WorldWideScience

Sample records for contaminated marine sediments

  1. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  2. Sediment and contaminant transport in a marine environment

    International Nuclear Information System (INIS)

    Onishi, Y.; Thompson, F.L.

    1986-01-01

    The finite-element model FETRA is an unsteady, verically averaged two-dimensional model to simulate the transport of sediment and contaminants (radionuclides, heavy metals, pesticides, etc.) in coastal and estuarine water. The model, together with the hydrodynamic model CAFE-I, was applied to the Irish Sea to predict the migration and accumulation of sediment (both cohesive and noncohesive) and of a radionuclide (dissolved and sediment-sorbed) in a tide- and wind-driven system. The study demonstrated that FETRA is a useful tool for assessing sediment and toxic contaminant transport in a marine environment

  3. Burrowing and avoidance behaviour in marine organisms exposed to pesticide-contaminated sediment

    DEFF Research Database (Denmark)

    Møhlenberg, Flemming; Kiørboe, Thomas

    1983-01-01

    Behavioural effects of marine sediment contaminated with pesticides (6000 ppm parathion, 200 ppm methyl parathion, 200 ppm malathion) were studied in a number of marine organisms in laboratory tests and in situ. The burrowing behaviour in Macoma baltica, Cerastoderma edule, Abra alba, Nereis...

  4. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments

    International Nuclear Information System (INIS)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-01-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments. - Highlights: ► Bioremediation performance was investigated on hydrocarbon contaminated sediments. ► Major changes in bacterial diversity and assemblage composition were observed. ► Temperature exerted the major effect on bacterial assemblages. ► High bacterial diversity increased significantly biodegradation performance. ► This should be considered for sediment remediation by bio-treatments. - Bioremediation strategies which can sustain high levels of bacterial diversity may significantly increase the biodegradation of hydrocarbons in contaminated marine sediments.

  5. Electrolysis-driven bioremediation of crude oil-contaminated marine sediments.

    Science.gov (United States)

    Bellagamba, Marco; Cruz Viggi, Carolina; Ademollo, Nicoletta; Rossetti, Simona; Aulenta, Federico

    2017-09-25

    Bioremediation is an effective technology to tackle crude oil spill disasters, which takes advantage of the capacity of naturally occurring microorganisms to degrade petroleum hydrocarbons under a range of environmental conditions. The enzymatic process of breaking down oil is usually more rapid in the presence of oxygen. However, in contaminated sediments, oxygen levels are typically too low to sustain the rapid and complete biodegradation of buried hydrocarbons. Here, we explored the possibility to electrochemically manipulate the redox potential of a crude oil-contaminated marine sediment in order to establish, in situ, conditions that are conducive to contaminants biodegradation by autochthonous microbial communities. The proposed approach is based on the exploitation of low-voltage (2V) seawater electrolysis to drive oxygen generation (while minimizing chlorine evolution) on Dimensionally Stable Anodes (DSA) placed within the contaminated sediment. Results, based on a laboratory scale setup with chronically polluted sediments spiked with crude oil, showed an increased redox potential and a decreased pH in the vicinity of the anode of 'electrified' treatments, consistent with the occurrence of oxygen generation. Accordingly, hydrocarbons biodegradation was substantially accelerated (up to 3-times) compared to 'non-electrified' controls, while sulfate reduction was severely inhibited. Intermittent application of electrolysis proved to be an effective strategy to minimize the energy requirements of the process, without adversely affecting degradation performance. Taken as a whole, this study suggests that electrolysis-driven bioremediation could be a sustainable technology for the management of contaminated sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Marine sediments as a sink, and contaminated sediments as a diffuse source of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.; Borretzen, P.

    1997-01-01

    Full text: Marine sediments may act as a sink for radionuclides originating from atmospheric fallout (e.g. Chernobyl accident), for radionuclides in discharges from nuclear installations (e.g. Sellafield, UK) for river transported radionuclides, and radionuclides released from nuclear waste dumped at sea (e.g. fjords at Novaya Zemlya). In order to assess short and long term consequences of radionuclides entering the marine ecosystem, the role of sediments as a relatively permanent sink and the potential for contaminated sediments to act as a diffuse source should be focused. The retention of radionuclides in sediments will depend on the source term, i.e. the physico-chemical forms of radionuclides entering the system and on interactions with various sediment components. Radionuclides associated with particles or aggregating polymers are removed from the water phase by sedimentation, while sorption to surface sediment layers is of relevance for ionic radionuclide species including negatively charged colloids. With time, transformation processes will influence the mobility of radionuclides in sediments. The diffusion into mineral lattices will increase fixation, while the influence of for instance red/ox conditions and bio-erosion may mobilize radionuclides originally fixed in radioactive particles. Thus, information of radionuclides species, surface interactions, transformation processes and kinetics is essential for reducing the uncertainties in marine transfer models. Dynamic model experiments where chemically well defined tracers are added to a sea water-marine sediment system are useful for providing information on time dependent interactions and distribution coefficients. When combined with sequential extraction techniques, information on mobility and rate of fixation is subsequently attained. In the present work experimental results from the Irish Sea and the Kara Sea will be discussed

  7. Linking metatranscriptomic to bioremediation processes of oil contaminated marine sediments

    Science.gov (United States)

    Cuny, P.; Atkinson, A.; Léa, S.; Guasco, S.; Jezequel, R.; Armougom, F.; Michotey, V.; Bonin, P.; Militon, C.

    2016-02-01

    Oil-derived hydrocarbons are one major source of pollution of marine ecosystems. In coastal marine areas they tend to accumulate in the sediment where they can impact the benthic communities. Oil hydrocarbons biodegradation by microorganisms is known to be one of the prevalent processes acting in the removal of these contaminants from sediments. The redox oscillation regimes generated by bioturbation, and the efficiency of metabolic coupling between functional groups associated to these specific redox regimes, are probably determinant factors controlling hydrocarbon biodegradation. Metatranscriptomic analysis appears like a promising approach to shed new light on the metabolic processes involved in the response of microbial communities to oil contamination in such oxic/anoxic oscillating environments. In the framework of the DECAPAGE project (ANR CESA-2011-006 01), funded by the French National Agency for Research, the metatranscriptomes (RNA-seq) of oil contaminated or not (Ural blend crude oil, 5 000 ppm) and bioturbated or not (addition of the common burrowing organism Hediste diversicolor, 1000 ind/m2) mudflat sediments, incubated in microcosms during 4 months at 19±1°C, were compared. The analysis of active microbial communities by SSU rRNA barcoding shows that the main observable changes are due to the presence of H. diversicolor. On the contrary, oil addition is the main factor explaining the observed changes in the genes expression patterns with 1949 genes specifically up or down-regulated (which is the case of only 245 genes when only H. diversicolor worms are added). In particular, the oil contamination leads to a marked overexpression (i) of benzyl- and alkylsuccinate synthase genes (ass and bss) that are involved in the anaerobic metabolism of aromatics (toluene) and alkanes, respectively and, (ii) of genes coding for nucleotide excision repair exonucleases indicating that DNA repair processes are also activated.

  8. Tracking riverborne sediment and contaminants in Commencement Bay, Washington, using geochemical signatures

    Science.gov (United States)

    Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.

    2017-09-29

    Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. Geochemical signatures distinguished the fine fraction (contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow marine habitats of Commencement Bay. The retention of earlier inputs complicates efforts to identify recent inputs and sources. Understanding modern sources and fates of riverborne sediment and contaminants and their potential ecological impacts will therefore require a suite of targeted geochemical studies in such marine depositional environments.

  9. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Furdek, Martina; Mikac, Nevenka [Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, Zagreb (Croatia); Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France); Monperrus, Mathilde, E-mail: mathilde.monperrus@univ-pau.fr [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France)

    2016-04-15

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  10. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    International Nuclear Information System (INIS)

    Furdek, Martina; Mikac, Nevenka; Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana; Monperrus, Mathilde

    2016-01-01

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  11. Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil.

    Science.gov (United States)

    Buruaem, Lucas M; Hortellani, Marcos A; Sarkis, Jorge E; Costa-Lotufo, Leticia V; Abessa, Denis M S

    2012-03-01

    Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Investigating plutonium contamination in marine sediments off Fukushima coast following the Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Bu Wenting; Guo Qiuju; Zheng, Jian; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo; Zhang, Jing; Yamada, Masatoshi

    2013-01-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident has caused large amounts of anthropogenic radionuclides to be released into the atmosphere as well as directly discharged into the sea. To obtain the vertical distribution of Pu isotopes in marine sediments and to better assess the possible contamination from the FDNPP accident in the marine environment, activities of "2"3"9"+"2"4"0Pu and "2"4"1Pu, as well as the atom ratios of "2"4"0Pu/"2"3"9Pu and "2"4"1Pu/"2"3"9Pu, were investigated in a sediment core collected from the western North Pacific in July 2011. The observed vertical profile of "2"3"9"+"2"4"0Pu activities and "2"4"0Pu/"2"3"9Pu atom ratios showed no extra injection of Pu from the accident, indicating no immediate Pu contamination from the FDNPP accident in the marine sediments in the region investigated. (author)

  13. Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments

    NARCIS (Netherlands)

    Besaury, L.; Marty, F.; Buquet, S.; Mesnage, V.; Muijzer, G.; Quillet, L.

    2013-01-01

    Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions,

  14. Radioactive contamination of the Guatemalan marine environment

    International Nuclear Information System (INIS)

    Perez-Sabino, J.F.; Oliva de Sandoval, B.E.; Orozco-Chilel, R.M.; Aguilar-Sandoval, E.

    1999-01-01

    As part of the IAEA TC project GUA/2/005 'Radioactivity and Contamination of the Marine Environment in Guatemala', concentrations of artificial and natural radionuclides have been determined in marine water and sediments, giving important information to establish the base line of the natural radioactivity and the radioactive contamination in this area that not have been studying

  15. Radioactive contamination of the Guatemalan marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sabino, J F; Oliva de Sandoval, B E; Orozco-Chilel, R M; Aguilar-Sandoval, E [Universidad de San Carlos de Guatemala, Facultad de Ciencias Quimicas y Farmacia, Unidad de Analisis Instrumental, Guatemala C.A. (Guatemala)

    1999-07-01

    As part of the IAEA TC project GUA/2/005 `Radioactivity and Contamination of the Marine Environment in Guatemala`, concentrations of artificial and natural radionuclides have been determined in marine water and sediments, giving important information to establish the base line of the natural radioactivity and the radioactive contamination in this area that not have been studying 4 refs, 1 fig., 4 tabs

  16. Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba.

    Science.gov (United States)

    Peña-Icart, Mirella; Pereira-Filho, Edenir Rodrigues; Lopes Fialho, Lucimar; Nóbrega, Joaquim A; Alonso-Hernández, Carlos; Bolaños-Alvarez, Yoelvis; Pomares-Alfonso, Mario S

    2017-02-01

    The purpose of the present work was to combine several tools for assessing metal pollution in marine sediments from Cienfuegos Bay. Fourteen surface sediments collected in 2013 were evaluated. Concentrations of As, Cu, Ni, Zn and V decreased respect to those previous reported. The metal contamination was spatially distributed in the north and south parts of the bay. According to the contamination factor (CF) enrichment factor (EF) and index of geoaccumulation (I geo ), Cd and Cu were classified in that order as the most contaminated elements in most sediment. Comparison of the total metal concentrations with the threshold (TELs) and probable (PELs) effect levels in sediment quality guidelines suggested a more worrisome situation for Cu, of which concentrations were occasional associated with adverse biological effects in thirteen sediments, followed by Ni in nine sediments; while adverse effects were rarely associated with Cd. Probably, Cu could be considered as the most dangerous in the whole bay because it was classified in the high contamination levels by all indexes and, simultaneously, associated to occasional adverse effects in most samples. Despite the bioavailability was partially evaluated with the HCl method, the low extraction of Ni (<3% in all samples) and Cu (<55%, except sample 3) and the relative high extraction of Cd (50% or more, except sample 14) could be considered as an attenuating (Ni and Cu) or increasing (Cd) factor in the risk assessment of those element. Copyright © 2016. Published by Elsevier Ltd.

  17. Comparative study of plutonium and americium bioaccumulation from two marine sediments contaminated in the natural environment

    International Nuclear Information System (INIS)

    Hamilton, T.F.; Smith, J.D.

    1991-01-01

    Plutonium and americium sediment-animal transfer was studied under controlled laboratory conditions by exposure of the benthic polychaete Nereis diversicolor (O. F. Mueller) to marine sediments contaminated by a nuclear bomb accident (near Thule, Greenland) and nuclear weapons testing (Enewetak Atoll). In both sediment regimes, the bioavailability of plutonium and 241 Am was low, with specific activity in the tissues 241 Am occurred and 241 Am uptake from the Thule sediment was enhanced compared to that from lagoon sediments of Enewetak Atoll. Autoradiography studies indicated the presence of hot particles of plutonium in the sediments. The results highlight the importance of purging animals of their gut contents in order to obtain accurate estimates of transuranic transfer from ingested sediments into tissue. It is further suggested that enhanced transuranic uptake by some benthic species could arise from ingestion of highly activity particles and organic-rich detritus present in the sediments. (author)

  18. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.; Suuberg, E.M.; Pennell, K.G.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Ryba, S.A. [US EPA, Narragansett, RI (USA). Office for Research and Development

    2009-01-15

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.

  19. Interactions between eutrophication and contaminants - partitioning, bioaccumulation and effects on sediment-dwelling organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hylland, Ketil; Schaanning, Morten; Skei, Jens; Berge, John Arthur; Eriksen, Dag Oe.; Skoeld, Mattias; Gunnarsson, Jonas

    1997-12-31

    This report describes an experiment on the interactions between eutrophication and contaminants in marine sediments. The experiment was performed in 24 continuously flushed glass aquaria within which three sediment-dwelling species were kept in a marine sediment. A filter-feeder, blue mussel, was kept in downstream aquaria. The experiment combined three environmental factors: oxygen availability, the presence or absence of contaminants, the addition of organic matter. The objectives were: (1) to quantify differences in the partitioning of contaminants between sediment, pore water and biota as a result of the treatment, (2) to quantify effects of treatments and interactions between treatments on sediment-dwelling organisms, (3) to identify differences, if any, in the release of contaminants from the sediment as the result of treatments. All three contaminants bio accumulated to higher levels in sediments with increased levels of organic material. Feeding directly or indirectly appeared to be the major route for bioaccumulation of benzo(a)pyrene and mercury. Cadmium was also controlled by the concentration in pore water. Sediment in enriched aquaria released more contaminants than sediment with low organic content. Organic enrichment strongly affected growth in the three sediment-dwelling organisms. Growth was less affected by decreased oxygen availability. The presence of contaminants had little effect on the three sediment-dwelling species at the concentrations used in the experiment. 103 refs., 14 figs., 12 tabs.

  20. Culture-dependent and independent studies of microbial diversity in highly copper-contaminated Chilean marine sediments.

    Science.gov (United States)

    Besaury, Ludovic; Marty, Florence; Buquet, Sylvaine; Mesnage, Valérie; Muyzer, Gerard; Quillet, Laurent

    2013-02-01

    Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.

  1. Comparative study of plutonium and americium bioaccumulation from two marine sediments contaminated in the natural environment

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, T.F.; Smith, J.D. (Melbourne Univ., Parkville (Australia). Dept. of Inorganic Chemistry); Fowler, S.W.; LaRosa, J.; Holm, E. (International Atomic Energy Agency, Monaco-Ville (Monaco). Lab. of Marine Radioactivity); Aarkrog, A.; Dahlgaard, H. (Risoe National Lab., Roskilde (Denmark))

    1991-01-01

    Plutonium and americium sediment-animal transfer was studied under controlled laboratory conditions by exposure of the benthic polychaete Nereis diversicolor (O. F. Mueller) to marine sediments contaminated by a nuclear bomb accident (near Thule, Greenland) and nuclear weapons testing (Enewetak Atoll). In both sediment regimes, the bioavailability of plutonium and {sup 241}Am was low, with specific activity in the tissues <1% (dry wt) than in the sediments. Over the first three months, a slight preference in transfer of plutonium over {sup 241}Am occurred and {sup 241}Am uptake from the Thule sediment was enhanced compared to that from lagoon sediments of Enewetak Atoll. Autoradiography studies indicated the presence of hot particles of plutonium in the sediments. The results highlight the importance of purging animals of their gut contents in order to obtain accurate estimates of transuranic transfer from ingested sediments into tissue. It is further suggested that enhanced transuranic uptake by some benthic species could arise from ingestion of highly activity particles and organic-rich detritus present in the sediments. (author).

  2. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park

    Science.gov (United States)

    Sim, Vivian X. Y.; Dafforn, Katherine A.; Simpson, Stuart L.; Kelaher, Brendan P.; Johnston, Emma L.

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management. PMID:26086427

  3. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

    Science.gov (United States)

    Sim, Vivian X Y; Dafforn, Katherine A; Simpson, Stuart L; Kelaher, Brendan P; Johnston, Emma L

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management.

  4. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

    Directory of Open Access Journals (Sweden)

    Vivian X Y Sim

    Full Text Available Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management.

  5. MEASURING CONTAMINANT RESUSPENSION RESULTING FROM SEDIMENT CAPPING

    Science.gov (United States)

    This Sediment Issue summarizes two studies undertaken at marine sites by the National Risk Management Research Laboratory of U.S. EPA to evaluate the resuspension of surface materials contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) b...

  6. Factors Effecting Adsorption of 137 Cs in Marine Sediment Samples in Marine Sediment Samples from the Upper Gulf of Thailand

    International Nuclear Information System (INIS)

    Saengkul, C.; Sawangwong, P.; Pakkong, P.

    2014-01-01

    Contamination of 137 Cs in sediment is a far more serious problem than in water because sediment is a main transport factor of 137 Cs to the aquatic environmental. Most of 137 Cs in water could be accumulated in sediment which has direct effect to benthos. This study focused on factors effecting the adsorption of 137Cs in marine sediment samples collected from four different estuary sites to assess the transfer direction of 137 Cs from water to sediment that the study method by treat 137 Cs into seawater and mixed with different sediment samples for 4 days. The result indicated that properties of marine sediment (cation exchange capacity (CEC), organic matter, clay content, texture, type of clay mineral and size of soil particle) had effects on 137 Cs adsorption. CEC and clay content correlated positively with the accumulation of 137 Cs in the marine sediment samples. On the other hand, organic matter in sediment correlated negatively with the accumulation of 137 Cs in samples. The study of environmental effects (pH and potassium) found that the 137 Cs adsorption decreased when concentration of potassium increased. The pH effect is still unclear in this study because the differentiation of pH levels (6, 7, 8.3) did not have effects on 137 Cs adsorption in the samples.

  7. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    Science.gov (United States)

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  8. Mixture design and treatment methods for recycling contaminated sediment

    International Nuclear Information System (INIS)

    Wang, Lei; Kwok, June S.H.; Tsang, Daniel C.W.; Poon, Chi-Sun

    2015-01-01

    Graphical abstract: - Highlights: • Contaminated sediment can be recycled as fill material for site formation. • Thermal pretreatment of sediment permits non-load-bearing block application. • CO 2 curing enhances strength and reduces carbon footprint. • Inclusion of granular wastes reinforces the solidified sediment matrix. • Sediment blocks are useful resources for construction use. - Abstract: Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO 2 curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO 2 (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources

  9. Mixture design and treatment methods for recycling contaminated sediment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Kwok, June S.H.; Tsang, Daniel C.W., E-mail: dan.tsang@polyu.edu.hk; Poon, Chi-Sun

    2015-02-11

    Graphical abstract: - Highlights: • Contaminated sediment can be recycled as fill material for site formation. • Thermal pretreatment of sediment permits non-load-bearing block application. • CO{sub 2} curing enhances strength and reduces carbon footprint. • Inclusion of granular wastes reinforces the solidified sediment matrix. • Sediment blocks are useful resources for construction use. - Abstract: Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO{sub 2} curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO{sub 2} (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources.

  10. A new marine sediment certified reference material (CRM) for the determination of persistent organic contaminants: IAEA-459.

    Science.gov (United States)

    Tolosa, Imma; Cassi, Roberto; Huertas, David

    2018-04-11

    A new marine sediment certified reference material (IAEA 459) with very low concentrations (μg kg -1 ) for a variety of persistent organic contaminants (POPs) listed by the Stockholm Convention, as well as other POPs and priority substances (PSs) listed in many environmental monitoring programs was developed by the IAEA. The sediment material was collected from the Ham River estuary in South Korea, and the assigned final values were derived from robust statistics on the results provided by selected laboratories which demonstrated technical and quality competence, following the guidance given in ISO Guide 35. The robust mean of the laboratory means was assigned as certified values, for those compounds where the assigned value was derived from at least five datasets and its relative expanded uncertainty was less than 40% of the assigned value (most of the values ranging from 8 to 20%). All the datasets were derived from at least two different analytical techniques which have allowed the assignment of certified concentrations for 22 polychlorinated biphenyl (PCB) congeners, 6 organochlorinated (OC) pesticides, 5 polybrominated diphenyl ethers (PBDEs), and 18 polycyclic aromatic hydrocarbon (PAHs). Mass fractions of compounds that did not fulfill the criteria of certification are considered information values, which include 29 PAHs, 11 PCBs, 16 OC pesticides, and 5 PBDEs. The extensive characterization and associated uncertainties at concentration levels close to the marine sediment quality guidelines will make CRM 459 a valuable matrix reference material for use in marine environmental monitoring programs.

  11. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  12. Environmental magnetic methods for detecting and mapping contaminated sediments in lakes

    Science.gov (United States)

    Boyce, J. I.

    2009-05-01

    The remediation of contaminated sediments is an urgent environmental priority in the Great Lakes and requires detailed mapping of impacted sediment layer thickness, areal distribution and pollutant levels. Magnetic property measurements of sediment cores from two heavily polluted basins in Lake Ontario (Hamilton Harbour, Frenchman's Bay) show that concentrations of hydrocarbons (PAH) and a number of heavy metals (Pb, As, Ni, Cu, Cr, Zn, Cd, Fe) are strongly correlated with magnetic susceptibility. The magnetic susceptibility contrast between the contaminated sediment and underlying 'pre-colonial' sediments is sufficient to generate a total field anomaly (ca. 2-20 nT) that can be measured with a magnetometer towed above the lake bed. Systematic magnetic surveying (550 line km) of Hamilton Harbour using a towed marine magnetometer clearly identifies a number of well-defined magnetic anomalies that coincide with known accumulations of contaminated lake sediment. When calibrated against in-situ magnetic property measurements, the modeled apparent susceptibility from magnetic survey results can be used to classify the relative contaminant impact levels. The results demonstrate the potential of magnetic property measurements for rapid reconnaissance mapping of large areas of bottom contamination prior to detailed coring and sediment remediation.

  13. Development of a chronic sediment toxicity test for marine benthic amphipods

    International Nuclear Information System (INIS)

    DeWitt, T.H.; Redmond, M.S.; Sewall, J.E.; Swartz, R.C.

    1992-12-01

    The results of the research effort culminated in the development of a research method for assessing the chronic toxicity of contaminated marine and estuarine sediments using the benthic amphipod, Leptocheirus plumulosus. The first chapter describes the efforts at collecting, handling, and culturing four estuarine amphipods from Chesapeake Bay, including L. plumulosus. This chapter includes maps of the distribution and abundance of these amphipods within Chesapeake Bay and methodologies for establishing cultures of amphipods which could be readily adopted by other laboratories. The second chapter reports the development of acute and chronic sediment toxicity test methods for L. plumulosus, its sensitivity to non-contaminant environmental variables, cadmium, two polynuclear aromatic hydrocarbons, and contaminated sediment from Baltimore Harbor, MD. The third chapter reports the authors attempts to develop a chronic sediment toxicity test with Ampelisca abdita

  14. World wide intercomparison of trace element measurements in marine sediments SD-M-2/TM

    International Nuclear Information System (INIS)

    Mee, L.D.; Oregioni, B.

    1991-09-01

    The accurate and precise determination of trace elements in marine sediments is an important aspect of geochemical studies of the marine environment and for assessing the levels and pathways of marine pollutants. Past intercomparison studies conducted by the Marine Environment Laboratory of IAEA (formerly the International Laboratory of Marine Radioactivity) have focussed upon near-shore marine sediments where trace metal contamination is frequently observed. The present exercise was designed to study a typical oxidised deep-sea sediment characterized by a preponderance of fine particle clays. Analysis of such material is a routine matter for most geochemists but represents a ''baseline sample'' for marine pollution chemists. The present exercise represented a unique opportunity for chemists worldwide to intercompare their analytical methodologies for deep-sea sediments. By statistically examining the data from this study, the material can be certified for future use as a reference material - apparently the only one of its kind available throughout the world. 6 refs, figs and tabs

  15. Comparison of influences of sediments and sea water on accumulation of radionuclides by marine organisms

    International Nuclear Information System (INIS)

    Ueda, Taiji; Nakamura, Ryoichi; Suzuki, Yuzuru

    1978-01-01

    The concentration factors of 106 Ru- 106 Rh and 137 Cs for a marine bivalve and a alga were investigated. Furthermore, the transfer ratio ([cpm/g of organism]/[cpm/g of sediment]) of these nuclides from contaminated sediments to organisms was examined. Then the concentration factors were compared with the transfer ratio to know the relative influence of sea water and sediments on the contamination of marine organisms. The obtained figures, we call the biological factor of the sediments (BFS), were 70 and 160 for red alga and bivalve on 137 Cs, and 5400 and 2900 for them in case of 106 Ru- 106 Rh, respectively. These figures were comparable to those for annelid worm, 40 on 137 Cs and 1000 on 106 Ru- 106 Rh. (auth.)

  16. Surface sediment quality relative to port activities: A contaminant-spectrum assessment.

    Science.gov (United States)

    Yu, Shen; Hong, Bing; Ma, Jun; Chen, Yongshan; Xi, Xiuping; Gao, Jingbo; Hu, Xiuqin; Xu, Xiangrong; Sun, Yuxin

    2017-10-15

    Ports are facing increasing environmental concerns with their importance to the global economy. Numerous studies indicated sediment quality deterioration in ports; however, the deterioration is not discriminated for each port activity. This study investigated a spectrum of contaminants (metals and organic pollutants) in surface sediments at 20 sampling points in Port Ningbo, China, one of the top five world ports by volume. The spectrum of contaminants (metals and organic pollutants) was quantified following marine sediment quality guidelines of China and USA and surface sediment quality was assessed according to thresholds of the two guidelines. Coupling a categorical matrix of port activities with the matrix of sedimentary contaminants revealed that contaminants were highly associated with the port operations. Ship repair posed a severe chemical risk to sediment. Operations of crude oil and coal loadings were two top activities related to organic pollutants in sediments while port operations of ore and container loadings discharged metals. Among the 20 sampling points, Cu, Zn, Pb, and DDT and its metabolites were the priority contaminants influencing sediment quality. Overall, surface sediments in Port Ningbo had relatively low environmental risks but ship repair is an environmental concern that must be addressed. This study provides a practical approach for port activity-related quality assessment of surface sediments in ports that could be applicable in many world sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata

    International Nuclear Information System (INIS)

    Hill, Nicole A.; Simpson, Stuart L.; Johnston, Emma L.

    2013-01-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. - Highlights: ► Potential for contaminated sediments to exert impacts beyond the sediment communities. ► We examine effects on recruitment to sediments and overlying hard substrata simultaneously. ► Metal-contaminated sediments had a strong negative impact on sediment fauna. ► Metal-contaminated sediments pose less of a hazard to hard-substratum fauna. ► Sediment quality guidelines are likely protective of hard-substrata organisms. - Under natural disturbance regimes, metal-contaminated sediments pose less of a direct risk to hard-substratum fauna than to sediment-dwelling fauna and SQG appear appropriate.

  18. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    Science.gov (United States)

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.

  19. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  20. In Situ Remediation Of Contaminated Sediments - Active Capping Technology

    International Nuclear Information System (INIS)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-01-01

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  1. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments

    International Nuclear Information System (INIS)

    Singh, Nimisha; Turner, Andrew

    2009-01-01

    Antifouling paint residues collected from the hard-standings of a marine leisure boat facility have been chemically characterised. Scanning electron microscopy revealed distinct layers, many containing oxidic particles of Cu and Zn. Quantitative analysis indicated concentrations of Cu and Zn averaging about 300 and 100 mg g -1 , respectively, and small proportions of these metals ( -1 , respectively. Estuarine sediment collected near a boatyard contained concentrations of Cu and Zn an order of magnitude greater than respective concentrations in 'background' sediment, and mass balance calculations suggested that the former sample was contaminated by about 1% by weight of paint particles. Clearly, antifouling residues represent a highly significant, heterogeneous source of metallic contamination in the marine environment where boating activities occur.

  2. A model compound study: The ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays

    International Nuclear Information System (INIS)

    Macken, Ailbhe; Giltrap, Michelle; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2008-01-01

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C 18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone. - Ecotoxicological evaluation of five organic marine sediment contaminants was conducted and the suitability of the test species for marine porewater TIE discussed

  3. A model compound study: The ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Ailbhe [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: ailbhe.macken@dit.ie; Giltrap, Michelle [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland); Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: michelle.giltrap@marine.ie; Foley, Barry [School of Chemical and Pharmaceutical Sciences, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: barry.foley@dit.ie; McGovern, Evin [Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: evin.mcgovern@marine.ie; McHugh, Brendan [Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: brendan.mchugh@marine.ie; Davoren, Maria [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: maria.davoren@dit.ie

    2008-06-15

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C{sub 18} resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone. - Ecotoxicological evaluation of five organic marine sediment contaminants was conducted and the suitability of the test species for marine porewater TIE discussed.

  4. A Risk-Based Characterization of Sediment Contamination by Legacy and Emergent Contaminants of Concern in Coastal British Columbia, Canada.

    Science.gov (United States)

    Morales-Caselles, Carmen; Desforges, Jean-Pierre W; Dangerfield, Neil; Ross, Peter S

    2017-08-01

    Sediments have long been used to help describe pollution sources, contaminated sites, trends over time, and habitat quality for marine life. We collected surficial sediments from 12 sites at an average seawater depth of 25 m in three near-urban areas of the Salish Sea (British Columbia, Canada) to investigate habitat quality for marine life, including heavily contaminated killer whales. Samples were analyzed using high-resolution instrumentation for a wide variety of congeners of polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs), hexabromocyclododecane (HBCDD), polybrominated biphenyls, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans, organochlorine pesticides, and polychlorinated naphthalenes (PCNs). The top six contaminant classes detected in sediments were ∑PCB > ∑PBDE > ∑PCDD/F > DDT > ∑HBCDD > ∑PCN. Near-urban harbor sediments had up to three orders of magnitude higher concentrations of contaminants than more remote sites. With limited tools available to characterize biological risks associated with complex mixtures in the real world, we applied several available approaches to prioritize the pollutant found in our study: (1) sediment quality guidelines from the Canadian Council of Ministers of the Environment where available; (2) US NOAA effects range low and other international guidelines; (3) total TEQ for dioxin-like PCBs for the protection of mammals; and (4) the calculation of risk quotients. Our findings provide an indication of the state of contamination of coastal environments in British Columbia and guidance for chemical regulations and priority setting, as well as management actions including best-practices, dredging, disposal at sea, and source control. In this regard, the legacy PCB and the emergent PBDEs should command continued priority monitoring.

  5. Assessing the Extent of Sediment Contamination Around Creosote-treated Pilings Through Chemical and Biological Analyses

    Science.gov (United States)

    Stefansson, E. S.

    2008-12-01

    Creosote is a common wood preservative used to treat marine structures, such as docks and bulkheads. Treated dock pilings continually leach polycyclic aromatic hydrocarbons (PAHs) and other creosote compounds into the surrounding water and sediment. Over time, these compounds can accumulate in marine sediments, reaching much greater concentrations than those in seawater. The purpose of this study was to assess the extent of creosote contamination in sediments, at a series of distances from treated pilings. Three pilings were randomly selected from a railroad trestle in Fidalgo Bay, WA and sediment samples were collected at four distances from each: 0 meters, 0.5 meters, 1 meter, and 2 meters. Samples were used to conduct two bioassays: an amphipod bioassay (Rhepoxynius abronius) and a sand dollar embryo bioassay. Grain size and PAH content (using a fluorometric method) were also measured. Five samples in the amphipod bioassay showed significantly lower effective survival than the reference sediment. These consisted of samples closest to the piling at 0 and 0.5 meters. One 0 m sample in the sand dollar embryo bioassay also showed a significantly lower percentage of normal embryos than the reference sediment. Overall, results strongly suggest that creosote-contaminated sediments, particularly those closest to treated pilings, can negatively affect both amphipods and echinoderm embryos. Although chemical data were somewhat ambiguous, 0 m samples had the highest levels of PAHs, which corresponded to the lowest average survival in both bioassays. Relatively high levels of PAHs were found as far as 2 meters away from pilings. Therefore, we cannot say how far chemical contamination can spread from creosote-treated pilings, and at what distance this contamination can still affect marine organisms. These results, as well as future research, are essential to the success of proposed piling removal projects. In addition to creosote-treated pilings, contaminated sediments must

  6. Effects of Feeding Strategy, Sediment Characteristics, and Chemical Properties on Polychlorinated Biphenyl and Polybrominated Diphenyl Ether Bioaccumulation from Marine Sediments in Two Invertebrates.

    Science.gov (United States)

    Frouin, H; Jackman, P; Dangerfield, N D; Ross, P S

    2017-08-01

    Shellfish and sediment invertebrates have been widely used to assess pollution trends over space and time in coastal environments around the world. However, few studies have compared the bioaccumulation potential of different test species over a range of sediment-contaminant concentrations and profiles. The bioavailability of sediment-related contaminants was evaluated using sediments collected from sites (n = 12) throughout the Salish Sea, British Columbia, Canada. Two benthic marine invertebrates-the Baltic clam Macoma balthica and the polychaete worm Neanthes arenaceodentata-were exposed for 28 days in a controlled environment to these field-collected coastal sediments. The congener-specific uptake of legacy polychlorinated biphenyls (PCBs) and emergent polybrominated diphenyl ethers (PBDEs) was determined using high-resolution gas chromatography/mass spectrometry in sediments and in invertebrates after the experimental exposure. The polychaete Neanthes accumulated lower concentrations of PCBs but higher concentrations of PBDEs. The present study indicates that differences in bioaccumulation between these two invertebrates shape the accumulation of PCB and PBDE congeners, reflect differences in feeding strategies, and reveal the physicochemical properties of the contaminants and sediment properties. Because biota-sediment accumulation factor values are often calculated for environmental monitoring or site-specific impact assessments, our results provide insight into potentially confounding factors and the need for caution when selecting indicator species for coastal marine pollution.

  7. Spheroidal Carbonaceous Particles (SCPs) as Chronological Markers in Marine Sediments

    Science.gov (United States)

    Thornalley, D.; Rose, N.; Oppo, D.

    2016-12-01

    Spheroidal carbonaceous particles (SCPs) are a component of fly-ash, the particulate by-product of industrial high-temperature combustion of coal and fuel-oil that is released to the atmosphere with flue-gases. They are morphologically distinct and have no natural sources making them unambiguous markers of contamination from these anthropogenic sources. In naturally accumulating archives, SCPs may be used as a chronological tool as they provide a faithful record of industrial emissions and deposition. While the timing of the first presence of SCP in the 19th century, and the observed sub-surface peak are dependent on factors such as sediment accumulation rates and local industrial history, a rapid increase in SCP inputs in the mid-20thcentury appears to be a global signal corresponding to an acceleration in global electricity demand following the Second World War and the use of fuel-oil in electricity production at an industrial scale for the first time. While this approach has been widely used in lake sediments, it has not been applied to marine sediments, although there is great potential. Improved dating of 19th-20th century marine sediments has particular relevance for developing reconstructions of recent multi-decadal climate and ocean variability, and for studies that aim to place 20thcentury climate change within the context of the last millennium. Here, we present data from three sediment cores from the continental slope south of Iceland to demonstrate the temporal and spatial replicability of the SCP record in the marine environment and compare these data with cores taken from more contaminated areas off the coast of the eastern United States. The improved age model constraints provided by the analysis of SCPs has enabled a more accurate assessment of the timing of recent abrupt climate events recorded in these archives and has thus improved our understanding of likely causal climate mechanisms.

  8. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  9. Center for Contaminated Sediments

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers Center for Contaminated Sediments serves as a clearinghouse for technology and expertise concerned with contaminated sediments. The...

  10. The microbial nitrogen cycling potential in marine sediments is impacted by polyaromatic hydrocarbon pollution

    Directory of Open Access Journals (Sweden)

    Nicole M Scott

    2014-03-01

    Full Text Available During petroleum hydrocarbon exposure the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential, if the sediments are aerobic, within the surface layer of marine sediments resulting in anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  11. Distribution of rare earth elements in marine sediments from the Strait of Sicily (western Mediterranean Sea): Evidence of phosphogypsum waste contamination

    International Nuclear Information System (INIS)

    Tranchida, G.; Oliveri, E.; Angelone, M.; Bellanca, A.; Censi, P.; D'Elia, M.; Neri, R.; Placenti, F.; Sprovieri, M.; Mazzola, S.

    2011-01-01

    Graphical abstract: Coastal recent sediments from the Strait of Sicily showed elevated concentrations of REE associated to high Th concentrations. The shale-normalized REE + Y patterns are characterized by MREE enrichments relative to HREE and LREE, manifested with a convexity along the patterns. Sm n /La n ratio, indicative of MREE enrichments, showed a significant correlation with the Th concentration. This positive correlation supports the origin of these elements by phosphogypsum-contaminated effluents from an industrial plant, located in the southern Sicilian coast. Research highlights: → REE + Y contents are higher in onshore than offshore sediments. → Anomaly in sediments near southwestern Sicilian coast (site 134): high REE + Y. → REE + Y patterns show Middle REE enrichments (convexity around Sm-Gd-Eu elements). → Sm n /La n, measure of MREE enrichments, is correlated with high Th concentrations. → Anomalies are associated with the input of phosphogypsum-contaminated effluents. - Abstract: Concentrations of rare earth elements (REE), Y, Th and Sc were recently determined in marine sediments collected using a box corer along two onshore-offshore transects located in the Strait of Sicily (Mediterranean Sea). The REE + Y were enriched in offshore fine-grained sediments where clay minerals are abundant, whereas the REE + Y contents were lower in onshore coarse-grained sediments with high carbonate fractions. Considering this distribution trend, the onshore sediments in front of the southwestern Sicilian coast represent an anomaly with high REE + Y concentrations (mean value 163.4 μg g -1 ) associated to high Th concentrations (mean value 7.9 μg g -1 ). Plot of shale-normalized REE + Y data of these coastal sediments showed Middle REE enrichments relative to Light REE and Heavy REE, manifested by a convexity around Sm-Gd-Eu elements. These anomalies in the fractionation patterns of the coastal sediments were attributed to phosphogypsum-contaminated

  12. Heavy metals in marine coastal sediments: assessing sources, fluxes, history and trends.

    Science.gov (United States)

    Frignani, Mauro; Bellucci, Luca Giorgio

    2004-01-01

    Examples are presented from the Adriatic Sea, the Ligurian Sea and the Venice Lagoon to illustrate different approaches to the study of anthropogenic metals in marine coastal sediments. These examples refer to studies of areal distribution and transport mechanisms, individuation of the sources, sediment dating, chronology of the fluxes, present and past trends. In particular, some of the findings achieved in studying the Venice Lagoon are discussed from the point of view of anthropogenic changes both in sediment composition and contaminant fluxes.

  13. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.

    Science.gov (United States)

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.

  14. Analytical methods for measuring 10Be in marine sediments

    International Nuclear Information System (INIS)

    Graham, I.J.; Ditchburn, R.G.; Sparks, R.J.; Whitehead, N.E.

    1995-01-01

    A suite of marine sediments from the Wanganui Basin (Graham et al. 1995) has provided excellent material to further develop methods for 10 Be analysis at the Institute of Geological and Nuclear Sciences AMS facility. Chemical methods for Be extraction have been streamlined and there has been some reduction of backgrounds and contamination peaks for 1 0Be isotopic analysis. (authors) 12 refs., 5 figs., 1 tab

  15. Radioactivity of some alpha, beta and gamma emitting radionuclides in surface marine sediments of different bays in Algeria

    International Nuclear Information System (INIS)

    Noureddine, A.; Baggoura, B.

    1999-01-01

    Samples of surface (0-15) cm marine sediments of different grain sizes, namely sand, muddy and fine sand, were collected in the western, central and east coast of Algeria, to measure concentrations of natural and artificial radioactivity. The aim of this study is to detect any radioactive contamination, its origin and also to determine the uptake of radioactivity by marine surface sediments

  16. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  17. Effects of Sewage Sludges Contaminated with Chlorinated Aromatic Hydrocarbons on Sludge-Treated Areas (Soils and Sediments

    Directory of Open Access Journals (Sweden)

    Ethel Eljarrat

    2002-01-01

    Full Text Available The fate of PCDDs, PCDFs, and PCBs in sewage sludges after different management techniques — such as agricultural application, land restoration, and marine disposal — was studied. Changes observed in the concentrations, in the ratio between PCDD and PCDF levels, and in the isomeric distribution suggest the influence of the sewage sludge on the sludge-treated areas (soils and sediments. Whereas land application techniques seem to produce no serious environmental consequences, marine disposal practices produce considerable increases in the levels of contamination in marine sediments.

  18. Suspended sediment and sediment-associated contaminants in San Francisco Bay

    Science.gov (United States)

    Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E.

    2007-01-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls. ?? 2007 Elsevier Inc. All rights reserved.

  19. Evaluating spatial patterns of dioxins in sediments to aid determination of potential implications for marine reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Hermanussen, S.; Gaus, C. [National Research Centre for Environmental Toxicology, Brisbane (Australia); Limpus, C.J. [Queensland Environmental Protection Agency, Brisbane (Australia); Paepke, O. [ERGO Forschungsgesellschaft mbH, Hamburg (Germany); Blanshard, W. [Sea World, Gold Coast (Australia); Connell, D. [School of Public Health, Griffith Univ., Brisbane (Australia)

    2004-09-15

    Recent investigations have identified elevated concentrations of polychlorinated dibenzo-p-dioxins (dioxins) in marine sediments and wildlife of Queensland, Australia. While it has been demonstrated that the contamination is widespread and predominantly land-based, limited information exists on the pathways and fate of these compounds within the near-shore marine system. This environment supports unique and threatened species including green sea turtles (Chelonia mydas). Adult green turtles are predominantly herbivorous, feeding on seagrass and algae. Apart from initial migration to feeding grounds (at {proportional_to}10 years of age) and intermittent migrations to breeding grounds (at {proportional_to}30-50 years and thereafter), green turtles remain and feed within relatively small home ranges. Long life-span (50 years or more), near-shore feeding grounds and highly specialized food requirements render green turtles potentially vulnerable to contaminant exposure. Recent studies have shown a relationship between PCDD/F concentrations found in herbivorous marine wildlife and concentrations in sediments of their habitats. Hence, the spatial evaluation of sediment PCDD/F distribution may assist the assessment of green turtle exposure and its potential implications. The present study provides baseline information on green turtle PCDD/F concentrations in Queensland, Australia and investigates exposure pathways. In addition, spatial distribution of PCDD/Fs in sediments from known green turtle feeding regions is assessed using geographic information systems. This represents the first stage of a large scale investigation into the exposure and sensitivity of marine reptiles to dioxins and dioxin-like compounds and to evaluate whether poor health status observed in some populations may be related to contaminant exposure.

  20. Contamination of the Gulf marine environment following the war

    International Nuclear Information System (INIS)

    Readman, J.W.; Fowler, S.W.; Villeneuve, J.-P.; Cattini, C.; Oregioni, B.; Mee, L.D.

    1992-01-01

    Following the Gulf war, controversy and speculation have surrounded the extent to which the massive spillage of petroleum and the burning of oil wells in Kuwait have damaged marine ecosystems in the region. We report here the results of a rapid assessment survey of hydrocarbon contamination undertaken in the coastal marine environment from Kuwait to Oman during mid-1991. Our results show that severe oil pollution was restricted primarily to the Saudi Arabian coastline within ∼ 400km from the spillages, and that during the four months following the conflict and preceding our survey, the spilled oil had extensively degraded. Surprisingly, concentrations of petroleum hydrocarbons in sediments and bivalve molluscs from Bahrain in June 1991 were lower than those recorded from our pre-war (1983-86) surveys at the same site, probably as a result of decreased tanker traffic and associated deballasting during and after the conflict. As for carcinogenic polycyclic aromatic hydrocarbons produced during burning of the oil wells, we found that concentrations in sediments from even the most heavily contaminated sites were relatively low, and comparable to levels reported for the Baltic Sea, coastal locations of the northeastern United States and United Kingdom estuaries. (author)

  1. Chemistry of marine sediments

    International Nuclear Information System (INIS)

    Yen, T.F.

    1977-01-01

    Some topics considered are as follows: characterization of sediments in the vicinity of offshore petroleum production; thermal alteration experiments on organic matter in recent marine sediments as a model for petroleum genesis; composition of polluted bottom sediments in Great Lakes harbors; distribution of heavy metals in sediment fractions; recent deposition of lead off the coast of southern California; release of trace constituents from sediments resuspended during dredging operations; and migration of chemical constituents in sediment-seawater interfaces

  2. Toxicity of lead-contaminated sediment to mallards

    Science.gov (United States)

    Heinz, G.H.; Hoffman, D.J.; Sileo, L.; Audet, D.J.; LeCaptain, L.J.

    1999-01-01

    Because consumption of lead-contaminated sediment has been suspected as the cause of waterfowl mortality in the Coeur d?Alene River basin in Idaho, we studied the bioavailability and toxicity of this sediment to mallards (Anas platyrhynchos). In experiment 1, one of 10 adult male mallards died when fed a pelleted commercial duck diet that contained 24% lead-contaminated sediment (with 3,400 μg/g lead in the sediment). Protoporphyrin levels in the blood increased as the percentage of lead-contaminated sediment in the diet increased. Birds fed 24% lead-contaminated sediment exhibited atrophy of the breast muscles, green staining of the feathers around the vent, viscous bile, green staining of the gizzard lining, and renal tubular intranuclear inclusion bodies. Mallards fed 24% lead-contaminated sediment had means of 6.1 μg/g of lead in the blood and 28 μg/g in the liver (wet-weight basis) and 1,660 μg/g in the feces (dry-weight basis). In experiment 2, we raised the dietary concentration of the lead-contaminated sediment to 48%, but only about 20% sediment was actually ingested due to food washing by the birds. Protoporphyrin levels were elevated in the lead-exposed birds, and all of the mallards fed 48% lead-contaminated sediment had renal tubular intranuclear inclusion bodies. The concentrations of lead in the liver were 9.1 μg/g for mallards fed 24% lead-contaminated sediment and 16 μg/g for mallards fed 48% lead-contaminated sediment. In experiment 3, four of five mallards died when fed a ground corn diet containing 24% lead-contaminated sediment (with 4,000 μg/g lead in this sample of sediment), but none died when the 24% lead-contaminated sediment was mixed into a nutritionally balanced commercial duck diet; estimated actual ingestion rates for sediment were 14% and 17% for the corn and commercial diets. Lead exposure caused elevations in protoporphyrin, and four of the five mallards fed 24% lead-contaminated sediment in a commercial diet and all five

  3. Absorption of sediment-bound radionuclides through the digestive tract of marine demersal fishes

    International Nuclear Information System (INIS)

    Koyanagi, Taku; Nakahara, Motokazu; Iimura, Mitsue

    1978-01-01

    Retention of 54 Mn, 59 Fe, 60 Co and 65 Zn by marine demersal fish, Ishigarei (Kareius bicoloratus) was observed by administering sediment-bound radioisotopes orally to the fishes to elucidate the contribution of sediment to the accumulation of radionuclides by marine benthic organisms. The sediment had high distribution coefficients for these radionuclides and from the result of leaching experiments with acidified seawater, considerable fractions of radioactive Mn, Co and Zn in the sediment were assumed to be leached in the stomach of the fishes. Retention patterns of the nuclides in the whole-body of the fishes were analyzed by peeling off method and two components were obtained for all the nuclides. The parameters which characterized the retention patterns suggested relatively high absorption efficiencies of the radionuclides except 59 Fe through the digestive tract of the fishes and the retention patterns of the slower component were supposed to be similar to those observed for the nuclides taken up from seawater or food by the dishes. Rapid and higher transfer of the absorbed radionuclides to the particular organs of the fishes suggested the important role of the sediment in the radioactive contamination of marine demersal fishes. (author)

  4. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron.

    Science.gov (United States)

    Srinivasa Varadhan, A; Khodadoust, Amid P; Brenner, Richard C

    2011-10-01

    Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2-8.6) and an average hydrogen concentration of 0.75% (range of 0.3-1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of

  5. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    Science.gov (United States)

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Concentration of 60Co by marine organisms through sediments

    International Nuclear Information System (INIS)

    Nakahara, Motokazu; Koyanagi, Taku; Saiki, Masamichi

    1976-01-01

    Uptake of 60 Co absorbed on sea sands by benthic marine organisms was observed in laboratory experiments, since the radioactive cobalt released from nuclear power plants or other establishments into coastal seawater trends to be absorbed on sea sediments and also various kinds of marine organisms live in bottom sediments. Few kinds of flatfishes (Limanda spp.) and shrimp (Trachypenaeus curvirostris) were reared in aquariums contained seawater and sea sands which were highly contaminated with 60 Co previously, and whole body retention and distribution of radioactivity were measured on the organisms taken up from the aquariums occasionally by a scintillation counter. Uptake of 60 Co from ingested sea sands was also observed on the flatfishes administrating the contaminated sands orally. Concentration of 60 Co by the flatfishes reared in the sands was not significant while the shrimp showed high retention of the radioactivity. The food habit of shrimp which usually feeds on organic detritus with other small benthic organisms is different from that of flatfishes, one of the carnivorous, and considered to bring the difference on the pathway of radionuclides concentration. Assimilation of 60 Co via the digestive tract of flatfishes through the sands was estimated as about 10 per cent of the administrated radioactivity. (auth.)

  7. Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods

    Science.gov (United States)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2016-05-01

    ) is close to the observed decrease constant in sediments (0.44 yr-1). These results strongly indicate that the gradual decrease of activity in demersal fish (decrease constant is 0.46 yr-1) is caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit-feeding invertebrates. The estimated model transfer coefficient from bulk sediment to demersal fish in the model for 2012-2020 (0.13) is larger than that to the deposit-feeding invertebrates (0.07). In addition, the transfer of 137Cs through food webs for the period of 1945-2020 has been modelled for the Baltic Sea contaminated due to global fallout and from the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Unlike the open coastal system where the FDNPP is located, the dynamics of radionuclide transfer in the Baltic Sea reach a quasi-steady state due to the slow rate in water mass exchange in this semi-enclosed basin. Obtained results indicate a substantial contribution of the benthic food chain in the long-term transfer of 137Cs from contaminated bottom sediments to marine organisms and the potential application of a generic model in different regions of the world's oceans.

  8. Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods

    Energy Technology Data Exchange (ETDEWEB)

    Bezhenar, Roman; Maderich, Vladimir [Institute of Mathematical Machine and System Problems, Kiev (Ukraine); Jung, Kyung Tae [Korea Institute of Ocean Science and Technology, Ansan (Korea, Republic of); Willemsen, Stefan; With, Govert de [NRG, Arnhem (Netherlands); Qiao, Fangli [First Institute of Oceanography, Qingdao (China)

    2016-07-01

    -feeding invertebrates (0.45 yr{sup -1}) is close to the observed decrease constant in sediments (0.44 yr{sup -1}). These results strongly indicate that the gradual decrease of activity in demersal fish (decrease constant is 0.46 yr{sup -1}) is caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit-feeding invertebrates. The estimated model transfer coefficient from bulk sediment to demersal fish in the model for 2012-2020 (0.13) is larger than that to the deposit-feeding invertebrates (0.07). In addition, the transfer of {sup 137}Cs through food webs for the period of 1945-2020 has been modelled for the Baltic Sea contaminated due to global fallout and from the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Unlike the open coastal system where the FDNPP is located, the dynamics of radionuclide transfer in the Baltic Sea reach a quasi-steady state due to the slow rate in water mass exchange in this semi-enclosed basin. Obtained results indicate a substantial contribution of the benthic food chain in the long-term transfer of {sup 137}Cs from contaminated bottom sediments to marine organisms and the potential application of a generic model in different regions of the world's oceans.

  9. Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods

    International Nuclear Information System (INIS)

    Bezhenar, Roman; Maderich, Vladimir; Jung, Kyung Tae; Willemsen, Stefan; With, Govert de; Qiao, Fangli

    2016-01-01

    -feeding invertebrates (0.45 yr"-"1) is close to the observed decrease constant in sediments (0.44 yr"-"1). These results strongly indicate that the gradual decrease of activity in demersal fish (decrease constant is 0.46 yr"-"1) is caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit-feeding invertebrates. The estimated model transfer coefficient from bulk sediment to demersal fish in the model for 2012-2020 (0.13) is larger than that to the deposit-feeding invertebrates (0.07). In addition, the transfer of "1"3"7Cs through food webs for the period of 1945-2020 has been modelled for the Baltic Sea contaminated due to global fallout and from the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Unlike the open coastal system where the FDNPP is located, the dynamics of radionuclide transfer in the Baltic Sea reach a quasi-steady state due to the slow rate in water mass exchange in this semi-enclosed basin. Obtained results indicate a substantial contribution of the benthic food chain in the long-term transfer of "1"3"7Cs from contaminated bottom sediments to marine organisms and the potential application of a generic model in different regions of the world's oceans.

  10. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    Directory of Open Access Journals (Sweden)

    Maria eGenovese

    2014-04-01

    Full Text Available The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs in coastal sediments. Approximately 1,000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6,500 ppm. The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after three months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS allowing the containment of sediments and their physical-chemical treatment, e.g. aeration. Aeration for three months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB, and after one month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus- and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.

  11. Evaluation of the contamination level of sea bottom sediments on the Crimean coast of the Black and Azov Seas

    Directory of Open Access Journals (Sweden)

    Tikhonova Elena

    2016-12-01

    At the most stations in the Azov Sea the content of HM exceeded values obtained in the Black Sea. Now (2016 in the open Crimean coast bottom sediments of the Black Sea have properties typical for marine sediments of the studied area. There is an upward trend in the content of chloroform-extracted substances in the Black Sea region, but the sediments are not contaminated with oil products. Taking into account the physical-chemical characteristics of marine sediments, it can be stated that the condition the studied area as a whole is safe.

  12. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia.

    Science.gov (United States)

    Duran, Robert; Bielen, Ana; Paradžik, Tina; Gassie, Claire; Pustijanac, Emina; Cagnon, Christine; Hamer, Bojan; Vujaklija, Dušica

    2015-10-01

    The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.

  13. Economic benefits of large-scale remediation of contaminated marine sediments. A literature review and an application to the Grenland fjords in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Barton, David Nicholas [Norwegian Inst. for Water Research (NIVA) / Norwegian Inst. Nature Research, Oslo (Norway); Navrud, Staale; Bjoerkeslett, Heid; Lilleby, Ingrid [Dept. of Economics and Resource Management, Norwegian Univ. of Life Sciences (UMB), As (Norway)

    2010-03-15

    Purpose: As input to a cost-benefit analysis of large-scale remediation measures of contaminated sediments in the Grenland fjords in Norway, we conducted a contingent valuation (CV) survey of a representative sample of households from municipalities adjacent to these fjords. Materials and methods: The CV method aimed at valuing the benefits perceived by households of removing dietary health advisories on seafood consumption currently in place through the fjords. Results: Mean household willingness-to-pay (WTP) per year over a 10-year period was found to decrease with increased distance from the Grenland fjords and was somewhat higher than in a similar study conducted 10 years earlier than our study. Aggregating mean WTP over all households in neighbouring municipalities to the fjords resulted in total economic benefits of the same magnitude as the total remediation costs. The WTP results make the case in such a way that the high costs of remediation of contaminated marine sediments can be defended by the large economic benefits generated for households around the fjord. The research was financed by the local environmental authorities and the local industry that had caused the contaminated sediments. The WTP results were strongly contested by the industry upon completion of the study. Conclusion: The paper addresses the industry's critiques of this particular CV study and discusses how to better inform local stakeholders about the potential and limitations of the CV method and how to improve communication of economic valuation results. (orig.)

  14. Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments

    Science.gov (United States)

    Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.

    2005-01-01

    The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.

  15. Contaminated sediment transport during floods

    International Nuclear Information System (INIS)

    Fontaine, T.A.

    1992-01-01

    Over the past 48 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of parts of the White Oak Creek catchment. The contaminants presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in the White Oak Creek drainage system. The erosion of these sediments during floods can result in the transport of contaminants both within the catchment and off-site into the Clinch River. A data collection program and a modeling investigation are being used to evaluate the probability of contaminated sediment transport during floods and to develop strategies for controlling off-site transport under present and future conditions

  16. Delivering research output to the user using ICT services: Marine contamination database web interface

    International Nuclear Information System (INIS)

    Abdul Muin Abdul Rahman; Abdul Khalik Wood; Zaleha Hashim; Burhanuddin Ahmad; Saaidi Ismail; Mohamad Safuan Sulaiman; Md Suhaimi Elias

    2010-01-01

    This project is about developing a web-based interface for accessing the Marine Contamination database records. The system contains of information pertaining to the occurrence of contaminants and natural elements in the marine eco-system based on samples taken at various locations within the shores of Malaysia in the form of sediment, seawater and marine biota. It represents a systematic approach for recording, storing and managing the vast amount of marine environmental data collected as output of the Marine Contamination and Transport Phenomena Research Project since 1990. The resultant collection of data is to form the background information (or baseline data) which could later be used to monitor the level of marine environmental pollutions around the country. Data collected from the various sampling and related laboratory activities are previously kept in conventional forms such as Excel worksheets and other documents, both in digital and/or paper form. With the help of modern database storage and retrieval techniques, the task of storage and retrieval of data has been made easier and manageable. It can also provide easy access to other parties who are interested in the data. (author)

  17. Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005.

    Science.gov (United States)

    de Mora, Stephen; Tolosa, Imma; Fowler, Scott W; Villeneuve, Jean-Pierre; Cassi, Roberto; Cattini, Chantal

    2010-12-01

    The composition and spatial distribution of various petroleum hydrocarbons (PHs), comprising both aliphatic and polycyclic aromatic hydrocarbons (PAHs), and selected chlorinated pesticides and PCBs were measured in biota and coastal sediments from seven countries in the Persian Gulf and the Gulf of Oman (Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates). Evidence of extensive marine contamination with respect to organochlorinated compounds and PHs was not observed. Only one site, namely the BAPCO oil refinery in Bahrain, was considered to be chronically contaminated. Comparison of the results from this survey for Σ DDTs and Σ PCBs in rock oysters from the Gulf of Oman with similar measurements made at the same locations over the past two decades indicates a temporal trend of overall decreasing Σ PCB concentrations in oysters, whereas Σ DDTs levels have little changed during that period. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. TBT-contaminated sediments. Treatment in a pilot scale

    Energy Technology Data Exchange (ETDEWEB)

    Stichnothe, H.; Calmano, W.; Arevalo, E.; Keller, A.; Thoeming, J. [Hamburg Univ. of Technology, Dept. Environmental Science and Technology, Hamburg (Germany)

    2005-07-01

    Background, aims and scope. Sediments in harbours and nearby shipyards demonstrate widespread contamination with tributyltin (TBT). Therefore, reuse and relocation of dredged material from these locations are prohibited. Even if the international marine organization (IMO) convention concerning TBT-based paints is ratified (champ 2003) the TBT problem in sediments will continue to remain for many years due to the persistence of TBT. Methods. An electrochemical process has been developed to treat polluted sediments. Dredged materials with high and low TBT-contents were studied on a technical and a pilot scale. The treatment process was assessed by chemical analysis and a biotest battery. Additionally, an economic analysis was performed to check the economic feasibility of the process to treat dredged material from two different locations at different operating conditions. Furthermore an up-scaling estimation was performed to evaluate treatment costs at a larger scale, i.e. for a plant having a capacity of 720,000 t/a. Results and discussion. Butyltin species and polycyclic aromatic hydrocarbons (PAH) were decomposed due to electrochemically-induced oxidation, while the treatment did not alter heavy metal and PCB concentrations. The bacteria luminescence test indicated a reduced toxicity after the electrochemical treatment, while the algae growth inhibition test and bacteria contact test did not confirm these results. Based on a small consumer price of Euro 0.12/kWh, treating the high-contaminated sediment in the pilot plant would cost Euro 21/m{sup 3} and Euro 31/m{sup 3} for the low contaminated sediment, respectively. Assuming an industrial consumer price of Euro 0.06/kWh for electricity in an up-scaled process with a capacity of 720,000 t/a, the total treatment costs for the low contaminated sediment would be Euro 13/m{sup 3}. Conclusion. The results of treating dredged material from Bremerhaven and the fine-grained fraction from the METHA plant show that the

  19. Biodegradation of crude oil in different types of marine sediment

    International Nuclear Information System (INIS)

    Hii, Y.S.; Law, A.T.

    1999-01-01

    An active oil-oxidizing bacterium, named Nap C was isolated from the sediment sample of Port Dickson coastal area for this study. Nap C is a gram negative, rod shape marine bacterium. It forms spore when the condition is not favorable. Three different types of treated marine sediment; sand, silt and clay were used in this study. The degradation of Malaysian Tapis A crude oil in the different types of marine sediment were assessed. Silt type of marine sediment was found to sustain highest biodegradation compared to clay type and sand type. 8.6.67% of the Malaysian Tapis A crude oil was degraded in silt type of marine sediment within 10 days of incubation. Where as there were only 60% and 73% of the Malaysian Tapis A crude oil was degraded in sand and clay type of marine sediment respectively. Microbial biomass estimation in the sediment was estimated by indirect phospholipid enumeration technique. (author)

  20. Mercury in dated Greenland marine sediments

    DEFF Research Database (Denmark)

    Asmund, G.; Nielsen, S.P.

    2000-01-01

    Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age of the sedi......Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age...... indicating that the mercury mainly originates from atmospheric washout. But the large variability indicates that other processes also influence the mercury flux to Arctic marine sediments. (C) 2000 Elsevier Science B.V. All rights reserved....

  1. Spatial and temporal variability of contaminants within estuarine sediments and native Olympia oysters: A contrast between a developed and an undeveloped estuary

    Science.gov (United States)

    Granek, Elise F.; Conn, Kathleen E.; Nilsen, Elena B.; Pillsbury, Lori; Strecker, Angela L.; Rumrill, Steve; Fish, William

    2016-01-01

    Chemical contaminants can be introduced into estuarine and marine ecosystems from a variety of sources including wastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, municipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes to the likelihood of contaminated marine waters and sediments and increases the probability of uptake by marine organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and organismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition, and uptake patterns are still poorly known. We investigated these patterns for a suite of persistent legacy contaminants including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chemicals of emerging concern including pharmaceuticals within two Oregon coastal estuaries (Coos and Netarts Bays). In the more urbanized Coos Bay, native Olympia oyster (Ostrea lurida) tissue had approximately twice the number of PCB congeners at over seven times the total concentration, yet fewer PBDEs at one-tenth the concentration as compared to the more rural Netarts Bay. Different pharmaceutical suites were detected during each sampling season. Variability in contaminant types and concentrations across seasons and between species and media (organisms versus sediment) indicates the limitation of using indicator species and/or sampling annually to determine contaminant loads at a site or for specific species. The results indicate the prevalence of legacy contaminants and CECs in relatively undeveloped coastal environments highlighting the need to improve policy and management actions to reduce contaminant releases into estuarine and marine waters and to deal with legacy compounds that remain long after prohibition of use. Our results point to the need for better understanding of the ecological and

  2. Metal-macrofauna interactions determine microbial community structure and function in copper contaminated sediments.

    Science.gov (United States)

    Mayor, Daniel J; Gray, Nia B; Elver-Evans, Joanna; Midwood, Andrew J; Thornton, Barry

    2013-01-01

    Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs) all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management.

  3. Metal-macrofauna interactions determine microbial community structure and function in copper contaminated sediments.

    Directory of Open Access Journals (Sweden)

    Daniel J Mayor

    Full Text Available Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management.

  4. Assessment of 238Pu and 239+240Pu, in marine sediments of the oceans Atlantic and Pacific of Guatemala

    International Nuclear Information System (INIS)

    Mendez Ochaita, L.

    2000-01-01

    In this investigation samples of marine sediments were taken from 14 places representatives of the oceans coast of Guatemala. For the assesment of 238 Pu and 239+240 Pu in sediments a radiochemical method was used to mineralize sediments and by ionic interchange it was separated from other elements, after that an electrodeposition of plutonium was made in metallic discs. The radioactivity of plutonium was measured by alpha spectrometry system and the alpha spectrums were obtained. The levels of plutonium are not higher than other countries that shown contamination. The contamination of isotope of 239+240 Pu is higher than 238 Pu and the contamination by two isotopes of plutonium is higher in the Atlantic than the Pacific ocean

  5. Assessing bioavailability of DDT and metabolites in marine sediments using solid-phase microextraction with performance reference compounds.

    Science.gov (United States)

    Bao, Lian-Jun; Jia, Fang; Crago, J; Zeng, Eddy Y; Schlenk, D; Gan, Jay

    2013-09-01

    Solid-phase microextraction (SPME) has often been used to estimate the freely dissolved concentration (Cfree ) of organic contaminants in sediments. A significant limitation in the application of SPME for Cfree measurement is the requirement for attaining equilibrium partition, which is often difficult for strongly hydrophobic compounds such as DDT. A method was developed using SPME with stable isotope-labeled analogues as performance reference compounds (PRCs) to measure Cfree of DDT and metabolites (DDTs) in marine sediments. Six (13) C-labeled or deuterated PRCs were impregnated into polydimethylsiloxane (PDMS) fiber before use. Desorption of PRCs from PDMS fibers and absorption of DDTs from sediment were isotropic in a range of sediments evaluated ex situ under well-mixed conditions. When applied to a historically contaminated marine sediment from a Superfund site, the PRC-SPME method yielded Cfree values identical to those found by using a conventional equilibrium SPME approach (Eq-SPME), whereas the time for mixing was reduced from 9 d to only 9 h. The PRC-SPME method was further evaluated against bioaccumulation of DDTs by Neanthes arenaceodentata in the contaminated sediment with or without amendment of activated carbon or sand. Strong correlations were consistently found between the derived equilibrium concentrations on the fiber and lipid-normalized tissue residues for DDTs in the worms. Results from the present study clearly demonstrated the feasibility of coupling PRCs with SPME sampling to greatly shorten sampling time, thus affording much improved flexibility in the use of SPME for bioavailability evaluation. Copyright © 2013 SETAC.

  6. Integrated chemical and biological assessment of contaminant impacts in selected European coastal and offshore marine areas

    NARCIS (Netherlands)

    Hylland, Ketil; Robinson, Craig D.; Burgeot, Thierry; Martínez-Gómez, Concepción; Lang, Thomas; Svavarsson, Jörundur; Thain, John E.; Vethaak, A. Dick; Gubbins, Mattew J.

    This paper reports a full assessment of results from ICON, an international workshop on marine integrated contaminant monitoring, encompassing different matrices (sediment, fish, mussels, gastropods), areas (Iceland, North Sea, Baltic, Wadden Sea, Seine estuary and the western Mediterranean) and

  7. Distribution of tributyltin in surface sediments from transitional marine-lagoon system of the south-eastern Baltic Sea, Lithuania.

    Science.gov (United States)

    Suzdalev, Sergej; Gulbinskas, Saulius; Blažauskas, Nerijus

    2015-02-01

    The current research paper presents the results of contamination by tributyltin (TBT) compounds in Klaipėda Port, which is situated in a unique marine-lagoon water interaction zone. One hundred fifty-four surface sediment samples have been taken along the whole transition path from lagoon to the sea and analysed in order to quantify the contamination rate in specific environment of high anthropogenic pressure. The detected TBT concentrations ranged from 1 to 5,200 ng Sn g(-1) of dry weight of sediment. The back-trace of horizontal distribution of TBT-contaminated sediments show obvious increase of tributyltin concentrations closer to port areas dealing with ship repair and places of dry-docking facilities. This is a clear indication that those activities are the main source of contamination in the study area. The estimated correlation of TBT concentration in sediments with total organic carbon and the amount of fine fraction (tributyltin is related to potential contamination source areas (ship repairing, dockyards) due to direct input of hazardous substances into the water.

  8. Uranium and plutonium in marine sediments

    International Nuclear Information System (INIS)

    Ordonez R, E.; Almazan T, M. G.; Ruiz F, A. C.

    2011-11-01

    The marine sediments contain uranium concentrations that are considered normal, since the seawater contains dissolved natural uranium that is deposited in the bed sea in form of sediments by physical-chemistry and bio-genetics processes. Since the natural uranium is constituted of several isotopes, the analysis of the isotopic relationship 234 U/ 238 U are an indicator of the oceanic activity that goes accumulating slowly leaving a historical registration of the marine events through the profile of the marine soil. But the uranium is not the only radioelement present in the marine sediments. In the most superficial strata the presence of the 239+140 Pu has been detected that it is an alpha emitter and that recently it has been detected with more frequency in some coasts of the world. The Mexican coast has not been the exception to this phenomenon and in this work the presence of 239-140 Pu is shown in the more superficial layers of an exploring coming from the Gulf of Tehuantepec. (Author)

  9. Evaluation of the presence of major anionic surfactants in marine sediments.

    Science.gov (United States)

    Cantarero, S; Camino-Sánchez, F J; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Vílchez, J L; Verge, C; Reis, M S; Saraiva, P M

    2012-03-01

    The contamination of aquatic environments has become the focus of increasing regulation and public concern due to their potential and unknown negative effects on the ecosystems. The present work develops a monitoring and statistical study, based on the analysis of variance test (ANOVA) and the multivariable analysis, both for insoluble soap and LAS in order to compare the behavior of different anionic surfactants in this environmental compartment. First, a novel and successfully validated methodology to analyze insoluble soap in these samples is developed. The matrix effect and the comparison of different extraction techniques were also performed. The optimized analytical methodologies were applied to 48 representative samples collected from the Almeria Coast (Spain) and then a statistical analysis to correlate anionic surfactant concentration and several variables associated with marine sediment samples was also developed. The results obtained showed relevant conclusions related to the environmental behavior of anionic surfactants in marine sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation and selection of test methods for assessment of contaminated sediments in the Baltic Sea

    DEFF Research Database (Denmark)

    Lehtonen, Kari; Ahvo, Aino; Berezina, Nadya

    The purpose of the CONTEST project (2014-15) is to test, develop, evaluate and select suitable biological methods to be applied in the quantitative and qualitative assessment of toxicity of anthropogenically contaminated sediments in the Baltic Sea marine region. Here is presented results from...... showed large variability in the sensitivity of the different biotests. Most of the tests applied showed concentration-dependent effects on the test organisms. New experiments will be carried out in 2015. The CONTEST project is funded by the Nordic Council of Ministers and the Finnish Ministry...... a set of pilot experiments, which were performed by the participating laboratories. Chemical analysis of the contaminated harbour sediment chosen as the test matrix confirmed the presence of high concentrations of polycyclic aromatic hydrocarbons, organotins and trace metals, and the sediment...

  11. The Deposition and Accumulation of Microplastics in Marine Sediments and Bottom Water from the Irish Continental Shelf.

    Science.gov (United States)

    Martin, Jake; Lusher, Amy; Thompson, Richard C; Morley, Audrey

    2017-09-07

    Microplastics are widely dispersed throughout the marine environment. An understanding of the distribution and accumulation of this form of pollution is crucial for gauging environmental risk. Presented here is the first record of plastic contamination, in the 5 mm-250 μm size range, of Irish continental shelf sediments. Sixty-two microplastics were recovered from 10 of 11 stations using box cores. 97% of recovered microplastics were found to reside shallower than 2.5 cm sediment depth, with the area of highest microplastic concentration being the water-sediment interface and top 0.5 cm of sediments (66%). Microplastics were not found deeper than 3.5 ± 0.5 cm. These findings demonstrate that microplastic contamination is ubiquitous within superficial sediments and bottom water along the western Irish continental shelf. Results highlight that cores need to be at least 4-5 cm deep to quantify the standing stock of microplastics within marine sediments. All recovered microplastics were classified as secondary microplastics as they appear to be remnants of larger items; fibres being the principal form of microplastic pollution (85%), followed by broken fragments (15%). The range of polymer types, colours and physical forms recovered suggests a variety of sources. Further research is needed to understand the mechanisms influencing microplastic transport, deposition, resuspension and subsequent interactions with biota.

  12. Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy

    Science.gov (United States)

    Caridi, F.; Messina, M.; Faggio, G.; Santangelo, S.; Messina, G.; Belmusto, G.

    2018-02-01

    The two most significant categories of physical and chemical pollutants in sediments (radionuclides and metals) were investigated in this article, in order to evaluate pollution levels in marine sediments from eight different selected sites of the Calabria region, south of Italy. In particular samples were analyzed to determine natural and anthropic radioactivity and metal concentrations, in order to assess any possible radiological hazard, the level of contamination and the possible anthropogenic impact in the investigated area. Activity concentrations of 226Ra, 232Th, 40K and 137Cs were measured by High Purity Germanium (HPGe) gamma spectrometry. The obtained results show that, for radium (in secular equilibrium with uranium), the specific activity ranges from ( 14 ± 1) Bq/kg dry weight (d.w.) to ( 54 ± 9) Bq/kg d.w.; for thorium, from ( 12 ± 1) Bq/kg d.w. to ( 83 ± 8) Bq/kg d.w.; for potassium, from ( 470 ± 20) Bq/kg d.w. to ( 1000 ± 70) Bq/kg d.w. and for cesium it is lower than the minimum detectable activity value. The absorbed gamma dose rate in air (D), the annual effective dose equivalent (AEDE) outdoor and the external hazard index ( H_ex) were calculated to evaluate any possible radiological risk, mainly due to the use of marine sediments for the beach nourishment. The results show low levels of radioactivity, thus discarding any significant radiological risk. Some metals (As, Cd, Cr tot, Hg, Ni, Pb, Cu, Zn, Mn and Fe), that could be released into the environment by both natural and anthropogenic sources, were investigated through inductively coupled plasma mass spectrometry (ICP-MS) measurements and compared with the limits set by the Italian Legislation, to assess any possible contamination. Experimental results show that they are much lower than the contamination threshold value, thus excluding their presence as pollutants. The degree of sediment contaminations were quantified using enrichment factor ( EF) and geoaccumulation index ( I geo) for

  13. Levels of Cd, Cu, Pb and V in marine sediments in the vicinity of the Single Buoy Moorings (SBM3) at Mina Al Fahal in the Sultanate of Oman

    International Nuclear Information System (INIS)

    Al-Husaini, Issa; Abdul-Wahab, Sabah; Ahamad, Rahmalan; Chan, Keziah

    2014-01-01

    Highlights: • Assessed metal contamination in the SBM3 marine sediments of Mina Al Fahal, Oman. • Examined heavy metal concentration levels of Cd, Cu, Pb and V. • Mean concentration in the sediments, from highest to lowest, is V > Cu > Pb > Cd. • Highest concentration of V due to waste discharges from nearby heavy tanker traffic. • ICP-OES found low concentrations of all four heavy metals; SMB3 region in good quality. - Abstract: Recently in the Sultanate of Oman, there has been a rapid surge of coastal developments. These developments cause metal contamination, which may affect the habitats and communities at and near the coastal region. As a result, a study was conducted to assess the level of metal contamination and its impact on the marine sediments in the vicinity of the Single Buoy Moorings 3 (SBM3) at Mina Al Fahal in the Sultanate of Oman. Marine subtidal sediment samples were collected from six different stations of the SBM3 for the period ranging from June 2009 to April 2010. These samples were then analyzed for their level and distribution of the heavy metals of cadmium (Cd), copper (Cu), lead (Pb) and vanadium (V). Overall, low concentrations of all four heavy metals were measured from the marine sediments, indicating that the marine at SBM3 is of good quality

  14. Effect of different enrichment strategies on microbial community structure in petroleum-contaminated marine sediment in Dalian, China.

    Science.gov (United States)

    Chen, Chao; Liu, Qiu; Liu, Changjian; Yu, Jicheng

    2017-04-15

    An oil spill occurred at Xingang Port, Dalian, China in 2010. Four years after this spill, oil contamination was still detected in samples collected nearby. In this study, the strains that evolved in the sediment were screened by high-throughput sequencing technology. Most of these strains were genera reported to have functions associated with crude oil biodegradation. The diversities and numbers of microbes were monitored through enrichment culturing; the dominant strains propagated at first, but the enrichment could not be continued, which indicated that the prolonged culture was not effective in the enrichment of the micro-consortium. Oxygen was also observed to affect the propagation of the dominant microbes. The results showed the role of culture strategies and oxygen in the enrichment of the petroleum-degrading microbes. Therefore, dominant strains could be screened by optimizing both the enrichment time and oxygen concentration used for culturing to facilitate oil biodegradation in the marine ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization.

    Science.gov (United States)

    Wang, Lei; Chen, Liang; Tsang, Daniel C W; Li, Jiang-Shan; Yeung, Tiffany L Y; Ding, Shiming; Poon, Chi Sun

    2018-08-01

    Navigational dredging is an excavation of marine/freshwater sediment to maintain channels of sufficient depth for shipping safety. Due to historical inputs of anthropogenic contaminants, sediments are often contaminated by metals/metalloids, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other contaminants. Its disposal can present significant environmental and financial burdens. This study developed a novel and green remediation method for contaminated sediment using stabilization/solidification with calcium-rich/low-calcium industrial by-products and CO 2 utilization. The hydration products were evaluated by quantitative X-ray diffraction analysis and thermogravimetric analysis. The incorporation of calcium carbide residue (CCR) facilitated hydration reaction and provided relatively high 7-d strength. In contrast, the addition of Class-F pulverized fly ash (PFA) and ground granulated blast furnace slag (GGBS) was beneficial to the 28-d strength development due to supplementary pozzolanic and hydration reactions. The employment of 1-d CO 2 curing was found to promote strength development (98%) and carbon sequestration (4.3wt%), while additional 7-d air curing facilitated cement rehydration and further carbonation in the sediment blocks. The leachability tests indicated that all studied binders, especially CCR binder, effectively immobilized contaminants in the sediments. The calcium-rich CCR and GGBS were regarded as promising candidates for augmenting the efficacy of CO 2 curing, whereas GGBS samples could be applicable as eco-paving blocks in view of their superior 28-d strength. This study presents a new and sustainable way to transform contaminated sediment into value-added materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Matrix effects on organic pollutants analysis in marine sediment

    Science.gov (United States)

    Azis, M. Y.; Asia, L.; Piram, A.; Buchari, B.; Doumenq, P.; Setiyanto, H.

    2018-05-01

    Interference from the matrix sample can influence of the accurate analytical method. Accelerated Solvent Extraction and their purification methods were tried to separate the organic micropollutants respectively in marine sediment. Those matrix were as organic pollutants evaluation in marine environment. Polychlorinated Biphenyls (PCBs) and Organochlorine pesticides (OCPs) are two examples organic pollutant in environment which are carcinogenic and mutagenic. Marine sediments are important matrices of information regarding the human activities in coastal areas as well as the fate and behavior of organic pollutants, which are persistent in long-term. This research purpose to evaluate the matrice effect and the recovery from marine sediment spiking with several standar solution and deuterium of molecular target from organic pollutants in not polluted sample of sediment. Matrice samples was tested from indicate in unpolluted location. The methods were evaluated with standard calibration curve (linearity LOQ). Recovery (YE) relative, Matrice Effect (ME) relative correction with deuteriated standar were evaluated the interference the matrix. Interference effect for OCPs compounds were higher than PCBs in marine sediment.

  17. Toxicity of lead-contaminated sediment to mute swans

    Science.gov (United States)

    Day, D.D.; Beyer, W.N.; Hoffman, D.J.; Morton, Alexandra; Sileo, L.; Audet, D.J.; Ottinger, M.A.

    2003-01-01

    Most ecotoxicological risk assessments of wildlife emphasize contaminant exposure through ingestion of food and water. However, the role of incidental ingestion of sediment-bound contaminants has not been adequately appreciated in these assessments. This study evaluates the toxicological consequences of contamination of sediments with metals from hard-rock mining and smelting activities. Lead-contaminated sediments collected from the Coeur d'Alene River Basin in Idaho were combined with either a commercial avian maintenance diet or ground rice and fed to captive mute swans (Cygnus olor) for 6 weeks. Experimental treatments consisted of maintenance or rice diets containing 0, 12 (no rice group), or 24% highly contaminated (3,950 ug/g lead) sediment or 24% reference (9.7 ug/g lead) sediment. Although none of the swans died, the group fed a rice diet containing 24% lead-contaminated sediment were the most severely affected, experiencing a 24% decrease in mean body weight, including three birds that became emaciated. All birds in this treatment group had nephrosis; abnormally dark, viscous bile; and significant (p < 0.05) reductions in hematocrit and hemoglobin concentrations compared to their pretreatment levels. This group also had the greatest mean concentrations of lead in blood (3.2 ug/g), brain (2.2 ug/g), and liver (8.5 ug/g). These birds had significant (alpha = 0.05) increases in mean plasma alanine aminotransferase activity, cholesterol, and uric acid concentrations and decreased plasma triglyceride concentrations compared to all other treatment groups. After 14 days of exposure, mean protoporphyrin concentrations increased substantially, and mean delta-aminolevulinic acid dehydratase activity decreased by more than 95% in all groups fed diets containing highly contaminated sediments. All swans fed diets that contained 24% lead-contaminated sediment had renal acid-fast intranuclear inclusion bodies, which are diagnostic of lead poisoning in waterfowl. Body

  18. Contamination of Detained Sediment in Sustainable Urban Drainage Systems

    Directory of Open Access Journals (Sweden)

    Deonie Allen

    2017-05-01

    Full Text Available Adsorption is a key water pollution remediation measure used to achieve stormwater quality improvement in Sustainable urban Drainage Systems (SuDS. The level of contamination of detained sediment within SuDS assets is not well documented, with published investigations limited to specific contaminant occurrence in ponds, wetlands or infiltration devices (bioretention cells and generally focused on solute or suspended sediment. Guidance on contamination threshold levels and potential deposited sediment contamination information is not included in current UK SuDS design or maintenance guidance, primarily due to a lack of evidence and understanding. There is a need to understand possible deposited sediment contamination levels in SuDS, specifically in relation to sediment removal maintenance activities and potential impact on receiving waterways of conveyed sediment. Thus, the objective of the research presented herein was to identify what major elements and trace metals were observable in (the investigated SuDS assets detained sediment, the concentration of these major elements and trace metals and whether they met/surpassed ecotoxicity or contaminated land thresholds. The research presented here provides evidence of investigated SuDS sediment major element and trace metal levels to help inform guidance and maintenance needs, and presents a new methodology to identify the general cause (anthropocentric land use and extent of detained SuDS fine urban sediment contamination through use of a contamination matrix.

  19. MOLECULAR DIAGNOSTIC RATIOS TO ASSESS THE APPORTIONMENT OF PETROLEUM HYDROCARBONS CONTAMINANTION IN MARINE SEDIMENT

    Directory of Open Access Journals (Sweden)

    Agung Dhamar Syakti

    2016-11-01

    Full Text Available As maritime fulcrum nation, in Indonesia, marine environmental analytical chemistry field is still under developed. So that why, this review paper aims to provide basic understanding of the use some molecular diagnostic indices using n-alkanes indexes and polycyclic aromatic hydrocarbons (PAHs diagnostic ratios to estimate the source of apportionment of the hydrocarbons contamination and origin. The n-alkane chromatograms were then used to characterize the predominance of petrogenic or biogenic either terrestrial or aquatic. Furthermore, characterization allowed to discriminate riverine versus marine input. The occurrence of a broad unresolved complex mixture can be an evidence of biodegraded petroleum residues. For aromatic compounds, the prevalence of petrogenic, pyrolitic, and combustion-derived can be easily plotted by using isomers ratio calculation. This paper thus provides useful information on the hydrocarbon contamination origin, especially in marine sediments. Further researches should be undertaken in order to validate the use of molecular diagnostic ratio with isotopic approach.

  20. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    KAUST Repository

    Amer, Ranya A.; Mapelli, Francesca; El Gendi, Hamada M.; Barbato, Marta; Goda, Doaa A.; Corsini, Anna; Cavalca, Lucia; Fusi, Marco; Borin, Sara; Daffonchio, Daniele; Abdel-Fattah, Yasser R.

    2015-01-01

    . Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment

  1. Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete neanthes arenaceodentata and response to sorbent amendment

    Science.gov (United States)

    Janssen, E.M.-L.; Croteau, M.-N.; Luoma, S.N.; Luthy, R.G.

    2010-01-01

    Bioaccumulation rates of polychlorinated biphenyls (PCBs) for the marine polychaete Neanthes arenaceodentata were characterized, including PCB uptake rates from water and sediment, and the effect of sorbent amendment to the sediment on PCB bioavailability, organism growth, and lipid content. Physiological parameters were incorporated into a biodynamic model to predict contaminant uptake. The results indicate rapid PCB uptake from contaminated sediment and significant organism growth dilution during time-series exposure studies. PCB uptake from the aqueous phase accounted for less than 3% of the total uptake for this deposit-feeder. Proportional increase of gut residence time and assimilation efficiency as a consequence of the organism's growth was assessed by PCB uptake and a reactor theory model of gut architecture. Pulse-chase feeding and multilabeled stable isotope tracing techniques proved high sediment ingestion rates (i.e., 6?10 times of dry body weight per day) indicating that such deposit-feeders are promising biological indicators for sediment risk assessment. Activated carbon amendment reduced PCB uptake by 95% in laboratory experiments with no observed adverse growth effects on the marine polychaete. Biodynamic modeling explained the observed PCB body burdens for N. arenaceodentata, with and without sorbent amendment. ?? 2009 American Chemical Society.

  2. A Model Compound Study: The ecotoxicological evaluation of five organic contaminants with a battery of marine bioassays

    OpenAIRE

    Macken, A.; Giltrap, M.; Foley, B.; McGovern, E.; McHugh, B.; Davoren, M.

    2008-01-01

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contam...

  3. HEAVY METAL CONTENTS IN MARINE SEDIMENTS AND SEAWATER AT TOTOK BAY AREA, NORTH SULAWESI

    Directory of Open Access Journals (Sweden)

    Delyuzar Ilahude

    2017-07-01

    Full Text Available The study area is located in north-eastern part of Tomini Bay, approximately 80 km south of Manado city, North Sulawesi. This area is closed to submarine tailing disposal system in Buyat Bay. Five marine sediment samples and four water samples from seawater and dig wells have been used for heavy metals (Hg, As, CN analyses by using Atomic Absorption Spectrometry (AAS. This study is a part of research conducted by Marine Geological Institute of Indonesia on morphological changes of seabed in the Totok Bay. The result shows that concentration of mercury (Hg in water samples taken from Ratatotok estuary is higher than standards stipulated Government Regulation (Peraturan Pemerintah/PP No. 82/2001. Meanwhile, concentration of arsenic (As is almost reaching its standard threshold, and conversely cyanide (CN concentration is low. This value of mercury (Hg concentration taken from Ratatotok estuary is much higher than water samples from of Buyat Bay estuary. Significant concentration of mercury (Hg analysed from those particular sampling sites indicated high mercury contamination. Therefore, further examination on ground water of dig wells is necessary, especially for mercury analysis (Hg. Furthermore, comparing the formerly obtained data of mercury concentration in the sediment, this particular study concludes that the sediments in the Totok Bay had contaminated by mercury from gold-processing of illegal mining.

  4. Sediment impacts on marine sponges.

    Science.gov (United States)

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Microbial diversity and stratification of South Pacific abyssal marine sediments.

    Science.gov (United States)

    Durbin, Alan M; Teske, Andreas

    2011-12-01

    Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Convenient method of color measurement of marine sediments by colorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, S [Japan Atomic Energy Research Inst., Ibaragi (Japan); Nakashima, S [Akita Univ., Akita (Japan). Research Inst. of Natural Resources

    1991-01-01

    Marine sediments exhibit various colors such as cream, gray, green, red, brown and black. Marine scientists conventionally judged colors of various types of marine sediments by visual observation which has several disadvantages. The purpose of the present study is to establish a color measurement method for various colors of dried marine sediments with the calorimeter and also to try a color measurement of wet core samples on board the ship. A colorimeter (Minolta Chroma Meter CR-200) was used to describe colors of wet and powdered sediment samples in L{sup *}a{sup *}b{sup *} values of the second CIE 1976 color space. Materials studied in this experiment for the color determination are from Japan sea(18 samples from 0-40.5 cm depth), East Pacific(21 samples from 0-42 cm depth) and Suruga Bay(23 samples from 0-110 cm depth), etc. As a result, the following conclusions have been derived : The sensitivity and accuracy of the method are reasonably satisfied for the color description of marine sediments; This method can be applied to shipboard color measurements of original wet sediments with careful consideration of variations of these parameters. 11 refs., 5 figs., 5 tabs.

  7. Design of a marine sediment trap and accessories

    Digital Repository Service at National Institute of Oceanography (India)

    Janakiraman, G.; Fernando, V.; Venkatesan, R.; Rajaraman, V.S.

    The marine sediment trap and the mooring accessories were developed indigenously and were used successfully for the collection of settling sediments in the Arabian Sea The experience gained in using sediment trap and further improvements...

  8. Microbial bioavailability regulates organic matter preservation in marine sediments

    NARCIS (Netherlands)

    Koho, K. A.; Nierop, K. G. J.; Moodley, L.; Middelburg, J. J.; Pozzato, L.; Soetaert, K.; van der Plicht, J.; Reichart, G-J.; Herndl, G.

    2013-01-01

    Burial of organic matter (OM) plays an important role in marine sediments, linking the short-term, biological carbon cycle with the long-term, geological subsurface cycle. It is well established that low-oxygen conditions promote organic carbon burial in marine sediments. However, the mechanism

  9. Effects of terrestrial and marine organic matters on deposition of dechlorane plus (DP) in marine sediments from the Southern Yellow Sea, China: Evidence from multiple biomarkers

    International Nuclear Information System (INIS)

    Wang, Guoguang; Peng, Jialin; Hao, Ting; Feng, Lijuan; Liu, Qiaoling; Li, Xianguo

    2017-01-01

    As an emerging halogenated organic contaminant, Dechlorane Plus (DP) was scarcely reported in marine environments, especially in China. In this work, 35 surface sediments and a sediment core were collected across the Southern Yellow Sea (SYS) to comprehensively explore the spatio-temporal distribution and possible migration pathway of DP. DP concentrations ranged from 14.3 to 245.5 pg/g dry weight in the surface sediments, displaying a seaward increasing trend with the high levels in the central mud zone. This spatial distribution pattern was ascribed to that fine particles with the elevated DP levels were preferentially transported to the central mud zone under hydrodynamic forcing and/or via long-range atmospheric transportation and deposition. DP concentrations in sediment core gradually increased from the mid-1950s to present, which corresponded well with the historical production and usage of DP, as well as the economic development in China. Significantly positive correlation between DP and total organic carbon (TOC) in both surface sediments and sediment core indicated TOC-dependent natural deposition of DP in the SYS. We used multiple biomarkers, for the first time, to explore the potential effects of terrestrial and marine organic matters (TOM and MOM) on DP deposition. The results showed that competition may occur between TOM and MOM for DP adsorption, and MOM was the predominant contributor in controlling DP deposition in the marine sediments from the SYS. - Highlights: • Effects of TOM and MOM on DP deposition were first explored by multi-biomarkers. • Hydrodynamic forcing and atmospheric deposition were responsible for DP in the SYS. • MOM was the predominant contributor in controlling DP deposition to sediments in the SYS. • Competition may occur between TOM and MOM for DP adsorption. - This study was the first attempt to comprehensively explore the effects of TOM and MOM on DP deposition in marine sediments from the SYS.

  10. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.

    1996-01-01

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  11. Antarctic marine sediments as fingerprints of pollution migration

    International Nuclear Information System (INIS)

    Waheed, S.; Ahmad, S.; Rahman, A.; Qureshi, I.H.

    2001-01-01

    Forty elements in 21 coastal marine sediment samples collected during the second Antarctic scientific expedition from 18 different sites of Brekilen area located at the coast of Antarctica were analysed by instrumental neutron activation analysis (INAA) to detect eventual pollution. Radio-assay schemes for three sets of elements after neutron irradiation and cooling were evolved to avoid matrix effects. Data have been compared with those for sediments of various stations at Antarctica and two other regions in different continents. Lower concentration of certain elements in the Antarctic sediments reflects less environmental exposition. Enrichment factors (EF) were calculated for all the elements using the earth crust as reference matrix, based on elemental values by MASON, TAYLOR and WEDEPOHL which show a normal pattern near to unity expect for Ag and Br. The data obtained could also serve as a reference point from which changes in the global environment can be studied. The quality assurance of data was performed using standard reference materials (SRMs) of a similar matrix (IAEA Marine Sediment SD-M/TM and Chinese Marine Sediment GBW 07313). (author)

  12. A model compound study: the ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays.

    Science.gov (United States)

    Macken, Ailbhe; Giltrap, Michelle; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2008-06-01

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone.

  13. Development of a decision support system to manage contamination in marine ecosystems.

    Science.gov (United States)

    Dagnino, A; Viarengo, A

    2014-01-01

    In recent years, contamination and its interaction with climate-change variables have been recognized as critical stressors in coastal areas, emphasizing the need for a standardized framework encompassing chemical and biological data into risk indices to support decision-making. We therefore developed an innovative, expert decision support system (Exp-DSS) for the management of contamination in marine coastal ecosystems. The Exp-DSS has two main applications: (i) to determine environmental risk and biological vulnerability in contaminated sites; and (ii) to support the management of waters and sediments by assessing the risk due to the exposure of biota to these matrices. The Exp-DSS evaluates chemical data, both as single compounds and as total toxic pressure of the mixture, to compare concentrations to effect-based thresholds (TELs and PELs). Sites are then placed into three categories of contamination: uncontaminated, mildly contaminated, and highly contaminated. In highly contaminated sites, effects on high-level ecotoxicological endpoints (i.e. survival and reproduction) are used to determine risk at the organism-population level, while ecological parameters (i.e. alterations in community structure and ecosystem functions) are considered for assessing effects on biodiversity. Changes in sublethal biomarkers are utilized to assess the stress level of the organisms in mildly contaminated sites. In Triad studies, chemical concentrations, ecotoxicological high-level effects, and ecological data are combined to determine the level of environmental risk in highly contaminated sites; chemical concentration and ecotoxicological sublethal effects are evaluated to determine biological vulnerability in mildly contaminated sites. The Exp-DSS was applied to data from the literature about sediment quality in estuarine areas of Spain, and ranked risks related to exposure to contaminated sediments from high risk (Huelva estuary) to mild risk (Guadalquivir estuary and Bay of

  14. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  15. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    Science.gov (United States)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the

  16. Levels of Cd, Cu, Pb and V in marine sediments in the vicinity of the Single Buoy Moorings (SBM3) at Mina Al Fahal in the Sultanate of Oman.

    Science.gov (United States)

    Al-Husaini, Issa; Abdul-Wahab, Sabah; Ahamad, Rahmalan; Chan, Keziah

    2014-06-15

    Recently in the Sultanate of Oman, there has been a rapid surge of coastal developments. These developments cause metal contamination, which may affect the habitats and communities at and near the coastal region. As a result, a study was conducted to assess the level of metal contamination and its impact on the marine sediments in the vicinity of the Single Buoy Moorings 3 (SBM3) at Mina Al Fahal in the Sultanate of Oman. Marine subtidal sediment samples were collected from six different stations of the SBM3 for the period ranging from June 2009 to April 2010. These samples were then analyzed for their level and distribution of the heavy metals of cadmium (Cd), copper (Cu), lead (Pb) and vanadium (V). Overall, low concentrations of all four heavy metals were measured from the marine sediments, indicating that the marine at SBM3 is of good quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Lead isotopic signatures in Antarctic marine sediment cores: A comparison between 1 M HCl partial extraction and HF total digestion pre-treatments for discerning anthropogenic inputs

    International Nuclear Information System (INIS)

    Townsend, A.T.; Snape, I.; Palmer, A.S.; Seen, A.J.

    2009-01-01

    Sensitive analytical techniques are typically required when dealing with samples from Antarctica as even low concentrations of contaminants can have detrimental environmental effects. Magnetic Sector ICP-MS is an ideal technique for environmental assessment as it offers high sensitivity, multi-element capability and the opportunity to determine isotope ratios. Here we consider the Pb isotope record of five marine sediment cores collected from three sites in the Windmill Islands area of East Antarctica: Brown Bay adjacent to the current Australian station Casey, Wilkes near the abandoned US/Australian Station and McGrady Cove lying midway between the two. Two sediment pre-treatment approaches were considered, namely partial extraction with 1 M HCl and total dissolution involving HF. Lead isotope ratio measurements made following sediment partial extraction provided a more sensitive indication of Pb contamination than either Pb concentrations alone (irrespective of sample pre-treatment method) or isotope ratios made after HF digestion, offering greater opportunity for discrimination between impacted and natural/geogenic samples and sites. Over 90% of the easily extractable Pb from sediments near Casey was anthropogenic in origin, consisting of Pb from major Australian deposits. At Wilkes impact from discarded batteries with a unique isotopic signature was found to be a key source of Pb contamination to the marine environment with ∼ 70-80% of Pb being anthropogenic in origin. The country and source of origin of these batteries remain unknown. Little evidence was found suggesting contamination at Wilkes by Pb originating from the major US source, Missouri. No definitive assessment could be made regarding Pb impact at McGrady Cove as the collected sediment core was of insufficient depth. Although Pb isotope ratio signatures may indicate anthropogenic input, spatial concentration gradients at nearby Brown Bay suggest contamination at McGrady Cove is unlikely. We

  18. Bacterial diversity in oil-polluted marine coastal sediments.

    Science.gov (United States)

    Acosta-González, Alejandro; Marqués, Silvia

    2016-04-01

    Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Contamination of butyltin compounds in Malaysian marine environments

    International Nuclear Information System (INIS)

    Sudaryanto, Agus; Takahashi, Shin; Iwata, Hisato; Tanabe, Shinsuke; Ismail, Ahmad

    2004-01-01

    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (ΣSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r 2 =0.82, P<0.0001) was found between BTs and ΣSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored. - Lack of any regulation of TBT clearly resulted in a heavy contamination of BTs in Malaysia

  20. Contamination of butyltin compounds in Malaysian marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Sudaryanto, Agus; Takahashi, Shin; Iwata, Hisato; Tanabe, Shinsuke; Ismail, Ahmad

    2004-08-01

    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin ({sigma}Sn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r{sup 2}=0.82, P<0.0001) was found between BTs and {sigma}Sn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored. - Lack of any regulation of TBT clearly resulted in a heavy contamination of BTs in Malaysia.

  1. Feasibility studies for the treatment and reuse of contaminated marine sediments.

    Science.gov (United States)

    Bonomoa, L; Careghini, A; Dastoli, S; De Propris, L; Ferrari, G; Gabellini, M; Saponaro, S

    2009-07-01

    This paper presents preliminary results of laboratory tests aimed at evaluating the easibility of the remediation of marine sediments, which are polluted by mercury and petroleum hydrocarbons, dredged at the bay of Augusta (SR, Italy). The treatment is composed of two sequential steps: in the first, a cement-based granular material is produced (based on a high performance concrete approach); then, the volatile and the semi-volatile compounds in the granular material are removed by a thermal desorption step. Treated materials could be reused or put into caissons, according to their mechanical properties and environmental compatibility. The experiments were focused on evaluating the effect of the process parameter values on: (i) the evolution of cement hydration reactions, (ii) thermal desorption removal efficiencies, (iii) leaching behaviour of the treated material.

  2. Development of management tools for accidental radiological contamination of the French coastal areas - Development of management tools for accidental radiological contamination in the French marine coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Duffa, C.; Charmasson, S. [IRSN/PRP-ENV/SESURE/LERCM - Antenne de Radioecologie Marine, Centre Ifremer, Zone portuaire de Bregaillon, 13507 La Seyne sur Mer (France); Bailly du Bois, P.; Fievet, B. [IRSN/PRP-ENV/SERIS/LRC (France); Couvez, C.; Renaud, P. [IRSN/PRP-ENV/SESURE/DIR (France); Didier, D. [IRSN/PRP-CRI/SESUC/BMTA (France)

    2014-07-01

    The Fukushima nuclear accident led to the most important accidental release of artificial radionuclides into the sea. This accident has underlined the importance of being able to adequately reproduce the fate of radioactive releases and to estimate their consequences for the marine environment. For its Crisis Centre, the French Institute for Radioprotection and Nuclear Safety (IRSN) has operational tools, in order to help experts and decision makers in case of any atmospheric accidental release and terrestrial environment contamination. The on-going project aims to develop tools to manage any marine contamination of the French coastal areas. We should be able to evaluate and anticipate the marine post-accidental situation: contaminated areas localization and contamination levels, and possible consequences. Many sites has be considered as potential source terms into the sea: the Coastal Nuclear Power Plants, the La Hague reprocessing Plant, the Brest and Toulon Military Harbours as home-ports of nuclear powered vessels, and different river mouths (Rhone River, Gironde, Loire, Seine) that could be contaminated by upstream accidental release. To achieve this goal, two complementary approaches are developed: Marine sheets and a dedicated modelling tool (STERNE). - Marine sheets aim to summarize marine environment characteristics for the different sites, identify potential stakes for human protection such as aquaculture areas, beaches, or industrial water intakes, and ecological stakes. Whenever possible, a local climatology (main currents depending on meteorological or tide conditions) that could be a support to first environmental measurement strategy is proposed. A list of available local contacts for any operational management is also provided. - The modelling tool, STERNE (Simulation du Transport et du transfert d'Elements Radioactifs dans l'environNEment marin), must predict radionuclide dispersion and contamination of water, marine species and sediments

  3. Are Sediments a Source of Fukushima Radiocesium for Marine Fauna in Coastal Japan?

    Science.gov (United States)

    Wang, C.; Fisher, N. S.; Baumann, Z.

    2016-02-01

    The Fukushima nuclear power plant accident in 2011 resulted in the largest accidental release of artificial radionuclides into the world's oceans. Among the fission products released in large quantities, 137Cs has the greatest potential for long-term impacts on marine biota and human consumers of seafood. In particular, some species of bottom fish near Fukushima were very contaminated and had higher radiocesium (134Cs and 137Cs) levels than pelagic fish in the same area, sometimes exceeding Japanese safety limits >4 years after the accident. Benthic invertebrates, many being prey items for bottom fish, show the same slow decrease in radiocesium as sediments, suggesting that contaminated sediment could be a source of radiocesium for benthic fauna. We evaluated the binding of 137Cs to sediments (Kd found to be 44-60 ml g-1) and found that bioturbation by the polychaete Nereis succinea greatly increased the initial release rate of Cs to overlying seawater. We also assessed the bioavailability of dissolved and sediment-bound Cs for deposit-feeding polychaetes, and its subsequent transfer to crabs and fish, and measured the influence of water temperature on Cs accumulation in fish. Assimilation efficiency (AE) of ingested 137Cs ranged from 16% in polychaetes ingesting sediments to 79% in fish ingesting worms. Efflux rate constants ranged from 5% d-1 for killifish to 40% d-1 for polychaetes. Animal absorption and retention of dissolved 137Cs were also measured. These parameters are used to model radiocesium bioaccumulation and trophic transfer in benthic food chains. Our results are consistent with the idea that sediments can be an important source of Cs for benthic food chains and help explain why some species of bottom fish remained more contaminated than pelagic fish in Japanese coastal waters.

  4. A comparative study of the contamination of some marine burrower invertebrates by cobalt 60 and cesium 137

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.

    1975-01-01

    Experments were carried out with species whose mode of life is characterized by close contact with the sediments; they represent different zoological groups: an Annelid (Arenicola marina L.), an Echinoderm (Echinocardium cordatum Pennant) and two Lamellibranchs (Scrobicularia plana da Costa, Macoma balthica L.). The data obtained indicate that main vector of contamination of benthic marine invertebrates is water. The main part of these organisms in the sedimentary zone would be the redistribution, within the sediment, of radioelements adsorbed on the surface [fr

  5. Contaminated marine sediments: assessment and remediation

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Committee on Contaminated Marine Sediments

    1989-01-01

    ... Marine Board Commission on Engineering and Technical Systems National Research Council National Academy Press Washington, D.C. 1989 i Copyrighttrue Please breaks inserted. are Page files. accidentally typesetting been have may original from the errors not typographic original retained, and from the created cannot be files XML from howeve...

  6. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower eastern Tampa Bay.

    Science.gov (United States)

    Lewis, M A; Russell, M J

    2015-06-15

    Contaminant concentrations are reported for surface water, sediment, flora and fauna collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay, Florida. Concentrations of trace metals, chlorinated pesticides, atrazine, total polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were species-, chemical- and location-specific. Contaminants in sediments did not exceed proposed individual sediment quality guidelines. Most sediment quality assessment quotients were less than one indicating the likelihood of no inhibitory effect based on chemical measurements alone. Faunal species typically contained more contaminants than plant species; seagrass usually contained more chemicals than mangroves. Bioconcentration factors for marine angiosperms were usually less than 10 and ranged between 1 and 31. Mercury concentrations (ppm) in blue crabs and fish did not exceed the U.S. Environmental Protection Agency fish tissue criterion of 0.3 and the U.S. Food and Drug Administration action level of 1.0. In contrast, total mercury concentrations in faunal species often exceeded guideline values for wildlife consumers of aquatic biota. Published by Elsevier Ltd.

  7. Nematode communities in contaminated river sediments

    International Nuclear Information System (INIS)

    Heininger, Peter; Hoess, Sebastian; Claus, Evelyn; Pelzer, Juergen; Traunspurger, Walter

    2007-01-01

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure

  8. Nematode communities in contaminated river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Heininger, Peter [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Hoess, Sebastian [Ecossa - Ecological Sediment and Soil Assessment, Thierschstr. 43, 80538 Munich (Germany); Claus, Evelyn [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Pelzer, Juergen [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Traunspurger, Walter [University of Bielefeld, Department of Animal Ecology, Morgenbreede 45, 33615 Bielefeld (Germany)]. E-mail: traunspurger@uni-bielefeld.de

    2007-03-15

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure.

  9. Assessment of sediment contamination in Casco Bay, Maine, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Terry L. [Geochemical and Environmental Research Group, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States); Sweet, Stephen T. [Geochemical and Environmental Research Group, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States)], E-mail: sweet@gerg.tamu.edu; Klein, Andrew G. [Geography Department, Texas A and M University, 814B Eller O and M Building, College Station, TX 77843 (United States)

    2008-04-15

    The current status of contaminant concentrations in Casco Bay, decadal trends of these contaminants and changes in their geographical distribution are assessed using sediment samples collected approximately 10 years apart. In general, regulated contaminants appeared to be decreasing in concentration. Total PAH and dioxins/furans concentrations did not significantly change over this period. Total organochlorine pesticides, 4,4-DDE, 4,4-DDD, total DDT, PCB, tributyltin and total butyltin decreased in concentration. Trace element concentrations in sediments decreased at the majority of the sampling sites for chromium, nickel, and selenium while arsenic, cadmium, copper, lead, mercury, silver, and zinc remained relatively constant. None of the contaminants measured has increased by more than a factor of 2. Selected sites located in the Inner Bay, where concentrations are higher and new inputs were more likely, showed increased concentrations of contaminants. Most contaminants were not found at concentrations expected to adversely affect sediment biota based on ERL/ERM guidelines. - Sediment studies indicate decadal decreases for many chemical contaminants in Casco Bay.

  10. Assessment of sediment contamination in Casco Bay, Maine, USA

    International Nuclear Information System (INIS)

    Wade, Terry L.; Sweet, Stephen T.; Klein, Andrew G.

    2008-01-01

    The current status of contaminant concentrations in Casco Bay, decadal trends of these contaminants and changes in their geographical distribution are assessed using sediment samples collected approximately 10 years apart. In general, regulated contaminants appeared to be decreasing in concentration. Total PAH and dioxins/furans concentrations did not significantly change over this period. Total organochlorine pesticides, 4,4-DDE, 4,4-DDD, total DDT, PCB, tributyltin and total butyltin decreased in concentration. Trace element concentrations in sediments decreased at the majority of the sampling sites for chromium, nickel, and selenium while arsenic, cadmium, copper, lead, mercury, silver, and zinc remained relatively constant. None of the contaminants measured has increased by more than a factor of 2. Selected sites located in the Inner Bay, where concentrations are higher and new inputs were more likely, showed increased concentrations of contaminants. Most contaminants were not found at concentrations expected to adversely affect sediment biota based on ERL/ERM guidelines. - Sediment studies indicate decadal decreases for many chemical contaminants in Casco Bay

  11. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  12. Sediment Capping and Natural Recovery, Contaminant Transport Fundamentals With Applications to Sediment Caps

    National Research Council Canada - National Science Library

    Petrovski, David M; Corcoran, Maureen K; May, James H; Patrick, David M

    2005-01-01

    Engineered sediment caps and natural recovery are in situ remedial alternatives for contaminated sediments, which consist of the artificial or natural placement of a layer of material over a sediment...

  13. Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas).

    Science.gov (United States)

    Geffard, O; Budzinski, H; Augagneur, S; Seaman, M N; His, E

    2001-07-01

    Gametes (sperm) and fertilized eggs (embryos) of the Mediterranean sea urchin, Paracentrotus lividus, and the Japanese oyster, Crassostrea gigas, were used to investigate the toxicity of two marine sediments, one polluted by polycyclic aromatic hydrocarbons (PAH) and the other by heavy metals. The sediment samples were freeze-dried for storage, and three different treatments were used for analysis: whole sediment, unfiltered elutriate, and filtered elutriate. The two sediments were toxic to sea urchin spermatozoa but not to oyster spermatozoa, and embryotoxicity was almost always the more sensitive endpoint for toxicity assessment. As a rule, whole sediment was more toxic than the elutriates by nearly two orders of magnitude. With respect to embryotoxicity, the whole sediments and the elutriates of the PAH-contaminated sediment were more toxic to oyster embryos, whereas the elutriates of the sediment polluted by heavy metals had stronger effects on sea urchin embryos. The results confirm that bioassays with Japanese oyster embryos provide a more sensitive appraisal of toxicity in the marine environment than bioassays with other developmental stages. As a whole, Mediterranean sea urchins and Japanese oysters were similar in overall sensitivity and are therefore both equally suited as bioassay organisms, but tests with oysters are more reproducible because of the better performance of the controls.

  14. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites.

    Science.gov (United States)

    Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart

    2009-11-01

    Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems

  15. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics.

    Science.gov (United States)

    Counihan, Timothy D; Waite, Ian R; Nilsen, Elena B; Hardiman, Jill M; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D

    2014-06-15

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream

  16. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Nilsen, Elena B.; Hardiman, Jill M.; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D.

    2014-01-01

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16 km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus–PCP–PAH). We also observed significant differences between strata in the number of detections of Indus–PCP–PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest

  17. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  18. Environmental impact of ongoing sources of metal contamination on remediated sediments

    International Nuclear Information System (INIS)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; Redder, Todd M.; Wolfe, John R.; Seaman, John

    2016-01-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  19. Sampling marine sediments for radionuclide monitoring

    International Nuclear Information System (INIS)

    Papucci, C.

    1997-01-01

    A description of the most common devices used for sampling marine sediments are reported. The systems are compared to evidence their intrinsic usefulness, for collecting samples in different environmental conditions or with different scientific objectives. Perturbations and artifacts introduced during the various steps of the sampling procedure are also reviewed, and suggestions are proposed for obtaining and preserving, as much as possible, the representativeness of the sediment samples. (author)

  20. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Mayer, D.W.; Argo, R.S.

    1982-01-01

    Models are presented to estimate the migration of toxic contaminants in coastal waters. Ocean current is simulated by the vertically-averaged, finite element, two-demensional model known as CAFE-I with the Galerkin weighted residual technique. The refraction of locally generated waves or swells is simulated by the wave refraction model, LO3D. Using computed current, depth, and wave characteristics, the finite element model, FETRA, simulated sediment and contaminant transport in coastal waters, estuaries and rivers. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interaction, and the mechanism governing the transport, deposition, and resuspension of contaminated sediment. Several simple equations such as the unsteady, advection-diffusion equation, the equation for noncohesive-sediment load due to wind-induced waves in offshore and surf zones, and the equation for sediment-radionuclide transport simulation were solved during the preliminary testing of the model. (Kato, T.)

  1. The influence of hydrology on lacustrine sediment contaminant records

    Science.gov (United States)

    Rosen, Michael R.

    2015-01-01

    The way water flows to a lake, through streams, as runoff, or as groundwater, can control the distribution and mass of sediment and contaminants deposited. Whether a lake is large or small, deep or shallow, open or closed, the movement of water to a lake and the circulation patterns of water within a lake control how and where sediment and contaminants are deposited. Particle-associated contaminants may stay close to the input source of contamination or be transported by currents to bathymetric lows. A complex morphology of the lake bottom or shoreline can also affect how contaminants will be distributed. Dissolved contaminants may be widely dispersed in smaller lakes, but may be diluted in large lakes away from the source. Although dissolved contaminants may not be deposited in lake sediments, the impact of dissolved contaminants (such as nitrogen) may be reflected by the ecosystem. For instance, increased phosphorus and nitrogen may increase organic content or algal biomass, and contribute to eutrophication of the lake over time. Changes in oxidation-reduction potential at the sediment-water interface may either release some contaminants to the water column or conversely deposit other contaminants to the sediment depending on the compound’s chemical characteristics. Changes in land use generally affect the hydrology of the watershed surrounding a lake, providing more runoff if soil binding vegetation is removed or if more impervious cover (roads and buildings) is increased. Groundwater inputs may change if pumping of the aquifer connected to the lake occurs. Even if groundwater is only a small portion of the volume of water entering a lake, if contaminant concentrations in the aquifer are high compared to surface water inputs, the mass of contaminants from groundwater may be as, or more, important than surface water contributions.

  2. Immunotoxicological effects of environmental contaminants on marine bivalves.

    Science.gov (United States)

    Renault, T

    2015-09-01

    Coastal areas are complex environments frequently contaminated by numerous pollutants that represent a potential threat to marine organisms, especially bivalves. These pollutants may have major ecological consequences. Although effects of different environmental contaminants on the immune system in marine bivalves have been already reported, a few of reviews summarizes these effects. The main purpose of this chapter relies on summarizing recent body of data on immunotoxicity in bivalves subjected to contaminants. Immune effects of heavy metals, pesticides, HAP, PCB and pharmaceuticals are presented and discussed and a particular section is devoted to nanoparticle effects. A large body of literature is now available on this topic. Finally, the urgent need of a better understanding of complex interactions between contaminants, marine bivalves and infectious diseases is noticed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mercury contaminated sediment sites—An evaluation of remedial options

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

    2013-08-15

    Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ► Managing mercury-contaminated sediment sites are challenging to remediate. ► Remediation technologies are making a difference in managing these sites. ► Partitioning plays a dominant role in the distribution of mercury species. ► Mathematical

  4. Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA

    International Nuclear Information System (INIS)

    Tang, Yinjie J. . E-mail yjtang@lbl.gov; Carpenter, Shelly D.; Deming, Jody W.; Krieger-Brockett, Barbara

    2006-01-01

    A whole-core injection method was used to determine depth-related rates of microbial mineralization of 14 C-phenanthrene added to both contaminated and clean marine sediments of Puget Sound, WA. For 26-day incubations under micro-aerobic conditions, conversions of 14 C-phenanthrene to 14 CO 2 in heavily PAH-contaminated sediments from two sites in Eagle Harbor were much higher (up to 30%) than those in clean sediments from nearby Blakely Harbor ( 14 C-phenanthrene degradation rates in the surface sediment horizons (0-3 cm) were more rapid (2-3 times) than in the deeper sediment horizons examined (>6 cm), especially in the most PAH polluted EH9 site. Differences in mineralization were associated with properties of the sediments as a function of sediment depth, including grain-size distribution, PAH concentration, total organic matter and total bacterial abundance. When strictly anaerobic incubations (in N 2 /H 2 /CO 2 atmosphere) were used, the phenanthrene biodegradation rates at all sediment depths were two times slower than under micro-aerobic conditions, with methanogenesis observed after 24 days. The main rate-limiting factor for phenanthrene degradation under anaerobic conditions appeared to be the availability of suitable electron acceptors. Addition of calcium sulfate enhanced the first order rate coefficient (k 1 increased from 0.003 to 0.006 day -1 ), whereas addition of soluble nitrate, even at very low concentration ( 1 up to 0.11 day -1 )

  5. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Mayer, D.W.; Argo, R.S.

    1982-02-01

    A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments

  6. Radionuclide interactions with marine sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.

    1987-09-01

    A critical review of the literature on the subject of the interactions of radionuclides with marine sediments has been carried out. On the basis of the information available, an attempt has been made to give ranges and 'best estimates' for the distribution ratios between seawater and sediments. These estimates have been based on an understanding of the sediment seawater system and the porewater chemistry and mineralogy. Field measurements, laboratory measurements and estimates based on stable-element geochemical data are all taken into account. Laboratory measurements include distribution-ratio and diffusion-coefficient determinations. The elements reviewed are carbon, chlorine, calcium, nickel, selenium, strontium, zirconium, niobium, technetium, tin, iodine, caesium, lead, radium, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium and curium. (author)

  7. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    Science.gov (United States)

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  8. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    Science.gov (United States)

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable.

  9. Recolonization and succession of subtidal macrobenthic infauna in sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Lu, L.; Wu, R.S.S.

    2003-01-01

    No significant differences in abundance, species number, diversity and species composition were found between cadmium-contaminated and control sediments after 14 months. - Recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with Cd were studied over a period of 14 months. Trays with defaunated sediment contaminated with cadmium, and trays with defaunated (control) sediment, were exposed at the subtidal in a subtropical environment. Macrobenthic succession exhibited different patterns in Cd-contaminated and control sediments. Abundance and species number were significantly higher in Cd-contaminated sediment during early succession, suggesting that cadmium may facilitate recolonization of certain species of macrobenthos. Cadmium also led to a significant change in species composition in initial colonization and subsequent succession. No significant difference in abundance, species number, diversity and species composition was found between Cd-contaminated and control sediments at the end of experiment, suggesting a stable benthic community was arrived within 14 months

  10. Recolonization and succession of subtidal macrobenthic infauna in sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Wu, R.S.S

    2003-01-01

    No significant differences in abundance, species number, diversity and species composition were found between cadmium-contaminated and control sediments after 14 months. - Recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with Cd were studied over a period of 14 months. Trays with defaunated sediment contaminated with cadmium, and trays with defaunated (control) sediment, were exposed at the subtidal in a subtropical environment. Macrobenthic succession exhibited different patterns in Cd-contaminated and control sediments. Abundance and species number were significantly higher in Cd-contaminated sediment during early succession, suggesting that cadmium may facilitate recolonization of certain species of macrobenthos. Cadmium also led to a significant change in species composition in initial colonization and subsequent succession. No significant difference in abundance, species number, diversity and species composition was found between Cd-contaminated and control sediments at the end of experiment, suggesting a stable benthic community was arrived within 14 months.

  11. Bacterial communities in sediment of a Mediterranean marine protected area.

    Science.gov (United States)

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  12. Quaternary magnetic excursions recorded in marine sediments.

    Science.gov (United States)

    Channell, J. E. T.

    2017-12-01

    This year is the golden (50th) anniversary of the first documentation of a magnetic excursion, the Laschamp excursion in volcanics from the Chaine des Puys (Bonhommet and Babkine, 1967). The first recording of an excursion in sediments was from the Blake Outer Ridge (Smith and Foster, 1969). Magnetic excursions are directional aberrations of the geomagnetic field apparently involving short-lived reversal of the main dipole field. They have durations of a few kyrs, and are therefore rarely recorded in sediments with mean sedimentation rates Palma), and 670 ka (Osaka Bay), implying at least 11 excursions in the Brunhes Chron. For the Matuyama Chron, excursions have been recorded in marine sediments at 868 ka (Kamikatsura?), 932 ka (Santa Rosa), 1051 ka (Intra-Jaramillo), 1115 ka (Punaruu), 1255 ka (Bjorn), 1476 ka (Gardar), 1580 ka (Gilsa), and 2737 ka (Porcupine). Excursions coincide with minima in relative paleointensity (RPI) records. Ages are from correlation of excursion records to oxygen isotope records in the same cores, and ice-volume calibration of the oxygen isotope template. The marine sediment record of excursions, combined with independent documentation of excursions in lavas with Ar/Ar age control, is progressively strengthening our knowledge of the excursion inventory in the Quaternary, and enhancing the importance of excursions and RPI in Quaternary stratigraphy.

  13. Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor.

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Duran, Robert

    2015-10-01

    The behaviour of sulphate-reducing microbial community was investigated at the oxic-anoxic interface (0-2 cm) of marine sediments when submitted to oil and enhanced bioturbation activities by the addition of Hediste diversicolor. Although total hydrocarbon removal was not improved by the addition of H. diversicolor, terminal restriction fragment length polymorphism (T-RFLP) analyses based on dsrAB (dissimilatory sulphite reductase) genes and transcripts showed different patterns according to the presence of H. diversicolor which favoured the abundance of dsrB genes during the early stages of incubation. Complementary DNA (cDNA) dsrAB libraries revealed that in presence of H. diversicolor, most dsrAB sequences belonged to hydrocarbonoclastic Desulfobacteraceae, suggesting that sulphate-reducing microorganisms (SRMs) may play an active role in hydrocarbon biodegradation in sediments where the reworking activity is enhanced. Furthermore, the presence of dsrAB sequences related to sequences found associated to environments with high dinitrogen fixation activity suggested potential N2 fixation by SRMs in bioturbated-polluted sediments.

  14. Worldwide Interlaboratory Comparison on the Determination of Trace Elements in the IAEA-457 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of primary concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. Through the IAEA Environment Laboratories, the IAEA has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance and quality control are two fundamental requirements to ensure the reliability of analytical results. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. In this regard, the IAEA has a long history of organizing interlaboratory studies, which have evolved to include an increasing array of potential contaminants in the marine environment. Relevant activities comprise global interlaboratory comparison, regional proficiency tests, the production of marine reference materials and the development of reference methods for trace elements and organic pollutants analysis in marine samples. This publication summarizes the results of the IAEA-457 interlaboratory comparison on the determination of trace elements in a marine sediment sample

  15. Characterization of marine sediments using analytical techniques

    International Nuclear Information System (INIS)

    Garcia-Rosales, G.; Longoria-Gandara, L.C.

    2011-01-01

    This study deals with the characterization of a marine sediments profile from the Gulf of Tehuantepec, Mexico. Ten sediment samples obtained from a core of 18.3 m of length were analysed. Although there have been numerous marine sediments studies carried out in Mexico, more are needed to better understand the sea floor formation. Crystallographic, morphologic, physical, chemical and gamma ray activity analysis were carried out on the samples. The analysis results showed a decrease in organic matter content as a function of sea depth; this value is related to the specific surface area. Some hazardous materials as Cr, Mn, Ni, Sr and Hg were also identified by PIXE in some samples, probably due to anthropogenic activity. The presence of uranium a naturally occurring element was found in all the samples, suggesting a migration through all materials of strata, radioactive elements such as 226 Ra, 235 U, 212 Pb, 214 Pb, 228 Ac, 208 Ti, 214 Bi, 228 Ac and 40 K were detected. (author)

  16. Incorporating Contaminant Bioavailability into Sediment Quality Assessment Frameworks

    Science.gov (United States)

    The recently adopted sediment quality assessment framework for evaluating bay and estuarine sediments in the State of California incorporates bulk sediment chemistry as a key line of evidence(LOE) but does not address the bioavailability of measured contaminants. Thus, the chemis...

  17. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Haruhiko [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)]. E-mail: nakata@sci.kumamoto-u.ac.jp; Hirakawa, Yuko [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Kawazoe, Masahiro [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, (Japan); Nakabo, Tetsuji [Kyoto University Museum, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Arizono, Koji [Faculty of Environmental and Symbiotic Sciences, Kumamoto Prefectural University, 3-1-100 Tsukide, Kumamoto 862-8502 (Japan); Abe, Shin-Ichi [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Kitano, Takeshi [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Shimada, Hideaki [Faculty of Education, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Watanabe, Izumi [Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchuu-city, Tokyo 183-8509 (Japan); Li Weihua [Shanghai Institute of Planned Parenthood Research, 2140 Xie Tu road, Shanghai 200032 (China); Ding Xucheng [Shanghai Institute of Planned Parenthood Research, 2140 Xie Tu road, Shanghai 200032 (China)

    2005-02-01

    Contamination by persistent organochlorines (OCs), such as DDTs, hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) were examined in sediments, soils, fishes, crustaceans, birds, and aquaculture feed from Lake Tai, Hangzhou Bay, and in the vicinity of Shanghai city in China during 2000 and 2001. OCs were detected in all samples analyzed, and DDT and its metabolites were the predominant contaminants in most sediments, soils and biota. Concentrations of p,p'-DDT and ratio of p,p'-DDT to {sigma}DDTs were significantly higher in marine fishes than those in freshwater fishes. While the use of DDTs has been officially banned in China since 1983, these results indicate a recent input of technical DDTs into the marine environment around Hangzhou Bay. Comparison of organochlorine concentrations in fishes collected from Lake Tai and Hangzhou Bay suggests the presence of local sources of HCHs, chlordanes and PCBs at Lake Tai. Higher proportions of penta- and hexa-PCB congeners in fishes at Lake Tai may suggest the use of highly chlorinated PCB product, such as PCB{sub 5}, around this lake. To our knowledge, this is a first comprehensive study to examine the present status of organochlorine contamination in various environmental media, such as sediments, soils and wildlife, in China. - Elevated concentrations of DDTs were detected in sediments, soils, and wildlife collected from China.

  18. Levels and potential sources of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (DecaBDE) in lake and marine sediments in Sweden.

    Science.gov (United States)

    Ricklund, Niklas; Kierkegaard, Amelie; McLachlan, Michael S

    2010-03-15

    Decabromodiphenyl ethane (DBDPE) is a brominated flame retardant (BFR) used as a replacement for the structurally similar decabromodiphenyl ether (decaBDE), which is a regulated environmental contaminant of concern. DBDPE has been found in indoor dust, sewage sludge, sediment, and biota, but little is known about its occurrence and distribution in the environment In this paper, sediment was analyzed from 11 isolated Swedish lakes and along a transect running from central Stockholm through the Stockholm archipelago to the Baltic Sea. DBDPE was present in all samples. In lake sediment, the levels ranged from 0.23 to 11 ng/g d.wt. and were very similar to the levels of decaBDE (0.48-11 ng/g d.wt.). Since the lakes have no known point sources of BFRs, their presence in the sediments provides evidence for long-range atmospheric transport and deposition. In the marine sediment, the DBDPE and decaBDE levels decreased by a factor of 20-50 over 40 km from the inner harbor to the outer archipelago. There the DBDPE and decaBDE levels were similar to the levels in nearby isolated lakes. The results indicate that contamination of the Swedish environment with DBDPE has already approached that of decaBDE, and that this contamination is primarily occurring via the atmosphere.

  19. Elucidation of 10Be accumulation mechanism to sea floor with the marine sediment

    International Nuclear Information System (INIS)

    Yoshida, T.; Yamagata, T.; Saito, T.; Nagai, H.; Matsuzaki, H.

    2006-01-01

    Marine sediment samples (0-30 cm in depth) were collected in the Northwest Pacific Ocean, and South Pacific Ocean during KH00-3 (BO, 7 samples) and KH04-5 (SX, 8 samples) cruise of R/V Hakuho-Maru. The 10 Be concentration in the marine sediment samples range between 0.9x10 9 and 6.5x10 9 atoms/g, and most of the red clay sediment in the Northwest Pacific Ocean showed uniform distribution. The 9 Be concentration in the red clay sediment samples range between 2.3 and 2.6 ppm, which showed a value almost the same as measured 9 Be concentration (1.6-2.3 ppm) in the Chinese loess. The 10 Be concentration in the marine sediment were 20 times higher than the 10 Be concentration (0.2x10 9 atoms/g) in the Chinese loess. These results were suggested that most of 10 Be in the marine sediment were regarded seawater as the origin. (author)

  20. Decomposition of 14C-labeled organic substances in marine sediments

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The depth variation of total organic carbon (TOC), organic matter composition and porewater composition in marine sediments suggest that different components of the organic matter undergo decomposition at widely different rates. The decomposition of 14 C-labeled organic substances was followed in sediment microcosms in the laboratory. The substances used were chosen to simulate a portion of material settling to the sediment-water interface (a marine diatom) or hypothesized components of refractory sediment organic matter (melanoidins and a bacterial polymer). The microcosms were found to be good models of the sediment-water interface in terms of how well they mimicked sediment decomposition rates and processes. The decomposition of the labeled material and the natural sediment TOC were monitored over 1 month: the water overlying the sediment remained oxic, and net consumption of nitrate was small. There was no detectable sulfate reduction. The algae and the bacterial polymer were decomposed on average 9x faster than the melanoidins and 90x faster than the natural sediment TOC. The soluble fraction of the algae was decomposed more rapidly than the particulate material

  1. A model for microbial phosphorus cycling in bioturbated marine sediments

    DEFF Research Database (Denmark)

    Dale, Andrew W.; Boyle, R. A.; Lenton, Timothy M.

    2016-01-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated...... P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from....... The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments. © 2016 Elsevier Ltd....

  2. Autecology of crenarchaeotal and bacterial clades in marine sediments and microbial mats

    OpenAIRE

    Kubo, Kyoko

    2011-01-01

    The focus of this thesis was the autecology of the Miscellaneous Crenarchaeotal Group (MCG), a phylum-level clade of Archaea occurring mostly in marine sediments. Sequences of MCG 16S rRNA genes have been retrieved from a wide range of marine and terrestrial habitats, such as deep subsurface sediments, hydrothermal sediments, mud volcanoes, estuaries, hot springs and freshwater lake sediments. MCG members seem to have no general preferences for a particular temperature or salinity. So far, no...

  3. World-wide and regional intercomparison for the determination of trace elements in polluted marine sediment IAEA-356. Report no.56

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, M; Mee, L D; Oregioni, B [International Atomic Energy Agency, Marine Environment Laboratory, Monaco (Monaco)

    1994-09-01

    The accurate and precise determination of trace elements in marine sediment samples is an important aspect of geochemical marine pollution studies and for assessing the levels and pathways of marine pollutants. Past intercomparison exercise conducted by the Marine Environment Laboratory of IAEA (formerly the International Laboratory of Marine Radioactivity) has focused upon the near shore sediment (1) and deep sea marine sediment (2) where trace levels of elements was rather low. The present intercomparison exercise on sediment taken from a polluted coastal lagoon was designed in order to fulfill the increased demand for certified reference materials of various origin and the number of parameters that should be studied. Additionally, different instrumental techniques, both nuclear and non-nuclear, were compared, and evaluated. By statistically examining the data from this study, the material can be certified for future use as a reference material. The current exercise was designed not only to test the intercomparability of different instrumental techniques, but also to evaluate the effectiveness of different procedures for sample digestion. Participants were invited to perform 'total' analyses involving, except in the case of neutron activation analysis, a simple partial extraction with 1M hydrochloric acid (2 hours, room temperature). This partial dissolution had a twofold purpose: (i) to differentiate between instrumental (plus contamination during work-up) errors and those resulting from method-specific (matrix) effects; and (ii) to evaluate a simple screening test for the more labile ('easily leached') fraction of trace elements of particular interest to environmental chemists. The present report presents the entire experimental data set and a statistical evaluation of the results for each parameter.

  4. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    Science.gov (United States)

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  5. Certification of Trace Element Mass Fractions in IAEA-457 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2013-01-01

    The primary goal of the IAEA Environment Laboratories in Monaco (NAEL) is to help Member States understand, monitor and protect the marine environment. The major impact exerted by large coastal cities on marine ecosystems is therefore of great concern to the IAEA and its Environment Laboratories. Given that marine pollution assessments of such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments, the NAEL has assisted national laboratories and regional laboratory networks through its Reference Products for Environment and Trade programme since the early 1970s. Quality assurance (QA), quality control (QC) and associated good laboratory practice are essential components of all marine environmental monitoring studies. QC procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess reliability and comparability of measurement data. QA can be realized by participation in externally organized laboratory performance studies, also known as interlaboratory comparisons, which compare and evaluate analytical performance and measurement capabilities of participating laboratories. Data that are not based on adequate QA/QC can be erroneous and their misuse can lead to incorrect environmental management decisions. A marine sediment sample with certified mass fractions for Ag, Al, As, Cd, Cr, Co, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sn, Sr, V and Zn was recently produced by the NAEL in the frame of a project between the IAEA and the Korea Institute of Ocean Science and Technology. This report describes the sample preparation methodology, the material homogeneity and stability study, the selection of laboratories, the evaluation of results from the certification campaign and the assignment of property values and their associated uncertainty. As a result, reference values for mass fractions and associated expanded

  6. The IAEA worldwide intercomparison exercises (1990-1997). Determination of trace elements in marine sediments and biological samples

    International Nuclear Information System (INIS)

    Coquery, M.; Carvalho, F.P.; Azemard, S.; Horvat, M.

    1999-01-01

    Four major worldwide intercomparison exercises for the determination of trace elements in various environmental matrices were completed by the IAEA Marine Environment Laboratory since 1990: SD-M-2/TM, deep sea marine sediment; IAEA-350, tuna fish homogenate; IAEA-356, contaminated coastal sediment and IAEA-140, sea plant (Fucus sp.). These intercomparison exercises aim at enabling individual laboratories to monitor their performance. The results of these exercises allowed us to make an overall evaluation of the quality of data provided for environmental assessment and to identify the trends of analytical performance in the determination of trace elements over the years. The number of participants in each exercise varied between 68 and 130, and permits statistical evaluation of the performance for a number of elements. For each intercomparison exercise, the performance of the participant laboratories was assessed by comparing reported results with established reference values calculating 'Z-scores'. The results show that for each sample matrix, the values reported by some laboratories were far from satisfactory in the earlier exercises, in particular for Cd, Cr and Pb. Nevertheless, over time, a general improvement of performance can clearly be seen for all elements. Moreover, there was a noticeable increase in the number of laboratories with good performance in the two most recent exercises, observed both for biological and for sediment matrices. However, the determination of trace elements such as Cd, Cr, Pb and Hg in low level environmental samples still remains a major challenge to the analysts. For this reason and in order to assess the current performance of laboratories for low environmental levels of contaminants, the future intercomparison exercises will concentrate on low level sediment and fish samples

  7. Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida

    Science.gov (United States)

    MacDonald, D.D.; Carr, R.S.; Eckenrod, D.; Greening, H.; Grabe, S.; Ingersoll, C.G.; Janicki, S.; Janicki, T.; Lindskoog, R.A.; Long, E.R.; Pribble, R.; Sloane, G.; Smorong, D.E.

    2004-01-01

    Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.

  8. A small-scale, portable method for extracting microplastics from marine sediments.

    Science.gov (United States)

    Coppock, Rachel L; Cole, Matthew; Lindeque, Penelope K; Queirós, Ana M; Galloway, Tamara S

    2017-11-01

    Microplastics (plastic particles, 0.1 μm-5 mm in size) are widespread marine pollutants, accumulating in benthic sediments and shorelines the world over. To gain a clearer understanding of microplastic availability to marine life, and the risks they pose to the health of benthic communities, ecological processes and food security, it is important to obtain accurate measures of microplastic abundance in marine sediments. To date, methods for extracting microplastics from marine sediments have been disadvantaged by complexity, expense, low extraction efficiencies and incompatibility with very fine sediments. Here we present a new, portable method to separate microplastics from sediments of differing types, using the principle of density floatation. The Sediment-Microplastic Isolation (SMI) unit is a custom-built apparatus which consistently extracted microplastics from sediments in a single step, with a mean efficiency of 95.8% (±SE 1.6%; min 70%, max 100%). Zinc chloride, at a density of 1.5 g cm -3 , was deemed an effective and relatively inexpensive floatation media, allowing fine sediment to settle whilst simultaneously enabling floatation of dense polymers. The method was validated by artificially spiking sediment with low and high density microplastics, and its environmental relevance was further tested by extracting plastics present in natural sediment samples from sites ranging in sediment type; fine silt/clay (mean size 10.25 ± SD 3.02 μm) to coarse sand (mean size 149.3 ± SD 49.9 μm). The method presented here is cheap, reproducible and is easily portable, lending itself for use in the laboratory and in the field, eg. on board research vessels. By employing this method, accurate estimates of microplastic type, distribution and abundance in natural sediments can be achieved, with the potential to further our understanding of the availability of microplastics to benthic organisms. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All

  9. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  10. Radionuclide distributions in sediments of marine areas used for dumping solidified radioactive wastes

    International Nuclear Information System (INIS)

    Bowen, V.T.; Livingston, H.D.

    A number of sediment samples, collected both by coring and by grabbing, from the shallow Pacific solid waste radioactive dump site and from the Atlantic dump site, have been analyzed carefully for a number of long-lived radionuclides. Both dump sites yielded samples that were expected to serve as controls, collected at considerable distance from any visually-located waste containers, as well as other samples that were collected close to identified waste drums, some of which showed evidence of physical disintegration. The Atlantic site shows evidence of wide-spread, general contamination, with 137 Cs and possibly with 241 Am. The Pacific site is perhaps less generally contaminated with 137 Cs, but shows evidence of widespread general contamination with several transuranic nuclides. Samples collected near to identified waste containers, at both sites, show that significant portions of leached radioactivity ( 137 Cs, 239 240 Pu, 238 Pu, 241 Am, 242 Cm, and 244 Cm) are immobilized by the sediments within very short distances, possibly measured in meters or tens of meters. The data also suggest considerable differences among the horizontal trajectories of the various leached transuranic elements. It is argued that careful study of nuclide distributions around such old waste containers would provide data of great value in helping to predict long-term behavior of radionuclides released to marine environments

  11. Contaminated sediment removal from a spent fuel storage canal

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    A leaking underground spent fuel transfer canal between a decommissioned reactor and a radiochemical separations building at the Oak Ridge National Laboratory (ORNL) was found to contain RCRA-hazardous and radioactive sediment. Closure of the Part B RCRA permitted facility required the use of an underwater robotic vacuum and a filtration-containment system to separate and stabilize the contaminated sediment. This paper discusses the radiological controls established to maintain contamination and exposures As Low As Reasonably Achievable (ALARA) during the sediment removal

  12. Technical guidelines for environmental dredging of contaminated sediments

    Science.gov (United States)

    2008-09-01

    This report provides technical guidelines for evaluating : environmental dredging as a sediment remedy component. This document : supports the Contaminated Sediment Remediation Guidance for : Hazardous Waste Sites, released by the U.S. Environmental ...

  13. Stabilization and in situ management of radioactive contaminated sediments of Port Hope harbor

    International Nuclear Information System (INIS)

    Dolinar, G.M.; Killey, R.W.D.; Philipase, K.E.

    1991-01-01

    This paper presents the findings of laboratory and field studies undertaken to assess the feasibility of in situ management of contaminated sediments in Port Hope harbor. The contaminated sediments stem from historic releases from an adjacent radium and uranium refinery, and uranium, arsenic, and radium are the most abundant contaminants. With improved emission controls, currently accumulating sediments have much lower levels of contamination, and the harbor waters currently meet water quality limits for the contaminants of concern. Within a few years, however, the continuing sedimentation will render the harbor unusable. Field tests have confirmed the dredging will result in incomplete removal of the contaminated sediments and that sediment suspension and the release of pores waters during dredging will produce harbor water contaminant concentrations that would require the treatment of large volumes of water. In addition, no remedial work can start until a site for the dredged material can be found. The local community inquired whether in situ burial of the sediments and abandonment of the harbor would provide safe disposal

  14. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Fonti, Viviana, E-mail: v.fonti@univpm.it; Dell' Anno, Antonio; Beolchini, Francesca

    2016-09-01

    Bioleaching is a consolidated biotechnology in the mining industry and in bio-hydrometallurgy, where microorganisms mediate the solubilisation of metals and semi-metals from mineral ores and concentrates. Bioleaching also has the potential for ex-situ/on-site remediation of aquatic sediments that are contaminated with metals, which represent a key environmental issue of global concern. By eliminating or reducing (semi-)metal contamination of aquatic sediments, bioleaching may represent an environmentally friendly and low-cost strategy for management of contaminated dredged sediments. Nevertheless, the efficiency of bioleaching in this context is greatly influenced by several abiotic and biotic factors. These factors need to be carefully taken into account before selecting bioleaching as a suitable remediation strategy. Here we review the application of bioleaching for sediment bioremediation, and provide a critical view of the main factors that affect its performance. We also discuss future research needs to improve bioleaching strategies for contaminated aquatic sediments, in view of large-scale applications. - Highlights: • Bioleaching may represent a sustainable strategy for contaminated dredged sediments • The performance is greatly influenced by several abiotic and biotic factors • Geochemical characteristics and metal partitioning have a key role • Sulphide minerals in the sediment are a favorable element • Microorganisms other than Fe/S oxidisers may open new perspectives.

  15. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?

    International Nuclear Information System (INIS)

    Fonti, Viviana; Dell'Anno, Antonio; Beolchini, Francesca

    2016-01-01

    Bioleaching is a consolidated biotechnology in the mining industry and in bio-hydrometallurgy, where microorganisms mediate the solubilisation of metals and semi-metals from mineral ores and concentrates. Bioleaching also has the potential for ex-situ/on-site remediation of aquatic sediments that are contaminated with metals, which represent a key environmental issue of global concern. By eliminating or reducing (semi-)metal contamination of aquatic sediments, bioleaching may represent an environmentally friendly and low-cost strategy for management of contaminated dredged sediments. Nevertheless, the efficiency of bioleaching in this context is greatly influenced by several abiotic and biotic factors. These factors need to be carefully taken into account before selecting bioleaching as a suitable remediation strategy. Here we review the application of bioleaching for sediment bioremediation, and provide a critical view of the main factors that affect its performance. We also discuss future research needs to improve bioleaching strategies for contaminated aquatic sediments, in view of large-scale applications. - Highlights: • Bioleaching may represent a sustainable strategy for contaminated dredged sediments • The performance is greatly influenced by several abiotic and biotic factors • Geochemical characteristics and metal partitioning have a key role • Sulphide minerals in the sediment are a favorable element • Microorganisms other than Fe/S oxidisers may open new perspectives

  16. Petroleum hydrocarbon concentrations in marine sediments along Nagapattinam - Pondicherry coastal waters, Southeast coast of India.

    Science.gov (United States)

    Kamalakannan, K; Balakrishnan, S; Sampathkumar, P

    2017-04-15

    In this present study, petroleum hydrocarbons were statistically analyzed in three different coastal sediment cores viz., (N1, P1 and P2) from the Southeast coast of Tamil Nadu, India to examine the viability of PHCs. The significant positive relationship between mud (silt+clay+sand) and PHC unveiled that high specific surface of area of mud content raise the level of PHCs. Cluster analysis was used to discriminate the sediment samples based on their degree of contamination. The present study shows that instead of expensive and destructive PHC chemical methods, magnetic susceptibility is found to be a suitable, cheap and rapid method for detailed study of PHC in marine sediments. This baseline PHCs data can be used for regular ecological monitoring and effective management for the mining and tourism related activities in the coastal ecosystem. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    Science.gov (United States)

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  18. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    KAUST Repository

    Amer, Ranya A.

    2015-02-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  19. Microbial dehalogenation of organohalides in marine and estuarine environments.

    Science.gov (United States)

    Zanaroli, Giulio; Negroni, Andrea; Häggblom, Max M; Fava, Fabio

    2015-06-01

    Marine sediments are the ultimate sink and a major entry way into the food chain for many highly halogenated and strongly hydrophobic organic pollutants, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenylethers (PBDEs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Microbial reductive dehalogenation in anaerobic sediments can transform these contaminants into less toxic and more easily biodegradable products. Although little is still known about the diversity of respiratory dehalogenating bacteria and their catabolic genes in marine habitats, the occurrence of dehalogenation under actual site conditions has been reported. This suggests that the activity of dehalogenating microbes may contribute, if properly stimulated, to the in situ bioremediation of marine and estuarine contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Radionuclide distributions in sediment cores retrieved from marine radioactive waste dumpsites

    International Nuclear Information System (INIS)

    Bowen, V.T.; Livingston, H.D.

    1981-01-01

    The concentrations, distributions and inventories of 55 Fe, 60 Co, 137 Cs, 134 Cs, 238 Pu, sup(239,240)Pu, 241 Am, 244 Cm and 242 Cm were measured in sediment samples collected in 1975-1976 from some Atlantic and Pacific sites used by the United States of America from 1946-1970 to dump solidified radioactive waste. Criteria used to distinguish waste-contaminated sediments from fallout-contaminated sediments include deviations of nuclide concentrations, inventories, internuclide ratios and depth distributions. The detection of nuclides absent from fallout is a further indicator. The data set used in comparing dumpsite sediment radioactivity with non-dumpsite radioactivity comes from a population of 11 North Atlantic cores in the depth range 2000-4000 m. A further set of 19 cores from the central North Pacific provides an interesting contrast to the data set for the shallower sediments closer to the coasts. The principal conclusion drawn from consideration of a large body of data, especially for 15 sediment cores from the Atlantic dumpsite, is that contamination is extremely localized with respect to the sources from which the waste is believed to originate. The majority of cores from both dumpsites are indistinguishable from populations of cores contaminated only by world-wide fallout. Clearly, contaminated sediments from both dumpsites show evidence of the introduction of waste radioactivity below the sediment surface before subsequent redistribution by in-sediment processes. These findings have significance for the selection and monitoring of sites to be used in connection with the ocean disposal of radioactive waste. (author)

  1. Simulation of contaminated sediment transport in White Oak Creek basin

    International Nuclear Information System (INIS)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-01-01

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ( 137 Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of 137 Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies

  2. Presence of uranium and plutonium in marine sediments from gulf of Tehuantepec, Mexico

    International Nuclear Information System (INIS)

    Ordonez-Regil, E.; Almazan-Torres, M.G.; Sanchez-Cabeza, J.A.; Ruiz-Fernandez, A.C.

    2013-01-01

    Uranium and plutonium were determined in the Tehua II-21 sediment core collected from the Gulf of Tehuantepec, Mexico. The analyses were performed using radiochemical separation and alpha spectroscopy. Activity concentrations of alpha emitters in the sediment samples were from 2.56 to 43.1 Bq/kg for 238 U, from 3.15 to 43.1 Bq/kg for 234 U and from 0.69 to 2.95 Bq/Kg for 239+240 Pu. Uranium activity concentration in marine sediment studied is generally high compared with those found in sediments from other marine coastal areas in the world. The presence of relatively high concentrations of anthropogenic plutonium in the sediments from the Gulf of Tehuantepec suggests that anthropogenic radionuclides have been incorporated and dispersed into the global marine environment. (author)

  3. Organic contamination of surface sediments in the metropolitan coastal zone of Athens, Greece: sources, degree, and ecological risk.

    Science.gov (United States)

    Kapsimalis, V; Panagiotopoulos, I P; Talagani, P; Hatzianestis, I; Kaberi, H; Rousakis, G; Kanellopoulos, T D; Hatiris, G A

    2014-03-15

    Bottom sediments represent a crucial component of the marine environment, since they constitute a habitat, a trophic resource, and a spawning place for various organisms. Unfortunately, the sediments of urban coastal areas are deeply impacted by anthropogenic activities that degrade their quality. In the Drapetsona-Keratsini metropolitan coastal zone of Athens, current industrial and shipping activities together with the effluents from a sewage outfall, which was in operation in the past, have resulted in one of the most contaminated sedimentary environments, in terms of organic compound loads, in Mediterranean. Exceptionally high concentrations of aliphatic hydrocarbons (up to 4457 μg g⁻¹), carcinogenic PAHs (up to 7284 ng g⁻¹), and organochlorines (up to 544 ng g⁻¹ for PCBs; up to 208 ng g⁻¹ for DDTs) constitute a major threat to the marine life of the associated Saronikos Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    Science.gov (United States)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a

  5. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Experimental investigation on consistency limits of cement and lime-stabilized marine sediments.

    Science.gov (United States)

    Wang, DongXing; Zentar, Rachid; Abriak, Nor Edine; Xu, WeiYa

    2012-06-01

    This paper presents the effects of treatments with cement and lime on the consistency limits of marine sediments dredged from Dunkirk port. The Casagrande percussion test and the fall cone test were used to determine the liquid limits of raw sediments and treated marine sediments. For the evaluation of the plastic limits, the results of the fall cone test were compared with those obtained by the rolling test method. The relationship between the water contents and the penetration depths for the determination of the liquid limit and the plastic limit was explored. Liquid limits at 15.5 mm and plastic limits at 1.55 mm seem to be a more appropriate choice for the studied marine sediments compared with the limits determined by other used prediction methods. Finally, the effect of cement treatment and lime treatment on the Casagrande classification of the studied sediments was investigated according to the different prediction results.

  7. A mycological baseline study based on a multidisciplinary approach in a coastal area affected by contaminated torrent input.

    Science.gov (United States)

    Capello, M; Carbone, C; Cecchi, G; Consani, S; Cutroneo, L; Di Piazza, S; Greco, G; Tolotti, R; Vagge, G; Zotti, M

    2017-06-15

    Fungi include a vast group of eukaryotic organisms able to colonise different natural, anthropised and extreme environments, including marine areas contaminated by metals. The present study aims to give a first multidisciplinary characterisation of marine bottom sediments contaminated by metals (Cd, Co, Cr, Cu, Ni, and Zn), originating in the water leakage from an abandoned Fe-Cu sulphide mine (Libiola, north-western Italy), and evaluate how the chemical and physical parameters of water and sediments may affect the benthic fungal communities. Our preliminary results showed the high mycodiversity of the marine sediments studied (13 genera and 23 species of marine fungi isolated), and the great physiological adaptability that this mycobiota evolved in reaction to the effects of the ecotoxic bottom sediment contamination, and associated changes in the seawater parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Caesium-137 in Marine Sediments of the Eastern Mediterranean from the Pre-Chernobyl Age to the Present

    International Nuclear Information System (INIS)

    Florou, Heleny; Evangeliou, Nikolaos; Kritidis, Panagiotis

    2011-01-01

    Caesium-137 (half-life 30.2 years) was first introduced into the marine environment as a result of the atmospheric nuclear weapon testing during 1953-1963. The second and largest contamination was the fallout after the Chernobyl accident in April 1986. Since 1986 the radiological status of the Mediterranean has been changed. During 1986 the average deposition of 137 Cs from the fallout in the Aegean Sea has been estimated to be approximately 4 kBq m -2 , whereas the respective value for the Ionian Sea (the area of 24,300 km 2 along the coasts) was 2.5 kBq m -2 . The total caesium ( 137 Cs + 134 Cs) input from Chernobyl fallout has been estimated to be 2400 TBq for the Black Sea, 820 TBq for the Aegean Sea and 600 TBq in the Ionian Sea (60 TBq in the zone of 50 km across the coasts). Although, the residence time of 137 Cs in seawater is long, it has been observed that 137 Cs has reached the bottom sediments, as the remaining period is long enough if compared to the estimated sinking time for the Mediterranean environment. The Mediterranean Sea is a semi-enclosed marine area, exchanging water, salt, heat and other physicochemical properties through the strait of Gibraltar with the Atlantic Ocean.The basin is characterized by low precipitation and high evaporation, which causes accumulation of contaminants in seawater and sediment. Taking into account the topography,one could note the importance of the eastern part of the Mediterranean,since it comprises a continuous source of interregional input (Black Sea). However,the motive of determining 137 Cs in the Greek marine territory was basic research (pre-Chernobyl age) and monitoring reasons (after Chernobyl accident). Several Greek marine systems have been examined throughout these years and the results are evaluated in the present study.

  9. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears

  10. Performance testing of the sediment-contaminant transport model, SERATRA, at different rivers

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.

    1982-04-01

    Mathematical models of sediment-contaminant migration in surface water must account for transport, intermedia transfer, decay and degradation, and transformation processes. The unsteady, two dimensional, sediment-contaminant transport code, SERATRA (Onishi, Schreiber and Codell 1980) includes these mechanisms. To assess the accuracy of SERATRA to simulate the sediment-contaminant transport and fate processes, the code was tested against one-dimensional analytical solutions, checked for its mass balance, and applied to field sites. The field application cases ranged from relatively simple, steady conditions to unsteady, nonuniform conditions for large, intermediate, and small rivers. It was found that SERATRA is capable of simulating sediment-contaminant transport under a wide range of conditions

  11. The occurrence of microplastic contamination in littoral sediments of the Persian Gulf, Iran.

    Science.gov (United States)

    Naji, Abolfazl; Esmaili, Zinat; Mason, Sherri A; Dick Vethaak, A

    2017-09-01

    Microplastics (MPs; distribution, and polymer types in littoral surface sediments of the Persian Gulf were performed. A two-step method, with precautions taken to avoid possible airborne contamination, was applied to extract MPs from sediments collected at five sites during low tide. MPs were found in 80% of the samples. Across all sites, fiber particles were the most dominate shape (88%), followed by films (11.2%) and fragments (0.8%). There were significant differences in MP particle concentration between sampling sites (p value polymer types. More than half of the observed MPs (56%) were in the size category of 1-4.7 mm length, with the remaining particles (44%) being in the size range of 10 μm to <1 mm. Compared to literature data from other regions, intertidal sediments in the Persian Gulf cannot be characterized as a hot spot for MP pollution. The present study could, however, provide useful background information for further investigations and management policies to understand the sources, transport, and potential effects on marine life in the Persian Gulf.

  12. Measurement of uranium and thorium in marine sediments

    International Nuclear Information System (INIS)

    Denden, Ibtihel

    2009-01-01

    Lakes, oceans and seas accumulate sediments. These sediments constitute a file of the last environmental conditions going up in some cases to thousands of years. In our study, we consulted this file by analyzing radioisotopes of Uranium and Thorium that are included in a carrot of marine sediment taken from the south of Mediterranean Sea. When we applied the technique developed by the maritime environment's laboratory of Monaco, we found spectra with bad resolutions. For this reason, the optimization of this protocol appeared necessary. (Author).

  13. Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J. [Keasling Lab, Biophysics Division, Lawrence Berkeley National Laboratory, Biophysics Division, 717 Potter Street, Bldlg 977 MC 3224, Berkeley, CA 94720-3224 (United States)]. E-mail yjtang@lbl.gov; Carpenter, Shelly D. [School of Oceanography, University of Washington, Seattle, WA 98195 (United States); Deming, Jody W. [School of Oceanography, University of Washington, Seattle, WA 98195 (United States); Krieger-Brockett, Barbara [Department of Chemical Engineering, University of Washington, Seattle, WA 98195 (United States)

    2006-11-15

    A whole-core injection method was used to determine depth-related rates of microbial mineralization of {sup 14}C-phenanthrene added to both contaminated and clean marine sediments of Puget Sound, WA. For 26-day incubations under micro-aerobic conditions, conversions of {sup 14}C-phenanthrene to {sup 14}CO{sub 2} in heavily PAH-contaminated sediments from two sites in Eagle Harbor were much higher (up to 30%) than those in clean sediments from nearby Blakely Harbor (<3%). The averaged {sup 14}C-phenanthrene degradation rates in the surface sediment horizons (0-3 cm) were more rapid (2-3 times) than in the deeper sediment horizons examined (>6 cm), especially in the most PAH polluted EH9 site. Differences in mineralization were associated with properties of the sediments as a function of sediment depth, including grain-size distribution, PAH concentration, total organic matter and total bacterial abundance. When strictly anaerobic incubations (in N{sub 2}/H{sub 2}/CO{sub 2} atmosphere) were used, the phenanthrene biodegradation rates at all sediment depths were two times slower than under micro-aerobic conditions, with methanogenesis observed after 24 days. The main rate-limiting factor for phenanthrene degradation under anaerobic conditions appeared to be the availability of suitable electron acceptors. Addition of calcium sulfate enhanced the first order rate coefficient (k {sub 1} increased from 0.003 to 0.006 day{sup -1}), whereas addition of soluble nitrate, even at very low concentration (<0.5 mM), inhibited mineralization. Long-term storage of heavily polluted Eagle Harbor sediment as intact cores under micro-aerobic conditions also appeared to enhance anaerobic biodegradation rates (k {sub 1} up to 0.11 day{sup -1})

  14. Coastal marine contamination in Colombia

    International Nuclear Information System (INIS)

    Garay T, Jesus A; Marin Z, Bienvenido; Velez G, Ana Maria

    2002-01-01

    The paper tries about the problem of the marine contamination and their marked influence in the health of the coastal ecosystems, of their narrow relationship with the growing increase of the populations that they inhabit the coastal areas and of equal it forms, with the increment of the domestic, agricultural and industrial activities that, for the wrong handling and inadequate control of the solid and liquid waste, they affect the marine environment with significant implications at ecological, socioeconomic level and of health. Another component of the environmental problem of the marine ecosystems in the country, resides in that don't exist in general normative on the chemical quality and sanitary for its marine waters, that which limits the categorization of this agreement ecosystems with its environmental quality, conditioning this the lack of adequate mechanisms to mitigate the causes that originate the deterioration of the quality of the Colombian coasts

  15. The response of Scirpus pungens to crude oil contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Longpre, D; Jaouich, A [Quebec Univ., Montreal, PQ (Canada); Jarry, V [Environment Canada, Montreal, PQ (Canada); Venosa, A D [US Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.; Lee, K [Fisheries and Oceans Canada, Mont Joli, PQ (Canada). Inst. Maurice Lamontagne; Suidan, M T [Cincinnati Univ., Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering

    1999-01-01

    An exposure study was conducted to determine the impacts of an oil spill on the plant Scirpus pungens and to determine potential recovery rates of the species in the event of an accidental spill within the St. Lawrence River. Scirpus pungens is an important wetland plant which is essential for control of coastal erosion and which provides a unique habitat for a variety of biota. Sediments contaminated with medium-light crude oil were used in this study. Transplants in oiled and unoiled sediments were maintained in greenhouses to monitor changes in plant height, growth and mortality over a 63 day period. Results showed that plants exposed to high concentrations of oiled sediment were much smaller than those exposed to lightly contaminated sediments. Elevated oil concentrations greatly decreased plant biomass. Mortality was highly correlated with oil concentration. Transplants were able to survive, grow and produce new shoots in sediments contaminated with crude oil in a range of concentrations comparable to those associated with oil spills.

  16. The response of Scirpus pungens to crude oil contaminated sediments

    International Nuclear Information System (INIS)

    Longpre, D.; Jaouich, A.; Jarry, V.; Venosa, A.D.; Lee, K.; Suidan, M.T.

    1999-01-01

    An exposure study was conducted to determine the impacts of an oil spill on the plant Scirpus pungens and to determine potential recovery rates of the species in the event of an accidental spill within the St. Lawrence River. Scirpus pungens is an important wetland plant which is essential for control of coastal erosion and which provides a unique habitat for a variety of biota. Sediments contaminated with medium-light crude oil were used in this study. Transplants in oiled and unoiled sediments were maintained in greenhouses to monitor changes in plant height, growth and mortality over a 63 day period. Results showed that plants exposed to high concentrations of oiled sediment were much smaller than those exposed to lightly contaminated sediments. Elevated oil concentrations greatly decreased plant biomass. Mortality was highly correlated with oil concentration. Transplants were able to survive, grow and produce new shoots in sediments contaminated with crude oil in a range of concentrations comparable to those associated with oil spills

  17. Neutron activation analysis studies of marine biological species and related marine sediments

    International Nuclear Information System (INIS)

    Guinn, V.P.; Di Casa, M.; de Goeij, J.J.M.; Young, D.R.

    1974-01-01

    To assess the effects, if any, of elemental pollution of the Pacific Ocean from the major Southern California sewage outfalls, samples of ocean sediments were obtained and specimens of Dover Sole were caught in a number of locations. Liver tissue samples from Dover Sole specimens were analyzed for 12 elements and sediment samples for 4 elements. Although a number of the elements were highly concentrated in the surface sediments in the heavily-polluted areas, the Dover Sole showed no evidence of picking up any of the 12 elements from these polluted sediments. Sediment profiles, versus depth, (0-34 cm) were also determined for As, Sb, Se, and Hg. Stemming partly from the results of the NSF Baseline Study, the Southern California Coastal Water Research Project (SCCWRP) became interested in a more intensive multi-element study of marine biological species and ocean sediments off the coast of Southern California. The purpose of this study was to assess the effects, if any, of a number of selected elements of interest being discharged into the Pacific Ocean from the principal sewage outfalls in the Southern California (Los Angeles) area upon marine biological species. The 12 elements selected for study were Cr, Fe, Co, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, and Hg. Since a number of these elements were not amenable to purely instrumental NAA measurements, a suitable post-irradiation radiochemical separation procedure was devised, thoroughly tested, and then applied to 39 samples of liver tissue from specimens of Dover Sole caught in non-polluted, slightly-polluted, fairly-polluted, and heavily-polluted areas along the coast. A number of surface sediment samples from these same locations were also analyzed, by both instrumental and radiochemical NAA. In the following sections, the samples analyzed are cited, the procedures developed and employed are described, the results obtained are presented, and the conclusions reached are discussed

  18. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Ranya A. Amer

    2015-01-01

    Full Text Available Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt. Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  19. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    Science.gov (United States)

    Amer, Ranya A.; El Gendi, Hamada M.; Goda, Doaa A.; Corsini, Anna; Cavalca, Lucia; Fusi, Marco; Daffonchio, Daniele; Abdel-Fattah, Yasser R.

    2015-01-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed. PMID:26273661

  20. Study of the sediment contamination levels in a mangrove swamp polluted by a marine oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.W.Y.; Ke, L.; Wong, Y.S.; Tam, N.F.Y. [City University of Hong Kong, Hong Kong SAR (China)

    2002-07-01

    The pattern of oil retention in mangrove sediments was studied in an effort to determine the temporal changes of petroleum hydrocarbon concentrations and composition several months after oil spills occur. Mangroves are inter-tidal wetlands in tropical and subtropical coastlines. Due to the anoxic and water logging characteristics of mangrove sediments, oil residues linger much longer in these wetlands compared to other coastal habitats. In November 2000, an accidental oil spill occurred in the Pearl River Estuary in which approximately 230,000 litres of crude oil was leaked from an oil tanker. The spilled oil migrated to the YiO, a typical mangrove swamp in Hong Kong Special Administrative Region. The degree of oil contamination in the sediments depended on the sediment texture and topography of the mangrove. The total petroleum hydrocarbon (TPH) concentration of the sediments in the most affected area near a freshwater creek flowing into the sea was 130 times higher than normal, one month after the accident. The mean TPH concentration was 2862 ug/g of dry sediment while the mean carbon preference index was 1.22 compared to the background value of 3.97. The temporal changes of the petroleum hydrocarbon level in 5 defined areas were examined for 7 months after the spill. The most polluted area next to the creek was determined to have very high TPH levels in the muddy sediments even 7 months after the spill. Oil residues infiltrated as deep as 20 cm into the sediments, making it more difficult to degrade than surface pollution and posing long-term adverse effects on trees in the area. It was determined that with growing industrialization and increasing demands for fuel and energy supply, mangroves in South China should be ranked as top priority for protection from oil spills. 19 refs., 6 tabs., 6 figs.

  1. Study of the sediment contamination levels in a mangrove swamp polluted by a marine oil spill

    International Nuclear Information System (INIS)

    Wong, T.W.Y.; Ke, L.; Wong, Y.S.; Tam, N.F.Y.

    2002-01-01

    The pattern of oil retention in mangrove sediments was studied in an effort to determine the temporal changes of petroleum hydrocarbon concentrations and composition several months after oil spills occur. Mangroves are inter-tidal wetlands in tropical and subtropical coastlines. Due to the anoxic and water logging characteristics of mangrove sediments, oil residues linger much longer in these wetlands compared to other coastal habitats. In November 2000, an accidental oil spill occurred in the Pearl River Estuary in which approximately 230,000 litres of crude oil was leaked from an oil tanker. The spilled oil migrated to the YiO, a typical mangrove swamp in Hong Kong Special Administrative Region. The degree of oil contamination in the sediments depended on the sediment texture and topography of the mangrove. The total petroleum hydrocarbon (TPH) concentration of the sediments in the most affected area near a freshwater creek flowing into the sea was 130 times higher than normal, one month after the accident. The mean TPH concentration was 2862 ug/g of dry sediment while the mean carbon preference index was 1.22 compared to the background value of 3.97. The temporal changes of the petroleum hydrocarbon level in 5 defined areas were examined for 7 months after the spill. The most polluted area next to the creek was determined to have very high TPH levels in the muddy sediments even 7 months after the spill. Oil residues infiltrated as deep as 20 cm into the sediments, making it more difficult to degrade than surface pollution and posing long-term adverse effects on trees in the area. It was determined that with growing industrialization and increasing demands for fuel and energy supply, mangroves in South China should be ranked as top priority for protection from oil spills. 19 refs., 6 tabs., 6 figs

  2. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    Science.gov (United States)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  3. Occurrence and sorption properties of arsenicals in marine sediments

    DEFF Research Database (Denmark)

    Fauser, Patrik; Sanderson, Hans; Hedegaard, Rikke Susanne Vingborg

    2013-01-01

    in marine sediments when conditions are similar to the Baltic Sea. At locations with significant anthropogenic point sources or where the local geology contains volcanic rock and sulphide mineral deposits, there may be significantly elevated arsenic concentrations, and it is recommended to determine on......The content of total arsenic, the inorganic forms: arsenite (As(III)) and arsenate (As(V)), the methylated forms: monomethylarsonic acid and dimethylarsinic acid (DMA), trimethylarsenic oxide, tetramethylarsenonium ion and arsenobetaine was measured in 95 sediment samples and 11 pore water samples...... in the Baltic Sea and other parts of the world. Existing data for on-site measurements of sorption coefficients (Kd) of arsenicals in marine and freshwater sediments show large variability from 1,000 L/kg. In this work, calculated sorption coefficients (Kd and Koc) for As(III+V) showed significant correlation...

  4. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-456 Marine Sediment Samples

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of prime concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess t h e reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. A marine sediment sample with certified mass amount contents for aluminium, arsenic, cadmium chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, vanadium and zinc was recently produced by the IAEA Environment Laboratories. This publication presents the sample preparation methodology, including material homogeneity and the stability study, the selection of laboratories, the evaluation of results from the certification campaign, and the assignment of property values and their associated uncertainty. As a result, certified values for mass fractions and associated expanded uncertainty were

  5. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data.

  6. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    International Nuclear Information System (INIS)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data

  7. Necromass as a source of energy to microorganisms in marine sediments.

    Science.gov (United States)

    Bradley, J.; Amend, J.; LaRowe, D.

    2017-12-01

    Marine sediments constitute one of the largest, most energy-limited biospheres on Earth. Despite increasing exploration and interest characterizing microbial communities in marine sediments, the production and role of microbial dead-matter (necromass) has largely been overlooked. Necromass is produced on a global scale, yet its significance as a power source to heterotrophic microorganisms remains unknown. We developed a physical, bio-energetic and geochemical model to quantify the total power supply from necromass oxidation and the total power demand of living microorganisms in marine sediments. This model is first applied to sediments from the oligotrophic South Pacific Gyre (SPG), where organic carbon and biomass concentrations are extremely low, yet microorganisms persist for millions of years in some of the lowest energy states on Earth. We show that necromass does not supply sufficient power to support the total demands of the living community (maintenance demands of microorganisms in marine sediments for up to 60,000 years following burial. Our model assumes that all counted cells are viable. Yet, if only a fraction of counted cells are alive, the role of necromass as an electron donor in fueling microbial metabolisms is even greater. This new insight requires a reassessment of carbon fluxes in the deep biosphere. By extension, we also demonstrate a mechanism for microbial communities to persist by oxidizing necromass over geological timescales, and thereby endure unfavorable, low-energy settings that might be analogous to conditions on early Earth and on other planetary bodies.

  8. Assessing sediment contamination using six toxicity assays

    OpenAIRE

    Allen G. BURTON Jr.; Carolyn ROWLAND; Renato BAUDO; Monica BELTRAMI

    2001-01-01

    An evaluation of sediment toxicity at Lake Orta, Italy was conducted to compare a toxicity test battery of 6 assays and to evaluate the extent of sediment contamination at various sediment depths. Lake Orta received excessive loadings of copper and ammonia during the 1900’s until a large remediation effort was conducted in 1989-90 using lime addition. Since that time, the lake has shown signs of a steady recovery of biological communities. The study results showed acute toxicity still exists ...

  9. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nørgaard Schmidt, Stine; Mäenpää, Kimmo

    Hydrophobic organic contaminants (HOCs) reaching the aquatic environment are largely stored in sediments. The risk of contaminated sediments is challenging to assess since traditional exhaustive extraction methods yield total HOC concentrations, whereas freely dissolved concentrations (Cfree......) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of polluted sediments. Glass jars with µm-thin silicone coatings on the inner walls can be used for ex situ equilibration while a device housing several silicone-coated fibers can be used for in situ equilibration. In both cases, parallel sampling with varying silicone thicknesses can be applied to confirm...

  10. Radionuclides in marine sediments - Distribution and processes

    Energy Technology Data Exchange (ETDEWEB)

    Rudjord, A.L. [Norwegian Radiation Protection Authority, Oesteraas (Norway); Oughton, D. [Agricultural Univ., Aas (Norway); Bergan, T.D.; Christensen, G. [IFE, Kjeller (Norway)

    2001-04-01

    The NO-1 part of EKO-1 involved both laboratory and field studies. The laboratory studies have been discribed earlier in this report. The following is a summary of the field studies. At station 26 (Norwegian Sea) the sediments seem to be influenced by radiocesium from the Chernobyl accident. This may be due to direct fallout deposition to the sea surface and followed by a rapid sinking and sedimentation. At station 16 (North Sea) some influence from Sellafield plutonium is suggested, as the plutonium ratio is significantly higher (0.07-0.09) than would be expected from global fallout (0.03). Sedimentation rates based on analysis of {sup 210}Pb or {sup 210}Po varied between 0.03 cm/year - 0.25 cm/year. A surprisingly low sedimentation rate was found in the tenisey Bay (0.05 cm/year). It is possible that the dating method is less suited in this area, due to the long winter ice cover. In general, the rough estimates on K{sub d} values for {sup 137}Cs obtained empirically are highter than K{sub d} values obtained from the alboratory studies. This may be due to the fact that the 2 cm surface sediment in most cases has accumulated over many years, carrying contamination from the early eighties when levels of {sup 137}Cs in the sea water were higher. The {sup 137}Cs in the sediments it now fixed, or being remobilized only very slowly. Burial of the contamination by sedimentation may also make it unavailable for exchange with free water masses. (EHS)

  11. Radionuclides in marine sediments - Distribution and processes

    International Nuclear Information System (INIS)

    Rudjord, A.L.; Oughton, D.; Bergan, T.D.; Christensen, G.

    2001-01-01

    The NO-1 part of EKO-1 involved both laboratory and field studies. The laboratory studies have been discribed earlier in this report. The following is a summary of the field studies. At station 26 (Norwegian Sea) the sediments seem to be influenced by radiocesium from the Chernobyl accident. This may be due to direct fallout deposition to the sea surface and followed by a rapid sinking and sedimentation. At station 16 (North Sea) some influence from Sellafield plutonium is suggested, as the plutonium ratio is significantly higher (0.07-0.09) than would be expected from global fallout (0.03). Sedimentation rates based on analysis of 210 Pb or 210 Po varied between 0.03 cm/year - 0.25 cm/year. A surprisingly low sedimentation rate was found in the tenisey Bay (0.05 cm/year). It is possible that the dating method is less suited in this area, due to the long winter ice cover. In general, the rough estimates on K d values for 137 Cs obtained empirically are highter than K d values obtained from the alboratory studies. This may be due to the fact that the 2 cm surface sediment in most cases has accumulated over many years, carrying contamination from the early eighties when levels of 137 Cs in the sea water were higher. The 137 Cs in the sediments it now fixed, or being remobilized only very slowly. Burial of the contamination by sedimentation may also make it unavailable for exchange with free water masses. (EHS)

  12. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Laboratory experiments on the transfer dynamics of plutonium from marine sediments to sea water and to marine organisms

    International Nuclear Information System (INIS)

    Mo, T.; Lowman, F.G.

    1975-01-01

    The leachability of 239 240 Pu from a fine contaminated calcareous sediment to aerated open sea water and to anoxic sea water was measured. The distribution coefficient for 239 240 Pu from sediment to sea water was 6.1 x 10 -5 for aerated water and 2.6 x 10 -6 for anoxic water. Experiments on the uptake of 239 240 Pu by the clams Donax denticulatus, and Lucina pectinata, were done in aquaria containing kilogram quantities of sediment from the Bravo Crater at Bikini Atoll. The concentration factor for 239 240 Pu by the soft parts of these clams was about 200. All the plutonium taken up in the soft parts was associated with the gill, mantle and siphon. No plutonium was detected in the adductor muscles or hepatopancreas. The smooth surfaces of the shells of the Donax did not show any detectable plutonium, but the rough shell surfaces of the Lucina concentrated plutonium by a factor of 1.10 x 10 4 over that in the sea water. Marine periphyton cultured on glass plates in an aquarium concentrated 239 240 Pu by a factor of about 7 x 10 3 over that in the sea water. (U.S.)

  14. An evaluation of contaminated estuarine sites using sediment quality guidelines and ecological assessment methodologies.

    Science.gov (United States)

    Fulton, M; Key, P; Wirth, E; Leight, A K; Daugomah, J; Bearden, D; Sivertsen, S; Scott, G

    2006-10-01

    Toxic contaminants may enter estuarine ecosystems through a variety of pathways. When sediment contaminant levels become sufficiently high, they may impact resident biota. One approach to predict sediment-associated toxicity in estuarine ecosystems involves the use of sediment quality guidelines (ERMs, ERLs) and site-specific contaminant chemistry while a second approach utilizes site-specific ecological sampling to assess impacts at the population or community level. The goal of this study was to utilize an integrated approach including chemical contaminant analysis, sediment quality guidelines and grass shrimp population monitoring to evaluate the impact of contaminants from industrial sources. Three impacted sites and one reference site were selected for study. Grass shrimp populations were sampled using a push-netting approach. Sediment samples were collected at each site and analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Contaminant levels were then compared to sediment quality guidelines. In general, grass shrimp population densities at the sites decreased as the ERM quotients increased. Grass shrimp densities were significantly reduced at the impacted site that had an ERM exceedance for chromium and the highest Mean ERM quotient. Regression analysis indicated that sediment chromium concentrations were negatively correlated with grass shrimp density. Grass shrimp size was reduced at two sites with intermediate levels of contamination. These findings support the use of both sediment quality guidelines and site-specific population monitoring to evaluate the impacts of sediment-associated contaminants in estuarine systems.

  15. Synchrotron Analysis Of Metal Immobilization In Sediments

    Science.gov (United States)

    Heavy metal contamination is a problem at many marine and fresh water environments as a result of industrial and military activities. Metals such as lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) are common contaminants in sediments due to many Navy activities. The mobile...

  16. Passive sampling methods for contaminated sediments: State of the science for organic contaminants

    Science.gov (United States)

    Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu

    2014-01-01

    This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  17. Radioactivity of the Bega sediment-case study of a contaminated canal

    International Nuclear Information System (INIS)

    Bikit, I.; Varga, E.; Conkic, Lj.; Slivka, J.; Mrda, D.; Curcic, S.; Zikic-Todorovic, N.; Veskovic, M.

    2005-01-01

    The Bega canal is one among many heavily polluted canals in Vojvodina (the northern province of Serbia and Montenegro). In the framework of the revitalization of this canal, the radionuclide content of the sediment was investigated in order to support the safe deposition after excavation. It was found that, in comparison with the Danube sediment and Vojvodina soil, the Bega sediment is contaminated with 238 U and 137 Cs. The origin of this contamination is discussed. No traces of contamination by nuclear power plants in the region were found, while the presence of technologically enhanced, natural occurring radioactive materials (TENORM) was proved

  18. Marine dredged sediments as new materials resource for road construction.

    Science.gov (United States)

    Siham, Kamali; Fabrice, Bernard; Edine, Abriak Nor; Patrick, Degrugilliers

    2008-01-01

    Large volumes of sediments are dredged each year in Europe in order to maintain harbour activities. With the new European Union directives, harbour managers are encouraged to find environmentally sound solutions for these materials. This paper investigates the potential uses of Dunkirk marine dredged sediment as a new material resource for road building. The mineralogical composition of sediments is evaluated using X-ray diffraction and microscopy analysis. Since sediments contain a high amount of water, a dewatering treatment has been used. Different suitable mixtures, checking specific geotechnical criteria as required in French standards, are identified. The mixtures are then optimized for an economical reuse. The mechanical tests conducted on these mixtures are compaction, bearing capacity, compression and tensile tests. The experimental results show the feasibility of the beneficial use of Dunkirk marine dredged sand and sediments as a new material for the construction of foundation and base layers for roads. Further research is now needed to prove the resistance of this new material to various environmental impacts (e.g., frost damage).

  19. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    as substrates and NO3- as electron acceptor, in the presence of (FeS2)-Fe-55, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of (FeS2)-Fe-55, could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds......Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3...... marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3-, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S-0...

  20. Contaminant bioavailability in soils, sediments, and aquatic environments

    OpenAIRE

    Traina, Samuel J.; Laperche, Valérie

    1999-01-01

    The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxici...

  1. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  2. The assessment of sediment contamination in an acid mine drainage impacted river in Gauteng (South Africa) using three sediment bioassays

    OpenAIRE

    2015-01-01

    M.Sc. (Zoology) Sediment contamination occurs as a result of various anthropogenic activities; mainly through mining-, agricultural- and industrial practices. Many of the contaminants arising from these activities enter the aquatic system and precipitate from the surrounding water, binding to sediment particles. In the sediment compartment, these contaminants reach concentrations much higher than in solution with the overlying water. Even though the quality of the overlying water may prove...

  3. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities

    KAUST Repository

    Hamdan, Hamdan Z.

    2016-10-09

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway, employment of anode as terminal electron acceptor (TEA) under inhibited sulfate reducing bacteria activity, and combined sulfate and anode usage as electron acceptors. A significant removal of naphthalene and 2-methylnaphthalene was observed at early stages of incubation in all treatments and was attributed to their high volatility. In the case of phenanthrene, a significant removal (93.83 ± 1.68%) was measured in the closed circuit SMFCs with the anode acting as the main TEA and under combined anode and sulfate reduction conditions (88.51 ± 1.3%). A much lower removal (40.37 ± 3.24%) was achieved in the open circuit SMFCs operating with sulfate reduction as a major biodegradation pathway. Analysis of the anodic bacterial community using 16S rRNA gene pyrosequencing revealed the enrichment of genera with potential exoelectrogenic capability, namely Geoalkalibacter and Desulfuromonas, on the anode of the closed circuit SMFCs under inhibited SRB activity, while they were not detected on the anode of open circuit SMFCs. These results demonstrate the role of the anode in enhancing PAHs biodegradation in contaminated marine sediments and suggest a higher system efficiency in the absence of competition between microbial redox processes (under SRB inhibition), namely due to the anode enrichment with exoelectrogenic bacteria, which is a more energetically favorable mechanism for PAHs oxidation than sulfate.

  4. Passive sampling methods for contaminated sediments

    DEFF Research Database (Denmark)

    Peijnenburg, Willie J.G.M.; Teasdale, Peter R.; Reible, Danny

    2014-01-01

    “Dissolved” concentrations of contaminants in sediment porewater (Cfree) provide a more relevant exposure metric for risk assessment than do total concentrations. Passive sampling methods (PSMs) for estimating Cfree offer the potential for cost-efficient and accurate in situ characterization...

  5. Mobilization of radionuclides from sediments. Potential sources to Arctic waters

    International Nuclear Information System (INIS)

    Oughton, D.H.; Boerretzen, P.; Mathisen, B.; Salbu, B.; Tronstad, E.

    1995-01-01

    Contaminated soils and sediments can act as secondary sources of radionuclides to Arctic waters. In cases where the original source of contamination has ceased or been greatly reduced (e.g., weapons' testing, waste discharges from Mayak and Sellafield) remobilization of radionuclides from preciously contaminated sediments increases in importance. With respect to Arctic waters, potential secondary sources include sediments contaminated by weapons' testing, by discharges from nuclear installations to seawater, e.g., the Irish Sea, or by leakages from dumped waste containers. The major land-based source is run-off from soils and transport from sediments in the catchment areas of the Ob and Yenisey rivers, including those contaminated by Mayak discharges. Remobilization of radionuclides is often described as a secondary source of contamination. Whereas primary sources of man-made radionuclides tend to be point sources, secondary sources are usually more diffuse. Experiments were carried out on marine (Kara Sea, Irish Sea, Stepovogo and Abrosimov Fjords), estuarine (Ob-Yenisey) and dirty ice sediments. Total 137 Cs and 90 Sr concentrations were determined using standard radiochemical techniques. Tracer studies using 134 Cs and 85 Sr were used to investigate the kinetics of radionuclide adsorption and desorption. It is concluded that 90 Sr is much less strongly bound to marine sediments than 137 Cs, and can be chemically mobilized through ion exchange with elements is seawater. Radiocaesium is strongly and rapidly fixed to sediments. Discharges of 137 Cs to surface sediments (i.e., from dumped containers) would be expected to be retained in sediments to a greater extent than discharges to sea-waters. Physical mobilization of sediments, for example resuspension, may be of more importance for transport of 137 Cs than for 90 Sr. 7 refs., 4 figs

  6. Avalanches of sediment form deep-marine depositions

    NARCIS (Netherlands)

    Pohl, Florian|info:eu-repo/dai/nl/34309424X

    2017-01-01

    The deep ocean is the largest sedimentary system basin on the planet. It serves as the primary storage point for all terrestrially weathered sediment that makes it beyond the near-shore environment. These deep-marine offshore deposits have become a focus of attention in exploration due to the

  7. Calculating background levels for ecological risk parameters in toxic harbor sediment

    Science.gov (United States)

    Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.

    2007-01-01

    Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated

  8. Characterization of trace organic contaminants in marine sediment from Yeongil Bay, Korea: 2. Dioxin-like and estrogenic activities

    International Nuclear Information System (INIS)

    Koh, Chul-Hwan; Khim, Jong Seong; Villeneuve, Daniel L.; Kannan, Kurunthachalam; Giesy, John P.

    2006-01-01

    This study employed mechanism-specific in vitro bioassays to help characterize the occurrence and distribution of dioxin-like and estrogenic contaminants in sediment from Yeongil Bay, Korea. Approximately 85% of the sediments tested induced significant dioxin-like activity in the H4IIE-luc bioassay, while approximately 50% induced significant estrogenic activity in the MVLN bioassay. Instrumentally-derived estimates of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 17β-estradiol equivalents tended to underestimate the magnitude of response observed in the bioassays, suggesting that compounds detected by chemical analysis did not account for all the activity associated with Yeongil Bay sediments, or that non-additive interactions were occurring. The greatest dioxin-like and estrogenic activity was associated with the mid-polarity Florisil fractions (F2) expected to contain polycyclic aromatic hydrocarbons (PAHs) as well as chlorinated dioxins and furans. As in previous studies of Korean coastal sediment, more polar fractions (F3) generated more modest responses both in terms of magnitude and the number of samples responding. -- In vitro bioassay responses observed for Yeongil Bay surficial sediment and sediment core extracts showed the greatest dioxin-like and estrogenic activities in the mid-polarity fraction containing PAHs as well as chlorinated dioxins and furans

  9. Heavy metals in the surface sediments of the northern portion of the South China Sea shelf: distribution, contamination, and sources.

    Science.gov (United States)

    Xu, Fangjian; Tian, Xu; Yin, Feng; Zhao, Yongfang; Yin, Xuebo

    2016-05-01

    The concentrations of seven heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) in the surface sediments of the northern portion of the South China Sea (SCS) shelf collected between 2012 and 2014 were measured to assess the potential contamination levels and determine the environmental risks that are associated with heavy metals in the area. The measured concentrations in the sediments were 12.4-72.5 mg kg(-1) for Cr, 4.4-29.2 mg kg(-1) for Ni, 7.1-38.1 mg kg(-1) for Cu, 19.3-92.5 mg kg(-1) for Zn, 1.3-12.1 mg kg(-1) for As, 0.03-0.24 mg kg(-1) for Cd, and 8.5-24.4 mg kg(-1) for Pb. These results indicate that the heavy metal concentrations in the sediments generally meet the China Marine Sediment Quality criteria and suggest that the overall sediment quality of the northern portion of the SCS shelf has not been significantly impacted by heavy metal pollution. However, the enrichment factor (EF) and geoaccumulation index (I geo) clearly show that elevated concentrations of Cd occur in the region. A Pearson's correlation analysis was performed, and the results suggest that Cr, Ni, Cu, and Zn have a natural origin; Cd is primarily sourced from anthropogenic activities, with partial lithogenic components, and As and Pb may be affected by factors such as varying input sources or pathways (i.e., coal burning activities and aerosol precipitation). Heavy metal contamination mostly occurred to the east of Hainan Island, mainly because of the rapid economic and social developments in the Hainan Island. The results of this study will be useful for marine environment managers for the remediation of pollution sources.

  10. Geophysical characterization of contaminated muddy sediments

    International Nuclear Information System (INIS)

    McDermott, I. R.; English, G. E.

    1997-01-01

    A non-intrusive, seismic subbottom profile survey of pond sediments was conducted on a former U.S.Naval Facility at Argentia, Newfoundland, to characterize the nature and extent of contamination. An IKB Seistec boomer was used in conjunction with C-CORE's HI-DAPT digital data acquisition and processing system and differential GPS system. The survey was successful in locating regions of soft muddy sediments and in determining the thickness of these deposits. Subsurface buried objects, which are potential sources of pollution, were also identified. Intrusive profiling of the sediment was done with a new tool, the Soil Stiffness Probe, which combines two geophysical measurement systems to determine bulk density and shear stiffness. The muddy sediments were found to be highly 'fluidized', indicating that they could be easily removed with a suction dredge. 4 refs., 5 figs

  11. Determination of distribution coefficient (Kd's) of some artificial and naturally occurring radionuclide in fresh and marine coastal water sediment

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S; Haleem, M. A.

    2004-12-01

    Distribution coefficients of artificial and natural radionuclides in fresh and marine water sediment are used in modeling radionuclide dispersion in water system, and the radiation risk and environmental investigating of impact of radioactive emissions, due to routine operations of nuclear plants or disposal and burial of radioactive waste in the environment. In the present work, distribution coefficient of uranium, lead, polonium, radium (naturally occurring radionuclides that may be emitted into the Syrian environment by the phosphate and oil industry with relatively high concentrations) and caesium 137 and strontium 85, in fresh water sediment (Euphrates River, Orantos River and Mzzerib Lake) and marine coastal water (Lattakia, Tartous and Banias). Distribution coefficients were found to vary between (5.8-17.18)*10 3 , (2.2-8.11)*10 3 , (0.22-2.08)*10 3 , (0.16-0.19)*10 3 , (0.38-0.69)*10 3 and 49-312 for polonium, lead, uranium, radium, cesium and strontium respectively. Results have indicated that most measurement distribution coefficients in the present study were lower than those values reported in IAEA documents for marine coastal sediment. In addition, variations of Kd's with aqueous phase composition and sediment elemental and mineralogical composition and its total organic materials content have been studied, where liner correlation coefficients for each isotope with different parameters have been determined. The obtained data reported in this study can be used for radioactive contaminants dispersion and transfer in Syrian river, lake and coast to assess risks to public due to discharges of the phosphate and oil industry into the Syrian environment. (Authors)

  12. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework.

    Science.gov (United States)

    Alava, Juan José; Cheung, William W L; Ross, Peter S; Sumaila, U Rashid

    2017-10-01

    Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the

  13. Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments

    NARCIS (Netherlands)

    Rico Rico, A.; Temara, A.; Behrends, T.; Hermens, J.L.M.

    2009-01-01

    Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment

  14. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  15. Certification of Trace Element Mass Fractions in IAEA-458 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2013-01-01

    The primary goal of the IAEA Environment Laboratories (NAEL) is to help Member States understand, monitor and protect the marine environment. The major impact exerted by large coastal cities on marine ecosystems is therefore of great concern to the IAEA and its Environment Laboratories. Given that marine pollution assessments of such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments, the NAEL has assisted national laboratories and regional laboratory networks through its Reference Products for Environment and Trade programme since the early 1970s. Quality assurance (QA), quality control (QC) and associated good laboratory practice are essential components of all marine environmental monitoring studies. QC procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess reliability and comparability of measurement data. QA can be realized by participation in externally organized laboratory performance studies, also known as interlaboratory comparisons, which compare and evaluate the analytical performance and measurement capabilities of participating laboratories. Data that are not based on adequate QA/QC can be erroneous, and their misuse can lead to incorrect environmental management decisions. This report describes the sample preparation methodology, material homogeneity and stability study, selection of laboratories, evaluation of results from the certification campaign and assignment of property values and their associated uncertainty. As a result, reference values for mass fractions and associated expanded uncertainty for 16 trace elements (Al, As, Cd, Cr, Co, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sr, Sn, V and Zn) in marine sediment were established

  16. Isolation of naphthalene-degrading bacteria from tropical marine sediments

    International Nuclear Information System (INIS)

    Zhuang, W.-Q.; Tay, J.-H.; Maszenan, A.M.; Tay, S.T.-L.

    2003-01-01

    Oil pollution is a major environmental concern in many countries, and this has led to a concerted effort in studying the feasibility of using oil-degrading bacteria for bioremediation. Although many oil-degrading bacteria have been isolated from different environments, environmental conditions can impose a selection pressure on the types of bacteria that can reside in a particular environment. This study reports the successful isolation of two indigenous naphthalene-degrading bacteria from oil-contaminated tropical marine sediments by enrichment culture. Strains MN-005 and MN-006 were characterized using an extensive range of biochemical tests. The 16S ribosomal deoxyribonucleic acid (rDNA) sequence analysis was also performed for the two strains. Their naphthalene degradation capabilities were determined using gas chromatography and DAPI counting of bacterial cells. Strains MN-005 and MN-006 are phenotypically and phylogenetically different from each other, and belong to the genera Staphylococcus and Micrococcus, respectively. Strains MN-005 and MN-006 has maximal specific growth rates (μ max ) of 0.082±0.008 and 0.30±0.02 per hour, respectively, and half-saturation constants (K s ) of 0.79±0.10 and 2.52±0.32 mg per litre, respectively. These physiological and growth studies are useful in assessing the potential of these indigenous isolates for in situ or ex situ naphthalene pollutant bioremediation in tropical marine environments. (author)

  17. Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis

    International Nuclear Information System (INIS)

    Johnston, Emma L.; Roberts, David A.

    2009-01-01

    Biodiversity of marine ecosystems is integral to their stability and function and is threatened by anthropogenic processes. We conducted a literature review and meta-analysis of 216 studies to understand the effects of common contaminants upon diversity in various marine communities. The most common diversity measures were species richness, the Shannon-Wiener index (H') and Pielou evenness (J). Largest effect sizes were observed for species richness, which tended to be the most sensitive index. Pollution was associated with marine communities containing fewer species or taxa than their pristine counterparts. Marine habitats did not vary in their susceptibility to contamination, rather a ∼40% reduction in richness occurred across all habitats. No class of contaminant was associated with significantly greater impacts on diversity than any other. Survey studies identified larger effects than laboratory or field experiments. Anthropogenic contamination is strongly associated with reductions in the species richness and evenness of marine habitats. - Contamination substantially reduces the biodiversity of marine communities in all major habitat types and across all major contaminant classes.

  18. In situ evaluation of wastewater discharges and the bioavailability of contaminants to marine biota

    Energy Technology Data Exchange (ETDEWEB)

    Maranho, L.A., E-mail: lmaranho@gmail.com [Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Polygon Río San Pedro, s/n, 11510 Puerto Real, Cádiz (Spain); Physical Chemical Department, Faculty of Marine and Environmental Sciences, University of Cádiz, Polygon Río San Pedro, s/n, 11510 Puerto Real, Cádiz (Spain); André, C. [Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill Street, 7th floor, H2Y 2E7 Montreal, Quebec (Canada); DelValls, T.A. [Physical Chemical Department, Faculty of Marine and Environmental Sciences, University of Cádiz, Polygon Río San Pedro, s/n, 11510 Puerto Real, Cádiz (Spain); Gagné, F. [Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill Street, 7th floor, H2Y 2E7 Montreal, Quebec (Canada); Martín-Díaz, M.L. [Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Polygon Río San Pedro, s/n, 11510 Puerto Real, Cádiz (Spain); Physical Chemical Department, Faculty of Marine and Environmental Sciences, University of Cádiz, Polygon Río San Pedro, s/n, 11510 Puerto Real, Cádiz (Spain)

    2015-12-15

    Marine sediment quality of wastewater discharges areas was determined by using in situ caged clams Ruditapes philippinarum taking into account the seasonality. Clams were caged in sediment directly affected by wastewater discharges at four sites (P1, P2, P3, P4) at the Bay of Cádiz (SW, Spain), and one reference site (P6). Exposure to contaminated sediments was confirmed by measurement of metals and As, PAH, pharmaceutical products and surfactants (SAS) in bottom sediments. Biological effects were determined by following biomarkers of exposure (activities of 7-ethoxyresorufin O-deethylase — EROD, dibenzylfluorescein dealkylase — DBF, glutathione S-transferase — GST, glutathione peroxidase — GPX, glutathione reductase — GR and acetylcholinesterase — AChE), effects (lysosomal membrane stability — LMS, DNA damage and lipid peroxidation — LPO), energy status (total lipids — TLP and mitochondrial electron transport — MET), and involved in the mode of action of pharmaceutical products (monoamine oxidase activity — MAO, alkali-labile phosphates — ALP levels and cyclooxygenase activity — COX). In winter, urban effluents were detoxified by phase I biotransformation (CYP3A-like activity), phase II (GST), and the activation of antioxidant defence enzymes (GR). Urban effluents lead to the detoxification metabolism (CYP1A-like), oxidative effects (LPO and DNA damage), neurotoxicity (AChE) and neuroendocrine disruption (COX and ALP levels) involved in inflammation (P1 and P2) and changes in reproduction as spawning delay (P3 and P4) in clams exposed in summer. Adverse effects on biota exposed to sediment directly affected by wastewater discharges depend on the chemical contamination level and also on the reproductive cycle according to seasonality. - Highlights: • Sediment quality of wastewater discharges evaluated by caged clams R. philippinarum • Exposure was confirmed by measurement of metal and organic compounds in sediments. • Winter

  19. Increased carbon uptake in marine sediment enabled by naturally occurring electrical conductors

    Science.gov (United States)

    Nielsen, M. E.; Cahoon, D. P.; Girguis, P. R.

    2011-12-01

    Reduction-oxidation (redox) gradients are common across marine sediment-water interfaces and result from microbially-mediated reactions such as the oxidation of organic matter coupled to reduction of electron acceptors. Most microbes living in sediments do not have direct access to oxygen in their immediate environment, however it has recently been shown that sulfide-oxidizing microbes may employ extracellular electron transfer (EET) to couple the oxidation of sulfide in the anoxic zone to reduction of oxygen at the sediment-water interface located several centimeters away. However, no mechanisms for this observed phenomenon have been validated. Accordingly, we tested the hypothesis that conductive minerals in marine sediment (specifically pyrite) can couple spatially separated redox reactions such as anaerobic respiration and oxygen reduction. Marine sediment was amended with naturally occurring pyrite in varying concentrations (0, 2, 10 and 50 weight-percent) and then incubated with 10 μM 13C-labeled acetate. After six hours, the treatments with the greatest amount of added pyrite showed the greatest incorporation of acetate from the labeled pool. The fraction of labeled acetate incorporation more than doubled in the 10 and 50 weight-percent treatments compared to the control sediment. We also designed a circuit to investigate the electrical conductivity of the sediment treatments as a function of added pyrite. A potentiostat was used to establish a known voltage across a sediment column and current was measured. Resistance (the inverse of conductance) was calculated from a linear fit of current data over a range of voltages ranging from 0.5 to 1.0 V. The treatments with added pyrite had lower resistance than background sediment, with the lowest resistance corresponding to the 50% pyrite treatment. We also examined the effect of varying pyrite content on microbial community composition using massively parallel 16S rRNA sequencing. Microbial community analyses

  20. Organo chlorine pesticides (OCPs) contaminants in sediments from Karachi harbour, Pakistan

    International Nuclear Information System (INIS)

    Khan, N.; Khan, S.H.; Amjad, S.; Muller, J.; Nizamani, S.; Bhanger, M.I.

    2010-01-01

    Mangrove swamps, inter tidal mud flats and creeks of backwaters represent main feature of Karachi harbour area. Karachi harbour sediment is under continuous influence of untreated industrial effluents and domestic waste discharged into the Harbour area via Lyari River. Sediment samples from sixteen locations were collected to evaluate the levels of contamination of organo chlorine pesticides (OCPs) in Karachi harbour and adjoining areas. It has been observed that residual concentrations of various organo chlorine pesticides were considerably higher in the semi-enclosed area of the upper Harbour in the vicinity of the discharge point of Lyari River. The residue of DDT mainly its metabolites (DDE and DDD) were widely distributed and have been detected in most of the sediment samples in relatively higher concentrations as compared to other OCPs. The higher levels of the DDTs would attribute to low tidal flushing of the area. The high proportion of pp'-DDE in the most sediment sampled (41-95%) suggested old inputs of DDTs in the environment. Ratio of sigma DDT and DDT was in the range of 0.04 - 0.24 at all locations which also reflects that the discharges of DDT were negligible in the Harbour area. This may be due to the restrictions being implemented on the use of DDTs and Pakistan has also switched over to natural pest control or using safer formulas. The data obtained during the study showed that concentration levels of other pesticides such as HCHs, HCB and Cyclodienes in the sediment were generally lower than the threshold levels known to harm wildlife by OCPs. The results clearly indicate that elevated concentration of organo chlorine pesticides (OCPs) in the marine sediment of Karachi harbour and adjoining area was localized and much lower than the concentrations reported from neighbouring and regional countries which suggests/confirms that the present use of pesticide in Pakistan is environmentally safe. (author)

  1. Effects of dredging operations on sediment quality. Contaminant mobilization in dredged sediments from the Port of Santos, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ronaldo J.; Santos, Fernando C.; Mozeto, Antonio A. [Lab. de Biogeoquimica Ambiental, Dept. de Quimica, Univ. Federal de Sao Carlos, Sao Paulo, SP (Brazil); Abessa, Denis M.S.; Maranho, Luciane A.; Davanso, Marcela B. [Campus Experimental do Litoral Paulista, UNESP - Univ. Estadual Paulista ' Julio de Mesquita Filho' , Sao Paulo, SP (Brazil); Nascimento, Marcos R.L. do [Lab. de Pocos de Caldas (LAPOC), CNEN-Comissao Nacional de Energia Nuclear, MG (Brazil)

    2009-10-15

    Background, aim, and scope Contaminated sediments are a worldwide problem, and mobilization of contaminants is one of the most critical issues in environmental risk assessment insofar as dredging projects are concerned. The investigation of how toxic compounds are mobilized during dredging operations in the channel of the Port of Santos, Brazil, was conducted in an attempt to assess changes in the bioavailability and toxicity of these contaminants. Materials and methods Bulk sediment samples and their interstitial waters and elutriates were subjected to chemical evaluation and ecotoxicological assessment. Samples were collected from the channel before dredging, from the dredge's hopper, and from the disposal site and its surroundings. Results The results indicate that the bulk sediments from the dredging site are contaminated moderately with As, Pb, and Zn and severely with Hg, and that polycyclic aromatic hydrocarbon (PAH) concentrations are relatively high. Our results also show a 50% increase in PAH concentrations in suspended solids in the water collected from the hopper dredge. This finding is of great concern, since it refers to the dredge overflow water which is pumped back into the ecosystem. Acute toxicity tests on bulk sediment using the amphipod Tiburonella viscana showed no toxicity, while chronic tests with the sea urchin Lytechinus variegatus showed toxicity in the interstitial waters and elutriates. Results are compared with widely used sediment quality guidelines and with a sediment quality assessment scheme based on various lines of evidence. Conclusions The data presented here indicate that the sediments collected in this port show a certain degree of contamination, especially those from the inner part of the channel. The classification established in this study indicated that sediments from the dredged channel are impacted detrimentally and that sea disposal may disperse contaminants. According to this classification, the sediments are

  2. Uranium and plutonium in marine sediments; Uranio y plutonio en sedimentos marinos

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Almazan T, M. G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Ruiz F, A. C., E-mail: eduardo.ordonez@inin.gob.mx [UNAM, Instituto de Ciencias del Mar y Limnologia, Unidad Academica Mazatlan, Sinaloa (MX)

    2011-11-15

    The marine sediments contain uranium concentrations that are considered normal, since the seawater contains dissolved natural uranium that is deposited in the bed sea in form of sediments by physical-chemistry and bio-genetics processes. Since the natural uranium is constituted of several isotopes, the analysis of the isotopic relationship {sup 234}U/{sup 238}U are an indicator of the oceanic activity that goes accumulating slowly leaving a historical registration of the marine events through the profile of the marine soil. But the uranium is not the only radioelement present in the marine sediments. In the most superficial strata the presence of the {sup 239+140}Pu has been detected that it is an alpha emitter and that recently it has been detected with more frequency in some coasts of the world. The Mexican coast has not been the exception to this phenomenon and in this work the presence of {sup 239-140}Pu is shown in the more superficial layers of an exploring coming from the Gulf of Tehuantepec. (Author)

  3. Sediment-hosted contaminants and distribution patterns in the Mississippi and Atchafalaya River Deltas

    Science.gov (United States)

    Flocks, James G.; Kindinger, Jack G.; Ferina, Nicholas; Dreher, Chandra

    2002-01-01

    The Mississippi and Atchafalaya Rivers transport very large amounts of bedload and suspended sediments to the deltaic and coastal environments of the northern Gulf of Mexico. Absorbed onto these sediments are contaminants that may be detrimental to the environment. To adequately assess the impact of these contaminants it is first necessary to develop an understanding of sediment distribution patterns in these deltaic systems. The distribution patterns are defined by deltaic progradational cycles. Once these patterns are identified, the natural and industrial contaminant inventories and their depositional histories can be reconstructed. Delta progradation is a function of sediment discharge, as well as channel and receiving-basin dimensions. Fluvial energy controls the sediment distribution pattern, resulting in a coarse grained or sandy framework, infilled with finer grained material occupying the overbank, interdistributary bays, wetlands and abandoned channels. It has been shown that these fine-grained sediments can carry contaminants through absorption and intern them in the sediment column or redistribute them depending on progradation or degradation of the delta deposit. Sediment distribution patterns in delta complexes can be determined through high-resolution geophysical surveys and groundtruthed with direct sampling. In the Atchafalaya and Mississippi deltas, remote sensing using High-Resolution Single-Channel Seismic Profiling (HRSP) and Sidescan Sonar was correlated to 20-ft vibracores to develop a near-surface geologic framework that identifies variability in recent sediment distribution patterns. The surveys identified bedload sand waves, abandoned-channel back-fill, prodelta and distributary mouth bars within the most recently active portions of the deltas. These depositional features respond to changes in deltaic processes and through their response may intern or transport absorbed contaminants. Characterizing these features provides insight into the

  4. Induction of mouthpart deformities in chironomid larvae exposed to contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Di Veroli, Alessandra [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Goretti, Enzo [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Paumen, Miriam Leon; Kraak, Michiel H.S.; Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam (Netherlands)

    2012-07-15

    The aim of the present study was to improve the cause-effect relationship between toxicant exposure and chironomid mouthpart deformities, by linking induction of mouthpart deformities to contaminated field sediments, metal mixtures and a mutagenic polycyclic aromatic compound metabolite (acridone). Mouthpart deformities in Chironomus riparius larvae were induced by both the heavy metal mixture and by acridone. A clear correlation between metal concentrations in the sediment and deformities incidence was only observed when the contaminated field sediments were left out of the analysis, probably because these natural sediments contained other toxic compounds, which could be responsible for a higher incidence of deformities than predicted by the measured metal concentrations only. The present study clearly improved the cause-effect relationship between toxicant exposure and the induction of mouthpart deformities. It is concluded that the incidence of mouthpart deformities may better reflect the potential toxicity of contaminated sediments than chemical analysis. - Highlights: Black-Right-Pointing-Pointer We tested the induction of deformities in C. riparius in laboratory toxicity experiments. Black-Right-Pointing-Pointer We used field sediments and spiked sediments with heavy metals and mutagenic PAC. Black-Right-Pointing-Pointer Mouthpart deformities were induced both by heavy metal mixtures and by acridone. Black-Right-Pointing-Pointer A correlation between metal concentrations in the sediment and deformities was found. Black-Right-Pointing-Pointer Mouthpart deformities better reflect the toxicity of sediments than chemical analysis. - Mouthpart deformities of Chironomus riparius larvae better reflect the toxicity of sediments than chemical analysis.

  5. Contaminant monitoring programmes using marine organisms: Quality assurance and good laboratory practice

    International Nuclear Information System (INIS)

    1990-01-01

    This publication provides guidelines for obtaining reliable and relevant data during monitoring programmes in which contaminants are measured in marine organisms. It describes the precautions to be taken in each of the procedural steps from planning and sampling to the publication of data reports. The purpose of this document is to provide general guidance on quality assurance and to outline the approach that could be taken by laboratories to achieve the specific aims(s) for each marine pollution monitoring programme. Since most laboratories are currently focussing on programmes involving marine organisms, this document will be confined to this aspect. Four main aims can be identified for programmes involving the collection and analysis of marine organisms for the three main groups of contaminants (metals, organochlorine compounds and petroleum hydrocarbons), these are: (i) The measurement of contaminant levels in edible marine organisms in relation to public health; (ii) The identification of heavily contaminated areas of the sea (''hot spots'') where levels of contaminants are at least an order of magnitude higher than levels in clean or uncontaminated areas; (iii) The establishment of present levels of contaminants in marine organisms (i.e., a ''baseline''); (iv) The assessment of changes in concentrations of contaminants in organisms over a period of time (trends). The selection of organisms will be dictated by the eating patterns of the population. These can be identified by a survey of the species sold at the market, by obtaining information from colleagues in government departments who deal with such matters or in the absence of such information, by distributing a questionnaire to a representative section of the general public. 9 refs, 4 figs

  6. Toxicity and biodegradation of PCBs in contaminated sediments

    International Nuclear Information System (INIS)

    Dercova, K.; Cicmanova, J.; Lovecka, P.; Demnerova, K.; Mackova, M.; Hucko, P.; Kusnir, P.

    2006-01-01

    PCBs represent a serious ecological problem due to their low degradability, high toxicity, and strong bioaccumulation. Because of many environmental and economical problems, there are efforts to develop bio-remediation technologies for decontamination of the PCB-polluted areas. PCB were used by storage of spent nuclear fuel in nuclear power plants Jaslovske Bohunice. In the locality of the former producer of PCB - Chemko Strazske a. s. - big amount of these substances is still persisting in sediments and soil. The goal of this study was to analyze the contaminated sediments from Strazsky canal and Zemplinska Sirava water reservoir from several points of view. The study of eco-toxicity confirmed that both sediments were toxic for various tested organisms. The genotoxicity test has not proved the mutagenic effect. The subsequent step included microbiological analysis of the contaminated sediments and isolation of pure bacterial cultures capable of degrading PCBs. In order to determine the genetic potential for their biodegradability, the gene bphA1 was identified using PCR technique in their genomes. This gene codes the enzyme biphenyl-dioxygenase, which is responsible for PCB degradation. The final goal was to perform aerobic biodegradation of PCBs in the sediments. The bacteria present in both sediments are able to degrade certain low chlorinated congeners. The issue of biodiversity is still open and has to be studied to reveal the real cooperation between bacteria. (authors)

  7. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    Science.gov (United States)

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  8. Contaminants in urban runoff to Norwegian fjords

    Energy Technology Data Exchange (ETDEWEB)

    Jartun, Morten [Geological Survey of Norway, Trondheim (Norway); Pettersen, Arne [Norwegian Geotechnical Inst., Oslo (Norway)

    2010-03-15

    Introduction: Sediments from urban stormwater runoff have been collected and analyzed for the content of various contaminants in harbor areas of Harstad, Trondheim, Bergen, and Drammen, Norway. Materials and methods: The concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), tributyltin, heavy metals, and total organic carbon were determined in most samples. This study provides substantial empirical data on the active, ongoing dispersion of pollutants from land-based sources in an urban area toward the marine environments in Norway. Results and discussion: The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. Conclusion: The concentrations of different contaminants in the urban runoff sediments show that there are several active pollution sources supplying the runoff systems with PCBs, PAHs (including benzo(a)pyrene, B(a)p), and heavy metals such as lead, mercury, zinc, and cadmium. This study describe the usefulness of the methods on how to examine ongoing urban contamination of harbors and similar recipients before any remediation plan for improving the environmental condition of marine sediments is effectuated. (orig.)

  9. Instrumental neutron activation analysis of marine sediment in-house reference material

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Hamzah; Mohd Suhaimi Elias; Siong, W.B.; Shamsiah Abdul Rahman; Azian Hashim; Shakirah Abdul Shukor

    2013-01-01

    Reference materials play an important role in demonstrating the quality and reliability of analytical data. The advantage of using in-house reference materials is that they provide a relatively cheap option as compared to using commercially available certified reference material (CRM) and can closely resemble the laboratory routine test sample. A marine sediment sample was designed as an in-house reference material, in the framework of quality assurance and control (QA/QC) program of the Neutron Activation Analysis (NAA) Laboratory at Nuclear Malaysia. The NAA technique was solely used for the homogeneity test of the marine sediment sample. The CRM of IAEA- Soil 7 and IAEA- SL1 (Lake Sediment) were applied in the analysis as compatible matrix based reference materials for QA purposes. (Author)

  10. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  11. Contaminated sediment research task: SHC Task 3.61.3

    Science.gov (United States)

    A poster presentation for the SHC BOSC review will summarize the research efforts under Sustainable and Healthy Communities Research Program (SHC) in the Contaminated Sediment Task within the Contaminated Sites Project. For the Task, Problem Summary & Decision Context; Task O...

  12. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.

    Science.gov (United States)

    Sarmiento, Aguasanta M; Bonnail, Estefanía; Nieto, José Miguel; DelValls, Ángel

    2016-11-01

    Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.

  13. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon

    NARCIS (Netherlands)

    Rakowska, M.I.; Kupryianchyk, D.; Smit, M.; Koelmans, A.A.; Meent, van de D.

    2014-01-01

    Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for

  14. Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO2 leakages from Carbon Capture and Storage sites

    International Nuclear Information System (INIS)

    Payán, M. Cruz; Galan, Berta; Coz, Alberto; Vandecasteele, Carlo; Viguri, Javier R.

    2012-01-01

    The pH change and the release of organic matter and metals from sediment, due to the potential CO 2 acidified seawater leakages from a CCS (Carbon Capture and Storage) site are presented. Column leaching test is used to simulate a scenario where a flow of acidified seawater is in contact with recent contaminated sediment. The behavior of pH, dissolved organic carbon (DOC) and metals As, Cd, Cr, Cu, Ni, Pb, Zn, with liquid to solid (L/S) ratio and pH is analyzed. A stepwise strategy using empirical expressions and a geochemical model was conducted to fit experimental release concentrations. Despite the neutralization capacity of the seawater-carbonate rich sediment system, important acidification and releases are expected at local scale at lower pH. The obtained results would be relevant as a line of evidence input of CCS risk assessment, in an International context where strategies to mitigate the climate change would be applied. - Highlights: ► Tier structured approach for assessment of the release of metals from sediment. ► Standard column leaching test to simulate CO 2 acidified seawater CCS leakages. ► Metal and DOC release from marine sediment in contact to CO 2 acidified seawater. ► From empirical to geochemical modeling approaches of DOC and metals release in column tests. ► Contamination line of evidence input of CCS risk assessment. - Column metal release from CO 2 acidified seawater leakages in contact with estuarine contaminated sediment in CCS sites

  15. The Oil-Spill Snorkel: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments

    Directory of Open Access Journals (Sweden)

    Carolina eCruz Viggi

    2015-09-01

    Full Text Available This study presents the proof-of-concept of the Oil-Spill Snorkel: a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The Oil-Spill Snorkel consists of a single conductive material (the snorkel positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment and the oxic zone (the overlying O2-containing water. The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode, where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing 1 or 3 graphite snorkels and controls (snorkel-free and autoclaved were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p=0.023, two-tailed t-test in the cumulative oxygen uptake and 1.4-fold increase (p=0.040 in the cumulative CO2 evolution in the microcosms containing 3 snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12±1% (p=0.004 and 21±1% (p=0.001 was observed in microcosms containing 1 and 3 snorkels, respectively. Although, the Oil-Spill Snorkel potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable configurations for field

  16. Stability of plutonium contaminated sediments in the Miami--Erie Canal

    International Nuclear Information System (INIS)

    Farmer, B.M.; Carfagno, D.G.

    1978-01-01

    This study was conducted to evaluate the stability of plutonium-contaminated sediment in the Miami-Erie Canal. Correlations were sought to relate concentrations at air sampling stations to plutonium-238 concentrations in air and stack emissions, wind direction, particulate loading, rainfall, and construction activities. There appears to be some impact on airborne concentrations at air sampling stations 122 and 123 from the contaminated sediment in the canal and ponds area. For purposes of this evaluation, it was assumed that the plutonium-238 found in the air samples came from the contaminated sediment in the canal/ponds area. To complete the evaluation of the inhalation pathway, dose calculations were performed using actual airborne concentrations of plutonium-238 measured at sampler 123. The dose equivalent to an individual in that area was calculated for 1 yr and 70 yr. Dose calculations were also performed on potential uptake of contaminated vegetation from that area for 1 yr and 70 yr. This study indicates that, although the contaminated sediments in the canal and pond area appear to contribute to airborne plutonium-238, the observed maximum monthly concentration of plutonium-238 in air is a small fraction of the DOE Radioactivity Concentration Guide (RCG) and the nine-month average concentration of plutonium-238 in air observed thus far during 1977 is less than 1% of the RCG. Dose equivalents, conservatively calculated from these actual data, are well within existing DOE standards and proposed EPA guidance

  17. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    Science.gov (United States)

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. ACOUSTIC TECHNIQUES FOR THE MAPPING OF THE DISTRIBUTION OF CONTAMINATED SEDIMENTS

    Science.gov (United States)

    An overview of the last 30 years of analytical research into the acoustic properties of harbor marine sediments has allowed the extension of the original work of Hamilton (1970) into a production system for classifying the density and bulk physical properties of standard marine s...

  19. Relating groundwater and sediment chemistry to microbial characterization at a BTEX-contaminated site

    International Nuclear Information System (INIS)

    Pfiffner, S.M.; Palumbo, A.V.; McCarthy, J.F.; Gibson, T.

    1996-01-01

    The National Center for Manufacturing Science is investigating bioremediation of petroleum hydrocarbon at a site in Belleville, Michigan. As part of this study we examined the microbial communities to help elucidate biodegradative processes currently active at the site. We observed high densities of aerobic hydrocarbon degraders and denitrifiers in the less-contaminated sediments. Low densities of iron and sulfate reducers were measured in the same sediments. In contrast, the highly-contaminated sediments showed low densities of aerobic hydrocarbon degraders and denitrifiers and high densities of iron and sulfate reducers. Methanogens were also found in these highly-contaminated sediments. These contaminated sediments also showed a higher biomass, by phospholipid fatty acids, and greater ratios of phospholipid fatty acids which indicate stress within the microbial community. Aquifer chemistry analyses indicated that the more-contaminated area was more reduced and had lower sulfate than the less-contaminated area. These conditions suggest that the subsurface environment at the highly-contaminated area had progressed into sulfate reduction and methanogensis. The less-contaminated area, although less reduced, also appeared to be progressing into primarily iron- and sulfate-reducing microbial communities. The proposed treatment to stimulate bioremediation includes addition of oxygen and nitrate. Groundwater chemistry and microbial analyses revealed significant differences resulted from the injection of dissolved oxygen and nitrate in the subsurface. These differences included increases in pH and Eh and large decreases in BTEX, dissolved iron, and sulfate concentrations at the injection well

  20. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  1. Diversity, Persistence and Evolution in Marine Sediments

    DEFF Research Database (Denmark)

    Starnawski, Piotr

    2016-01-01

    on the marine sediments communities was reviewed, it became apparent that there are some global trends in these populations ob- served in deep and shallow, organic rich and poor sediments. We have observed the same, often uncultured, organisms with very similar relative abundance profiles in reviewed sites...... communities as they transition from actively growing surface populations to barely dividing subsurface ones; (ii) evolutionary consequences of the prolonged residence in such environments and (iii) inferring function of the dominant groups found in deep sediments. When the current state of our knowledge....... In order to better understand this pattern we’ve reviewed the assembly processes that may lead to such situations, keeping in mind the limitations imposed by the environment.We’ve concluded, that due to low energy fluxes, and consequently low number of pos- sible cell divisions, selective survival of pre...

  2. Evidence for mild sediment Pb contamination affecting leaf-litter decomposition in a lake.

    Science.gov (United States)

    Oguma, Andrew Y; Klerks, Paul L

    2015-08-01

    Much work has focused on the effects of metal-contaminated sediment on benthic community structure, but effects on ecosystem functions have received far less attention. Decomposition has been widely used as an integrating metric of ecosystem function in lotic systems, but not for lentic ones. We assessed the relationship between low-level sediment lead (Pb) contamination and leaf-litter decomposition in a lentic system. We measured 30-day weight loss in 30 litter-bags that were deployed along a Pb-contamination gradient in a cypress-forested lake. At each deployment site we also quantified macrobenthos abundance, dissolved oxygen, water depth, sediment organic content, sediment silt/clay content, and both total sediment and porewater concentrations of Cd, Cu, Ni, Pb and Zn. Principal components (PC) analysis revealed a negative relationship between Pb concentration and benthic macroinvertebrate abundance, and this covariation dominated the first PC axis (PC1). Subsequent correlation analyses revealed a negative relationship between PC1 and percent leaf-litter loss. Our results indicate that leaf-litter decomposition was related to sediment Pb and benthic macroinvertebrate abundance. They also showed that ecosystem function may be affected even where sediment Pb concentrations are mostly below threshold-effects sediment quality guidelines--a finding with potential implications for sediment risk assessment. Additionally, the litter-bag technique used in this study showed promise as a tool in risk assessments of metal-contaminated sediments in lentic systems.

  3. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Negri, Andrew [Australian Institute of Marine Science, PMB 3, Townsville, Qld (Australia)]. E-mail: a.negri@aims.gov.au; Burns, Kathryn [Australian Institute of Marine Science, PMB 3, Townsville, Qld (Australia); Boyle, Steve [Australian Institute of Marine Science, PMB 3, Townsville, Qld (Australia); Brinkman, Diane [Australian Institute of Marine Science, PMB 3, Townsville, Qld (Australia); Webster, Nicole [Australian Institute of Marine Science, PMB 3, Townsville, Qld (Australia); Biological Sciences, University of Canterbury, Christchurch (New Zealand)

    2006-10-15

    This study examined the concentrations of total hydrocarbons (THC), polychlorinated biphenyls (PCB), polyaromatic hydrocarbons (PAH), and trace metals (Cu, Zn, Cd, Pb, Hg and As) in marine sediments off Scott Base (NZ) and compared them with sediments near the highly polluted McMurdo Station (US) as well as less impacted sites including Turtle Rock and Cape Evans. The Antarctic mollusc, Laternula elliptica and three common sponge species were also analysed for trace metals. The mean THC concentration in sediments from Scott Base was 3 fold higher than the pristine site, Turtle Rock, but 10 fold lower than samples from McMurdo Station. McMurdo Station sediments also contained the highest concentrations of PAHs, PCBs and the trace metals, Cu, Zn, Pb, Cd and Hg. Copper was significantly higher in bivalves from McMurdo Station than other sites. Trace metal concentrations in sponges were generally consistent within sites but no spatial patterns were apparent. - Analyses of Antarctic marine sediments, bivalves and sponges revealed strong PAH, PCB and trace metal gradients in McMurdo Sound.

  4. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica

    International Nuclear Information System (INIS)

    Negri, Andrew; Burns, Kathryn; Boyle, Steve; Brinkman, Diane; Webster, Nicole

    2006-01-01

    This study examined the concentrations of total hydrocarbons (THC), polychlorinated biphenyls (PCB), polyaromatic hydrocarbons (PAH), and trace metals (Cu, Zn, Cd, Pb, Hg and As) in marine sediments off Scott Base (NZ) and compared them with sediments near the highly polluted McMurdo Station (US) as well as less impacted sites including Turtle Rock and Cape Evans. The Antarctic mollusc, Laternula elliptica and three common sponge species were also analysed for trace metals. The mean THC concentration in sediments from Scott Base was 3 fold higher than the pristine site, Turtle Rock, but 10 fold lower than samples from McMurdo Station. McMurdo Station sediments also contained the highest concentrations of PAHs, PCBs and the trace metals, Cu, Zn, Pb, Cd and Hg. Copper was significantly higher in bivalves from McMurdo Station than other sites. Trace metal concentrations in sponges were generally consistent within sites but no spatial patterns were apparent. - Analyses of Antarctic marine sediments, bivalves and sponges revealed strong PAH, PCB and trace metal gradients in McMurdo Sound

  5. Marine pollution: Let us not forget beach sand

    OpenAIRE

    Galgani, Francois; Ellerbrake, Katrin; Fries, Elke; Goreux, Chantal

    2011-01-01

    Background: Assessing the chemical or bacterial contamination in marine waters and sediments is a very common approach to evaluate marine pollution and associated risks. However, toxicity and organic pollution of beach sands have not yet been considered, except in adjacent waters. In the present study, the toxicity and the chemical contamination of natural beach sands collected 20 m from the shoreline at two sites located on the Mediterranean Sea (Marseille and La Marana, Corsica) were studie...

  6. Assessment of Heavy Metal Contamination in Marine Sediments of East Coast of Tamil Nadu Affected by Different Pollution Sources.

    Science.gov (United States)

    Harikrishnan, N; Ravisankar, R; Chandrasekaran, A; Suresh Gandhi, M; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K

    2017-08-15

    The aim of this study was to determine the concentration of heavy metals in the sediments of Periyakalapet to Parangipettai coast, east coast of Tamil Nadu, by using energy-dispersive X-ray fluorescence (EDXRF) technique. The average heavy metal concentrations in the sediment samples were found in the order Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>Cd>Cu. The average heavy metal concentrations were below the world crustal average. The degree of contamination by heavy metals was evaluated using pollution indices. The results of pollution indices revealed that titanium (Ti) and cadmium (Cd) were significantly enriched in sediments. Pearson correlation analysis was performed among heavy metal concentrations to know the existing relationship between them. Multivariate statistical technique was employed to identify the heavy metal pollution sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparative performances of eggs and embryos of sea urchin (Paracentrotus lividus) in toxicity bioassays used for assessment of marine sediment quality.

    Science.gov (United States)

    Khosrovyan, A; Rodríguez-Romero, A; Salamanca, M J; Del Valls, T A; Riba, I; Serrano, F

    2013-05-15

    The potential toxicity of sediments from various ports was assessed by means of two different liquid-phase toxicity bioassays (acute and chronic) with embryos and eggs of sea urchin Paracentrotus lividus. Performances of embryos and eggs of P. lividus in these bioassays were compared for their interchangeable applicability in integrated sediment quality assessment. The obtained endpoints (percentages of normally developed plutei and fertilized eggs) were linked to physical and chemical properties of sediments and demonstrated dependence on sediment contamination. The endpoints in the two bioassays were strongly correlated and generally exhibited similar tendency throughout the samples. Therein, embryos demonstrated higher sensitivity to elutriate exposure, compared to eggs. It was concluded that these tests could be used interchangeably for testing toxicity of marine sediments. Preferential use of any of the bioassays can be determined by the discriminatory capacity of the test or vulnerability consideration of the test subject to the surrounding conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Three decades of TBT contamination in sediments around a large scale shipyard.

    Science.gov (United States)

    Kim, Nam Sook; Shim, Won Joon; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Shin, Kyung Hoon

    2011-08-30

    Tributyltin (TBT) contamination in sediments was investigated in the vicinity of a large-scale shipyard in the years after the implementation of a total ban on the use of TBT based antifouling paints in Korea. Extremely high level of TBT (36,292ng Sn/g) in surface sediment was found at a station in front of a drydock and near surface runoff outfall of the shipyard. TBT concentration in surface sediments of Gohyeon Bay, where the shipyard is located, showed an apparent decreased TBT concentration gradient from the shipyard towards the outer bay. The vertical distribution of TBT contamination derived from a sediment core analysis demonstrated a significant positive correlation (r(2)=0.88; pTBT concentrations at six stations surveyed before (2003) and seven years after (2010) the total ban showed no significant differences (p>0.05). Despite the ban on the use of TBT, including ocean going vessels, surface sediments are still being heavily contaminated with TBT, and its levels well exceeded the sediment quality guideline or screening values. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  10. Potential Ecological Effects of Contaminants in the Exposed Par Pond Sediments

    International Nuclear Information System (INIS)

    Paller, M.H.; Wike, L.D.

    1996-08-01

    Sediment and small mammal samples were collected from the exposed sediments of Par Pond in early 1995, shortly before the reservoir was refilled after a 4-year drawdown. Sampling was confined to elevations between 58 and 61 meters (190 and 200 feet) above mean sea level, which includes the sediments likely to be exposed if the Par Pond water level is permitted to fluctuate naturally. Both soil and small mammal samples were analyzed for a number of radionuclides and metals. Some of the soil samples were also analyzed for organic contaminants. The objective of the study was to determine if contaminant levels in the Par Pond sediments were high enough to cause deleterious ecological effects

  11. Global distribution of radiolytic H2 production in marine sediment and implications for subsurface life

    Science.gov (United States)

    Sauvage, J.; Flinders, A. F.; Spivack, A. J.; D'Hondt, S.

    2017-12-01

    We present the first global estimate of radiolytic H2production in marine sediment. Knowledge of microbial electron donor production rates is critical to understand the bioenergetics of Earth's subsurface ecosystems In marine sediment, radiolysis of water by radiation from naturally occurring radionuclides leads to production of reduced (H2) and oxidized (H2O2, O2) species. Water radiolysis is catalyzed by marine sediment. The magnitude of catalysis depends on sediment composition and radiation type. Deep-sea clay is especially effective at enhancing H2 yields, increasing yield by more than an order of magnitude relative to pure water. This previously unrecognized catalytic effect of geological materials on radiolytic H2 production is important for fueling microbial life in the subseafloor, especially in sediment with high catalytic power. Our estimate of radiolytic H2 production is based on spatially integrating a previously published model and uses (i) experimentally constrained radiolytic H2 yields for the principal marine sediment types, (ii) bulk sediment radioactive element content of sediment cores in three ocean basins (N. Atlantic, N. and S. Pacific), and global distributions of (iii) seafloor lithology, (iv) sediment porosity, and (v) sediment thickness. We calculate that global radiolytic H2 production in marine sediment is 1.6E+12 mol H2 yr-1. This production rate is small relative to the annual rate of photosynthetic organic-matter production in the surface ocean. The globally integrated ratio of radiolytic H2 production relative to photosynthetic primary production is 4.1E-4, based on electron equivalences. Although small relative to global photosynthetic biomass production, sediment-catalyzed production of radiolytic products is significant in the subseafloor. Our analysis of 9 sites in the N. Atlantic, N. and S. Pacific suggests that H2 is the primary microbial fuel in organic-poor sediment older than a few million years; at these sites, calculated

  12. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Science.gov (United States)

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  13. Evaluation of Sediment Contamination in Pearl Harbor

    Science.gov (United States)

    1992-06-01

    ancient Hawaiians, was a large natural inland lagoon. Numerous walled fishponds located inside the harbor were used to cultivate various species of fishes... Ecotoxicology , Commission on Natural Resources, National Academy Press, Washington, D.C., 103 pp. National Research Council, 1989. Contaminated Marine

  14. Oil spill effects on macrofaunal communities and bioturbation of pristine marine sediments (Caleta Valdés, Patagonia, Argentina): experimental evidence of low resistance capacities of benthic systems without history of pollution.

    Science.gov (United States)

    Ferrando, Agustina; Gonzalez, Emilia; Franco, Marcos; Commendatore, Marta; Nievas, Marina; Militon, Cécile; Stora, Georges; Gilbert, Franck; Esteves, José Luis; Cuny, Philippe

    2015-10-01

    The Patagonian coast is characterized by the existence of pristine ecosystems which may be particularly sensitive to oil contamination. In this study, a simulated oil spill at acute and chronic input levels was carried out to assess the effects of contamination on the macrobenthic community structure and the bioturbation activity of sediments sampled in Caleta Valdés creek. Superficial sediments were either noncontaminated or contaminated by Escalante crude oil and incubated in the laboratory for 30 days. Oil contamination induced adverse effects on macrobenthic community at both concentrations with, for the highest concentration, a marked decrease of approximately 40 and 55 % of density and specific richness, respectively. Besides the disappearance of sensitive species, some other species like Oligochaeta sp. 1, Paranebalia sp., and Ostracoda sp. 2 species have a higher resistance to oil contamination. Sediment reworking activity was also affected by oil addition. At the highest level of contamination, nearly no activity was observed due to the high mortality of macroorganisms. The results strongly suggest that an oil spill in this protected marine area with no previous history of contamination would have a deep impact on the non-adapted macrobenthic community.

  15. Evaluation of the potential for using Greenlandic marine sediments for brick production

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Bertelsen, Ida Maria Gieysztor

    2016-01-01

    Fine grained marine sediments from near the Greenlandic towns of Ilulissat, Kangerlussuaq and Sisimiut were assessed as raw materials for local production of building bricks. The assessment included both analysis of the sediment characteristics and physical properties of miniature test brick...

  16. Contaminated Sediment Management in Dam Removals and River Restoration Efforts: Critical Need for Research and Policy Development

    Science.gov (United States)

    Evans, J. E.

    2015-12-01

    Over 1,000 U.S. dams have been removed (1975-2015) for reasons including obsolescence, liability concerns, water quality upgrades, fisheries, or ecosystem enhancements. Contaminated sediment can significantly complicate the approval process, cost, and timeline of a dam removal, or stop it entirely. In a dam removal, reservoir sediment changes from a sink to a source of contaminants. Recently, the Sierra Club sued to stop the removal of a large dam in Ohio because of the potential impact of phosphate releases on toxic algal blooms in Lake Erie. Heavy metals, PCBs, PAHs, pesticides, and petroleum hydrocarbons can be present in reservoir sediments. In a non-dam removal scenario, reservoir management tools range from "no action" to dredging, dewatering and removal, or sediment capping. But it is not clear how these reservoir management techniques apply to dam removals. Case studies show typically >80% of the reservoir sediment is eventually eroded, precluding sediment capping as a containment option. However, the released contaminants are diluted by mixing with "clean" sediment and are transported to different physio-chemical environments which may immobilize or biodegrade the contaminants. Poorly understood options include phased drawdown/reseeding the former reservoir to contain sediments, diking contaminant "hot spots," and addressing contaminant stratigraphy (where historical use created "hot layers" in the reservoir sediment). Research and policy development needs include: (1) assessment methods based on synergistic effects of multiple contaminants being present; (2) ways to translate the pre-removal contaminant concentrations to post-removal health risks downstream; (3) evaluation of management practices for contaminant "hot spots" and "hot layers;" (4) tools to forecast the presence of contaminated sediment using easily accessible information; and (5) ways to limit liability risk for organizations participating in dam removals involving contaminated sediment.

  17. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  18. Investigations of contaminated fluvial sediment deposits: merging of statistical and geomorphic approaches.

    Science.gov (United States)

    Ryti, Randall T; Reneau, Steven L; Katzman, Danny

    2005-05-01

    Concentrations of contaminants in sediment deposits can have large spatial variability resulting from geomorphic processes acting over long time periods. Thus, systematic (e.g., regularly spaced sample locations) or random sampling approaches might be inefficient and/or lead to highly biased results. We demonstrate the bias associated with systematic sampling and compare these results to those achieved by methods that merge a geomorphic approach to evaluating the physical system and stratified random sampling concepts. By combining these approaches, we achieve a more efficient and less biased characterization of sediment contamination in fluvial systems. These methods are applied using a phased sampling approach to characterize radiological contamination in sediment deposits in two semiarid canyons that have received historical releases from the Los Alamos National Laboratory. Uncertainty in contaminant inventory was used as a metric to evaluate the adequacy of sampling during these phased investigations. Simple, one-dimensional Monte Carlo simulations were used to estimate uncertainty in contaminant inventory. We also show how one can use stratified random sampling theory to help estimate uncertainty in mean contaminant concentrations.

  19. Temporal and spatial distributions of contaminants in sediments of Santa Monica Bay, California

    Science.gov (United States)

    Bay, S.M.; Zeng, E.Y.; Lorenson, T.D.; Tran, K.; Alexander, Corrine

    2003-01-01

    Contaminant inputs from wastewater discharge, a major source of contamination to Santa Monica Bay (SMB), have declined drastically during the last three decades as a result of improved treatment processes and better source control. To assess the concomitant temporal changes in the SMB sediments, a study was initiated in June 1997, in which 25 box cores were collected using a stratified random sampling design. Five sediment strata corresponding to the time intervals of 1890-1920, 1932-1963, 1965-1979, 1979-1989, and 1989-1997 were identified using 210Pb dating techniques. Samples from each stratum were analyzed for metals, 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites (DDTs), polychlorinated biphenyls (PCBs), and total organic carbon (TOC). Samples from the 1965-1979, 1979-1989, and 1989-1997 strata were also analyzed for polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs). Sediment metal concentrations increased from 1890-1979 and were similar during the time intervals of 1965-1979, 1979-1989, and 1989-1997, although the mass emissions of trace metals from sewage inputs declined substantially during the same time period. Trace organic contamination in SMB was generally highest in sediments corresponding to deposition during the years of 1965-1979 or 1979-1989 and showed a decline in concentration in the 1989-1997 stratum. Temporal trends of contamination were greatest in sediments collected from areas near the Hyperion Treatment Plant (HTP) outfall system and on the slope of Redondo Canyon. The highest contaminant concentrations were present in sediments near the HTP 7-mile outfall in the 1965-1979 stratum. Elevated trace metal and organic concentrations were still present in the 1989-1997 stratum of most stations, suggesting that sediment contaminants have moved vertically in the sediment column since sludge discharges from the 7-mile outfall (a dominant source of contamination to the bay) ceased in 1987. The

  20. Solidification/stabilization of dredged marine sediments for road construction.

    Science.gov (United States)

    Wang, Dong Xing; Abriak, Nor Edine; Zentar, Rachid; Xu, WeiYa

    2012-01-01

    Cement/lime-based solidification is an environmentally sound solution for the management of dredged marine sediments, instead of traditional solutions such as immersion. Based on the mineralogical composition and physical characteristics of Dunkirk sediments, the effects of cement and lime are assessed through Atterberg limits, modified Proctor compaction, unconfined compressive strength and indirect tensile strength tests. The variation of Atterberg limits and the improvement in strength are discussed at different binder contents. The potential of sediments solidified with cement or lime for road construction is evaluated through a proposed methodology from two aspects: I-CBR value and material classification. The test results show the feasibility of solidified dredged sediments for beneficial use as a material in road construction. Cement is superior to lime in terms of strength improvement, and adding 6% cement is an economic and reasonable method to stabilize fine sediments.

  1. Long distance electron transport in marine sediments: Microbial and geochemical implications

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Larsen, Steffen; Pfeffer, Christian

    and promotes the formation of Mg-calcite and iron oxides in the oxic zone. Oxygen seems to be the major electron acceptor, and more than 40% of the oxygen consumption in sediments can be driven by long distance electron transfer from distant electron donors. The major e-donor is sulfide, which is oxidized......Anaerobic oxidation of organic matter in marine sediment is traditionally considered to be coupled to oxygen reduction via a cascade of redox processes and transport of intermittent electron donors and acceptors. Electric currents have been found to shortcut this cascade and directly couple...... oxidation of sulphide centimeters down in marine sediment to the reduction of oxygen at the very surface1 . This electric coupling of spatially separated redox half-reactions seems to be mediated by centimeter long filamentous Desulfubulbus affiliated bacteria with morphological and ultra...

  2. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, A. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Phillips, D.H., E-mail: d.phillips@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Bowen, J. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Sen Gupta, B. [School of the Built Environment, Hariot-Watt University, Edinburgh, Scotland (United Kingdom)

    2015-04-15

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO{sub 3}-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. - Highlights: • Tynagh silver mine in Co. Galway, Ireland is a source of

  3. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    Science.gov (United States)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  4. Origin and geochemical behavior of uranium in marine sediments. Utilization of the {sup 234}U/{sup 238}U ratio in marine geochemistry; Origine et comportement geochimique de l`uranium dans les sediments marins. Utilisation du rapport ({sup 234}U/{sup 238}U) en geochimie marine

    Energy Technology Data Exchange (ETDEWEB)

    Organo, Catherine [Paris-11 Univ., 91 - Orsay (France)

    1997-01-20

    The first part of this thesis presents the current situation of knowledge of uranium in marine environment. The second part describes the methods of analysis as well as the material support of the study, i.e., the sediments and marine deposits investigated. The third part is dedicated to the study of uranium mobility in marine sediments characterized by detrital terrigenous composition (pelagic clays). This approach allowed quantifying the entering and leaving flux of uranium after the sediment settling and, to discuss, on this basis, the consequences on the uranium oceanic balance. In the third part the origin and behavior of uranium in zones of high surface productivity is studied. The uranium enrichments observed in the hemi-pelagic sediments of the EUMELI (J.G.O.F.S.-France) programme will constitute a material of study adequate for measuring the variations in the {sup 234}U/2{sup 38U} ratio in solid phase, in response to the oxido-reducing characteristics of the sediment. Thus establishing the origin of the trapped uranium has been possible. Also, the nature of the sedimentary phases related to uranium in bio-genetic sediments in the Austral Ocean was determined. Thus a relationship between the variations in the {sup 234}U/{sup 238} and the diagenetic transformations was possible to establish. Finally in the fifth part a study of the behavior of uranium in a polymetallic shell characteristic for deposits of hydrogenized origin 146 refs., 57 figs., 23 tabs.

  5. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments.

    Science.gov (United States)

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-05-01

    Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality. Consequently, a modified Pollution Index that can lead to a more reliable understanding of whole sediment quality is proposed. This modified pollution index is then tested against a number of existing studies and demonstrated to give a reliable and rapid estimate of sediment contamination and quality.

  6. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Bioaccumulation from Bedded Sediments

    Science.gov (United States)

    1993-09-01

    Sediments were also analyzed for tributyltins . dibutyltins, and monobutyltins ( TBT , DBT, and MBT) by the Naval Command and Con- trol and Ocean... toxicity observed in earlier studies with OC sediment appears to be explained by a lack of contaminant uptake. Only tributyltin and silver were...Dillon, T. M., Suedel, B. C. (1991). "Chronic toxicity of tributyltin on the marine polychaete worm. Neanthes arenaceodentata," Aquatic Toxicol. 21, 181

  7. Marinicella sediminis sp. nov., isolated from marine sediment

    Science.gov (United States)

    A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped, pale yellow, non-motile and non-spore-forming bacterium, designated as strain F2**T, was isolated from the marine sediment collected from Weihai coastal, Shandong Province, PR China. Optimal growth occurred at 33 °C (range 10–37 °C), w...

  8. A COMPARISON OF MAJOR ELEMENTS BETWEEN MARINE SEDIMENTS AND IGNEOUS ROCKS: AS A BASIC DETERMINATION OF THE SEDIMENT SOURCE AT UJUNG PENYUSUK WATERS, NORTH BANGKA,BANGKA BELITUNG PROVINCE

    Directory of Open Access Journals (Sweden)

    Ediar Usman

    2017-07-01

    Full Text Available Three igneous rock samples from the coast and five sediments from the marine of Ujung Penyusuk Waters have been used for chemistry analysis as the basic determination of sediment source. The result of chemistry analysis shows that the major element with relatively same pattern. In the igneous rock samples, the result of chemistry analysis shows the SiO2 ranges between 72.3 - 76.8%, Al2O3 (9.64 - 11.64%, and Fe2O3 ( 2.08 - 2.18%. In the marine sediment, the content of SiO2 is between 62.2 and 66.5%, Al2O3 (2.93 - 3.63% and Fe2O3 (21.19 - 24.40%. Other elements such as CaO, MgO, K2O, Na2O and TiO2 are relatively similar values in all samples. The difference of element content in marine sediment and coastal igneous rock occurs in Al2O3 and Fe2O3. The Al2O3 is small in marine sediment while the Fe2O3 is higher compared to igneous rocks. Decreasing of the Al2O3 (kaolinite in the marine sediment is caused by the character of the Al2O3 that was derived from quartz rich of igneous rocks forming kaolinite. It was than deposited in the sea floor. Increasing of the Fe2O3 in marine sediment is caused by addition reaction of the Fe from the sea. Generally, the content of the SiO2 (quartz in igneous rock and marine sediment belongs to the same group source that is acid igneous rock. The SiO2 in the sediment belongs to a group of granitoid.

  9. Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination - Determination of toxicity thresholds

    International Nuclear Information System (INIS)

    Hoess, S.; Ahlf, W.; Fahnenstich, C.; Gilberg, D.; Hollert, H.; Melbye, K.; Meller, M.; Hammers-Wirtz, M.; Heininger, P.; Neumann-Hensel, H.; Ottermanns, R.; Ratte, H.-T.

    2010-01-01

    Freshwater sediments with low levels of anthropogenic contamination and a broad range of geochemical properties were investigated using various sediment-contact tests in order to study the natural variability and to define toxicity thresholds for the various toxicity endpoints. Tests were performed with bacteria (Arthrobacter globiformis), yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), oligochaetes (Lumbriculus variegatus), higher plants (Myriophyllum aquaticum), and the eggs of zebrafish (Danio rerio). The variability in the response of some of the contact tests could be explained by particle size distribution and organic content. Only for two native sediments could a pollution effect not be excluded. Based on the minimal detectable difference (MDD) and the maximal tolerable inhibition (MTI), toxicity thresholds (% inhibition compared to the control) were derived for each toxicity parameter: >20% for plant growth and fish-egg survival, >25% for nematode growth and oligochaete reproduction, >50% for nematode reproduction and >60% for bacterial enzyme activity. - Sediment-contact tests require toxicity thresholds based on their variability in native sediments with low-level contamination.

  10. Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination - Determination of toxicity thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Hoess, S., E-mail: hoess@ecossa.d [Ecossa, Giselastr. 6, 82319 Starnberg (Germany); Institute of Biodiversity - Network (IBN), Dreikronengasse 2, 93047 Regensburg (Germany); Ahlf, W., E-mail: ahlf@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Technical University Hamburg-Harburg, Eissendorfer Str. 40, 21071 Hamburg (Germany); Fahnenstich, C. [Institute of Environmental Technology and Energy Economics, Technical University Hamburg-Harburg, Eissendorfer Str. 40, 21071 Hamburg (Germany); Gilberg, D., E-mail: d-gilberg@ect.d [ECT Oekotoxikologie, Boettgerstr. 2-14, 65439 Floersheim (Germany); Hollert, H., E-mail: henner.hollert@bio5.rwth-aachen.d [Department of Ecosystem Analysis, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Melbye, K. [Dr. Fintelmann and Dr. Meyer, Mendelssohnstr. 15D, 22761 Hamburg (Germany); Meller, M., E-mail: m-meller@ecotox-consult.d [ECT Oekotoxikologie, Boettgerstr. 2-14, 65439 Floersheim (Germany); Hammers-Wirtz, M., E-mail: hammers-wirtz@gaiac.rwth-aachen.d [Research Institute for Ecosystem Analysis and Assessment (gaiac), RWTH Aachen University, Worringerweg 1, 52056 Aachen (Germany); Heininger, P., E-mail: heininger@bafg.d [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56070 Koblenz (Germany); Neumann-Hensel, H., E-mail: hensel@fintelmann-meyer.d [Dr. Fintelmann and Dr. Meyer, Mendelssohnstr. 15D, 22761 Hamburg (Germany); Ottermanns, R., E-mail: ottermanns@bio5.rwth-aachen.d [Chair for Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Ratte, H.-T., E-mail: toni.ratte@bio5.rwth-aachen.d [Chair for Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany)

    2010-09-15

    Freshwater sediments with low levels of anthropogenic contamination and a broad range of geochemical properties were investigated using various sediment-contact tests in order to study the natural variability and to define toxicity thresholds for the various toxicity endpoints. Tests were performed with bacteria (Arthrobacter globiformis), yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), oligochaetes (Lumbriculus variegatus), higher plants (Myriophyllum aquaticum), and the eggs of zebrafish (Danio rerio). The variability in the response of some of the contact tests could be explained by particle size distribution and organic content. Only for two native sediments could a pollution effect not be excluded. Based on the minimal detectable difference (MDD) and the maximal tolerable inhibition (MTI), toxicity thresholds (% inhibition compared to the control) were derived for each toxicity parameter: >20% for plant growth and fish-egg survival, >25% for nematode growth and oligochaete reproduction, >50% for nematode reproduction and >60% for bacterial enzyme activity. - Sediment-contact tests require toxicity thresholds based on their variability in native sediments with low-level contamination.

  11. Options for In Situ Capping of Palos Verdes Shelf Contaminated Sediments

    National Research Council Canada - National Science Library

    Palermo, Michael; Schroeder, Paul; Rivera, Yilda; Ruiz, Carlos; Clarke, Doug; Gailani, Joe; Clausner, James; Hynes, Mary; Fredette, Thomas; Tardy, Barbara

    1999-01-01

    The U.S. Army Engineer Waterways Experiment Station (WES) has performed an evaluation of in situ capping options for sediment restoration of DDT and PCB contaminated sediments on the Palos Verdes (PV...

  12. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Directory of Open Access Journals (Sweden)

    Michael F. Graw

    2018-04-01

    Full Text Available The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics.

  13. Phosphorus cycling and burial in sediments of a seasonally hypoxic marine basin

    NARCIS (Netherlands)

    Sulu-Gambari, F; Hagens, M.; Behrends, T; Seitaj, D.; Meysman, F.J.R.; Middelburg, J.; Slomp, C.P.

    2018-01-01

    Recycling of phosphorus (P) from sediments contributes to the development of bottom-water hypoxia in many coastal systems. Here, we present results of a year-long assessment of P dynamics in sediments of a seasonally hypoxic coastal marine basin (Lake Grevelingen, the Netherlands) in 2012.

  14. California mussels (Mytilus californianus) as sentinels for marine contamination with Sarcocystis neurona.

    Science.gov (United States)

    Michaels, Lauren; Rejmanek, Daniel; Aguilar, Beatriz; Conrad, Patricia; Shapiro, Karen

    2016-05-01

    Sarcocystis neurona is a terrestrial parasite that can cause fatal encephalitis in the endangered Southern sea otter (Enhydra lutris nereis). To date, neither risk factors associated with marine contamination nor the route of S. neurona infection to marine mammals has been described. This study evaluated coastal S. neurona contamination using California mussels (Mytilus californianus) as sentinels for pathogen pollution. A field investigation was designed to test the hypotheses that (1) mussels can serve as sentinels for S. neurona contamination, and (2) S. neurona contamination in mussels would be highest during the rainy season and in mussels collected near freshwater. Initial validation of molecular assays through sporocyst spiking experiments revealed the ITS-1500 assay to be most sensitive for detection of S. neurona, consistently yielding parasite amplification at concentrations ⩾5 sporocysts/1 mL mussel haemolymph. Assays were then applied on 959 wild-caught mussels, with detection of S. neurona confirmed using sequence analysis in three mussels. Validated molecular assays for S. neurona detection in mussels provide a novel toolset for investigating marine contamination with this parasite, while confirmation of S. neurona in wild mussels suggests that uptake by invertebrates may serve as a route of transmission to susceptible marine animals.

  15. Radiological assessment of coastal marine sediment and water samples, Karachi coast, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Mashiatullah, A.; Akram, M.; Sajjad, M.I.; Shafiq, M.; Javed, T.; Aslam, M.

    1999-04-01

    Concentrations of selective natural radionuclides (/sup 226/Ra, /sup 228/Ra, /sup 40/K) in shallow marine coastal sediments and sea water off Karachi coast, Pakistan, were measured with a hyper pure germanium (HPGe) gamma spectrometer. Sediment and water samples were collected from polluted Layari and Malire River downstream (pre-out fall), Gizri Creek, Layari River out fall in Karachi harbor, Karachi Harbor/ Manora Channel Mains, as well as from open sea (South-East Coast and North-West Coast) within the 10m depth contour. No artificial radionuclides (e.g. /sup 60/Co, /sup 137/Cs and /sup 134/Cs were detected in both water and sediment samples at any of these locations. The activity of /sup 226/Ra in coastal river sediments is found below its limit of detection (<18.35 Bqkg/sup -1/). Activity of /sup 228/Ra in sediments off Karachi Coast ranges between 11.80 +- 3.60 to 37.27+- 4.31 Bqkg/sup -1/. The highest activity was found south of Nuclear Power Station (KANUPP) and the lowest activity was found in the vicinity of Oyster Rocks (open sea). The /sup 226/Ra activity ranges from 19.40+- 5.88 to 67.14 +- 10.02 Bqkg/sup -1/. The activity of /sup 228/Ra in sediments of Manora Channel, South-east Coast of Karachi and the North west coast of Karachi are also in agreement with the IAEA marine sediment standard namely: IAEA-135 (/sup 228/Ra = 36.7 +- 3 Bqkg/sup -1/). The activity of /sup 226/Ra for the South East Coast of Karachi and the North west coast of Karachi are also in agreement with the IAEA marine sediment standard namely: IAEA 135(/sup 226/Ra=23.9 +- 1.1 Bqkg/sup -1/) and Pacific Ocean sediment standard namely: IAEA-368 (/sup 226/Ra=21.4+- 1.1 Bqkg/sup -1/). The /sup 40/K activity in sea sediments varies from 197.7+- 44.24 to 941.90 +- 39.00 Bqkg-1). The highest activity is observed in the vicinity of Oyster Rocks (open sea) along the Clifton coast (South-East Cost of Karachi) and the lowest activity is found south of Nuclear Power Station (KANUPP) along the

  16. Phytoremediation prospects of willow stands on contaminated sediment: a field trial

    International Nuclear Information System (INIS)

    Vervaeke, P.; Luyssaert, S.; Mertens, J.; Meers, E.; Tack, F.M.G.; Lust, N.

    2003-01-01

    A field trial indicated increased degradation of mineral oil in sediments planted with willow. - Establishing fast growing willow stands on land disposed contaminated dredged sediment can result in the revaluation of this material and opens possibilities for phytoremediation. A field trial was designed to assess the impact of planting a willow stand (Salix viminalis L. 'Orm') on the dissipation of organic contaminants (mineral oil and PAHs) in dredged sediment. In addition, the accumulation of heavy metals (Cd, Cu, Pb and Zn) in the biomass was determined. After 1.5 years, a significant decrease of 57% in the mineral oil concentration in the sediment planted with willow was observed. Degradation of mineral oil in sediment which was left fallow, was only 15%. The mineral oil degradation under willow was most pronounced (79%) in the root zone of the stand. In the sediment which was left fallow there was a significant reduction of the total PAH content by 32% compared with a 23% reduction in the planted sediment. The moderate and selective metal uptake, measured in this study, limits the prospects for phytoextraction of metals from dredged sediment

  17. Phytoremediation prospects of willow stands on contaminated sediment: a field trial

    Energy Technology Data Exchange (ETDEWEB)

    Vervaeke, P.; Luyssaert, S.; Mertens, J.; Meers, E.; Tack, F.M.G.; Lust, N

    2003-11-01

    A field trial indicated increased degradation of mineral oil in sediments planted with willow. - Establishing fast growing willow stands on land disposed contaminated dredged sediment can result in the revaluation of this material and opens possibilities for phytoremediation. A field trial was designed to assess the impact of planting a willow stand (Salix viminalis L. 'Orm') on the dissipation of organic contaminants (mineral oil and PAHs) in dredged sediment. In addition, the accumulation of heavy metals (Cd, Cu, Pb and Zn) in the biomass was determined. After 1.5 years, a significant decrease of 57% in the mineral oil concentration in the sediment planted with willow was observed. Degradation of mineral oil in sediment which was left fallow, was only 15%. The mineral oil degradation under willow was most pronounced (79%) in the root zone of the stand. In the sediment which was left fallow there was a significant reduction of the total PAH content by 32% compared with a 23% reduction in the planted sediment. The moderate and selective metal uptake, measured in this study, limits the prospects for phytoextraction of metals from dredged sediment.

  18. Uranium Phases in Contaminated Sediments Below Hanford's U Tank Farm

    International Nuclear Information System (INIS)

    Um, Wooyong; Wang, Zheming; Serne, R. Jeffrey; Williams, Benjamin D.; Brown, Christopher F.; Dodge, Cleveland J.; Francis, Arokiasamy J.

    2009-01-01

    Macroscopic and spectroscopic investigations (XAFS, XRF and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Dominant U(VI) silicate precipitates (boltwoodite and uranophane) were present in shallow-depth sediments (15-16 m bgs). In the intermediate depth sediments (20-25 m bgs), adsorbed U(VI) phases dominated but small amounts of surface precipitates consisting of polynuclear U(VI) surface complex were also identified. The deep depth sediments (> 28 m bgs) showed no signs of contact with tank wastes containing Hanford-derived U(VI), but natural uranium solid phases were observed. Most of the U(VI) was preferentially associated with the silt and clay size fractions and showed strong correlation with Ca, especially for the precipitated U(VI) silicate phase in the shallow depth sediments. Because U(VI) silicate precipitates dominate the U(VI) phases in the shallow depth sediments, macroscopic (bi)carbonate leaching should result in U(VI) releases from both desorption and dissolution processes. Having several different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments would be needed to estimate U(VI) fate and transport in vadose zone

  19. Origin and geochemical behavior of uranium in marine sediments. Utilization of the 234U/238U ratio in marine geochemistry

    International Nuclear Information System (INIS)

    Organo, Catherine

    1997-01-01

    The first part of this thesis presents the current situation of knowledge of uranium in marine environment. The second part describes the methods of analysis as well as the material support of the study, i.e., the sediments and marine deposits investigated. The third part is dedicated to the study of uranium mobility in marine sediments characterized by detrital terrigenous composition (pelagic clays). This approach allowed quantifying the entering and leaving flux of uranium after the sediment settling and, to discuss, on this basis, the consequences on the uranium oceanic balance. In the third part the origin and behavior of uranium in zones of high surface productivity is studied. The uranium enrichments observed in the hemi-pelagic sediments of the EUMELI (J.G.O.F.S.-France) programme will constitute a material of study adequate for measuring the variations in the 234 U/2 38U ratio in solid phase, in response to the oxido-reducing characteristics of the sediment. Thus establishing the origin of the trapped uranium has been possible. Also, the nature of the sedimentary phases related to uranium in bio-genetic sediments in the Austral Ocean was determined. Thus a relationship between the variations in the 234 U/ 238 and the diagenetic transformations was possible to establish. Finally in the fifth part a study of the behavior of uranium in a polymetallic shell characteristic for deposits of hydrogenized origin

  20. A preliminary survey of marine contamination from mining-related activities on Marinduque Island, Philippines: porewater toxicity and chemistry results from a field trip, October 14-19, 2000

    Science.gov (United States)

    Carr, R. Scott; Nipper, Marion; Plumlee, Geoffrey S.

    2001-01-01

    As a follow-up of an initial overview of environmental problems caused by mining activities on Marinduque Island, Philippines, USGS and TAMU-CC scientists went to Marinduque in October 2000 to do a preliminary assessment of potential impacts of mining-related activities on the marine environment. Like the previous visit in May 2000, the marine assessment was conducted at the invitation of Philippine Congressman Edmund O. Reyes. In this report we present the results of sediment porewater toxicity tests and chemical analyses. Toxicity tests consist of laboratory analyses for the assessment of adverse effects caused by environmental contaminants to animals or plants. Sediments (sand or mud) are known to accumulate contaminants (e.g., copper and other heavy metals). Therefore, it is common to perform toxicity tests using different phases of the sedimentary environment in order to analyze adverse effects of contaminants accumulated in the sediment. Sediment pore water (or interstitial water, i.e., the water distributed among the sediment grains) is a sedimentary phase which controls the bioavailability of contaminants to bottom dwelling aquatic organisms (both plants and animals). There are several different kinds of organisms with which toxicity tests can be performed. Among those, tests with sea urchin early life stages (gametes and embryos) are very common due to their high sensitivity to contaminants, ease of maintenance under laboratory conditions, and ecological importance, particularly in coral reefs. The basis of these tests is the exposure of gametes or embryos to the pore water to be analyzed for toxicity. If the pore water contains contaminants in levels that can adversely affect a number of marine species, fertilization and/or embryological development of sea urchins is inhibited. Chemical analyses provide additional information and aid in the interpretation of the toxicity test results. For the current study, chemical analyses were performed for the

  1. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  2. Plutonium behavior during the early diagenesis of marine sediments: applications to two marine environments labelled by radionuclides released from reprocessing plants

    International Nuclear Information System (INIS)

    Gouzy, A.

    2004-12-01

    The plutonium released into the English Channel and the Irish Sea by nuclear fuel reprocessing plants is mainly associated to sediments. Nevertheless, this association is partially reversible. This work combines a field study, carried out on the Cumbrian mud patch and the Esk estuary (Eastern Irish Sea), and laboratory experiments performed on carbonaceous coarse-grained sediments collected in the Central Channel. It presents new data on the plutonium solid partition in sediments and suggests realistic scenarios for describing its release from sediments to the water column. The role of reactive sulphides acting as temporary sink phases is shown in anoxic sediments; those sulphides are liable to release dissolved plutonium upon their oxidation. The plutonium is also bound to carbonates within the carbonaceous matrix and as carbonate surface complexes. Conceptual schemes of the behaviour of the plutonium in marine sediments are proposed; they highlight the strong remobilization potential of plutonium from marine sediments to the interstitial water. Its plutonium content can be injected into the overlying water column. (author)

  3. Biogenic methane potential of marine sediments. Application of chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology

    2013-08-01

    Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in

  4. Using network to enhance the insights on correlation and pollution assessment of co-occurring metals in marine sediments, the East China Sea.

    Science.gov (United States)

    Liu, Lili; Wang, Yupeng; Lin, Sen; Li, Hong; Chen, Xin; Wang, Zhiping; Lin, Kuangfei

    2018-02-14

    In this study, sediment samples were collected from 24 sites in the East China Sea (ECS) to investigate the distribution characteristics, co-occurrence correlations, and ecological risks of metals. In surface sediments, metals presented a homologous banding distribution pattern decreasing seaward with distance. With network analysis, it indicated metals in this area might directly derive from the coastal river inputs. According to geo-accumulation indexes (I geo ), Cd was classified as moderate pollution at 58% sites, far above other metals. In addition, the potential ecological risk index (RI) was clustered with the ecological risk (ER) of Cd, which was regarded as considerable or high-risk level for most coastal stations. Thus Cd pollution in the ESC sediment should be paid more attention. In sum, the visualization of statistical analyses combined with geochemical approaches could reveal the potential sources of contaminants and ecological risks, thus facilitate the pollution evaluation in marine sediments.

  5. Assessment of streambed sediment contamination by heavy metals: The case of the Gabes Catchment, South-eastern Tunisia

    Science.gov (United States)

    Dahri, Noura; Atoui, Abdelfattah; Ellouze, Manel; Abida, Habib

    2018-04-01

    This study deals with the assessment of the behaviour of seven heavy metals (Cd, Zn, Cu, Pb, Ni, Cr and As) in streambed sediments within the Gabes Catchment, located in South-eastern Tunisia. To understand the effect of intense human activities in the Gabes Basin on the quality of the environment, 22 sediment samples, spread all over the study basin, were taken and analyzed for heavy metals. Heavy metal concentrations were shown to vary in the following order: Zn > Pb > Cu > Cr > Ni > Cd > As. Sediment quality was assessed based on the evaluation of various indices. A total of 27% of the sampling stations are characterised by sediment Enrichment Factors (EF) exceeding 40, reflecting extremely severe pollution. This result was also confirmed by different indices, including Sediment Pollution Index (SPI), Pollution Load Index (PLI) and Geo-accumulation index. The calculation of Mean Effect Range-Median Quotient (M-ERM-Q) indicated that in stream discharge, all metals have a probability of 21% to be toxic. The ecological toxicity risk of heavy metals increases close to urban (traffic activity) and industrial activities (industrial complex of Gabes). Close to Gabes City, the situation and the degree of contamination that may be transferred into marine ecosystems is worrisome and requires immediate intervention.

  6. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    Science.gov (United States)

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  7. The onset of fabric development in deep marine sediments

    NARCIS (Netherlands)

    Maffione, Marco; Morris, Antony

    2017-01-01

    Post-depositional compaction is a key stage in the formation of sedimentary rocks that results in porosity reduction, grain realignment and the production of sedimentary fabrics. The progressive time-depth evolution of the onset of fabric development in deep marine sediments is poorly constrained

  8. Geochemical Screening of Contaminated Marine and Estuarine Sediments

    Science.gov (United States)

    Kruge, M. A.

    2004-05-01

    Waterways near urban centers have been subject to pollution by human activities for centuries. This process greatly intensified with the advent of the Industrial Revolution and the attendant exponential population increase in coastal areas. The co-occurrence of port facilities for ocean-going vessels, large factories, major power generating stations, dense automotive transportation networks, and massive wastewater outfalls, all in compact geographical areas, has produced severe environmental stress. In recent decades, the growing awareness of the seriousness of coastal urban environmental degradation has inspired intensive efforts at pollution prevention and remediation. To better understand pollution dynamics over time in an aquatic urban setting, a program of intensive sampling and analysis leading to the creation of geographic information systems (GIS) would be desirable. Chemical evaluation of sediments for pollution remains a costly and time-consuming procedure, particularly for organic analysis. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) offers a practical alternative for rapid, inexpensive molecular organic analysis, simply employing milligram quantities of dry, whole sediment. The compounds detected comprise an information-rich mixture of thermally extractable components and the products of the thermal decomposition of (bio)polymers present in the sample. These include PAHs, petroleum-derived hopanes, organonitrogen compounds, and linear alkylbenzenes, as illustrated with examples from Long Island Sound and the Passaic River (USA) and Barcelona harbor (Spain).

  9. Assessing sediment contamination using six toxicity assays

    Directory of Open Access Journals (Sweden)

    Allen G. BURTON Jr.

    2001-08-01

    Full Text Available An evaluation of sediment toxicity at Lake Orta, Italy was conducted to compare a toxicity test battery of 6 assays and to evaluate the extent of sediment contamination at various sediment depths. Lake Orta received excessive loadings of copper and ammonia during the 1900’s until a large remediation effort was conducted in 1989-90 using lime addition. Since that time, the lake has shown signs of a steady recovery of biological communities. The study results showed acute toxicity still exists in sediments at a depth of 5 cm and greater. Assays that detected the highest levels of toxicity were two whole sediment exposures (7 d using Hyalella azteca and Ceriodaphnia dubia. The MicrotoxR assay using pore water was the third most sensitive assay. The Thamnotox, Rototox, Microtox solid phase, and Seed Germination-Root Elongation (pore and solid phase assays showed occasional to no toxicity. Based on similarity of responses and assay sensitivity, the two most useful assays were the C. dubia (or H. azteca and Microtox pore water. These assays were effective at describing sediment toxicity in a weight-of-evidence approach.

  10. Local scale marine modelling of Fukushima releases. Assessment of water and sediment contamination and sensitivity to water circulation description

    International Nuclear Information System (INIS)

    Periáñez, R.; Suh, Kyung-Suk; Min, Byung-Il

    2012-01-01

    Highlights: ► First simulations of Cs seabed sediment contamination after Fukushima releases. ► Effects of tides on dispersion patterns assessed: not significant. ► Two kinetic models for uptake/release reactions compared. ► Daily currents from two ocean models have been used. Results compared. ► Overall better results with JCOPE2 currents and 2-step kinetics. - Abstract: The dispersion of 137 Cs released from Fukushima nuclear power plant to the sea after the March 11th 2011 tsunami has been studied using numerical models. The 3D dispersion model consists of an advection/diffusion equation with terms describing uptake/release reactions between water and seabed sediments. The dispersion model has been fed with daily currents provided by HYCOM and JCOPE2 ocean models. Seabed sediment 137 Cs patterns obtained using both current data set have been compared. The impact of tides and of atmospheric deposition has been evaluated as well. It has been also found that a 2-step kinetic model (two consecutive reversible reactions) for describing water/sediment interactions produces better results than a 1-step model (one single reversible reaction).

  11. Effect of Suez Canal Marine Sediment on Sorption of Cesium

    International Nuclear Information System (INIS)

    Hassan, H.B.

    2016-01-01

    Suez Canal is surrounded by navigation, industrial, agricultural activities and suffers from high rate of population growth that discharging waste into Suez Canal. The Suez Canal coastal waters are influenced by a complex variety of physical, geochemical and biological processes, which influence the behavior, transport and fate of containments released into the marine environment. Sorption of releasing containment such as cesium in Suez Canal water is investigated because of its toxic effect on the marine environment. The object of present study is to determine the effects some of physical and chemical characteristics of collected sediment samples from the three important locations on Suez Canal (Suez Bay, Bitter Lakes and El- Temsah Lake beaches) on sorption behavior of cesium by using batch experiment. Batch experiment was used to study the sorption of the cesium ion. The sorption process is dependent on mineral constituents of Suez Canal sediment and their characteristics. Analytical methods which included particle size and X-ray diffraction (XRD) analyses found that particle size of Suez Canal sediment samples is characterized by sand to fine sand and quartz is the main mineralogical species. Distribution coefficient (K d ) which represent geochemical processes and particle size of these sediment samples effect on the degree of cesium sorption to the sediment. Also (K d ) increase with increase cation exchangeable capacity (CEC). The Suez Canal sediment samples have low (K d ) values which effected by their physical and chemical properties. Sample (2) has highest distribution coefficient (K d ) between measured samples due to containing ratio 30% of fine sand and high ratio of organic matter.

  12. Radioactive contamination in the marine environment adjacent to the outfall of the radioactive waste treatment plant at ATOMFLOT, northern Russia.

    Science.gov (United States)

    Brown, J E; Nikitin, A; Valetova, N K; Chumichev, V B; Katrich, I Yu; Berezhnoy, V I; Pegoev, N N; Kabanov, A I; Pichugin, S N; Vopiyashin, Yu Ya; Lind, B; Grøttheim, S; Sickel, M; Strand, P

    2002-01-01

    RTP "ATOMFLOT" is a civilian nuclear icebreaker base located on the Kola Bay of northwest Russia. The objectives of this study were to determine the distributions of man-made radionuclides in the marine environment adjacent to the base, to explain the form of the distributions in sediments and to derive information concerning the fate of radionuclides discharged from ATOMFLOT. Mean activity concentrations (d.w.) for surface sediment, of 63 Bq kg(-1 137Cs, 5.8 Bq kg(-1) 90Sr and 0.45 Bq kg(-1 239,240)Pu were measured. Filtered seawater activity levels were in the range of 3--6.9 Bq m(-3) 137Cs, 2.0-11.2 Bq m(-3) 90Sr, and 16-40 m Bq m(-3), 239,240Pu. Short-lived radionuclides were present at sediment depths in excess of 10cm indicating a high degree of sediment mixing. Correlations of radionuclide activity concentrations with grain-size appear to be absent; instead, the presence of relatively contaminated sediment appears to be related to the existence of radioactive particles.

  13. Polychlorinated naphthalenes (PCNs) in riverine and marine sediments of the Laizhou Bay area, North China

    International Nuclear Information System (INIS)

    Pan Xiaohui; Tang Jianhui; Chen Yingjun; Li Jun; Zhang Gan

    2011-01-01

    PCN congeners were analyzed in marine and riverine sediments of the Laizhou Bay area, North China. Concentrations of PCNs ranged from 0.12 to 5.1 ng g -1 dry weight (dw) with a mean value of 1.1 ng g -1 dw. The levels of PCNs varied largely, with industrial group approximately ten folds higher than those of the rural in riverine sediment. A strong impact by direct discharge from local factories was suggested. Similar compositional profiles were found within groups. High resemblance of compositional profiles between industrial samples and Halowax 1014 was observed. It was indicated that PCNs in riverine sediments were mainly from release of industrial usage, with additional contributions from industrial thermal process at certain sites. In marine sediments, it was suggested that PCNs along the coast of Laizhou Bay were mainly controlled by riverine input. While in the central bay, PCN distributions were possibly impacted by combined multiple factors. - Highlights: → We investigated the PCN levels both in the riverine and marine surface sediments of Laizhou Bay. → PCN concentrations in the river sediments of industrial group were ten times higher than in the rural group. → Leakage from industrial materials and thermal processes were the major sources. → PCNs in the coastal sites were more influenced by the river discharge. → In the centre bay, PCN distributions were possibly impacted by combined multiple factors. - A systematic sampling of riverine and marine sediments was conducted in Laizhou Bay area to investigate the distribution and possible sources of PCNs.

  14. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  15. The remediation of tributyltin-contaminated dredgins and waters

    OpenAIRE

    Gkenakou, Evgenia-Varvara

    2008-01-01

    Tributyltin (TBT) is a pollutant, mainly introduced to the environment as a marine anti-fouling agent. The aim of this work was to assess and develop sustainable and cost-effective remediation technologies for TBT-contaminated dredged materials. For this purpose, analytical methods were developed for sediments and sediment leachates.For the sediments, a triple extraction followed by derivatisation and measurement by gas chromatography with pulsed flame photometric detection was employed, avoi...

  16. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities

    KAUST Repository

    Hamdan, Hamdan Z.; Salam, Darine A.; Rao, Hari Ananda; Semerjian, Lucy; Saikaly, Pascal

    2016-01-01

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway

  17. Determination of multi-element in marine sediment samples collected in Angola by the k0-NAA technique

    International Nuclear Information System (INIS)

    Teixeira, M.C.P.; Ho Manh Dung; Cao Dong Vu; Nguyen Thi Sy; Nguyen Thanh Binh; Vuong Huu Tan

    2006-01-01

    The marine sediment samples were designed to collect in Angola for marine environmental pollution study. The k 0 -standardization method of neutron activation analysis (k 0 -NAA) on Dalat research reactor has been developed to determine of multi-element in the Angola marine sediment samples. The samples were irradiated in cell 7-1 for short- and middle-lived nuclides and rotary specimen rack for long-lived nuclides. The irradiation facilities were characterized for neutron spectrum parameters and post-activated samples were measured on the calibrated gamma-ray spectrometers using HPGe detectors. The analytical results for 9 marine sediment samples with 27 elements: Al, As, Br, Ca, Ce,Cl, Co, Cs, Dy, Fe, Hf, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sm, Th, Ti, U, V and Zn in term of mean concentration, standard deviation and their content range are shown in the report. The analytical quality assurance was done by analysis of a Japan's certified reference material namely marine sediment NMIJ-CRM-7302a. These preliminary results revealed that the k 0 -NAA technique on the Dalat research reactor is a good analytical technique for determination of multi-element in the marine sediment samples. Some heavy metals and trace elements determined in this work possibly connected to the human activities at the sampling region. (author)

  18. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments

    KAUST Repository

    Barbato, Marta; Mapelli, Francesca; Magagnini, Mirko; Chouaia, Bessem; Armeni, Monica; Marasco, Ramona; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2016-01-01

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation

  19. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    Science.gov (United States)

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This

  20. Inventory calculations in sediment samples with heterogeneous plutonium activity distribution

    International Nuclear Information System (INIS)

    Eriksson, M.; Dahlgaard, H.

    2002-01-01

    A method to determine the total inventory of a heterogeneously distributed contamination of marine sediments is described. The study site is the Bylot Sound off the Thule Airbase, NW Greenland, where marine sediments became contaminated with plutonium in 1968 after a nuclear weapons accident. The calculation is based on a gamma spectrometric screening of the 241 Am concentration in 450 one-gram aliquots from 6 sediment cores. A Monte Carlo programme then simulates a probable distribution of the activity, and based on that, a total inventory is estimated by integrating a double exponential function. The present data indicate a total inventory around 3.5 kg, which is 7 times higher than earlier estimates (0.5 kg). The difference is partly explained by the inclusion of hot particles in the present calculation. A large uncertainty is connected to this estimate, and it should be regarded as preliminary. (au)

  1. Mechanical response of marine sediments resulting from isolation of radioactive wastes

    International Nuclear Information System (INIS)

    Dawson, P.R.

    1979-01-01

    Preliminary analyses of canister movement rsulting from thermally induced density gradients have been performed using a creeping viscoplastic flow model in conjunction with a creep equation evaluated from literature data for fine-grained clay. The stress levels predicted are quite low relative to the sediment quasi-static strength indicating that creep testing of marine sediments at very low stress is necessary. 4 figures

  2. Evaluation of experimental studies on technetium transfers to sediments and benthic marine species, and comparison with in situ data

    Energy Technology Data Exchange (ETDEWEB)

    Aprosi, G [Electricite de France, 78 - Chatou; Masson, M [Commisariat a l' Energie Atomique, Institut de Protection et de Surete Nucleaire, 50 - Cherbourg (France)

    1984-01-01

    To obtain basic information for the evaluation of the radiological impact of technetium (Tc) on the marine environment, investigations are performed by different laboratories. Technetium is not a natural element and the main source of production is the nuclear fuel cycle. Under anoxic conditions, in presence of reducing sediments, the distribution coefficients are very high (Ksub(D)=10/sup 3/). Concentration factors from water to species are mostly very low (FC 1 to 10); however, concentration factors up to 1000 have been observed for a few species such as macrophytic brown algae, worms and lobster. Biochemical analysis shows that Tc is bound with protein. The transfer factors between sediment and species are very low (FT<0,5). The biological half-life (Tb) was determined in some marine organisms which had accumulated the radionuclide from water-contamined food or from sediments. The loss is biphasic in storage organs (liver and kidney); uptake in the edible parts is low. Among the parameters studied (light for algae, physico-chemical form of Tc, salinity and temperature) only light and the physico-chemical forms have an effect on the accumulation of technetium. Analyses of /sup 99/Tc concentrations in species collected near the La Hague and Windscale (Sellafield) reprocessing plants confirm the experimental studies. Since sea water is likely to be an oxidant environment, technetium appears as a conservative element.

  3. Tracking the origin and dispersion of contaminated sediments transported by rivers draining the Fukushima radioactive contaminant plume

    Directory of Open Access Journals (Sweden)

    H. Lepage

    2015-03-01

    Full Text Available This study was conducted in several catchments draining the main Fukushima Dai-ichi Power Plant contaminant plume in Fukushima prefecture, Japan. We collected soils and sediment drape deposits (n = 128 and investigated the variation in 137Cs enrichment during five sampling campaigns, conducted every six months, which typically occurred after intense erosive events such as typhoons and snowmelt. We show that upstream contaminated soils are eroded during summer typhoons (June–October before being exported during the spring snowmelt (March–April. However, this seasonal cycle of sediment dispersion is further complicated by the occurrence of dam releases that may discharge large amounts of contaminants to the coastal plains during the coming years.

  4. Radioecologycal study of {sup 239/240}Pu in Bangka Island and Muria Peninsula: Determination of {sup 239/240}Pu in marine sediment and seawater as part of baseline data collecting for sitting of candidates of first Indonesia NPP

    Energy Technology Data Exchange (ETDEWEB)

    Suseno, Heny, E-mail: henis@batan.go.id [Radioactive Waste Technology Center - The Indonesian National Nuclear Energy Agency (Indonesia); Wisnubroto, Djarot S. [The Indonesian National Nuclear Energy Agency (Indonesia)

    2014-03-24

    Radioisotope Pu-239/240 are alpha emitting nuclides important indicators of radioactive contamination of the marine environment. Global fallout is the main source of plutonium in the marine environment. There are very limited study on {sup 239/240}Pu in Indonesia coastal environments. The data of this radioisotopes is needed for baseline data of nuclear power plant (NPP) site candidates both in Bangka Island and Muria Peninsula. Bottom sediments play an important role in radioecological studies of the marine environment because a large proportion of radioactive substances entering the sea is adsorbed over time onto suspended particulate matter and deposited in sediments. Plutonium is particle reactive and deposited in marine sediment. Radioisotope {sup 239/240}Pu was determinated by alpha spectrometry after radiochemical procedure that was performed in both water and marine sediment from Bangka Island and Muria Peninsula. The sediment baseline of concentration {sup 239/240}Pu in Bangka Island and Muria Peninsula were range from 0.013 to 0.021 Bq.kg{sup −1} and 0.018 to 0.024 Bq.kg{sup −1} respectively. The water baseline concentration this isotope were range from 2.73 to 4.05 mBq.m{sup −3} and 2.98 to 4.50 mBq.m{sup −3}.

  5. Distribution of uranium in marine sediments

    International Nuclear Information System (INIS)

    Ordonez R, E.; Ramirez T, J.J.; Lopez M, J.; Aspiazu, J.; Ruiz F, A.C.; Valero C, N.

    2008-01-01

    The marine sediments obtained by means of a sampling nucleus in the Gulf of Tehuantepec, Mexico, they have been object of crystallographic and morphological characterization. The PIXE analysis of some samples in study is shown. The normal methodology to carry out the alpha spectroscopy indicates that the sample should be dissolved, but due to the nature of the marine sediments, it thinks about the necessity to make a fractional separation of the sample components. In each stratum of the profile it separates the organic part and the mineral to recover the uranium. It was observed that in the organic phase, the uranium is in two oxidation states (IV and Vl), being necessary the radiochemical separation with a liquid/liquid column chromatographic that uses the di-2-ethyl hexyl phosphoric acid as stationary phase. The uranium compounds extracts are electrodeposited in fine layers on stainless steel disks to carry out the analysis by alpha spectroscopy. The spectroscopic analysis of the uranium indicates us that for each stratum one has a difference marked in the quotient of activities of 234 U/ 238 U that depends on the nature of the studied fraction. These results give us a clear idea about how it is presented the effect of the uranium migration and other radioelements in the biosphere, with what we can determine which are the conditions in that these have their maximum mobility and to know their diffusion patterns in the different media studied. (Author)

  6. Remobilisation of uranium from contaminated freshwater sediments by bioturbation

    Energy Technology Data Exchange (ETDEWEB)

    Lagauzere, S.; Bonzom, J.M. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Saint-Paul-Lez-Durance (France). Lab. d' Ecotoxicologie des Radionucleides; Motelica-Heino, M. [Orleans Univ. (France). ISTO; Viollier, E. [Paris Diderot Univ., Paris (France). Inst. de Physique du Globe de Paris; Stora, G. [Aix-Marseille Univ., Marseille (France). Mediterranean Inst. of Oceanography (MIO)

    2014-07-01

    Benthic macro-invertebrate bioturbation can influence the remobilisation of uranium (U) initially associated with freshwater sediments, resulting in a high release of this pollutant through the overlying water column. Given the potential negative effects on aquatic biocenosis and the global ecological risk, it appears crucial to improve our current knowledge concerning the biogeochemical behaviour of U in sediments. The present study aimed to assess the biogeochemical modifications induced by Tubifex tubifex (Annelida, Clitellata, Tubificidae) bioturbation within the sediment in order to explain such a release of U. To reach this goal, U distribution between solid and solute phases of a reconstructed benthic system (i.e. in mesocosms) inhabited or not by T. tubifex worms was assessed in a 12-day laboratory experiment. Thanks notably to fine-resolution (mm-scale) measurements (e.g. ''diffusive equilibrium in thin-films'' DET gel probes for porewater, bioaccumulation in worms) of U and main chemical species (iron, sulfate, nitrate and nitrite), this work (i) confirmed that the removal of bottom sediment particles to the surface through the digestive tract of worms greatly favoured oxidative loss of U in the water column, and (ii) demonstrated that both U contamination and bioturbation of T. tubifex substantially influenced major microbial-driven biogeochemical reactions in sediments (e.g. stimulation of denitrification, sulfate reduction and iron dissolutive reduction). This study provides the first demonstration of biogeochemical modifications induced by bioturbation in freshwater U-contaminated sediments.

  7. Algal and archaeal polyisoprenoids in a recent marine sediment

    DEFF Research Database (Denmark)

    Bian, Liangqiao; Hinrichs, Kai-Uwe; Xie, Tianmin

    2001-01-01

    Analyses of C-13 contents of individual organic molecules in a marine sediment show that crocetane, 2,6,11,15-tetramethylhexadecane, an isomer of phytane, is produced by microorganisms that use methane as their main source of carbon. The sediments lie at a water depth of 68 m in the Kattegat......, the strait between Denmark and Sweden. Crocetane appears first 185 cm below the sediment-water interface, in the zone marking the transition from sulfate reduction to methanogenesis. Its delta C-13 value is -90 +/- 10 parts per thousand versus Vienna Pee Dee Belemnite (VPDB). Its structure, which includes......-consuming member of the microbial consortium responsible for the anaerobic oxidation of methane [Hoehler et al., 1994], in which, as first demonstrated quantitatively in these sediments [Iversen and Jorgensen, 1985], electrons are transferred from methane to sulfate. The presence of archaeal biomass throughout...

  8. Speedy instrumental decoding of the marine-sediment as an indicator of environment pollution (abstract)

    International Nuclear Information System (INIS)

    Rehana, I.; Ishfaq, M.M.

    1999-01-01

    Pedogenesis and drainage determine quantity and quality of material to be transported from the terrestrial ecosystem to aquatic ecosystem. Thus identification of controlling factors for the accumulation of certain elemental burden is important while, studying recent anthropogenic sources on soil and ground water elemental geochemistry. The continuous supply of organic and inorganic material in aquatic system such as lake, rivers and estuaries renders the sediment-water interface by marked chemical changes, resulting in steep gradients in physical, chemical and biological properties. Biogenic, authigenic and mineral particle which settle at the sediment surface accumulate to relatively high concentration and compared to their time in water column, have an appreciably long time in which to react mutually henceforth to the surrounding interacting forces. The particle flux in the ocean response to wind speed, aerosol deposition, nutrient level, carbon dioxide levels in the mixed layer, availability of the trace element such as Fe and volcanic emissions. Biochemical processes taking place in the deep ocean are coupled to the atmospheric processes via the particle flux in the ocean. As the oceanic flux, responds to the climatic and environmental forces, it has also a potential to detect and monitor, thus permitting the reconstruction of the global changes in the past. Thus, in spite of the fact that are distinct correlation between concentration and the distance of the sampling point from potential source such as industry, highway or municipal can not be established sediments from sea, lake, estuaries or river could be valuable tool to show spatial and temporal trends of metal contamination. Studies have been undertaken to construct a comprehensive scenario of environmental impact from marine pollution. Hence present work attempts to evaluate enrichment of various metals and cations in marine sediments from Japanese and Pakistan coastal areas. Concentration of Cr, Cu, Cd

  9. ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Roberts, J.

    2012-02-13

    This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

  10. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  11. New aspects on the transuranics transfer in the Palomares marine environment

    International Nuclear Information System (INIS)

    Romero, L.; Lobo, A.M.; Holm, E.

    1992-01-01

    The environmental contamination of transuranics following the Palomares accident in 1966 (Southern Spain) has been continuous monitored on land and scientific programs are still running. The study of the land to sea transfer of the contamination started in 1986, focussed on the depositional history recorded in marine sediments. At the continental shelf, south of the mouth of the Almanzora river, enhanced levels of plutonium and americium were found which could be related to the accident. Additional analysis of marine sediments, collected far from the impact point, showed the presence of a hot particle. The study of the chronology of this sediment core and the isotopic ratios are given in this paper to assess the origin and pathway of the particle. The route of this particle was found to be the aerial transfer at the time of the accident. (author) 8 refs.; 3 figs

  12. Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia in relation to sedimentation processes and geomorphology.

    Science.gov (United States)

    Linnik, V G; Brown, J E; Dowdall, M; Potapov, V N; Surkov, V V; Korobova, E M; Volosov, A G; Vakulovsky, S M; Tertyshnik, E G

    2005-03-01

    The radioactive contamination of a riverine floodplain, heavily influenced by discharges from Krasnoyarsk-26, has been studied with respect to sedimentation processes and the geomorphology of the Upper Yenisey floodplain. The study was effected by implementation of a regime of in situ observations and measurements, sampling, and the interpretation of satellite images. The results of the study indicate that on the Balchug Bypass Floodplain, radionuclide contamination is primarily influenced by the thickness of the deposited sediments, and the area can be considered as two depositional environments. The Balchug floodplain area was contaminated due to sedimentation of radionuclide-contaminated alluvium, whose depositional regime significantly changed after the construction of a hydroelectric power station in 1967. Contamination levels are lower on the upstream part of the floodplain where sediment depth is less than 0.2-0.3 m, and this contamination started to accumulate in 1967, while the downstream part of the floodplain, exhibiting deeper deposits, displays higher levels of radionuclide contamination because radionuclides began to deposit here in 1958 when the Krasnoyarsk-26 Mining and Chemical Combine (KMCC) commenced operation. Radionuclide contamination of the floodplain is also related to the elevation of the floodplain, higher regions of the floodplain typically having lower contamination than low-lying areas, which tend to be frequently inundated with sediments being deposited during such inundations. Local relief, its orientation, and vegetation cover have also combined to form sediment traps with significantly higher radionuclide contamination. Lithological analysis combined with radiometric assay indicates a total 137Cs floodplain inventory of 33.7 GBq.

  13. Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia, in relation to sedimentation processes and geomorphology

    International Nuclear Information System (INIS)

    Linnik, V.G.; Korobova, E.M.; Volosov, A.G.; Brown, J.E.; Dowdall, M.; Potapov, V.N.; Surkov, V.V.; Vakulovsky, S.M.; Tertyshnik, E.G.

    2005-01-01

    The radioactive contamination of a riverine floodplain, heavily influenced by discharges from Krasnoyarsk-26, has been studied with respect to sedimentation processes and the geomorphology of the Upper Yenisey floodplain. The study was effected by implementation of a regime of in situ observations and measurements, sampling, and the interpretation of satellite images. The results of the study indicate that on the Balchug Bypass Floodplain, radionuclide contamination is primarily influenced by the thickness of the deposited sediments, and the area can be considered as two depositional environments. The Balchug floodplain area was contaminated due to sedimentation of radionuclide-contaminated alluvium, whose depositional regime significantly changed after the construction of a hydroelectric power station in 1967. Contamination levels are lower on the upstream part of the floodplain where sediment depth is less than 0.2-0.3 m, and this contamination started to accumulate in 1967, while the downstream part of the floodplain, exhibiting deeper deposits, displays higher levels of radionuclide contamination because radionuclides began to deposit here in 1958 when the Krasnoyarsk-26 Mining and Chemical Combine (KMCC) commenced operation. Radionuclide contamination of the floodplain is also related to the elevation of the floodplain, higher regions of the floodplain typically having lower contamination than low-lying areas, which tend to be frequently inundated with sediments being deposited during such inundations. Local relief, its orientation, and vegetation cover have also combined to form sediment traps with significantly higher radionuclide contamination. Lithological analysis combined with radiometric assay indicates a total 137 Cs floodplain inventory of 33.7 GBq

  14. Long-Term Spatio-Temporal Trends of Organotin Contaminations in the Marine Environment of Hong Kong.

    Directory of Open Access Journals (Sweden)

    Kevin K Y Ho

    Full Text Available Hong Kong imposed a partial restriction on application of organotin-based antifouling paints in 1992. Since September 2008, the International Maritime Organization prohibited the use of such antifouling systems on all sea-going vessels globally. Therefore, it is anticipated a gradual reduction of organotin contamination in Hong Kong's marine waters. Using the rock shell Reishia clavigera as a biomonitor, we evaluated the organotin contamination along Hong Kong's coastal waters over the past two decades (1990-2015. In 2010 and 2015, adult R. clavigera were examined for imposex status and analysed for tissue concentrations of six organotins. We consistently found 100% imposex incidence in female R. clavigera across all sites. Tissue triphenyltin (TPT concentrations were high in most samples. A probabilistic risk assessment showed that there were over 69% of chance that local R. clavigera would be at risk due to exposure to phenyltins. Comparing with those of previous surveys (2004-2010, both imposex levels and tissue concentrations of organotins did not decline, while the ecological risks due to exposure to organotins were increasing. We also observed high concentrations of monobutyltin and TPT in seawater and sediment from locations with intense shipping activities and from stormwater or sewage discharge. Overall, organotins are still prevalent in Hong Kong's marine waters showing that the global convention alone may be inadequate in reducing organotin contamination in a busy international port like Hong Kong. Appropriate management actions should be taken to control the use and release of organotins in Hong Kong and South China.

  15. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of

  16. Bench-scale demonstration of treatment technologies for contaminated sediments in Sydney Tar Ponds

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Punt, M.; Wong, B.; Weimer, L.; Tsangaris, A.; Brown, C.E.

    2003-01-01

    A series of bench-scale tests were conducted to determine the capabilities of selected commercially available technologies for treating contaminated sediments from the South Pond of Sydney Tar Ponds. This study was conducted under the umbrella of a technology demonstration program aimed at evaluating technologies to be used in the remediation of such sediments. The following approach was proposed by SAIC Canada for the treatment of the sediments: (1) solvent extraction for the removal of organic contaminants, (2) acid/chelant leaching for the removal of inorganic contaminants such as heavy metals, and (3) plasma hearth process for the destruction of toxic streams resulting from the first two processes. Solvent extraction followed by plasma treatment proved effective for removing and destroying organic contaminants. The removal of metals did not achieve the expected results through leaching. An approach was proposed for treating those sediments based on the results of the study. The approach differed depending on the level of organic content. An assessment of associated process costs for both a pilot-scale field demonstration and a full-scale treatment was provided. 11 tabs., 4 figs

  17. Metal availability in a highly contaminated, dredged-sediment disposal site: field measurements and geochemical modeling.

    Science.gov (United States)

    Lions, Julie; Guérin, Valérie; Bataillard, Philippe; van der Lee, Jan; Laboudigue, Agnès

    2010-09-01

    Two complementary approaches were used to characterize arsenic and metal mobilizations from a dredged-sediment disposal site: a detailed field study combined with hydrogeochemical modeling. Contaminants in sediments were found to be mainly present as sulfides subject to oxidation. Secondary phases (carbonates, sulfates, (hydr)oxides) were also observed. Oxidative processes occurred at different rates depending on physicochemical conditions and contaminant contents in the sediment. Two distinct areas were identified on the site, each corresponding to a specific contaminant mobility behavior. In a reducing area, Fe and As were highly soluble and illustrated anoxic behavior. In well-oxygenated material, groundwater was highly contaminated in Zn, Cd and Pb. A third zone in which sediments and groundwater were less contaminated was also characterized. This study enabled us to prioritize remediation work, which should aim to limit infiltration and long-term environmental impact. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Transformation of PBDE mixtures during sediment transport and resuspension in marine environments (Gulf of Lion, NW Mediterranean Sea)

    International Nuclear Information System (INIS)

    Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Durrieu de Madron, Xavier; Heussner, Serge; Canals, Miquel

    2012-01-01

    Polybromodiphenyl ethers (PBDEs) in superficial sediments from the Gulf of Lion were studied. They were largely predominated by BDE 209 (98.7% of all PBDEs) indicating that the main source of these pollutants was the commercial mixture deca-BDE. This compound and the less brominated BDE exhibited a southwestward decreasing concentration gradient following the dominant marine currents and bottom relief, e.g. the Mud Belt, the submarine canyons and the Open Continental Slope. All PBDEs exhibited statistically significant correlations confirming the common origin. However, a progressive transformation of the dumped BDE 209 was identified showing a depletion paralleled by increases of the less brominated BDEs (from 8.6% to 22%). These less brominated compounds were accumulated at about 100–140 km away from the Rhone prodelta, e.g. at the end of the submarine canyons, evidencing that these transformation compounds can be accumulated at long distances from the dumping sites in the marine system. Highlights: ► Polybromodiphenyl ethers are associated to organic carbon in marine sediments. ► PBDEs in marine sediments can accumulate further away than 140 km from the spill site. ► BDE-209 in marine sediments generate congeners found in banned commercial mixtures. ► BDE-209 in marine sediments generates new congeners not found in commercial mixtures. ► Submarine canyons channel PBDEs from the continental platform to the deep shelf. - Decomposition of decabromodiphenyl ether in marine sediments generates congeners found in banned mixtures in areas located far away from the discharge sites.

  19. Petroleum-related contaminants near a produced water discharge site in the Santa Barbara Channel

    International Nuclear Information System (INIS)

    Jones, A.D.; Witter, A.E.; Higashi, R.M.

    1994-01-01

    Offshore oil production generates substantial quantities of waste water that is frequently discharged into marine waters. Contamination of coastal sediments occurs due to other inputs including natural petroleum seeps, and this complicates assessments of the environmental effects of produced water in marine ecosystems. The current study has focused on characterization of contaminants in sediments near produced water discharge site off the coast of Southern California. First, it was important to address the question: ''What contaminants in sediments should be monitored as indicators of produced water effects?'' Dichloromethane extracts of sediments were analyzed for numerous organic constituents using gas chromatography-mass spectrometry and selected ion monitoring. Though the phenols and fatty acids were not detected in sediment extracts, normal and branched alkanes and other petroleum hydrocarbon biomarkers were quantified. No relationship was evident that related absolute concentrations of organic compounds to distance from the outfall, but patterns of petroleum hydrocarbons exhibited consistent spatial variations that could be related to distance from the produced water out fall. Analysis of chemical fossil ''biomarkers'' provides potentially useful indices of effects of waste discharges upon microbial biodegradation of organic compounds in sediments

  20. Constraints on the sources of branched tetraether membrane lipids in distal marine sediments

    NARCIS (Netherlands)

    Weijers, J.W.H.; Schefuß, E.; Kim, J.-H.; Sinninghe Damsté, J.; Schouten, S.

    2014-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases

  1. Plio-Pleistocene imprint of natural climate cycles in marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Lebreiro, S. M.

    2013-06-01

    The response of Earth to natural climate cyclicity is written in marine sediments. The Earth is a complex system, as is climate change determined by various modes, frequency of cycles, forcings, boundary conditions, thresholds, and tipping elements. Oceans act as climate change buffers, and marine sediments provide archives of climate conditions in the Earths history. To read climate records they must be well-dated, well-calibrated and analysed at high-resolution. Reconstructions of past climates are based on climate variables such as atmospheric composition, temperature, salinity, ocean productivity and wind, the nature and quality which are of the utmost importance. Once the palaeoclimate and palaeoceanographic proxy-variables of past events are well documented, the best results of modelling and validation, and future predictions can be obtained from climate models. Neither the mechanisms for abrupt climate changes at orbital, millennial and multi-decadal time scales nor the origin, rhythms and stability of cyclicity are as yet fully understood. Possible sources of cyclicity are either natural in the form of internal ocean-atmosphere-land interactions or external radioactive forcing such as solar irradiance and volcanic activity, or else anthropogenic. Coupling with stochastic resonance is also very probable. I provide here, an overview of the cyclicity affecting the Earth on various time scales focussing upon the Plio-Pleistocene and Holocene epochs, together with a compilation of some of the key questions under debate, and a number of representative works that illustrate cyclicity in marine sediments. (Author)

  2. Influence of macrobenthos on chemical diagenesis of marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Aller, R.C.

    1977-05-01

    Diagenetic reactions involving the decomposition of organic matter and the dissolution, mobilization, and reprecipitation of metals sensitive to oxidation-reduction reactions, are most intense and rapid in the upper 1 m and especially the upper 10 cm of marine sediment. It is in this upper zone where most benthic organisms live and interact with sediments and where exchange rates of dissolved and particulate material between sediment and overlying water are largely determined. In Long Island Sound, U.S.A., both spatial and temporal trends in sediment chemistry and the flux of material out of the bottom demonstrate the control of diagenesis by bottom fauna. /sup 234/Th//sup 238/U disequilibrium studies demonstrate that particle reworking rates near the sediment-water interface vary both temporally and spatially in the Sound. The most rapid reworking occurs in protobranch-inhabited bottom areas as do the highest /sup 234/Th inventories. Excess /sup 234/Th profiles in the sediment allow determination of the rates of selected diagenetic reactions, such as Mn/sup + +/ production, near the sediment surface. Both the /sup 234/Th disequilibrium and flux measurements indicate that intra-estuarine redistribution of metals continually takes place.

  3. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  4. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration.

    Science.gov (United States)

    Wu, Juan; Yang, Lihua; Zhong, Fei; Cheng, Shuiping

    2014-12-01

    Compared to traditional chemical or physical treatments, phytoremediation has proved to be a cost-effective and environmentally sound alternative for remediation of contaminated dredged sediment. A field study was conducted in a sediment disposal site predominantly colonized by Typha angustifolia under different sediment moisture conditions to estimate the phytoremediation effects of dredged sediment. The moisture content was 37.30 % and 48.27 % in aerated and waterlogged sediment, respectively. Total nitrogen (TN) content was higher in the waterlogged sediment than in the aerated sediment. The total Cd contents were lower in aerated sediment, which was mainly resulted from the lower exchangeable fraction of Cd. The bioaccumulation of P, Cu and Pb in T. angustifolia was promoted by waterlogging, and the belowground tissue concentrations and accumulation factors (AFs) of Cu were higher than that of other metals, which can be explained by that Cu is an essential micronutrient for plants. Consistent with many previous studies, T. angustifolia showed higher metal levels in roots than in above-ground tissues at both the sediment conditions. Due to the improved biomass produced in the aerated sediment, the removals of nutrients and the metals by plant harvest were higher from aerated sediment than from waterlogged sediment. It was indicated that maintaining the dredged sediment aerated can avoid release risk and plant uptake of metals, while the opposite management option can promote phytoextraction of these contaminants.

  5. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    Science.gov (United States)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  6. Investigation into spore coat properties for the rapid identification of endospores in marine sediments

    Science.gov (United States)

    Rattray, J. E.; Chakraborty, A.; Bernard, B. B.; Brooks, J.; Hubert, C. R.

    2017-12-01

    Understanding the sediment biogeography of dormant marine thermophilic bacterial endospores (thermospores) has the potential to assist locating and characterising working petroleum systems. The presence of thermospores in cold ocean environments suggests that distribution occurs via hydrocarbon seepage from thermally active reservoirs. Low abundance and endospore coat physiology mean nucleic acid based techniques have limited success for in situ detection of thermospores. Alternative rapid analytical methods are needed so we investigated using the Schaeffer-Fulton (malachite green and safranin) and DAPI (4',6-diamidino-2-phenylindole) staining techniques on thermospores from cultures and marine sediments. Sediment samples from 111 locations in the Eastern Gulf of Mexico (100 to 3300 m water depth; 6 to 600 km apart) were incubated at high temperature, followed by construction of 16S rRNA gene amplicon libraries (V3-V4 region; Illumina MiSeq) revealing enrichment of species-level thermospore OTUs. A sulfate reducing bacterium from site EGM080 was purified and classified based on its rRNA gene sequence as Desulfotomaculum geothermicum. Prior to thermospore staining the culture was kept in the death/ decline phase for 16 weeks to promote sporulation. Samples of D. geothermicum and the source marine sediment were fixed, stained then analysed using brightfield, phase contrast or fluorescence microscopy. Thermospores in pure culture were identified using phase contrast but were difficult to observe in the sediment sample due to particle aggregation. The Schaeffer-Fulton technique aided thermospore identification in a complex sediment sample matrix as thermospores were stained bright green, and also revealed that there were only spores and no (red stained) vegetative cells in the culture. Treatment with DAPI gave dull fluorescing cells but also provided insight into the behaviour of thermospores in sediment suspensions. Spores in the culture medium were free floating but

  7. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    Science.gov (United States)

    Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J

    2015-11-15

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Assessment of Measurement Uncertainty Values of the Scandium Determination in Marine Sediment

    International Nuclear Information System (INIS)

    Rina-Mulyaningsih, Th.

    2005-01-01

    The result value of testing is meaningless if it isn't completed with uncertainty value. So that with the analysis result Sc in the marine sediment sample. It was assessed the uncertainty measurement of Sc analysis in marine sediment. The experiment was done in AAN Serpong laboratory. The result of calculation uncertainty on Sc analysis showed that the uncertainty components come from: preparation of sample and standard/comparator, purity of standard, counting statistics (sample and standard), repeatability, nuclear data and decay correction. The assessment on uncertainty must be done for the analysis of others elements, because each elements has difference nuclear and physical properties. (author)

  9. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  10. Long distance electron transmission in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    processes leads to formation of electrical fields, which modifies ion transport. The local proton producing and proton consuming half reactions induces pH extremes that accelerate dissolution of iron sul-phides and calcium carbonates in anoxic layers and promotes the formation of Mg-calcite and iron oxides......Geochemical observations in marine sediment have recently shown that electric currents may intimately couple spatially separated biogeochemical processes like oxygen reduction at the sediment surface and hydrogen sul-phide oxidation in anoxic layers centimeters below 1. Further experimental studies...... suggest that the electron conductance is mediated by microorgan-isms. The spatial separation of electron and proton donors and acceptors has major impacts on element cycling by redox processes, pH balances, mineral dissolution/precipitations, and electromigration of ions. The sepa-ration of redox...

  11. Comparison of five bioassay techniques for assessing sediment-bound contaminants

    OpenAIRE

    Ahlf, Wolfgang; Calmano, Wolfgang; Erhard, Judith; Förstner, Ulrich

    1989-01-01

    Biological response could not be predicted based on chemical concentration of the sediment contaminants. Bioassays integrate the response of test organisms to contaminants and nutrients. Comparative results of five acute bioassays indicated that Neubauer phytoassay was the most sensitive. The mircobial biomass and algal growth tests indicated a response to the availability of contaminants and nutrients. These results suggest the usefulness of a diversity of bioassays in toxicity testing of se...

  12. Petroleum hydrocarbon concentrations in marine sediments along Chennai Coast, Bay of Bengal, India.

    Science.gov (United States)

    Venkatachalapathy, R; Veerasingam, S; Ramkumar, T

    2010-10-01

    The spatial and temporal distribution of petroleum hydrocarbons (PHC) in marine sediments along the Chennai coast, Bay of Bengal was quantified by Ultra-Violet Fluorescence (UVF) Spectroscopy. The concentration of PHC in surface sediments varied from 1.88 to 39.76 ppm. The highest values obtained in the northern part of the study area, where shipping activities and land-based waste waters disposed into sea through the rivers like Kuvam and Adayar. The Adayar (7.26-16.83 ppm) and Kuvam (5.5-39.72 ppm) cores reveal a clear horizon of increase in PHC above 50 and 35 cm respectively. PHC values showed a decreasing pattern with depth in all sediment cores suggesting the excess anthropogenic loading occurring in the recent past. The present study revealed that the PHC values of Chennai coastal sediments are lower than the values reported from selected costal areas including the sediment of the Mumbai coast (7.6-42.8 ppm), Arabian Sea. The results will be useful for pollution monitoring program along the coastal region and also to check the level of petroleum hydrocarbons in marine sediments.

  13. Contaminant characterization of sediment and pore-water in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Levine, D.A.; Harris, R.A.; Campbell, K.R.; Hargrove, W.W.; Rash, C.D.

    1995-01-01

    Sediment and pore-water samples were collected from 80 locations in the Clinch River and Poplar Creek system to characterize concentrations and spatial distribution of contaminants for use in ecological risk assessment. Sediment cores were collected at each site and the top 15 cm was analyzed to represent the biologically active zone. Sediment for pore-water extraction was collected in large volumes using a Ponar grab sampler. Pore-water was extracted from this sediment using centrifugation, All samples were analyzed for metals (including methyl mercury), organics, and radiological constituents. Additionally, sediment was analyzed for physical properties: particle size distribution, density, and porosity. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pre-water results indicate that there are several areas where concentrations of a variety of contaminants are high enough to causes ecological effects. These locations in the river are immediately downstream from know sources of Contamination from on-site DOE facilities. East Fork Poplar Creek is a source of several metals, including mercury, cadmium, chromium, and copper. Mitchell Branch is a source of number of metals, uranium isotopes, technetium-99, and several PAHs. There are two clear sources of arsenic and selenium to the system, one in Poplar Creek and one in Melton Hill Reservoir, both related to past disposal of coal-ash. High concentrations in sediments did not always coincide with high concentrations in pore-water for the same sites and contaminants. This appears to be related to particle size of the sediment and total organic carbon

  14. Supplementary guidance for the investigation and risk-assessment of potentially contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Spadaro, P.; Starr, J.; Thomas, J. [Arcadis, Arnhem (Netherlands); Hildenbrand, B. [Energy Institute, London (United Kingdom); Smith, J.W.N.; Dunk, M.; Grosjean, T.; De Ibarra, M.; Medve, A.; Den Haan, K.

    2013-11-15

    This report provides guidance on the investigation and assessment of potentially contaminated sediments, focusing on the inland, estuarine and coastal environments. It is designed as a complementary, technical companion document to Energy Institute and CONCAWE (2013) report 'Guidance on characterising, assessing and managing risks associated with potentially contaminated sediments' (Report E1001). It highlights a number of significant challenges associated with assessing the aquatic and water bottom environment, which means that a sediment assessment should not be undertaken lightly. Where a decision is taken to undertake a site assessment, this report promotes the use of an iterative process of Conceptual Site Model (CSM) development, data collection, data evaluation and a continuous CSM refinement, taking into account the results obtained. Risk-based assessment is described throughout the report, entailing four tiers of assessment, which progress from a qualitative assessment (Tier 0) through to a detailed cause-attribution assessment (Tier 3), in which the decrease in uncertainty in the assessment process is balanced against the increased costs and timescales with progress to a higher tier assessment. The application of this evidence-driven risk-based approach to sediment site management, including remedial control measures, should help to overcome at least some of the challenges associated with contaminants in sediment sites in Europe, and promote a sustainable approach to sediment management on a case-by-case basis.

  15. INTERACTIONS AMONG PHOSPHATE AMENDMENTS, MICROBES AND URANIUM MOBILITY IN CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A

    2007-08-30

    The use of sequestering agents for the transformation of radionuclides in low concentrations in contaminated soils/sediments offers considerable potential for long-term environmental cleanup. This study evaluated the influence of four phosphate amendments and two microbial amendments on U availability. The synchrotron X-ray fluorescence mapping of the untreated U-contaminated sediment showed that U was closely associated with Mn. All tested phosphate amendments reduced aqueous U concentration more than 90%, likely due to formation of insoluble phosphate precipitates. The addition of A. piechaudii and P. putida alone were found to reduce U concentrations 63% and 31% respectively. Uranium sorption in phosphate treatments was significantly reduced in the presence of microbes. However, increased microbial activity in the treated sediment led to reduction of phosphate effectiveness. The average U concentration in 1 M MgCl{sub 2} extract from U amended sediment was 437 {micro}g/kg, but in the same sediment without microbes (autoclaved sediment), the extractable U concentration was only 103 {micro}g/kg. When the autoclaved amended sediment was treated with autoclaved biological apatite, U concentration in the 1 M MgCl{sub 2} extract was {approx}0 {micro}g/kg. Together these tests suggest that microbes may enhance U leaching and reduce phosphate amendment remedial effectiveness.

  16. Redox-dependent phosphorus burial in modern and ancient marine sediments. Geologica Ultraiectina (334)

    NARCIS (Netherlands)

    Kraal, P.

    2011-01-01

    Phosphorus (P) is an essential nutrient in Earth’s biosphere that helps regulate marine primary productivity. Burial in sediments is the only pathway for long-term removal of P from the marine reservoir, the efficiency of which depends strongly on the redox state of the bottom waters;

  17. Sediment-worm interaction: transfer of 65Zn from marine silt by the polychaete, Nereis diversicolor

    International Nuclear Information System (INIS)

    Renfro, W.C.; Benayoun, G.

    1976-01-01

    Marine polychaete worms (Nereis diversicolor) accumulated 65 Zn sorbed to silty marine sediment for 5 days and were then transferred to nonradioactive sediment in the laboratory and in the sea. The mean biological half-life (T/sub B//2/) for the laboratory worms did not differ greatly from that for worms in the sea. Worms living in small flowing seawater systems containing 16 cm 3 of sediment accumulated 65 Zn added to each system in the form of radioactive organic detritus. Higher percentage uptake of 65 Zn was from radioactive detritus particles 0.2 to 2 mm in diameter resting on the sediment surface or mixed with sediment than from finely-ground ( 65 Zn coprecipitated from fresh water with Fe(OH) 3 was accumulated by N. diversicolor when the precipitate was on the sediment surface than when the precipitate was well mixed with the sediment. These experimental results indicate that benthic organisms may take up limited amounts of heavy metals associated with bottom sediments and recycle them to benthic and pelagic food webs

  18. Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania.

    Science.gov (United States)

    Bravo, Andrea Garcia; Loizeau, Jean-Luc; Ancey, Lydie; Ungureanu, Viorel Gheorghe; Dominik, Janusz

    2009-08-01

    Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments. Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01-0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3-2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor

  19. Perfluoroalkyl acid contamination and polyunsaturated fatty acid composition of French freshwater and marine fishes.

    Science.gov (United States)

    Yamada, Ami; Bemrah, Nawel; Veyrand, Bruno; Pollono, Charles; Merlo, Mathilde; Desvignes, Virginie; Sirot, Véronique; Oseredczuk, Marine; Marchand, Philippe; Cariou, Ronan; Antignac, Jean-Phillippe; Le Bizec, Bruno; Leblanc, Jean-Charles

    2014-07-30

    In this study, French marine and freshwater fish perfluoroalkyl acid (PFAA) contamination are presented along with their fatty acid (FA) composition to provide further elements for a risk/benefit balance of fish consumption to be assessed. The 29 most consumed marine fish species were collected in four metropolitan French coastal areas in 2004 to constitute composite samples. Geographical differences in terms of consumed species and contamination level were taken into account. Three hundred and eighty-seven composite samples corresponding to 16 freshwater fish species collected between 2008 and 2010 in the six major French rivers or their tributaries were selected among the French national agency for water and aquatic environments freshwater fish sample library. The raw edible parts were analyzed for FA composition and PFAA contamination. Results show that freshwater fishes are more contaminated by PFAAs than marine fishes and do not share the same contamination profile. Freshwater fish contamination is mostly driven by perfluorooctane sulfonate (PFOS) (75%), whereas marine fish contamination is split between perfluorooctanoic acid (PFOA) (24%), PFOS (20%), perfluorohexanoic acid (PFHxA) (15%), perfluoropentanoic acid (PFHpA) (11%), and perfluorobutanoic acid (PFBA) (11%). Common carp, pike-perch, European perch, thicklip grey mullet, and common roach presented the most unfavorable balance profile due to their high level of PFAAs and low level of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). These data could be used, if needed, in an updated opinion on fish consumption that takes into account PFAA contamination.

  20. Mollusc shells as archival indicators of metal contamination in the Australian antarctic marine environment

    International Nuclear Information System (INIS)

    Simpson, R.D.

    2000-01-01

    Full text: Although considered by many to be a pristine environment past activities in Antarctica have caused localised contamination. In particular, the practice of disposing of station waste in open tips adjacent to the seashore has caused heavy metals to migrate to the marine environment. Times have changed and these practices are no longer permitted. Under international agreements, such as the Protocol on Environmental Protection to the Antarctic Treaty System, operators are now required to clean-up these sites so long as the act of clean-up does not cause greater environmental harm than leaving them where they are. The Australian Antarctic Division has embarked on a program to develop techniques for clean-up and remediation of disused waste disposal sites and is also developing techniques for monitoring the environment to ensure that clean-up does not cause greater environmental harm. The Antarctic clam, Laternula elliptica, is common in near shore sediments around the entire coast of Antarctica. It is a filter feeder that extracts suspended sediments from the water column and has been suggested as a candidate for mussel watch-type monitoring in Antarctica. Contaminants in waste disposal tips in Antarctica are likely to be mobilised in pulses caused by the seasonal flush of melting snow as it passes through the contaminated material. As a filter feeder Laternula will be exposed to the highest concentrations of contaminants while they remain in suspension. If contaminants are sequestered into the shells of the bivalve and if their levels in the shell can be analysed in relation to the annual growth rings then they may prove to be a useful archive of past environmental contamination. Specimens of Laternula were exposed to known concentrations of copper and cadmium under aquarium conditions in Antarctica to understand accumulation and depuration rates in the soft tissues. This information is used to assist interpretation of concentrations in animals collected

  1. The significance of sediment contamination in the Elbe River floodplain (Czech Republic)

    Science.gov (United States)

    Chalupová, Dagmar; Janský, Bohumír; Langhammer, Jakub; Šobr, Miroslav; Jiři, Medek; Král, Stanislav; Jiřinec, Petr; Kaiglova, Jana; Černý, Michal; Žáček, Miroslav; Leontovyčova, Drahomíra; Halířová, Jarmila

    2015-04-01

    The abstract brings the information about the research that was focused on anthropogenic pollution of river and lake sediments in the middle course of the Elbe River (Czech Republic). The main aim was to identify and to evaluate the significance of old polluted sediments in the river and its side structures (old meanders, cut lakes, oxbow lakes) between Hradec Králové and Mělník (confluence with the Moldau River) and to assess the risk coming from the remobilization of the contaminated matter. The Elbe River floodplain has been highly inhabited since the Middle Ages, and, especially in the 20th century, major industrial plants were founded here. Since that time, the anthropogenic load of the river and it`s floodplain has grown. Although the contaminants bound to the sediment particles are usually stable, the main risk is coming from the fact that under changes in hydrological regime and water quality (floods, changes in pH, redox-potential, presence of complex substances etc.), the pollution can be released and remobilized again. The most endangered areas are: the surroundings of Pardubice (chemical factory Synthesia, Inc.; refinery PARAMO), and Neratovice (chemical factory Spolana, Inc.). The chemical factories situated close to these towns represented the most problematic polluters of the Elbe River especially during 2nd half of 20th century. In the research, the main attention was aimed at subaquatic sediments of selected cut lakes situated in the vicinity of the above mentioned sources of pollution. To describe the outreach of contamination, several further fluvial lakes were taken into account too. Sediment sampling was carried out from boats on lakes and with the help of drilling rig in the floodplain. Gained sediment cores were divided into several parts which were analysed separately. Chemical analyses included substances identified by ICPER (International Commission for the Protection of the Elbe River) as well as chemicals considered as significant in

  2. The geochemistry and mobility of the lanthanides in marine sediments

    International Nuclear Information System (INIS)

    Elderfield, H.

    1988-07-01

    A study has been made to evaluate lanthanide mobility in sediments directly by measuring concentrations of 10 lanthanide elements in sediments and pore waters. Due to the very low concentrations of the lanthanides in sea water relative to marine sediments, evidence of lanthanide mobilization is usually difficult to detect from studies of solid-phase geochemistry. Results show that the lanthanides can be extremely mobile. Concentrations in pore waters up to 100 times sea water concentrations have been measured. The conclusions are tentative but the present data suggest that the lanthanides are mobilized during oxidation of organic-rich sediments and are relocated in part in association with secondary Fe-rich phases. The behaviour of Ce is, predictably, somewhat different from the other lanthanides and may be more mobile as a consequence of its redox chemistry. (author)

  3. Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina.

    Science.gov (United States)

    Weinstein, John E; Crawford, Kevin D; Garner, Thomas R

    2010-03-01

    The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.

  4. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    Science.gov (United States)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  5. Distribution and temporal variation of trace metal enrichment in surface sediments of San Jorge Bay, Chile.

    Science.gov (United States)

    Valdés, Jorge; Román, Domingo; Guiñez, Marcos; Rivera, Lidia; Morales, Tatiana; Morales, Tomás; Avila, Juan; Cortés, Pedro

    2010-08-01

    Cu, Pb, and Hg concentrations were determined in surface sediment samples collected at three sites in San Jorge Bay, northern Chile. This study aims to evaluate differences in their spatial distribution and temporal variability. The highest metal concentrations were found at the site "Puerto", where minerals (Cu and Pb) have been loaded for more than 60 years. On the other hand, Hg does not pose a contamination problem in this bay. Cu and Pb concentrations showed significant variations from 1 year to another. These variations seem to be a consequence of the combination of several factors, including changes in the loading and/or storage of minerals in San Jorge Bay, the dredging of bottom sediments (especially at Puerto), and seasonal changes in physical-chemical properties of the water column that modify the exchange of metals at the sediment-water interface. Differences in the contamination factor and geoaccumulation index suggest that pre-industrial concentrations measured in marine sediments of this geographical zone, were better than geological values (average shale, continental crust average) for evaluating the degree of contamination in this coastal system. Based on these last two indexes, San Jorge Bay has a serious problem of Cu and Pb pollution at the three sampling locations. However, only Cu exceeds the national maximum values used to evaluate ecological risk and the health of marine environments. It is suggested that Chilean environmental legislation for marine sediment quality--presently under technical discussion--is not an efficient tool for protecting the marine ecosystem.

  6. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation.

    Science.gov (United States)

    Juracek, K E; Drake, K D

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  7. Mining-related sediment and soil contamination in a large Superfund site: Characterization, habitat implications, and remediation

    Science.gov (United States)

    Juracek, Kyle E.; Drake, K. D.

    2016-01-01

    Historical mining activity (1850–1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  8. Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments

    NARCIS (Netherlands)

    Lipsewers, Y.A.

    2017-01-01

    SummaryThe role of chemolithoautotrophic microorganisms has been considered to be of minor importancein coastal marine sediments although it has not been investigated in depth. Additionally,the impact of seasonal hypoxic/anoxic conditions on microbial chemolithoautotrophy in coastalmarine sediments

  9. Multi-elemental analysis of marine sediments of Sorsogon Bay using x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gonzales, Ralph Roly A.; Quirit, Leni L.; Rosales, Colleen Marciel F.; Pabroa, Preciosa Corazon B.; Sta Maria, Efren J.

    2011-01-01

    Metal composition and nutrient loadings of our bodies of water, when uncontrolled, may cause harmful bacterial contamination and pose threats in aquatic and human life. Toxic and trace element inputs in Sorsogon Bay sediments were determined using nuclear analytical techniques, more specifically, x-ray fluorescence spectrometry, in this study. Pre-treated marine sediment samples from Sorsogon Bay were homogenized using SPEX # 8000 mixer/mill and agate mortar and pestle, pelletized into 31-mm flat discs using SPEX 3630 X-Press and analyzed using PAN Analytical Epsilon 5 EDX X-ray Fluorescence Spectrometer with the emission and transmission method using silver and germanium secondary targets. Spectrum fitting performed using AXIL (Analysis of X-ray Spectra by Iterative Least-Squares Fitting), a subprogram in Quantitative X-ray Analysis System developed by the International Atomic Energy Agency and Quantitative Analysis of Environmental Samples program, was used for quantification of results. Results indicate generally moderate to high metal enrichment, specifically manganese, lead, cadmium, zinc and copper. Mercury and iron level enrichment are found to be low, marking an improvement from previous studies indicating high enrichment of these metals. (author)

  10. Mapping sediment contamination and toxicity in Winter Quarters Bay, McMurdo Station, Antarctica.

    Science.gov (United States)

    Crockett, Alan B; White, Gregory J

    2003-07-01

    Winter Quarters Bay (WQB) is a small embayment located adjacent to McMurdo Station, the largest research base in Antarctica. The bay is approximately 250 m wide and long, with a maximum depth of 33 m. Historically, trash from the McMurdo Station was piled on the steep shoreline of WQB, doused with fuel and ignited. That practice has ceased, and the adjacent land area has been regraded to cover the residual waste. The bottom of WQB remains littered with drums, equipment, tanks, tires, cables, and other objects, especially the southeastern side of the bay where dumping took place. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. The objectives of this study were to map the distribution of organic contaminants in WQB, assess the toxicity of WQB sediments using a simple microbial test, and determine correlations between toxicity and contaminant levels. The study suggests that adverse ecological effects have occurred from one or more of the contaminants found in WQB but the source of the toxic impacts to bay sediments remains unknown. Whole sediment toxicity was only correlated with oil-equivalent while solvent extracts of sediments were correlated with PAHs and oil-equivalent. The authors recommend that an integrated research plan be developed that focuses on determining what additional information is needed to make informed decisions on possible remediation of WQB.

  11. The trace metals accumulation in marine organisms of the southeastern Adriatic coast, Montenegro

    Directory of Open Access Journals (Sweden)

    Joksimovic Danijela

    2012-01-01

    Full Text Available The concentration and accumulation of trace metals (Co, Ni, As, Cd, Pb and Hg were measured in sea water, sediments and marine organisms in the coastline of the Montenegro. The obtained results of trace metals in seagrass and mussels were compared with those found in the water column and sediment. Sampling was performed in the fall of 2005 at five locations in the Montenegrin coastline, Sveta Stasija, Herceg Novi, Zanjice, Budva and Bar, which present different levels and sources of human impact. The heavy metals analyses in seawater, sediment, P. oceanica and M. galloprovincialis identified the harbor of Bar as the most Hg-contaminated site, Zanjice as the most As contaminated and Sveta Stasija as the most Pb-contaminated areas of the Montenegrin coastal area. This study showed that P. oceanica may have a greater bioaccumulation capacity than M. galloprovincialis for the considered metals, except for As and Hg, and both organisms may reflect contamination in the water column and in the sediment. For the first time, seagrass P. oceanica and M. galloprovincialis were employed as metal bioindicators for the southeastern Adriatic. The results of this study could serve as a baseline in the future for the assessment of anthropogenic effects in this marine ecosystem.

  12. 226Ra chronology of a coastal marine sediment

    International Nuclear Information System (INIS)

    Koide, M.; Bruland, K.; Goldberg, E.D.

    1976-01-01

    Unsupported 226 Ra (tsub (1/2) = 1620 years) in marine sediments can provide a basis for measuring rates of accumulation of the order of centimeters per thousand years. The excess radium apparently enters the sediments incorporated in phytoplankton. The sensitivity of the method depends upon the initial value of the unsupported 226 Ra and of the value of 230 Th, a parent of 226 Ra, in the sedimentary components. 226 Ra dating was applied to a sediment taken from the slope of the San Clemente Basin in the Southern California coastal region. Rates of sedimentation over two half-lives of the nuclide were found to be either 5.2 or 5.3 cm/1000 years depending upon which of two models for the geochronology is used. One model assumes that the 230 Th brings to the deposit an amount of 226 Ra in equilibrium with it. The other is based upon the growth of the 226 Ra from the 230 Th in the sedimentary components. 238+239 Pu and 210 Pb levels in the upper strata indicated sedimentation rates of the order of 100-500 cm/1000 years, i.e. much faster accumulations. It is suggested that these derived rates are spurious and reflect bioturbative activities of surface-living organisms. (Auth.)

  13. Polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of east coast peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Suhaimi Elias; Abdul Khalik Wood; Zaleha Hashim; Wee Boon Siong; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Nazaratul Ashifa Abdullah Salim; Ariffin Talib

    2007-01-01

    The polycyclic hydrocarbons (PAHs) are pollutants of concern due to their persistent in the marine ecosystem, thus its can cause long-term adverse effect to the marine life. In this study the concentrations of PAHs in east coast Peninsular Malaysia sediments were determined. About ten stations along the east coast of the coastal area were selected to collect sediments sample using grab sampler. The PAHs from the sediment samples were soxhlet extracted using mixture of hexane and dichloromethane (DCM). Fractionation was done using the silica-alumina column. About 17 compounds of the PAHs were determined using the Gas Chromatography-Mass Spectrometer (GCMS model QP5050A). The Σ PAHs was found in the range between 0.26 μg/ g to 0.59 μg/ g dry weight. The data from the study signified that the main source of PAHs in the sediment of the east coast peninsular Malaysia is originated from the pyrolytic source. (author)

  14. Bacterial corrosion in marine sediments: influence of cathodic protection

    International Nuclear Information System (INIS)

    Therene, Martine

    1988-01-01

    In order to protect offshore structures from marine corrosion, cathodic protection is widely applied via sacrificial anodes (for example zinc or aluminium) or impressed current. In aerated seawater, steel is considered to be protected when a potential of -8050 mV/Cu.CuSO 4 is achieved. In many cases, however this potential must be lowered, due to the activity of microorganisms and more specially sulfate-reducing bacteria (SRB). SRB are obligate anaerobes using sulphate as electron acceptor with resultant production of sulphide. Some of them are also able to use hydrogen as energy source, causing cathodic depolarization of steel surfaces. An experiment was performed to analyze the relation between SRB activity and use of different cathodic potentials applied to mild steel samples in marine sediments. Analytical techniques employed included lipid bio-markers and electrochemical methods. Results indicated an evolution of the bacterial community structure both on the steel and in the sediment, as a function of time and potential. The results also show that cathodically produced hydrogen promotes the growth of SRB (author) [fr

  15. Stabilization / solidification of polluted marine dredged sediment of port en Bessin France, using hydraulic binders and silica fume

    Science.gov (United States)

    Silitonga, Ernesto

    2017-09-01

    A large amount of sediment is dredged in France every year. Due to the increase of the amount of marine dredged sediments, environmentally reuse of dredged sediment is urgently needed in France. The first objective of this study is to find an application for reuse of marine dredged sediments materials, as new material for road construction. Hence, serial tests need to be realized to identify if marine dredged sediment could be utilized for road construction. The second goal is to enhance the physical, mechanical and chemical characteristics of the mix, by incorporating binders and sediments, and revealed the identification of the mechanical characteristics measured on the mixes is compatible with their use as a base course material. The results show that the treatment by hydraulics binders could satisfy the needed mechanical characteristics. The present of Silica Fume is aimed to reduce the pollution level, especially the heavy metal content. However, the proportion of hydraulics binders and silica fume needed to meet prescribed specification is important, so the reuse of the marine dredged sediments of Port-en-Bessin, France in road construction, as an alternative material could be achieved. After the geotechnical study in laboratory results shown as expected than the study to identify the chemical characteristic realized. To evaluate the environmental impacts of the used material, leaching test is performed. The leaching test was performed to verify the predicted release of pollutants based on total dissolution. And for the final part, the test results show that the polluted marine dredged sediments could be safely used (in term of environmental impact) as a new material in road construction.

  16. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume.

    Science.gov (United States)

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-10-29

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

  17. Links between contaminant hotspots in low flow estuarine systems and altered sediment biogeochemical processes

    Science.gov (United States)

    Sutherland, Michael D.; Dafforn, Katherine A.; Scanes, Peter; Potts, Jaimie; Simpson, Stuart L.; Sim, Vivian X. Y.; Johnston, Emma L.

    2017-11-01

    The urbanisation of coastal zones is a major threat to the health of global estuaries and has been linked to increased contamination (e.g. metals) and excess organic matter. Urban stormwater networks collect and funnel contaminants into waterways at point sources (e.g. stormdrains). Under dry, low flow conditions, these stormwater contaminants can accumulate in sediments over time and result in modifications to benthic sediment biogeochemical processes. To quantify these processes, this field study measured differences in benthic metabolism (CR, GPP, NEM) and sediment-water nutrient fluxes (NH3, NOx, PO4) associated with stormdrains (0 m, 200 m and 1000 m away) and increased water-retention (embayments vs channels). Significant changes to benthic metabolism were detected with distance from stormdrains, and with differences in water-retention rates, above natural spatial and temporal variation. Oxygen consumption was ∼50% higher at stormdrains (0 m) compared to 1000 m away and >70% higher at stormdrains (0 m) located in embayments compared to channels. Oxygen production also appeared to decrease with distance from stormdrains in embayments, but patterns were variable. These changes to benthic metabolism were of a magnitude expected to influence benthic nutrient cycling, but NH3, NOx and PO4 fluxes were generally low, and highly spatially and temporally variable. Overall, metal (Cu) contamination explained most of the variation in sediment biogeochemical processes between embayments and channels, while sediment grain size explained differences in fluxes with distance from stormdrains. Importantly, although there was evidence of increased productivity associated with stormdrains, we also detected evidence of early hypoxia suggesting that systems with legacy stormwater contaminants exist on a tipping point. Future work should investigate changes to sediment processes after a major rainfall event, when large and sudden inputs of potentially toxic contaminants occur

  18. Sediment Burial Intolerance of Marine Macroinvertebrates.

    Directory of Open Access Journals (Sweden)

    Vicki J Hendrick

    Full Text Available The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura, the queen scallop (Aequipecten opercularis and the sea squirt (Ciona intestinalis were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris and the anemone (Sagartiogeton laceratus, showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa. With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally

  19. A First Look at Oxygen and Silicon Isotope Variations in Diatom Silica from a Pliocene Antarctic Marine Sediment Core

    Science.gov (United States)

    Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.

    2016-02-01

    Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a

  20. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  1. Comparison of contaminants from different trophic levels and ecosystems

    DEFF Research Database (Denmark)

    Dietz, R.; Riget, F.; Cleemann, M.

    2000-01-01

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (Cs-137) are compared from the terrestrial, freshwater and marine...... ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, Sigma PCB, Sigma DDT, Sigma HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine...

  2. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments

    Science.gov (United States)

    Risatti, J.B.; Rowland, S.J.; Yon, D.A.; Maxwell, J.R.

    1984-01-01

    Abundant volatile lipids of Methanobacterium thermoautotrophicum and Methanosarcina barkeri include isoprenoid hydrocarbons (??? C30), and C15, C20 and C25 isoprenoid alcohols. M. barkeri contains 2,6,10,15,19-pentamethyleicosane, whose relative stereochemistry is the same as found in marine sediments, indicating that it is a marker of methanogenic activity. The C20, C30 and C25 alkenes in M. thermoautotrophicum also have a preferred sterochemistry; the latter have the 2,6,10,14,18-pentamethyleicosanyl skeleton, suggesting that the alkane in marine sediments may derive from methanogens. The stereochemistry of squalane in a marine sediment is also compatible with an origin in methanogens; in contrast, the stereochemistry of pristane in M. thermoautotrophicum indicates a fossil fuel contaminant origin, suggesting that this and certain other alkanes reported in archaebacteria might also be of contaminant origin. There is, therefore, little evidence at present that the pristane in immature marine sediments originates in methanogens. The C15 and C20 saturated alcohols in M. thermoautotrophicum have mainly the all-R configuration. If this is generally true for methanogens, the C20 alcohol in the Messel shale may originate mainly from methanogens, whereas that in the Green River shale may originate mainly from photosynthetic organisms. ?? 1984.

  3. A study of arsenic and chromium contamination in freshwater sediments

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Abdul Khalik Wood; Alias Mohd Yusof; Mohd Suhaimi Hamzah; Md Suhaimi Elias; Shamsiah Abdul Rahman

    2008-08-01

    Arsenic (As) is generally known for its toxicity while chromium (Cr) at the appropriate amount is an essential element to man and becomes quite toxic in excessive amount. Anthropogenic activities such as industrialization, agricultural and urbanization have led to the contamination of toxic elements into aquatic that finally end up in the sediment system. Environmental process like diagenetic process causes the toxic metals to migrate from the bedrock materials into the sediment surface and lastly into the water column. This process has been recognized to be the factor of arsenic contamination in well water in several countries such as Bangladesh, Taiwan, USA and Canada. A number of samples of freshwater sediments from identified rivers and lakes at Johor Bharu area had been analyzed to determine the concentration level of As and Cr using neutron activation analysis (NAA) technique. Certified Reference Material (CRM) namely BCSS-1 and IAEA Soil-7 were applied to provide good quality assurance control. The results obtained show that the concentrations of As in the rivers and lakes are 10-33 mg/g and 18-62 mg/g, respectively. The concentrations of Cr in the rivers range between 25 mg/g to125 mg/g, while in the lake sediments the concentrations range between 173 mg/g to 301 mg/g. The lakes sediments have higher As and Cr contents than the river sediment. The results of the As and Cr concentrations were then compared to the background value proposed by National Oceanic and Atmospheric Administration (NOAA), USA and interim freshwater sediment quality guidelines value established by Canadian Sediment Quality Guidelines for The Protection of Aquatic Life. (Author)

  4. Biodegradation studies of diesel-contaminated soils and sediments

    International Nuclear Information System (INIS)

    Schlauch, M.; Clark, D.

    1992-01-01

    Radian Corporation is currently remediating the Atchison, Topeka and Sante Fe Railway Superfund site in Clovis, New Mexico. Biodegradation of the petroleum hydrocarbon-contaminated soils and sediments was chosen as the remedial alternative. In order to evaluate the optimum conditions for full-scale bioremediation at this site, Radian designed and implemented various laboratory and field studies. The initial laboratory treatability study was conducted to determine if hydrocarbons in both soils and sediments could be biodegraded using indigenous microorganisms, and determine that the soil were biodegradable, while the sediments were not due to inhibitory factors. To further evaluate the biodegradability6 of the sediments, a laboratory study was initiated which introduced chloride-resistant microbes. The study showed that the sediment bioremediation was possibly by utilizing these microbes; however, the cost was not favorable. Finally, a field plot study was initiated to determine how soil biodegradation would proceed in field conditions, to optimize influencing factors such as moisture and nutrient levels and bioseed addition, and to investigate alternate methods of bioremediating the sediments. Results showed that hydrocarbons in the soils biodegraded much faster in the field than in the lab, and that hydrocarbons in sediments applied to biotreated soils containing acclimated microorganisms were successfully biodegraded

  5. Mercury pollution for marine environment at Farwa Island, Libya.

    Science.gov (United States)

    Banana, Adel A S; Mohamed, R M S Radin; Al-Gheethi, A A S

    2016-01-01

    Farwa is an Island in Libya receives petrochemical wastes generated from General Company of Chemical Industries (GCCI) since more than 40 years. The present work aimed to determine the concentrations of mercury (Hg(+2)) in fish, marine plants and sediment collected from Farwa lagoon to evaluate effect of industrial wastewater from GCCI on the marine environment. Hundred and twelve samples of fish, pearl oyster, cuttlefish sediments and marine plants were analyzed to determine Hg(2+) concentration during the period from January to August 2014 by using Atomic Absorption Spectrometer (AAS). The highest concentration of Hg(2+) was detected in Pinctada radiata (11.67 ± 3.30 μgg (-1)) followed by Serranus scriba (6.37 ± 0.11 μg g (-1)) and Epinephelus marginatus (6.19 ± 0.02 μg g (-1)). About 75 % of marine plants contained the maximum contaminations during the summer season. In fish samples Hg(2+) concentrations exceeded the levels provided by international standards. The fish at Farwa lagoon is heavily contaminated with Hg(2+) which may represent a source for mercury poisoning for human.

  6. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    Science.gov (United States)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in

  7. Capabilities of Seven Species of Aquatic Macrophytes for Phytoremediation of Pentachlorophenol Contaminated Sediment

    Science.gov (United States)

    Zhao, Liangyuan; Guo, Weijie; Li, Qingyun; Li, Huan; Zhao, Weihua; Cao, Xiaohuan

    2017-01-01

    Sediments are regarded as the ultimate sink of pentachlorophenol(PCP) in aquatic environment, and capabilities of seven species of aquatic macrophytes for remediating PCP contaminated sediment were investigated. Seven species of aquatic macrophytes could significantly accelerate the degradation of PCP in sediments. Among all, canna indica L., Acorus calamus L. and Iris tectorum Maxim. can be used as efficient alternative plants for remediation of PCP contaminated sediment, which attained 98%, 92% and 88% of PCP removal in sediments, respectively. PCP was detected only in root tissues and the uptake was closely related to the root lipid contents of seven plants. The presence of seven aquatic macrophytes significantly increased microbial populations and the activities of dehydrogenase compared with control sediments, indicating that rhizosphere microorganism played important role in the remediation process. In conclusion, seven species of aquatic macrophytes may act as promising tools for the PCP phytoremediation in aquatic environment, especially Canna indica L., Acorus calamus L. and Iris tectorum Maxim.

  8. Plutonium behavior during the early diagenesis of marine sediments: applications to two marine environments labelled by radionuclides released from reprocessing plants; Etude du comportement du plutonium au cours de la diagenese precoce des sediments marins: applications a deux environnements marins marques par les rejets issus d'usines de retraitement de combustibles uses

    Energy Technology Data Exchange (ETDEWEB)

    Gouzy, A

    2004-12-15

    The plutonium released into the English Channel and the Irish Sea by nuclear fuel reprocessing plants is mainly associated to sediments. Nevertheless, this association is partially reversible. This work combines a field study, carried out on the Cumbrian mud patch and the Esk estuary (Eastern Irish Sea), and laboratory experiments performed on carbonaceous coarse-grained sediments collected in the Central Channel. It presents new data on the plutonium solid partition in sediments and suggests realistic scenarios for describing its release from sediments to the water column. The role of reactive sulphides acting as temporary sink phases is shown in anoxic sediments; those sulphides are liable to release dissolved plutonium upon their oxidation. The plutonium is also bound to carbonates within the carbonaceous matrix and as carbonate surface complexes. Conceptual schemes of the behaviour of the plutonium in marine sediments are proposed; they highlight the strong remobilization potential of plutonium from marine sediments to the interstitial water. Its plutonium content can be injected into the overlying water column. (author)

  9. Plutonium behavior during the early diagenesis of marine sediments: applications to two marine environments labelled by radionuclides released from reprocessing plants; Etude du comportement du plutonium au cours de la diagenese precoce des sediments marins: applications a deux environnements marins marques par les rejets issus d'usines de retraitement de combustibles uses

    Energy Technology Data Exchange (ETDEWEB)

    Gouzy, A

    2004-12-15

    The plutonium released into the English Channel and the Irish Sea by nuclear fuel reprocessing plants is mainly associated to sediments. Nevertheless, this association is partially reversible. This work combines a field study, carried out on the Cumbrian mud patch and the Esk estuary (Eastern Irish Sea), and laboratory experiments performed on carbonaceous coarse-grained sediments collected in the Central Channel. It presents new data on the plutonium solid partition in sediments and suggests realistic scenarios for describing its release from sediments to the water column. The role of reactive sulphides acting as temporary sink phases is shown in anoxic sediments; those sulphides are liable to release dissolved plutonium upon their oxidation. The plutonium is also bound to carbonates within the carbonaceous matrix and as carbonate surface complexes. Conceptual schemes of the behaviour of the plutonium in marine sediments are proposed; they highlight the strong remobilization potential of plutonium from marine sediments to the interstitial water. Its plutonium content can be injected into the overlying water column. (author)

  10. Post-remediation biomonitoring of pesticides and other contaminants in marine waters and sediment near the United Heckathorn Superfund Site, Richmond, California

    Energy Technology Data Exchange (ETDEWEB)

    LD Antrim; NP Kohn

    2000-05-26

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and

  11. Magnetic fingerprint in marine sediments: clues from cultivated Magnetovibrio blakemorei and recent cores from Brazilian Coast

    Science.gov (United States)

    Jovane, L.; Florindo, F.; Bazylinski, D. A.; Pellizari, V. H.; Brandini, F. P.; de Almeida, L. A.; Carneiro, F. R.; Braga, E. D.; Lins, U.

    2013-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of Magnetovibrio blakemorei strain MV-1, a marine magnetotactic bacterium, differ from those of other magnetotactic species from sediments deposited in lakes and marine habitats previously studied. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a 'magnetic fingerprint' for a specific magnetotactic bacterium. The technique used to determine this fingerprint is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We focused on studying the environmental conditions that allow for the presence of magnetotactic bacteria and magnetosomes in sediments including determining magnetotactic bacterial populations in marine settings, measuring crucial nutrient availability in the water column and in sediments, and examining particulate delivery to the seafloor.

  12. Modified finite element transport model, FETRA, for sediment and radionuclide migration in open coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Mayer, D.W.

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral) model which consists of the following three submodels coupled to include sediment-contaminant interactions: (1) sediment transport submodel, (2) dissolved contaminant transport submodel, and (3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments

  13. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline.

    Science.gov (United States)

    Ahumada-Rudolph, R; Novoa, V; Sáez, K; Martínez, M; Rudolph, A; Torres-Diaz, C; Becerra, J

    2016-08-01

    Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry.

  14. Trace contaminant concentration affects mineral transformation and pollutant fate in hydroxide-weathered Hanford sediments

    International Nuclear Information System (INIS)

    Perdrial, Nicolas; Rivera, Nelson; Thompson, Aaron; O’Day, Peggy A.; Chorover, Jon

    2011-01-01

    Highlights: ► Fate of Sr, Cs and I tracked during hydroxide-weathering of sediments. ► pCO 2 and contaminant concentration affected mineral transformation. ► Sodalite/cancrinite formed at μM levels, chabazite at mM levels. ► Absence of CO 2 resulted in calcite dissolution and strätlingite formation. ► Trace contaminant concentrations modified their own sequestration path. - Abstract: Prior work has shown that when silicaceous sediments are infused with caustic radioactive waste, contaminant fate is tightly coupled to ensuing mineral weathering reactions. However, the effects of local aqueous geochemical conditions on these reactions are poorly studied. Thus, we varied contaminant concentration and pCO 2 during the weathering of previously uncontaminated Hanford sediments over 6 months and 1 year in a solution of caustic waste (pH 13, high ionic strength). Co-contaminants Sr, Cs and I were added at “low” (Cs/Sr: 10 −5 m; I: 10 −7 m) and “high” (Cs/Sr: 10 −3 m; I: 10 −5 m) concentrations, and headspace was held at atmospheric or undetectable ( 2 partial pressure. Solid phase characterization revealed the formation of the zeolite chabazite in “high” samples, whereas feldspathoids, sodalite and cancrinite, were formed preferentially in “low” samples. Sr, Cs and I were sequestered in all reacted sediments. Native calcite dissolution in the CO 2 -free treatment drove the formation of strätlingite (Ca 2 Al 2 SiO 7 ·8H 2 O) and diminished availability of Si and Al for feldspathoid formation. Results indicate that pCO 2 and contaminant concentrations strongly affect contaminant speciation in waste-weathered sediments, and are therefore likely to impact reaction product stability under any remediation scenario.

  15. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    Science.gov (United States)

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  16. Effect of anaerobic contributions to the uranium content in marine sediments

    International Nuclear Information System (INIS)

    Ordonez R, E.; Ruiz F, A. C.; Jimenez D, E.; Guerrero J, M.

    2014-10-01

    In this work a sediment group obtained in the seabed near the mouth of the Santiago River, physical analyzes show that there is little activity of microscopic marine life, revealed by exoskeletons of foraminifera. Although the amount of organic matter occurs normally, around 20%, is assumed that this contribution is due to the large amount of organic waste scattered by the effluent of the river, causing an abnormally high anaerobic activity, clearly shown by the large amount of pyrite specific framboids found along the nucleus profile of 23 cm of sediment. In the analyzed fractions the uranium concentration and its isotope ratio was studied: which vary from 3.19 Bq/kg for the more superficial fractions down gradually to less than 1 Bq/kg for deeper fractions. An outstanding fact is that the surface fractions have an isotope ratio 234 U/ 238 U unusually low for fractions 1-4 cm of deep, close to 0.4, indicating a strong reaction of few years ago on the radiogenic descendants of 238 U, leaching essentially the 234 Th and causing this abnormal radioactive imbalance. The plutonium has become an element found commonly in the surface layers of the sea and coastlines, finding in the top layer an activity of 2.78 Bq/kg ( 239 Pu + 240 Pu). The high contamination of the mouth of Santiago River has changed the conditions of the micro fauna as well as of the chemical equilibrium of the natural elements. (Author)

  17. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    Science.gov (United States)

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  18. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources

    International Nuclear Information System (INIS)

    Ashley, J.T.F.; Baker, J.E.

    1999-01-01

    The heavily urbanized and industrialized Baltimore Harbor/Patapsco River/Back River system is one of the most highly contaminated regions of the Chesapeake Bay. In June 1996, surficial sediments were collected at 80 sites throughout the subestuarine system, including historically undersampled creek sand embayments. The samples were analyzed for a suite of hydrophobic organic contaminants (HOCs) consisting of 32 polycyclic aromatic hydrocarbons (PAHs) and 113 polychlorinated biphenyl (PCB) congeners. Total PAH and total PCB concentrations ranged from 90 to 46,200 and 8 to 2,150 ng/g dry weight, respectively. There was enormous spatial variability in the concentrations of HOCs, which was not well correlated to grain size or organic carbon content, suggesting nonequilibrium partitioning and/or proximity to sources as important factors explaining the observed spatial variability. High concentrations of both classes of HOCs were localized around major urban stormwater runoff discharges. Elevated PAH concentrations were also centered around the Sparrow's Point Industrial Complex, most likely a result of the pyrolysis of coal during the production of steel. All but 1 of the 80 sites exceeded the effects range-low (ERL) for total PCBs and, of those sites, 40% exceeded the effects range-medium (ERM), suggesting toxicity to marine benthic organisms would frequently occur. Using principal component analysis, differences in PAH signatures were discerned. Higher molecular weight PAHs were enriched in signatures from sediments close to suspected sources (i.e., urban stormwater runoff and steel production complexes) compared to those patterns observed at sites further from outfalls or runoff. Due to varying solubilities and affinities for organic matter of the individual PAHs, partitioning of the heavier weight PAHs may enrich settling particles with high molecular weight PAHs. Lower molecular weight PAHs, having lower affinity for particles, may travel from the source to a

  19. Understanding transport pathways in a river system - Monitoring sediments contaminated by an incident

    Science.gov (United States)

    Dietrich, S.; Kleisinger, C.; Hillebrand, G.; Claus, E.; Schwartz, R.; Carls, I.; Winterscheid, A.; Schubert, B.

    2016-12-01

    Experiments to trace transport of sediments and suspended particulate matter on a river scale are an expensive and difficult venture, since it causes a lot of official requirements. In spring 2015, polychlorinated biphenyls (PCB) were released during restoration works at a bridge in the upper part of the Elbe River, near the Czech-German border. In this study, the particle-bound PCB-transport is applied as a tracer for monitoring transport pathways of suspended solids (SS) along a whole river stretch over 700 km length. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from 15 monitoring stations (settling tanks) as well as from two longitudinal campaigns (grab samples) along the river in July and August 2015 are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. 1D water levels and GIS analysis were used to locate temporal storage areas for the SS. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal. Furthermore, the reduction of total PCB load within the upper Elbe indicates that roughly 24% of the SS were transported with the water by wash load. Approximately 600 km downstream of the incident site, the PCB-marked wash load was first identified in July 2015. PCB load transported intermittently in suspension was detected roughly 400 km downstream of the incident site by August 2015. In the Elbe Estuary, PCB-marked SS were only found upstream of the steep slope of water depth (approx. 4 to 15 m) within Hamburg harbor that acts as a major sediment sink. Here, SS from the inland Elbe are mixed with lowly contaminated marine material, which may mask the

  20. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  1. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    Science.gov (United States)

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  2. International symposium on marine pollution. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of the Oceans. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for studies of transport and circulation processes in the world`s oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. This document contains extended synopses of 390 oral and poster presentations made at the symposium. Each synopsis was indexed separately. Refs, figs, tabs

  3. International symposium on marine pollution. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of the Oceans. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for studies of transport and circulation processes in the world's oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. This document contains extended synopses of 390 oral and poster presentations made at the symposium. Each synopsis was indexed separately

  4. Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments

    Science.gov (United States)

    Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.

    2017-12-01

    Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species

  5. Thermally induced motion of marine sediments resulting from disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Chavez, P.F.; Dawson, P.R.

    1981-01-01

    Coupled creep and heat transfer calculations have been performed to assess the sensitivity of heat load, viscosity, and canister density on the motion of waste canisters buried in marine sediments. Results indicate that no upward movement is predicted for heat loads remaining within the metallurgical and geochemical constraints placed on the temperature of sediments near the canister for the times analyzed. Upward movement of the canister is again not observed in calculations involving reasonable variations of the sediment viscosity and canister density. Maximum effective deviatoric stress levels due to thermally induced differential body forces are significantly less than the sediment's short term peak strength

  6. Mineral transformation controls speciation and pore-fluid transmission of contaminants in waste-weathered Hanford sediments

    Science.gov (United States)

    Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon

    2014-09-01

    Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet

  7. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    Science.gov (United States)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  8. Optically stimulated luminescence (OSL) dating of shallow marine sediments to develop an analysis method of late Quaternary geodynamics

    International Nuclear Information System (INIS)

    Hataya, Ryuta; Shirai, Masaaki

    2003-01-01

    To develop an analysis method of geodynamics, we have examined the applicability of the OSL dating of marine terrace deposits. We have done the OSL dating, using the multiple-aliquot additive-dose technique, of shallow marine sediments from the upper part the Kioroshi Formation in Ibaraki Prefecture, which are correlated to Marine Oxygen Isotope Stage (MIS) 5e-5c. Marine terrace deposit consists mainly of shallow marine sediment. OSL ages of foreshore and foreshore-shoreface beds are 88-112 Ka, and are in good agreement with the geological/geomorphological data. On the other hand, OSL ages of the backshore bed are younger, and ones of the shoreface bed are older than geologically estimated ages. These results show that OPSL dating method can date shallow marine sediment using samples from foreshore and foreshore-shoreface beds, and that this method can distinguish terrace deposits formed in MIS5 and that in MIS7 by taking geomorphologic information into account. These results contribute to the characterization of long-term geological movement in coastal areas. (author)

  9. Comparison of contaminants from different trophic levels and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.; Riget, F. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Cleemann, M. [Department of Environmental Chemistry, Ministry of Environment and Energy, National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Aarkrog, A. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Johansen, P. [Department of Arctic Environment, Ministry of Environment and Energy, National Environmental Research Institute, Tagensvej 135, 4 floor, DK-2200 Copenhagen (Denmark); Hansen, J.C. [Risoe National Laboratory, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2000-01-17

    The present paper provides an overview of the priority contaminants and media from the Greenland part of the Arctic Monitoring and Assessment Program. Levels and accumulation patterns of heavy metals, POPs and a radionuclide (137Cs) are compared from the terrestrial, freshwater and marine ecosystems. Of the nine compounds presented, seven (Cd, Hg, Se, {sigma}PCB, {sigma}DDT, {sigma}HCH, HCB) increased in concentration towards higher trophic levels. For these contaminants the concentrations in soil and aquatic sediment were in the same order of magnitude, whereas the concentrations in marine biota were higher than found in the freshwater and terrestrial ecosystems probably due to the presence of longer food chains. Pb and 137Cs showed the reverse pattern compared with the other compounds. The concentrations in soil and aquatic sediments decreased in the order terrestrial, freshwater and marine ecosystems, which was reflected in the biota as well. Reindeer had similar or lower levels of Pb and 137Cs than lichens. Levels of Pb and 137Cs in marine biota did not show the same clear increase towards higher trophic as found for the other analysed compounds. Greenland Inuit contains considerably less mercury but higher levels of {sigma}PCB, {sigma}DDT and HCB than other Arctic marine top consumers.

  10. Magnetotactic bacteria in marine sediments: clues from recent cores from Brazilian Coast

    Science.gov (United States)

    Jovane, L.; Pellizari, V. H.; Brandini, F. P.; Braga, E. D. S.; Freitas, G. R.; Benites, M.; Rodelli, D.; Giorgioni, M.; Iacoviello, F.; Ruffato, D. G.; Lins, U.

    2014-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of marine magnetotactic bacteria, in conjunction with geophysical, geochemical and oceanographic data from the Brazilian Coast, provide interesting insights regarding the primary productivity distribution in oceans. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a "magnetic fingerprint" for the presence of magnetotactic bacteria. The use of those magnetic properties is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We will also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We studied magnetotactic bacterial concentration and geophysical, geochemical and oceanographic results in marine settings measuring crucially nutrients availability in the water column and in sediments, on particulate delivery to the seafloor, to understand the environmental condition that allow the presence of magnetotactic bacteria and magnetosomes in sediments.

  11. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    Science.gov (United States)

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  12. Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment

    International Nuclear Information System (INIS)

    Qafoku, Nikolla P.; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noémie; Yabusaki, Steve; Long, Philip E.

    2014-01-01

    Highlights: • Subsurface naturally reduced zones (NRZ) contain U and other potential co-contaminants. • The NRZ has a remarkable assortment of chemically complex, potential U hosts. • Micron-scale, multi-contaminant areas were discovered in NRZ. • U(IV) occurs as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%). • NRZs may exhibit contaminant sink-source complex behavior. - Abstract: Subsurface regions of alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing minerals, which are referred to as naturally reduced zones (NRZ), are present at the Integrated Field Research Challenge site in Rifle, CO (a former U mill site), and other contaminated subsurface sites. A study was conducted to demonstrate that the NRZ contains a variety of contaminants and unique minerals and potential contaminant hosts, investigate micron-scale spatial association of U with other co-contaminants, and determine solid phase-bounded U valence state and phase identity. The NRZ sediment had significant solid phase concentrations of U and other co-contaminants suggesting competing sorption reactions and complex temporal variations in dissolved contaminant concentrations in response to transient redox conditions, compared to single contaminant systems. The NRZ sediment had a remarkable assortment of potential contaminant hosts, such as Fe oxides, siderite, Fe(II) bearing clays, rare solids such as ZnS framboids and CuSe, and, potentially, chemically complex sulfides. Micron-scale inspections of the solid phase showed that U was spatially associated with other co-contaminants. High concentration, multi-contaminant, micron size (ca. 5–30 μm) areas of mainly U(IV) (53–100%) which occurred as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%), were discovered within the sediment matrix confirming that biotically induced reduction and subsequent sequestration of contaminant U(VI) via

  13. Wastewater canal Vojlovica, industrial complex Pančevo, Serbia – preliminary ecotoxicological assessment of contaminated sediment

    Directory of Open Access Journals (Sweden)

    IVANA PLANOJEVIĆ

    2011-03-01

    Full Text Available Effluents collected from the industrial complex of Pančevo, Serbia (oil refinery, petrochemical plant, and fertilizer factory, are discharged into a wastewater canal entering the Danube River. In this study, which was focused on sediment assessment, a complex triad approach consisting of chemical analysis, sediment toxicity tests and macrozoobenthos community analysis was applied. In toxicity tests on sediment elutriates, the following responses were registered – stimulatory effect in algal bioassay, no effect in acute test with Daphnia magna, and low to moderate toxicity in the conventional Vibrio fischeri test. Moderate to high toxicities were recorded in solid phase tests on Myriophyllum aquaticum and V. fischeri. High content of Hg, certain PAHs and non-characterised sediment contaminants accumulated over years contribute not only to the registered toxicity, but also to the complete absence of macrozoobenthos. The obtained results proved that regularly measured conventional and priority pollutants are hardly ever the only toxic contaminants present in sediments. Toxicity tests, in particular the contact test, might guide towards a better selection of parameters to be regularly or occasionally monitored. In addition, complete sediment toxicity tests proved to be an appropriate method for assessing the bioavailability of the chemically detected contaminants. The analysis of the macrozoobenthos composition and structure as inevitable part of sediment risk assessment procedures integrates the effects of multiple stressors and gives a realistic insight into not only sediment contamination by toxic pollutants, but also the sediment status in general.

  14. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    Science.gov (United States)

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Dynamics of 95Zr in simulated marine water-sediment-organisms system].

    Science.gov (United States)

    Wang, Chunlin; Shi, Jianjun; Sun, Pingyue; Li, Mingyun

    2003-06-01

    To provide scientific evidence to evaluate the behavior of 95Zr in ocean ecosystem, the dynamic model of the transference, accumulation and disappearance of 95Zr among the simulated marine water, sediment and organisms was investigated using Nassarius semiplicatus and Boleophthalums pectinirostris as experimental stuffs. The result showed that 95Zr(Bq.g-1 or Bq.ml-1) in the marine water was decreased more than 90% in the first 4 h, and then descended gradually. 95Zr in sediment was increased in the peak in 48 h and then declined. The radioactivity percent of 95Zr in the shell and muslce of Nassarius semiplicatus was 68.7% and 31.30% respectively, while the radioactivity percent was 22.80%, 12.64%, 34.82%, 10.31%, 4.48%, 11.55% and 3.71%, respectively in the fill, fin, viscera, skull, skin, vertebra and muscle of Boleophthalmus pectinirostris. Nassarius semiplicatus had a greater concentrating capability of 95Zr than Boleophthalmus pectinirostris. The order of the 95Zr concentration was found to be sediment > Nassarius semiplicatus > water > Boleophthalmus pectinirostris. A dynamic model of closed four-compartment was constructed with exponent function.

  16. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    Science.gov (United States)

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Relationships between sediment toxicity and sediment chemistry were evaluated for 98 samples collected from seven metropolitan study areas across the United States. Sediment-toxicity tests were conducted with the amphipod Hyalella azteca (28 day exposures) and with the midge Chironomus dilutus (10 day exposures). Overall, 33 % of the samples were toxic to amphipods and 12 % of the samples were toxic to midge based on comparisons with reference conditions within each study area. Significant correlations were observed between toxicity end points and sediment concentrations of trace elements, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or organochlorine (OC) pesticides; however, these correlations were typically weak, and contaminant concentrations were usually below sediment-toxicity thresholds. Concentrations of the pyrethroid bifenthrin exceeded an estimated threshold of 0.49 ng/g (at 1 % total organic carbon) in 14 % of the samples. Of the samples that exceeded this bifenthrin toxicity threshold, 79 % were toxic to amphipods compared with 25 % toxicity for the samples below this threshold. Application of mean probable effect concentration quotients (PECQs) based on measures of groups of contaminants (trace elements, total PAHs, total PCBs,OCpesticides, and pyrethroid pesticides [bifenthrin in particular]) improved the correct classification of samples as toxic or not toxic to amphipods compared with measures of individual groups of contaminants. Sediments are a repository for many contaminants released into surface waters. Because of this, organisms inhabiting sediments may be exposed to a wide range of contaminants (United States Environmental Protection Agency (USEPA) United States Environmental Protection Agency 2000; American Society for Testing and Materials [ASTM] American Society for Testing and Materials International 2012). Contaminants of potential concern in sediments typically include trace elements (metals

  17. Thallium dispersal and contamination in surface sediments from South China and its source identification.

    Science.gov (United States)

    Liu, Juan; Wang, Jin; Chen, Yongheng; Shen, Chuan-Chou; Jiang, Xiuyang; Xie, Xiaofan; Chen, Diyun; Lippold, Holger; Wang, Chunlin

    2016-06-01

    Thallium (Tl) is a non-essential element in humans and it is considered to be highly toxic. In this study, the contents, sources, and dispersal of Tl were investigated in surface sediments from a riverine system (the western Pearl River Basin, China), whose catchment has been contaminated by mining and roasting of Tl-bearing pyrite ores. The isotopic composition of Pb and total contents of Tl and other relevant metals (Pb, Zn, Cd, Co, and Ni) were measured in the pyrite ores, mining and roasting wastes, and the river sediments. Widespread contamination of Tl was observed in the sediments across the river, with the highest concentration of Tl (17.3 mg/kg) measured 4 km downstream from the pyrite industrial site. Application of a modified Institute for Reference Materials and Measurement (IRMM) sequential extraction scheme in representative sediments unveiled that 60-90% of Tl and Pb were present in the residual fraction of the sediments. The sediments contained generally lower (206)Pb/(207)Pb and higher (208)Pb/(206)Pb ratios compared with the natural Pb isotope signature (1.2008 and 2.0766 for (206)Pb/(207)Pb and (208)Pb/(206)Pb, respectively). These results suggested that a significant fraction of non-indigenous Pb could be attributed to the mining and roasting activities of pyrite ores, with low (206)Pb/(207)Pb (1.1539) and high (208)Pb/(206)Pb (2.1263). Results also showed that approximately 6-88% of Tl contamination in the sediments originated from the pyrite mining and roasting activities. This study highlights that Pb isotopic compositions could be used for quantitatively fingerprinting the sources of Tl contamination in sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparison of test specific sediment effect concentrations with marine sediment quality assessment guidelines

    International Nuclear Information System (INIS)

    Carr, R.S.; Biedenbach, J.M.; MacDonald, D.D.

    1995-01-01

    As part of NOAA's National Status and Trends (NS and T) Bioeffects Assessment program and studies conducted by the National Biological Service, numerous sediment quality assessment surveys have recently been conducted along the Atlantic and Gulf coasts of the US using the sea urchin (Arbacia punctulata) fertilization and embryological development tests with pore water. Additional toxicity tests were also conducted in conjunction with most of these studies. The areas that have been sampled include Boston harbor, Massachusetts; Charleston Harbor, Winyah Bay, and Savannah River, South Carolina; St. Simon Sound, Georgia; Biscayne Bay, Tampa Bay, Choctawhatchee Bay, Apalachicola Bay, St. Andrew Bay, and Pensacola Bay, Florida; Galveston Bay, Lavaca Bay, and Sabine Lake, Texas, and 200 stations in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico. Sufficient data are now available from this series of surveys to calculate test specific sediment effect concentrations (SECs). Based on these recent studies, SECs were developed for the sea urchin porewater and amphipod tests and compared with existing marine sediment quality assessment guidelines

  19. Assessment of contaminant concentrations in sediments, fish and mussels sampled from the North Atlantic and European regional seas within the ICON project.

    Science.gov (United States)

    Robinson, Craig D; Webster, Lynda; Martínez-Gómez, Concepción; Burgeot, Thierry; Gubbins, Matthew J; Thain, John E; Vethaak, A Dick; McIntosh, Alistair D; Hylland, Ketil

    2017-03-01

    Understanding the status of contaminants in the marine environment is a requirement of European Union Directives and the Regional Seas Conventions, so that measures to reduce pollution can be identified and their efficacy assessed. The international ICON workshop (Hylland et al., in this issue) was developed in order to test an integrated approach to assessing both contaminant concentrations and their effects. This paper describes and assesses the concentrations of trace metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in sediments, mussels, and fish collected from estuarine, coastal and offshore waters from Iceland to the Mediterranean Sea. For organic contaminants, concentrations progressively increased from Iceland, to the offshore North Sea, to the coastal seas, and were highest in estuaries. Metals had a more complex distribution, reflecting local anthropogenic inputs, natural sources and hydrological conditions. Use of internationally recognised assessment criteria indicated that at no site were concentrations of all contaminants at background and that concentrations of some contaminants were of significant concern in all areas, except the central North Sea. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Chronic toxicity of unresolved complex mixtures (UCM) of hydrocarbons in marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Scarlett, A.; Galloway, T.S. [Plymouth Univ., Drake Circus (United Kingdom). School of Biological Sciences; Rowland, S.J. [Plymouth Univ., Drake Circus (United Kingdom). School of Earth, Ocean and Environmental Sciences

    2007-08-15

    Background, Aim and Scope: Unresolved complex mixtures (UCM) of hydrocarbons, containing many thousands of compounds which cannot be resolved by conventional gas chromatography (GC), are common contaminants of sediments but little is known of their potential to affect sediment-dwelling organisms. Evidence exists for reduced health status in mussels, arising from aqueous exposure to aromatic UCM components acting through a narcotic mode of action. However, UCM contaminants in sediments may not be sufficiently bioavailable to elicit toxic effects. The aim of our study was therefore to measure the sublethal effects of chronic exposure to model UCM-dominated oils at environmentally realistic concentrations and compare this to effects produced by a UCM containing weathered crude oil. A further aim was to determine which, if any, fractions of the oils were responsible for any observed toxicity. Materials and Methods: Whole oils were spiked into estuarine sediment to give nominal concentrations of 500 {mu}g g-1 dry weight. Juveniles of the estuarine amphipod Corophium volutator were exposed to the contaminated sediment for 35 days and their survival, growth rate and reproductive success quantified. Using an effect-directed fractionation approach, the oils were fractionated into aliphatic and two aromatic fractions by open column chromatography and their toxicity assessed by further chronic exposures using juvenile C. volutator. Results: The growth rates of amphipods were reduced following exposure to the oils although this was only statistically significant for the weathered oil; reproductive success was reduced by all oil exposures. Sediment spiked with UCM fractions also caused reduced growth and reproduction but no particular fraction was found to be responsible for the observed toxicity. Survivorship was not affected by any oil or fraction. Discussion: The study showed that chronic exposure to sediments contaminated by UCM-dominated oils could have population level

  1. Banking of environmental samples for short-term biochemical and chemical monitoring of organic contamination in coastal marine environments: the GICBEM experience (1986-1990). Groupe Interface Chimie Biologie des Ecosystèmes, Marins.

    Science.gov (United States)

    Garrigues, P; Narbonne, J F; Lafaurie, M; Ribera, D; Lemaire, P; Raoux, C; Michel, X; Salaun, J P; Monod, J L; Romeo, M

    1993-11-01

    The GICBEM (Groupe Interface Chimie Biologie des Ecosystèmes Marins) program consists of an evaluation of the ecosystem health status in the Mediterranean Sea mainly based on chemical and biochemical approaches. Specific chemical contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorobiphenyls (PCB), heavy metals) in waters, sediments, and related biotransformation indicators in target organisms (mussels, fish) have been selected for a complete survey of the coastal waters. In order to provide an appropriate sampling program for standardization for each sampling cruise, various aspects have been studied: (a) parameters for the choice of the sample sites; (b) ways of collection the samples (waters, sediments, marine organisms); and (c) preparation of the samples for a short term storage on board ship and for further analyses in the ground laboratory. Methods of preparation and storage of the samples are described and could be used to initiate an environmental banking program including both possible retrospective analyses of chemical pollutants and biochemical indicators. Moreover, the correlation between chemicals (PAH) and biochemical (mixed function oxygenase activities) parameters has been studied and this demonstrates the capability of the enzyme activities as reliable pollution biomarkers.

  2. Contamination of harbor sediments in the eastern Gulf of Finland (Neva Bay), Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Ussenkov, S.M. [Dept. of Lithology and Marine Geology, Faculty of Geology, St. Petersburg State Univ. (Russian Federation)

    1997-11-01

    The areal distribution of oil products and various trace metals have been studied in bottom surface deposits from the harbors of Neva Bay. The data of contents were normalized to natural background concentrations. Also the size and biomass of benthos groups were analyzed. The results show clearly that industrial discharges have elevated levels of contamination in the sediments. Few efficient measures against environmental contamination have been taken. The sediments contain very high concentrations of oil products and such heavy metals as Hg, Pb, Cu, and Zn. The benthic organisms most sensitive to heavy metal contamination are Chironomidae. The dredging and dumping of the contaminated deposits can lead to secondary contamination of the Gulf of Finland and the Baltic proper. (orig.)

  3. Long-distance electron transfer by cable bacteria in aquifer sediments

    DEFF Research Database (Denmark)

    Müller, Hubert; Bosch, Julian; Griebler, Christian

    2016-01-01

    recycling of sulfate by electron transfer over 1–2-cm distance. Sediments were taken from a hydrocarbon-contaminated aquifer, amended with iron sulfide and saturated with water, leaving the sediment surface exposed to air. Steep geochemical gradients developed in the upper 3 cm, showing a spatial separation...... recently been discovered in marine sediments to couple spatially separated redox half reactions over centimeter scales. Here we provide primary evidence that such sulfur-oxidizing cable bacteria can also be found at oxic–anoxic interfaces in aquifer sediments, where they provide a means for the direct...

  4. Evaluation of older bay mud sediment from Richmond Harbor, California

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Mayhew, H.L.; Word, J.Q.

    1996-09-01

    The older, bay mud (OBM) unit predates modem man and could act as a barrier to the downward transport of contaminants from the younger bay mud (YBM) because of its hard-packed consistency. However, its chemical and biological nature have not been well characterized. Battelle/Marine Sciences Laboratory (MSL) conducted three independent studies of OBM sediment in January 1993, January 1994, and October 1994. These studies evaluated potential chemical contamination and biological effects of OBM that could occur as a result of dredging and disposal activities. These evaluations were performed by conducting chemical analysis, solid-phase toxicity tests, suspended- particulate-phase (SPP) toxicity tests, and bioaccumulation tests on the OBM sediment. If the sediment chemistry and toxicity results showed no or minimal contamination and toxicological responses, then either the OBM could be left exposed in Richmond Harbor after dredging the YBM without leaving a source of contamination, or if the project depths necessitate, the OBM would be acceptable for disposal at an appropriate disposal site.

  5. PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon.

    Science.gov (United States)

    Mattes, Timothy E; Ewald, Jessica M; Liang, Yi; Martinez, Andres; Awad, Andrew; Richards, Patrick; Hornbuckle, Keri C; Schnoor, Jerald L

    2017-08-12

    Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that are distributed worldwide. Although industrial PCB production has stopped, legacy contamination can be traced to several different commercial mixtures (e.g., Aroclors in the USA). Despite their persistence, PCBs are subject to naturally occurring biodegradation processes, although the microbes and enzymes involved are poorly understood. The biodegradation potential of PCB-contaminated sediments in a wastewater lagoon located in Virginia (USA) was studied. Total PCB concentrations in sediments ranged from 6.34 to 12,700 mg/kg. PCB congener profiles in sediment sample were similar to Aroclor 1248; however, PCB congener profiles at several locations showed evidence of dechlorination. The sediment microbial community structure varied among samples but was dominated by Proteobacteria and Firmicutes. The relative abundance of putative dechlorinating Chloroflexi (including Dehalococcoides sp.) was 0.01-0.19% among the sediment samples, with Dehalococcoides sp. representing 0.6-14.8% of this group. Other possible PCB dechlorinators present included the Clostridia and the Geobacteraceae. A PCR survey for potential PCB reductive dehalogenase genes (RDases) yielded 11 sequences related to RDase genes in PCB-respiring Dehalococcoides mccartyi strain CG5 and PCB-dechlorinating D. mccartyi strain CBDB1. This is the first study to retrieve potential PCB RDase genes from unenriched PCB-contaminated sediments.

  6. Chemical speciation and transformation of mercury in contaminated sediments

    OpenAIRE

    Drott, Andreas

    2009-01-01

    Biomagnification of mercury (Hg) in aquatic food webs occurs almost exclusively as mono-methyl Hg (MeHg). In this thesis, the influence of chemical speciation and environmental conditions on transformations of inorganic Hg (HgII) and MeHg was studied at eight sites in Sweden with Hg contaminated sediments. The source of contamination was either Hg0(l) or phenyl-Hg, and total Hg concentrations ranged between 1.0-1100 nmol g-1. The environmental conditions, e.g. salinity, temperature climate, p...

  7. 137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica

    International Nuclear Information System (INIS)

    Ferreira, Paulo Alves de Lima; Ribeiro, Andreza Portella; Nascimento, Mylene Giseli do; Martins, Cesar de Castro; Mahiques, Michel Michaelovitch de; Montone, Rosalinda Carmelo; Figueira, Rubens Cesar Lopes

    2013-01-01

    The radionuclide cesium-137 ( 137 Cs) is produced exclusively by anthropogenic processes and primarily by nuclear explosions. This study determined the reference inventory that is 137 Cs associated with the element's original input, and utilized the levels of activity of this radionuclide previously measured in five sediment profiles collected from Admiralty Bay, Antarctica, to investigate the mobility of this element in the environment. 137 Cs has a half-life of 30 years. Because of this, it is environmentally persistent and has been shown to accumulate in marine organisms. The mean reference inventory of this radionuclide in Admiralty Bay sediments, determined using high resolution gamma ray spectrometry, was 20.23 ± 8.94 Bq m −2 , and within the ambient 137 Cs activity range. A model of 137 Cs diffusion–convection was applied to data collected from 1 cm intervals in sediment cores with the aim of providing insights with respect to this element's behavior in sediments. Model results showed a significant correlation between measured and modeled values using the concentrations of 137 Cs, and estimated input into the system from the global fallout of past nuclear tests and expected values based on local sedimentation rates. Results highlight the importance of accounting for the vertical diffusion of 137 Cs in marine sediments when used as a tracer for environmental processes and for assessing potential bioavailability. - Highlights: ► Cesium-137 ( 137 Cs) is produced exclusively by anthropogenic processes. ► A model of diffusion–convection simulated 137 Cs environmental behavior. ► This is important for assessing the bioavailability of this toxic element. ► In Antarctica ice cover influenced the input to the sediments

  8. Study of recent sediment accumulation rate using 210Pb around Mumbai Harbor Bay

    International Nuclear Information System (INIS)

    Chaudhury, Moushumi D.; Pulhani, Vandana; Jha, S.K.; Tripathi, R.M.

    2016-01-01

    The study of the coastal marine sediment of Mumbai harbor bay (MHB) provides a significant insight of the stress due to unprecedented increase of anthropogenic activities in and around the bay and climatic changes. This encourages archiving the sediments for characterizing the depositional environment of water system by examining the sediment accumulation rate (SAR) to understand thc annual deposition of chemical contaminants. The study of SAR evaluates the fate and potential effects of chemical contaminants which when discharged into aquatic environment quickly become attached to sediment particles at different exchange sites. The rate of sediment accumulation has a significant impact on many geochemical processes; it is also vital for the functioning of benthic organisms in this environment, particularly the seabed fauna. SAR is calculated from sedimentation rate, bulk density and porosity

  9. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Neuparth, Teresa S.; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; Angel DelValls, T.; Costa, Maria H.

    2011-01-01

    Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or 'comet') assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with sediment

  10. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M., E-mail: pmcosta@fct.unl.pt [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Neuparth, Teresa S. [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Toxicologia Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto (Portugal); Caeiro, Sandra [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Departamento de Ciencias e Tecnologia, Universidade Aberta, Rua da Escola Politecnica, 141, 1269-001 Lisboa (Portugal); Lobo, Jorge [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos [IPIMAR-INRB, Instituto Nacional dos Recursos Biologicos, Avenida de Brasilia, 1449-006 Lisboa (Portugal); Angel DelValls, T. [UNESCO/UNITWIN/WiCop Chair-Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cadiz, Poligono rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Costa, Maria H. [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2011-01-15

    Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or 'comet') assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with

  11. Validation of an analytical methodology for the quantitative analysis of petroleum hydrocarbons in marine sediment samples

    Directory of Open Access Journals (Sweden)

    Eloy Yordad Companioni Damas

    2009-01-01

    Full Text Available This work describes a validation of an analytical procedure for the analysis of petroleum hydrocarbons in marine sediment samples. The proposed protocol is able to measure n-alkanes and polycyclic aromatic hydrocarbons (PAH in samples at concentrations as low as 30 ng/g, with a precision better than 15% for most of analytes. The extraction efficiency of fortified sediments varied from 65.1 to 105.6% and 59.7 to 97.8%, for n-alkanes and PAH in the ranges: C16 - C32 and fluoranthene - benzo(apyrene, respectively. The analytical protocol was applied to determine petroleum hydrocarbons in sediments collected from a marine coastal zone.

  12. Spatial distributions and deposition chronology of short chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas.

    Science.gov (United States)

    Zeng, Lixi; Chen, Ru; Zhao, Zongshan; Wang, Thanh; Gao, Yan; Li, An; Wang, Yawei; Jiang, Guibin; Sun, Liguang

    2013-10-15

    As the most complex halogenated contaminants, short chain chlorinated paraffins (SCCPs) are scarcely reported in marine environments. In this work, a total of 117 surficial sediment (0-3 cm) samples and two sediment cores were collected from the Chinese Bohai and Yellow Seas to systematically study the spatial and temporal trends of SCCPs at a large scale in the Chinese marine environment. Total SCCP concentrations in the surficial sediments were in the range of 14.5-85.2 ng g(-1) (dry weight, d.w.) with an average level of 38.4 ng g(-1) d.w. Spatial distribution showed a decreasing trend with the distance from the coast to the open waters. Compositional pattern analysis suggested that C10 was the most predominant homologue group, followed by C11, C12, and C13 homologue groups. The concentrations of total SCCPs in sediment cores ranged from 11.6 to 94.7 ng g(-1) d.w. for YS1 and from 14.7 to 195.6 ng g(-1) d.w. for YS2, with sharp rise from the early 1950s to present based on (210)Pb dating technique. The historical records in cores correspond well to the production and usage changes of CPs in China. Multivariate regression statistics indicate TOC, latitude and longitude are the major factors influencing surficial SCCP levels in the Chinese East Seas by combining analysis with the data from the East China Sea (R(2) = 0.332, p < 0.01). These findings indicated that the sources of SCCPs were mainly from river outflows via ocean current and partly from atmospheric depositions by East Asian monsoon in the sampling areas.

  13. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-02-01

    Full Text Available Trace metals contamination of rivers and sediments remains a global threat to biodiversity and humans. This study was carried out to assess the variation pattern in trace metals contamination in Mvudi River water and sediments for the period of January–June 2014. Metal concentrations were analyzed using an inductively-coupled plasma optical emission spectrometer after nitric acid digestion. A compliance study for the water samples was performed using the guidelines of the Department of Water Affairs and Forestry (DWAF of South Africa and the World Health Organization (WHO. The National Oceanic and Atmospheric Administration (NOAA sediment quality guidelines for marine and estuarine sediments and the Canadian Council of Ministers of the Environment sediment guidelines (CCME for freshwater sediments were used to determine the possible toxic effects of the metals on aquatic organisms. pH (7.2–7.7 and conductivity (10.5–16.1 mS/m values complied with DWAF and WHO standards for domestic water use. Turbidity values in nephelometric turbidity units (NTU were in the range of 1.9–429 and exceeded the guideline values. The monthly average levels of trace metals in the water and sediments of Mvudi River were in the range of: Al (1.01–9.644 mg/L and 4296–5557 mg/kg, Cd (0.0003–0.002 mg/L and from below the detection limit to 2.19 mg/kg, Cr (0.015–0.357 mg/L and 44.23–149.52 mg/kg, Cu (0.024–0.185 mg/L and 13.22–1027 mg/kg, Fe (0.702–2.645 mg/L and 3840–6982 mg/kg, Mn (0.081–0.521 mg/L and 279–1638 mg/kg, Pb (0.002–0.042 mg/L and 1.775-4.157 mg/kg and Zn (0.031–0.261 mg/L and 14.481–39.88 mg/kg. The average concentrations of Al, Cr, Fe, Mn and Pb in the water samples exceeded the recommended guidelines of DWAF and WHO for domestic water use. High concentrations of Al and Fe were determined in the sediment samples. Generally, the concentrations of Cd, Cr and Cu in the sediments exceeded the corresponding effect range low

  14. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    Science.gov (United States)

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  15. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    International Nuclear Information System (INIS)

    Coates, John D.

    2005-01-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1

  16. Characterization of Contaminant Migration Potential Through In-Place Sediment Caps

    Science.gov (United States)

    2011-06-01

    grab. Extraction and analysis of sediment/cap material used pesticide -grade organic solvents obtained from Fisher Scientific (Pittsburgh, PA). The 16...34Controlled Field Release of a Bioluminescent Genetically Engineered  Microorganism  for  Bioremediation  Process Monitoring and Control." Environmental Science...role of sorbent amendments in enhancing cap performance. Laboratory column experiments were performed using contaminated sediments and capping

  17. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic

  18. MANAGING ARSENIC CONTAMINATED SOIL, SEDIMENT, AND INDUSTRIAL WASTE WITH SOLIDIFICATION/STABILIZATION TREATMENT

    Science.gov (United States)

    Arsenic contamination of soil, sediment and groundwater is a widespread problem in certain areas and has caused great public concern due to increased awareness of the health risks. Often the contamination is naturally occurring, but it can also be a result of waste generated from...

  19. Time Matters: Increasing the Efficiency of Antarctic Marine Geology and Paleoceanography Expeditions by Providing Improved Sediment Chronology

    Science.gov (United States)

    Rosenheim, B. E.; Domack, E. W.; Shevenell, A.; Subt, C.

    2015-12-01

    To maximize the areal extent of Antarctic sedimentary records of past deglaciation, it is necessary to ensure more sediment cores can be adequately dated. Antarctic margin sediment is challenging to date due to the lack of preserved calcium carbonate, but the records contained in these sediments readily recount the history of deglaciation. Recent and continued development of new chronological methods for Antarctic margin sediments have allowed better use of the efforts of marine geological coring expeditions to the region. The development of Ramped PyrOx radiocarbon dating has allowed us to 1. improve dates in deglacial sediments where no carbonate is preserved, 2. date glacial sediments lying below the tills marking the last glaciation, and 3. compile core chronologies into a regional framework of ice shelf collapse that has eluded many marine geology campaigns over the last few decades. These advances in a fundamental aspect of geological sciences will put the U.S. and international community on a better foothold to interpret the past as it relates to our warming future. We will present these advances in chronology as well as the science that is enabled by them, while arguing that the future of Antarctic marine science also depends on investments in shore-based technologies that come at a relatively low cost.

  20. Spatial and seasonal variations of Acid Volatile Sulfide (AVS) and Simultaneously Extracted Metals (SEM) in Dutch marine and freshwater sediments

    NARCIS (Netherlands)

    Hoop MAGT van den; Hollander HA den; Kerdijk HN; LAC; ECO; Delft Hydraulics

    1995-01-01

    Within the framework of the project Exposure Assessment, Acid Volatile Sulfide (AVS) and Simultaneously Extracted Metal (SEM) contents of Dutch marine and freshwater sediments were determined. For the present set of fifteen marine and six freshwater sediments AVS levels vary between non-detectable

  1. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  2. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  3. Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: A weighted indices approach

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Diniz, Mario S.; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; DelValls, T. Angel; Costa, M. Helena

    2009-01-01

    Young juvenile Solea senegalensis were exposed to three sediments with distinct contamination profiles collected from a Portuguese estuary subjected to anthropogenic sources of contamination (the Sado estuary, western Portugal). Sediments were surveyed for metals (cadmium, chromium, copper, nickel, lead and zinc), a metalloid (arsenic) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide, dichloro-diphenyl-trichloroethane plus its metabolites), as well as total organic matter, redox potential and particle fine fraction. The fish were exposed to freshly collected sediments in a 28-day laboratorial assay and collected for histological analyses at days 0 (T 0 ), 14 (T 14 ) and 28 (T 28 ). Individual weighted histopathological indices were obtained, based on presence/absence data of eight and nine liver and gill pathologies, respectively, and on their biological significance. Although livers sustained more severe lesions, the sediments essentially contaminated by organic substances caused more damage to both organs than the sediments contaminated by both metallic and organic contaminants, suggesting a possible synergistic effect. Correlation analyses showed that some alterations are linked, forming distinctive histopathological patterns that are in accordance with the severity of lesions and sediment characteristics. The presence of large eosinophilic bodies in liver and degeneration of mucous cells in gills (a first-time described alteration) were some of the most noticeable alterations observed and were related to sediment organic contaminants. Body size has been found to be negatively correlated with histopathological damage in livers following longer term exposures. It is concluded that histopathological indices provide reliable and discriminatory data even when biomonitoring as complex media as natural sediments. It is also concluded that the effects of contamination may result not only from toxicant concentrations

  4. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon.

    Science.gov (United States)

    Rakowska, M I; Kupryianchyk, D; Smit, M P J; Koelmans, A A; Grotenhuis, J T C; Rijnaarts, H H M

    2014-03-15

    Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for extraction of polycyclic aromatic hydrocarbons (PAH) from sediment by GAC, using a first-order multi-compartment kinetic model. The parameters were obtained by modeling sediment-GAC exchange kinetic data following a tiered model calibration approach. First, parameters for PAH desorption from sediment were calibrated using data from systems with 50% (by weight) GAC acting as an infinite sink. Second, the estimated parameters were used as fixed input to obtain GAC uptake kinetic parameters in sediment slurries with 4% GAC, representing the ex situ remediation scenario. PAH uptake rate constants (kGAC) by GAC ranged from 0.44 to 0.0005 d(-1), whereas GAC sorption coefficients (KGAC) ranged from 10(5.57) to 10(8.57) L kg(-1). These values are the first provided for GAC in the presence of sediment and show that ex situ extraction with GAC is sufficiently fast and effective to reduce the risks of the most available PAHs among those studied, such as fluorene, phenanthrene and anthracene. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. REMOVAL OF AMMONIA TOXCITY IN MARINE SEDIMENT TIES: A COMPARISON OF ULVA LACTUCA, ZEOLITE AND AREATION METHODS

    Science.gov (United States)

    Ammonia is suspected of causing some of the toxicity observed in marine sediment toxicity tests because it is sometimes found at elevated concentrations in marine interstitial waters. In marine waters, ammonia exists as un-ionized ammonia (NH3) and ammonium (NH4+) which combine ...

  6. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.

    Science.gov (United States)

    Yang, Na; Song, Fuhang

    2018-02-01

    Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

  7. Reconstruction of late Quaternary marine and terrestrial environmental conditions of Northwest Africa and Southeast Australia : a multiple organic proxy study using marine sediments

    NARCIS (Netherlands)

    Alfama Lopes dos Santos, R.

    2012-01-01

    NW Africa and SE Australia are regions which are particularly vulnerable to climate change. In this thesis, organic proxies are used from marine sediment cores to reconstruct past environmental conditions from these areas. In sediments from NW Africa, the UK'37 showed an efficient proxy for sea

  8. Nickel, Lead and Zinc Contamination in the Surface Sediments of Agh Gel Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Soheil Sobhan Ardakani

    2016-07-01

    Full Text Available Background & Aims of the Study: Due to the increased human activities around the Agh Gel wetland, this study aimed to measured accumulations of heavy metals (Ni, Pb and Zn in the surface sediment samples taken from this wetland. Materials & Methods: Samples were taken from 10 stations and exposed to bulk digestion and chemical partitioning. Finally, Ni, Pb and Zn concentrations were monitored with ICP-OES in the sediments. Also, geo-accumulation index, contamination factor and pollution load index were used to evaluate the magnitude of contaminants in the sediment profile. Results: The results showed, the average of metal concentration in samples (mg kg-1 wet weight were 34.20±3.58 for Ni, 25.37±2.52 for Pb and 127.20±15.21 for Zn, respectively. Therefore, the pattern of metal concentrations in sediment was determined as Zinc>Nickel >Lead. According to the mean I-geo values, sediments' qualities are classified as unpolluted category for Ni and Pb. Also, sediment's quality is classified as unpolluted to moderately polluted for Zn. The CF values for all elements are classified as moderate contamination. The PLI values indicated that metal pollution exists for all sampling stations. Conclusions: The obtained results indicated that the Agh Gel wetland has a potential to threaten by chemical pollutants such as agricultural effluent. So, in order to preserve the environment of the Agh Gel wetland from deterioration, monitoring of water and sediment qualities is recommended periodically.

  9. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Joao, H.M.; Peketi, A.; Dewangan, P.; Kocherla, M.; Joshi, R.K.; Ramprasad, T.

    Pore water sulfate consumption in marine sediments is controlled by microbially driven sulfate reduction via organo-clastic and methane oxidation processes. In this work, we present sediment pore fluid compositions of 10 long sediment cores and high...

  10. USING SPMDS TO ACCESS MANAGMENT STRATEGIES FOR PCB CONTAMINATED SEDIMENTS

    Science.gov (United States)

    Dredging, in-place treatment, capping and monitored natural recovery, used together or separately are the primary approaches for managing contaminated sediment risks. Understanding how well different approaches work in different environments is critical for choosing an appropria...

  11. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran.

    Science.gov (United States)

    Malvandi, Hassan

    2017-04-15

    The major objectives of the study were to test the hypothesis of the Zarrin-Gol River as a reference site for ecotoxicological studies and to assess the contamination degree of heavy metals and metalloids in the river using four contamination indices. For these purposes, eleven heavy metal and metalloid concentrations were analyzed. The average concentrations (mgkg -1 ) in the sediments were: 37.67 (chromium) 286.28 (manganese), 13,751.04 (iron), 8.79 (cobalt), 12.39 (nickel), 32.68 (zinc), 21.91 (arsenic), 40.59 (selenium), 2923.86 (aluminum), ND (silver) and 785.96 (magnesium). Contamination factor, enrichment factor, pollution load index, and geoaccumulation index were calculated to evaluate the contamination degree and influence of human activities on heavy metal levels. The contamination indices of the sediment samples showed that arsenic and selenium were the highest pollutants. The results indicated that the Zarrin-Gol River could not be used as a reference site at least for arsenic and selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Foraminiferal constituent in marine sediments - A parameter in some coastal engineering problems

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Foraminifera, among other microorganisms, form a major constituent of marine sediments and their composition is directly related to the nature of the substrate in which they are entombed. Past and the present data indicate that the size, test...

  13. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations.

    Science.gov (United States)

    Avelar, Silvania; van der Voort, Tessa S; Eglinton, Timothy I

    2017-12-01

    Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm-particularly over continental margins-could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of

  14. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations

    Directory of Open Access Journals (Sweden)

    Silvania Avelar

    2017-05-01

    Full Text Available Abstract Background Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. Conclusions This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The

  15. Contaminants in stream sediments from seven United States metropolitan areas: part I: distribution in relation to urbanization

    Science.gov (United States)

    Nowell, Lisa H.; Moran, Patrick W.; Gilliom, Robert J.; Calhoun, Daniel L.; Ingersoll, Christopher G.; Kemble, Nile E.; Kuivila, Kathryn; Phillips, Patrick J.

    2013-01-01

    Organic contaminants and trace elements were measured in bed sediments collected from streams in seven metropolitan study areas across the United States to assess concentrations in relation to urbanization. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, the pyrethroid insecticide bifenthrin, and several trace elements were significantly related to urbanization across study areas. Most contaminants (except bifenthrin, chromium, nickel) were significantly related to the total organic carbon (TOC) content of the sediments. Regression models explained 45–80 % of the variability in individual contaminant concentrations using degree of urbanization, sediment-TOC, and study-area indicator variables (which represent the combined influence of unknown factors, such as chemical use or release, that are not captured by available explanatory variables). The significance of one or more study-area indicator variables in all models indicates marked differences in contaminant levels among some study areas, even after accounting for the nationally modeled effects of urbanization and sediment-TOC. Mean probable effect concentration quotients (PECQs) were significantly related to urbanization. Trace elements were the major contributors to mean PECQs at undeveloped sites, whereas organic contaminants, especially bifenthrin, were the major contributors at highly urban sites. Pyrethroids, where detected, accounted for the largest share of the mean PECQ. Part 2 of this series (Kemble et al. 2012) evaluates sediment toxicity to amphipods and midge in relation to sediment chemistry.

  16. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health.

    Science.gov (United States)

    Carbery, Maddison; O'Connor, Wayne; Palanisami, Thavamani

    2018-06-01

    Plastic litter has become one of the most serious threats to the marine environment. Over 690 marine species have been impacted by plastic debris with small plastic particles being observed in the digestive tract of organisms from different trophic levels. The physical and chemical properties of microplastics facilitate the sorption of contaminants to the particle surface, serving as a vector of contaminants to organisms following ingestion. Bioaccumulation factors for higher trophic organisms and impacts on wider marine food webs remain unknown. The main objectives of this review were to discuss the factors influencing microplastic ingestion; describe the biological impacts of associated chemical contaminants; highlight evidence for the trophic transfer of microplastics and contaminants within marine food webs and outline the future research priorities to address potential human health concerns. Controlled laboratory studies looking at the effects of microplastics and contaminants on model organisms employ nominal concentrations and consequently have little relevance to the real environment. Few studies have attempted to track the fate of microplastics and mixed contaminants through a complex marine food web using environmentally relevant concentrations to identify the real level of risk. To our knowledge, there has been no attempt to understand the transfer of microplastics and associated contaminants from seafood to humans and the implications for human health. Research is needed to determine bioaccumulation factors for popular seafood items in order to identify the potential impacts on human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. COPING WITH CONTAMINATED SEDIMENTS AND SOILS IN THE URBAN ENVIRONMENT.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; VAN DER LELIE,D.; MCGUIGAN,M.; ET AL.

    2004-05-25

    Soils and sediments contaminated with toxic organic and inorganic compounds harmful to the environment and to human health are common in the urban environment. We report here on aspects of a program being carried out in the New York/New Jersey Port region to develop methods for processing dredged material from the Port to make products that are safe for introduction to commercial markets. We discuss some of the results of the program in Computational Environmental Science, Laboratory Environmental Science, and Applied Environmental Science and indicate some possible directions for future work. Overall, the program elements integrate the scientific and engineering aspects with regulatory, commercial, urban planning, local governments, and community group interests. Well-developed connections between these components are critical to the ultimate success of efforts to cope with the problems caused by contaminated urban soils and sediments.

  18. Polychlorinated biphenyl (PCB) contamination in Galveston Bay, Texas: Comparing concentrations and profiles in sediments, passive samplers, and fish.

    Science.gov (United States)

    Oziolor, Elias M; Apell, Jennifer N; Winfield, Zach C; Back, Jeffrey A; Usenko, Sascha; Matson, Cole W

    2018-05-01

    The industrialized portion of the Houston Ship Channel (HSC) is heavily contaminated with anthropogenic contaminants, most prominent of which are the polychlorinated biphenyls (PCBs). This contamination has driven adaptive evolution in a keystone species for Galveston Bay, the Gulf killifish (Fundulus grandis). We investigated the geographical extent of PCB impacts by sampling 12 sites, ranging from the heavily industrialized upper portion of the HSC to Galveston Island. At each site, PCB concentrations and profiles were determined in three environmental compartments: sediment, water (polyethylene passive samplers), and fish tissue (resident Gulf killifish). We observed a steep gradient of PCB contamination, ranging from 4.00 to 100,000 ng/g organic carbon in sediment, 290-110,000 ng/g lipid in fish, and 4.5-2300 ng/g polyethylene in passive samplers. The PCB congener profiles in Gulf killifish at the most heavily contaminated sites were shifted toward the higher chlorinated PCBs and were highly similar to the sediment contamination profiles. In addition, while magnitude of total PCB concentrations in sediment and total fish contamination levels were highly correlated between sites, the relative PCB congener profiles in fish and passive samplers were more alike. This strong correlation, along with a lack of dependency of biota-sediment accumulation factors with total contamination rates, confirm the likely non-migratory nature of Gulf killifish and suggest their contamination levels are a good site-specific indicator of contamination in the Galveston Bay area. The spatial gradient of PCB contamination in Galveston Bay was evident in all three matrices studied and was observed effectively using Gulf killifish contamination as an environmentally relevant bioindicator of localized contamination in this environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Performance evaluation of nitrogen isotope ratio determination in marine and lacustrine sediments: An inter-laboratory comparison

    NARCIS (Netherlands)

    Bahlmann, E.; Bernasconi, S.M.; Bouillon, S.; Houtekamer, M.J.; Korntheuer, M.; Langenberg, F.; Mayr, C.; Metzke, M.; Middelburg, J.J.; Nagel, B.; Struck, U.; Voß, M.; Emeis, K.C.

    2010-01-01

    Nitrogen isotopes of organic matter are increasingly studied in marine biogeochemistry and geology, plant and animal ecology, and paleoceanography. Here, we present results of an inter-laboratory test on determination of nitrogen isotope ratios in marine and lacustrine sediments. Six different

  20. Human impact on fluvial sediments: distinguishing regional and local sources of heavy metals contamination

    Science.gov (United States)

    Novakova, T.; Matys Grygar, T.; Bábek, O.; Faměra, M.; Mihaljevič, M.; Strnad, L.

    2012-04-01

    Industrial pollution can provide a useful tool to study spatiotemporal distribution of modern floodplain sediments, trace their provenance, and allow their dating. Regional contamination of southern Moravia (the south-eastern part of the Czech Republic) by heavy metals during the 20th century was determined in fluvial sediments of the Morava River by means of enrichment factors. The influence of local sources and sampling sites heterogeneity were studied in overbank fines with different lithology and facies. For this purpose, samples were obtained from hand-drilled cores from regulated channel banks, with well-defined local sources of contamination (factories in Zlín and Otrokovice) and also from near naturally inundated floodplains in two nature protected areas (at 30 km distance). The analyses were performed by X-ray fluorescence spectroscopy (ED XRF), ICP MS (EDXRF samples calibration, 206Pb/207Pb ratio), magnetic susceptibility, cation exchange capacity (CEC), and 137Cs and 210Pb activities. Enrichment factors (EF) of heavy metals (Pb, Zn, Cu and Cr) and magnetic susceptibility of overbank fines in near-naturally (near annually) inundated areas allowed us to reconstruct historical contamination by heavy metals in the entire study area independently on lithofacies. Measured lithological background values were then used for calculation of EFs in the channel sediments and in floodplain sediments deposited within narrow part of a former floodplain which is now reduced to about one quarter of its original width by flood defences. Sediments from regulated channel banks were found stratigraphically and lithologically "erratic", unreliable for quantification of regional contamination due to a high variability of sedimentary environment. On the other hand, these sediments are very sensitive to the nearby local sources of heavy metals. For a practical work one must first choose whether large scale, i.e. a really averaged regional contamination should be reconstructed

  1. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  2. A study of radionuclide transfer between invertebrates and their marine sedimentary environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, Claude.

    1975-11-01

    Exchanges between sediment and marine organisms were studied in some benthic marine invertebrates, especially Arenicola marina L. (an Annelid). Experiments were carried out on the transfer of 60 Co, 137 Cs and accessorily 59 Fe and 144 Ce. Water was the chief vector for benthic marine invertebrates. These invertebrates seemed to act mainly in sedimentary areas on the redistribution of adsorbed radionuclides within the sediment. Radioactive contamination of the invertebrates was affected by various physiological or ecological factors. Benthic marine invertebrates were then studied as links in food chains. The transfer of 60 Co was studied in three food chains or fractions of food chains. The procedure allowed interesting observations from the health protection point of view and more fundamental investigations on cobalt metabolism (regulation, excretion) in a mollusc, a crustacea and a teleost [fr

  3. Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece

    International Nuclear Information System (INIS)

    Pappa, F.K.; Tsabaris, C.; Ioannidou, A.; Patiris, D.L.; Kaberi, H.; Pashalidis, I.; Eleftheriou, G.; Androulakaki, E.G.; Vlastou, R.

    2016-01-01

    Marine sediment samples were collected from Ierissos Gulf, N Aegean Sea, close to the coastal mining facilities. Measurements of radionuclide and metal concentrations, mineral composition and grain size distribution were performed. The concentrations of "2"2"6Ra, "2"3"5U and trace metals showed enhanced values in the port of Stratoni compared with those obtained near to Ierissos port. The dose rates received by marine biota were also calculated by the ERICA Assessment Tool and the results indicated no significant radiological risk. - Highlights: • Baseline information of radionuclides in a coastal area near a mining site. • Trace metals measurements in marine sediment. • Dose rates assessment for marine biota using ERICA Assessment Tool.

  4. Gold-bearing fluvial and associated tidal marine sediments of Proterozoic age in the Mporokoso Basin, northern Zambia

    Science.gov (United States)

    Andrews-Speed, C. P.

    1986-07-01

    The structurally defined Mporokoso Basin contains up to 5000 m of continental and marine clastic sediments and minor silicic volcanics which together form the Mporokoso Group. These rocks overlie unconformably a basement of silicic-intermediate igneous rocks and accumulated within the interval 1830-1130 Ma. This sedimentological study was restricted to the eastern end of the basin and was part of an assessment of the potential for palaeoplacer gold in the Mporokoso Group. At the base of the Mporokoso Group, the Mbala Formation consists of 1000-1500 m of purple sandstones and conglomerates deposited in a braided-stream system overlain by 500-1000 m of mature quartz arenites deposited in a tidal marine setting. A general coarsening-upward trend exists within the fluvial sediments. Sandy, distal braided-stream facies passes upwards into more proximal conglomeratic facies. In proximal sections, poorly sorted conglomerates form the top of the coarsening-up sequence which is 500-700 m thick. The overlying fluvial sediments fine upwards. The tidal marine sandstones at the top of the Mbala Formation resulted from reworking of fluvial sediments during a marine transgression. Well-exposed sections with fluvial conglomerates were studied in detail. Individual conglomerate bodies form sheets extending for hundreds of metres downstream and at least one hundred metres across stream, with little sign of deep scouring or channelling. They are generally matrix-supported. The whole fluvial sequence is characterised by a paucity of mud or silt. These conglomerates were deposited by large velocity, sheet flows of water which transported a bed-load of pebbles and sand. Most fine material settling out from suspension was eroded by the next flow. The great lateral and vertical extent and the uniformity of the fluvial sediments suggest that the sediments accumulated over an unconfined alluvial plain and that the tectonic evolution of the source area was relatively continuous and not

  5. Acetate consumption in anoxic marine sediments: Identification of key players using mixed pure cultures and sediment incubations

    DEFF Research Database (Denmark)

    Na, Hyunsoo

    . While we did not find methanogens to be involved in acetate consumption with sediment incubations, the results from co-culture experiments show that syntrophic growth may allow aceticlastic methanogens to co-exist with sulfate-reducing bacteria in anoxic, sulfate-rich marine environments....... are largely unknown. The main goal of my PhD project was to identify acetate consumers in sulfate-reducing sediments of Aarhus Bay, Denmark. More specifically, we addressed the hypothesis if sulfate-reducing bacteria and methanogenic archaea can oxidize acetate in syntrophy. First, we examined the changes...... sulfate for a year were comparable to those of sediment incubated with high sulfate, on phylum/class levels, but within Deltaproteobacteria, certain sulfate reducers such as Desulfobacterium anilini was found only with low sulfate. In continuous flow-through reactors, bacteria mainly involved in sulfur...

  6. Influence of larval period on responses of overwintering green frog (Rana clamitans) larvae exposed to contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Snodgrass, J.W.; Hopkins, W.A.; Jackson, B.P.; Baionno, J.A.; Broughton, J. [Towson State University, Towson, MD (US). Dept. of Biological Science

    2005-06-01

    Pond-breeding amphibians exhibit large intra- and interspecific differences in the duration of the aquatic larval phase. In contaminated aquatic environments, a prolonged larval phase means prolonged exposure to pollutants and, potentially, more severe toxic effects. In the laboratory, we tested this hypothesis by exposing green frog larvae (Rana clamitans) to commercial clean sand (control), sediment from an abandoned surface mine (mine), or sediment contaminated with coal combustion waste (CCW). By collecting eggs late in the breeding season, we obligated larvae to overwinter and spend a protracted amount of time exposed to contaminated sediments. The experiment was continued until all larvae either successfully completed metamorphosis or died (301 d). Larvae exposed to mine sediments accumulated significant levels of Pb and Zn, whereas larvae exposed to CCW-contaminated sediment accumulated significant levels of As, Se, Sr, and V. Larvae exposed to mine sediments suffered sublethal effects in the form of reduced growth and size at metamorphosis, but the proportion of larvae successfully completing metamorphosis (93%) was the same for both control and mine treatments. In contrast, larvae exposed to CCW-contaminated sediment suffered greatly reduced survival (13%) compared to both control and mine treatments. Moreover, among larvae in the CCW treatment, the majority of mortality occurred during the latter part the overwintering period (after day 205), corresponding to the onset of metamorphosis in the controls. Our results suggest that the length of the larval period may be one of many life-history or ecological characteristics that influence the sensitivity of aquatic breeding amphibians to environmental pollutants.

  7. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  8. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    Science.gov (United States)

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  9. Field validation of a battery of biomarkers to assess sediment quality in Spanish ports

    International Nuclear Information System (INIS)

    Martin-Diaz, M.L.; Blasco, J.; Sales, D.; DelValls, T.A.

    2008-01-01

    Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR. - A battery of biomarkers shows exposure to metals and organic compounds

  10. Field validation of a battery of biomarkers to assess sediment quality in Spanish ports

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Diaz, M.L. [Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Consejo Superior de Investigaciones Cientificas, Instituto de Ciencias Marinas de Andalucia, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain)], E-mail: laura.martin@uca.es; Blasco, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencias Marinas de Andalucia, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Departamento Ciencias Ambientales y Tecnologia de los Alimentos, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); DelValls, T.A. [Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain)

    2008-02-15

    Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR. - A battery of biomarkers shows exposure to metals and organic compounds.

  11. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite

    International Nuclear Information System (INIS)

    Zhang Zizhong; Li Mengyan; Chen Wei; Zhu Shuzhen; Liu Nannan; Zhu Lingyan

    2010-01-01

    The effectiveness and mechanism of nano-hydroxyapatite particles (nHAp) in immobilizing Pb and Cd from aqueous solutions and contaminated sediment were investigated. The maximum sorption amount (Q max ) of Pb and Cd in aqueous solution was 1.17 and 0.57 mmol/g. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) surface and depth analysis indicated that dissolution-precipitation is the primary immobilization mechanism for Pb, while surface complexation and intraparticle diffusion account for Cd sequestration. Different amounts of nHAp (0-10% nHAp/dry weight) were added to the contaminated sediment. Sequential extraction showed that nHAp could effectively reduce the exchangeable fraction of Pb and Cd in the sediment and significantly reduce the concentration in porewater. The results in this study showed that nHAp can immobilize Pb and Cd in sediment effectively. - Nano-hydroxyapatite shows potential and advantages to immobilize lead and cadmium in aqueous solution and sediment.

  12. Diversity and characterization of culturable fungi from marine sediment collected from St. Helena Bay, South Africa

    CSIR Research Space (South Africa)

    Mouton, M

    2012-08-01

    Full Text Available origins. It has not been proven whether these fungi merely survive the harsh environmental conditions presented by the ocean sediment, as opposed to playing an active role in this ecological niche. During this study, marine sediment was collected from St...

  13. Analysis of marine sediment and lobster hepatopancreas reference materials by instrumental photon activation

    International Nuclear Information System (INIS)

    Landsberger, S.; Davidson, W.F.

    1985-01-01

    By use of instrumental photon activation analysis, twelve trace (As, Ba, Cr, Co, Mn, Ni, Pb, Sb, Sr, U, Zn, and Zr) and eight minor (C, Na, Mg, Co, K, Ca, Tl, and Fe) elements were determined in a certified marine sediment standard reference material as well as eight trace (Mn, Ni, Cu, Zn, As, Sr, Cd, and Pb) and four minor (Na, Mg, Cl, and Ca) elements in a certified marine tissue (lobster hepatopancreas) standard reference material. The precision and accuracy of the present results when compared to the accepted values clearly demonstrate the reliability of this nondestructive technique and its applicability to marine environmental or marine geochemical studies. 24 references, 4 figures, 3 tables

  14. Trace metal contamination in mangrove sediments, Guanabara Bay, Rio de Janeiro, Brazil

    OpenAIRE

    Farias,Cassia O.; Hamacher,Claudia; Wagener,Angela de Luca R.; Campos,Reinaldo C. de; Godoy,José M.

    2007-01-01

    The Guanabara Bay in Rio de Janeiro has undergone profound alterations of its natural environmental conditions. Metal concentration increase in sediments has been reported to be among these alterations. Trace-metal contamination and availability were studied in sediments of 3 mangrove areas of the bay. Cd, Zn, Pb, Ni, Cu and Al concentrations were determined in segments of sediment cores, after treatment with 1 mol L-1 HCl and with concentrated HNO3. Fe and Mn were determined in the leach wit...

  15. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  16. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination

    Energy Technology Data Exchange (ETDEWEB)

    Lagauzere, S. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire (IRSN), DEI/SECRE/LRE, Cadarache 186, BP 3, F-13115 Cedex, Saint Paul Lez Durance (France)], E-mail: lagauzere@gmail.com; Pischedda, L.; Cuny, P. [Laboratoire de Microbiologie, Geochimie et Ecologie Marines, UMR 6117 CNRS/COM/Universite de la Mediterranee, Campus de Luminy, Case 901, F-13288 Cedex 09, Marseille (France); Gilbert, F. [EcoLab, Laboratoire d' Ecologie Fonctionnelle, UMR 5245 CNRS/INP/Universite Paul Sabatier, 29 Rue Jeanne Marvig, F-31055 Cedex 4, Toulouse (France); Stora, G. [Laboratoire de Microbiologie, Geochimie et Ecologie Marines, UMR 6117 CNRS/COM/Universite de la Mediterranee, Campus de Luminy, Case 901, F-13288 Cedex 09, Marseille (France); Bonzom, J.-M. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire (IRSN), DEI/SECRE/LRE, Cadarache 186, BP 3, F-13115 Cedex, Saint Paul Lez Durance (France)

    2009-04-15

    The diffusive oxygen uptake (DOU) of sediments inhabited by Chironomus riparius and Tubifex tubifex was investigated using a planar oxygen optode device, and complemented by measurements of bioturbation activity. Additional experiments were performed within contaminated sediments to assess the impact of uranium on these processes. After 72 h, the two invertebrate species significantly increased the DOU of sediments (13-14%), and no temporal variation occurred afterwards. Within contaminated sediments, it was already 24% higher before the introduction of the organisms, suggesting that uranium modified the sediment biogeochemistry. Although the two species firstly reacted by avoidance of contaminated sediment, they finally colonized it. Their bioturbation activity was reduced but, for T. tubifex, it remained sufficient to induce a release of uranium to the water column and an increase of the DOU (53%). These results highlight the necessity of further investigations to take into account the interactions between bioturbation, microbial metabolism and pollutants. - This study highlights the ecological importance of bioturbation in metal-contaminated sediments.

  17. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination

    International Nuclear Information System (INIS)

    Lagauzere, S.; Pischedda, L.; Cuny, P.; Gilbert, F.; Stora, G.; Bonzom, J.-M.

    2009-01-01

    The diffusive oxygen uptake (DOU) of sediments inhabited by Chironomus riparius and Tubifex tubifex was investigated using a planar oxygen optode device, and complemented by measurements of bioturbation activity. Additional experiments were performed within contaminated sediments to assess the impact of uranium on these processes. After 72 h, the two invertebrate species significantly increased the DOU of sediments (13-14%), and no temporal variation occurred afterwards. Within contaminated sediments, it was already 24% higher before the introduction of the organisms, suggesting that uranium modified the sediment biogeochemistry. Although the two species firstly reacted by avoidance of contaminated sediment, they finally colonized it. Their bioturbation activity was reduced but, for T. tubifex, it remained sufficient to induce a release of uranium to the water column and an increase of the DOU (53%). These results highlight the necessity of further investigations to take into account the interactions between bioturbation, microbial metabolism and pollutants. - This study highlights the ecological importance of bioturbation in metal-contaminated sediments

  18. A global survey of the distribution of free gas in marine sediments

    Science.gov (United States)

    Fleischer, Peter; Orsi, Tim; Richardson, Michael

    2003-10-01

    Following the work of Aubrey Anderson in the Gulf of Mexico, we have attempted to quantify the global distribution of free gas in shallow marine sediments, and have identified and indexed over one hundred documented cases in the scientific and engineering literature. Our survey confirms previous assumptions, primarily that gas bubbles are ubiquitous in the organic-rich muds of coastal waters and shallow adjacent seas. Acoustic turbidity as recorded during seismo-acoustic surveys is the most frequently cited evidence used to infer the presence of seafloor gas. Biogenic methane predominates within these shallow subbottom deposits. The survey also reveals significant imbalances in the geographic distribution of studies, which might be addressed in the future by accessing proprietary data or local studies with limited distribution. Because of their global prevalence, growing interest in gassy marine sediments is understandable as their presence has profound scientific, engineering and environmental implications.

  19. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams.

    Science.gov (United States)

    Colas, Fanny; Archaimbault, Virginie; Devin, Simon

    2011-03-01

    Due to their nutrient recycling function and their importance in food-webs, macroinvertebrates are essential for the functioning of aquatic ecosystems. These organisms also constitute an important component of biodiversity. Sediment evaluation and monitoring is an essential aspect of ecosystem monitoring since sediments represent an important component of aquatic habitats and are also a potential source of contamination. In this study, we focused on macroinvertebrate communities within run-of-river dams, that are prime areas for sediment and pollutant accumulation. Little is known about littoral macroinvertebrate communities within run-of-river dam or their response to sediment levels and pollution. We therefore aimed to evaluate the following aspects: the functional and structural composition of macroinvertebrate communities in run-of-river dams; the impact of pollutant accumulation on such communities, and the most efficient scales and tools needed for the biomonitoring of contaminated sediments in such environments. Two run-of-river dams located in the French alpine area were selected and three spatial scales were examined: transversal (banks and channel), transversal x longitudinal (banks/channel x tail/middle/dam) and patch scale (erosion, sedimentation and vegetation habitats). At the patch scale, we noted that the heterogeneity of littoral habitats provided many available niches that allow for the development of diversified macroinvertebrate communities. This implies highly variable responses to contamination. Once combined on a global 'banks' spatial scale, littoral habitats can highlight the effects of toxic disturbances. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment

    Energy Technology Data Exchange (ETDEWEB)

    Fang Di, E-mail: dfang@ouc.edu.cn [Department of Environmental Engineering, Ocean University of China, Qingdao 266100 (China); State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Zhang Ruichang [Department of Environmental Engineering, Ocean University of China, Qingdao 266100 (China); Zhou Lixiang [Department of Environmental Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Li Jie [Department of Environmental Engineering, Ocean University of China, Qingdao 266100 (China)

    2011-08-15

    Highlights: {yields} Bioleaching-bioprecipitation can deeply cleanup sediment-borne metal contaminants. {yields} Bioleaching results in a sufficient solubilisation of sediment-borne metals. {yields} Bioprecipitation removes most of solubilised metals from sediment leachate at pH 3.7. {yields} Bioremoval of soluble Zn, Cu and Cr is due to the formation of ZnS, Cu{sub 2}S and CrOOH. {yields} Alkalization of bioleached sediment by Ca(OH){sub 2} excludes the risk of re-acidification. - Abstract: A linked microbial process comprising bioleaching with sulfate-oxidizing bacteria and bioprecipitation with sulfate-reducing bacteria operating sequentially was investigated to deeply remove contaminating metals from dredged sediment. The results showed that sediment bioleaching resulted in a sharp decrease in sediment pH from an initial pH {approx}7.6 to pH {approx}2.5 within 10-20 days, approximately 65% of the main heavy metals present (Zn + Cu + Cr) were solubilized, and most of the unsolubilized metals existed in residual form of sediment. The acidic leachate that resulted from sediment bioleaching was efficiently stripped of metal sulfates using a bioprecipitation reactor when challenged with influent as low as pH {approx}3.7. More than 99% of Zn{sup 2+}, 99% of Cu{sup 2+} and 90% of Cr{sup 3+} were removed from the leachate, respectively, due to the formation of ZnS, Cu{sub 2}S and CrOOH precipitates, as confirmed by SEM-EDS and XRD detection. It was also found that alkalization of bioleached sediment using Ca(OH){sub 2} excluded the risk of sediment re-acidification. The ability of the combined process developed in this study to deeply remove heavy metals in insoluble sulfides or hydroxides forms makes it particularly attractive for the treatment of different types of metal contaminants.

  1. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment

    International Nuclear Information System (INIS)

    Fang Di; Zhang Ruichang; Zhou Lixiang; Li Jie

    2011-01-01

    Highlights: → Bioleaching-bioprecipitation can deeply cleanup sediment-borne metal contaminants. → Bioleaching results in a sufficient solubilisation of sediment-borne metals. → Bioprecipitation removes most of solubilised metals from sediment leachate at pH 3.7. → Bioremoval of soluble Zn, Cu and Cr is due to the formation of ZnS, Cu 2 S and CrOOH. → Alkalization of bioleached sediment by Ca(OH) 2 excludes the risk of re-acidification. - Abstract: A linked microbial process comprising bioleaching with sulfate-oxidizing bacteria and bioprecipitation with sulfate-reducing bacteria operating sequentially was investigated to deeply remove contaminating metals from dredged sediment. The results showed that sediment bioleaching resulted in a sharp decrease in sediment pH from an initial pH ∼7.6 to pH ∼2.5 within 10-20 days, approximately 65% of the main heavy metals present (Zn + Cu + Cr) were solubilized, and most of the unsolubilized metals existed in residual form of sediment. The acidic leachate that resulted from sediment bioleaching was efficiently stripped of metal sulfates using a bioprecipitation reactor when challenged with influent as low as pH ∼3.7. More than 99% of Zn 2+ , 99% of Cu 2+ and 90% of Cr 3+ were removed from the leachate, respectively, due to the formation of ZnS, Cu 2 S and CrOOH precipitates, as confirmed by SEM-EDS and XRD detection. It was also found that alkalization of bioleached sediment using Ca(OH) 2 excluded the risk of sediment re-acidification. The ability of the combined process developed in this study to deeply remove heavy metals in insoluble sulfides or hydroxides forms makes it particularly attractive for the treatment of different types of metal contaminants.

  2. The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet, South Australia.

    Science.gov (United States)

    Fernandes, Milena; Shareef, Ali; Kookana, Rai; Gaylard, Sam; Hoare, Sonja; Kildea, Tim

    2011-04-01

    In this work, we investigated the transport and burial of triclosan and its methylated derivative, in surface sediments near the mouth of Barker Inlet in South Australia. The most likely source of this commonly used bactericide to the area is a wastewater outfall discharging at the confluence of the inlet with marine waters. Triclosan was detected in all samples, at concentrations (5-27 μg kg(-1)) comparable to values found in other surface sediments under the influence of marine wastewater outfalls. Its dispersal was closely associated with fine and organic-rich fractions of the sediments. Methyl-triclosan was detected in approximately half of the samples at concentrations compound was linked to both wastewater discharges and biological methylation of the parent compound. Wastewater-borne methyl-triclosan had a smaller spatial footprint than triclosan and was mostly deposited in close proximity to the outfall. In situ methylation of triclosan likely occurs at deeper depositional sites, whereas the absence of methyl-triclosan from shallower sediments was potentially explained by photodegradation of the parent compound. Based on partition equilibrium, a concentration of triclosan in the order of 1 μg L(-1) was estimated in sediment porewaters, a value lower than the threshold reported for harmful effects to occur in the couple of species of marine phytoplankton investigated to date. Methyl-triclosan presents a greater potential for bioaccumulation than triclosan, but the implications of its occurrence to aquatic ecosystem health are difficult to predict given the lack of ecotoxicological data in the current literature.

  3. Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    Chiavola, Agostina; Baciocchi, Renato; Gavasci, Renato

    2010-01-01

    The technical feasibility of a sequential batch process for the biological treatment of sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was evaluated through an experimental study. A bench-scale Sediment Slurry Sequencing Batch Reactor (SS-SBR) was fed with river sediments contaminated by a PAH mixture made by fluorene, anthracene, pyrene and crysene. The process performance was evaluated under different operating conditions, obtained by modifying the influent organic load, the feed composition and the hydraulic residence time. Measurements of the Oxygen Uptake Rates (OURs) provided useful insights on the biological kinetics occurring in the SS-SBR, suggesting the minimum applied cycle time-length of 7 days could be eventually halved, as also confirmed by the trend observed in the volatile solid and total organic carbon data. The removal efficiencies gradually improved during the SS-SBR operation, achieving at the end of the study rather constant removal rates above 80% for both 3-rings PAHs (fluorene and anthracene) and 4-ring PAHs (pyrene and crysene) for an inlet total PAH concentration of 70 mg/kg as dry weight (dw).

  4. Incorporating bioavailability into management limits for copper in sediments contaminated by antifouling paint used in aquaculture.

    Science.gov (United States)

    Simpson, Stuart L; Spadaro, David A; O'Brien, Dom

    2013-11-01

    Although now well embedded within many risk-based sediment quality guideline (SQG) frameworks, contaminant bioavailability is still often overlooked in assessment and management of contaminated sediments. To optimise management limits for metal contaminated sediments, we assess the appropriateness of a range methods for modifying SQGs based on bioavailability considerations. The impairment of reproduction of the amphipod, Melita plumulosa, and harpacticoid copepod, Nitocra spinipes, was assessed for sediments contaminated with copper from antifouling paint, located below aquaculture cages. The measurement of dilute acid-extractable copper (AE-Cu) was found to provide the most useful means for monitoring the risks posed by sediment copper and setting management limits. Acid-volatile sulfide was found to be ineffective as a SQG-modifying factor as these organisms live mostly at the more oxidised sediment water interface. SQGs normalised to %-silt/organic carbon were effective, but the benefits gained were too small to justify this approach. The effectiveness of SQGs based on AE-Cu was attributed to a small portion of the total copper being present in potentially bioavailable forms (typicallycopper was likely present as paint flakes in the form of copper (I) oxide, the active ingredient of the antifoulant formulation. While the concentrations of paint-associated copper are very high in some sediments, as the transformation of this form of copper to AE-Cu appears slow, monitoring and management limits should assess the more bioavailable AE-Cu forms, and further efforts be made to limit the release of paint particles into the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment (Kattegat, Denmark)

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; BAK, F.

    1991-01-01

    Reductive and oxidative pathways of the sulfur cycle were studied in a marine sediment by parallel radiotracer experiments with (SO4(2-))-S-35, (H2S)-S-35, and (S2O3(2-))-S-35 injected into undisturbed sediment cores. The distributions of viable populations of sulfate- and thiosulfate-reducing ba...

  6. Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea.

    Science.gov (United States)

    Louati, A; Elleuch, B; Kallel, M; Saliot, A; Dagaut, J; Oudot, J

    2001-06-01

    The coastal area off the city of Sfax (730,000 inhabitants), well-known for fisheries and industrial activities, receives high inputs of organic matter mostly anthropogenic. Eighteen stations were selected in the vicinity of the direct discharge of industrial sewage effluents in the sea in order to study the spatial distribution of the organic contamination. Surface sediments sampled in the shallow shelf were analysed for hydrocarbons by Fourier transform infrared spectroscopy, gas chromatography and gas chromatography/mass spectrometry. Total hydrocarbon distributions revealed high contamination as compared to other coastal Mediterranean sites, with an average concentration of 1865 ppm/dry weight sediment. Gas chromatographic distribution patterns, values of unresolved mixture/n-alkane ratio and distributions of steranes and hopanes confirmed a petroleum contamination of the Arabian light crude oil type. Biogenic compounds were also identified with a series of short-chain carbon-numbered n-alkenes in the carbon range 16-24.

  7. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2013-01-01

    Full Text Available The stable isotopes of nitrogen offer a unique perspective on changes in the nitrogen cycle, past and present. However, the presence of multiple forms of nitrogen in marine sediments can complicate the interpretation of bulk nitrogen isotope measurements. Although the large-scale global patterns of seafloor δ15N have been shown to match process-based expectations, small-scale heterogeneity on the seafloor, or alterations of isotopic signals during translation into the subseafloor record, could obscure the primary signals. Here, a public database of nitrogen isotope measurements is described, including both seafloor and subseafloor sediment samples ranging in age from modern to the Pliocene, and used to assess these uncertainties. In general, good agreement is observed between neighbouring seafloor sites within a 100 km radius, with 85% showing differences of < 1‰. There is also a good correlation between the δ15N of the shallowest (< 5 ka subseafloor sediments and neighbouring seafloor sites within a 100 km radius (R2 = 0.83, which suggests a reliable translation of sediments into the buried sediment record. Meanwhile, gradual δ15N decreases over multiple glacial–interglacial cycles appear to reflect post-depositional alteration in records from the deep sea (below 2000 m. We suggest a simple conceptual model to explain these 100-kyr-timescale changes in well-oxygenated, slowly accumulating sediments, which calls on differential loss rates for pools of organic N with different δ15N. We conclude that bulk sedimentary nitrogen isotope records are reliable monitors of past changes in the marine nitrogen cycle at most locations, and could be further improved with a better understanding of systematic post-depositional alteration. Furthermore, geochemical or environmental criteria should be developed in order to effectively identify problematic locations and to account for

  8. Assessment of sediment quality collected from the Tunku Abdul Rahman National Park, Sabah

    International Nuclear Information System (INIS)

    Mohd Suhaimi Elias; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Siong, Wee Boon; Nazaratul Ashifa Abdullah Salim

    2012-01-01

    Assessment of source and sediment quality was carried out on marine sediments collected from the Tuanku Abdul Rahman National Park. Enrichment factors (EF), pollution load index (PLI) and geo-accumulation index (Igeo) were used to identify the sources of pollution, degree of contamination and sediment quality, respectively. Elemental analyses of marine sediment samples were performed by using the Instrumental Neutron Activation Analysis (INAA). Results from the Tunku Abdul Rahman National Park of Sabah indicated that most of the elements are considered to be from lithological or natural origin with EF values of less than 2 except for As (10 stations), Cr (3 stations), Lu (5 stations), Mg (2 stations), Sb (6 stations) and U (3 stations). For the sediment quality, most of the study area can be categorised as unpolluted for most of the elements (Igeo value < 2) except for As, Cr, Lu, Mg, Sb and U. A few study areas were slightly low contaminated with As, Cr, Lu, Mg, Sb and U. The contamination of As, Cr, Lu, Mg, Sb and U in the study area can be categorised as moderate with Igeo values ranged from 1 to 2. Meanwhile, the results of PLI value for sediment were ranged from 0.93 to 1.47 (PLI < 50) indicating there are not required to perform drastic rectification measures for the screening of the elements in the Tunku Abdul Rahman Park. Overall, assessment of the sediment quality at the Tunku Abdul Rahman National Park showed a few elements such as As, Cr, Lu, Mg, Sb and U were slightly enriched while most of the elements were similar to background values. (author)

  9. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    in the ocean. The fingerprint of δ51V between oxic sediments and hydrothermal flux are significantly different and should be easily discernible in the geologic record. Consequently, our results show that the removal of V from hydrothermal sediments has an important influence on the marine V cycle, which needs to be considered for future modern and paleoclimatic studies.

  10. Spatial and temporal distribution of 210Po in sediments from Thane Creek Mumbai, India

    International Nuclear Information System (INIS)

    Pandit, G.G.; Bhangare, R.C.; Tiwari, M.; Ajmal, P.Y.; Sahu, S.K.; Puranik, V.D.

    2013-01-01

    The study of sediments in coastal areas has great importance for the understanding of the interaction between human activities and marine systems. The Polonium-210 activity has been commonly used as environmental tracer in many environmental studies especially in determination of the age of sediments in the aquatic systems. The determination of age of the sediments provides the chronological profile of contamination of the marine environment over the period of time. The temporal and spatial distribution of 210 Po in Thane creek sediments was observed in this study. The allochthonous activity of 210 Po in surface sediments across different locations was observed to be the highest amongst different layers which ranged between 22.5-56.3 Bq/kg. The total 210 Po activity in different layers of the sediments ranged between 15.3 to 88.9 Bq/kg. The two modeling approaches CRS and CIC were applied to determine age of the sediment at four locations in the creek. (author)

  11. ARCTOX: a pan-Arctic sampling network to track mercury contamination across Arctic marine food webs

    DEFF Research Database (Denmark)

    Fort, Jerome; Helgason, Halfdan; Amelineau, Francoise

    and is still a source of major environmental concerns. In that context, providing a large-scale and comprehensive understanding of the Arctic marine food-web contamination is essential to better apprehend impacts of anthropogenic activities and climate change on the exposure of Arctic species and humans to Hg....... In 2015, an international sampling network (ARCTOX) has been established, allowing the collection seabird samples all around the Arctic. Seabirds are indeed good indicators of Hg contamination of marine food webs at large spatial scale. Gathering researchers from 10 countries, ARCTOX allowed......Arctic marine ecosystems are threatened by new risks of Hg contamination under the combined effects of climate change and human activities. Rapid change of the cryosphere might for instance release large amounts of Hg trapped in sea-ice, permafrost and terrestrial glaciers over the last decades...

  12. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments

    Science.gov (United States)

    Higgins, J. A.; Blättler, C. L.; Lundstrom, E. A.; Santiago-Ramos, D. P.; Akhtar, A. A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S. T.; Swart, P. K.

    2018-01-01

    Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth's chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. 'aragonite seas' and

  13. Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia).

    Science.gov (United States)

    Birch, Gavin; Nath, Bibhash; Chaudhuri, Punarbasu

    2015-04-01

    Industrial activities and urbanization have had a major consequence for estuarine ecosystem health and water quality globally. Likewise, Sydney estuary has been significantly impacted by widespread, poor industrial practices in the past, and remediation of legacy contaminants have been undertaken in limited parts of this waterway. The objective of the present investigation was to determine the effectiveness of remediation of a former Pb-contaminated industrial site in Homebush Bay on Sydney estuary (Australia) through sampling of inter-tidal sediments and mangrove (Avicennia marina) tissue (fine nutritive roots, pneumatophores, and leaves). Results indicate that since remediation 6 years previously, Pb and other metals (Cu, Ni and Zn) in surficial sediment have increased to concentrations that approach pre-remediation levels and that they were considerably higher than pre-settlement levels (3-30 times), as well as at the reference site. Most metals were compartmentalized in fine nutritive roots with bio-concentration factors greater than unity, while tissues of pneumatophores and leaves contained low metal concentrations. Lead concentrations in fine nutritive root, pneumatophore, and leaf tissue of mangroves from the remediated site were similar to trees in un-remediated sites of the estuary and were substantially higher than plants at the reference site. The situation for Zn in fine nutritive root tissue was similar. The source of the metals was either surface/subsurface water from the catchment or more likely remobilized contaminated sediment from un-remediated parts of Homebush Bay. Results of this study demonstrate the problems facing management in attempting to reduce contamination in small parts of a large impacted area to concentrations below local base level.

  14. Study of the contamination of components of the marine environment by soluble and insoluble forms of radionuclides

    International Nuclear Information System (INIS)

    Fraizier, A.; Ancellin, J.C.

    1975-01-01

    The experimental contamination of various physical components and organisms of the marine environment was carried out using radionuclides such as 137 Cs, 51 Cr, 60 Co, 106 Ru and 59 Fe. The relationships between the physico-chemical states of the radionuclides, the variations in the environmental conditions, and the properties of the experimental samples were clarified. Marine organisms were more readily contaminated by the insoluble forms of 106 Ru and 59 Fe than by the soluble forms. It appears that the physiology of the marine organisms can have a bearing on the degree and evolution of the contamination whatever the physico-chemical state of the radionuclides may be, but in certain circumstances the contamination level is independent of the variations in environmental conditions and the related variations in the physiology of the organism. (author)

  15. Quantifying In Situ Metal and Organic Contaminant Mobility in Marine Sediments

    Science.gov (United States)

    2009-01-01

    and west of Ford Island, within the Pearl Harbor Naval Base. Sediments are fine grain silts and clays of basaltic origins and contain various... fiber filters for organics), and check valves (Figure 8) connected to synchronized parallel rotary valves connected to the collection chamber. Samples

  16. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints.

    Science.gov (United States)

    Pusceddu, F H; Choueri, R B; Pereira, C D S; Cortez, F S; Santos, D R A; Moreno, B B; Santos, A R; Rogero, J R; Cesar, A

    2018-01-01

    The guidelines for the Environmental Risk Assessment (ERA) of pharmaceuticals and personal care products (PPCP) recommend the use of standard ecotoxicity assays and the assessment of endpoints at the individual level to evaluate potential effects of PPCP on biota. However, effects at the sub-individual level can also affect the ecological fitness of marine organisms chronically exposed to PPCP. The aim of the current study was to evaluate the environmental risk of two PPCP in marine sediments: triclosan (TCS) and ibuprofen (IBU), using sub-individual and developmental endpoints. The environmental levels of TCS and IBU were quantified in marine sediments from the vicinities of the Santos submarine sewage outfall (Santos Bay, São Paulo, Brazil) at 15.14 and 49.0 ng g -1 , respectively. A battery (n = 3) of chronic bioassays (embryo-larval development) with a sea urchin (Lytechinus variegatus) and a bivalve (Perna perna) were performed using two exposure conditions: sediment-water interface and elutriates. Moreover, physiological stress through the Neutral Red Retention Time Assay (NRRT) was assessed in the estuarine bivalve Mytella charruana exposed to TCS and IBU spiked sediments. These compounds affected the development of L. variegatus and P. perna (75 ng g -1 for TCS and 15 ng g -1 for IBU), and caused a significant decrease in M. charruana lysosomal membrane stability at environmentally relevant concentrations (0.08 ng g -1 for TCS and 0.15 ng g -1 for IBU). Chemical and ecotoxicological data were integrated and the risk quotient estimated for TCS and IBU were higher than 1.0, indicating a high environmental risk of these compounds in sediments. These are the first data of sediment risk assessment of pharmaceuticals and personal care products of Latin America. In addition, the results suggest that the ERA based only on individual-level and standard toxicity tests may overlook other biological effects that can affect the health of marine organisms

  17. Chlorinated pesticide residues in sediments from the Arabian Sea along the Central West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    Environmental contamination by persistent chlorinated pesticides has evoked major concern due to the presence of their residues in the environment. The quantitative distribution of chlorinated pesticides residues in the marine sediments from...

  18. Plutonium in an arctic marine environment 29 years after the Thule accident

    International Nuclear Information System (INIS)

    Dahlgaard, H.; Nielsen, S.P.; Eriksson, M.; Ilus, E.; McMahon, C.A.

    1999-01-01

    The nuclear weapons contaminated benthic marine environment in the 180-230 m deep Bylot Sound of Thule Airbase, NW Greenland, was revisited August 1997. Data on water and on brown algae indicates that plutonium from the contaminated sediments is not transported into the surface waters in significant quantities. Sediment core data only indicate minor translocation of plutonium from the accident to the area outside Bylot sound. The present data support an ealier quantification of the sedimentation rate as 3-4 mm per year, i.e. 8-12 cm during the 29 years since the accident. Biological activity has mixed accident plutonium much deeper, down to 20-30 cm, and the 8-12 cm new sediment have been efficiently mixed into the contaminated layer. In addition to the classical bioturbation efficiently mixing the upper ≅ 5 cm, the plutonium data indicates the existence of a deeper bioturbation gradualy decreasing with depth. Transfer of plutonium to benthic biota is low leading to lower concentrations in biota than in sediments. (au)

  19. Marine pollution. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    1999-07-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of Oceans. Over 400 international experts from 61 Member States and 8 international organizations delivered 114 oral presentations in plenary and parallel sessions and made 215 poster presentations. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for the studies of transport and circulation processes in the world's oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. Information on global and regional marine pollution studies programmes was also given and participants had the chance to interacts with leading experts in the field and ro discuss future trends in marine pollution studies. This TECDOC contains some of the papers submitted on issues falling within the thematic scope od the symposium which were presented in oral and poster presentations

  20. Marine pollution. Proceedings of an international symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of Oceans. Over 400 international experts from 61 Member States and 8 international organizations delivered 114 oral presentations in plenary and parallel sessions and made 215 poster presentations. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for the studies of transport and circulation processes in the world`s oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. Information on global and regional marine pollution studies programmes was also given and participants had the chance to interacts with leading experts in the field and ro discuss future trends in marine pollution studies. This TECDOC contains some of the papers submitted on issues falling within the thematic scope od the symposium which were presented in oral and poster presentations Refs, figs, tabs