpoint. Capital costs for a 5-ton/hour (steel) nominal capacity unit were estimated to be $2,349,000. Technical evaluation indicates that all the common metals considered, i.e., iron, nickel, copper, and aluminum, are amenable to uranium decontamination by smelting except aluminum. An economic evaluation of the processing of the 30,000 tons of steel scrap to be generated by the Cascade Improvement Program by a portable smelter was made based upon information supplied by Foundry Design Company, plus the assumption that the product metal could be sold for $120.00 per ton. This evaluation indicated a net return of $2,424,000 to the government could be realized. The Health and Safety study indicated no major problems of this nature would be encountered in operating a portable smelter. The legal review indicated the proposed operation fell within the authority of existing regulations. Consideration of possible conflicts with regard to competition with the private sector was suggested

  1. Ferrous and common nonferrous metals industries and associated scrap metals: a review

    International Nuclear Information System (INIS)

    Mautz, E.W.

    1975-11-01

    Literature on the common metals industries, scrap metal relationships, and transportation aspects has been reviewed as background information in a study to determine the feasibility of a portable melting facility for radioactively contaminated metals. This report draws substantially on government-sponsored studies. Aluminum, copper, iron and steel, and nickel metal industries are discussed from the viewpoints of the general industry characteristics, primary metal production processes, and secondary metal processing aspects. 46 references, 10 tables

  2. Characterization of naturally occurring radioactive materials and Cobald-60 contaminated ferrous scraps from steel industries

    International Nuclear Information System (INIS)

    Chao, H.E.; Chiu, H.S.; Hunga, J.Y.; His, H.W.; Chen, Y.B.

    2002-01-01

    Since the occurrence of radioactively contaminated rebar incident in 1992, steel industries in Taiwan were encouraged by Atomic Energy Council (AEC) to install portal monitor to detect the abnormal radiation in shipments of metal scrap feed. From 1994 through 1999, there were 53 discoveries of radioactivity in ferrous scraps by steel companies. These include 15 orphan radioactive sources, 16 cobalt-60 contaminated rebars, 20 Naturally Occurring Radioactive Material (NORM) contaminated scraps, and two unknowns. Most NORM-contaminated scraps were from abroad. The NORM and cobalt-60 contaminated scraps were taken from the steel mills and analyzed in laboratory. The analytical results of scales and sludge sampled from NORM-contaminated scraps combining with the circumstantial evidences indicate that five possible industrial processes may be involved. They are oil production and treatment, heavy mineral sand benefication and rare earth processing, copper mining and processing, recovery of ammonium chloride by lime adsorption in Ammonium-soda process, and tailing of uranium enrichment process. The cobalt-60 activity and trace elements concentrations of contaminated rebars confirm that all of them were produced domestically in the period from Oct. 1982 to Jan. 1983, when the cobalt-60 sources were lost and entered the electric arc furnace to produce the contaminated rebars. (author)

  3. Radioactive sources and contaminated materials in scrap: monitoring, detection and remedial actions

    International Nuclear Information System (INIS)

    Gallini, R.; Berna, V.; Bonora, A.; Santini, M.

    1999-01-01

    The scrap recycling in steel and other metal mills represents one of the most relevant activities in the Province of Brescia (Lombardy, Italy). In our Province more than 20 million tonnes of metal scrap are recycled every year by a melting process. Since 1990, many accidents which took place were caused by the unwanted melting of radioactive sources, that were probably hidden in metal scrap. In 1993, the Italian Government stated directives to monitor metal scrap imported from non-EC countries because of the suspicion of the illegal traffic of radioactive materials. In 1996, a law imposed the control of all metal scrap, regardless of their origins. Since 1993, our staff have controlled thousands of railway wagons and trucks. Approximately a hundred steel mills and foundries of aluminium, cooper, brass, etc. have also been controlled and many samples have been collected (flue dust, slag, finished products). During these controls, contaminated areas have been brought to light in two warehouses (Cs 137), in 6 companies (Cs 137 and Am 241), in two landfills of industrial waste (Cs 137) and in a quarry (Cs 137). Up to now the contaminated areas have been cleaned, except for the last one. About 150 radioactive sources on contaminated materials have been found in metal scrap. We found radioactive sources of Co 60, Ra 226, Ir 192, Kr 85, Am 241, while the contamination of metals was mainly due to Ra 226. The situation described above justifies an accurate control of the amount of scrap to reduce the risk of contamination of the workers in the working areas, in the environment and in the general public. (author)

  4. X-ray Fluorescence in Member States: Ghana. The Use of XRF for Contaminated Site Assessment in Ghana. 2. Estimation of Heavy Metals Contamination at Agbogbloshie E-scrap Yard Using EDXRF Technique

    International Nuclear Information System (INIS)

    Atiemo, S.M.; Ofosu, F.G.; Aboh, I.J. Kwame

    2012-01-01

    The emergence of the digital age has underscored the important role that electrical and electronic equipment (EEE) plays in a nation's socioeconomic development, including education, health delivery and communications, as well as global connectivity. In 2003 Ghana formulated its policy on information and communications technology (ICT) for accelerated development, with the understanding for instance, that Ghana's accelerated development would not be possible without an ICT-driven development agenda. The demand for EEE in Ghana grows by the day with a corresponding high rate of waste electrical and electronic (WEEE) generation. The WEEE industry in Ghana is a very vibrant one, growing at an amazing rate year after year. Ghana currently imports about 215 000 tonnes of electrical and electronic equipment per annum out of which an estimated 70% are second hand products. About 60-70% of the second hand products arrive in good working condition, 20-30% can be repaired or refurbished to get them functioning and 10-20% are junk and sent directly for the informal recycling. The Agbogbloshie scrap market in Accra came into the limelight following the publication of the report entitled 'Poisoning the Poor' by Greenpeace International. The report gave a damning revelation about the activities of scrap dealers and recyclers at the market. It was noted from the report that surface dust samples contained high concentrations of both heavy metals and persistent organic pollutants due to the unsafe and crude means of retrieving metals and components from the WEEE. This project was therefore designed to determine the heavy metal concentration of surface dust using the EDXRF and estimate the degree of contamination of the dust samples. Surface dust samples were collected from various vicinities within the scrap yard using the methods described above.

  5. Evaluation of radioactive scrap metal recycling

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information

  6. Evaluation of radioactive scrap metal recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  7. Advanced technologies for decontamination and conversion of scrap metals

    International Nuclear Information System (INIS)

    Muth, T.R.; Moore, J.; Olson, D.; Mishra, B.

    1994-01-01

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC's vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC's rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines

  8. Import of metal scrap - risks associated with radioactivity

    International Nuclear Information System (INIS)

    Elert, M.

    1992-11-01

    There is a growing concern in Sweden for the possibility that imported metal scrap is radioactive. The recent political and economical changes in eastern Europe and the increased cooperation with the CEC has affected Swedens import. In the last years, the import of metal scrap from the former USSR has increased considerably. In view of recent incidents, when radioactive materials have been found, the Swedish Radiation Protection Institute has detected a need for identifying the potential risk sources and evaluating the magnitude of the risk associated with the import of metal scrap. The purpose of this report is to provide some background material concerning import statistics, use of metal scrap in Sweden and to identify potential sources of radioactive metal scrap. In addition, the radionuclides of most concern has been identified and the possibility of detecting them in metal scrap shipments is analyzed

  9. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-01-01

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products

  10. Advanced technologies for decomtamination and conversion of scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a

  11. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ''Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  12. [Recycle of contaminated scrap metal]: Task 1.3.2, Bulk solids feed system. Topical report, October 1993-- January 1996

    International Nuclear Information System (INIS)

    1996-07-01

    A critical requirement in DOE's efforts to recycle, reuse, and dispose of materials from its decontamination and decommissioning activities is the design of a robust system to process a wide variety of bulk solid feeds. The capability to process bulk solids will increase the range of materials and broaden the application of Catalytic Extraction Processing (CEP). The term bulk solids refers to materials that are more economically fed into the top of a molten metal bath than by submerged injection through a tuyere. Molten Metal Technology, Inc. (MMT) has characterized CEP's ability to process bulk solid feed materials and has achieved significant growth in the size of bulk solid particles compatible with Catalytic Extraction Processing. Parametric experimental studies using various feed materials representative of the components of various DOE waste streams have validated design models which establish the reactor operating range as a function of feed material, mass flow rate, and particle size. MMT is investigating the use of a slurry system for bulk solid addition as it is the most efficient means for injecting soils, sludges, and similar physical forms into a catalytic processing unit. MMT is continuing to evaluate condensed phase product removal systems and alternative energy addition sources to enhance the operating efficiency of bulk solids CEP units. A condensed phase product removal system capable of on-demand product removal has been successfully demonstrated. MMT is also investigating the use of a plasma arc torch to provide supplemental heating during bulk solids processing. This comprehensive approach to bulk solids processing is expected to further improve overall process efficiency prior to the deployment of CEP for the recycle, reuse, and disposal of materials from DOE decontamination and decommissioning Activities

  13. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1993-01-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management

  14. Economic aspects of recycling U.S. Department of Energy radioactive scrap metal

    International Nuclear Information System (INIS)

    Harrop, J.; Numark, N.; MacKinney, J.

    1995-01-01

    The U.S. Department of Energy (DOE) has substantial quantities of scrap metal contaminated with low-levels of radioactivity. What is more important, current DOE Decommissioning and Dismantlement (D and D) plans will generate even more radioactive scrap metal. Disposition of this radioactive scrap metal could result in substantial costs to the DOE, but if certain options are exercised, could result in an economic gain. This paper outlines five basic options the DOE could follow for disposition of its radioactive scrap metal, and then examines the economic consequences of each option. A cost-benefit analysis was used to evaluate each of the five options. Real costs, derived from DOE studies and private industry, formed the basis for all analysis. These include transportation, packaging, processing (melt-refining) prices charged by industry, and burial fees and scrap metal storage facility operating and surveillance costs faced by the DOE. Other potential costs, such as the avoided costs of mining, and other less-well defined factors are assumed imbedded in the prices charged by industry for processing radioactive scrap metal. The results of this analysis show that burial cost is the most significant factor to consider in deciding which RSM disposition option to pursue. Moderate variations in burial costs can dramatically change the outcome of the cost-benefit analysis. (author)

  15. Fernald scrap metal and recycling and beneficial reuse

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    The Fernald plant, formerly known as the Feed Materials Production Facility, is located on a 1050-acre site 17 miles northwest of downtown Cincinnati, Ohio. Site construction was initiated in 1951 to fabricate uranium metal to meet defense production requirements of the U.S. Department of Energy (DOE). In October 1990, the DOE transferred management responsibility for the site from its Defense Programs organization to the Office of Environmental Restoration and Waste Management. In August 1991, the site was renamed the Fernald Environmental Management Project (FEMP) to reflect the site's new cleanup mission. During 40 yr of plant operation, a scrap metal storage area grew to contain 5000 t of scrap metal. Material in the pile, such as structural steel, crushed drums, tanks, and pipes, is contaminated with uranium to levels up to 200,000 disintegrations per minute alpha. In July 1991, cleanup of this pile was designated a CERCLA removal action under the Comprehensive Environmental Response, Compensation, and Liability Act and a consent agreement executed between the DOE and the U.S. Environmental Protection Agency

  16. Management of radiation protection aspects in the recycling of metallurgical scrap: the report of UNECE team of specialists on radioactive contaminated scrap

    International Nuclear Information System (INIS)

    Deckers, B.

    2001-01-01

    Complete text of publication follows: In 1999, the United Nations Economic Commission for Europe (UNECE) has created a Team of Specialists on Radioactive Contaminated Metal Scrap: technically qualified representatives of the steel industry, government representatives and competent international organizations representatives have studied the problem of radioactively contaminated scrap and steel, and have proposed solutions in this context acceptable at the international level in order to harmonize the legislation, the systems of measurement of radioactivity, the levels of detection. This team has established a document which will be published by the United Nations, and where good practices on managing radioactive metal scrap are presented, and which also contains numerous recommendations in order to harmonize legislations. The paper presents the content of the document and the main recommendations of the team. (author)

  17. Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal. Proceedings of an International Conference

    International Nuclear Information System (INIS)

    2011-01-01

    Radioactive substances can become associated with scrap metal in various ways and if not discovered they can be incorporated into steel and non-ferrous metals through the melting process. This can cause health hazards as well as environmental concerns and there can be serious commercial implications. Numerous incidents have occurred in recent years involving the discovery of radioactive substances in scrap metal and, in some cases, in metal from the melting process. These incidents have proved to be very costly in relation to the recovery and cleanup operations required but also in terms of the potential loss of confidence of the industry in scrap metal as a resource. This has led the scrap metal industry to seek ways of managing the problem. In most countries, shipments of scrap metal are monitored but at different points in the distribution chain and to different extents and efficiencies. As yet, only limited efforts towards unifying and harmonizing monitoring strategies and methods in the context of scrap metal have been made at the international level. The Conference was organized into five sessions: the global perspective, national policies and strategies, compliance with radiological criteria, management of incidents with contaminated scrap metal, and improving confidence and protecting the interests of stakeholders. The aim of the first session was to present the views and perspectives of the different organizations concerned with radioactive material in scrap metal, scrap metal recycling, steel making, radiation source security and safety and international trade and economics. The second session covered some of the national policies and strategies being used to address the control of radioactive material that has been inadvertently incorporated into scrap metal were presented. In addition to the oral presentations, contributions describing the situation in many countries of the world in the form of posters were displayed. The many posters reporting national

  18. Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal. Proceedings of an International Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    Radioactive substances can become associated with scrap metal in various ways and if not discovered they can be incorporated into steel and non-ferrous metals through the melting process. This can cause health hazards as well as environmental concerns and there can be serious commercial implications. Numerous incidents have occurred in recent years involving the discovery of radioactive substances in scrap metal and, in some cases, in metal from the melting process. These incidents have proved to be very costly in relation to the recovery and cleanup operations required but also in terms of the potential loss of confidence of the industry in scrap metal as a resource. This has led the scrap metal industry to seek ways of managing the problem. In most countries, shipments of scrap metal are monitored but at different points in the distribution chain and to different extents and efficiencies. As yet, only limited efforts towards unifying and harmonizing monitoring strategies and methods in the context of scrap metal have been made at the international level. The Conference was organized into five sessions: the global perspective, national policies and strategies, compliance with radiological criteria, management of incidents with contaminated scrap metal, and improving confidence and protecting the interests of stakeholders. The aim of the first session was to present the views and perspectives of the different organizations concerned with radioactive material in scrap metal, scrap metal recycling, steel making, radiation source security and safety and international trade and economics. The second session covered some of the national policies and strategies being used to address the control of radioactive material that has been inadvertently incorporated into scrap metal were presented. In addition to the oral presentations, contributions describing the situation in many countries of the world in the form of posters were displayed. The many posters reporting national

  19. The Study for Recycling NORM - Contaminated Steel Scraps from Steel Industry

    International Nuclear Information System (INIS)

    Tsai, K. F.; Lee, Y. S.; Chao, H. E.

    2003-01-01

    Since 1994, most of the major steel industries in Taiwan have installed portal monitor to detect the abnormal radiation in metal scrap feed. As a result, the discovery of NORM (Naturally Occurring Radioactive Material) has increased in recent years. In order to save the natural resources and promote radiation protection, an experimental melting process for the NORM contaminated steel scraps was carried out by the Institute of Nuclear Energy Research (INER) Taiwan, ROC. The experimental melting process has a pretreatment step that includes a series of cutting and removal of scales, sludge, as well as combustible and volatile materials on/in the steel scraps. After pretreatment the surface of the steel scraps are relatively clean. Then the scraps are melted by a pilot-type induction furnace. This experiment finally produced seven ingots with a total weight of 2,849 kg and 96.8% recovery. All of the surface dose rates are of the background values. The activity concentrations of these ingots are also below the regulatory criteria. Thus, these NORM-bearing steel scraps are ready for recycling. This study has been granted by the regulatory authority

  20. Beneficial reuse of US DOE Radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Motl, G.P.

    1995-01-19

    The US Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Since much of this metal cannot be decontaminated easily, past practice has been to either retain this material in inventory or ship it to DOE disposal sites for burial. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to ``beneficially reuse`` this material. Under the beneficial reuse concept, RSM that cannot be decontaminated and free released is used in applications where the inherent contamination is not a detriment to its end use. This paper describes initiatives currently in progress in the United States that support the DOE beneficial reuse concept.

  1. Beneficial reuse of US DOE Radioactive scrap metal

    International Nuclear Information System (INIS)

    Motl, G.P.

    1995-01-01

    The US Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Since much of this metal cannot be decontaminated easily, past practice has been to either retain this material in inventory or ship it to DOE disposal sites for burial. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to ''beneficially reuse'' this material. Under the beneficial reuse concept, RSM that cannot be decontaminated and free released is used in applications where the inherent contamination is not a detriment to its end use. This paper describes initiatives currently in progress in the United States that support the DOE beneficial reuse concept

  2. Activities and Issues in Monitoring Scrap Metal Against Radioactive Sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.Y., E-mail: sychen@anl.gov [Argonne National Laboratory, Argonne, IL (United States)

    2011-07-15

    Over the past few decades, the global scrap metal industry has grown increasingly vigilant regarding radioactive contamination. Accidental melts of radioactive sources in some smelting facilities, in particular, have caused considerable damage and required recovery efforts costing tens of millions of dollars. In response, the industry has developed and deployed countermeasures. Increasingly expensive and sophisticated radiation monitoring devices have been implemented at key scrap entry points - ports and scrapyards. Recognition of the importance of such endeavors has led to a series of activities aimed at establishing organized and coordinated efforts among the interested parties. Recent concerns over the potential use of radioactive sources for radiological devices in terrorist acts have substantially heightened the need for national and international authorities to further control, intercept, and secure the sources that have escaped the regulatory domain. Enhanced collaboration by the government and industry could substantially improve the effectiveness of efforts at control; the 'Spanish Protocol' as developed by the Spanish metal industry and government regulators is a good example of such collaboration. (author)

  3. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Science.gov (United States)

    2010-07-01

    ... minimize the presence of mercury in scrap from end-of-life vehicles. (3) Option for specialty metal scrap... metallic scrap and mercury switches? 63.10885 Section 63.10885 Protection of Environment ENVIRONMENTAL... Affected Sources § 63.10885 What are my management practices for metallic scrap and mercury switches? (a...

  4. Recycled scrap metal and soils/debris with low radioactive contents

    International Nuclear Information System (INIS)

    Carriker, A.W.

    1996-01-01

    Two types of large volume bulk shipments of materials with low radioactivity have characteristics that complicate compliance with normal transport regulations. Scrap metal for recycling sometimes contains radioactive material that was not known or identified by the shipper prior to it being offered for transport to a scrap recycle processor. If the radioactive material is not detected before the scrap is processed, radiological and economic problems may occur. If detected before processing, the scrap metal will often be returned to the shipper. Uranium mill-tailings and contaminated soils and debris have created potential public health problems that required the movement of large volumes of bulk material to isolated safe locations. Similarly, old radium processing sites have created contamination problems needing remediation. The US Department of Transportation has issued exemptions to shippers and carriers for returning rejected scrap metal to original shippers. Other exemptions simplify transport of mill-tailings and debris from sites being remediated. These exemptions provide relief from detailed radioassay of the radioactive content in each conveyance as well as relief from the normal requirements for packaging, shipping documents, marking, labelling, and placarding which would be required for some of the shipments if the exemptions were not issued. (Author)

  5. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  6. Radioactive Scrap Metal (RSM) recycling: A doe white paper

    International Nuclear Information System (INIS)

    Chatterjee, S.; Moore, H.H.; Ghoshal, A.

    1992-01-01

    An effective White Paper on recycling radioactive scrap metals has been drafted at the request of the U.S. Department of Energy (DOE) recently. The paper has received the praise and commendation of the DOE's Director of Environmental Management. However, obstructionist posturing by the petty bureaucrats in DOE continues to plague the meaningful implementation of RSM recycling. The key findings of the White Paper study and its major recommendations have discussed in this paper. The study indicates that several technologies, such as melt refining and electro refining, are currently available for surface and volume decontamination of metals. The unit cost of decontamination was found to vary from $700 to $400/ton; recycling of most low-contaminated metals can therefore be cost-effective vis-a vis the average cost of low-level radioactive wastes disposal of %400 to $2800/ton. Major recycling demonstration projects with emphasis on restricted RSM reuse options have been recommended. Volume contamination standard for unrestricted release should be established only after adequate studies of health effects and scientific/industrial effects of RSM reuse has been conducted by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC). Some of the significant technical data developed during this study have also been briefly discussed in this paper. (author)

  7. Y-12 old salvage yard scrap metal characterization study

    International Nuclear Information System (INIS)

    Anderson, L.M.; Melton, S.G.; Shaw, S.S.

    1993-11-01

    The purpose of the Y-12 Old Salvage Yard scrap metal Characterization Study is to make conservative estimates of the quantities of total uranium and the wt % 235 U contained in scrap metal. The original project scope included estimates of thorium, but due to the insignificant quantities found in the yards, thorium was excluded from further analysis. Metal in three of the four Y-12 scrap metal yards were characterized. The scrap metal yard east of the PIDAS fence is managed by the Environmental Restoration Program and therefore was not included in this study. For all Y-12 Plant scrap metal shipments, Waste Transportation, Storage, and Disposal (WTSD) personnel must complete a Request for Authorization to Ship Nuclear Materials, UCN-16409, which requires the grams of total uranium, the wt % 235 U, and the grams of 235 U contained in the shipment. This information is necessary to ensure compliance with Department of Transportation regulations, as well as to ensure that the receiving facility is adhering to its operating license. This characterization study was designed to provide a technical basis for determining these necessary radioactive quantities

  8. US Department of Energy`s weapons complex scrap metal inventory. Research report

    Energy Technology Data Exchange (ETDEWEB)

    Duda, J.R.

    1993-07-01

    Two tasks comprise the thrust of this contracted effort. Task 1 is the development of a Source List and is based on determining a list of public documents pertaining to contaminated/uncontaminated scrap metals, equipment, and other materials of value, were they not contaminated or could they be decontaminated. Task 2 is to develop an inventory of such materials from the Task 1 list of public documentation. In more detail, the Task 2 Inventory Report is based upon fulfillment of the following requirement to prepare and submit an Inventory Report based on the information obtained in the Source List. The Inventory Report shall define the type, quantity, and location of used equipment, scrap metal, and other materials existing within DOE`s system. The Inventory Report shall list: the site where the equipment, scrap metal, or other material resides; the type and size of equipment; the type and volume and/or weight of scrap metal or other material; its source; the type and level of contamination; its accessibility; the current annual rate of generation; and the projected annual rate of generation of the material.

  9. INEL metal recycle radioactive scrap metal survey report

    International Nuclear Information System (INIS)

    Funk, D.M.

    1994-09-01

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal

  10. Measures to detect and control radioactive contaminated metallurgical scrap at border checkpoints in Poland

    International Nuclear Information System (INIS)

    Smagala, G.

    1999-01-01

    The issue of radioactive contaminated metallurgical scrap has never received a high priority in Poland and in the international community. Since the dissolution of the former Soviet Union a higher attention has been given to the problem. Poland which is located between the West and East Europe has the obligation to develop and implement an effective prevention and detection system. The reasons to increase national control and detection system at the border checkpoints in Poland are to avoid the following risks: post Chernobyl contamination transports of commodities; transport of contaminated metal scrap; transfer of radioactive waste for their disposal or utilization; high risk of becoming a transit country of illicit trafficking of nuclear materials and radioactive sources. In order to avoid the above-mentioned risks, Poland initiated in 1990, a deployment of the portable radiation devices at the border checkpoints and, as of 1998, the number of installed instruments exceeded a hundred. This paper presents Poland's activities to detect contaminated scrap at its border checkpoints. (author)

  11. Health risk and impact evaluation for recycling of radioactive scrap metal

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Murphie, W.E.; Lilly, M.J. III

    1994-01-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of international inventory estimates for contaminated metals; investigation of international scrap metal markets; assessment of radiological and non-radiological human health risks; impacts on environmental quality and resources; and investigation of social and political factors. The RSM disposal option is being assessed with regard to the environmental and health impacts of replacing the metals if they are withdrawn from use. Impact estimates are developed for steel as an illustrative example because steel comprises a major portion of the scrap metal inventory. Current and potential sources of RSM include nuclear power plants, fuel cycle and weapons production facilities, industrial and medical facilities and equipment, and petroleum and phosphate rock extraction equipment. Millions of metric tons (t) of scrap iron and steel, stainless steel, and copper, as well as lesser quantities of aluminum, nickel, lead, and zirconium, are likely to become available in the future as these facilities are withdrawn from service

  12. Recycling of contaminated scrap by melting 10 years of experience in Germany

    International Nuclear Information System (INIS)

    Hamm, M.; Kreh, R.; Quade, U.

    2000-01-01

    Recycling of slightly radioactively contaminated steel scrap from nuclear installations has been developed in Germany since the early 80's. 14,000 t of steel scrap were melted in the single purpose melting plant CARLA at Siempelkamp, Krefeld, up to now. As much material as possible is used for recycling to cast iron containers, shieldings or to replace iron ore in heavy concrete shieldings by iron granules. By this well developed recycling technique within the nuclear cycle radiation exposure of the general public could be avoided. Due to the max. achievable volume reduction, 80 % of final disposal volume have been saved so far. To manage the upcoming metallic waste from decommissioning of nuclear power plants, this recycling path will play an important role in the future. (authors)

  13. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  14. Radioactive contamination of recycled metals

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Cool, D.A.; Yusko, J.G.

    1996-01-01

    Radioactive sources commingled with metal scrap have become a major problem for the metals recycling industry worldwide. Worldwide there have been 38 confirmed reports of radioactive sources accidentally smelted with recycled metal. In some instances, contaminated metal products were subsequently distributed. The metal mills, their products and byproducts from the metal making process such as slags, crosses and dusts from furnaces can become contaminated. In the U.S., imported ferrous metal products such as reinforcement bars, pipe flanges, table legs and fencing components have been found contaminated with taco. U.S. steel mills have unintentionally smelted radioactive sources on 16 occasions. The resulting cost for decontamination waste disposal and temporary closure of the steel mill is typically USD 10,000,000 and has been as much as USD 23,000,000. Other metal recycling industries that have been affected by this problem include aluminum, copper, zinc, gold, lead and vanadium. (author)

  15. Summary of industrial impacts from recycled radioactive scrap metals

    International Nuclear Information System (INIS)

    Dehmel, J.-C.; Harrop, J.; MacKinney, J.A.

    1995-01-01

    During operation, decontamination, and dismantlement, nuclear facilities are generating significant quantities of radioactive scrap metal (RSM). Future decommissioning will generate even more RSM. The petroleum industry also generates RSM in the form of equipment contaminated with naturally occurring radioactivity. Finally, the accidental melting of radioactive sources in steel mills has generated smaller amounts of contaminated metals. Steel mills, smelters, and foundries could recycle these materials, which might then appear in finished products or as feedstocks used by other industries. If introduced in this manner, residual radioactivity can adversely affect the performance of certain products. Such products include computers and other devices that rely on integrated circuits. The most important effect of residual radioactivity on integrated circuits is a phenomenon known as 'single event upsets or soft errors.' Radioactivity can also adversely affect the performance of products such as photographic film and components designed to measure the presence of radioactivity. Radioactivity that raises background count-rates to higher levels could affect the performance of radiation monitoring systems and analytical equipment. Higher background count-rates would lead to reduced sensitivity and lower resolution in spectroscopic systems. The computer, photographic, and radiation measurement industries have taken steps to minimize the impact of residual radioactivity on their products. These steps include monitoring manufacturing processes, specifying material acceptance standards, and screening suppliers. As RSM is recycled, these steps may become more important and more costly. This paper characterizes potentially impacted industries and vulnerability and effects due to the presence of residual radioactivity. Finally, the paper describes practices used to limit the impact of residual radioactivity. (J.P.N.)

  16. Assessment of DOE radioactive scrap metal disposition options

    International Nuclear Information System (INIS)

    Butler, C.R.; Kasper, K.M.; Bossart, S.J.

    1997-01-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D ampersand D) projects. The volume of RSM will continue to increase as a result of the D ampersand D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside a DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively

  17. Assessment of DOE radioactive scrap metal disposition options

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.R.; Kasper, K.M. [Waste Policy Institute, Morgantown, WV (United States); Bossart, S.J. [Department of Energy, Morgantown, WV (United States)

    1997-02-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D&D) projects. The volume of RSM will continue to increase as a result of the D&D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside a DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively.

  18. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    Science.gov (United States)

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  19. Radioactive materials in scrap metal, the situation in Switzerland

    International Nuclear Information System (INIS)

    Jossen, H.

    2005-01-01

    About 10 years ago, different happenings in the Swiss and international metal scrap recycling scene created a sensibility to unwanted radioactive substances in scrap metal. Italy, one of the main buyers for scrap metals, started at its borders with systematic checks, arranged by authorities. As a consequence, in Switzerland a concept was elaborated under cooperation of the recycling companies, the Italian authorities, the Federal Office of Public Health (BAG), Swiss Federal Nuclear Safety Inspectorate (HSK) and the Swiss National Accident Insurance Fund (Suva) to fulfil the different requirements. Individual radioprotection, protection of environment, protection of work yard and machinery and the quality assurance of the recycled metals and the resulting products requires adapted solutions with the main issues: training, suitable measuring equipment and an intervention-and waste management. Detected radioactive substances are professionally recovered, stored and submitted to the radioactive waste collection. The investigation of the happenings can lead to useful hints on gaps and on chances for improvements in general radioprotection. (orig.)

  20. Management of radioactive scrap metal at SCK-CEN

    International Nuclear Information System (INIS)

    Noynaert, L.; Klein, M.; Cornelissen, R.; Ponnet, M.

    2000-01-01

    The environmental concern and public perception as well as the steadily increase of the conditioning and disposal costs are pushing the nuclear sector to minimise the amount of radioactive waste. Hence it is a strong incentive to prefer the management option 'recycling and reuse' instead of the option 'disposal and replacement'. The 'recycling and reuse' option requires the availability of decontamination techniques as well as measuring techniques allowing to prove that the release criteria are met. Therefore SCK-CEN has now two decontamination installations for scrap metal on its own site. One installation uses a wet abrasive technique while the other one uses a chemical process based on the Ce 4+ . These two installations, combined with the use of foundries for free release or for radioactive scrap metal recycling are now common practices at SCK-CEN and will allow to reduce the metallic waste to 10% of the metallic scrap production and the costs at least by a factor 2.5. (author)

  1. Detection of contaminated metallurgical scrap at borders: a proposal for an 'investigation level'

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1999-01-01

    In 1995 the IAEA started a program to combat illicit trafficking in nuclear and other radioactive materials which includes the problem of cross-border movement of contaminated metallurgical scrap. A major activity in this program is the elaboration of a Safety Guide on 'Preventing, Detecting and Responding to Illicit Trafficking', co-sponsored by the World Customs Organization (WCO) and INTERPOL. The guide will provide advice to the Member States, in particular on technical and administrative procedures for detection of radioactive materials at borders. Radiation monitoring systems for contaminated scrap metals have been successfully used in steel plants and larger scrap yards since several years and suitable products are on the market today. Using sophisticated software and dynamic scanning techniques such systems allow for detection of an artificial increase in radiation background level as low as by 20%, even if the natural background signal is substantially suppressed by the vehicle itself entering the monitor. However, the measurement conditions at borders are essentially different from those in plants. Large traffic crossing major borders limits the time for detection and response to a few seconds and multiple checks are nearly impractical. Shielded radioactive sources - even of high activity - which are deeply buried in scrap, cannot be detected without unloading the vehicle, a procedure generally ruled out at borders. Highly sensitive monitoring systems necessarily cause frequent false alarms or nuisance alarms due to innocent radioactive materials such as naturally occurring radioactivity e.g. in fertilizers, scale in pipes used in the oil industry or medical radioisotopes. A particular, rather frequent problem is the unnecessary reject of scrap transports on borders due to the inherent low level contamination of steel with 60 Co, even in sheet metal used for lorries or railroad cars. Such contamination can easily be caused by the routine method to control

  2. System for Prevention, Detection and Response to Radioactive Materials in Scrap Metal in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Makarovska, O., E-mail: makarovska@hq.snrc.gov.ua [State Nuclear Regulatory Committee of Ukraine, Kiev (Ukraine)

    2011-07-15

    The State control system to prevent, detect and respond to cases of radioactive material in scrap metal is functioning in Ukraine. The system includes regulations for the safe and secure management of metal scrap and administrative and technical measures to prevent, detect and respond to cases of radioactive material in scrap metal. The key elements of prevention are the system of licensing and supervision in the sphere of radioactive material use and the State system for inventory, registration and control of radiation sources. Metal scrap management is licensed by the Ministry of Industrial Policy and one of the licence conditions is radiation control of the scrap metal. State supervision of the operations with metal scrap is provided by Ministry of Health and Ministry of Environmental Protection according to the regulation 'State sanitary-ecological standard for metal scrap management'. Specific standards exist for the export of metal scrap. Export consignments are followed by a certificate that proves the radiological safety of the metal. Ukrainian metallurgical plants provide an input radiation control of metal scrap and an output control of the produced metal. Thus, there exists a five barrier system of metal scrap control: border control; exclusion zone perimeter control; metal scrap dealers control; metallurgical plants (input control and output control of produced metal); and export consignments radiological certification. To regain control over orphan sources (including occasional radioactive material in the scrap metal) the 'procedure for interaction of executive authorities and involved legal entities in case of revealing of radiation sources in no legal use' was approved by a Resolution of the Cabinet of Ministers of Ukraine. The investigation of each case with feedback, information of involved bodies, safe and secure storage of restored radioactive material are provided according to this procedure. (author)

  3. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  4. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    International Nuclear Information System (INIS)

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product

  5. Metal Exposures at three U.S. electronic scrap recycling facilities.

    Science.gov (United States)

    Ceballos, Diana; Beaucham, Catherine; Page, Elena

    2017-06-01

    Many metals found in electronic scrap are known to cause serious health effects, including but not limited to cancer and respiratory, neurologic, renal, and reproductive damage. The National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention performed three health hazard evaluations at electronic scrap recycling facilities in the U.S. to characterize employee exposure to metals and recommend control strategies to reduce these exposures. We performed air, surface, and biological monitoring for metals. We found one overexposure to lead and two overexposures to cadmium. We found metals on non-production surfaces, and the skin and clothing of workers before they left work in all of the facilities. We also found some elevated blood lead levels (above 10 micrograms per deciliter), however no employees at any facility had detectable mercury in their urine or exceeded 34% of the OELs for blood or urine cadmium. This article focuses on sampling results for lead, cadmium, mercury, and indium. We provided recommendations for improving local exhaust ventilation, reducing the recirculation of potentially contaminated air, using respirators until exposures are controlled, and reducing the migration of contaminants from production to non-production areas. We also recommended ways for employees to prevent taking home metal dust by using work uniforms laundered on-site, storing personal and work items in separate lockers, and using washing facilities equipped with lead-removing cleaning products.

  6. Recycling decontaminated scrap metal from the nuclear industry

    International Nuclear Information System (INIS)

    Bordas, F.

    2000-01-01

    The Commissariat a l'Energie Atomique (CEA) has set up a pilot program for recycling decontaminated scrap metal. In decommissioning its enriched uranium production facilities at Pierrelatte, the CEA has accumulated some 700 metric tons of scrap metal from dismantled uranium hexafluoride transport containers. The containers were decontaminated by SOCATRI at the Tricastin site, then cut up and recycled by a steelmaker. The project was submitted to the Ionizing Radiation Protection Office, the Nuclear Facilities Safety Division and the Regional Directorate for Industry, Research and Environmental Protection for approval. It was also submitted to the Ministry of Industry's Nuclear Information and Safety Council and to the Permanent Secretariat for Industrial Pollution Problems (an informational group chaired by the Prefect of the Provence Alpes-Cote d Azur region and including representatives of local and regional authorities, associations, elected officials and the media). The permit was granted for this program under the terms of a prefectorial decree stipulating additional requirements for the steelmaker, and contingent on the demonstration of full control over the operations, demonstrated traceability and the absence of any significant harmful effects. The key elements of this demonstration include the choice of operators, identification of the objects, itemization of the operations, discrimination of operators, the contractual framework of the operations, the signature of agreements by the CEA with SOCATRI and with the steelmaker, documentary monitoring of the operations, contradictory inspections and measurements, second-level inspection by the CEA/Valrho, audits of the operators and impact assessments. All the procedures of operations related to the scrap metal are described in quality assurance documents. (author)

  7. Assessment of recycling or disposal alternatives for radioactive scrap metal

    International Nuclear Information System (INIS)

    Murphie, W.E.; Lilly, M.J. III

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development (OECD) is an evaluation of management alternatives for radioactive scarp metals. For this purpose, Argonne National Laboratory is assessing alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives (with metal replacement). Findings will be presented in a report from the OECD Task Group. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A ''tiered'' concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conversatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested

  8. Distribution, enrichment and accumulation of heavy metals in coastal sediments of Alang-Sosiya ship scrapping yard, India.

    Science.gov (United States)

    Reddy, M Srinivasa; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ramachandraiah, G

    2004-06-01

    Since its inception in 1982, the Alang-Sosiya yard has become the largest ship scrapping works in the world. Several hundreds of ships arrive every year. The degree of heavy metal contamination has been studied in bulk and fine sediments from the intertidal zone of this ship scrapping yard, two stations, one on either side at 5 km distance and one reference station 60 km distance near Mahuva, towards the south. The samples have been subjected to a total digestion technique and analysed for elements: Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Zn and Al, and %TOC. The absolute metal concentrations reflected variations in BF and FF sediment samples with organic matter content. Enrichment factors (EF) and geoaccumulation indices (Igeo) have been calculated and the relative contamination levels are assessed at these sites. At Alang-Sosiya, the enrichment of heavy metals has been observed to be relatively high.

  9. Recycling of radioactively contaminated scrap from the nuclear cycle and spin-off for other application

    Directory of Open Access Journals (Sweden)

    Quade, U.

    2005-12-01

    Full Text Available In the 1980ies, Siempelkamp foundry in Krefeld, Germany, developed a process to melt medium and slightly radioactive metals from decommissioning and maintenance works in nuclear power plants. Since 1989, in the CARLA melting plant which is licensed according to the German radiation protection ordinance (StrlSchV, metals are being molten which, for the largest part, can be reused. Since 1998, in a second plant, the GERTA melting plant, metals with a content of mercury up to 1 weight %, natural radioactivity up to 500 Bq/g and other chemical contaminations are being molten and completely decontaminated, so that these metals can be reused in the steel cycle. The following text is describing the melting process, acceptance criteria for contaminated scrap and recycling paths for the produced ingots and slags.

    La fundición Siempelkamp en Krefeld, Alemania, desarrolló, en los años 80, un proceso para fundir metales mediana y levemente radioactivos, procedentes de reparaciones o desmantelamiento de plantas nucleares. En la planta de fundición CARLA, que cumple los requisitos del decreto de protección contra radiaciones de la República Federal de Alemania, se funden metales desde 1989, de los cuales la mayor parte puede ser utilizada nuevamente. Desde 1998, en una segunda planta, fundición GERTA, se funden y descontaminan totalmente, metales de hasta un 1 % de peso de mercurio, con una radioactividad natural de hasta 500 Bq/g y con otros contaminantes químicos. De este modo los metales pueden ser nuevamente utilizados en el ciclo metálico. El texto adjunto describe el método para el fundido, los criterios para aceptar chatarra contaminada y las vías de utilización para los bloques de metal y escorias generadas en el proceso.

  10. Mercury-impacted scrap metal: Source and nature of the mercury.

    Science.gov (United States)

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  11. The prospect for recycle of radioactive scrap metals to products for restricted and unrestricted use

    International Nuclear Information System (INIS)

    Liby, A.L.

    1995-01-01

    Large quantities of radioactive scrap metals will arise from decontamination and decommissioning of nuclear power plants and DOE facilities. Much of this metal can be easily decontaminated and released to the existing secondary metals industry for recycling. For metal that can not be readily released, recycle into restricted-use end products is an economically attractive alternative to burial as low level radioactive waste. This paper will examine sources and types of scrap metal, technical approaches, potential products, and economics of metals recycle. Construction, licensing, environmental compliance, and possible reuse of existing nuclear facilities for metals recycling will be discussed. (author)

  12. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria

    NARCIS (Netherlands)

    Ilyas, Sadia; Anwar, Munir A.; Niazi, Shahida B.; Ghauri, M. Afzal

    The present work was aimed at studying the bioleachability of metals from electronic scrap by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans and an unidentified acidophilic

  13. Scrap metals' role in circular economy in Ghana, using Sunyani as a ...

    African Journals Online (AJOL)

    EJIRO

    quantity and economic value of scrap metals as essential part of resource ... Therefore, proper education, policy and regulatory measures are key recommendations to ... The methodology of this research includes the description of the.

  14. Metals, scraps and opportunities; Metales, chatarras y oportunidades

    Energy Technology Data Exchange (ETDEWEB)

    Roman Ortega, F.

    2003-07-01

    This article attempts to focus on the vision that recuperation and recycling of metals is an activity which must attract attention of Mine Engineers, as much for its increasing importance as the fact that the techniques involved are not anything else but adaptation, in certain conditions of the ones used in the treatment and benefit of the metallic ores. (Author)

  15. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    International Nuclear Information System (INIS)

    Sappok, M.

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel and chromium especially, does not allow for the recycling of stainless steel in a percentage to make this process economical. In Germany, the state of the art is to use shielded concrete containers for the transport of low active waste; this concrete is produced by using hematite as an additive for increasing shielding efficiency. The plan was to produce steel granules from radioactive scrap metal as a substitute for hematite in shielding concrete

  16. Advanced methods for incineration of solid, burnable LLW and melting for recycling of scrap metals

    International Nuclear Information System (INIS)

    Krause, G.; Lorenzen, J.; Lindberg, M.; Olsson, L.; Wirendal, B.

    2003-01-01

    Radioactive contaminated waste is a great cost factor for nuclear power plants and other nuclear industry. On the deregulated electricity market the price on produced kWh is an important competition tool. Therefore the waste minimisation and volume reduction has given highest priority by many power producers in the process to achieve savings and hence low production cost. Studsvik RadWaste AB in Nykoeping, Sweden, is a company specialised in volume reduction of LLW, as solid combustible waste and as scrap metal for melting and recycling. The treatment facility in Sweden offers this kind of services - together with segmentation and decontamination when necessary - for several customers from Europe, Japan and USA. In addition to these treatment services a whole spectrum of services like transportation, measurement and safeguard, site assistance, industrial cleaning and decontamination in connection with demolition at site is offered from the Studsvik company. (orig.)

  17. Utilization of metal scrap for the production of waste drums for ultimate disposal

    International Nuclear Information System (INIS)

    Janberg, K.; Rittscher, D.

    1988-01-01

    The contribution reviews the history of development of the techniques for treatment of decommissioning scrap from the beginning of the 1980's onwards (decommissioning of the Niederaichbach and Gundremmingen nuclear power stations), together with the radiological measuring methods required for regulatory purposes. The advantages of the recycling of the metal scrap by means of melting, and of materials utilization for production of waste containers for ultimate storage are discussed together with product quality assurance criteria. (RB) [de

  18. Recycle and reuse of radioactive scrap metals within the department of energy

    International Nuclear Information System (INIS)

    Adams, V.; Murphie, W.; Gresalfi, M.

    2000-01-01

    The United States Department of Energy (DOE) National Center of Excellence for Metals Recycle (NMR) is pursuing recycle and reuse alternatives to burial of radioactive scrap metal. This approach is being implemented in a safe and environmentally sound manner, while significantly lowering dis-positioning cost and accelerating cleanup activities. This paper will define the NMR's success to date in promoting safe and cost effective recycle and reuse strategies for DOE's excess metals, through the use of case studies. The paper will also present actual volumes of metal moved by DOE into restricted and unrestricted uses since 1997. In addition, this paper will discuss the principle underlying the Three Building Decommissioning and Decontamination (D and D) Project in Oak Ridge, Tennessee. In January 2000, the Secretary of Energy placed a moratorium on the unrestricted release of volumetrically contaminated metals from the DOE sites. Pursuant to that moratorium, the Secretary also established a ''Re-Use and Recycling Task Force'' to conduct a review of DOE policies regarding the management and release of all materials for recycle and reuse from DOE facilities. This task force was charged to develop a set of recommendations to ensure the protection of public health and the environment, openness and public trust, and fiscal responsibility. This paper will present an overview of the DOE's present range of recycle and reuse alternatives to disposal, as practiced by the NMR, and discuss the policy and issues associated with the task force mission. (authors)

  19. Statistical treatment of hazards result from radioactive material in metal scrap

    International Nuclear Information System (INIS)

    Salem, E.F.; Rashad, S.M.

    2013-01-01

    Radioactive sources have a wide range of uses in medicine and industry. Radioactive materials entering the public domain in an uncontrolled manner may creating a serious risk of radiation exposure for workers and the public as well as excessive costs for plant decontamination and waste of product to be borne by the metal industry. This paper describes the major accidents that had happened in the last decades due to radioactive material in metal scrap, provides assessment of associated hazards and lessons learned. This will help Regulatory Authority to introduce measures capable to avoid the recurrence of similar events. The study highlights the situation for metal scrap incidents in Egypt.

  20. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-01-01

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  1. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  2. Slovenian System for Protecting Against Radioactive Material in Scrap Metal Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A.; Cesarek, J.; Vokal Nemec, B., E-mail: andrej.stritar@gov.si [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2011-07-15

    The Slovenian experience shows that the majority of detected orphan sources are associated with imports of scrap metal to Slovenia and transits of that material through Slovenia. Such orphan sources originate from past industrial activities and weak regulatory control in the countries of origin. In order to minimise the number of sources outside regulatory control several regulatory and law enforcement measures have been implemented. To prevent illicit trafficking across the border the 'First line of defence' - customs and police - are equipped with radiation detection devices. Since 2002, the Slovenian Nuclear Safety Administration (SNSA) has provided a 24-hour on-duty officer, who gives advice in case of the discovery of an orphan source. The majority of scrap metal collectors and re-cyclers are equipped with portal monitors and/or hand-held radiation detection equipment. Generally, good cooperation has been established between different organizations within Slovenia, with neighbouring countries and with some international organizations. To regulate the scrap metal activities, a new Decree on checking the radioactivity of shipments of metal scrap has been in force since 1 January 2008. This decree requires that every importer has to present a certificate of radiation measurement before any shipment of scrap metal is brought into Slovenia. Such measurements can be performed only by certified organizations. These organizations can obtain certification from the SNSA providing that they have the prescribed measuring devices, adequate training and procedures, and that their capabilities have been checked by a technical support organization. The experience after one year of application of the decree is positive. Awareness, including the adequacy of response, has increased. The paper discusses the general scheme for protection against illicit radioactive material in scrap metal shipments and the Slovenian experience in the last decade. (author)

  3. An assessment of the potential radiation exposure from residual radioactivity in scrap metal for recycling

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Lee, Kun Jai

    1997-01-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low level waste (LLW), generated within nuclear facilities, is in fact uncontaminated. This may include operational wastes, metal and rubble, office waste and discrete items from decommissioning or decontamination operations. Materials that contain only trivial quantities of radionuclides could realistically be exempted or released from regulatory control for recycle or reuse. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective doses of 10 μ Sv as a limit for the individual radiation dose. In 1990, new recommendation on radiation protection standards was developed by International Commission on Radiological Protection (ICRP) to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30, Parts 1 ∼ 4. This study summarized the potential radiation exposure from valuable scrap metal considered to uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people following were analyzed and relevant models developed. Finally, concentrations leading to an individual dose of 10 μ Sv/yr were calculated for 14 key radionuclides. These potential radiation exposures are compared with the results of an IAEA study. 12 refs., 6 tabs., figs

  4. Radioactive metal scrap recycling by melting process at the Chernobyl site

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1995-01-01

    Within its TACIS programme the European Union ordered a feasibility study on the cleaning-up of the Chernobyl area from radioactively contaminated metallic material. The study was performed by a Ukrainian German Working Group under the leadership of Siempelkamp and finalized at the end of March 1994. The on-site evaluation for the 30 km exclusion zone showed an overall mass of metal scrap of min. 100,000 Mg with a maximum specific activity of 400 Bq/g based on 48 open depositories within the restricted area. Dominant radionuclides were Cs-137 and Sr-90 accompanied by a very low proportion of α-activity. The study report showed the technical feasibility of a melting plant designed with a throughput of 10'000 Mg per year and its suitability for the overall concept to handle the Chernobyl waste. The main task for the near future can be identified as the establishing of a sound financial concept. (author) 5 figs., 3 tabs., 2 refs

  5. Liquid metal extraction of Nd from NdFeB magnet scrap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanchen [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    This research involves using molten magnesium (Mg) to remove neodymium (Nd) from NdFeB magnet scrap by diffusion. The results show that liquid metal extraction of Nd may be a viable and inexpensive method for recovering the expensive rare earth element Nd for use in Mg castings.

  6. Efficient recovery of gold and other noble metals from electronic and other scraps

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hidetoshi

    1987-01-01

    Pure gold is extracted from crude gold by the solvent extraction method in the recovery and refining process for Noble metals recovered from electronic and other scraps. This solvent extraction method is advantageous in that it facilitates rapid processing, thereby reducing the interest burden of gold staying too long in the unit. Therefore, the method is also used in the refining of platinum and palladium. Technological innovation has created more complex and diversified types of scraps, and efforts are being made to accommodate ourselves to such a trend.

  7. Reuse of waste water from high pressure water jet decontamination for reactor decommissioning scrap metal

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Hou Huijuan

    2011-01-01

    For recycle and reuse of reactor decommissioning scrap metal by high pressure water jet decontamination, large quantity of radioactive waste water will be generated. To save the cost of radioactive waste water treatment and to reduce the cost of the scrap decontamination, this part of radioactive waste water should be reused. Most of the radioactivities in the decontamination waste water come from the solid particle in the water. Thus to reuse the waste water, the solid particle in the waster should be removed. Different possible treatment technologies have been investigated. By cost benefit analysis the centrifugal separation technology is selected. (authors)

  8. Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse

    International Nuclear Information System (INIS)

    Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

    1994-01-01

    The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals

  9. A methodology for estimating potential doses and risks from recycling U.S. Department of Energy radioactive scrap metals

    International Nuclear Information System (INIS)

    MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is considering writing regulations for the controlled use of materials originating from radioactively contaminated zones which may be recyclable. These materials include metals, such as steel (carbon and stainless), nickel, copper, aluminum and lead, from the decommissioning of federal, and non-federal facilities. To develop criteria for the release of such materials, a risk analysis of all potential exposure pathways should be conducted. These pathways include direct exposure to the recycled material by the public and workers, both individual and collective, as well as numerous other potential exposure pathways in the life of the material. EPA has developed a risk assessment methodology for estimating doses and risks associated with recycling radioactive scrap metals. This methodology was applied to metal belonging to the U.S. Department of Energy. This paper will discuss the draft EPA risk assessment methodology as a tool for estimating doses and risks from recycling. (author)

  10. A study of liberation and separation process of metals from printed circuit boards (PCBs) scrap

    International Nuclear Information System (INIS)

    Noorliyana, H.A.; Zaheruddin, K.; Mohd Fazlul Bari; M. Sri Asliza; Nurhidayah, A.Z.; Kamarudin, H.

    2009-01-01

    Since the metallic elements are covered with or encapsulated by various plastic or ceramic materials on printed circuit boards, a mechanical pre-treatment process allowing their liberation and separation is first needed in order to facilitate their efficient extraction with hydrometallurgy route. Even though many studies have been performed on the mechanical pre-treatment processing for the liberation and separation of the metallic components of printed circuit boards scrap, further studies are required to pave the way for efficient recycling of waste printed circuit boards through a combination of mechanical pre-treatment and hydrometallurgical technology. In this work, a fundamental study has been carried out on the mechanical pre-treatment that is necessary to recover metallic concentrates from printed circuit boards scraps. The most important problem is to separate or release particles from the associated gangue minerals at the possible liberation particle size. The distribution of metallic elements has been also investigated in relation to the particle size of the milled printed circuit boards. The samples of printed circuit boards were separated into the magnetic and non-magnetic fractions by Rare-earth Roll Magnetic separator. Thereafter, the magnetic and non-magnetic fractions were separated to heavy fraction (metallic elements) and light fraction (plastic) by Mozley Laboratory Table Separator. The recovery ratios and the evaluation of the metallic concentrates recovered by each separation process were also investigated. This study is expected to provide useful data for the efficient mechanical separation of metallic components from printed circuit boards scraps. (author)

  11. Design of the network for the radiological control in the recycling of metal scrap in Cuba

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Caveda Ramos, Celia; Ramos Viltre, Enma O.; Capote Ferrera, Eduardo; Alonso Abad, Dolores; Zerquera, Juan Tomas

    2008-01-01

    Full text: During the last six years, the Centre of Protection and Hygiene of the Radiations (CPHR) has given answer to the problem about the presence of radioactive materials in the scrap which is exported in Cuba. The service of radioactivity measurement in scraps has reduced the risks of the occurrence of this type of events in the main import and export enterprises in Cuba. This has been carried out using few resources, a properly qualified staff and a laboratory credited by the norm ISO 17025:00. There is not the same control in the enterprises that manipulate and process metallic scrap inside the country. With the objective of extending the radiological control of the metallic scrap to the whole country, a monitoring network was designed. The design was based on the experience accumulated during the years of service to the import and export enterprises. First, It was defined the most vulnerable points in the whole recycle chain for each province, prioritizing the scrap melting plants and the longest scrap yards. All possible scenarios were identified, a quality system was also designed and implemented and a course of Radiological Protection oriented to the metallurgist technicians who are linked with the performance of this practice was elaborated. The monitoring has two phases. First, the measurements are carried out in the measurement points in each province and the transmissions of the data related to the monitored scrap loads are sent to the CPHR. The second phase is the confection of the Declaration of Conformity at the CPHR. This declaration certifies that this scrap may be processed. For the operation of this network, two software were developed and are currently used. One of them allows the control of the information in monitoring point and sends the necessary data to CPHR for the confection of the Declaration of Conformity. The other controls all the information received from the monitoring points and generates the Declaration of Conformity

  12. Noneconomic factors influencing scrap metal disposition decisions at DOE and NRC-licensed nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ewen, M.D.; Robinson, L.A.

    1997-02-01

    The U.S. Environmental Protection Agency (EPA) is currently developing radiation protection standards for scrap metal, which will establish criteria for the unconditional clearance of scrap from nuclear facilities. In support of this effort, Industrial Economics, Incorporated is assessing the costs and benefits attributable to the rulemaking. The first step in this analysis is to develop an in-depth understanding of the factors influencing scrap disposition decisions, so that one can predict current and future practices under existing requirements and compare them to the potential effects of EPA`s rulemaking. These baseline practices are difficult to predict due to a variety of factors. First, because decommissioning activities are just beginning at many sites, current practices do not necessarily provide an accurate indicator of how these practices may evolve as site managers gain experience with related decisions. Second, a number of different regulations and policies apply to these decisions, and the interactive effects of these requirements can be difficult to predict. Third, factors other than regulatory constraints and costs may have a significant effect on related decisions, such as concerns about public perceptions. In general, research suggests that these factors tend to discourage the unconditional clearance of scrap metal.

  13. Effect of Acid Dissolution Conditions on Recovery of Valuable Metals from Used Plasma Display Panel Scrap

    Directory of Open Access Journals (Sweden)

    Kim Chan-Mi

    2017-06-01

    Full Text Available The objective of this particular study was to recover valuable metals from waste plasma display panels using high energy ball milling with subsequent acid dissolution. Dissolution of milled (PDP powder was studied in HCl, HNO3, and H2SO4 acidic solutions. The effects of dissolution acid, temperature, time, and PDP scrap powder to acid ratio on the leaching process were investigated and the most favorable conditions were found: (1 valuable metals (In, Ag, Mg were recovered from PDP powder in a mixture of concentrated hydrochloric acid (HCl:H2O = 50:50; (2 the optimal dissolution temperature and time for the valuable metals were found to be 60°C and 30 min, respectively; (3 the ideal PDP scrap powder to acid solution ratio was found to be 1:10. The proposed method was applied to the recovery of magnesium, silver, and indium with satisfactory results.

  14. Use of Portal Monitors for Detection of Technogenic Radioactive Sources in Scrap Metal

    Science.gov (United States)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    The article considers the features of organization of scrap-metal primary radiation control on the specialized enterprises engaging in its deep processing and storage at using by primary technical equipment - radiation portal monitors. The issue of this direction relevance, validity of radiation control implementation with the use of radiation portal monitors, physical and organizational bases of radiation control are considered in detail. The emphasis is put on the considerable increase in the number of technogenic radioactive sources detected in scrap-metal that results in the entering into exploitation of radioactive metallic structures as different building wares. One of reasons of such increase of the number of technogenic radioactive sources getting for processing with scrap-metal is the absence of any recommendations on the radiation portal monitors exploitation. The practical division of the article offers to recommendation on tuning of the modes of work of radiation portal monitors depending on influence the weather factor thus allowing to considerably increase the percent of technogenic radioactive sources detection.

  15. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    International Nuclear Information System (INIS)

    Kronberg, J.W.

    1994-01-01

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries

  16. Current status of scrap metal recycling and reuse in USA and European countries

    International Nuclear Information System (INIS)

    Matsumoto, Akira

    1997-01-01

    Recycling and reuse of natural resources has become a global issue to be pursued, but less effective without voluntary efforts from the every industries and of the individuals. In Japan, recycling and reuse of the scrap metal from dismantling of the nuclear facilities are currently noticed as a promising option and the responsible government organizations just started activities to develope the system for enabling and encouraging the nuclear facility owners to recycle their waste. Coincidently, there have been many reports published recently, which inform successful results of the method and the activities of the international organizations for the same intention. Taking this opportunity, current trends of scrap metal recycling and reuse in the experienced countries are reviewed and the proposals from IAEA, EC and OECD/NEA on the relating issues are summarized and compared in this paper. (author)

  17. Assignment of Responsibilities in the Management of Scrap Metal in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, E.L., E-mail: evaldo@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro (Brazil)

    2011-07-15

    This paper gives an overview of the activities of the National Commission of Nuclear Energy (CNEN), as the Brazilian regulatory authority responsible for licensing, inspecting, controlling and regulating all practices involving sources of ionizing radiation. The activities of the main departments of CNEN responsible for taking care of the practices and sources are described, especially those related to orphan sources and radioactive material in scrap metal. Finally, although Brazil does not yet have the necessary infrastructure to take care of the scrap metal issue, through the joint action of the relevant departments of CNEN it is hoped that the appropriate steps can be taken to build a national protocol, following the examples of other countries, especially Spain. (author)

  18. Development of a recovery process of scraps resulting from the manufacture of metallic uranium fuels

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Kuada, Terezinha A.; Forbicini, Christina A.L.G.O.; Cohen, Victor H.; Araujo, Bertha F.; Lobao, Afonso S.T.

    1996-01-01

    The study of the dissolution of natural metallic uranium fuel samples with aluminium cladding is presented, in order to obtain optimized conditions for the system. The aluminium cladding was dissolved in an alkaline solution of Na OH/Na NO 3 and the metallic uranium with HNO 3 . A fumeless dissolution with total recovery of nitrous gases was achieved. The main purpose of this project was the recovery of uranium from scraps resulting from the manufacture of the metallic uranium fuel or other non specified fuels. (author)

  19. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius

    Energy Technology Data Exchange (ETDEWEB)

    Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu [Department of Chemical and Environmental Engineering, University of Mauritius, Réduit (Mauritius); Mohee, Romeela [Professor of Chemical and Environmental Engineering, National Research Chair in Solid Waste Management, Mauritius Research Council (Mauritius); Kowlesser, Prakash [Solid Waste/Beach Management Unit, Ministry of Local Government and Outer Islands (Mauritius)

    2014-10-15

    Highlights: • Scrap metal processing wastes. • Areas of applications for slag, electric arc furnace dust, mill scale and wastewater sludge. • Waste generation factor of 349.3 kg per ton of steel produced. • Waste management model. - Abstract: This paper presents an assessment on the wastes namely slag, dust, mill scale and sludge resulting from scrap metal processing. The aim of this study is to demonstrate that there are various ways via which scrap metal processing wastes can be reused or recycled in other applications instead of simply diverting them to the landfill. These wastes are briefly described and an overview on the different areas of applications is presented. Based on the results obtained, the waste generation factor developed was 349.3 kg per ton of steel produced and it was reported that slag represents 72% of the total wastes emanating from the iron and steel industry in Mauritius. Finally the suitability of the different treatment and valorisation options in the context of Mauritius is examined.

  20. The radiological monitoring protocol for metallic products and cleared scrap management

    International Nuclear Information System (INIS)

    Gil Lopez, E.

    2003-01-01

    Event though the use of nuclear and radiological techniques is subject to strict controls in most countries, the presence of radioactive material in batches of metallic scrap has been detected with relative frequency in the last few years. This circumstance has motivated the implementation of a series of national and international initiatives aimed at detecting and preventing this type of events, whether they be intentional or involuntary. The Spanish iron and steel industry is one of the country's most important industrial sectors, and to a great extent it depends on the importation of a very significant amount of metallic scrap that it uses as raw material. Experience has shown that countries that import large amounts of scrap, apart from supporting the mentioned international initiatives, should complement them with other national initiatives to reduce the risks resulting from the presence of radioactive material in scrap. In this context, the Spanish authorities, together with trade unions and entrepreneurial associations in the metal reclamations and smelting sectors and ENRESA, have signed a voluntary Protocol that defines and implements a national radiological monitoring and control system for scrap materials and their byproducts. The Protocol defines the obligations and rights of the signatories, and it describes the monitoring and control system and its legal bases, the operation of both specific and other general-purpose radiological monitoring equipment that existed prior to this initiative, the development of radiological training and dissemination plans for professionals in the metal reclamation and smelting sectors, the establishment of effective systems for the safe management of any radioactive materials detected, and the general improvement of the national response system in the event of radiological emergencies. Since the Protocol took effect in November 1999, more than 100 enterprises from the metallurgical (steel, copper, lead and aluminum

  1. EFFICIENCY OF METAL SCRAP SEPARATION IN EDDY CURRENT SEPARATOR

    Directory of Open Access Journals (Sweden)

    Gordan Bedeković

    2008-11-01

    Full Text Available Eddy-current separation is most often method used for the recovery of non-ferrous metals (Al, Cu, Zn, Pb from solid wastes and also for separating non-ferrous metals from each other. The feed material comes to rotary drum and magnetic field by belt conveyer. The changing magnetic field induce eddy currents in conductive (metallic particles. Because interaction between this currents and the magnetic field electrodynamic forces will act on conductive particles. Therefore the trajectories of conductive particles will be different from the trajectories of the non-conductive ones. Separation is a result of the combined actions of several forces (electrodynamic, gravitational and frictional. The paper presents results of aluminium recovery from mixture of metallic particles in eddy current separator. Testing were conducted under field condition. Results shows that is possible achieve recovery of 99 % and concentrate quality of 89 % of aluminium (the paper is published in Croatian.

  2. Radiation protection aspects in importing metallic scraps; Problemi di radioprotezione connessi con l`importazione di rottami metallici

    Energy Technology Data Exchange (ETDEWEB)

    Risica, S.; Di Ciacco, P. [Istituto Superiore di Sanita`, Rome (Italy). Laboratorio di Fisica

    1996-09-01

    The meeting deals with radiation protection problems caused by the possibility that radioactive metal scraps or radioactive sources hidden in the scraps, may arrive in a foundry. The importance of this issue and of rational and systematic solutions is showed by several accidents, happened in the past in numerous countries, by many signals in Italy and by some papers published in international scientific journals or reports issued by authorities and institutions in different countries.

  3. Heavy metal partitioning from electronic scrap during thermal End-of-Life treatment

    International Nuclear Information System (INIS)

    Scharnhorst, Wolfram; Ludwig, Christian; Wochele, Joerg; Jolliet, Olivier

    2007-01-01

    Samples of identical Printed Wiring Board Assemblies (PWBA) have been thermally treated in a Quartz Tube Reactor (QTR) in order to detect the volatility of selected heavy metals contained in electronic scrap being of environmental concern. In preparation, evaporation experiments were performed using a Thermo Gravimeter (TG) in connection with an Inductively Coupled Plasma-Optical Emissions Spectrometer (ICP-OES). The QTR experiments were performed under reducing and under oxidising conditions at 550 and at 880 deg. C. The volatilisation has been determined for As, Cd, Ni, Ga, Pb, and Sb using ICP-OES analysis of the ash residues. The results were evaluated by thermodynamic equilibrium calculations, the TG-ICP measurements and in comparison with similar studies. In coincidence with the preparative TG-ICP measurements as well as with thermodynamic equilibrium calculations neither As nor Cd could be detected in the residuals of the thermally treated PWBA samples, suggesting a high volatility of these metals. Ga does not show a distinct volatilisation mechanism and seems to be incorporated in the siliceous fraction. Ni remains as stable compound in the bottom ash. Sb shows a high volatility nearly independent of temperature and oxygen supply. The results imply that, if electronic scrap is thermally processed, attention has to be paid in particular to Sb, As, and Ga. These metals are increasingly used in new electronic equipment such as mobile phone network equipment of the third generation

  4. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yek Peter Nai Yuh

    2018-01-01

    Full Text Available Submerged glow-discharge plasma (SGDP is relatively new among the various methods available for nanomaterials synthesis (NMs techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M and characterized by Scanning Electron Microscopy (SEM and Energy Dispersive Spectroscopy (EDS. As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  5. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Science.gov (United States)

    Yek, Peter Nai Yuh; Rafiq Mirza Julaihi, Muhammad; Shahril Osman, Mohammad; Tiong, Tung Chuan; Lee, Wak Ha; Leing Lee, Chern

    2018-03-01

    Submerged glow-discharge plasma (SGDP) is relatively new among the various methods available for nanomaterials synthesis (NMs) techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M) and characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  6. Fertility Evaluation of Limed Brazilian Soil Polluted with Scrap Metal Residue

    Directory of Open Access Journals (Sweden)

    Flávia Almeida Gabos

    2013-01-01

    Full Text Available The aim of this work was to characterize the main inorganic contaminants and evaluate the effect of lime addition, combined with soil dilution with uncontaminated soil, as a strategy for mitigation of these contaminants present in a soil polluted with auto scrap. The experiment was performed in a greenhouse at Campinas (São Paulo State, Brazil in plastic pots (3 dm−3. Five soil mixtures, obtained by mixing an uncontaminated soil sample with contaminated soil (0, 25, 50, 75, and 100% contaminated soil, were evaluated for soil fertility, availability of inorganic contaminants, and corn development. In addition to the expected changes in soil chemistry due to the addition of lime, only the availability of Fe and Mn in the soil mixtures was affected, while the available contents of Cu, Zn, Cd, Cr, Ni, and Pb increased to some extent in the soil mixtures with higher proportion of contaminated soil. Liming of 10 t ha−1 followed by soil dilution at any proportion studied was not successful for mitigation of the inorganic contaminants to a desired level of soil fertility, as demonstrated by the available amounts extracted by the DTPA method (Zn, Pb, Cu, Ni, Cr, Cd and hot water (B still present in the soil. This fact was also proved by the phytotoxicity observed and caused by high amounts of B and Zn accumulating in the plant tissue.

  7. Application of the UNECE Recommendations on Monitoring and Response Procedures for Radioactive Scrap Metal: From Theory to Practice

    Energy Technology Data Exchange (ETDEWEB)

    Magold, M.; Mansourian-Stephenson, S., E-mail: stephanie.mansourian-stephenson@unece.org [United Nations Economic Council for Europe, Geneva (Switzerland)

    2011-07-15

    The work of the United Nations Economic Commission for Europe (UNECE) in addressing the issue of radioactive material appearing inadvertently in scrap metal is summarized. After hosting several meetings of national and international representatives of the scrap metal industry and radiation protection experts, the UNECE issued recommendations in 2006 on Monitoring and Response Procedures for Radioactive Scrap Metal. Since then, the UNECE has been exploring, with its Member States, the extent to which the Recommendations have been utilized - by means of a questionnaire. In this paper the results of the questionnaire are presented and, on the basis of the results of the questionnaire, conclusions are drawn and recommendations made for international action in this field for the future. (author)

  8. Demonstration test on manufacturing 200 l drum inner shielding material for recycling of reactor operating metal scrap

    International Nuclear Information System (INIS)

    Umemura, A.; Kimura, K.; Ueno, H.

    1993-01-01

    Low-level reactor wastes should be safely recycled considering those resource values, the reduction of waste disposal volume and environmental effects. The reasonable recycling system of reactor operating metal scrap has been studied and it was concluded that the 200 liter drum inner shielding material is a very promising product for recycling within the nuclear industry. The drum inner shielding material does not require high quality and so it is expected to be easily manufactured by melting and casting from roughly sorted scrap metals. This means that the economical scrap metal recycling system can be achieved by introducing it. Furthermore its use will ensure safety because of being contained in a drum. In order to realize this recycling system with the drum inner shielding material, the demonstration test program is being conducted. The construction of the test facility, which consists of a melting and refining furnace, a casting apparatus, a machining apparatus etc., was finishing in September, 1992

  9. Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites

    International Nuclear Information System (INIS)

    Mack, J.E.; Williams, L.C.

    1982-01-01

    Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986

  10. Evaluation of Wet Digestion Methods for Quantification of Metal Content in Electronic Scrap Material

    Directory of Open Access Journals (Sweden)

    Subhabrata Das

    2017-11-01

    Full Text Available Recent advances in the electronics sector and the short life-span of electronic products have triggered an exponential increase in the generation of electronic waste (E-waste. Effective recycling of E-waste has thus become a serious solid waste management challenge. E-waste management technologies include pyrometallurgy, hydrometallurgy, and bioleaching. Determining the metal content of an E-waste sample is critical in evaluating the efficiency of a metal recovery method in E-waste recycling. However, E-waste is complex and of diverse origins. The lack of a standard digestion method for E-waste has resulted in difficulty in comparing the efficiencies of different metal recovery processes. In this study, several solid digestion protocols including American Society for Testing and Materials (ASTM-D6357-11, United States Environment Protection Agency Solid Waste (US EPA SW 846 Method 3050b, ultrasound-assisted, and microwave digestion methods were compared to determine the metal content (Ag, Al, Au, Cu, Fe, Ni, Pb, Pd, Sn, and Zn of electronic scrap materials (ESM obtained from two different sources. The highest metal recovery (mg/g of ESM was obtained using ASTM D6357-11 for most of the metals, which remained mainly bound to silicate fractions, while a microwave-assisted digestion protocol (MWD-2 was more effective in solubilizing Al, Pb, and Sn. The study highlights the need for a judicious selection of digestion protocol, and proposes steps for selecting an effective acid digestion method for ESM.

  11. European Legislation to Prevent Loss of Control of Sources and to Recover Orphan Sources, and Other Requirements Relevant to the Scrap Metal Industry

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, A.; Tanner, V.; Mundigl, S., E-mail: augustin.janssens@ec.europa.eu [European Commission (Luxembourg)

    2011-07-15

    European legislation (Council Directive 2003/122/EURATOM) has been adopted with regard to the control of high-activity sealed radioactive sources (HASS). This Directive is now part of an overall recast of current radiation protection legislation. At the same time the main Directive, 96/29/EURATOM, laying down Basic Safety Standards (BSS) for the health protection of the general public and workers against the dangers of ionizing radiation, is being revised in the light of the new recommendations of the International Commission on Radiological Protection (ICRP). The provisions for exemption and clearance are a further relevant feature of the new BSS. The current issues emerging from the revision and recast of the BSS are discussed, in the framework of the need to protect the scrap metal industry from orphan sources and to manage contaminated metal products. (author)

  12. Gained experiences concerning the treatment of radioactive metal scrap from German NPP'S in Studsvik - Gained experience concerning the treatment of radioactive metal scrap from German nuclear power plants

    International Nuclear Information System (INIS)

    Westerwinter, Boris; Buckanie, Niemma

    2014-01-01

    The company Gesellschaft fuer Nuklear-Service mbH, Essen/Germany (GNS), operates on behalf of the utilities E.ON, RWE, EnBW and VENE since the nineteen-nineties - amongst its other duties - on the waste management of metal scrap which originates from German nuclear power plants. The main objective within this responsibility is to maximize the value of recyclable fractions for re-use while minimizing the resulting radioactive waste. To achieve the aforementioned objective, melting of metallic scrap proved to be an outstanding choice. The use of this technique combined with all accompanying processes and regulations is accepted by the competent authorities and independent experts as a qualified treatment method over the entire time period. The motivation of this paper is to reflect on the experiences gained concerning the planning, implementation and results, acquired by GNS by using the Studsvik service. The focus will be on characteristics within processing of such campaigns. (authors)

  13. Development of DOE complexwide authorized release protocols for radioactive scrap metals

    International Nuclear Information System (INIS)

    Chen, S. Y.

    1998-01-01

    Within the next few decades, several hundred thousand tons of metal are expected to be removed from nuclear facilities across the U.S. Department of Energy (DOE) complex as a result of decontamination and decommissioning (D and D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D and D activities, constitute non-real properties that warrant consideration for reuse or recycle, as permitted and practiced under the current DOE policy. The provisions for supporting this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. The objective of this study is to develop readily usable computer-based release protocols to facilitate implementation of the Handbook in evaluating the scrap metals for reuse and recycle. The protocols provide DOE with an effective oversight tool for managing release activities

  14. Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Jones, V.D.

    1998-07-01

    The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furnace processing. To support these nuclear material stabilization activities, the SRS Analytical Laboratories Department (ALD) will provide characterization of materials required prior to the dissolution or the high-firing of these materials. Lab renovations to install new analytical instrumentation are underway to support these activities that include glove boxes with simulated-process dissolution and high- pressure microwave dissolution capability. Inductively-coupled plasma atomic emission spectrometry (ICP-AES), inductively- coupled mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) will be used to measure actinide isotopics and metallic impurities. New high-speed actinide separation methods have been developed that will be applied to isotopic characterization of nuclear materials by TIMS and ICP-MS to eliminate isobaric interferences between Pu-238 /U- 238 and Pu-241/Am-241. TEVA Resin, UTEVA Resin, and TRU Resin columns will be used with vacuum-assisted flow rates to minimize TIMS and ICP-MS sample turnaround times. For metallic impurity analysis, rapid column removal methods using UTEVA Resin, AGMP-1 anion resin and AG MP-50 cation resin have also been developed to remove plutonium and uranium matrix interferences prior to ICP-AES and ICP- MS measurements

  15. Radioactive ground-water contamination from an enriched-uranium cold scrap recovery operation, Wood River Junction, Rhode Island

    International Nuclear Information System (INIS)

    Ryan, B.J.; Kipp, K.L. Jr.

    1984-01-01

    Liquid wastes from a uranium-bearing cold scrap recovery plant at an industrial site in Wood River Junction, Rhode Island were discharged to the environment through evaporation ponds from 1966 to 1980. Leakage from the polyethylene- and polyvinylchloride-lined ponds resulted in a plume of contaminated ground water that extends from the ponds northwestward to the Pawcatuck River through a highly permeable sand and gravel aquifer of glacial origin. Contaminants include: strontium 90, technetium 99, boron, nitrate and potassium. Water quality data from more than 100 observation wells indicate that the plume of contamination is approximately 700 meters long, 100 meters wide, and is confined to the upper 25 meters of saturated thickness where sediments consist of medium to coarse sand and gravel. No contamination has been detected in fine sands and silts underlying the coarser materials. Piezometric-head and water-quality data from wells screened at multiple depths on both sides of the river indicate that contaminants discharge both to the river and to a swampy area at the west edge of the river. Dilution precludes detection of contaminants once they have entered the river, which has an average flow of 5 cubic meters per second

  16. Radioactive scrap metal (RSM) inventory ampersand tracking system and prototype RSM field survey

    International Nuclear Information System (INIS)

    Thomas, T.R.

    1994-09-01

    Based on very preliminary information, it has been estimated that the radioactive scrap metal (RSM) inventories at DOE facilities amount to about 1.5 million tons and a much larger amount will be generated from decontamination and decommissioning of surplus DOE facilities. To implement a national DOE program for beneficial reuse of RSM, it will be necessary to known the location and characteristics of RSM inventories that are available and will be generated to match them with product demands. It is the intent of this task to provide a standardized methodology via a RSM database for recording, tracking, and reporting data on RSM inventories. A multiple relational database in dBASE IV was designed and a PC-based code was written in Clipper 5.0 syntax to expedite entry, editing, querying, and reporting of RSM survey data. The PC based-code, the multiple relational database files, and other external files used by the code to generate reports and queries constitute a customized software application called the RSM Inventory ampersand Tracking System (RSM I ampersand TS). A prototype RSM field survey was conducted at the Nevada Test Site (NTS) to demonstrate the field use of the RSM I ampersand TS and logistics of conducting the survey. During the demonstration, about 50 tons of RSM were sized, characterized, sorted, and packaged in transport containers

  17. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  18. Example of establishing the recycling of scrap metal as a waste management option within German regulations

    International Nuclear Information System (INIS)

    Bodenstein, Matthias; Delfs, Johannes; Karschnick, Oliver

    2014-01-01

    The German Atomic Energy Act (Atomgesetz, AtG) specifies the German nuclear licensing and supervising regulations. On that basis the German federal states are responsible for licensing and supervising of nuclear power plants (NPPs) located in that state. The Ministry of Energy, Agriculture, the Environment and Rural Areas (MELUR) is the authority responsible for the state Schleswig-Holstein, in which the NPPs Brokdorf, Brunsbuettel, Kruemmel and the research reactor HZG are located. In the licensing and supervisory procedures the authority may consult authorized experts. In addition to the AtG, the German Radiation Protection Ordinance (Strahlenschutzverordnung, StrlSchV) specifies regulations for clearance according to the 10 μSv-concept. The clearance of metal by recycling / melting is one option within the regulations of the StrlSchV. For a clearance an additional license given by the MELUR is necessary. In that license and the application documents as well as in the supervisory procedures very specific regulations are implemented. This includes regulations for clearance at third parties in foreign countries. In this talk a short introduction to the German regulations focussed on clearance according to the 10 μSv-concept will be given. The specific regulations in the license of clearance will be presented and also the application documents for NPPs in Schleswig-Holstein will be discussed. Furthermore it will be illustrated on what terms the MELUR decided to agree upon the recycling of scrap metal with the aim of clearance according to Radiation Protection 89 in foreign countries along with the German regulatory framework. (authors)

  19. 32 CFR 644.522 - Clearance of military scrap.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Clearance of military scrap. 644.522 Section 644... Excess Land and Improvements § 644.522 Clearance of military scrap. Military scrap can contain or be... destruction, by using command, of all military scrap and scrap metal from lands suitable for cultivation or...

  20. Radioactive contamination in metal recycling industry - an environmental issue

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2012-01-01

    Metal recycling has become an important industrial activity worldwide; it is seen as being socially and environmentally beneficial because it conserves natural ore resources and saves energy. However, there have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as metal scrap that was destined for recycling. The consequences of these accidents have been serious with regard to the protection of people and the environment from the harmful effects of ionizing radiation as well as from an economic point of view. India produces and exports steel products to various countries. In the recent years there were rejection and return of steel products as they were found to be contaminated with trace quantities of radioactive materials. During investigation of incidents of radioactive contamination in steel products exported from India, it was observed that steel products are contaminated with low level radioactivity. Though radioactivity level in steel products is found to be too low to pose any significant hazards to the handling personnel or to the users or the public at large, its presence is undesirable and need to be probed as to how it has entered in the steel products. Atomic Energy Regulatory Board (AERB) has investigated the incidents of such nature in the recent past and it is gathered that the steel products are made out of steel produced in a foundry where metal scrap containing radioactive material has been used. In this talk, incidents of radioactive contamination, its roots cause, and its radiological impact on person, property and environment, lessons learnt, remedial measures and international concerns will be discussed

  1. Controlling the Outcome of Melting Radioactive Sources in Scrap Metal: from Exclusion, Exemption and Clearance towards a 'Codex Metallarius'

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.J., E-mail: agonzale@sede.arn.gov.ar [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2011-07-15

    Orphan radiation sources have been inadvertently incorporated into scrap metal and traces of radioactive residues have appeared in finished metal products causing public anxiety, despair in industry and governmental concern. The international principles of exclusion, exemption and clearance can be used to tackle this problem. They are described in detail, as they are becoming universally established for defining the scope of radiation protection regulations. However, notwithstanding the relevance of these principles, the paper suggests a straightforward professional consensus for discontinuing radiological control of commodities with minute traces of radioactive residues. The consensus should unambiguously specify a generic activity concentration in inedible commodities, including metals, below which radiological control may be effectively relinquished. A subsequent legally binding intergovernmental undertaking could resolve the current regulatory ambiguity, facilitate commercial exchange and ensure adequate public protection. For metals, it might take the form of a 'Codex Metallarius' (similar to the existing Codex Alimentarius for edible commodities) establishing a generic level of radiological acceptability for finished metal products. Furthermore, it is proposed that there should be an international convention to prevent radioactive sources becoming orphaned from regulatory control and then inadvertently appearing in trash and scrap. (author)

  2. Decontamination of transuranic contaminated metals by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1983-01-01

    Melt refining of transuranic contaminated metals is a possible decontamination process with the potential advantages of producing metal for reuse and of simplifying chemical analyses. By routinely achieving the 10 nCi/g( about0.1ppm) level by melt refining, scrap metal can be removed from the transuranic waste category. (To demonstrate the effectiveness of this melt refining process, mild steel, stainless steel, nickel, and copper were contaminated with 500 ppm (μg/g) PuO 2 and melted with various fluxes. The solidified slags and metals were analyzed for their plutonium contents, and corresponding partition ratios for plutonium were calculated. Some metals were double refined in order to study the effect of secondary slag treatment. The initial weight of the slags was also varied to investigate the effect of slag weight on the degree of plutonium removal. In general, all four metals could be decontaminated below 1 ppm (μg/g) Pu ( about100 nCi/g) by a single slag treatment. Doubling the slag weight did not improve decontamination significantly; however, double slag treatment using 5 wt.% slag did decontaminate the metals to below 0.1 ppm (μg/g) Pu (10 nCi/g).)

  3. Experience during the monitoring of inactive scrap for the detection of inadvertent presence of radioactivity

    International Nuclear Information System (INIS)

    Sharma, Ranjit; Kumar, Anoj; Vikas; Patra, R.P.; Kumar, Vikas; Singh, Rajvir; Pradeepkumar, K.S.

    2012-01-01

    The inspection and certification of scrap material from nuclear facilities is a regulatory requirement to ensure that radioactive material will not reach public domain. Around the world, cases involving radioactive contamination of metallic components have occurred due to radioactive sources/contaminated metal scrap reaching the public domain. Radiological monitoring of inactive scrap material is essential as it may get into various usages in public domain where controls cannot be implemented. The method of detection is measurement of gamma dose rates due to any loose/fixed radioactive contamination in the scrap or presence of any radioactive material/source. In addition prevention of any inadvertent/malicious act leading to radioactive material reaching the public domain through scrap being essential, this monitoring gains further importance. This paper describes the methodology and experience in detection of presence of radioactivity at inactive Scrap monitoring facility. Even though radioactive sources of high strength with potential for serious environmental hazard have not been detected, few cases of contaminated material (MS plate/equipments etc with extremely low level of 137 Cs and Uranium contamination) have been detected and identified using portable gamma spectrometer. If proper monitoring is not carried out the dispersal of radioactivity to the environment can be a matter of concern due to metal scrap reaching recycling industry resulting in huge cost of decontamination and waste disposal. These events may also have negative impact on the export from the country resulting in economic losses. The impact of such events can be ruled out by effective scrap monitoring techniques which ensure that even small quantity of radioactivity escaping into public domain can be prevented. The methodology followed for monitoring of inactive scrap is found to be effective even for detection of presence of very low level of radioactivity

  4. Decontamination method of contaminated metals

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Ueda, Yoshihiro; Sato, Chikara; Komori, Itaru.

    1980-01-01

    Purpose: To effectively separate radioactive materials from molten metals in dry-processing method by heating metals contaminated with radioactive materials at a temperature below melting point to oxidize the surface thereof, then heating them to melt and include the radioactive materials into the oxides. Method: Metals contaminated with radioactive materials are heated at a temperature below the melting point thereof in an oxidizing atmosphere to oxidize the surface. Thereafter they are heated to melt at temperature above the melting point of the metals, and the molten metals are separated with the radioactive materials included in the oxides. For instance, radiation-contaminated aluminum pipe placed on the bed of an electrical heating furnace, and heated at 500 0 C which is lower than the melting point 660 0 C of aluminum for 1 - 2 hours while supplying air from an air pipe into the furnace, and an oxide film is formed on the surface of the aluminum pipe. Then, the furnace temperature is increased to 750 0 C wherein molten aluminum is flown down to a container and the oxide film is separated by floating it as the slug on the molten aluminum. (Horiuchi, T.)

  5. Experience during the monitoring of inactive scrap for the detection of inadvertent presence of radioactivity

    International Nuclear Information System (INIS)

    Sharma, Ranjit; Anoj Kumar; Vikas; Singh, Rajvir; Patra, R.P.; Vikas Kumar; Pradeepkumar, K.S.

    2012-01-01

    The paper describes about the experience gained during the radiation monitoring of inactive scrap generated at various nuclear facilities. This type surveillance is carried out to prevent the spread of radioactivity in public domain and also as requirement by regulatory authorities. The inspection and certification of scrap material from nuclear facilities is a regulatory requirement to ensure that no radioactive material reaches public domain. This paper describes the methodology and experience in detection of radioactivity at inactive Scrap monitoring facility. Inactive scraps (metallic and non metallic) generated from various nuclear facilities of BARC, Trombay is dispatched to Trombay Village Store (TVS) for temporary storage before auction to the public. The monitoring at the facility includes visual inspection and radiation measurement before loading the scrap in the truck. An online PC based monitoring system and portable monitoring instruments in the range (nSv/h-µSv/h) are used to carry out radiation monitoring of inactive scrap loaded in a vehicle. Radioactive source of high activity with potential for serious environmental hazard has not been detected, but few cases of presence of radioactive/contaminated material (MS plate/equipments with low level of 137 Cs contamination) have been detected and identified using portable gamma spectrometer. Implementation of strict regulatory measures and radiation monitoring at nuclear facilities can minimize the probability of radioactive material reaching the public domain. The methodology followed for monitoring of inactive scrap is found to be effective even for detection of presence of radioactivity in scrap if any. (author)

  6. Fabrication of metallic alloy powder (Ni{sub 3}Fe) from Fe–77Ni scrap

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Inseok [ES Materials Research Center, Research Institute of Industrial Science and Technology, Incheon 406-840 (Korea, Republic of); Shin, Shun-Myung [Extractive Metallurgy Department, Korea Institute of Geoscience and Mineral Resources, Deajeon 305-350 (Korea, Republic of); Ha, Sang-An [Department of Environmental Engineering, Silla University, Busan 46958 (Korea, Republic of); Wang, Jei-Pil, E-mail: jpwang@pknu.ac.kr [Department of Metallurgical Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of)

    2016-06-15

    The oxidation behavior of Fe–77Ni alloy scrap was investigated at an oxygen partial pressure of 0.2 atm and temperatures ranging from 400 °C to 900 °C. The corresponding oxidation rate increased with increasing temperature and obeyed the parabolic rate law, as evidenced by its linear proportionality to the temperature. In addition, surface morphologies, cross-sectional views, compositions, structural properties were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Diffusion through either the spinel structure or the NiO layer, which were both present in the alloy during oxidation at elevated temperatures, was deemed the rate-limiting step of the reaction. The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap was obtained using ball-milling and sieving processes. In fact, 15 h of milling yielded a recovery ratio of 97%. Using hydrogen gas, the oxide powder was successfully reduced to an alloy powder of Ni{sub 3}Fe and reduction rates of ∼97% were achieved after 3 h at 1000 °C. - Highlights: • The oxidation behavior of Fe–77Ni alloy scrap was investigated. • The oxide powder less than 10 μm was obtained from Fe–77Ni alloy scrap. • Using hydrogen gas, the oxide powder was successfully reclaimed. • Reduction rates of ∼97% were achieved after 3 h at 1000 °C.

  7. United States copper metal and scrap use and trade patterns, 1995‒2014

    Science.gov (United States)

    Goonan, Thomas G.

    2016-06-17

    In 1995, China accounted for 10 percent of world copper consumption. By 2014, China accounted for about 49 percent of world copper consumption. This change has affected global copper and copper scrap prices, the sources of copper supply, and U.S. trade of copper-containing materials.

  8. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans.

    Science.gov (United States)

    Creamer, Neil J; Baxter-Plant, Victoria S; Henderson, John; Potter, M; Macaskie, Lynne E

    2006-09-01

    Biomass of Desulfovibrio desulfuricans was used to recover Au(III) as Au(0) from test solutions and from waste electronic scrap leachate. Au(0) was precipitated extracellularly by a different mechanism from the biodeposition of Pd(0). The presence of Cu(2+) ( approximately 2000 mg/l) in the leachate inhibited the hydrogenase-mediated removal of Pd(II) but pre-palladisation of the cells in the absence of added Cu(2+) facilitated removal of Pd(II) from the leachate and more than 95% of the Pd(II) was removed autocatalytically from a test solution supplemented with Cu(II) and Pd(II). Metal recovery was demonstrated in a gas-lift electrobioreactor with electrochemically generated hydrogen, followed by precipitation of recovered metal under gravity. A 3-stage bioseparation process for the recovery of Au(III), Pd(II) and Cu(II) is proposed.

  9. Organic Matter and Barium Absorption by Plant Species Grown in an Area Polluted with Scrap Metal Residue

    Directory of Open Access Journals (Sweden)

    Cleide Aparecida Abreu

    2012-01-01

    Full Text Available The effect of organic matter addition on Ba availability to Helianthus annuus L., Raphanus sativus L., and Ricinus communis L. grown on a Neossolo Litólico Chernossólico fragmentário (pH 7.5, contaminated with scrap residue was evaluated. Four rates (0, 20, 40, and 80 Mg ha−1, organic carbon basis of peat or sugar cane filter, with three replicates, were tested. Plant species were grown until the flowering stage. No effect of organic matter addition to soil on dry matter yield of oilseed radish shoots was observed, but there was an increase in sunflower and castor oil plant shoots when sugar cane filter cake was used. The average Ba transferred from roots to shoots was more than 89% for oilseed radish, 71% for castor oil plants, and 59% for sunflowers. Organic matter treatments were not efficient in reducing Ba availability due to soil liming.

  10. Radiation survey of aircraft and heavy machinery scrap

    International Nuclear Information System (INIS)

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E.H.; Abdel Hamid, Saad Eldeen M.; Sam, A.K.

    2012-01-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of 90 Sr and one of 226 Ra in aircraft scrap. Of course, 90 Sr sources are used in military aircraft as temperature sensors while 226 Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1 m from the source fall within the range of 25.1–40.2 μSv/h with an average value of 33.52±4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing. - Highlights: ► Sealed radioactive sources ( 90 Sr and 226 Ra) were detected in aircraft scrap. ► No source was detected in heavy machine scrap. ► Radiation dose measured at 0.1 m from the source can be used to estimate exposure to public. ► Monitoring of scrap was found to be useful for protection (from orphan sources).

  11. Demonstration test on manufacturing steel bars for concrete reinforcement for recycling of reactor decommissioning metal scrap

    International Nuclear Information System (INIS)

    Sakurai, D.; Anabuki, Y.

    1993-01-01

    To prove the possibility of recycling the steel scrap resulting from decommissioning of a nuclear power plant, this salvaged steel would be formed into steel bars for concrete reinforcement, as the restricted use and limited use at nuclear plants. The shifting behavior of radioactive isotopes (RI) in the melting process was confirmed through the laboratory hot test using the RI. Then, the demonstration cold test for steel bars for reinforcement using the nonradioactive isotope was conducted in on-line production facilities. In this test the quality of steel bars and uniform distribution of RI were proven and material balance and operational data were obtained. These data show the recycling to steel bars for concrete reinforcement is applicable from economical and safety aspects

  12. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn 4+ into Mn 2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH 4 ) 2 Mn(SO 3 ) 2 ·H 2 O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Scrap is no crap

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2009-01-01

    Scrap is good business for the environment. When we recycle metal - meaning to collect, sort and melt it down - we emit much less CO2 than when we extract metal from the ground. The environmental benefit applies to all metals and is gained every time we recycle them. That is a positive message in...... in a world where we search for methods to reduce our CO2 emission. And the environmental potential is big: There are no upper limits for how many times we can recycle metals, which makes recycling an important part of the fight against global warming....

  14. Radiation survey of aircraft and heavy machinery scrap.

    Science.gov (United States)

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E H; Abdel Hamid, Saad Eldeen M; Sam, A K

    2012-12-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of (90)Sr and one of (226)Ra in aircraft scrap. Of course, (90)Sr sources are used in military aircraft as temperature sensors while (226)Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1m from the source fall within the range of 25.1-40.2 μSv/h with an average value of 33.52 ± 4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  16. “When a breach arises”: Good burocratic action and informal scrap metal collection in Northern Italy

    Directory of Open Access Journals (Sweden)

    Elisabeth Tauber

    2017-12-01

    Full Text Available This paper analyses affirmative bureaucratic intervention into the informal commercial practices of scrap metal collection among the Sinti in a North-Italian province. To contextualize these events it is vital to examine institutional logics, and how they resonate with public officials’ sense of self as well as political loyalties. In everyday bureaucracy Gypsies are considered to be perplexing subjects, provoking contrasting images of poverty and excess. These cultural representations are the opposite of the idea of a decent social-work client. Hence, bureaucratic intervention on behalf of the Sinti put the former in a deontological and moral limbo, one which stimulates them to navigate the political and organisational structures of their organisations in a creative way. This paper aims to bring a positive example of where the social and institutional discrimination against Roma and Sinti in Italy and Europe can be broken. Even if it is not possible to reverse this discrimination, it at least introduces affirmative bureaucratic action as an enlightening direction for anthropological study.

  17. Exclusion, Exemption and Clearance in the Frame of the Control and Management of Inadvertent Radioactive Material in Scrap Metal

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    2011-01-01

    Radioactive substances are incorporated into materials, goods, merchandises, products and in scrap and, as scrap would recycle into new produce, the process of introduction of radioactive susbtanaces into commodities will continue. The situation is unstoppable and requires straightforward solutions. The problem is global and therefore the solution(s) should be global. A clear intergovernmental agreement is needed establishing to what extent commodities should be regulated

  18. Radioactively contaminated metallic materials: the search for a global solution; Materiales metalicos con contaminacion radiactiva: en busca de una solucion global

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, S.

    2009-07-01

    Radioactively contaminated metallic materials: the search for a global solution. Tarragona hosted the first International Conference on Control and Management of Inadvertent Radioactive Material in Metal Scrap, which was sponsored by the IAEA and organised by various Spanish entities, among them the CSN. The meeting served for the exchange of ideas and precautionary measures, a field in which Spain already has a long and recognised experience, and focussed on the voluntary Protocol, endorsed by the majority of the Spanish steelyards. (Author)

  19. Direct conversion of plutonium metal, scrap, residue, and transuranic waste to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Malling, J.F.; Rudolph, J.

    1995-01-01

    A method for the direct conversion of metals, ceramics, organics, and amorphous solids to borosilicate glass has been invented. The process is called the Glass Material Oxidation and Dissolution System (GMODS). Traditional glass-making processes can convert only oxide materials to glass. However, many wastes contain complex mixtures of metals, ceramics, organics, and amorphous solids. Conversion of such mixtures to oxides followed by their conversion to glass is often impractical. GMODS may create a practical method to convert such mixtures to glass. Plutonium-containing materials (PCMS) exist in many forms, including metals, ceramics, organics, amorphous solids, and mixtures thereof. These PCMs vary from plutonium metal to filters made of metal, organic binders, and glass fibers. For storage and/or disposal of PCMS, it is desirable to convert PCMs to borosilicate glass. Borosilicate glass is the preferred repository waste form for high-level waste (HLW) because of its properties. PCMs converted to a transuranic borosilicate homogeneous glass would easily pass all waste acceptance and storage criteria. Conversion of PCMs to a glass would also simplify safeguards by conversion of heterogeneous PCMs to homogeneous glass. Thermodynamic calculations and proof-of-principle experiments on the GMODS process with cerium (plutonium surrogate), uranium, stainless steel, aluminum, Zircaloy-2, and carbon were successfully conducted. Initial analysis has identified potential flowsheets and equipment. Major unknowns remain, but the preliminary data suggests that GMODS may be a major new treatment option for PCMs

  20. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W. [DOE-Oak Ridge Operations Office, TN (United States)

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where it can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.

  1. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  2. Contaminated metallic melt volume reduction testing

    International Nuclear Information System (INIS)

    Deichman, J.L.

    1981-01-01

    Laboratory scale metallic melts (stainless steel) were accomplished in support of Decontamination and Decommissioning's (D and D) contaminated equipment volume reduction and Low-Level Lead Site Waste programs. Six laboratory scale melts made with contaminated stainless steel provided data that radionuclide distribution can be predicted when proper temperature rates and ranges are employed, and that major decontamination occurs with the use of designed slagging materials. Stainless steel bars were contaminated with plutonium, cobalt, cesium and europium. This study was limited to stainless steel, however, further study is desirable to establish data for other metals and alloys. This study represents a positive beginning in defining the feasibility of economical volume reduction or conversion from TRU waste forms to LLW forms for a large portion of approximately 50 thousand tons of contaminated metal waste now being stored at Hanford underground or in deactivated facilities

  3. Decontamination method for radiation contaminated metal

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi; Sakai, Hitoshi.

    1997-01-01

    An organic acid solution is used as a decontamination liquid, and base materials of radiation contaminated metals are dissolved in the solution. The concentration of the organic acid is measured, and the organic acid is supplied by an amount corresponding to the lowering of the concentration. The decontamination liquid wastes generated during the decontamination step are decomposed, and metals leached in the organic acid solution are separated. With such procedures, contamination intruded into the inside of the mother materials of the metals can be removed, and radioactivity of the contaminated metals such as stainless steels and carbon steels can be eliminated, or the radiation level thereof can be reduced. In addition, the amount of secondary wastes generated along with the decontamination can be suppressed. (T.M.)

  4. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, C.; Ortiz Ramis, T.; Pinilla Matos, J.L.; Fuentes Fuentes, L.; Gonzalez, C.O.

    2006-01-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  5. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Correa Sainz, C.; Ortiz Ramis, T. [ENRESA. Madrid (Spain); Pinilla Matos, J.L.; Fuentes Fuentes, L. [ENRESA. Centro de Almacenamiento El Cabril, Cordoba (Spain); Gonzalez, C.O. [AdQ, Madrid (Spain)

    2006-07-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  6. Research into the melting/refining of contaminated steel scrap arising in the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Harvey, D.S.

    1990-01-01

    The main part of this report is concerned with the steel-making behaviour of various radioisotopes encountered in steel from decommissioning of nuclear installations (e.g. cobalt 60, caesium 134 and europium 154). Under a wide range of conditions cobalt is largely absorbed by the steel, europium is absorbed by the slag, whereas caesium may be largely volatized, or largely absorbed by the slag. Radiation exposures which might occur during a large-scale recycling operation, during routine operations and accidents would not be significant according to published criteria in the UK. The second part of the report concerns the detection of radioactive materials which may be accidentally delivered to steelworks in scrap steel and used in steel-making. Detectors have been developed which would indicate the presence of radioactivity in scrap. A survey of the steelworks revealed areas where detection might be performed. Experiments have shown that a gamma ray detector of large volume could provide useful sensitivity of detection

  7. Uranium decontamination of common metals by smelting, a review (handbook)

    International Nuclear Information System (INIS)

    Mautz, E.W.; Briggs, G.G.; Shaw, W.E.; Cavendish, J.H.

    1975-01-01

    The published and unpublished literature relating to the smelting of common metals scrap contaminated with uranium-bearing compounds has been searched and reviewed. In general, standard smelting practice produces ingots having a low uranium content, particularly for ferrous, nickel, and copper metals or alloys. Aluminum recovered from uranium contaminated scrap shows some decontamination by smelting but the uranium content is not as low as for other metals. Due to the heterogeneous nature and origin of scrap metals contaminated with uranium, information is frequently missing as to the extent of the initial contamination and the degree of decontamination obtained. The uranium content of the final cast ingots is generally all that is available. Results are summarized below by the primary composition of the uranium contaminated scrap metal. (U.S.)

  8. Lead scrap processing in rotary furnaces: a review

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, M

    1987-01-01

    Formerly, the lead scrap had been processed mainly in reverberatory and shaft furnaces or, even, in rotary furnaces (R.F.). The direct smelting of battery scrap entrains an expensive pollution control and high operating costs because of slag recirculation, coke consumption, losses in slag and matte. Nowadays, mechanized battery wrecking plants allow selective separation of casings and separators from metallic Pb (grids, poles, solders) as well as lead in non-metallic form (PbSO/sub 4/, PbO, PbO/sub 2/, contaminated with some Sb) frequently called paste. Because of their high performance and flexibility in metallurgical processing (melting, reducing, oxidizing and selective pouring) the R.F. supersedes the reverberatory furnace worldwide.

  9. Control of Transboundary Movement of Radioactive Material Inadvertently Incorporated into Scrap Metal and Semi-finished Products of the Metal Recycling Industries. Results of the Meetings Conducted to Develop a Draft Code of Conduct

    International Nuclear Information System (INIS)

    2014-02-01

    In 2010, the IAEA initiated the development of a code of conduct on the transboundary movement of radioactive material inadvertently incorporated into scrap metal and semi- finished products of the metal recycling industries (Metal Recycling Code of Conduct). The Metal Recycling Code of Conduct was intended to harmonize the approaches of Member States in relation to the discovery of radioactive material that may inadvertently be present in scrap metals and semi-finished products subject to transboundary movement, and their safe handling and management to facilitate regulatory control. The Metal Recycling Code of Conduct was envisaged as being complementary to the Safety Guide on Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries (IAEA Safety Standards Series No. SSG-17), which provides recommendations, principally within a national context, on the protection of workers, members of the public and the environment in relation to the control of radioactive material inadvertently incorporated in scrap metal. In February 2013, the third open-ended meeting of technical and legal experts to develop the Metal Recycling Code of Conduct was organized. The objective of this meeting was to address the comments received from Member States and to finalize the text of the draft Metal Recycling Code of Conduct. Representatives from 55 Member States, one non-Member State and the EU, together with seven observers from the metal recycling industry, reviewed the comments and revised the draft accordingly. In September 2013, in Resolution GC(57)/RES/9, the IAEA General Conference recorded that it 'Appreciates the intensive efforts undertaken by the Secretariat to develop a code of conduct on the transboundary movement of scrap metal, or materials produced from scrap metal, that may inadvertently contain radioactive material, and encourages the Secretariat to make the results of the discussion conducted on this issue available to

  10. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  11. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  12. Sequential extraction of uranium metal contamination

    International Nuclear Information System (INIS)

    Murry, M.M.; Spitz, H.B.; Connick, W.B.

    2016-01-01

    Samples of uranium contaminated dirt collected from the dirt floor of an abandoned metal rolling mill were analyzed for uranium using a sequential extraction protocol involving a series of five increasingly aggressive solvents. The quantity of uranium extracted from the contaminated dirt by each reagent can aid in predicting the fate and transport of the uranium contamination in the environment. Uranium was separated from each fraction using anion exchange, electrodeposition and analyzed by alpha spectroscopy analysis. Results demonstrate that approximately 77 % of the uranium was extracted using NH 4 Ac in 25 % acetic acid. (author)

  13. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.

    Science.gov (United States)

    Ceballos, Diana M; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees.

  14. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  15. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  16. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  17. Metal contamination in environmental media in residential ...

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  18. Evaluation of some heavy metal contaminants in biscuits, fruit drinks ...

    African Journals Online (AJOL)

    Evaluation of some heavy metal contaminants in biscuits, fruit drinks, concentrates, ... effect in human due to continual consumption of food contaminated with heavy metals gotten from raw materials, manufacturing and packaging processes.

  19. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  20. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  1. Recycle of contaminated scrap metal, comprehensive executive summary. Final report, September 30, 1993--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    R&D activities have demonstrated Catalytic Extraction Processing (CEP) to be a robust, one-step process process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. The feed size and composition compatible with CEP have been increased in a short period of time, and additional R&D should lead to the ability to accept a drum (and larger?) size feed of completely uncharacterized waste. Experiments have validated the CPU (Catalytic Processing Unit). Two commercial facilities have been commissioned and are currently processing mixed low level wastes. Expansion of CEP to transuranic and high level wastes should be the next step in the development and deployment of CEP for recycle, reuse, and disposal of materials from DOE decontamination and decommissioning activities.

  2. Economic feasibility of radioactive scrap steel recycling

    International Nuclear Information System (INIS)

    Nichols, F.; Balhiser, R.; Rosholt, D.

    1995-01-01

    In the past, government and commercial nuclear operators treated radioactive scrap steel (RSS) as a liability and disposed of it by burial; this was an accepted and economical solution at that time. Today, environmental concerns about burial are changing the waste disposal picture by (a) causing burial costs to soar rapidly, (b) creating pressure to close existing burial sites, and (c) making it difficult and expensive to open and operate burial facilities. To exacerbate the problem, planned dismantling of nuclear facilities will substantially increase volumes of RSS open-quotes wasteclose quotes over the next 30 yr. This report describes a project with the intention of integrating the current commercial mini-mill approach of recycling uncontaminated steel with radiological controls to design a system that can process contaminated metals at prices significantly below the current processors or burial costs

  3. Remediation of PCB [polychlorinated biphenyl] -contaminated soils from scrapyards

    International Nuclear Information System (INIS)

    MacKnight, S.

    1991-01-01

    Much of the recent attention on contamination of the environment by polychlorinated biphenyls (PCB) has focused on liquid PCB spills from electrical equipment. A new, and possibly more serious, source of PCB contamination is the scrap yard, typically located in or near major urban centers, where the local scrap dealer would purchase used transformers or other PCB-containing electrical equipment, recover copper and other metals, and dump the PCB-containing oils on the ground. With the rising value of urban and suburban lands, these scrap yards may be slated for redevelopment, making the cleanup of contaminated soils necessary. The heterogeneous distribution of scrap yard contaminants requires a very detailed site assessment, and the heterogeneous mixture of typical scrap yard contaminants (not only PCB) cannot be treated in a simple fashion. These problems are illustrated for the case of the assessment and cleanup of a scrap yard site in Nova Scotia. A grid block system was used to sample soil at the site, and samples were analyzed for PCB, metals, and hydrocarbons. The most severely contaminated spots were mapped; groundwater patterns were also examined. The remediation process can be divided into 5 phases: physical separation of uncontaminated material; three stages of separation of materials into those having single, several-but-similar, and multicomponent mixed contaminations; and selection of appropriate process technologies. Since there is currently no approved PCB destruction facility in Atlantic Canada, excavated soils containing PCB are stored securely on the site to await approval for some type of incineration process

  4. Heavy metal contamination in canned foods

    International Nuclear Information System (INIS)

    Sand, W.A.; Flex, H.; Allan, K.F.; Mahmoud, R.M.; Abdel-Haleem, A.E.

    2001-01-01

    The work carried out in this paper aims to the study of contamination of different foodstuffs, that are consumed frequently in our daily life, such as tomatoes concentrate, jam, tuna, and bean, as a result of canning in glass or tin cans. The effect of the storage time on the contamination of the aforementioned foods with heavy metals was also investigated. The technique used for the simultaneous determination of these elements was the instrumental neutron activation analysis (INAA). This technique was selected due to its high accuracy, sensitivity and selectivity. In the light of the obtained results it was suggested that tin cans is the best choice for canning jam and it is suitable also for preserving tuna. On the other hand, glass utensils were found to be the most suitable for preserving tomatoes concentrate. detailed studies are needed to throw more light on the effect of canning material on the concentration level of both essential and toxic trace elements in bean

  5. Method for electrolytic decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Tanaka, Akio; Horita, Masami; Onuma, Tsutomu; Kato, Koji

    1991-01-01

    The invention relates to an electrolytic decontamination method for radioactive contaminated metals. The contaminated sections are eluted by electrolysis after the surface of a piece of equipment used with radioactive substances has been immersed in an electrolyte. Metal contaminated by radioactive substances acts as the anode

  6. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  7. Metal Contamination in the Republic of Armenia.

    Science.gov (United States)

    Kurkjian

    2000-05-01

    / Air, soil, and water samples were collected throughout the Republic of Armenia both before and after its independence from the Soviet Union in 1991. Reported analyses of those samples indicated that levels of several trace metal concentrations (Ag, Cd, Cr, Cu, Mo, Ni, Pb, Ti, and Zn) exceeded the maximum allowable concentrations established by the former Soviet Union (FSU) and subsequently adopted by Armenia. Although industrial production has declined by more than 80% since the 1980s, the economy is improving and there is potential for a significant increase in the generation of industrial metal emissions. These include automobile emissions, which are now considered to be the primary source of atmospheric lead. Historically, the Soviet Union did not strictly enforce environmental standards, and Armenia is now faced with the resulting environmental problems and the associated risks to public health. Since some trace metal concentrations may be at or near potentially toxic levels, there is a need to accurately assess the extent of metal contamination in order to devise cleanup plans and develop long-term environmental protection and public health strategies in Armenia.

  8. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  9. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  10. Detection of radioactivity in scrap in Germany

    International Nuclear Information System (INIS)

    Kugeler, E.; Thierfeldt, S.; Sefzig, R.; Weimer, G.

    1999-01-01

    Although Germany's scrap export exceeds the import, the imports of scrap amount to more than one million Mg per year. Radioactivity has been found mainly in imported scrap in Germany. This radioactivity can consist of surface contamination in scrap e.g. from the oil and gas industry, nuclear and other technical applications or of radiation sources, e.g. from medical or technical irradiation devices where the source has not been removed prior to scrapping. Fortunately really large sources have been involved in only very few occasions. More serious incidents have, however, been reported from other countries. Today, measurement facilities have been installed at the entrances to virtually all German foundries and larger scrap yards. These measurement facilities allow the swift measurement of whole lorry or freight car loads. The lower limit of detection is for some devices as low as ca. 5 nSv/h (dose rate increase above background at the detector) which is achieved by very advanced hardware and software. Additionally, simplified dose rate measurements are performed by German customs officials at the eastern borders for scrap loads to be imported into Germany. When activity is detected in a load, several options exist, like e.g.: (i) sending the scrap back to the sender; (ii) allowing the whole load to be melted down; (iii) careful unloading and separating the load with the aim of localizing and removing the contamination. This paper analyses these various options after detection, discusses the role of the competent authorities and evaluates the possible radiological consequences. Realistic dose calculations show that it is possible that a person may receive doses of several mSv or even 10 mSv if precautionary measures are neglected or if a larger source is not detected at all. This paper further addresses which types and amounts of radioactivity may be detected and which conclusions can be drawn from the dose rate at the detector. The continuous increase in the number

  11. Melting metal waste for volume reduction and decontamination

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heshmatpour, B.; Heestand, R.L.

    1980-01-01

    Melt-slagging was investigated as a technique for volume reduction and decontamination of radioactively contaminated scrap metals. Experiments were conducted using several metals and slags in which the partitioning of the contaminant U or Pu to the slag was measured. Concentrations of U or Pu in the metal product of about 1 ppM were achieved for many metals. A volume reduction of 30:1 was achieved for a typical batch of mixed metal scrap. Additionally, the production of granular products was demonstrated with metal shot and crushed slag

  12. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Walker, L.A.; Simpson, V.R.; Rockett, L.; Wienburg, C.L.; Shore, R.F.

    2007-01-01

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  13. Heavy metal contamination in bats in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.A. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Simpson, V.R. [Wildlife Veterinary Investigation Centre, Jollys Bottom Farm, Chacewater, Truro, Cornwall TR4 8PB (United Kingdom); Rockett, L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Wienburg, C.L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Shore, R.F. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: rfs@ceh.ac.uk

    2007-07-15

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb.

  14. A strategy for the unrestricted release of metallic scrap from decommissioned nuclear facilities, integrating quality planning with the effective use of non-destructive assay instrumentation

    International Nuclear Information System (INIS)

    Gunn, R.; Troughten, N.; Warran, C.

    2000-01-01

    The key component of any release operation is its quality plan. This plan is a step by step procedure which describes all the actions which are required during the entire process and also the information required at every stage of the process. Once drafted the quality plan will enable operators to determine at what stages it is necessary to measure the parameters required to allow the process to progress. The objective of the radiometric system is to provide the auditable proof that material has been surveyed, the record of the survey and the evidence that the system was operating within its design parameters during the survey. Typical radiometric instruments which have been deployed to provide the information requirements of the quality plan are described in this paper. These include the IonSens TM Conveyor, conveyorized survey monitor used to provide high throughout clearance surveys of removed metallic scrap. The IonSens TM Pipe, cut pipe monitor is used to survey interiors and exteriors of long lengths of removed pipe-work. The IonSens TM 208 large Item monitor is used to survey removed pieces of vessels and ductwork which may have convoluted shapes and finally the DrumScan TM system is used to survey 200 litre drums containing cut up pieces of metal. (author)

  15. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  16. Experience with melting beta and gamma contaminated metals

    International Nuclear Information System (INIS)

    Feaugas, J.; Laplante, D.; Puechlong, Y.; Barbusse, R.

    1994-01-01

    Following a description of the melting facility operated for purposes of decommissioning the G2 and G3 gas-cooled reactors at Marcoule, the physical and radiological characteristics of 4070 tonnes of metal processed to date in the furnace are discussed. Considerable data have been recorded regarding operating and measurement procedures; the results show that secondary wastes account for less than 5 wt% of the processed scrap metal, and that all the 137 Cs is transferred to the dust and slag. During the last two months of 1993, the ingot mold line was replaced by rails on which dollies carrying integral work-form molds can be moved into position beneath the casting ladle. (authors). 21 figs

  17. Developments in radioactive scrap monitoring

    International Nuclear Information System (INIS)

    Bellian, J.G.

    1997-01-01

    Over the past ten years there have been major developments in radiation monitoring systems used for detecting shielded radioactive sources in scrap metal. The extent of the problem and industry's awareness of the problem have both grown significantly during that time. The multimillion dollar expenses associated with decontamination after a source passes into the melt and the potential health hazard to employees and the public have added further impetus to the development of monitoring systems. Early attempts at scrap monitoring could detect some radiation, but testing with real life situations showed them to be virtually incapable of detecting shielded sources of radioactivity in incoming vehicles. More sophisticated detector technology and the development of advanced software made useful by more powerful microprocessors led to successive generations of monitoring systems with order-of-magnitude improvement in detection capability. The next generation includes larger detectors and more complex algorithms offering further improvement in truck and rail car monitoring. Complete solutions require monitoring at additional locations within the site, such as the charge bucket and conveyor lines, and at the scrap processor's site

  18. Method of melting decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Tsuchiya, Hiroyuki.

    1984-01-01

    Purpose: To improve the transfer efficiency of radioactive materials into slags. Method: Contaminated metals are melt with adding slagging agent in order to transfer the radioactive materials into the slag, where the slagging agent holds less free energy than that of metal oxides contaminated with radioactive materials in order to promote the transfer of the contaminated materials into the slag layer. This effect can also be attained on metals or alloys other than iron contaminated with radioactive materials. In the case of alloy, the slagging agent is to containing such metal oxide that free energy is less than that of the oxide of metal being the main ingredient element of the alloy. The decontamination effect can further be improved by containing halogenide such as calcium fluoride together with the metal oxide into the slagging agent. (Ikeda, J.)

  19. Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Melville, Felicity [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)], E-mail: f.melville@cqu.edu.au; Pulkownik, Alex [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2007-11-15

    This study examined the potential use of macroalgae epiphytic on mangrove aerial roots as biomonitors of estuarine contamination. The metal concentrations of macroalgae were investigated in four estuaries in the vicinity of Sydney, Australia, and compared to water and sediment metal concentrations over three seasonal surveys. Macroalgal metal concentrations (copper, zinc, cadmium, chromium, lead, nickel, manganese and iron) appeared to be more associated with sediment metal concentrations than water concentrations, suggesting they may be useful biomonitors of estuarine sediment contamination. Algae in the more contaminated estuaries generally contained higher metal concentrations. However, concentrations of iron, nickel and manganese appeared to be similar in the algae despite the varying sediment concentrations, while accumulation of copper, zinc, lead and chromium appeared to be associated with ambient environmental concentrations. The uptake of metals also varied among the different species, suggesting that algal parameters, such as morphology, may also influence metal uptake and accumulation.

  20. Melting-decontamination method for radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Tsuchiya, Hiroyuki; Miura, Noboru; Iba, Hajime.

    1985-01-01

    Purpose: To eliminate uranium components remaining in metals even after the uranium-contaminated metals are melted. Method: Metal wastes contaminated with actinide element or its compound as nuclear fuel substance are melted in a crucible. Molten metals are fallen through a filter disposed at the bottom of the crucible into another receiving crucible. Uranium compounds are still left in the molten metal fallen in the receiving crucible. The residual uranium compounds are concentrated by utilizing the principle of the zone-refining process. That is, a displaceable local-heating heater is disposed to the receiving crucible, by which metals once solidified in the receiving crucible is again heated locally to transfer from solid to molten phase in a quasi-equibilized manner. In this way, by eliminating the end of the metal rod at which the uranium is segregated, the contaminating coefficient can be improved. (Ikeda, J.)

  1. History of metal contamination in Lake Illawarra, NSW, Australia.

    Science.gov (United States)

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.

    Science.gov (United States)

    Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Tasaki, Tomohiro; Nagasaka, Tetsuya

    2012-09-04

    Metals can in theory be infinitely recycled in a closed-loop without any degradation in quality. In reality, however, open-loop recycling is more typical for metal scrap recovered from end-of-life (EoL) products because mixing of different metal species results in scrap quality that no longer matches the originals. Further losses occur when meeting the quality requirement of the target product requires dilution of the secondary material by adding high purity materials. Standard LCA usually does not address these losses. This paper presents a novel approach to quantifying quality- and dilution losses, by means of hybrid input-output analysis. We focus on the losses associated with the recycling of ferrous materials from end-of-life vehicle (ELV) due to the mixing of copper, a typical contaminant in steel recycling. Given the quality of scrap in terms of copper density, the model determines the ratio by which scrap needs to be diluted in an electric arc furnace (EAF), and the amount of demand for EAF steel including those quantities needed for dilution. Application to a high-resolution Japanese IO table supplemented with data on ferrous materials including different grades of scrap indicates that a nationwide avoidance of these losses could result in a significant reduction of CO(2) emissions.

  3. Assessing the bioavailability and risk from metal-contaminated ...

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different forms (species) which impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants has a direct impact on human health risk assessment and risk management practices. Novel research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal contaminated soils have advanced in the past few years. The objective of this workshop was to focus on recent developments in assessing the bioaccessibility/bioavailability of arsenic contaminated soils, metal contamination in urban residences in Canada and potential children’s exposures to toxic elements in house dust, a community-based study known as the West Oakland Residential Lead Assessment , studies of the bioavailability of soil cadmium, chromium, nickel and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metal contamination, studies of exposures to residential contamination, and

  4. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  5. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  6. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  7. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    ., Ba, Cr, Cu,. Ni, Pb, Rb, Sr ... metal contamination in soils of different regions. The study ... in the Hyderabad city. ... A network of first and second order streams ... In this case, redun- ...... strategy for developing countries; In: Lead, mercury, cad-.

  8. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  9. assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    ABSTRACT. This study was carried out to determine the level of soil contamination by metals around some automobile mechanic .... and this was done all through the sample preparation. ... shaking was done by a mechanical sieve shaker and.

  10. Reuse of scrap of Al and steel SAE 1045 in metal composite as alternative of recycling route powder metallurgy

    International Nuclear Information System (INIS)

    Souza, V.E.S.; Masieiro, F.R.S.; Lourenco, J.M.; Felipe, R.C.T.S.

    2009-01-01

    Full text: The process of powder metallurgy in the production of parts through application of pressure on the selected ceramic or metal powders, which are subjected to a temperature of sintering for to occur consolidation of the components. The metal-mechanical industry is responsible for the generation of inputs from their manufacturing processes. This work aims to re-use of chips of Al and SAE 1045 steel by powder metallurgy of this is a viable and effective. This work is in the manufacture of a composite using Al 6060 metal matrix and steel 1045 as reinforcement (30%, 40%, 50%), under different compaction pressures (250MPa, 400MPa and 600MPa), analyzing the influence of compressibility in hardness of the compressed. The samples were sintered at a temperature of 500 ° C in an oven using resistive atmosphere of hydrogen for 45 minutes. After the procedures of the powder metallurgy technique were analyzed of the optical microscopy, x-ray diffraction, MEV and Rockwell hardness, which was found to be evaluated as not diffusibility between the steel and aluminum. (author)

  11. Heavy metals contamination of topsoil and dispersion in the ...

    African Journals Online (AJOL)

    Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile. A total of 75 ...

  12. Geospatial analyses in support of heavy metal contamination ...

    African Journals Online (AJOL)

    This paper presents an exploratory assessment of heavy metal contamination along the main highways in Mafikeng, and illustrates how spatial analyses of the contamination for environmental management purposes can be supported by GIS and Remote Sensing. Roadside soil and grass (Stenotaphrum sp.) samples were ...

  13. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  14. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    Science.gov (United States)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  15. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  16. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  17. Assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of soil contamination by metals around some automobile mechanic workshops in Oyo town in order to assess their possible adverse health implications on man and his environment. Concentrations of metals above certain levels have been shown to impair man's health.

  18. Design requirements for a metal-smelting facility

    International Nuclear Information System (INIS)

    Williams, L.C.; Mack, J.E.

    1982-01-01

    Functional requirements for the smelting of metal scrap contaminated with low-enriched uranium in a Metal Smelting Faclity (MSF) have been determined. The process will be designed to smelt ferrous metal scrap that has accumulated at the Oak Ridge Gaseous Diffusion Plant (ORGDP) into one-ton ingots at a rate of 40 ingots per day (10,000 tons/year). Total scrap inventories at the ORGDP are currently estimated at 28,000 tons. The diffusion plant scrap is primarily contaminated with 100 to 200 ppm U at an enrichment of 0.5 to 1.5% 235 U. The scrap is considered special nuclear material (SNM) and cannot be handled by commercial smelters without specific licensing. Slagging will be performed to remove contaminants from the metal and concentrate them in the slag. Process systems will include scrap handling, size reduction, preheating and charging, melting and slagging, ingot casting and storage, and fume exhaust. The MSF has been proposed for FY 1984 line item funding

  19. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  20. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  1. Bacterial metal resistance genes and metal bioavailability in contaminated sediments

    International Nuclear Information System (INIS)

    Roosa, Stéphanie; Wattiez, Ruddy; Prygiel, Emilie; Lesven, Ludovic; Billon, Gabriel; Gillan, David C.

    2014-01-01

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. - Highlights: • Metal resistance genes were used to estimate metal bioavailability in sediments. • Gene levels were correlated to metals using 5 different metal extraction protocols. • CzcA gene levels determined by quantitative PCR is a promising tool for Cd/Zn/Co. - Capsule Bacterial czcA is a potential biomarker of Cd, Zn and Co bioavailability in aquatic sediments as shown by quantitative PCR and sequential metal extraction

  2. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  3. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  4. Oxidation and metal contamination of EUV optics

    NARCIS (Netherlands)

    Sturm, Jacobus Marinus; Liu, Feng; Pachecka, Malgorzata; Lee, Christopher James; Bijkerk, Frederik

    2013-01-01

    The next generation photolithography will use 13.5 nm Extreme Ultraviolet (EUV) for printing smaller features on chips. One of the hallenges is to optimally control the contamination of the multilayer mirrors used in the imaging system. The aim of this project is generating fundamental understanding

  5. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  6. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    Science.gov (United States)

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  7. Recovery of uranium from (U,Gd)O{sub 2} nuclear fuel scrap using dissolution and precipitation in carbonate media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Wook, E-mail: nkwkim@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); KEPCO NF 1047 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Hyun, Jun-Taek; Lee, Eil-Hee; Park, Geun-Il; Lee, Kune-Woo [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Yoo, Myung-June [KEPCO NF 1047 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Song, Kee-Chan; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-11-15

    Highlights: > A treatment of (U,Gd)O{sub 2} scrap with a dissolution in carbonate solution with H{sub 2}O{sub 2}. > Partial dissolution of Gd together with uranium in carbonate solution. > Solubilities of Gd in solutions with and without carbonate at several pHs. > Purification of Gd-contaminated UO{sub 4} by dissolution and precipitation of UO{sub 4}. - Abstract: This work studied a process to recover uranium from contaminated (U,Gd)O{sub 2} scraps generated from nuclear fuel fabrication processes by using the dissolution of (U,Gd)O{sub 2} scraps in a carbonate with H{sub 2}O{sub 2} and the precipitation of the dissolved uranium as UO{sub 4}. The dissolution characteristics of uranium, Gd, and impurity metal oxides were tested, and the behaviors of UO{sub 4} precipitation and Gd solubility were evaluated with changes of the pH of the solution. A little Gd was entrained in the UO{sub 4} precipitate to contaminate the uranium precipitate. Below a pH of 3, the uranium dissolved in the form of uranyl peroxo-carbonato complex ions in the carbonate solution was precipitated as UO{sub 4} with a high precipitation yield, and the Gd had a very high solubility. Using these characteristics, the Gd-contaminated UO{sub 4} could be purified using dissolution in a 1-M HNO{sub 3} solution with heating and re-precipitation upon addition of H{sub 2}O{sub 2} to the solution. Finally, an environmentally friendly and economical process to recover pure uranium from contaminated (U,Gd)O{sub 2} scraps was suggested.

  8. Heavy metal contamination in TIMS Branch sediments

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1990-01-01

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering ampersand Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized

  9. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... found to be highest in the bone of L. niloticus, copper recorded the least of all the metals. There is ... adequate enough to turn turbine engines to supply 6 megawatts of electricity .... demand of dissolved oxygen. Thus, a lot of ...

  10. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    emissions from automobile exhaust, waste incineration, land disposal of wastes, use of .... of total organic carbon increased from 2.0 ± 1.5 % in the top soil to 3.42 ± 0.83 ..... Thus, accumulation of heavy metals in the soil has potential to restrict.

  11. Heavy metals contamination: implications for health and food safety

    Directory of Open Access Journals (Sweden)

    Yulieth C. Reyes

    2016-07-01

    Full Text Available Contamination by heavy metals in water resources, soil and air poses one of the most severe problems that compromise food safety and public health at global and local level. In this review, the specific problem of contamination by mercury (Hg, arsenic (As, cadmium (Cd and lead (Pb in the environment and food is presented. A description of the sources of contamination, exposure in living beings, accumulation and retention in food and consumer products is carried out. Study cases and results in some countries included Colombia are discussed.

  12. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  13. Developing methods for detecting radioactive scrap

    International Nuclear Information System (INIS)

    Bellian, J.G.; Johnston, J.G.

    1995-01-01

    During the last 10 years, there have been major developments in radiation detection systems used for catching shielded radioactive sources in scrap metal. The original testing required to determine the extent of the problem and the preliminary designs of the first instruments will be discussed. Present systems available today will be described listing their advantages and disadvantages. In conclusion, the newest developments and state of the art equipment will also be included describing the limits and most appropriate locations for the systems

  14. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  15. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  16. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    The concentrations, contamination/pollution index, anthropogenic input and enrichment factors for metals in soil in the vicinity of cassava processing mills in sub-urban areas of Delta State of Nigeria were examined. The concentrations of metals in all sites and depths ranged from 0.1 to 383.2 mg kg-1 for Mn, 4.0 to 11.3 mg ...

  17. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration.

    Science.gov (United States)

    Gao, Shi; Wang, Wen-Xiong

    2014-12-01

    The Hong Kong oysters Crassostrea hongkongensis are widely farmed in the estuarine waters of Southern China, but they accumulate Cu and Zn to alarmingly high concentrations in the soft tissues. Health risks of seafood consumption are related to contaminants such as toxic metals which are bioaccessible to humans. In the present study, we investigated the oral bioaccessibility of five toxic metals (Ag, Pb, Cd, Cu and Zn) in contaminated oysters collected from different locations of a large estuary in southern China. In all oysters, total Zn concentration was the highest whereas total Pb concentration was the lowest. Among the five metals, Ag had the lowest oral bioaccessibility (38.9-60.8%), whereas Cu and Zn had the highest bioaccessibility (72.3-93.1%). Significant negative correlation was observed between metal bioaccessibility and metal concentration in the oysters for Ag, Cd, and Cu. We found that the oral bioaccessibility of the five metals was positively correlated with their trophically available metal fraction (TAM) in the oyster tissues, and negatively correlated with metal distribution in the cellular debris. Thus, metal partitioning in the TAM and cellular debris controlled the oral bioaccessibility to humans. Given the dependence of oral bioaccessibility on tissue metal contamination, bioaccessibility needs to be incorporated in the risk assessments of contaminated shellfish. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  19. Issues in recycling galvanized scrap

    Energy Technology Data Exchange (ETDEWEB)

    Koros, P.J. [LTV Steel Co., Inc., Cleveland, OH (United States); Hellickson, D.A. [General Motors Corp., Detroit, MI (United States); Dudek, F.J. [Argonne National Lab., IL (United States)

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  20. Functioning of metal contaminated garden soil after remediation

    International Nuclear Information System (INIS)

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-01-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg −1 ) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg −1 of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg −1 EDTA) and changed the structure of microbial population. -- Highlights: ► Toxic metals contaminated garden soil was remediated in a pilot-scale. ► EDTA washing reduced soil Pb, Zn and Cd content and bioavailability. ► Remediated soil preserved the function of plant and microbial substrate. ► Remediation didn't prevent the accumulation of toxic metals in the test plant. -- EDTA soil washing effectively removed toxic metals and reduced their transfer from the soil to plant roots but did not prevent their accumulation in leaves

  1. Biomonitoring of some heavy metal contaminations from a steel ...

    African Journals Online (AJOL)

    Soil and plants growing in the vicinity of industrial areas display increased concentrations of heavy metals and give an indication of the environmental quality. The contamination source for aluminum, iron, nickel and lead in the Botanical garden of Mobarakeh Steel Company was recognized by analyzing the leaves and ...

  2. Soil microbial effects of smelter induced heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A

    1986-01-01

    The soil concentrations of Cu and Zn at the secondary smelter were 20 00 mu g/g dry soil. Close to the primary smelter the soil was contaminated with more than ten elements including Pb, Zn, Cu and As at levels ranging between 6000 and 1000 mu g/g dry soil. The correlations between the concentrations of the metals were high at both smelters. Soil respiration rate decreased by about 75% close to both smelters. Total and fluorescein diacetate stained mycelial lengths decrease with increasing heavy metal pollution at the secondary but not at the primary smelter. The fungal community structure was strongly affected by the contamination. General common in coniferous forest soils such as Penicillium and Oidiodendron virtually vanished, while less frequent species like Paecilomyces farinosus and Geomyces pannorum dominated the site close to the smelter. Colony forming units of a number of functional groups of bacteria were found to be very sensitive to metal contamination. The urease activity of the soil was inhibited. Multivariate statistical analyses showed that the metal contamination was the major environmental influence on the microbiotain the soils studied. A study of about 200 decomposition curves resulting from glutamic acid additions to the different soils produced four microbially related parameters: basal respiration rate, initial respiration rate after the addition of the glutamic acid, specific respiration rate during the exponential increase of the respiration rate and the lag time before the exponential phase. With 53 refs.

  3. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  4. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  5. Simulation of heavy metal contamination of fresh water bodies: toxic ...

    African Journals Online (AJOL)

    Michael Horsfall

    www.bioline.org.br/ja. Simulation of heavy metal contamination of fresh water bodies: toxic effects in the ... 96 hours (though sampling was done at the 48th hour). Biochemical markers of ... silver, while enhancing the bioavailability of mercury in Ceriodaphnia ..... Biochemical and molecular disorders of bilirubin metabolism.

  6. Short communication Assessment of heavy metal contamination in ...

    African Journals Online (AJOL)

    2016-05-27

    May 27, 2016 ... Assessment of heavy metal contamination in raw milk for human consumption ... Long-term exposure to lower levels of Cd and Cr leads to stomach ... Toxicity by Pb can result in decreased performance, and damage to the ...

  7. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  8. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  9. Feasibility analysis of recycling radioactive scrap steel

    International Nuclear Information System (INIS)

    Nichols, F.; Balhiser, B.; Cignetti, N.

    1995-09-01

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section

  10. Energy recovery of combustible fraction from fragmentation of metal scrap - Phase 2; Energiaatervinning av braennbar fraktion fraan fragmentering av metallhaltigt avfall - Steg 2

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne (Stena Metall AB (Sweden)); Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Jonsson, Torbjoern; Pettersson, Jesper (HTC, Chalmers Tekniska Hoegskola, Goeteborg (Sweden)); Victoren, Anders; Andersson, Hans (Metso Power AB (Sweden)); Widen, Christoffer (Lidkoepings Vaermeverk AB (Sweden))

    2010-03-15

    More recovered fuels have been put on the fuel market since the landfill ban of organic wastes was implemented. SLF (shredder light fraction = fluff) which is a waste from recovery of metal scrap has mostly been put on landfill until now. Due to high chlorine and metal content in this fuel there is a risk of increased deposit and corrosion problems in incineration plants. This project investigated if co-combustion with sewage sludge could reduce these problems. The purpose of the project was also to document the influence of SLF when it comes to deposits and corrosion in an incineration plant. In this project SLF has been co-combusted with normal waste with and without sewage sludge in the 20 MW bubbling fluidized bed boiler in Lidkoeping. Three combustion tests have been performed: - Ref - Reference test (normal fuel mix = 50% household waste/50% industrial waste). - F1 - Test 1 (75% normal fuel mix , 21% SLF and 4% sewage sludge) - F2 - Test 2 (77% normal fuel mix and 23% SLF) The fuel mix is specified as percentage of energy content. The tests lasted 3 days and during the last 24 hours corrosion and deposit probes were exposed inside the boiler. The surface temperatures of the corrosion probes were 280, 350 and 420 deg C in each test. At the same time as the probes were exposed the boiler operation was followed and samples of fuel, ash and flue gas were taken. The results clearly show that sewage sludge initially decreases the deposit and corrosion problems at SLF combustion. Lower amounts of deposits were measured and the deposits were less corrosive when 4% of sewage sludge was added to the fuel mix with normal waste and SLF (F1). Co-combustion of more than 20% SLF and wastes (F2) increase initially the amount of the deposits and the deposits were also initially more corrosive. Long-term consequences are not investigated in this project. The project has not shown a distinct explanation why sewage sludge gives these good effects. Several possible causes, as

  11. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    Science.gov (United States)

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Decontamination method for radiation-contaminated metal waste

    International Nuclear Information System (INIS)

    Suwa, Takeshi; Kuribayashi, Nobuhide; Yasumune, Taketoshi.

    1991-01-01

    In immersing radiation-contaminated metal wastes into a sulfuric acid solution thereby peeling and removing radioactive deposition cruds and dissolving the surface of the matrix metals to eliminate radioactive contaminants, when the potential of the sulfuric acid solution is shifted to a higher direction by more than a certain level due to the increase of the amount of metal ions leached from the cruds and the matrix material, the leached metal ions are electrolytically reduced to control the potential of the sulfuric acid solution to less than a predetermined potential level. Although the dissolving rate is increased as the concentration of the sulfuric acid solution is higher, it is preferably from 0.5 to 2 mol/l, since higher concentration increases the load on the waste liquid processing. Further, the temperature for solution is set to higher than a room temperature and, preferably from 50 to 90degC. Further, the potential level of the solution, although varies somewhat depending on the concentration of the leached metal ions and the temperature, is preferably controlled to less than 0.1 to 0.2 V. This can attain high decontaminating effect in a short period of time by using a sulfuric acid solution alone. (T.M.)

  13. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  14. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  15. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    Van Nevel, Lotte; Mertens, Jan; Demey, Andreas; De Schrijver, An; De Neve, Stefaan; Tack, Filip M.G.; Verheyen, Kris

    2014-01-01

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  16. Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II)

    International Nuclear Information System (INIS)

    Asencios, Yvan J.O.; Sun-Kou, María R.

    2012-01-01

    Highlights: ► Aluminum hydroxide obtained from aluminum scrap led to the formation of gamma alumina. ► Acidic pH of precipitation favored the formation of small particles of high surface areas. ► Higher aging temperature favored the formation of large structures of large pore sizes. ► Higher aging temperature generated symmetrical solids of regular hexagonal prism forms. ► Aluminas of large pores adsorbed metals as following: Pb (1.75 Å) > Cd (1.54 Å) > Zn (1.38 Å). - Abstract: Several types of alumina were synthesized from sodium aluminate (NaAlO 2 ) by precipitation with sulfuric acid (H 2 SO 4 ) and subsequently calcination at 500 °C to obtain γ-Al 2 O 3 . The precursor aluminate was derived from aluminum scrap. The various γ-Al 2 O 3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption–desorption of N 2 (S BET ) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al 2 O 3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m 2 g −1 ) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined.

  17. Incident involving radioactive material in steel scrap

    International Nuclear Information System (INIS)

    Drabova, D.; Matzner, J.; Prouza, Z.

    1998-01-01

    In early March of 1996, a wagon with steel scrap heading from the Czech Republic to Italy was returned as a strongly contaminated material. Based on the integral dose (dose rate 650 mGy/h in front of the wagon) and spectrometric measurement and evaluation, it was concluded that an unshielded cobalt-60 source (1.6 TBq) was present. The history of the event (notification, assessment, intervention planning, intervention) is highlighted and the lesson learned from the incident is discussed. (P.A.)

  18. Characterisation of contaminated metals using an advanced statistical toolbox - Geostatistical characterisation of contaminated metals: methodology and illustrations

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Desnoyers, Yvon

    2014-01-01

    Radiological characterisation plays an important role in the process to recycle contaminated or potentially contaminated metals. It is a platform for planning, identification of the extent and nature of contamination, assessing potential risk impacts, cost estimation, radiation protection, management of material arising from decommissioning as well as for the release of the materials as well as the disposal of the generated secondary waste as radioactive waste. Key issues in radiological characterisation are identification of objectives, development of a measurement and sampling strategy (probabilistic, judgmental or a combination thereof), knowledge management, traceability, recording and processing of obtained information. By applying advanced combination of statistical and geostatistical in the concept better performance can be achieved at a lower cost. This paper will describe the benefits with the usage of the available methods in the different stages of the characterisation, treatment and clearance processes aiming for reliable results in line with the data quality objectives. (authors)

  19. Recovery of gold from electronic scrap by hydrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Churl Kyoung; Rhee, Kang-In [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of); Sohn, Hun Joon [Seoul National University, Seoul (Korea, Republic of)

    1997-09-30

    A series of processes has been developed to recover the gold from electronic scrap containing about 200{approx}600 ppm Au. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1 mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The crushed scrap was leached in 50% aqua regia solution and gold was completely dissolved at 60 deg. C within 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. The resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour by electrowinning process. (author). 10 refs., 5 tabs., 6 figs.

  20. Hydrogen isotope storage in zircaloy scrap

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. S.; Kuk, I. H.; Chung, H.; Paek, S. W.; Kang, H. S

    1999-08-01

    8 MCi of tritium a year will be produced after wolsong TRF is in operation. The metal hydride form is one of useful tritium storage. The metals in use for metal hydride are uranium, titanium, etc., however uranium is limited to use by regulation, and titanium is relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scrap is produced by CANDU nuclear fuel fabrication process, which is also useful for hydrogen storage. The purpose of this study is to evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste by CANDU nuclear fuel fabrication process. The sample evacuated for an hour at 1000 deg C. The strip showed higher capacity : 0.7 at 25 deg C, 2.0 at 200 deg C, 2.0 at 200 deg C, 2.0 at 400 deg C, respectively. The H/M values for commercial zircaloy sponge were 2.0 at 25 deg C and 2.0 at 400 deg C.

  1. Hydrogen isotope storage in zircaloy scrap

    International Nuclear Information System (INIS)

    Lee, H. S.; Kuk, I. H.; Chung, H.; Paek, S. W.; Kang, H. S.

    1999-08-01

    8 MCi of tritium a year will be produced after wolsong TRF is in operation. The metal hydride form is one of useful tritium storage. The metals in use for metal hydride are uranium, titanium, etc., however uranium is limited to use by regulation, and titanium is relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scrap is produced by CANDU nuclear fuel fabrication process, which is also useful for hydrogen storage. The purpose of this study is to evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste by CANDU nuclear fuel fabrication process. The sample evacuated for an hour at 1000 deg C. The strip showed higher capacity : 0.7 at 25 deg C, 2.0 at 200 deg C, 2.0 at 200 deg C, 2.0 at 400 deg C, respectively. The H/M values for commercial zircaloy sponge were 2.0 at 25 deg C and 2.0 at 400 deg C

  2. Remediation of metal-contaminated urban soil using flotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Dermont, G., E-mail: dermonge@gmail.com [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada); Bergeron, M.; Richer-Lafleche, M.; Mercier, G. [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada)

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 {mu}m. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (< 20 {mu}m) caused a flotation selectivity drop, especially with a long flotation time (> 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 {mu}m) showed the best flotation selectivity.

  3. Remediation of metal-contaminated urban soil using flotation technique.

    Science.gov (United States)

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Remediation of metal-contaminated urban soil using flotation technique

    International Nuclear Information System (INIS)

    Dermont, G.; Bergeron, M.; Richer-Lafleche, M.; Mercier, G.

    2010-01-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 μm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles ( 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 μm) showed the best flotation selectivity.

  5. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  6. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  7. Recycling of rare earth magnet scraps: Carbon and oxygen removal from Nd magnet scraps

    International Nuclear Information System (INIS)

    Saguchi, A.; Asabe, K.; Fukuda, T.; Takahashi, W.; Suzuki, R.O.

    2006-01-01

    The decarburization and deoxidation technique for permanent Nd-Fe-B magnet scrap is investigated. The carbon and oxygen contamination damage the magnetic properties. The carbon content decreased less than 0.001% by heating in air. The two stage deoxidation is applied, iron oxides are reduced by heating in hydrogen thereafter rare earth oxides are removed by Ca-reduction and leaching. The appropriate conditions for deoxidation in the Ca-reduction and suppressing the re-oxidation in the leaching are investigated. The heating pattern in Ca-reduction and the leaching condition for the mixture composed of Ca compounds and Nd-Fe-B alloy powder greatly affects the oxygen content of recycled material. The decarburized and deoxidized Nd-Fe-B magnet scrap can be recycled as alloying elements by melting

  8. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    International Nuclear Information System (INIS)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-01-01

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  9. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  10. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  11. Scrapping of student bursaries confirmed.

    Science.gov (United States)

    Longhurst, Chris

    2016-07-27

    Student bursaries for nurses will be scrapped from next year, the government has confirmed. Undergraduate nursing and midwifery students in England will now face tuition fees and student loans from August 2017.

  12. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  13. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  14. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  15. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  16. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  17. The Belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources

    International Nuclear Information System (INIS)

    Braeckeveldt, Marnix; Preter, Peter De; Michiels, Jan; Pepin, Stephane; Schrauben, Manfred; Wertelaers, An

    2007-01-01

    Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium's federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port's alarm goes off. Following the publication of the European guideline 2003/122/EURATOM of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund. (authors)

  18. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    Science.gov (United States)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  19. Shear bond strength of metallic brackets: influence of saliva contamination

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2009-06-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on shear bond strength and the bond failure pattern of 3 adhesive systems (Transbond XT, AdheSE and Xeno III on orthodontic metallic brackets bonded to human enamel. MATERIAL AND METHODS: Seventy-two permanent human molars were cut longitudinally in a mesiodistal direction, producing seventy-two specimens randomly divided into six groups. Each system was tested under 2 different enamel conditions: no contamination and contaminated with saliva. In T, A and X groups, the adhesive systems were applied to the enamel surface in accordance with manufacturer's instructions. In TS, AS and XS groups, saliva was applied to enamel surface followed by adhesive system application. The samples were stored in distilled water at 37ºC for 24 h, and then tested for shear bond strength in a universal testing machine (Emic, DL 2000 running at a crosshead speed of 1 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. RESULTS: The control and contaminated groups showed no significant difference in shear bond strength for the same adhesive system. However, shear bond strength of T group (17.03±4.91 was significantly higher than that of AS (8.58±1.73 and XS (10.39±4.06 groups (p<0.05. Regarding the bond failure pattern, TS group had significantly higher scores of no adhesive remaining on the tooth in the bonding area than other groups considering the adhesive remnant index (ARI used to evaluate the amount of adhesive left on the enamel. CONCLUSIONS: Saliva contamination showed little influence on the 24-h shear bond strength of orthodontic brackets.

  20. The melting treatment of bulk scrap from decommissioning

    International Nuclear Information System (INIS)

    Deng Junxian; Deng Feng

    2014-01-01

    Large amount of radioactive scrap will come out from reactor decommissioning. The melting treatment can be used for the volume reduction, the recycle and reuse of the radioactive scrap to reduce the mass of the radioactive waste disposal and to reuse most of the metal. The melting treatment has the advantages in volume reduction, conditioning, radionuclide confinement, reduction of radioactivity concentration, easy monitoring of radioactivity; and the effective of decontamination for several radionuclide. Therefore to use the melting technology other decontamination technology should be performed ahead, the decontamination effect of the melting should be predicted, the utility of recycle and reuse should be defined, and the secondary waste should be controlled effectively. (authors)

  1. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  2. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.; Wattal, P.K.

    2013-01-01

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  3. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Science.gov (United States)

    Bartošová, Alica; Blinová, Lenka

    2017-06-01

    Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  4. Leaching of metals from soil contaminated by mining activities.

    Science.gov (United States)

    Yukselen, M A; Alpaslan, B

    2001-10-12

    Stabilization/solidification (s/s) is one of the most effective methods of dealing with heavy metal contaminated sites. The ability of lime and cement stabilization to immobilize Pb, Cu and Fe contained in a contaminated soil originating from an old mining and smelting area located along the Mediterranean Sea shore in northern Cyprus was investigated. The stabilization was evaluated by applying leaching tests. A series of tests were conducted to optimize the additive soil ratio for the best immobilization process. Additive/soil=1/15 (m/m) ratio was found to be the optimum for both lime and cement. Application of the US EPA toxicity characteristic leaching procedure (TCLP) on the soil samples treated with lime at additive/soil=1/15 (m/m) mixing ratios showed that Cu and Fe solubility was reduced at 94 and 90%, respectively. The results of cement treatment using the same ratio, reduced the solubility 48 and 71% for Cu and Fe, respectively. The Pb solubility was found to be below the regulatory limit of 5mg/l so no additive treatment was needed. The optimum additive/soil amount (1/15) was selected for more detailed column studies, that were carried out in the acidic pH range. According to the results of column leaching tests, it was found that, the degree of heavy metal leaching is highly dependent on pH.

  5. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Bartošová Alica

    2017-06-01

    Full Text Available Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI, and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  6. Remediation of soil contaminated with the heavy metal (Cd2+)

    International Nuclear Information System (INIS)

    Lin, C.-C.; Lin, H.-L.

    2005-01-01

    Soil contamination by heavy metals is increasing. The biosorption process for removal of the heavy metal Cd 2+ from contaminated soil is chosen for this study due to its economy, commercial applications, and because it acts without destroying soil structure. The study is divided into four parts (1) soil leaching: the relationships between the soil leaching effect and agitation rates, solvent concentrations, ratios of soil to solvent, leaching time and pH were studied to identify their optimum conditions; (2) adsorption Cd 2+ tests of immobilized Saccharomycetes pombe beads: different weight percentages of chitosan and polyvinyl alcohol (PVAL) were added to alginate (10 wt.%) and then blended or cross-linked by epichlorohydrin (ECH) to increase their mechanical strength. Next, before blending or cross-linking, different weight percentages of S. pombe 806 or S. pombe ATCC 2476 were added to increase Cd 2+ adsorption. Thus, the optimum beads (blending or cross-linking, the percentages of chitosan, PVAL and S. pombe 806 or S. pombe ATCC 2476) and the optimum adsorption conditions (agitation rate, equilibrium adsorption time, and pH in the aqueous solution) were ascertained; (3) regeneration tests of the optimum beads: the optimum beads adsorbing Cd 2+ were regenerated by various concentrations of aqueous HCl solutions. The results indicate that the reuse of immobilized pombe beads was feasible; and (4) adsorption model/kinetic model/thermodynamic property: the equilibrium adsorption, kinetics, change in Gibbs free energy of adsorption of Cd 2+ on optimum beads were also investigated

  7. Phytoremediation Opportunities with Alimurgic Species in Metal-Contaminated Environments

    Directory of Open Access Journals (Sweden)

    Marianna Bandiera

    2016-04-01

    Full Text Available Alimurgic species are edible wild plants growing spontaneously as invasive weeds in natural grassland and farmed fields. Growing interest in biodiversity conservation projects suggests deeper study of the multifunctional roles they can play in metal uptake for phytoremediation and their food safety when cultivated in polluted land. In this study, the responses of the tap-rooted perennial species Cichorium intybus L., Sonchus oleracerus L., Taraxacum officinale Web., Tragopogon porrifolius L. and Rumex acetosa L. were studied in artificially-highly Cd-Co-Cu-Pb-Zn-contaminated soil in a pot-scale trial, and those of T. officinale and R. acetosa in critical open environments (i.e., landfill, ditch sediments, and sides of highly-trafficked roads. Germination was not inhibited, and all species showed appreciable growth, despite considerable increases in tissue metal rates. Substantial growth impairments were observed in C. intybus, T. officinale and T. porrifolius; R. acetosa and S. oleracerus were only marginally affected. Zn was generally well translocated and reached a high leaf concentration, especially in T. officinale (~600 mg·kg−1·dry weight, DW, a result which can be exploited for phytoremediation purposes. The elevated Cd translocation also suggested applications to phytoextraction, particularly with C. intybus, in which leaf Cd reached ~16 mg·kg−1·DW. The generally high root retention of Pb and Cu may allow their phytostabilisation in the medium-term in no-tillage systems, together with significant reductions in metal leaching compared with bare soil. In open systems, critical soil Pb and Zn were associated with heavily trafficked roadsides, although this was only seldom reflected in shoot metal accumulation. It is concluded that a community of alimurgic species can serve to establish an efficient, long-lasting vegetation cover applied for phytoremediation and reduction of soil metal movements in degraded environments. However

  8. Basis of the detection, assessment and cleaning up of sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Calmano, W.; Foerstner, U.

    1993-01-01

    The cleaning up of sites contaminated with heavy metals is still in its infancy. Depending on the type and extent of the contamination, new methods of treatment must be developed and matched to each situation. A survey is given of the groundwater contamination of soil heavy metals; the binding, availability and mobilisation of heavy metals; geo-chemical concepts for sites contaminated by heavy metals; judging the potential danger; safety measures; cleaning up processes and the reinstatement and renaturing of the soil. (orig.) [de

  9. Metal contamination in wildlife living near two zinc smelters

    Science.gov (United States)

    Beyer, W.N.; Pattee, O.H.; Sileo, L.; Hoffman, D.J.; Mulhern, B.M.

    1985-01-01

    Wildlife in an oak forest on Blue Mountain was studied 10 km upwind (Bake Oven Knob site) and 2 km downwind (Palmerton site) of two zinc smelters in eastern Pennsylvania, USA. Previous studies at sites near these smelters had shown changes in populations of soil microflora, lichens, green plants and litter-inhabiting arthropods. The 02 soil litter horizon at Palmerton was heavily contaminated with Pb (2700 mg kg-1), Zn (24000 mg kg-1), and Cd (710 mg kg-1), and to a lesser extent with Cu (440 mg kg-1). Various kinds of invertebrates (earthworms, slugs and millipedes) that feed on soil litter or soil organic matter were rare at, or absent from, the Palmerton site. Those collected at Bake Oven Knob tended to have much higher concentrations of metals than did other invertebrates. Frogs, toads and salamanders were very rare at, or absent from, the Palmerton site, but were present at Bake Oven Knob and at other sites on Blue Mountain farther from the smelters. Metal concentrations (dry wt) in different organisms from Palmerton were compared. Concentrations of Pb were highest in shrews (110 mg kg-1), followed by songbirds (56 mg kg-1), leaves (21 mg kg-1), mice (17 mg kg-1), carrion insects (14 mg kg-1), berries (4.0 mg kg-1), moths (4,3 mg kg-1) and fungi (3.7 mg kg-1). Concentrations of Cd, in contrast, were highest in carrion insects (25 mg kg-1 ),followed by fungi (9.8 mg kg-1), leaves (8.1 mg kg-1), shrews (7.3 mg kg-I), moths (4.9 mg kg-1), mice (2.6 mg kg -1), songbirds (2.5 mg kg -1) and berries (1.2 mg kg-1). Concentrations of Zn and Cu tended to be highest in the same organisms that had the highest concentrations of Cd. Only a small proportion of the metals in the soil became incorporated into plant foliage, and much of the metal contamination detected in the biota probably came from aerial deposition. The mice from both sites seemed to be healthy. Shrews had higher concentrations of metals than did mice, and one shrew showed evidence of Pb poisoning; its red

  10. Remediation techniques for heavy-metals contamination in lakes: A Mini-Review

    Digital Repository Service at National Institute of Oceanography (India)

    Giripunje, M.D.; Fulke, A.B.; Meshram, P.U.

    Heavy-metals contamination in lakes has a negative impact on lake ecosystems This review provides an insight into possible heavy-metals remediation techniques for lake environments using different techniques, for example, physical, chemical...

  11. Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions

    International Nuclear Information System (INIS)

    Kirkey, Fallon M.; Matthews, Jennifer; Ryser, Peter

    2012-01-01

    Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. - Highlights: ► Metal resistance in trees from an industrially contaminated region was investigated. ► Both red maple and white birch have developed some degree of resistance. ► There is indication of a cost for resistance. ► Populations from non-contaminated regions show variation in response to contamination. - Adaptive metal resistance can also develop in trees with long generation times, but the degree of resistance is lower than for herbaceous species from the same region.

  12. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  13. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  14. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló, D.

    2016-11-03

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment contaminated area both in May (31.7%) and October (36.0%) when compared to a less contaminated area over the same periods (20.3% and 29.0% respectively). Interestingly, metal bioaccumulation in gills was higher in the specimens collected at the least contaminated area with the exception of Pb. Indeed, the multivariate analysis revealed a stronger relation between aneuploidy and sediment contamination than between aneuploidy and the bioaccumulation of the metals. The temporal and spatial inconsistency found for the bioaccumulation of metals in R. philippinarum and the positive correlation between sediment contamination and aneuploidy at the most contaminated area suggest that these chromosome-level effects might be due to chronic metal contamination occurring in the Tagus estuary, rather than a direct result of the temporal variation of bioavailable contaminants. The vertical transmission phenomenon of bivalve aneuploidy levels may then be perpetuating those levels on clams from the most contaminated area. The present results shed light about the effect of metal toxicity at the chromosome-level in species inhabiting chronic contaminated areas and highlight the use of aneuploidy as an effective tool to identify persistent contamination in worldwide transitional waters.

  15. 7 CFR 29.3526 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  16. 7 CFR 29.3034 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  17. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  18. 7 CFR 29.2277 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  19. Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete

    International Nuclear Information System (INIS)

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-01-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe–Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe–Mn oxides were important in controlling the sediment metal bioavailability to polychaetes. - Highlights: • Metals in contaminated sediments gradually partitioned into the more stable phase over time. • Metal accumulation in polychaetes was more significantly influenced by Fe/Mn content than by organic matter. • Prediction of metal bioaccumulation greatly improved by normalizing metals to Mn content in sediment. • Metals in exchangeable, organic matter and Fe–Mn oxides were important in controlling their bioavailability. - Prediction of metal bioaccumulation in polychaetes was significantly improved by normalizing metal concentrations to Mn content in sediment

  20. Biomonitoring for metal contamination near two Superfund sites in Woburn, Massachusetts, using phytochelatins

    International Nuclear Information System (INIS)

    Gawel, James E.; Hemond, Harold F.

    2004-01-01

    Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment difficult. Our study is the first to examine the use of phytochelatin measurements in tree leaves for delimiting biological metal stress in shallow, metal-contaminated groundwater systems. Three tree species (Rhamnus frangula, Acer platanoides, and Betula populifolia) growing above the shallow groundwater aquifer of the Aberjona River watershed in Woburn, Massachusetts, display a pattern of phytochelatin production consistent with known sources of metal contamination and groundwater flow direction near the Industri-Plex Superfund site. Results also suggest the existence of a second area of contaminated groundwater and elevated metal stress near the Wells G and H Superfund site downstream, in agreement with a recent EPA ecological risk assessment. Possible contamination pathways at this site are discussed

  1. A mine of information: Benthic algal communities as biomonitors of metal contamination from abandoned tailings

    International Nuclear Information System (INIS)

    Lavoie, Isabelle; Lavoie, Michel; Fortin, Claude

    2012-01-01

    Various biomonitoring approaches were tested in the field to assess the response of natural periphythic algal communities to chronic metal contamination downstream from an abandoned mine tailings site. The accumulation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) as well as the production of phytochelatins, the presence of diatom taxa known to tolerate high metal concentrations, diatom diversity and the presence of teratologies were determined. We observed highly significant relationships between intracellular metal and calculated free metal ion concentrations. Such relationships are often observed in laboratory studies but have been rarely validated in field studies. These results suggest that the concentration of metal inside the field-collected periphyton, regardless of its species composition, is a good indicator of exposure and is an interesting proxy for bioavailable metal concentrations in natural waters. The presence of teratologies and metal-tolerant taxa at our contaminated sites provided a clear indication that diatom communities were responding to this metal stress. A multi-metric approach integrating various bioassessment methods could be used for the field monitoring of metal contamination and the quantification of its effects. Highlights: ► Various approaches for metal contamination biomonitoring were used in the field. ► Metal accumulation in periphyton is correlated to free ion concentration. ► Teratologies and metal-tolerant taxa provided a clear indication of metal stress. ► Stream periphyton shows great potential as a biomonitor of metal contamination.

  2. Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions.

    Science.gov (United States)

    Kirkey, Fallon M; Matthews, Jennifer; Ryser, Peter

    2012-05-01

    Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Metal contamination of vineyard soils in wet subtropics (southern Brazil)

    International Nuclear Information System (INIS)

    Mirlean, Nicolai; Roisenberg, Ari; Chies, Jaqueline O.

    2007-01-01

    The vine-growing areas in Brazil are the dampest in the world. Copper maximum value registered in this study was as much as 3200 mg kg -1 , which is several times higher than reported for vineyard soils in temperate climates. Other pesticide-derived metals accumulate in the topsoil layer, surpassing in the old vineyards the background value several times for Zn, Pb, Cr and Cd. Copper is transported to deeper soils' horizons and can potentially contaminate groundwater. The soils from basaltic volcanic rocks reveal the highest values of Cu extracted with CaCl 2 , demonstrating a high capacity of copper transference into plants. When evaluating the risks of copper's toxic effects in subtropics, the soils from rhyolitic volcanic rocks are more worrisome, as the Cu extracted with ammonium acetate 1 M surpasses the toxic threshold as much as 4-6 times. - Copper-based pesticide use in wet subtropics is environmentally more risky

  4. Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit [Department of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar 143001 (India); Arora, Rajneesh; Singh, N.P. [Punjab Technical University, Jalandhar (India); Sarin, Rakesh; Malhotra, R.K. [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); Sharma, Meeta [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India); Khan, Arif Ali [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India)

    2010-05-15

    Biodiesel is relatively unstable on storage and European biodiesel standard EN-14214 calls for determining oxidation stability at 110 C with a minimum induction time of 6 h by the Rancimat method (EN-14112). According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. Neat Jatropha biodiesel exhibited oxidation stability of 3.95 h. It is found possible to meet the desired EN specification for neat Jatropha biodiesel and metal contaminated Jatropha biodiesel by using antioxidants; it will have a cost implication, as antioxidants are costly chemicals. Research was conducted to increase the oxidation stability of metal contaminated Jatropha biodiesel by doping metal deactivator with antioxidant, with varying concentrations in order to meet the aforementioned standard required for oxidation stability. It was found that usage of antioxidant can be reduced by 30-50%, therefore the cost, even if very small amount of metal deactivator is doped in Jatropha biodiesel to meet EN-14112 specification. (author)

  5. Heavy metal contamination in vegetables grown in Rawalpindi, Pakistan

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, A.; Ahmad, A.; Randhawa, M.A.; Ahmad, R.; Khalid, N.

    2012-01-01

    Copper (Cu), cadmium (Cd), chromium (Cr) nickel (Ni), lead (Pb), Iron (Fe), Manganese (Mn) and zinc (Zn) contents of various vegetables (bitter melon, tomato, eggplant, lettuce, cucumber and bell pepper) produced in Rawalpindi, Pakistan was determined using Atomic absorption spectrophotometer (AAS). These plants are the basis of human nutrition in the study area. All vegetables grown at sewage water by farmers showed the highest contamination of heavy metals, followed by local market, Progressive farmers and hydroponic plant. The concentration ranges in mg/kg were (1.45 -2.55) for Cd, (3.10 to 4.92) Cr, (12.15- 20.50) Cu, (25.00-51.00) for Fe, (7.80 to 15.60) for Mn, (10.16 to 15.42) for Ni, (2.12 to 5.41) Pb and (16.58 to 24.08) for zinc. The contamination was above the Maximum Residue Limits (MRLs), set out by WHO. Irregular trends in concentration were also observed in vegetables obtained from local market, progressive farmers and hydroponic plant. (author)

  6. The development of technology for recycling of electronic scrap

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hyo-Shin; Kim, Won-Baek; Sohn, Yong-Uhn [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Electronic devices, especially computer becomes an essential tools for home and industries entering the information era. The number of computers exceed over 100 million, hence, the amount of end of life(EOL) computer and electronic scrap is increasing. These wastes and scraps include products rejected from manufacturing processes and obstacle computers. Owing to a short life cycle of electronic products and rapid growth of electronic industries, the number of domestic EOL computers goes beyond a million and its disposal causes an environmental problems. Therefore, this recycling is considered to play an important role from the viewpoint of environmental preservation as well as reusable resources. The process development for the recovery of valuable materials and minimization of waste from electronic scrap has been carried out. In the first year of three year project, physical separation such as shredding, crushing, and magnetic separation is established to reclaim valuable materials effectively. Then, hydro- and pyrometallurgical processes are employed to recover valuable metals from electronic scrap. First, metallic and nonmetallic portion are separated from PCBs by a newly designed shredder to prevent hazardous organic materials from further chemical treatment. The optimum conditions for each unit process were found in terms of separation ratio, energy consumption, recovery rate, etc. (author). 92 refs., 24 tabs., 39 figs.

  7. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  8. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  9. Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata

    International Nuclear Information System (INIS)

    Hill, Nicole A.; Simpson, Stuart L.; Johnston, Emma L.

    2013-01-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. - Highlights: ► Potential for contaminated sediments to exert impacts beyond the sediment communities. ► We examine effects on recruitment to sediments and overlying hard substrata simultaneously. ► Metal-contaminated sediments had a strong negative impact on sediment fauna. ► Metal-contaminated sediments pose less of a hazard to hard-substratum fauna. ► Sediment quality guidelines are likely protective of hard-substrata organisms. - Under natural disturbance regimes, metal-contaminated sediments pose less of a direct risk to hard-substratum fauna than to sediment-dwelling fauna and SQG appear appropriate.

  10. Eurochemic reprocessing plant decommissioning. Decontamination of contaminated metal

    International Nuclear Information System (INIS)

    Walthery, R.; Teunckens, L.; Lewandowski, P.

    1998-01-01

    When decommissioning nuclear installations, large quantifies of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area, marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has been spent in recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can be considered as a first order ecological priority to limit the quantities of radioactive wastes to be disposed of, to reduce the technical and economic problems involved with the management of radioactive wastes, and to make economic use of primary material and conserve natural resources of basic material for future generations. Other evaluations as the environmental impact of recycling compared to non recycling (mining or production of new material) and waste treatment, with the associated risks involved, can also be considered, as well as social and political impacts of recycling. This document gives an overview of the current practices in recycling of materials at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium. It deals with the decontamination and measurement techniques in use, and considers related technical and economic aspects and constraints. (author)

  11. High Value Scrap Tire Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B. D.

    2003-02-01

    The objectives of this project were to further develop and scale-up a novel technology for reuse of scrap tire rubber, to identify and develop end uses for the technology (products), and to characterize the technology's energy savings and environmental impact.

  12. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  13. Eco-monitoring of highly contaminated areas: historic heavy metal contamination in tree ring records

    Science.gov (United States)

    Baross, Norbert; Jordán, Győző; Albert, Julianna; Abdaal, Ahmed; Anton, Attila

    2014-05-01

    This study examines and compares tree rings of trees grown in a mining area highly contaminated with heavy metals. Tree rings offers an excellent opportunity for eco-monitoring polluted areas. Contamination dispersion from the source to the receptors can be studied in time and space. The sampled area is located in the eastern part of the Matra Mts. of the Inner-Carpathian calc-alkaline Volcanic Arc (Hungary) with abundant historical ore (Pb, Zn, Cu, etc.) mining in the area. Dense forests are composed of the most typical association of the Turkey oak (Quercus cerris). Scots pine (Pinus sylvestris), European black pine (Pinus nigra), oak (Quercus robur), beech (Fagus sylvatica), and hornbeam (Carpinus betulus) also occurs in the landscape. Sampled trees are located within a 1km radius of the abandoned historic ore mines. Sample sites were located above the old mines and waste rock heaps, under the waste rock heaps and on the floodplain of the Ilona Creek. The sampled trees were selected by the following criteria: the tree should be healthy, showing no signs of thunderbolt or diseases and having a minimum diameter of 50 cm. Samples were taken with a tree borer at the height of 150 cm. At the same time, soil samples were also taken near the trees in a 25 cm depth. Prior to laboratory analysis, the samples measured and air dried. Every fifth years tree ring was taken from the samples under microscope, working backwards from the most recent outer ring (2012, the year of the sampling). Samples were digested with a mixture of H2SO4 and H2O2m in Teflon vessels in a microwave unit. The samples were analyzed by ICP-OES instrument. The results were evaluated with statistical method. Results revealed a consistent picture showing distinct locations and years of the contamination history in the former mining area. Some elements are built into the trees more efficiently than other elements depending on mobility in the soil solution that is influenced by soil chemical properties

  14. U.S. Department of Energy National Center of Excellence for Metals Recycle

    International Nuclear Information System (INIS)

    Adams, V.; Bennett, M.; Bishop, L.

    1998-05-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums

  15. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  16. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses

    International Nuclear Information System (INIS)

    Chandurvelan, Rathishri; Marsden, Islay D.; Glover, Chris N.; Gaw, Sally

    2015-01-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. - Highlights: • Multiple biomarker responses were measured in mussels from 6 sites. • Metal content of mussel tissues correlated with specific biomarker responses. • Clearance rate

  17. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses

    Energy Technology Data Exchange (ETDEWEB)

    Chandurvelan, Rathishri, E-mail: rch118@uclive.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Marsden, Islay D., E-mail: islay.marsden@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Glover, Chris N., E-mail: chris.glover@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Gaw, Sally, E-mail: sally.gaw@canterbury.ac.nz [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2015-04-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. - Highlights: • Multiple biomarker responses were measured in mussels from 6 sites. • Metal content of mussel tissues correlated with specific biomarker responses. • Clearance rate

  18. CRITICAL ASPECTS IN SCRAPS OF COLD SMOKED SALMON PROCESSING

    Directory of Open Access Journals (Sweden)

    C. Bernardi

    2011-01-01

    Full Text Available The aim of the paper was to summarize the critical aspects in the processing of smoked salmon scraps as resulted from seven different lots of samples through microbiological and chemical-physical analysis. Results demonstrate that this product has very variable salt content, high microbial counts influencing the shelf-life, rancidity problems depending on the raw material and is heavily contaminated by Listeria monocytogenes.

  19. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  20. Aluminum: Aluminum Scrap Decoater

    International Nuclear Information System (INIS)

    Blazek, Steve

    1999-01-01

    NICE3 and the Philip Services Corporation are cost-sharing a demonstration project to decoat metal using indirect-fired controlled-atmosphere (IDEX) kilns, which can both process solid organics such as rubber and plastics, and minimize dust formation and emission of volatile organic compounds. The publication explains how this cost-effective, two-step system operates

  1. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.

    Science.gov (United States)

    Bang, Jihye; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Cho, Min; Kim, Chang-Hwan; Kim, Young-Jin; Bae, Jong-Hyang; Kim, Kyong-Ho; Myung, Hyun; Oh, Byung-Taek

    2015-01-01

    The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.

  2. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Amir Waseem

    2014-01-01

    Full Text Available Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water, soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  3. Design and Development of a Continuous-Flow Countercurrent Metal Extraction System to Remove Heavy Metals from Contaminated Soils

    National Research Council Canada - National Science Library

    Neale, Christopher M. U

    1997-01-01

    .... The research focused on eight contaminated soils from Army installations and the metal extraction capabilities of eight extracting agents including HNO3, HCI, fluorosilicic acid, citric acid, EDTA, DTPA, NTA, and NaOH...

  4. Metal bioaccumulation and oxidative stress profiles in Ruditapes philippinarum – insights towards its suitability as bioindicator of estuarine metal contamination

    KAUST Repository

    Marques, Ana; Piló , David; Carvalho, Susana; Araú jo, Olinda; Guilherme, Sofia; Santos, Maria Ana; Vale, Carlos; Pereira, Fá bio; Pacheco, Má rio; Pereira, Patrí cia

    2017-01-01

    is not consensual. This study provided clarification on this issue by evaluating the ability of R. philippinarum to signalise trace element contamination in an estuary chronically impacted by metals and metalloids (Tagus estuary, Portugal). A multidimensional

  5. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    Science.gov (United States)

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were

  7. Primary Raw Materials for Steelmakers: Scrap and Pig Iron

    Directory of Open Access Journals (Sweden)

    Cristina Bumbac

    2011-10-01

    Full Text Available Most of the daily steel we so much need is obtained now in electric furnaces, for which the main raw material is scrap. The scrap market is a very sensitive one, depending very much on internal collect, exports and imports, the market of steel and freight. Commerce with scrap is one of the most intense among all the countries of the world and covers all the routes and regions. Every ten years or so importers become exporters and vice versa, due to the period of life of the metallic products. For example, China was for the last 10 years one of the biggest importers (after Turkey, which is number one in importers' hierarchy, but prognoses tell that in 2-3 years China might become self-sufficient due to the investments which began some 20 years ago. USA was one of the largest exporters, but some 3 years ago some analysts advanced the idea that it may become a net importer (it didn't happened, though. The scrap market is not only important, it is also very interesting, with twisted evolutions and volatile prices in some periods.

  8. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil

    International Nuclear Information System (INIS)

    Clistenes do Nascimento, Williams A.; Amarasiriwardena, Dula; Xing, Baoshan

    2006-01-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. - Organic acids can be as efficient as synthetic chelates for use in phytoextraction of multi-metal contaminated soils

  9. The role of Institute of Public Health as a technical support organization in radiation monitoring of scrap metal shipments in Republic of Macedonia

    International Nuclear Information System (INIS)

    Nikolovska, L.; Trajcev, T.; Bogojevski, G.; Nikolovski, S.

    2010-01-01

    Sealed radioactive sources are widely used in industry, medicine and research. The risks that a sealed radioactive source becomes orphan i.e. is no more under regulatory control is equally an important source of concern. Mismanagement of these sources may lead to acute exposure of workers and members of the public and in some cases to significant contamination of the environment. In addition, possible malevolent use of sealed radioactive sources is currently raising a lot of concern amongst the countries as well. (author)

  10. Characterisation by PIXE RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    Science.gov (United States)

    Guibert, G.; Irigaray, J. L.; Moretto, Ph.; Sauvage, T.; Kemeny, J. L.; Cazenave, A.; Jallot, E.

    2006-09-01

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl 6V 4 or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl 6V 4 and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl 6V 4 debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.

  11. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    Directory of Open Access Journals (Sweden)

    Chao Su

    2014-06-01

    Full Text Available Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg, cadmium (Cd, lead (Pb, chromium (Cr, and arsenic (As, etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/countries, and reviewed background, impact and remediation methods of soil heavy metal contamination worldwide.

  12. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    International Nuclear Information System (INIS)

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-01-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  13. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils.

    Science.gov (United States)

    Galal, Tarek M

    2016-07-01

    The present study was carried out to investigate the heavy metal concentration accumulated by summer squash cultivated in contaminated soil and their health hazards for public consumers at south Cairo Province, Egypt. Soil and plants were sampled from contaminated and reference farms, using 1 m(2) quadrats, for biomass estimation and nutrient analysis. The daily intake of metals (DIM) and health risk index (HRI) were estimated. Significant differences in soil variables (except As) between contaminated and reference sites were recognized. Summer squash showed remarkable reduction in fresh and dry biomass, fruit production, and photosynthetic pigments under pollution stress. The inorganic and organic nutrients in the aboveground and belowground parts showed significant reduction in contaminated site. In addition, higher concentrations of heavy metals were accumulated in the edible parts and roots more than shoots. The bioaccumulation factor of summer squash for investigated metals was greater than 1, while the translocation factor did not exceed unity in both contaminated and reference sites. The DIM for all investigated metals in the reference site and in the contaminated site (except Fe and Mn) did not exceed 1 in both adults and children. However, HRI of Ni and Mn in the reference site and Pb, Cd, Cu, Ni, Fe, Mn, and Zn in the contaminated one exceeded unity indicating great potential to pose health risk to the consumers. The author recommends that people living in the contaminated area should not eat large quantities of summer squash, so as to avoid excess accumulation of heavy metals in their bodies.

  14. Investigations of biofilms in the sewerage system of a highly contaminated industrial and mining area for the localization of heavy metal sources. Final report

    International Nuclear Information System (INIS)

    Cichos, C.; Singliar, U.

    1993-02-01

    The high heavy metal loading of the river Freiberger Mulde is largely caused by contaminations arising from the drainage area of the town of Freiberg. The diffuse input from the dewatering surface likely makes an important contribution to this pollution. The elimination of the reasons for the pollutant input into the sewerage and, thus, for the extremely high contamination of the sewage sludges requires a localization of sources and transport ways. For this purpose the method of investigation of biofilms on the sewer surface can be applied as a reliable method. For the industrial and mining area of Freiberg besides the different branches of industry especially the secondary emissions from deposits of old mining and metallurgical plants as well as from the extremely loaded surface of soil play an important role. The investigation of sewerage biofilms in the area considered have shown that the input of nickel and tin into the sewer is mainly caused by industry. Sources of zinc and copper above all are domestic wastewaters, whereas lead is originated from the surface run-off. Especially high pollutions of arsen and cadmium were found obviously arising from mining and production scraps. The results obtained should be the basis of activities for definite interruption of the pollutant input into the sewer system. They are a contribution to the restoration of the hydrographical network of Mulde/Elbe. (orig.) [de

  15. Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms

    Science.gov (United States)

    Ivǎnuş, D.; ǎnuş, R. C., IV; Cǎlmuc, F.

    2010-06-01

    A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.

  16. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    Science.gov (United States)

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  17. Fernald's dilemma: Do we recycle the radioactively contaminated metals, or do we bury them?

    International Nuclear Information System (INIS)

    Yuracko, K.L.; Hadley, S.W.; Perlack, R.D.

    1996-01-01

    During the past five years, a number of U.S. Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of large accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder supported manner. The potential health and safety risks to both workers and the public have been addressed. The question remains; can products be fabricated from RSM in a cost efficient and market competitive manner? This paper presents a methodology for use within DOE to evaluate the costs and benefits of recycling and reusing some RSM, rather than disposing of this RSM in an approved burial site. This life cycle decision methodology, developed by both the Oak Ridge National Laboratory (ORNL) and DOE Fernald is the focus of the following analysis

  18. The other side of utilization. Unwanted radioactivity in wastes and scrap metal; Die andere Seite des Gebrauchs. Ungewollte Radioaktivitaet in Abfaellen und Altmetallen

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Robert [Nuclear Control and Consulting GmbH, Niederzier (Germany); Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany)

    2017-04-01

    Natural radionuclides in industrial wastes and mining residues cannot be neglected in the frame of radiation protection and are therefore part of the radiation protection system in the sense of the IAEA definition. In case of purposely added uranium or thorium or utilization of ionizing radiation these products are also part of the radiation protection system since 2001. The historically grown radiation protection system is incomplete with respect to radiation sources, contaminated objects or materials with enriched natural radioactivity. These materials are detected by radiation monitoring systems that are targeted to find lost technical radiation sources. Experiences with the survey of respective incidents show the multifaceted image of utilization and consumption if natural radionuclide containing products.

  19. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Design concept for maximized use of recycled scrap in the production of storage packages

    International Nuclear Information System (INIS)

    Bounin, D.; Kleinkroeger, W.; Schreiber, D.

    2004-01-01

    In the decommissioning of nuclear plants large quantities of radioactively contaminated waste metal have to be disposed of. An economic alternative to final storage is the recycling of the scrap metal in the production of transport and storage containers for low and medium active waste made of nodular graphite ductile cast iron. In the particular case of the CARLA plant operated by Siempelkamp, scrap metal with an activity of up to 200 Bq/g is accepted for processing. This covers the vast majority of the metals of a plant to be decommissioned. The composition of the waste metals varies greatly, depending on the different origins like structural or stainless steels After solidification of the high-carbon, high-silicon cast iron melt, the carbon has formed nodular graphite particles embedded in the metal matrix. Nodular cast iron has high strength and elongation. A further advantage of this material are its good radiation shielding properties. Fracture toughness is an important material property in the design of containers for final storage. In the particular case of containers that have to meet the specifications for final storage these must withstand accident loadings from a height of up 5 m at temperatures of -20 C without crack initiation. Containers for final storage do not have the benefit of impact limiters. The fracture toughness of cast iron depends primarily on the microstructure of the metal matrix. A ferritic microstructure has a higher fracture toughness than a pearlitic microstructure. Carbides in the matrix lead to further embrittlement. The metals to be recycled in the decommissioning of a nuclear installation have marked contents of elements like manganese (Mn) in structural steels, chromium (Cr), nickel (Ni) and molybdenum (Mo) in stainless steels and copper (Cu) in special steels. These elements lead to a pearlitic microstructure and to carbides, even at low contents in the melt. With a rising content of pearlite and carbides, the tensile and yield

  1. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  2. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    Science.gov (United States)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  3. Plutonium scrap processing at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Nixon, A.E.; McKerley, B.J.; Christensen, E.L.

    1980-01-01

    The Los Alamos Scientific Laboratory currently has the newest plutonium handling facility in the nation. Los Alamos has been active in the processing of plutonium almost since the discovery of this man-made element in 1941. One of the functions of the new facility is the processing of plutonium scrap generated at LASL and other sites. The feed for the scrap processing program is extremely varied, and a wide variety of contaminants are often encountered. Depending upon the scrap matrix and contaminants present, the majority of material receives a nitric acid/hydrofluoric acid or nitric acid/calcium fluoride leach. The plutonium nitrate solutions are then loaded onto an anion exchange column charged with DOWEX 1 x 4, 50 to 100 mesh, nitrate form resin. The column is eluted with 0.48 M hydroxyl amine nitrate. The Pu(NO 3 ) 3 is then precipitated as plutonium III oxalate which is calcined at 450 to 500 0 C to yield a purified PuO 2 product

  4. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: A legacy of ordnance disposal

    International Nuclear Information System (INIS)

    Callaway, Alexander; Quinn, Rory; Brown, Craig J.; Service, Matthew; Benetti, Sara

    2011-01-01

    Highlights: → Our samples are the first trace metal concentrations taken from the valley of Beaufort's Dyke. → There is no clear trend between concentrations of trace metals in Dyke and NMMP sediments. → Particle transport simulations show dispersal of trace metals from Beaufort's Dyke is possible. → Disposed ordnance may also contribute to contamination of surrounding areas. → These methods could help predict areas at risk of future trace metal contamination as a result of ordnance disposal. - Abstract: Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  5. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination.

    Science.gov (United States)

    Jie, Shiqi; Li, Mingming; Gan, Min; Zhu, Jianyu; Yin, Huaqun; Liu, Xueduan

    2016-08-08

    Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. A total of 25595 functional genes involved in different biogeochemical processes have been detected in three sites, and different diversities and structures of microbial functional genes were observed. The analysis of gene overlapping, unique genes, and various diversity indices indicated a significant correlation between the level of heavy metal contamination and the functional diversity. Plentiful resistant genes related to various metal were detected, such as copper, arsenic, chromium and mercury. The results indicated a significantly higher abundance of genes involved in metal resistance including sulfate reduction genes (dsr) in studied site with most serious heavy metal contamination, such as cueo, mer, metc, merb, tehb and terc gene. With regard to the relationship between the environmental variables and microbial functional structure, S, Cu, Cd, Hg and Cr were the dominating factor shaping the microbial distribution pattern in three sites. This study suggests that high level of heavy metal contamination resulted in higher functional diversity and the abundance of metal resistant genes. These variation therefore significantly contribute to the resistance, resilience and stability of the microbial community subjected to the gradient of heavy metals contaminant in Xiangjiang River.

  6. German experience in recycling of ferrous metallic residues from nuclear decommissioning by melting

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, Th.

    2008-01-01

    Due to the delay of commissioning of final depositories for nuclear waste on the one hand and the increasing amount of steel scrap resulting from operation and decommissioning of nuclear facilities on the other hand, recycling of ferrous metal scrap to packagings made of ductile cast iron becomes more and more economical. A pool of know-how from waste managers, radiation protection experts, metallurgists and foundry experts and their teamwork is required to run this recycling path successfully. Siempelkamp provides this combination of experience by operating a melting facility for slightly radioactive contaminated scrap as well as a foundry for manufacturing of ductile cast iron products for the nuclear industry, both licensed by the German Radiation Protection Ordinance. In 1989, the CARLA plant (Centrale Anlage zum Rezyklieren von leichtradioaktiven Abfollen) started operation. A medium frequency induction furnace with a capacity of 3,2 t is core of the plant. Tools for dismantling and cutting components to chargeable sizes are available. From the total of 23000 t of melted scrap, 12000 t have been recycled to the manufacturing of containers for transport and storage of medium- and high active waste and for shielding plates. Manufacture of the castings takes place in the Siempelkamp foundry located at the same site. 8000 t of melted scrap could be released for industrial recycling. Scrap metal which does not meet the metallurgical specification for cast iron, is converted into iron granules. Up to now more than 2000 t of iron granules have been recycled as additive for heavy concrete containers. This production is in cooperation with an external partner. With regard to the German situation, the cost for recycling is only half compared to high pressure compaction, long-term interim storage and final disposal. The advantage of recycling is approx. 90 % less volume compared to the volume resulting from other disposal paths. It can be concluded that the German

  7. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana.

    Science.gov (United States)

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M

    2016-01-01

    This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.

  8. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  9. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    OpenAIRE

    Chao Su; LiQin Jiang; WenJun Zhang

    2014-01-01

    Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/count...

  10. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  11. Microbial characterization of a radionuclide- and metal-contaminated waste site

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Lumppio, H.L.; Ainsworth, C.C.; Plymale, A.E.

    1993-04-01

    The operation of nuclear processing facilities and defense-related nuclear activities has resulted in contamination of near-surface and deep-subsurface sediments with both radionuclides and metals. The presence of mixed inorganic contaminants may result in undetectable microbial populations or microbial populations that are different from those present in uncontaminated sediments. To determine the impact of mixed radionuclide and metal contaminants on sediment microbial communities, we sampled a processing pond that was used from 1948 to 1975 for the disposal of radioactive and metal-contaminated wastewaters from laboratories and nuclear fuel fabrication facilities on the Hanford Site in Washington State. Because the Hanford Site is located in a semiarid environment with average rainfall of 159 mm/year, the pond dried and a settling basin remained after wastewater input into the pond ceased in 1975. This processing pond basin offered a unique opportunity to obtain near-surface sediments that had been contaminated with both radionuclides and metals for several decades. Our objectives were to determine the viable populations of microorganisms in the sediments and to test several hypotheses about how the addition of both radionuclides and metals influenced the microbial ecology of the sediments. Our first hypothesis was that viable populations of microorganisms would be lower in the more contaminated sediments. Second, we expected that long-term metal exposure would result in enhanced metal resistance. Finally, we hypothesized that microorganisms from the most radioactive sediments should have had enhanced radiation resistance

  12. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  13. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  14. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  15. Remediation of Steel Slag on Acidic Soil Contaminated by Heavy Metal

    OpenAIRE

    Gu, Haihong; Li, Fuping; Guan, Xiang; Li, Zhongwei; Yu, Qiang

    2013-01-01

    The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metal, and selecting economical and effective modifier is the key. The effects and mechanism of steel slag, the silicon-rich alkaline by-product which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory inferences for future research. Firstly, the paper analyzes current research situation of in situ immobilizat...

  16. Modeling phytoextraction of heavy metals at multiply contaminated soils with hyperaccumulator plants

    OpenAIRE

    Khodaverdiloo, Habib

    2009-01-01

    Soils and waters contaminated with heavy metals pose a major environmental and human health problem that needs an effective and affordable technological solution. Phytoextraction offers a reasonable technology which uses plants to extract the heavy metals from soils. However, the effectiveness of this new method needs to be demonstrated by means of mathematical modeling. The phytoextraction models also are needed to manage the contaminated soils. A thorough literature review indic...

  17. Utilization of plants for stabilization and cleaning up of metal contaminated soil and water

    Directory of Open Access Journals (Sweden)

    Miroslav Štofko

    2006-06-01

    Full Text Available Phytoremediation has been defined as the use of green plants and their associated rhizospheric microorganisms to remove, degrade, or contain contaminants located in soisl, sediments, groundwater, surface water, and even the atmosphere. Categories of phytoremediation include - phytoextraction or phytoaccumulation, phytotransformation, phytostimulation or plant-assisted bioremediation, phytovolatilization, rhizofiltration, pump and tree, phytostabilization, and hydraulic control. Phytoremediation of heavy metal contaminated soils basically includes phytostabilization, phytoextraction, rhizofiltration and phytovolatilization. Selection of plants for phytoremediation of metals depends on a particular application.

  18. Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals

    OpenAIRE

    Violina R. Angelova; Mariana N. Perifanova-Nemska; Galina P. Uzunova; Krasimir I. Ivanov; Huu Q. Lee

    2016-01-01

    A field study was conducted to evaluate the efficacy of the sunflower (Helianthus annuus L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals...

  19. Inspection and control of recycling metals in Iran

    International Nuclear Information System (INIS)

    Rostampour Samarin, A.

    2002-01-01

    Full text: Recently, the metal recycling industries have become aware of radioactive materials in metal scrap. There have been some cases where radiation sources were unintentionally smelted in the course of recycling metal scrap internationally. To solve the problem, industry and Regulatory Authority have jointly undertaken initiatives to increase awareness of the problem within the industry. Radiation detection systems have been installed by custom services and mills to lessen the potential for the risk to public health from radiation contamination and for financial losses. Based on above matters, the article presents how National Radiation Protection Department (NRPD) can lessen the imports of potential contamination through several means, such as the installation of monitoring system, and implementation of prevention measures. (author)

  20. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.

    Science.gov (United States)

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Li, Ronghua; Zhang, Zengqiang

    2016-04-01

    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Characterization of soil and plant-associated bacteria on a metal contaminated site

    International Nuclear Information System (INIS)

    Boulet, J.; Weyens, N.; Barac, T.; Dupae, J.; Lelie, D. van der; Taghavi, S.; Vaqngronsveld, J.

    2009-01-01

    Conventional methods for the remediation of heavy metal contaminated soils and ground water are very expensive and often damaging to the environment. Complementary to these traditional methods, especially for sites with a diffuse contamination in relatively low concentrations, phyto extraction is proposed as a promising technology for effective and inexpensive radiation. (Author)

  2. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    Science.gov (United States)

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-01-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. - Highlights: • Plant shoot Cd decreased in high-Cd acid soil and also plant Zn did in two acid soils. • Plant shoot Cd remained constant in low-Cd acid soil and also plant Zn did in alkaline soils. • Acidic soils showed much higher total metal removal efficiency than the alkaline soils. - Acid soil has high total metal phytoremediation efficiency while a strategy based on stripping of the bioavailable contaminant might be feasible for alkaline soil phytoremediation

  4. U.S. Department of Energy National Center of Excellence for Metals Recycle

    International Nuclear Information System (INIS)

    Adams, V.; Bennett, M.; Bishop, L.

    1998-06-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals

  5. The reuse of scrap and decontamination waste water from decommissioning

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Xie Xiaolong

    2010-01-01

    Huge amount of radioactive scrap with low activity will be generated from reactor decommissioning; the decontamination is concentrated in the surface layer of the scrap. The decontaminated substance can be removed by high pressure water jet to appear the base metal and to reuse the metal. Big amount of radioactive waste water will be generated by this decontamination technology; the radioactive of the waste water is mainly caused by the solid particle from decontamination. To remove the solid particle as clean as possible, the waste water can be reused. Different possible technology to remove the solid particle from the water had been investigated, such as the gravity deposit separation, the filtration and the centrifugal separation etc. The centrifugal separation technology is selected; it includes the hydraulic vortex, the centrifugal filtration and the centrifugal deposit. After the cost benefit analysis at last the centrifugal deposit used butterfly type separator is selected. To reuse the waste water the fresh water consumption and the cost for waste water treatment can be reduced. To reuse the radioactive scrap and the waste water from decommissioning will minimize the radioactive waste. (authors)

  6. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    International Nuclear Information System (INIS)

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  7. Heavy metal contamination of selected spices obtained from Nigeria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this study, the levels of trace metals (Cd, Cr, Cu, Co, Fe, Mn, Ni, Mo, Pb,. Zn) in twenty ... can accumulate exceeding levels of toxic metals whose potential risk to human health should ..... toxicity of the metal (WHO, 1999b). In fact ...

  8. Extractive decontamination of heavy metals from CCA contaminated ...

    African Journals Online (AJOL)

    In this paper, the mobilization and extraction of As, Cr and Cu from chromated copper arsenate (CCA) contaminated soil obtained from a wood treatment factory site by four organic acids are presented and discussed. The CCA contaminated soil (pH = 5.91, carbon = 0.32, CEC = 47.84 meq/100 g) was found to contain 39.55 ...

  9. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    I.O.OLABANJI

    3D) with 0.457 ± 0.061 and 0.364 ± 0.056 mg/L in dry and wet seasons. The mean .... safe limit clearly indicating that Cd contamination of the stream water might be ... of lead contaminant in the study area is the formation of acid mine drainage.

  10. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Directory of Open Access Journals (Sweden)

    Yang Guan

    2014-07-01

    Full Text Available Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1 Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2 The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3 The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4 The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  11. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  12. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    International Nuclear Information System (INIS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-01-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb"2"+), copper (Cu"2"+), nickel (Ni"2"+), and zinc (Zn"2"+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  13. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  14. Study of silver removal from scrap jewellery by way of the flotation process

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2012-01-01

    Full Text Available This article is a discussion on the proposed solution of using the fl otation process to separate metals from non-metallic components present in the scrap generated while jewellery goods are being ground. For the sake of the studies analysed, a dedicated laboratory station was established.

  15. 7 CFR 29.2529 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  16. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  17. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characteristics of Heavy Metals Contamination in Lotus Root in the Dongting Lake Area, China

    Directory of Open Access Journals (Sweden)

    LUO Man

    2016-11-01

    Full Text Available Heavy metal contamination in soils in the Dongting Lake areas has evoked widespread concerns about the excessive heavy metals in aquatic product. Based on the national standards of food contaminant limits and the method of comprehensive pollution index, heavy metals of Cd, Pb, Cu, Zn, Mn in lotus root were clarified through field investigation in the Dongting Lake area. Results showed that lotus root in the Dongting Lake area was contaminated seriously by heavy metals. Cd and Pb were two main pollutants and the single pollution indices were 5.70 and 8.35 respectively. According to the comprehensive pollution index of heavy metals, lotus root in Yueyanglou District and Yuanjiang City were classified into medium pollution and Junshan District, Huarong County, Nan County, and Datong District were classified into heavy pollution. Principal component analysis showed that planting areas of lotus root were clumped and medium and heavy pollution areas were separated significantly. Habitat contamination by heavy metals and decreasing area of lotus ponds were two main factors for excessive heavy metals in lotus root. Thus, some measurements, such as habit restoration, were proposed for local government to decrease heavy metals in planting areas and to promote the healthy development of lotus root industry in the Dongting Lake area.

  19. Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions

    NARCIS (Netherlands)

    Wilkens, B.J.

    1995-01-01

    The research reported here is aimed at improving the knowledge of the mobility of the heavy metals cadmium and zinc in vulnerable soil types. We use the term vulnerable with reference to vulnerability of groundwater for contamination by soil leaching. At diffuse soil immissions of heavy metals,

  20. Distribution of six heavy metals in contaminated clay soils before and after extractive cleaning

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1990-01-01

    A sequential extraction procedure according to Tessier et al. is carried out to compare the distribution of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in contaminated clay soils before and after extractive cleaning. Extraction of metals from the ‘soil fractions’ with 0.1 N HC1 or 0.1 M EDTA becomes more

  1. Laser assisted removal of fixed contamination from metallic substrate

    International Nuclear Information System (INIS)

    Kumar, Aniruddha; Prasad, Manisha; Prakash, Tej; Shail, Shailini; Bhatt, R.B.; Behere, P.G.; Mohd Afzal; Kumar, Arun; Biswas, D.J.

    2015-01-01

    A single mode pulsed fiber laser was used to remove fixed contamination from stainless steel substrate by ablation. Samples were simulated by electro-deposition technique with 232 U as the test contaminant. Laser power, repetition rate, laser beam scanning speed and number of passes were optimised to obtain the desired ablation depth in the substrate. Ablation depth varying between few microns to few hundreds of microns could be achieved through careful control of these processing parameters. The absence of any activity in laser treated samples provided experimental signature of the efficacy of the laser assisted removal of fixed contamination. (author)

  2. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  3. Dietary toxicity of field-contaminated invertebrates to marine fish: effects of metal doses and subcellular metal distribution.

    Science.gov (United States)

    Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong

    2012-09-15

    There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  5. Extractive decontamination of heavy metals from CCA contaminated ...

    African Journals Online (AJOL)

    user

    investigated operating conditions, oxalic acid extracted the lowest amount of As, Cr and Cu from the contaminated soil ... available fraction of the soil treated with the four different organic acid chelants. ...... polluted soils using oxalate. Water ...

  6. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    Science.gov (United States)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  7. Food safety of milk and dairy product of dairy cattle from heavy metal contamination

    Science.gov (United States)

    Harlia, E.; Rahmah, KN; Suryanto, D.

    2018-01-01

    Food safety of milk and dairy products is a prerequisite for consumption, which must be free from physical, biological and chemical contamination. Chemical contamination of heavy metals Pb (Plumbum/Lead) and Cd (Cadmium) is generally derived from the environment such as from water, grass, feed additives, medicines and farm equipment. The contamination of milk and dairy products can affect quality and food safety for human consumption. The aim of this research is to investigate contamination of heavy metals Pb and Cd on fresh milk, pasteurized milk, and dodol milk compared with the Maximum Residue Limits (MRL). The methods of this researched was through case study and data obtained analyzed descriptively. Milk samples were obtained from Bandung and surrounding areas. The number of samples used was 30 samples for each product: 30 samples of fresh milk directly obtained from dairy farm, 30 samples of pasteurized milk obtained from street vendors and 30 samples of dodol milk obtained from home industry. Parameters observed were heavy metal residues of Pb and Cd. The results showed that: 1) approximately 83% of fresh milk samples were contaminated by Pb which 57% samples were above MRL and 90% samples were contaminated by Cd above MRL; 2) 67% of pasteurized milk samples were contaminated by Pb below MRL; 3) 60% of dodol milk samples were contaminated by Pb and Cd above MRL.

  8. Proteomic analysis of Sydney Rock oysters (Saccostrea glomerata) exposed to metal contamination in the field

    International Nuclear Information System (INIS)

    Thompson, Emma L.; Taylor, Daisy A.; Nair, Sham V.; Birch, Gavin; Hose, Grant C.; Raftos, David A.

    2012-01-01

    This study used proteomics to assess the impacts of metal contamination in the field on Sydney Rock oysters. Oysters were transplanted into Lake Macquarie, NSW, for two weeks in both 2009 and 2010. Two-dimensional electrophoresis identified changes in protein expression profiles of oyster haemolymph between control and metal contaminated sites. There were unique protein expression profiles for each field trial. Principal components analysis attributed these differences in oyster proteomes to the different combinations and concentrations of metals and other environmental variables present during the three field trials. Identification of differentially expressed proteins showed that proteins associated with cytoskeletal activity and stress responses were the most commonly affected biological functions in the Sydney Rock oyster. Overall, the data show that proteomics combined with multivariate analysis has the potential to link the effects of contaminants with biological consequences. - Highlights: ► Sydney Rock oyster haemolymph was analysed by proteomics after metal exposure in 3 field trials. ► 2-DE analysis was used to compare protein profiles between control and contaminated sites. ► Different protein expression profiles were revealed per field trial. ► Principal components analysis attributed profiles to different suites of metals and environmental variables per trial. ► The study highlights the need to do multiple field trials and to combine proteomic and enviro. data. - This study used proteomics to analyse impacts of metal contamination on Sydney Rock oyster (Saccostrea glomerata) haemolymph in multiple field trials.

  9. Status of metal levels and their potential sources of contamination in Southeast Asian rivers.

    Science.gov (United States)

    Chanpiwat, Penradee; Sthiannopkao, Suthipong

    2014-01-01

    To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.

  10. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: aturner@plymouth.ac.uk; Mawji, Edward [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D{sub ow}, ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10{sup 3.3}-10{sup 5.3} ml g{sup -1}. The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating

  11. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  12. Sediment Metal Contamination in the Kafue River of Zambia and Ecological Risk Assessment.

    Science.gov (United States)

    M'kandawire, Ethel; Choongo, Kennedy; Yabe, John; Mwase, Maxwell; Saasa, Ngonda; Nakayama, Shouta M M; Bortey-Sam, Nesta; Blindauer, Claudia A

    2017-07-01

    Zambia's Kafue River receives wastes from various sources, resulting in metal pollution. This study determined the degree of contamination of 13 metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Hg and Pb) in Kafue River sediment and the associated ecological risks at six sites in three different seasons. The level of contamination for most metals showed significant site and seasonal differences. The contamination factor and pollution load index indicated that concentrations of most metals particularly copper (Cu), cobalt (Co), manganese (Mn) and arsenic (As) were very high at sites within the Copperbelt mining area. The geoaccumulation index showed an absence of anthropogenic enrichment with Cd and Hg at all the study sites and extreme anthropogenic enrichment with Cu at sites in the Copperbelt mining area. Potential ecological risk showed that Cu and As were likely to cause adverse biological effects to aquatic organisms in the Copperbelt mining region of the Kafue River.

  13. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks.

    Science.gov (United States)

    Ngole-Jeme, Veronica M

    2016-04-01

    Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9-12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1-4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.

  14. Emergency response during the radiological control of scraps in Cuba

    International Nuclear Information System (INIS)

    Ramos Viltre, Enma O.; Cardenas Herrera, Juan; Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Fernandez Gomez, Isis M.; Caveda Ramos, Celia; Carrazana, Jorge; Barroso Perez, Idelisa

    2008-01-01

    In the last few years, in the international scene, incidents have been reported due to the presence of radioactive materials in the scrap. This reality has motivated the adoption of measures of radiological security, due to the implications that these incidents have for the public and the environment, as well as for the international trade. Among theses actions is the implementation of the radiological control of scrap, with the additional requirement that this control has to be implemented in the framework of a Quality Management Program.Taking into account the international experience, our institution designed and organized in 2002 a national service for the radiological monitoring of scrap, being the clients the main exporting and trading enterprises of this material in the country. During these years, several contaminated materials have been detected, causing incidents that activated the radiological emergency response system. In this sense, since some years ago, our country has been working in the implementation of a national and ministerial system for facing and mitigating the consequences of accidental radiological situations, conjugating efforts and wills from different national institutions with the leadership of the Center of Radiation Protection and Hygiene (CPHR) and the Center of Nuclear Security (CNSN) in correspondence with the social responsibility assigned to the them. These incidents propitiate to have not only a system of capacity and quick response oriented to limit the exposure of people, to control the sources, to mitigate the consequences of the accident and to reestablish the conditions of normality, but also a previous adequate planning that guarantees the speed and effectiveness of it. In these work the experiences reached by the specialists of the CPHR from Cuba during the occurrence of an incident in the execution of the service of radiological monitoring of scraps are exposed. (author)

  15. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  17. Investigation into metal contamination of the Berg River, Western ...

    African Journals Online (AJOL)

    The nitric acid digestion technique was used to extract metals from water, sediment and biofilm samples collected at various points (Site A . agricultural area, Site B . informal settlement and Site C . Newton pumping station) along the Berg River. Metal concentrations were determined using inductively coupled plasma atomic ...

  18. Heavy metal contamination of some vegetables from pesticides and ...

    African Journals Online (AJOL)

    Vegetable farming in developing countries is characterized by the indiscriminate application of pesticides and the resultant pollution of agricultural soil with heavy metals that form constituents of these pesticides. These heavy metals have long term toxicity to human and other biota in the ecosystem. This problem is ...

  19. Scrap supply in Bosnian after war situation - sources, quality, regulation and control

    International Nuclear Information System (INIS)

    Pihura, Dervis

    1999-01-01

    Before the war, the Bosnian foundry and steel industry were supplied with scrap partly from domestic sources but mainly from foreign market. The annual steel production before the war recorded 130,000 tonnes of casting and 2,000.000 tonnes of crude steel. Most of the scrap was imported to secure and stabilize the production. During and after the war, despite a significant loss of production, efforts have been made to return to the normal production level in many ways. In the wake of the war, there has been a growing concern over the import of radioactive contaminated metallurgical scrap or low quality raw materials which are uncontrolled or of unidentified sources. In this regard, it is urgently required to establish an effective system to prevent from, to detect and to control the flow of the radioactive contaminated metallurgical scrap. The system should be established in such a way that all sorts of radioactive metallurgical elements should be controlled and prevented from use in all the metallurgical manufacturing processes, ferrous and non-ferrous alike. The coverage of control should start from the border or (air) port checkpoint where the flow of the scrap begins to the final steel product. The control system should take a form of internationally common and acceptable standards and regulations. Equipments and measurement techniques should also be internationally common. (author)

  20. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  1. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha Ashok; Yadav, Santosh Kumar; Kumar, Phani; Singh, Sanjeev Kumar

    2008-10-01

    The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.

  2. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    Science.gov (United States)

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  3. The Influence of Home Scrap on Mechanical Properties of MgAl9Zn1 Alloy Castings

    Directory of Open Access Journals (Sweden)

    Konopka Z.

    2017-06-01

    Full Text Available The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the properties of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. The examinations consisted in the determination of the following properties: tensile strength Rm, yield strength Rp0.2, and the unit elongation A5, all being measured during the static tensile test. Also, the hardness measurements were taken by the Brinell method. It was found that the mechanical properties (mainly the strength properties are being improved up to the home scrap fraction of 50%. Their values were increased by about 30% over this range. Further rise in the home scrap content, however, brought a definite decrease in these properties. The unit elongation A5 exhibited continual decrease with an increase in the home scrap fraction in the metal charge. A large growth of hardness was noticed for the home scrap fraction increasing up to the value of 50%. Further increasing the home scrap percentage, however, did not result in a significant rise of the hardness value any more.

  4. Soil contamination of toxic metals from zinc carbon batteries inadequate disposal

    International Nuclear Information System (INIS)

    Gazano, Vanessa Santos Oliveira

    2006-01-01

    The aim of the present study was to determine the concentration of Zn, Mn, Pb, Cd, Cu, Cr, and Ni in an oxisol column contaminated with zinc-carbon batteries. Two control and two contaminated columns, and batteries alone were leached for a periods of six months and one year with aqueous solution of HNO3 and H2SO4 (1:1, pH 4,0) to simulate rainwater. The metal concentrations in effluent and soil were measured by means of ICP-OES technique. Results from the contaminated column showed enhanced concentrations in both effluent and soil (mainly zinc, manganese and lead). In addition, the total amount of metals in effluent and soil showed similar sequence order as observed for batteries alone (Zn > Mn > Pb > Cr > Cu > Ni > Cd) indicating that batteries can be considered the main source of contamination. We also observed migration of Zn and Mn from the top to the lower layers of the soil columns. The study gives further evidence that batteries can significantly contaminate the soil with metals like Zn, Mn and Pb, and maybe Cd too. This soil contamination combined with the enhanced concentrations found in the effluent can point out a probable groundwater contamination. (author)

  5. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.

    Science.gov (United States)

    Damodaran, Dilna; Vidya Shetty, K; Raj Mohan, B

    2014-06-01

    Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Geostatistical exploration of dataset assessing the heavy metal contamination in Ewekoro limestone, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Kehinde D. Oyeyemi

    2017-10-01

    Full Text Available The dataset for this article contains geostatistical analysis of heavy metals contamination from limestone samples collected from Ewekoro Formation in the eastern Dahomey basin, Ogun State Nigeria. The samples were manually collected and analysed using Microwave Plasma Atomic Absorption Spectrometer (MPAS. Analysis of the twenty different samples showed different levels of heavy metals concentration. The analysed nine elements are Arsenic, Mercury, Cadmium, Cobalt, Chromium, Nickel, Lead, Vanadium and Zinc. Descriptive statistics was used to explore the heavy metal concentrations individually. Pearson, Kendall tau and Spearman rho correlation coefficients was used to establish the relationships among the elements and the analysis of variance showed that there is a significant difference in the mean distribution of the heavy metals concentration within and between the groups of the 20 samples analysed. The dataset can provide insights into the health implications of the contaminants especially when the mean concentration levels of the heavy metals are compared with recommended regulatory limit concentration.

  7. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  8. Heavy metal contamination in the muscle of Aegean chub (Squalius fellowesii) and potential risk assessment.

    Science.gov (United States)

    Şaşi, Hüseyin; Yozukmaz, Aykut; Yabanli, Murat

    2018-03-01

    Especially after the industrial revolution, the amount of contaminants released in aquatic ecosystems has considerably increased. For this reason, the necessity to carry on research on the existence of contaminants, specifically heavy metals, has emerged. In this study, heavy metal concentrations in muscle tissues of Aegean chub, which was an endemic species of south western part of Turkey, gathered from Tersakan River were examined. Heavy metal concentrations of the samples were analyzed with ICP-MS. Estimated daily intakes (EDI), target hazard quotient (THQ), and carcinogenic risk (CR) of elements were calculated. The heavy metals detected in muscle tissues were Zn > Cu > Cr > Mn > Pb > Cd, consecutively. According to the results of the applied health risk assessment (EDI, THQ and CR) for heavy metal exposure from fish consumption in children and adults, it was determined that there was no any significant threat to human health.

  9. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil

    International Nuclear Information System (INIS)

    Brunner, Ivano; Luster, Joerg; Guenthardt-Goerg, Madeleine S.; Frey, Beat

    2008-01-01

    Root systems of Norway spruce (Picea abies) and poplar (Populus tremula) were long-term exposed to metal-contaminated soils in open-top chambers to investigate the accumulation of the heavy metals in the fine roots and to assess the plants suitability for phytostabilisation. The heavy metals from the contaminated soil accumulated in the fine roots about 10-20 times more than in the controls. The capacity to bind heavy metals already reached its maximum after the first vegetation period. Fine roots of spruce tend to accumulate more heavy metals than poplar. Copper and Zinc were mainly detected in the cell walls with larger values in the epidermis than in the cortex. The heavy metals accumulated in the fine roots made up 0.03-0.2% of the total amount in the soils. We conclude that tree fine roots adapt well to conditions with heavy metal contamination, but their phytostabilisation capabilities seem to be very low. - Long-term exposed fine roots of trees are well adapted to soils with high heavy metal contents, but their phytostabilisation capabilities are rather low

  10. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides

    International Nuclear Information System (INIS)

    Ryser, Peter; Sauder, Wendy R.

    2006-01-01

    The effects of low levels of heavy metals on plant growth, biomass turnover and reproduction were investigated for Hieracium pilosella. Plants were grown for 12 weeks on substrates with different concentrations of heavy metals obtained by diluting contaminated soils with silica sand. To minimize effects of other soil factors, the substrates were limed, fertilized, and well watered. The more metal-contaminated soil the substrate contained, the lower the leaf production rate and the plant mass were, and the more the phenological development was delayed. Flowering phenology was very sensitive to metals. Leaf life span was reduced at the highest and the lowest metal levels, the latter being a result of advanced seed ripening. Even if the effect of low metal levels on plant growth may be small, the delayed and reduced reproduction may have large effects at population, community and ecosystem level, and contribute to rapid evolution of metal tolerance. - Flowering phenology shows a very sensitive response to heavy metal contamination of soils

  11. Plasma treatment of INEL soil contaminated with heavy metals

    International Nuclear Information System (INIS)

    Detering, B.A.; Batdorf, J.A.

    1992-01-01

    INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites

  12. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    International Nuclear Information System (INIS)

    Turner, Andrew; Mawji, Edward

    2005-01-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D ow , ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant ( 3.3 -10 5.3 ml g -1 . The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating trace metals in natural waters

  13. Feasibility study of X-ray K-edge analysis of RCRA heavy metal contamination of sludge packaged in drums

    International Nuclear Information System (INIS)

    Jensen, T.

    1999-01-01

    A study has been completed to assess the capabilities of X-ray K-edge analysis in the measurement of RCRA metal contamination of sludge packaged in drums. Results were obtained for mercury and lead contamination. It was not possible to measure cadmium contamination using this technique. No false positive signals were observed. In cases where uniformity of the sludge can be assumed, this analysis can provide a quick, accurate measurement of heavy-metal contamination

  14. Study of different environmental matrices to access the extension of metal contamination along highways.

    Science.gov (United States)

    Zanello, Sônia; Melo, Vander Freitas; Nagata, Noemi

    2018-02-01

    Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg kg -1 ): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways.

  15. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  16. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    3Department of Social Sciences, University of Rwanda, P.O. Box 117 Butare, ... pineapple processing Enterprises (SMEs) over a storage duration of 12 months. .... The results were measured against ... analyzed for microbial contamination using International Organization ... All culture media used were manufactured by.

  17. CLOPYRALID DISSIPATION IN THE SOIL CONTAMINATED WITH HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Mariusz Kucharski

    2014-12-01

    Full Text Available The aim of the studies was to determine the influence of copper and zinc contamination on clopyralid dissipation in soil. The experiment was carried out in laboratory conditions (plant growth chamber. Clopyralid was applied to three different soils [similar textures, pH, organic carbon content and contrasting copper and zinc content: soil natural contaminated with Cu and Zn (S1, soil with natural low Cu and Zn concentration (S2 and soil S21 prepared in the laboratory (S2 soil additionally contaminated with Cu and Zn salts in the amounts equivalent to contamination level of S1 soil]. Soil samples were taken for analyses for 1 hour (initial concentration and 2, 4, 8, 16, 32, 64 and 96 days after treatment. Clopyralid residue was analysed using GC/ECD (gas chromatography with electron capture detector. Good linearity was found between logarithmic concentration of clopyralid residues and time. The differences in Cu and Zn content influenced the clopyralid decay in soil. The values of DT50 obtained in the experiment ranged from 21 to 27 days. A high concentration of Cu and Zn in soil slowed down clopyralid degradation (the DT50 value was higher – 25–27 days.

  18. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant.

    Science.gov (United States)

    Liu, Jie; Zhang, Xue-Hong; Tran, Henry; Wang, Dun-Qiu; Zhu, Yi-Nian

    2011-11-01

    The objective of this paper is to assess the impact of long-term electroplating industrial activities on heavy metal contamination in agricultural soils and potential health risks for local residents. Water, soil, and rice samples were collected from sites upstream (control) and downstream of the electroplating wastewater outlet. The concentrations of heavy metals were determined by an atomic absorption spectrophotometer. Fractionation and risk assessment code (RAC) were used to evaluate the environmental risks of heavy metals in soils. The health risk index (HRI) and hazard index (HI) were calculated to assess potential health risks to local populations through rice consumption. Hazardous levels of Cu, Cr, and Ni were observed in water and paddy soils at sites near the plant. According to the RAC analysis, the soils showed a high risk for Ni and a medium risk for Cu and Cr at certain sites. The rice samples were primarily contaminated with Ni, followed by Cr and Cu. HRI values >1 were not found for any heavy metal. However, HI values for adults and children were 2.075 and 1.808, respectively. Water, paddy soil, and rice from the studied area have been contaminated by Cu, Cr, and Ni. The contamination of these elements is related to the electroplating wastewater. Although no single metal poses health risks for local residents through rice consumption, the combination of several metals may threaten the health of local residents. Cu and Ni are the key components contributing to the potential health risks.

  19. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  20. Environmental impact of ongoing sources of metal contamination on remediated sediments

    International Nuclear Information System (INIS)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; Redder, Todd M.; Wolfe, John R.; Seaman, John

    2016-01-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  1. A recovery of gold from electronic scrap by mechanical separation, acid leaching and electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, K.I.; Lee, J.C.; Lee, C.K.; Joo, K.H.; Yoon, J.K.; Kang, H.R.; Kim, Y.S.; Sohn, H.J.

    1995-12-31

    A series of processes to recover the gold from electronic scrap which contains initially about 200--600 ppm Au have been developed. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1 mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The scrap was leached in 50% aqua regia solution and gold was dissolved completely at 60 C within 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. This resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour in electrowinning process.

  2. Metales pesados en hongos de areas contaminadas Heavy metals in wild mushrooms from contaminated areas

    Directory of Open Access Journals (Sweden)

    A. Moyano

    2010-01-01

    organic matter. Mycorrhizal improve their hosts mineral nutrition. The mycorrhizal as­sociations give resistance in contaminated areas to the plants. Sometimes inoculated plants hold up better the contamination that non-inoculated plants. The mycelia absorbs (extracts the soil available fraction and de­crease the heavy metal concentration in the plants. The fruit-bodies can be eaten by many animal specie as well as by humans. Some specie wild fungi have a high nutri­tional value and represent an important eco­nomical resource. Soil, mushrooms and litter were sampled in a lead (Pb-zinc (Zn mine (Soria prov­ince, Spain. The distribution of metals in soil, litter and fungi shows a high concentra­tion of metals in relation to the control ar­eas. The Zn soil contents ranges are 797­3540 mg/kg, Cd: 2.1-10 mg/kg and Pb: 1485-8166 mg/kg, Litter content ranges: (Zn: 92-1475 mg/kg; Cd 0.9-4.2 mg/kg; Pb: 54-2756 mg/kg and fruit-bodies ranges: (Zn 118-915 mg/kg; Cd: 1.2-45.2 mg/kg and Pb 12-1475 mg/kg. The bioacumula­tion factors show high environmental and toxicological risks.

  3. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cleanup operations at the Oak Ridge Gaseous Diffusion Plant contaminated metal scrapyard

    International Nuclear Information System (INIS)

    Williams, L.C.

    1987-01-01

    Cleanup operations at the contaminated metal storage yard located at the Oak Ridge, Tennessee, Gaseous Diffusion Plant have been completed. The storage yard, in existence since the early 1970s, contained an estimated 35,000 tons of mixed-type metals spread over an area of roughly 30 acres. The overall cleanup program required removing the metal from the storage yard, sorting by specific metal types, and size reduction of specific types for future processing. This paper explains the methods and procedures used to accomplish this task

  5. Soil Contamination with Heavy Metals around Jinja Steel Rolling Mills in Jinja Municipality, Uganda

    Directory of Open Access Journals (Sweden)

    Noel Namuhani

    2015-01-01

    Conclusions. The concentration levels of heavy metals around the steel rolling mills did not appear to be of serious concern, except for copper and cadmium, which showed moderate pollution and moderate to strong pollution, respectively. All heavy metals were within the limits of the United States Environmental Protection Agency (USEPA residential soil standards and the Dutch intervention soil standards. Overall, soils around the Jinja steel rolling mills were slightly polluted with heavy metals, and measures therefore need to be taken to prevent further soil contamination with heavy metals.

  6. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that the Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.

  7. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions.

    Science.gov (United States)

    Mitchell, Rebecca G; Spliethoff, Henry M; Ribaudo, Lisa N; Lopp, Donna M; Shayler, Hannah A; Marquez-Bravo, Lydia G; Lambert, Veronique T; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Stone, Edie B; McBride, Murray B

    2014-04-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions

    Science.gov (United States)

    Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.

    2014-01-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. PMID:24502997

  9. Effect of leaf and soil contaminations on heavy metals content in spring wheat crops

    International Nuclear Information System (INIS)

    Weber, R.; Hrynczuk, B.

    2000-01-01

    Glass house experiments were carried out in Wagner pots containing 6 kg of soil. The amounts were compared of Zn, Pb and Cd taken up by the crop of spring wheat from contamination introduced into the soil or upon leaves. The heavy metals were labelled with the radioactive isotopes 65 Zn, 210 Pb and 115 Cd. The experiment was performed as a series of independent analyses in four replications. The dynamics of the labelled heavy metals translocation from contaminations sprayed on the upper or bottom side of the flag leaf was also tested. The highest concentration of 65 Zn was found in the straw and gain of wheat. much higher amounts of the metals appeared to have been taken up by the plants from leaf contamination than from soil. The highest dynamics of translocation from leaves to other vegetative and generative organs of plants was that of zinc. (author)

  10. Heavy Metal Contamination of Popular Nail Polishes in Iran

    Directory of Open Access Journals (Sweden)

    Golnaz Karimi

    2015-06-01

    Full Text Available Background: Toxic and hazardous heavy metals like arsenic, lead, mercury, zinc, chromium and iron are found in a variety of personal care products, e.g. lipstick, whitening toothpaste, eyeliner and nail color. The nails absorb the pigments of nail polishes and vaporized or soluble metals can easily pass it. The goal of this survey was to assess whether the different colors of nail polishes comply with maximum concentrations of heavy metals in the EPA’s guidelines. Methods: 150 samples of different popular brands of nail polishes in 13 colors (yellow, beige, silver, pink, white, violet, brown, golden, green, black, colorless, red and blue were randomly purchased from beauty shops in Tehran City, Iran, in 2014. Microwave digestion EPA method 3051 was used by a microwave oven to determine the amount of 5 heavy metals; Nickel, Chromium, Lead, Arsenic and Cadmium. One-way ANOVA, Two-way ANOVA, hierarchical cluster, and principal component analyses were applied by Statistica 7.0 software. Results: The concentrations of chrome, lead, nickel and arsenic showed significant differences between the colors (p<0.05. In all studied samples, the level of cadmium was beyond the safe maximum permissible limit (MPS, but no significance difference in the cadmium content was identified. Conclusion: Due to the high concentrations of toxic metals in many brands of nail polishes, meticulous quality control is recommended for these beauty products.

  11. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    International Nuclear Information System (INIS)

    Zhang Junhui; Hang Min

    2009-01-01

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg -1 ), and weakly contaminated with Cu (256.36 mg kg -1 ) and Zn (209.85 mg kg -1 ). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  12. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder

    OpenAIRE

    Xia, Wei-Yi; Feng, Ya-Song; Jin, Fei; Zhang, Li-Ming; Du, Yan-Jun

    2017-01-01

    Synthetic hydroxyapatite (HA) is an efficient and environment-friendly material for the remediation of heavy metal contaminated soils. However, the application of conventional HA powder in stabilizing contaminated soils is limited, due to high cost of final products, difficulties in synthesizing purified HA crystals. A new binder named SPC, which composes of single superphosphate (SSP) and calcium oxide (CaO), is presented as an alternative in this study. HA can form in the soil matrix by an ...

  13. Removal of contaminated asphalt layers by using heat generating powder metallic systems

    International Nuclear Information System (INIS)

    Barinov, A.S.; Karlina, O.K.; Ojovan, M.I.

    1996-01-01

    Heat generating systems on the base of powder metallic fuel were used for the removal of contaminated asphalt layers. Decontamination of spots which had complex geometric form was performed. Asphalt layers with deep contamination were removed essentially all radionuclides being retained in asphalt residue. Only a small part (1 - 2 %) of radionuclides could pass to combustion slag. No radionuclides were detected in aerosol-gas phase during decontamination process

  14. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil

    Directory of Open Access Journals (Sweden)

    WAC Chiba

    Full Text Available Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  16. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  17. Metal contamination in zebra mussels (Dreissena polymorpha) along the St. Lawrence River.

    Science.gov (United States)

    Kwan, K H Michael; Chan, Hing Man; de Lafontaine, Yves

    2003-01-01

    In order to evaluate the use of zebra mussels as biomonitors for metal bioavailability in the St. Lawrence River, we tested the hypothesis that the concentrations of 11 metals in zebra mussels vary significantly between sites along the river and that the season of collection and body size affect metal bioaccumulation. Mussels were collected at 14 sites during June 1996 and at monthly intervals at one site. Specimens were grouped in three size classes and their soft tissue was analyzed for As, Ca, Cd, Cr, Hg, Mn, Ni, Pb, Se, and Zn. Significant size effects were found for Ca, Cd, Cr, Cu, Ni and Zn. Spatial and seasonal variations in bioconcentration were significant for all metals. Spatial patterns in contamination that corresponded to known point sources of pollution or hydrology of the river were identified by principal component analysis. Seasonal variations can be attributed to the reproductive cycle of mussels and hydrological variability of the river. In comparison with values reported for zebra mussels in other contaminated sites in North America and Europe, levels of metal in the St. Lawrence River are low or intermediate. Our results show that when controlled for size and seasonal effects, zebra mussels represent a useful biomonitor for metal availability in the river and may offer an interesting alternative to native mussels and fish for such a role. Local contamination by some toxic metals is still a cause for concern in the St. Lawrence River.

  18. Process evaluations for uranium recovery from scrap material

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1992-01-01

    The integral Fast Reactor (IFR) concept being developed by Argonne National Laboratory is based on pyrometallurgical processing of spent nuclear metallic fuel with subsequent fabrication into new reactor fuel by an injection casting sequence. During fabrication, a dilute scrap stream containing uranium alloy fines and broken quartz (Vycor) molds in produced. Waste characterization of this stream, developed by using present operating data and chemical analysis was used to evaluate different uranium recovery methods and possible process variations for the return of the recovered metal. Two methods, comminution with size separation and electrostatic separation, have been tested and can recover over 95% of the metal. Recycling the metal to either the electrochemical process or the injection casting was evaluated for the different economic and process impacts. The physical waste parameters and the important separation process variables are discussed with their effects on the viability of recycling the material. In this paper criteria used to establish the acceptable operating limits is discussed

  19. Metal Contamination In Plants Due To Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Md. Farhad Ali

    2015-08-01

    Full Text Available Abstract This paper analyzes the determination of heavy metals named Chromium Lead and Cadmium deposited in soil as well as in the plants and vegetables due to the tanning industries of the area of Hazaribagh Dhaka. The tanneries discharge untreated tannery effluents which get mixed with the soil water of rivers and canals in this area. The determination of metals was performed for the soil that was collected from the land adjacent to the canals which bear untreated tannery effluents. The soil is affected with the untreated effluents through the deposition of heavy metals. The metals were furthers deposited into the plants and vegetables grown on that soil. The roots stems and leaves of the plants of Jute Corchorus capsularis and Spinach Basella alba grown on that soil were analyzed for determining these metals. Extreme amount of chromium was found for plants and again Lead Cadmium were found in higher amount in these parts of the two plants. These two plants are taken as a popular vegetables extensively. In case of soil the amount of Chromium Lead and Cadmium were analyzed as 87 mgL 0.131 mgL and 0.190 mgL respectively. For the roots stems and leaves of Jute Corchorus capsularis the average values are 115.62 mgL for Chromium 11.25 mgL for Lead and 2.27 mgL for Cadmium respectively. Again in case of Spinach Basella alba 124.42 mgL was found for Chromium 7.38 mgL for lead and 2.97 mgL for Cadmium as average values for these parts of the two trees. All the observed values of metals of Chromium Lead and Cadmium are higher than the permissible and specially for Chromium the amount is extremely higher.

  20. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  1. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  2. Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones

    Directory of Open Access Journals (Sweden)

    Sarah F. L. Lynch

    2014-01-01

    Full Text Available Diffuse metal pollution from mining impacted sediment is widely recognised as a potential source of contamination to river systems and may significantly hinder the achievement of European Union Water Framework Directive objectives. Redox-transitional zones that form along metal contaminated river banks as a result of flood and drought cycles could cause biogeochemical changes that alter the behaviour of polyvalent metals iron and manganese and anions such as sulphur. Trace metals are often partitioned with iron, manganese and sulphur minerals in mining-contaminated sediment, therefore the dissolution and precipitation of these minerals may influence the mobility of potentially toxic trace metals. Research indicates that freshly precipitated metal oxides and sulphides may be more “reactive” (more adsorbent and prone to dissolution when conditions change than older crystalline forms. Fluctuations at the oxic-anoxic interface brought about through changes in the frequency and duration of flood and drought episodes may therefore influence the reactivity of secondary minerals that form in the sediment and the flux of dissolved trace metal release. UK climate change models predict longer dry periods for some regions, interspersed with higher magnitude flood events. If we are to fully comprehend the future environmental risk these climate change events pose to mining impacted river systems it is recommended that research efforts focus on identifying the primary controls on trace metal release at the oxic-anoxic interface for flood and drought cycles of different duration and frequency. This paper critically reviews the literature regarding biogeochemical processes that occur at different temporal scales during oxic, reducing and dry periods and focuses on how iron and sulphur based minerals may alter in form and reactivity and influence the mobility of trace metal contaminants. It is clear that changes in redox potential can alter the composition

  3. A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    International Nuclear Information System (INIS)

    Gao Baohong; Liu Yuling; Wang Chenwei; Wang Shengli; Zhou Qiang; Tan Baimei; Zhu Yadong

    2010-01-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO 4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection. (semiconductor technology)

  4. Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

    1994-01-01

    Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study

  5. Remediation of a heavy metal-contaminated soil by means of agglomeration.

    Science.gov (United States)

    Polettini, Alessandra; Pomi, Raffaella; Valente, Mattia

    2004-01-01

    The feasibility of treating a heavy metal-contaminated soil by means of a solidification/stabilization treatment consisting of a granulation process is discussed in the present article. The aim of the study was to attain contaminant immobilization within the agglomerated solid matrix. The soil under concern was characterized by varying levels of heavy metal contamination, ranging from 50 to 500 mg kg(-1) dry soil for chromium. from 300 to 2000 mg kg(-1) dry soil for lead and from 270 to 5000 mg kg(-1) dry soil for copper. An artificially contaminated soil with contaminant concentrations corresponding to the upper level of the mentioned ranges was prepared from a sample of uncontaminated soil by means of spiking experiments. Pure soluble species of chromium, copper and lead. namely CrCl3.6H2O, CuCl2.2H2O and Pb(NO3)2, were selected for the spiking experiments, which were arranged according to a 2(3) full factorial design. The solidification/stabilization treatment was based on an agglomeration process making use of hydraulic binders including Portland cement, hydrated lime and sodium methasilicate, which were selected on the basis of preliminary test runs. It was found that after 7 days of curing the applied treatment was able to efficiently immobilize the investigated heavy metals within the hydrated matrix. Good acid neutralization behavior was also observed, indicating improved matrix resistance to acid attack and decreased potential for metal leaching.

  6. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Surfactant-induced mobilisation of trace metals from estuarine sediment: Implications for contaminant bioaccessibility and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anu [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk

    2009-02-15

    The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment. - Significant quantities of metals are mobilised from estuarine sediment by commercially available surfactants.

  8. Sublethal effects of contamination on the Mediterranean sponge Crambe crambe: metal accumulation and biological responses

    International Nuclear Information System (INIS)

    Cebrian, E.; Marti, R.; Uriz, J.M.; Turon, X.

    2003-01-01

    The effect of low levels of pollution on the growth, reproduction output, morphology and survival of adult sponges and settlers of the sponge Crambe crambe were examined. We transplanted sponges from a control area to a contaminated site and measured the main environmental variables (chemical and physical) of both sites during the study period. Except some punctual differences in particulate organic matter, silicates, nitrates, and water motion, most environmental variables in the water were similar at both sites during the study months. Mainly copper, lead and OM concentrations in the sediment, and water motion were significantly higher at the polluted site and may be implicated in the biological effects observed: decrease in the percentage of specimens with embryos, increase in shape irregularity and decrease in growth rate. Individuals naturally occurring at the polluted site and those transplanted there for four months accumulated ten times more copper than either untouched or transplant controls. Although lead concentration in sediment did not differ between sites, native specimens from the contaminated site accumulated this metal more than untouched controls. Vanadium concentration also tended to increase in the sponges living at or transplanted to the contaminated site but this difference was not significant. C. crambe is a reliable indicator of metal contamination since it accumulates copper, lead and vanadium in high amounts. At the contaminated site, sponge growth, fecundity and survival were inhibited, whereas sponge irregularity ending in sponge fission was promoted. All these effects may compromise the structure and dynamics of the sponge populations in sheltered, metal-contaminated habitats

  9. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    Science.gov (United States)

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  10. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Science.gov (United States)

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  11. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  12. Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network

    Science.gov (United States)

    Ghazi, Farah F.

    2018-05-01

    The aim of this paper is to estimate the heavy metals Contamination in soils which can be used to determine the rate of environmental contamination by using new technique depend on design feedback neural network as an alternative accurate technique. The network simulates to estimate the concentration of Cadmium (Cd), Nickel (Ni), Lead (Pb), Zinc (Zn) and Copper (Cu). Then to show the accuracy and efficiency of suggested design we applied the technique in Al- Zafaraniyah in Baghdad city. The results of this paper show that the suggested networks can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals.

  13. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Martim P. S. R.; Correia, António Alberto S., E-mail: aalberto@dec.uc.pt [University of Coimbra, Department of Civil Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre (Portugal); Rasteiro, Maria G. [University of Coimbra, Department of Chemical Engineering, CIEPQPF (Portugal)

    2017-04-15

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb{sup 2+}), copper (Cu{sup 2+}), nickel (Ni{sup 2+}), and zinc (Zn{sup 2+}), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  14. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  15. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  16. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea

    International Nuclear Information System (INIS)

    Chae, Jung Sun; Choi, Man Sik; Song, Yun Ho; Um, In Kwon; Kim, Jae Gon

    2014-01-01

    Highlights: • The levels of Cu, Zn, and Pb in sediments were higher than the Korean TEL at one-third of all sites. • The primary source of metal contamination came from activities related to nonferrous metal refineries near Onsan Harbor. • Three different anthropogenic sources and background sediments could be identified as endmembers using Pb isotopes. • The major anthropogenic Pb sources were identified as imported ores from Australia and Peru. • Isotope ratios in anthropogenic Pb discharged from Ulsan Bay to offshore could be identified. - Abstract: To determine the characteristics of metal pollution sources in Ulsan Bay, East Sea, 39 surface and nine core sediments were collected within the bay and offshore area, and analyzed for metals and stable lead (Pb) isotopes. Most surface sediments (>95% from 48 sites) had high copper (Cu), zinc (Zn), cadmium (Cd), and Pb concentrations that were as much as 1.3 times higher than background values. The primary source of metal contamination came from activities related to nonferrous metal refineries near Onsan Harbor, and the next largest source was from shipbuilding companies located at the mouth of the Taehwa River. Three different anthropogenic sources and background sediments could be identified as end-members using Pb isotopes. Isotopic ratios for the anthropogenic Pb revealed that the sources were imported ores from Australia, Peru, and the United States. In addition, Pb isotopes of anthropogenic Pb discharged from Ulsan Bay toward offshore could be determined

  17. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  18. Metal contamination and human health risk associated with the ...

    African Journals Online (AJOL)

    Metals are accumulating in the muscle tissue of L. rosae even although the fish populations appear to be healthy. At Loskop Dam all L. rosae analysed exceeded the recommended hazard quotient (HQ) of 1 for antimony, and less than 50% exceeded that for lead. At Flag Boshielo Dam, the recommended HQ was exceeded ...

  19. Optimal selection of biochars for remediating metals contaminated mine soils

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce ...

  20. Heavy metal contamination of Clarias gariepinus from a lake and ...

    African Journals Online (AJOL)

    Adult Clarias gariepinus (African Catfish) were purchased from Eleiyele Lake and Zartech fish farm in Ibadan. Water samples were also collected in February (dry season) and June (rainy season), 2002. Gill, bone, intestine, muscle and water samples were analyzed for five metals: manganese, copper, zinc, iron, and ...

  1. Trace Metal Contamination in Water from Abandoned Mining and ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    copper and lead sulpho-salts (Dzigbordi-Adjimah, 1988). ... The resulting solution was analysed for trace metals at the Institute of Mining and Mineral ..... found in the samples (Tables 3 and 4) may be due to the mineral-water interactions and.

  2. Directed Selection of Biochars for Amending Metal Contaminated Mine Soils

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment. World-wide the problem is even larger. Lime, organic matter, biosolids and other amendments have been used to decrease metal bioavailability in contami...

  3. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    Science.gov (United States)

    2001-03-01

    phytoremediation , and electrokinetic extraction. The US Army Environmental Center (USAEC) and Engineer Research and Development Center (ERDC...California (CA) List Metals: Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury , molybdenum, nickel, selenium...Comparison Technologies with which electrokinetic remediation must compete are "Dig and Haul", Soil Washing, and Phytoremediation . "Dig and haul

  4. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Soma Giri

    2017-06-07

    Jun 7, 2017 ... Agricultural soil; heavy metals; copper mining areas; multivariate analysis; ... multivariate statistical analysis. 2. ... sieved through standard sieve of 200 mesh size (Giri ... Pearson's correlation is a bivariate correlation ... is a variation reduction technique in which a num- ... Varimax rotation is applied to all the.

  5. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    Manihot esculentum is a major farm produce in southern .... Heavy metals enrichment factor was derived based ... VII. 0-15. 6.1. 2.3. 58.41. 15-30. 6.3. 1.8. 54.28. VIII. 0-15. 6.5. 2.5. 62.21 ... levels of iron in soils around foam manufacturing, ...

  6. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  7. Risks to humans and wildlife from metal contamination in soils/sediments at CERCLA sites

    International Nuclear Information System (INIS)

    Hitch, J.P.; Hovatter, P.S.; Opresko, D.M.; Sample, B.; Young, R.A.

    1994-01-01

    A common problem that occurs at DOD and DOE CERCLA sites is metal contamination in soils and aquatic sediments and the protection of humans and wildlife from potential exposure to this contamination. Consequently, the authors have developed a site-specific reference dose for mercury in sediments at the Oak Ridge Reservation and site-specific cleanup levels for certain metals, including arsenic and nickel, in soils at an Army ammunition plant. Another concern during remediation of these sites is that limited data are available to determine the direct risks to indigenous wildlife. Therefore, the authors have developed toxicological benchmarks for certain metals and metal compounds to be used as screening tools to determine the potential hazard of a contaminant to representative mammalian and avian wildlife species. These values should enable the Army and DOE to more accurately determine the risks to humans and wildlife associated with exposure to these contaminated media at their sites in order to achieve a more effective remediation. This effort is ongoing at ORNL with toxicological benchmarks also being developed for metal compounds and other chemicals of concern to DOD and DOE in order to address the potential hazard to

  8. Adverse events associated with metal contamination of traditional chinese medicines in Korea: a clinical review.

    Science.gov (United States)

    Kim, Hyunah; Hughes, Peter J; Hawes, Emily M

    2014-09-01

    This study was performed to review studies carried out in Korea reporting toxic reactions to traditional Chinese medicines (TCMs) as a result of heavy metal contamination. PubMed (1966-August 2013) and International Pharmaceutical Abstracts (1965-August 2013) were searched using the medical subject heading terms of "Medicine, Chinese Traditional," "Medicine, Korean Traditional," "Medicine, Traditional," "Metals, Heavy," and "Drug Contamination". For Korean literature, Korea Med (http://www.koreamed.org), the Korean Medical Database (http://kmbase.medric.or.kr), National Discovery for Science Leaders (www.ndsl.kr), Research Information Sharing Service (http://www.riss.kr), and Google Scholar were searched using the terms "Chinese medicine," "Korean medicine," "herbal medicine," and "metallic contamination" in Korean. Bibliographies of case reports and case series, identified using secondary resources, were also utilized. Only literature describing cases or studies performed in Korea were included. Case reports identified clear issues with heavy metal, particularly lead, contamination of TCMs utilized in Korea. No international standardization guidelines for processing, manufacturing and marketing of herbal products exist. Unacceptably high levels of toxic metals can be present in TCM preparations. Health care providers and patients should be educated on the potential risks associated with TCMs. International advocacy for stricter standardization procedures for production of TCMs is warranted.

  9. Bacterial contamination of fabric and metal-bead identity card lanyards: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Thomas Pepper

    2014-11-01

    Full Text Available Summary: In healthcare, fabric or metal-bead lanyards are universally used for carrying identity cards. However there is little information on microbial contamination with potential pathogens that may readily re-contaminate disinfected hands. We examined 108 lanyards from hospital staff. Most grew skin flora but 7/108 (6% had potentially pathogenic bacteria: four grew methicillin-susceptible Staphylococcus aureus, and four grew probable fecal flora: 3 Clostridium perfringens and 1 Clostridium bifermentans (one lanyard grew both S. aureus and C. bifermentans. Unused (control lanyards had little or no such contamination. The median duration of lanyard wear was 12 months (interquartile range 3–36 months. 17/108 (16% of the lanyards had reportedly undergone decontamination including wiping with alcohol, chlorhexidine or chlorine dioxide; and washing with soap and water or by washing machine. Metal-bead lanyards had significantly lower median bacterial counts than those from fabric lanyards (1 vs. 4 CFU/cm2; Mann–Whitney U = 300.5; P < 0.001. 12/32 (38% of the metal-bead lanyards grew no bacteria, compared with 2/76 (3% of fabric lanyards. We recommend that an effective decontamination regimen be instituted by those who use fabric lanyards, or that fabric lanyards be discarded altogether in preference for metal-bead lanyards or clip-on identity cards. Keywords: Lanyard, Contamination, Identity card, Metal, Fabric

  10. The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    Zhangwei Li

    2014-01-01

    Full Text Available It was believed that when hydroxyapatite (HAP was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP and micrometer particle size of HAP (mHAP induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb, zinc (Zn, copper (Cu, and chromium (Cr bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L. uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology.

  11. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  12. Contamination by heavy metals and petroleum hydrocarbons: a threat to mangroves

    Directory of Open Access Journals (Sweden)

    Thaís dos Santos Alencar

    2016-12-01

    Full Text Available The mangrove ecosystem is one of the most productive ecosystems on the planet with relevant ecological importance. It offers several services such as protection of the coastal region, immobilization of contaminants, as it is a food source and refuge for various organisms. However, mangroves are threatened by human activities. Oil spills in areas close to mangroves, for example, are potential sources for the entry of contaminants such as heavy metals and hydrocarbons. Among other sources of threat, we list industrial waste and sewage, mining and fertilizer use. When they reach the mangroves, these contaminants may cause several negative effects and affect its balance.

  13. Metal availability in a highly contaminated, dredged-sediment disposal site: field measurements and geochemical modeling.

    Science.gov (United States)

    Lions, Julie; Guérin, Valérie; Bataillard, Philippe; van der Lee, Jan; Laboudigue, Agnès

    2010-09-01

    Two complementary approaches were used to characterize arsenic and metal mobilizations from a dredged-sediment disposal site: a detailed field study combined with hydrogeochemical modeling. Contaminants in sediments were found to be mainly present as sulfides subject to oxidation. Secondary phases (carbonates, sulfates, (hydr)oxides) were also observed. Oxidative processes occurred at different rates depending on physicochemical conditions and contaminant contents in the sediment. Two distinct areas were identified on the site, each corresponding to a specific contaminant mobility behavior. In a reducing area, Fe and As were highly soluble and illustrated anoxic behavior. In well-oxygenated material, groundwater was highly contaminated in Zn, Cd and Pb. A third zone in which sediments and groundwater were less contaminated was also characterized. This study enabled us to prioritize remediation work, which should aim to limit infiltration and long-term environmental impact. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Science.gov (United States)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  15. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    Science.gov (United States)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2017-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  16. The use of chelating agents in the remediation of metal-contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lestan, Domen [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia); Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail: cexdli@polyu.edu.hk

    2008-05-15

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades.

  17. The use of chelating agents in the remediation of metal-contaminated soils: A review

    International Nuclear Information System (INIS)

    Lestan, Domen; Luo Chunling; Li Xiangdong

    2008-01-01

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades

  18. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  19. Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish

    Science.gov (United States)

    Winarti, S.; Pertiwi, C. N.; Hanani, A. Z.; Mujamil, S. I.; Putra, K. A.; Herlambang, K. C.

    2018-01-01

    Contamination of heavy metals in certain levels of food can disrupt human health. Heavy metals have toxic properties, cannot be overhauled or destroyed by living organisms, can accumulate in the body of organisms including humans, either directly or indirectly. Heavy metal Hg, Cd, Cr is a very toxic metals (can result in death or health problems that are not recovered in a short time), while heavy metal Co, Pb, Cu toxicity is moderate (can lead to both recoverable and non-recoverable health problems in a relatively long time). Hence the heavy metal contaminating the food must be eliminated or reduced to a safe level. One effort was use coriander leaves to reduce the contamination of heavy metals in fish/shellfish. The objective of the research was to prove the extract of coriander leaves can reduce heavy metal contamination of Pb, Hg and Cu in rod shellfish (lorjuk). The treatment of this research was long soaking in coriander leaves extract that were 0, 30, 60 and 90 minutes. The results showed that the longer time of soaking can decrease Pb level from 4.4 ± 0.424 ppb to 1.7 ± 0.5 ppb, Hg level from 4.11± 0.07 to 1.12± 0.6 ppb, and Cu level from 433.7 ± 0.1 ppb to 117 ± 0.78 ppb. Protein content not significant decrease in rod shellfish (lorjuk) after 90 minutes soaking time, that was from 28.56 ± 0.403% to 26,625 ± 0.19%.

  20. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    International Nuclear Information System (INIS)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B.; Eqani, Syed Ali Musstjab Akber Shah

    2015-01-01

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  1. Trace metal contamination in mangrove sediments, Guanabara Bay, Rio de Janeiro, Brazil

    OpenAIRE

    Farias,Cassia O.; Hamacher,Claudia; Wagener,Angela de Luca R.; Campos,Reinaldo C. de; Godoy,José M.

    2007-01-01

    The Guanabara Bay in Rio de Janeiro has undergone profound alterations of its natural environmental conditions. Metal concentration increase in sediments has been reported to be among these alterations. Trace-metal contamination and availability were studied in sediments of 3 mangrove areas of the bay. Cd, Zn, Pb, Ni, Cu and Al concentrations were determined in segments of sediment cores, after treatment with 1 mol L-1 HCl and with concentrated HNO3. Fe and Mn were determined in the leach wit...

  2. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  3. Heavy metal stabilization in contaminated road-derived sediments.

    Science.gov (United States)

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salati, S.; Quadri, G.; Tambone, F. [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Adani, F., E-mail: fabrizio.adani@unimi.i [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2010-05-15

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.