WorldWideScience

Sample records for containment atmosphere conditions-an

  1. OCEANET-Atmosphere - The Autonomous Measurement Container

    Science.gov (United States)

    Kalisch, John; Macke, Andreas; Althausen, Dietrich; Bumke, Karl; Engelmann, Ronny; Kanitz, Thomas; Kleta, Henry; Zoll, Yann

    2010-05-01

    OCEANET-Atmosphere is a joint venture project of IFM-GEOMAR and IFT to study the mass and energy transfer of ocean and atmosphere by introducing a special measurement container, which is suitable to perform a large spectrum of atmospheric underway measurements on offshore research vessels and cargo ships. The container combines state-of-the-art measurement devices and connect them to its own computer network to realize a comprehensive system for remote sensing. A Raman-lidar measures marine and anthropogenic optical aerosol properities by analyzing the elastic signal and the vibration-rotation Raman signal of nitrogen. Our passive microwave radiometer determines the integrated water vapor and the liquid water path of the atmospheric column, as well as vertical temperature and humidity profiles. Carbon dioxide is measured high-frequent. Turbulence measurements are performed by means of a sonic anemometer. In combination with fast humidity sensors the fluxes of momentum, latent and sensible heat are derived. An automatic full sky imager monitors the state of the cloudy sky. A selection of standard meteorological devices measure air temperature, humidity, wind velocity, wind speed and downward shortwave and longwave radiative fluxes. The GPS sensors register navigational data. For an almost real time monitoring of a data subset our telemetry system is sending short hourly data reports via satellite. OCEANET-Atmosphere is set up to improve the quantity and the quality of atmospheric data sets on intercontinental oceanic transects, where the previous data base is still weak. A first research mission has been performed onboard RV Polarstern at ANT XXVI/1.

  2. Purging of working atmospheres inside freight containers.

    Science.gov (United States)

    Braconnier, Robert; Keller, François-Xavier

    2015-06-01

    This article focuses on prevention of possible exposure to chemical agents, when opening, entering, and stripping freight containers. The container purging process is investigated using tracer gas measurements and numerical airflow simulations. Three different container ventilation conditions are studied, namely natural, mixed mode, and forced ventilation. The tests conducted allow purging time variations to be quantified in relation to various factors such as container size, degree of filling, or type of load. Natural ventilation performance characteristics prove to be highly variable, depending on environmental conditions. Use of a mechanically supplied or extracted airflow under mixed mode and forced ventilation conditions enables purging to be significantly accelerated. Under mixed mode ventilation, extracting air from the end of the container furthest from the door ensures quicker purging than supplying fresh air to this area. Under forced ventilation, purging rate is proportional to the applied ventilation flow. Moreover, purging rate depends mainly on the location at which air is introduced: the most favourable position being above the container loading level. Many of the results obtained during this study can be generalized to other cases of purging air in a confined space by general ventilation, e.g. the significance of air inlet positioning or the advantage of generating high air velocities to maximize stirring within the volume. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases

    Science.gov (United States)

    Schindler, T. L.; Kasting, J. F.

    2000-01-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  4. Containment atmosphere response (CAR) program. Second status report. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Landoni, J.A.

    1980-03-01

    This report contains a summary of the work performed under the Containment Atmosphere Response (CAR) Program of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Task since the publication of the previous status report (February 1978). The work concentrated on development of models describing containment phenomena during core heatup in support of probabilistic risk assessment studies. Models were completed for fission product iodine sorption on coated surfaces, diffusivity and retentivity of untreated concrete, iodine interaction with condensing steam on the containment atmosphere boundaries, and the cleanup filter system. These models were incorporated into a new computer program called CARCAS, a substantial extension of the CNTB computer program, and applied to Accident Initiation and Progression Analysis for Phase II core heatup sequences. Development was begun on models describing the postulated behavior of particulate fission products or aerosols within and leaking out of the containment.

  5. Understanding the formation and composition of hazes in planetary atmospheres that contain carbon monoxide

    Science.gov (United States)

    Hörst, S. M.; Yoon, Y. H.; Hicks, R. K.; Tolbert, M. A.

    2012-09-01

    Measurements from the Cassini Plasma Spectrometer (CAPS) have revealed the presence of molecules in Titan's ionosphere with masses in excess of hundreds of amu. Negative ions with mass/charge (m/z) up to 10,000 amu/q [1] and positive ions with m/z up to 400 amu/q [2] have been detected. CAPS has also observed O+ flowing into Titan's upper atmosphere [3], which appears to originate from Enceladus and is likely the source of oxygen bearing molecules in Titan's atmosphere [4]. The observed O+ is deposited in the region now known to contain large organic molecules. A recent Titan atmosphere simulation experiment has shown that incorporation of oxygen into Titan aerosol analogues results in the formation of all five nucleotide bases and the two smallest amino acids, glycine and alanine [5]. Similar chemical processes may have occurred in the atmosphere of the early Earth, or in the atmospheres of extrasolar planets; atmospheric aerosols may be an important source of the building blocks of life. Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. The presence of atmospheric aerosols has been invoked to explain the relatively featureless spectrum of HD 189773b, including the lack of predicted atmospheric Na and K spectral lines [9]. The majority of the O+ precipitating into Titan's atmosphere forms CO (O(3P)+CH3 -> CO+H2+H) [4]. CO has also been detected in the atmospheres of a number of exoplanets including HD 189733b, HD 209458b, and WASP-12b [6-8]. It is therefore important to understand the role CO plays in the formation and composition of hazes in planetary atmospheres. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [10]) we have obtained in situ composition measurements of aerosol particles (so-called "tholins") produced in N2/CH4/CO gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) or a

  6. Mechanism of Na2SO4-induced corrosion of molybdenum containing nickel-base superalloys at high temperatures. I - Corrosion in atmospheres containing O2 only. II - Corrosion in O2 + SO2 atmospheres

    Science.gov (United States)

    Misra, A. K.

    1986-01-01

    Kinetics of the Na2SO4-induced corrosion of the molybdenum-containing nickel-base superalloys, B-1900 and Udimet 700, coated with Na2MoO4, has been studied in oxygen atmosphere at temperatures ranging from 750 to 950 C. Because the gas turbine atmosphere always contains some SO2 and SO3, the effect of atmospheric SO2 content on corrosion of Udimet-700 has also been studied. It was found that in the O2 atmosphere the melt in the catastrophic corrosion phase consists of Na2MoO4 plus MoO3, with the onset of the catastrophic corrosion coinciding with the appearance of MoO3. In the presence of low levels of atmospheric SO2 (below 0.24 percent), the melt during catastrophic corrosion contains, in addition to Na2MoO4 and MoO3, some quantities of Na2SO4. At the levels of SO2 above 1 percent, no catastrophic corrosion was observed. At these SO2 levels, internal sulfidation appears to be the primary mode of degradation.

  7. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    Science.gov (United States)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  8. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Schultz-Jensen, Nadja; Kusano, Yukihiro

    2011-01-01

    . The ambient atmosphere was air at atmospheric pressure. A plasma is generated inside the bag forming ozone from the oxygen. The maximum ozone concentration in the bag was found to be 140 ppm. A log 6 reduction of L. innocua is obtained after 15 min of exposure time. The temperature of the slides after...

  9. Semi-contained Interactions of Atmospheric Neutrinos in the MACRO Detector

    CERN Document Server

    Nolty, R

    2002-01-01

    Atmospheric neutrinos arise from the decay of particles (primarily pions, muons and kaons) produced in the collision of high energy cosmic ray particles with the atmosphere. The great distances traveled by atmospheric neutrinos between their production and detection make them useful for studying neutrino oscillations, the predicted phenomenon of massive neutrinos changing flavor in flight. This thesis reports a study of atmospheric neutrinos interacting in the MACRO detector. The results, though somewhat clouded by large theoretical uncertainties, clearly rule out the no-oscillations hypothesis, and are consistent with oscillations with the parameters preferred by other MACRO neutrino analyses, as well as those of other experiments (most notably Super-Kamiokande). Combining this analysis with another MACRO neutrino analysis, some of the theoretical errors cancel, further constraining the region of allowed oscillation parameters.

  10. Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2007-09-01

    Full Text Available An airfreight container with automated instruments for measurement of atmospheric gases and trace compounds was operated on a monthly basis onboard a Boeing 767-300 ER of LTU International Airways during long-distance flights from 1997 to 2002 (CARIBIC, Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container, atmospheric.com">http://www.caribic-atmospheric.com. Subsequently a more advanced system has been developed, using a larger capacity container with additional equipment and an improved inlet system. CARIBIC phase #2 was implemented on a new long-range aircraft type Airbus A340-600 of the Lufthansa German Airlines (Star Alliance in December 2004, creating a powerful flying observatory. The instrument package comprises detectors for the measurement of O3, total and gaseous H2O, NO and NOy, CO, CO2, O2, Hg, and number concentrations of sub-micrometer particles (>4 nm, >12 nm, and >18 nm diameter. Furthermore, an optical particle counter (OPC and a proton transfer mass spectrometer (PTR-MS are incorporated. Aerosol samples are collected for analysis of elemental composition and particle morphology after flight. Air samples are taken in glass containers for laboratory analyses of hydrocarbons, halocarbons and greenhouse gases (including isotopic composition of CO2 in several laboratories. Absorption tubes collect oxygenated volatile organic compounds. Three differential optical absorption spectrometers (DOAS with their telescopes mounted in the inlet system measure atmospheric trace gases such as BrO, HONO, and NO2. A video camera mounted in the inlet provides information about clouds along the flight track. The flying observatory, its equipment and examples of measurement results are reported.

  11. Resource loading system and method for use in atmosphere-containment scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Jr., Daniel R.; Reyes, Roberto; Weidmeyer, Stanley

    2017-09-12

    The invention provides a system for preventing fluid exchange between the interior and exterior of containment enclosures such as process-, hazard-, and research-enclosure systems generally, gloveboxes, containment systems, isolation systems, confinement systems, cleanrooms, negative air systems, and positive air system areas while simultaneously providing material transfer into and out of the enclosures. The invention also provides a method for transporting material into or out of a containment structure.

  12. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-04-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to `reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in `water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  13. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  14. MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics.

    Science.gov (United States)

    Jupp, Tim E; Cox, Peter M

    2010-05-12

    A two-box model for equator-to-pole planetary heat transport is extended to include simple atmospheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are calculated analytically in terms of the dimensionless planetary parameters eta (atmospheric thickness), omega (rotation rate) and xi (advective capability). Solutions corresponding to maximum entropy production (MEP) are compared with solutions previously obtained from dynamically unconstrained two-box models. As long as the advective capability xi is sufficiently large, dynamically constrained MEP solutions are identical to dynamically unconstrained MEP solutions. Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate of entropy production in an MEP state is shown to be independent of rotation rate if the advective capability xi is sufficiently large (as for the four examples in the solar system), or if the rotation rate omega is sufficiently small. The model indicates, however, that the dynamical constraint does influence the MEP state when xi is small, which might be the case for some extrasolar planets. Finally, results from the model developed here are compared with previous numerical simulations in which the effect of varying surface drag coefficient on entropy production was calculated.

  15. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    Science.gov (United States)

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Behaviour of metallic materials containing aluminium in a sulfurizing and slightly oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Broc, M.; Fauvet, P.; Olivier, P.; Sannier, J.

    1987-03-01

    A 500 h corrosion test was carried out at 800/sup 0/C in a coal-gasification-type complex atmosphere. Two alloys with 4%-5% mass Al (Manaurite XA and Gilphy 37A) and two alloys low in aluminium (Alloy 800 H and Nicral DB) were considered. The influence of a pre-oxidation treatment on the 4% - 5% mass Al alloys was studied. In the absence of pre-oxidation the alloy Manaurite XA undergoes internal corrosion equivalent to that of the alloys low in aluminium. The alloy Gilphy 37A displays a superior corrosion resistance, which is attributed to more homogeneous distribution of the aluminium and hence more favourable conditions for the growth of a continuous layer of Al/sub 2/O/sub 3/. Pre-oxidation treatment can lead to antagonistic effects: protection of the material or an increase in its rate of corrosion. The treatment must, in fact, give rise to a protective superficial layer of moderate depth which will not deprive the matrix of too much of its aluminium; this latter condition is indispensable to the reconstitution of the corrosion resistance when faults appear in the superficial layer of Al/sub 2/O/sub 3/.

  17. How much information do extinction and backscattering measurements contain about the chemical composition of atmospheric aerosol?

    Science.gov (United States)

    Kahnert, Michael; Andersson, Emma

    2017-03-01

    We theoretically and numerically investigate the problem of assimilating multiwavelength lidar observations of extinction and backscattering coefficients of aerosols into a chemical transport model. More specifically, we consider the inverse problem of determining the chemical composition of aerosols from these observations. The main questions are how much information the observations contain to determine the particles' chemical composition, and how one can optimize a chemical data assimilation system to make maximum use of the available information. We first quantify the information content of the measurements by computing the singular values of the scaled observation operator. From the singular values we can compute the number of signal degrees of freedom, Ns, and the reduction in Shannon entropy, H. As expected, the information content as expressed by either Ns or H grows as one increases the number of observational parameters and/or wavelengths. However, the information content is strongly sensitive to the observation error. The larger the observation error variance, the lower the growth rate of Ns or H with increasing number of observations. The right singular vectors of the scaled observation operator can be employed to transform the model variables into a new basis in which the components of the state vector can be partitioned into signal-related and noise-related components. We incorporate these results in a chemical data assimilation algorithm by introducing weak constraints that restrict the assimilation algorithm to acting on the signal-related model variables only. This ensures that the information contained in the measurements is fully exploited, but not overused. Numerical tests show that the constrained data assimilation algorithm provides a solution to the inverse problem that is considerably less noisy than the corresponding unconstrained algorithm. This suggests that the restriction of the algorithm to the signal-related model variables suppresses

  18. Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow

    Science.gov (United States)

    Furutani, Hiroshi; Jung, Jinyoung; Miura, Kazuhiko; Takami, Akinori; Kato, Shungo; Kajii, Yoshizumi; Uematsu, Mitsuo

    2011-09-01

    Using a single-particle mass spectrometer, the size and chemical composition of individual Fe-containing atmospheric aerosols (Fe aerosols) with diameter from 100 to 1800 nm were characterized during Asian outflow season (spring of 2008) in Okinawa Island, Japan and their sources were determined. Fe aerosols were classified into five unique particle types which were mixed with specific compound(s) and related to their sources (crustal, fly ash/K-biomass burning, elemental carbon, metals, and vanadium). Particle number-based contribution of the crustal particle type, which has been thought to be the main source of aerosol Fe, was quite small (2 ˜ 10%) in all size ranges, while anthropogenic Fe aerosols were the dominant contributor in this study. Fly ash/K-biomass burning type was the most abundant particle types, which contributed ˜50%. Metals and elemental carbon types contributed ˜20% and ˜10%, respectively. Contribution of vanadium type was variable (5 ˜ 50%), which is attributed to ship emission. The frequent appearance of lithium ion peak in the fly ash/K-biomass burning type strongly suggests that large fraction of the type is coal combustion origin, reflecting high coal usage in China. These results show that anthropogenic sources contributes significant portion of Fe aerosols in Asian outflow. Excluding the vanadium type, relative contribution of the remaining four particle types was constant over the course of study, which remained even when the total concentration of Fe aerosols changed and fraction of the Fe aerosols among atmospheric aerosols decreased significantly by the switch of air mass type into marine type. We concluded that the observed constant relative abundance reflected the relative source strength of Fe aerosols in Asian outflow, particularly emphasizing the importance of coal combustion source in East Asia.

  19. Atmospheric limiting values for complex hydrocarbon-containing mixtures. Pt. 3. Fuels for combustion engines; Luftgrenzwerte fuer komplexe kohlenwasserstoffhaltige Gemische. T. 3. Kraftstoffe fuer Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzer, H.G. [Esso AG, Hamburg (Germany)

    1997-06-01

    The justification paper atmospheric limiting values for complex hydrocarbon-containing mixtures, part 3 - ``fuels for combustion engines`` (gasolines, diesel fuel and kerosene) is currently in preparation. This third part gives information on industrial hygiene regarding the different fuels and describes the application of atmospheric limiting values for fuels. The article offers information on industrial hygiene regarding Otto engine fuel and aviation fuel, which needs to be taken into account in discussions concerning the laying down of atmospheric limiting values. (orig./ABI) [Deutsch] Das Begruendungspapier Luftgrenzwerte fuer komplexe kohlenwasserstoffhaltige Gemische Teil 3 `Kraftstoffe fuer Verbrennungsmotoren` (Gasoline, Dieselkraftstoff und Kerosin) ist z.Z. in Vorbereitung. In diesem dritten Teil werden arbeitshygienische Informationen zu den verschiedenen Kraftstoffen gegeben und die Anwendung der Luftgrenzwerte fuer Kraftstoffe beschrieben. Im folgenden werden arbeitshygienische Informationen zu Ottokraftstoff und Avgas gegeben, die es bei den Ueberlegungen hinsichtlich der Festlegung eines Luftgrenzwertes zu beruecksichtigen gilt. (orig./ABI)

  20. Crystallization of calcium oxalate dihydrate in a buffered calcium-containing glucose solution by irradiation with non-equilibrium atmospheric pressure plasma

    Science.gov (United States)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru

    2017-10-01

    Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.

  1. Simulation of the evolution of particle size distributions containing coarse particulate in the atmospheric surface layer with a simple convection-diffusion-sedimentation model

    Science.gov (United States)

    Hubbard, J. A.; Haglund, J. S.; Ezekoye, O. A.

    The Fugitive Dust Model (FDM) and Industrial Source Complex (ISC), widely used coarse particulate dispersion models, have been shown inaccurate due to the neglect of vertical variations in atmospheric wind speed and turbulent diffusivity (Vesovic et al., 2001), omission of the gravitational advection velocity, and an underestimation of the ground deposition velocity (Kim and Larson, 2001). A simple, transient two-dimensional convection-diffusion-sedimentation model is proposed to simulate the evolution in particle size distribution of an aerosol 'puff' containing coarse particulate in the atmospheric surface layer. Monin-Okhubov similarity theory, accompanied by empirical observations made by Businger et al. (1971), is adopted to characterize the surface layer wind speed and turbulent diffusivity profiles over a wide range of atmospheric conditions. A first order analysis of the crossing trajectories effect suggests simulation data presented here are not significantly affected by particle inertia. The model is validated against Suffield experimental data in which coarse particulate deposition was measured out to a distance of 800 m from the source (Walker, 1965). Good agreement is found for the decay in ground deposits with distance from the source for stable atmospheres. Deposition data was also simulated for unstable atmospheric stratification and the current model was determined to modestly underestimate the peak concentration with increasing accuracy further downwind of the release. The current model's effective deposition velocity was compared to that suggested by Kim et al. (2000) and shows improvement with respect to FDM. Lastly, the model was used to simulate the dispersion of nine lognormal aerosol puffs in the lowest 50 m of the atmospheric surface layer for four classes of atmospheric stability. The simulated mass median aerodynamic diameters (MMAD) at multiple downwind sampling locations were calculated and plotted with distance from the source. The

  2. Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity

    Science.gov (United States)

    Schröter, Sandra; Gibson, Andrew R.; Kushner, Mark J.; Gans, Timo; O’Connell, Deborah

    2018-01-01

    The quantification and control of reactive species (RS) in atmospheric pressure plasmas (APPs) is of great interest for their technological applications, in particular in biomedicine. Of key importance in simulating the densities of these species are fundamental data on their production and destruction. In particular, data concerning particle-surface reaction probabilities in APPs are scarce, with most of these probabilities measured in low-pressure systems. In this work, the role of surface reaction probabilities, γ, of reactive neutral species (H, O and OH) on neutral particle densities in a He–H2O radio-frequency micro APP jet (COST-μ APPJ) are investigated using a global model. It is found that the choice of γ, particularly for low-mass species having large diffusivities, such as H, can change computed species densities significantly. The importance of γ even at elevated pressures offers potential for tailoring the RS composition of atmospheric pressure microplasmas by choosing different wall materials or plasma geometries.

  3. The Relative Humidity of the Atmosphere in the Encasements Containing the Declaration of Independence, the US Constitution (Pages 1 and 4), and the Bill of Rights

    Science.gov (United States)

    West, James W.; Burkett, Cecil G.; Levine, Joel S.

    2002-01-01

    In 1951, the four pages of the US Constitution, the Letter of Transmittal, the Bill of Rights and the Declaration of Independence, collectively called the 'Charters of Freedom,' were hermetically sealed individually in glass encasements. The atmosphere in the encasements consisted of a mixture of helium with water vapor at a relative humidity between 25 and 35% at room temperature. In 1998, Margaret Kelly of the National Archives and Records Administration (NARA), contacted Dr. Joel S. Levine at NASA Langley Research Center (LaRC) to request assistance in determining the chemical composition of the atmosphere inside the encasements. Several different Langley learns were assembled to address that request. each using a different measurement technique. This report describes the method and results of one team's relative humidity measurements on encasements containing pages 1 and 4 of the US Constitution, the Bill of Rights, and the Declaration of Independence performed at NARA, College Park. Maryland, on July 23, 2001.

  4. Performance degradation of double-perovskite PrBaCo2O5+δ oxygen electrode in CO2 containing atmospheres

    Science.gov (United States)

    Zhu, Lin; Wei, Bo; Lü, Zhe; Feng, Jiebing; Xu, Lingling; Gao, Hong; Zhang, Yaohui; Huang, Xiqiang

    2017-09-01

    The electrochemical performance and microstructure stability of PrBaCo2O5+δ (PBCO) cathode are investigated in CO2-containing atmospheres for solid oxide fuel cells (SOFCs). Electrochemical impedance spectra results confirm obvious performance degradation of the PBCO cathodes in the presence of CO2 impurity, especially in high CO2 concentration condition. Microstructure and structural analyses reveal the formation of insulating BaCO3 nanoparticles at the PBCO surface, which is considered as the primary reason for the loss of electrode activity. This study highlights the important role of surface segregated BaO species in determining the activity and long-time stability of PBCO electrode.

  5. Inactivation of Escherichia coli O157:H7 and Aerobic Microorganisms in Romaine Lettuce Packaged in a Commercial Polyethylene Terephthalate Container Using Atmospheric Cold Plasma.

    Science.gov (United States)

    Min, Sea C; Roh, Si Hyeon; Boyd, Glenn; Sites, Joseph E; Uknalis, Joseph; Fan, Xuetong; Niemira, Brendan A

    2017-01-01

    The effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7 and aerobic microorganisms in romaine lettuce packaged in a conventional commercial plastic container were evaluated during storage at 4°C for 7 days. Effects investigated included the color, carbon dioxide (CO2) generation, weight loss, and surface morphology of the lettuce during storage. Romaine lettuce pieces, with or without inoculation with a cocktail of three strains of E. coli O157:H7 (~6 log CFU/g of lettuce), were packaged in a polyethylene terephthalate commercial clamshell container and treated at 34.8 kV at 1.1 kHz for 5 min by using a DACP treatment system equipped with a pin-type high-voltage electrode. Romaine lettuce samples were analyzed for inactivation of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds, color, CO2 generation, weight loss, and surface morphology during storage at 4°C for 7 days. The DACP treatment reduced the initial counts of E. coli O157:H7 and total aerobic microorganisms by ~1 log CFU/g, with negligible temperature change from 24.5 ± 1.4°C to 26.6 ± 1.7°C. The reductions in the numbers of E. coli O157:H7, total mesophilic aerobes, and yeasts and molds during storage were 0.8 to 1.5, 0.7 to 1.9, and 0.9 to 1.7 log CFU/g, respectively. DACP treatment, however, did not significantly affect the color, CO2 generation, weight, and surface morphology of lettuce during storage (P > 0.05). Some mesophilic aerobic bacteria were sublethally injured by DACP treatment. The results from this study demonstrate the potential of applying DACP as a postpackaging treatment to decontaminate lettuce contained in conventional plastic packages without altering color and leaf respiration during posttreatment cold storage.

  6. Collapsing Containers.

    Science.gov (United States)

    Brown, Justina L.; Battino, Rubin

    1994-01-01

    Describes variations on atmospheric pressure demonstrations and some systematic studies. Demonstrations use steam, generated either externally or internally to the container, to sweep out residual air. Preferred vessels collapsed slowly. Demonstrations use plastic milk jugs set in layers of aluminum foil, pop bottles immersed in 4-L beakers…

  7. Atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2004-12-01

    Neutrino oscillation was discovered through the study of atmospheric neutrinos. Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron neutrinos and muon neutrinos are produced mainly by the decay chain of charged pions to muons and electrons. Depending on the energy of the neutrinos, atmospheric neutrinos are observed as fully contained events, partially contained events and upward-going muon events. The energy range covered by these events is from a few hundred MeV to >1 TeV. Data from various experiments showed zenith angle- and energy-dependent deficit of {nu}{sub {mu}} events, while {nu}{sub e} events did not show any such effect. It was also shown that the {nu}{sub {mu}} survival probability obeys the sinusoidal function as predicted by neutrino oscillations. Two-flavour {nu}{sub {mu}} {r_reversible} {nu}{sub {tau}} oscillations, with sin{sup 2} 2{theta} > 0.90 and {delta}m{sup 2} in the region of 1.9 x 10{sup -3} to 3.0 x 10{sup -3} eV{sup 2}, explain all these data. Various detailed studies using high statistics atmospheric neutrino data excluded the alternative hypotheses that were proposed to explain the {nu}{sub {mu}} deficit.

  8. A kinetic study of Ca-containing ions reacting with O, O2, CO2 and H2O: implications for calcium ion chemistry in the upper atmosphere.

    Science.gov (United States)

    Broadley, Sarah; Vondrak, Tomas; Wright, Timothy G; Plane, John M C

    2008-09-14

    A series of gas-phase reactions involving molecular Ca-containing ions was studied by the pulsed laser ablation of a calcite target to produce Ca+ in a fast flow of He, followed by the addition of reagents downstream and detection of ions by quadrupole mass spectrometry. Most of the reactions that were studied are important for describing the chemistry of meteor-ablated calcium in the earth's upper atmosphere. The following rate coefficients were measured: k(CaO+ + O --> Ca+ + O2) = (4.2 +/- 2.8) x 10(-11) at 197 K and (6.3 +/- 3.0) x 10(-11) at 294 K; k(CaO+ + CO --> Ca+ + CO2, 294 K) = (2.8 +/- 1.5) x 10(-10); k(Ca+.CO2 + O2 --> CaO2+ + CO2, 294 K) = (1.2 +/- 0.5) x10(-10); k(Ca+.CO2 + H2O --> Ca+.H2O + CO2) = (13.0 +/- 4.0) x 10(-10); and k(Ca+.H2O + O2 --> CaO2+ + H2O, 294 K) = (4.0 +/- 2.5) x 10(-10) cm3 molecule(-1) s(-1). The quoted uncertainties are a combination of the 1 sigma standard errors in the kinetic data and the systematic errors in the models used to extract the rate coefficients. Rate coefficients were also obtained for the following recombination (also termed association) reactions in He bath gas: k(Ca+.CO2 + CO2 --> Ca+.(CO2)2, 294 K) = (2.6 +/- 1.0) x 10(-29); k(Ca+.H2O + H2O --> Ca+.(H2O)2) = (1.6 +/- 1.1) x 10(-27); and k(CaO2+ + O2 --> CaO2+.O2) high level quantum chemistry calculations and RRKM theory using an inverse Laplace transform solution of the master equation. The surprisingly slow reaction between CaO+ and O was explained using quantum chemistry calculations on the lowest 2A', 2A'' and 4A'' potential energy surfaces. These calculations indicate that reaction mostly occurs on the 2A' surface, leading to production of Ca+ (2S) + O2(1 Delta g). The importance of this reaction for controlling the lifetime of Ca+ in the upper mesosphere and lower thermosphere is then discussed.

  9. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of

  10. Effect of irradiation, active and modified atmosphere packaging, container oxygen barrier and storage conditions on the physicochemical and sensory properties of raw unpeeled almond kernels (Prunus dulcis).

    Science.gov (United States)

    Mexis, Stamatios F; Riganakos, Kyriakos A; Kontominas, Michael G

    2011-03-15

    The present study investigated the effect of irradiation, active and modified atmosphere packaging, and storage conditions on quality retention of raw, whole, unpeeled almonds. Almond kernels were packaged in barrier and high-barrier pouches, under N(2) or with an O(2) absorber and stored either under fluorescent lighting or in the dark at 20 °C for 12 months. Quality parameters monitored were peroxide value, hexanal content, colour, fatty acid composition and volatile compounds. Of the sensory attributes colour, texture, odour and taste were evaluated. Peroxide value and hexanal increased with dose of irradiation and storage time. Irradiation resulted in a decrease of polyunsaturated and monounsaturated fatty acids during storage with a parallel increase of saturated fatty acids. Volatile compounds were not affected by irradiation but increased with storage time indicating enhanced lipid oxidation. Colour parameters of samples remained unaffected immediately after irradiation. For samples packaged under a N(2) , atmosphere L and b values decreased during storage with a parallel increase of value a resulting to gradual product darkening especially in irradiated samples. Non-irradiated almonds retained acceptable quality for ca. 12 months stored at 20 °C with the O(2) absorber irrespective of lighting conditions and packaging material oxygen barrier. The respective shelf life for samples irradiated at 1.0 kGy was 12 months packaged in PET-SiOx//LDPE irrespective of lighting conditions and 12 months for samples irradiated at 3 kGy packaged in PET-SiOx//LDPE stored in the dark. Copyright © 2010 Society of Chemical Industry.

  11. Effect of Plant Antimicrobial Agents Containing Marinades on Storage Stability and Microbiological Quality of Broiler Chicken Cuts Packed with Modified Atmosphere Packaging.

    Science.gov (United States)

    Alakomi, H-L; Maukonen, J; Honkapää, K; Storgårds, E; Quirin, K-W; Yang, B; Saarela, M

    2017-10-01

    The food industry, including the meat industry, is currently looking for natural preservatives to prevent the growth of harmful microbes in foods. The potential of plant-derived antimicrobial extracts to increase the shelf life and to delay the microbiological spoilage of marinated broiler chicken cuts in modified atmosphere packages during cold storage was investigated in this study. We evaluated the impact of aqueous ethanolic extracts of Finnish sea buckthorn berries and lingonberries and supercritical CO2-extracted herbal extracts from an antimicrobial blend and oregano leaves on the shelf life of broiler meat. The commercial antimicrobial blend extract and the oregano extract inhibited the growth of lactic acid bacteria (LAB) and Brochothrix thermosphacta in the marinated samples. The antimicrobial blend extract also reduced the growth of psychrotrophic aerobic bacteria, whereas the sea buckthorn and lingonberry extracts did not. Only minor antimicrobial activity against Enterobacteriaceae by all the extracts was observed. Plate count analysis, denaturing gradient gel electrophoresis, and quantitative real-time PCR indicated that LAB, which are the major spoilage group in marinated modified atmosphere-packaged poultry products, were not significantly affected by the berry extracts studied. During this shelf-life study, LAB isolates of Lactobacillus and Leuconostoc were identified in the marinated samples. Antimicrobial blends and oregano leaf extracts can act as antimicrobial agents in marinade blends, although tailoring of the dose is needed because of their strong taste. Further studies for exploiting synergistic effects of plant extracts could contribute to the development of potential and more effective antimicrobial blends. Studies are needed in meat matrices and in product applications to demonstrate the efficacy of these compounds.

  12. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  13. Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospheres

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kiamehr, Saeed; Montgomery, Melanie

    2017-01-01

    )-coatedand deposit-free austenitic stainless steel (TP 347H FG) samples to gas mixturescontaining SO2 was carried out, under conditions relevant to biomass-firing.Exposures were conducted isothermally at 560 8C for 72 h, in oxidizingsulphidizing,and oxidizing-sulphidizing-chlorinating gas mixtures containing60 ppmv......In biomass fired power plants, the fast corrosion of superheaters is facilitatedby the presence of corrosive flue gas species, for example, SO2, which arereleased during combustion. To understand the role of the gas species on thecorrosion process, comparative laboratory exposures of deposit (KCl...... broad pits containing sulphides and oxides. The severepitting attack was decreased by the presence of HCl in the gas mixture....

  14. Non-disturbing characterization of natural organic matter (NOM) contained in clay rock pore water by mass spectrometry using electrospray and atmospheric pressure chemical ionization modes.

    Science.gov (United States)

    Huclier-Markai, Sandrine; Landesman, Catherine; Rogniaux, Hélène; Monteau, Fabrice; Vinsot, Agnes; Grambow, Bernd

    2010-01-01

    We have investigated the composition of the mobile natural organic matter (NOM) present in Callovo-Oxfodian pore water using electrospray ionization mass spectrometry (ESI-MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS) and emission-excitation matrix (EEM) spectroscopy. The generation of knowledge of the composition, structure and size of mobile NOM is necessary if one wants to understand the interactions of these compounds with heavy metals/radionuclides, in the context of environmental studies, and particularly how the mobility of these trace elements is affected by mobile NOM. The proposed methodology is very sensitive in unambiguously identifying the in situ composition of dissolved NOM in water even at very low NOM concentration, due to innovative non-disturbing water sampling and ionization (ESI/APCI-MS) techniques. It was possible to analyze a quite exhaustive inventory of the small organic compounds of clay pore water without proceeding to any chemical treatment at naturally occurring concentration levels. The structural features observed were mainly acidic compounds and fatty acids as well as aldehydes and amino acids. Copyright 2009 John Wiley & Sons, Ltd.

  15. Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospheres

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kiamehr, Saeed; Montgomery, Melanie

    2017-01-01

    In biomass fired power plants, the fast corrosion of superheaters is facilitatedby the presence of corrosive flue gas species, for example, SO2, which arereleased during combustion. To understand the role of the gas species on thecorrosion process, comparative laboratory exposures of deposit (KCl......)-coatedand deposit-free austenitic stainless steel (TP 347H FG) samples to gas mixturescontaining SO2 was carried out, under conditions relevant to biomass-firing.Exposures were conducted isothermally at 560 8C for 72 h, in oxidizingsulphidizing,and oxidizing-sulphidizing-chlorinating gas mixtures containing60 ppmv...... SO2. Scanning electron microscopy (SEM), energy dispersive X-rayspectroscopy (EDS) and X-ray diffraction (XRD) techniques werecomplimentarily applied to characterize the resulting corrosion products. Apartially molten K2SO4-layer formed on KCl coated specimens, and corrosionresulted in localized...

  16. Successful reefer container operations

    National Research Council Canada - National Science Library

    2003-01-01

    Explains the different types of reefer container operation, including Cold Treatment, Controlled Atmosphere, and Super Freezer, and the procedures that should be followed in order to ensure correct operation...

  17. Characterization and source regions of 51 high-CO events observed during Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flights between south China and the Philippines, 2005-2008

    Science.gov (United States)

    Lai, S. C.; Baker, A. K.; Schuck, T. J.; Slemr, F.; Brenninkmeijer, C. A. M.; van Velthoven, P.; Oram, D. E.; Zahn, A.; Ziereis, H.

    2011-10-01

    Carbon monoxide (CO) and other atmospheric trace constituents were measured from onboard an Airbus 340-600 passenger aircraft in the upper troposphere (UT) between south China and the Philippines during Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flights from May 2005 until March 2008. A total of 132 events having CO enhancements were observed in the UT over the region during the 81 CARIBIC flights from Frankfurt, Germany, to Manila, Philippines, with a stopover in Guangzhou, China. Among these, 51 high-CO events with enhancements more than 50 ppb above background were observed. For these events enhancements ranged from 52.7 to 221.3 ppb and persisted for 3 to 78 min (˜40 to 1200 km), indicating an influence of strong pollution from biomass/biofuel/fossil fuel burning on the trace gas composition of the UT. Back trajectory analysis shows that south China, the Indochinese Peninsula, and the Philippines/Indonesia are the main source regions of the high-CO events. The composition of air parcels originating from south China was found to be primarily influenced by anthropogenic urban/industrial emissions, while emissions from biomass/biofuel burning contributed substantially to CO enhancements from the Indochinese Peninsula. During the Philippines/Indonesia events, air parcel composition suggests contributions from both biomass/biofuel burning and urban/industrial sources. Long-range transport of air parcels from northeast Asia and India also contributed to CO enhancements in the UT over the region. The general features of regional influence, typical cases, and the contributions of biomass/biofuel burning and anthropogenic emissions are presented and discussed to characterize the air parcels during the observed high-CO events.

  18. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    Through the coupling of dispositif with atmosphere this paper engages in a discussion of the atmospherics as both a form of knowledge and a material practice. In doing so the objective is to provide an inventory of tools and methodologies deployed in the construction of atmosphere understood......, the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...

  19. Atmospheric refraction: a history

    Science.gov (United States)

    Lehn, Waldemar H.; van der Werf, Siebren

    2005-09-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  20. Effects of external atmosphere on the metallization phenomenology of composite pellets containing fines of iron ore and coal; Estudo do efeito da atmosfera gasosa na fenomenologia da metalizacao de pelotas auto-redutoras de minerio de ferro e carbono

    Energy Technology Data Exchange (ETDEWEB)

    D`Abreu, Jose C.; Oliveira, Luiz M.R. de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1996-12-31

    This work presents the effects of temperature, time and CO/CO{sub 2} ratio on metallization and morphology of metallic iron produced by reduction of composite pellets containing fines of iron and anthracite coal. The experiments were conducted in a temperature range of 950 - 1250 deg C, and maximum time of 60 minutes. On the other hand, mixtures of CO/CO{sub 2}, from 100% CO{sub 2} up to 100% CO, were used in the experiments, conducted in an appropriate electrically heated furnace apparatus. In order to fulfill the objectives, the reduced pellets were chemically analyzed before observed in optical and scanning electronic microscopes and the results presented in graphics of percentage metallization versus . The following main results may be drawn from this work: (a) the type of external atmosphere exert a major influence on the reduction rates and metallization of the composite pellets: (i) when CO is raised in the mixture, there is an increase in metallization and reaction rate and the metallization continue unchanged; (ii) and uniform internal reduction mechanism occurs. (b) when CO is decreased in CO-CO{sub 2} mixture, the reduction led to a superficial metallic layer, the metallization, initially high, drops and a topochemical mechanism of re-oxidation occurs. (c) the scanning electronic microscopy allowed to observe that calcium is always present in the root of whiskers. (author) 4 refs., 4 figs., 4 tabs.

  1. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily exper......” implications and qualities of the approach are identified through concrete examples of a design case, which also investigates the qualities and implications of addressing atmospheres both as design concern and user experience.......This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  2. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  3. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  4. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  5. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    } ρ0 (π h R)^{3/2}, r_{cap}˜25 km for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (m_{min}>4 πρ0 h3, r_{min}˜ 1 km for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with r_{min} efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is 'wasted' by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% M_{\\oplus } is able to erode the entire current Earth's atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.

  6. Atmospheric Infancy

    DEFF Research Database (Denmark)

    Roald, Tone; Pedersen, Ida Egmose; Levin, Kasper

    2017-01-01

    In this article we establish intersubjective meaning-making in infancy as atmospheric. Through qualitative descriptions of five mother–infant dyads in a video-recorded, experimental setting when the infant is 4, 7, 10, and 13 months, we discovered atmospheric appearances with a developmental...... pattern of atmospheric variations. These appearances, we argue, are contextual and intersubjective monologues. The monologues are similar to what Daniel Stern describes with his concept of “vitality affects,” but they arise as a unified force that envelops the mother and child. As such, we present a new...

  7. Dynamics in Atmospheric Physics

    Science.gov (United States)

    Lindzen, Richard A.

    2005-08-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  8. A container

    DEFF Research Database (Denmark)

    2012-01-01

    A container assembly for the containment of fluids or solids under a pressure different from the ambient pressure comprising a container (2) comprising an opening and an annular sealing, a lid (3) comprising a central portion (5) and engagement means (7) for engaging the annular flange, and seali...

  9. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  10. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...

  11. Atmospheric humidity

    Science.gov (United States)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  12. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    A disjunction between the material and the immaterial has been at the heart of the architectural debate for decades. In this dialectic tension, the notion of atmosphere which increasingly claims attention in architectural discourse seems to be parallactic, leading to the re-evaluation of perceptual...... experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... and complex interferences revealed through our perception; ‘the atmospheric’ is explored as a spatial and affective quality as well as a sensory background, and materiality as a powerful and almost magical agency in shaping of atmosphere. Challenging existing dichotomies and unraveling intrinsic...

  13. Direct containment heating models in the CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.

  14. Characterization of (La1-xSrx)(s)MnO3 and Doped Ceria Composite Electrodes in NOx-Containing Atmosphere with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Kammer Hansen, Kent; Mogensen, Mogens Bjerg

    2010-01-01

    .2)] were subjected to EIS while varying the temperature (from 300 to 600°C), the composition of the atmosphere, and the gas flow. The impedance spectra were fitted to equivalent circuits, and common arcs were identified and sought related to physical and chemical processes. The electrodes had a much lower...... to a gaseous intermediate (possibly NO2), formed from NO, through which the electrode reaction occurs. Indications were found that the electrodes are not electrochemically active toward NO around open-circuit voltages. ©2010 The Electrochemical Society...

  15. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  16. Atmospheric Physics Background – Methods – Trends

    CERN Document Server

    2012-01-01

    On the occasion of the 50th anniversary of the Institute of Atmospheric Physics of the German Aerospace Center (DLR), this book presents more than 50 chapters highlighting results of the institute’s research. The book provides an up-to-date, in-depth survey across the entire field of atmospheric science, including atmospheric dynamics, radiation, cloud physics, chemistry, climate, numerical simulation, remote sensing, instruments and measurements, as well as atmospheric acoustics. The authors have provided a readily comprehensible and self-contained presentation of the complex field of atmospheric science. The topics are of direct relevance for aerospace science and technology. Future research challenges are identified.

  17. GPM Ground Validation Advanced Vertical Atmospheric Profiling System (AVAPS) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Vertical Atmospheric Profiling System (AVAPS) OLYMPEX dataset contains dropsonde vertical profiles of atmospheric pressure, air...

  18. Synthesis of Cu(II)-containing TiO2-SiO2 binary xerogels by hydrolysis of a mixture of tetrabutoxytitanium, tetraethoxysilane, and copper(II) chloride in a water-ammonia atmosphere

    OpenAIRE

    Shishmakov, A. B.; Molochnikov, M. S.; Antonov, D. O.; Koryakova, O. V.; Seleznev, A. S.; Petrov, L. A.

    2013-01-01

    A Cu(II)-containing binary xerogel TiO2-SiO2 was synthesized by joint hydrolysis of tetrabutoxytitanium, teraethoxysilane and copper(II) chloride dissolved in their mixture. The synthesis was performed in a vapor of 10% aqueous ammonia under static conditions. EPR spectroscopy was used to examine the state of Cu(II) in the xerogel matrix. Data on specific features of the behavior of saccharose within xerogel pores under heating were obtained. The catalytic activity of the xerogel was tested b...

  19. Jet Engine Powerloss in Ice Particle Conditions: An Aviation Industry Problem

    Science.gov (United States)

    Strapp, J. W.

    2009-09-01

    Since about the 1990, there have been in excess of 100 engine powerloss events in jet aircraft that have now been attributed to the ingestion of ice particles. These powerloss events are observed in essentially all engine types, and on all airframes. Almost all cases have occurred in the vicinity of deep convection usually associated with warm and moist atmospheres. Events have occurred all throughout the world, although there is a somewhat higher concentration in the area of southeast Asia. Powerloss can result from stall, surge, flameout and rollback events in the engine. Many are momentary, with engines relighting automatically, while others require a manual engine relight. In some cases, particularly in rollback cases on smaller commuter-transport aircraft, engine power has only been recovered by melting of ice buildup in the engine below the freezing level. There have been cases of multiple simultaneous engine powerloss, and one case of a landing with no engine power. The frequency of the events, and the potential for multiple-engine powerloss, has led the FAA to note that that these occurrences constitute a significant safety issue. Analysis of the events using aircraft flight data recorder information, pilot interviews, standard meteorological radar and satellite data, and information from several past flight test programs, have led to the conclusion that the powerloss is due to ice buildup in the engine from high concentrations of ice particles in the atmosphere, and that supercooled LWC is not required. This is an unconventional form of icing that had not been previously considered possible by engine designers. The Engine Harmonization Working Group (EHWG), an industry-led committee composed of engine manufacturers, airframe manufacturers, regulators, and government agencies have been studying the powerloss issue since 2004, and have suggested a 4-part technical plan to resolve the issue, which includes improvement of instrumentation to measure high ice

  20. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  1. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that...

  2. SMEX05 Atmospheric Aerosol Optical Properties Data: Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains observations of atmospheric parameters from aerosol optical property measurements collected during the Soil Moisture Experiment 2005 (SMEX05)...

  3. SMEX04 Atmospheric Aerosol Optical Properties Data: Arizona

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains observations of atmospheric parameters from aerosol optical property measurements collected during the Soil Moisture Experiment 2004 (SMEX04)...

  4. Secondary Containers and Service Containers for Pesticides

    Science.gov (United States)

    Secondary containers and service containers are used by pesticide applicators in the process of applying a pesticide. EPA does not require secondary containers or service containers to be labeled or to meet particular construction standards. Learn more.

  5. The role of watershed characteristics in estuarine condition: an empirical approach

    Science.gov (United States)

    James Latimer; Melissa Hughes; Michael Charpentier; Christine Tilburg

    2016-01-01

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures,...

  6. Atmosphere: Power, Critique, Politics

    DEFF Research Database (Denmark)

    Albertsen, Niels

    2016-01-01

    This paper hans three interrelated parts. First, atmosphere is approached through the concept of power. Atmospheres 'grip' us directly or mediate power indirectly by manipulating moods and evoking emotions. How does atmosphere relate to different conceptions of power? Second, atmospheric powers may...

  7. SWiFT site atmospheric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with the average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.

  8. Selective medium for growth of Campylobacter in containers incubated aerobically

    Science.gov (United States)

    Introduction. Campylobacter are traditionally cultured in primary containers inside of secondary containers filled with microaerobic atmospheres. Recent findings indicated that media supplemented with optimal concentrations of amino acids, organic acids, and bicarbonate support Campylobacter growth ...

  9. Atmosphere-Ionosphere Coupling via Atmospheric Waves

    Science.gov (United States)

    Koucka Knizova, Petra; Lastovicka, Jan

    2017-04-01

    The Earth atmosphere and ionosphere is complicated and highly variable system which displays oscillations on wide range scales. The most important factor influencing the ionosphere is certainly the solar and geomagnetic activity. However, the processes even in distant regions in the neutral atmosphere cannot be simply neglected. This contribution reviews aspects of ionospheric variability originating in the lower laying atmosphere. It focuses especially on the generation and propagation of the atmospheric waves from their source region up to the heights of the ionosphere. We will show the role of infrasound, gravity waves, tides and planetary waves in the atmosphere-ionosphere coupling. Particularly gravity waves are of high importance for the ionosphere. Recent theoretical and experimental results will briefly be reviewed.

  10. Atmospheric structure from Phoenix atmospheric entry data

    Science.gov (United States)

    Catling, D. C.

    2008-12-01

    The atmospheric structure at the time of landing of NASA's Phoenix probe has been derived from measurements of the aerodynamic drag of the spacecraft during atmospheric entry and descent. The result provides the first atmospheric structure in Mars' polar environment obtained from in situ measurements. Phoenix was equipped with an inertial measurement unit (IMU) that used accelerometers for linear acceleration measurement in three Cartesian axes and ring-laser gyroscopes to measure the three- dimensional orientation of the probe (Taylor et al., 2008). The temperature structure of the atmosphere along the flight path was calculated via a four-step process: (i) integrating forward the IMU data to obtain the time history of the spacecraft velocity vector relative to the atmosphere as a function of altitude; (ii) calculating atmospheric density from drag, with iteration for aerodynamic coefficient dependence on density; (iii) integrating the hydrostatic equation to derive the vertical pressure; and (iv) calculating atmospheric temperature from the equation of state. Initial profile reconstruction shows reasonable agreement with predictions in the middle atmosphere for the given season and time of day (landing occurred at 16h 33min 37sec in local solar time expressed as a 24-hour clock). However, the derived lower atmospheric structure below ~0.1 mbar is generally warmer than predicted. A possible explanation could be a shallower vertical distribution of dust that usually assumed. References: P. A. Taylor, D. C. Catling, M. Daly, C. S. Dickinson, H. O. Gunnlaugsson, A-M. Harri, C. F. Lange, Temperature, pressure and wind instrumentation on the Phoenix meteorological package, J. Geophys. Res., 113, EA0A10, doi:10.1029/2007JE003015, 2008.

  11. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  12. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  13. NOAA Climate Data Record (CDR) of Reflectance from AVHRR Pathfinder Atmospheres - Extended (PATMOS-x), Version 5.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has been superseded by Version 5.3. The Pathfinder Atmospheres - Extended (PATMOS-x) Reflectance data contain derived atmospheric variables from the...

  14. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  15. 11th International Conference on Atmospheric Electricity

    Science.gov (United States)

    Christian, H. J. (Compiler)

    1999-01-01

    This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

  16. Do pyrotechnics contain radium?

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Georg; Musilek, Andreas, E-mail: georg.steinhauser@ati.ac.a [Vienna University of Technology, Atominstitut der Oesterreichischen Universitaeten, Stadionallee 2, A-1020 Wien (Austria)

    2009-07-15

    Many pyrotechnic devices contain barium nitrate which is used as an oxidizer and colouring agent primarily for green-coloured fireworks. Similarly, strontium nitrate is used for red-coloured pyrotechnic effects. Due to their chemical similarities to radium, barium and strontium ores can accumulate radium, causing a remarkable activity in these minerals. Radium in such contaminated raw materials can be processed together with the barium or strontium, unless extensive purification of the ores was undertaken. For example, the utilization of 'radiobarite' for the production of pyrotechnic ingredients can therefore cause atmospheric pollution with radium aerosols when the firework is displayed, resulting in negative health effects upon inhalation of these aerosols. In this study, we investigated the occurrence of gamma-photon-emitting radionuclides in several pyrotechnic devices. The highest specific activities were due to K-40 (up to 20 Bq g{sup -1}, average value 14 Bq g{sup -1}). Radium-226 activities were in the range of 16-260 mBq g{sup -1} (average value 81 mBq g{sup -1}). Since no uranium was found in any of the samples, indeed, a slight enrichment of Ra-226 in coloured pyrotechnics can be observed. Radioactive impurities stemming from the Th-232 decay chain were found in many samples as well. In the course of novel developments aiming at the 'greening' of pyrotechnics, the potential radioactive hazard should be considered as well.

  17. Container crane for sea freight containers

    NARCIS (Netherlands)

    Luttekes, E.; Rijsenbrij, J.C.

    2001-01-01

    The invention relates to a container crane for loading and unloading seaborne containers. The container crane comprises a bridge girder (7), a jib (8), at least two crabs (11, 12) which can travel along the said bridge girder and/or jib and are provided with hoist means for lifting and lowering the

  18. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  19. Atmospheric Circulation of Exoplanets

    OpenAIRE

    Showman, Adam P.; Cho, James Y-K.; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-wate...

  20. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie; Højlund, Marie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful,....... The potentials and implica-­‐ tions are presented through a design case, Kidkit, highlighting temporality as design parametre within interaction design.......This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful...

  1. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  2. Photochemistry of planetary atmospheres. [Mars atmospheric composition

    Science.gov (United States)

    Stief, L. J.

    1973-01-01

    The atmospheric composition of Mars is presented, and the applicability of laboratory data on CO2 absorption cross sections and quantum yields of dissociation is discussed. A summary and critical evaluation are presented on the various mechanisms proposed for converting the photodissociation products CO and O2 back to CO2.

  3. Controlled Atmosphere Stunning

    NARCIS (Netherlands)

    Lambooij, E.; Gerritzen, M.A.

    2009-01-01

    Controlled atmosphere (CAS) stunning includes several variations of gaseous mixtures given to induce an anaesthetic state before slaughter poultry. One method of multi phase CAS is to unload the birds out of the crate on a conveyor belt and subject the birds to an atmosphere of 30% O2, 40% CO2 and

  4. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...

  5. The Power of Atmosphere

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    composed of bubbles of affects – that is, the particles that are charged with power and normativity. References Grtiffero, T. (2014 (2010)). Atmospheres: Aesthetics of Emotional Spaces. Ashgate Philippopoulos-Mihalopoulos, A. (2013). Atmospheres of law: Senses, affects, lawscapes, in Emotion, Space...

  6. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful....... The potentials and implications are presented through a design case, Kidkit, highlighting temporality as design parametre within interaction design....

  7. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  8. Empty Container Logistics

    Directory of Open Access Journals (Sweden)

    Jakov Karmelić

    2012-05-01

    Full Text Available Within the whole world container traffic, the largest share of containers is in the status of repositioning. Container repositioning results from the need for harmonization between the point of empty container accumulation and the point of demand, and waiting time for the availability of the first next transport of cargo. This status of containers on the container market is the consequence of imbalances in the worldwide trade distribution on most important shipping routes. The need for fast and effective reallocation of empty containers causes high costs and often represents an obstacle affecting the efficiency of port container terminals and inland carriers.In accordance with the above issue, this paper is mainly focused on the analysis of the data concerning global container capacities and the roots of container equipment imbalances, with the aim of determining the importance of empty container management and the need for empty container micro-logistic planning at the spread port area.

  9. The PHOCUS Project: Atmospheric Composition

    Science.gov (United States)

    Hedin, J.; Gumbel, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. Here we will describe the optical measurements of the atmospheric composition and present first results including comparison to the other simultaneous measurements. The atmospheric composition was probed by a set of optical instruments from Stockholm University. The idea behind the instrument setup was to combine the advantages of the sensitive resonance fluorescence with well-calibrated airglow photometry. The set of instruments consisted of two resonance fluorescence probes (each containing a lamp and a detector), one for atomic oxygen and one for atomic hydrogen, and two IR photometers for O2 and OH dayglow emissions in the near IR. The O2 IR Atmospheric system at 1.27 μm is related to the photolysis of O3, which during the day is in steady state with O and a retrieval of O is possible. The OH Meinel emission is produced by the reaction between mesospheric O3 and H, and H concentrations can be deduced by combining information from both photometers. Unfortunately, some of these measurements were corrupted by instrument problems or payload glow. O3 and O profiles will be presented and compared to the simultaneous measurements of ice and meteoric smoke particles, water vapour and the state of the background neutral and charged atmosphere.

  10. International Comprehensive Ocean-Atmosphere Data Set (ICOADS) with Enhanced Trimming, Release 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the latest official release of International Comprehensive Ocean-Atmosphere Data Set (ICOADS) with Enhanced Trimming, provided in a common...

  11. PHOENIX MARS MET LIDAR ATMOSPHERIC PROFILES EDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The PHX Atmospheric Lidar Profiles product contains unprocessed laser scattering atmospheric profiles for photon counting data at 532nm, and analog data at both 532...

  12. PHOENIX MARS MET LIDAR ATMOSPHERIC PROFILES RDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The PHX Atmospheric Lidar Profiles product contains raw (volts and counts) laser scattering atmospheric profiles for photon counting data at 532nm, and analog data...

  13. Atmospheric composition change: Ecosystems–Atmosphere interactions

    DEFF Research Database (Denmark)

    Fowler, D.; Pilegaard, Kim; Sutton, M.A.

    2009-01-01

    in the size range 1 nm–10 μm including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean–atmosphere exchange are included. The material presented is biased...... and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using...... aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement...

  14. Dynamics of Massive Atmospheres

    Science.gov (United States)

    Chemke, Rei; Kaspi, Yohai

    2017-10-01

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  15. Corona method and apparatus for altering carbon containing compounds

    Science.gov (United States)

    Sharma, Amit K.; Camaioni, Donald M.; Josephson, Gary B.

    1999-01-01

    The present invention is a method and apparatus for altering a carbon containing compound in an aqueous mixture. According to a first aspect of the present invention, it has been discovered that for an aqueous mixture having a carbon containing compound with an ozone reaction rate less than the ozone reaction rate of pentachlorophenol, use of corona discharge in a low or non-oxidizing atmosphere increases the rate of destruction of the carbon containing compound compared to corona discharge an oxidizing atmosphere. For an aqueous mixture containing pentachlorphenol, there was essentially no difference in destruction between atmospheres. According to a second aspect of the present invention, it has been further discovered that an aqueous mixture having a carbon containing compound in the presence of a catalyst and oxygen resulted in an increased destruction rate of the carbon containing compound compared to no catalyst.

  16. New atmospheric program

    Science.gov (United States)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  17. Discovery of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Tokyo Univ., Inst. for Cosmic Ray Research, Kashiwa, Chiba (Japan)

    2003-05-01

    Cosmic ray particles entering the atmosphere interact with the air nuclei produce neutrinos. These neutrinos are called atmospheric neutrinos. The atmospheric neutrino anomaly observed in Kamiokande is now understood as due to neutrino oscillations by high statistics measurements of the atmospheric neutrinos in Super-Kamiokande. The studies of the atmospheric neutrinos have matured into detailed studies of neutrino masses and mixings. (author)

  18. IceBridge Atmospheric Chemistry L1B Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Atmospheric Chemistry L1B Data set (ICHEM1B) contains measurements acquired over Antarctica using the AVOCET differential Non-Dispersive Infrared...

  19. Plasma Catalytic Extraction of Oxygen from the Martian Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma catalytic techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (95% CO2).. The Phase I...

  20. Plasma Extraction of Oxygen from Martian Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (96 % CO2). In this process, CO2 is...

  1. Atmospheric Transport Modeling Resources

    Energy Technology Data Exchange (ETDEWEB)

    Mazzola, Carl A. [Stone and Webster Engineering Corporation, Aiken, SC (United States); Addis, Robert P. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-03-01

    The purpose of this publication is to provide DOE and other federal agency emergency managers with an in-depth compilation and description of atmospheric dispersion models available to DOE and other Federal sites.

  2. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  3. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  4. Our Changing Atmosphere.

    Science.gov (United States)

    Clearing, 1988

    1988-01-01

    Summarizes what is known about two major variables involved in certain types of chemical pollution that seem to be changing the structure of the Earth's atmosphere. Discusses the greenhouse effect and the ozone layer. (TW)

  5. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  6. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  7. Atmospheric Circulation of Exoplanets

    Science.gov (United States)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.

    2010-12-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  8. Atmospheric Change on Pluto

    Science.gov (United States)

    Person, Michael

    2013-10-01

    We propose to use SOFIA with HIPO and FLITECAM (FLIPO) to measure the parameters of Pluto's atmosphere (temperature, pressure, possible particulate haze) by observing a stellar occultation by Pluto on 15 November 2014. Due to its highly elliptical orbit and seasonally variable obliquity, Pluto's atmosphere is predicted to condense onto its surface within the next ~10 years and possibly within the next few years and thus frequent observations are critical. Detection of the occultation central flash will allow measurement of the structure of Pluto's lower atmosphere and atmospheric oblateness. We will use FLIPO to measure the refracted starlight contemporaneously at visible and infrared wavelengths; this approach is needed to differentiate between two competing explanations for the deficiency in the observed light refracted from Pluto's lower atmosphere (strong thermal gradients versus variable particulate extinction). Only an airborne platform such as SOFIA has the flexibility to place a large telescope in the center of the shadow path of this brief event while at the same time nearly eliminating the possibility of missing time-critical observations due to unfortunate weather systems. Occultation predictions will be updated throughout the period preceding the observations with the goal of achieving sufficient prediction accuracy at the event time to place SOFIA directly in the path of Pluto's central flash. This SOFIA observation will be combined with our ongoing ground-based observing program whose goal is to measure the temporal variability of Pluto's atmosphere in response to its changing seasonal obliquity (and resulting ice migration) and recession from the sun. For the NASA New Horizons mission to Pluto and the Kuiper Belt, this Pluto occultation event represents the last chance, prior to the spacecraft closest approach to the Pluto/Charon system (July 2015), to provide input to the mission for encounter planning, as well as context and supporting atmospheric

  9. Final Report - Phase II - Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent; Sani, Rajesh

    2006-09-28

    Our understanding of subsurface microbiology is hindered by the inaccessibility of this environment, particularly when the hydrogeologic medium is contaminated with toxic substances. Past research in our labs indicated that the composition of the growth medium (e.g., bicarbonate complexation of U(VI)) and the underlying mineral phase (e.g., hematite) significantly affects the rate and extent of U(VI) reduction and immobilization through a variety of effects. Our research was aimed at elucidating those effects to a much greater extent, while exploring the potential for U(IV) reoxidation and subsequent re-mobilization, which also appears to depend on the mineral phases present in the system. The project reported on here was an extension ($20,575) of the prior (much larger) project. This report is focused only on the work completed during the extension period. Further information on the larger impacts of our research, including 28 publications, can be found in the final report for the following projects: 1) Biogeochemistry of Uranium Under Reducing and Re-oxidizing Conditions: An Integrated Laboratory and Field Study Grant # DE-FG03-01ER63270, and 2) Acceptable Endpoints for Metals and Radionuclides: Quantifying the Stability of Uranium and Lead Immobilized Under Sulfate Reducing Conditions Grant # DE-FG03-98ER62630/A001 In this Phase II project, the toxic effects of uranium(VI) were studied using Desulfovibrio desulfuricans G20 in a medium containing bicarbonate or 1, 4-piperazinediethane sulfonic acid disodium salt monohydrate (PIPES) buffer (each at 30 mM, pH 7). The toxicity of uranium(VI) was dependent on the medium buffer and was observed in terms of longer lag times and in some cases, no measurable growth. The minimum inhibiting concentration (MIC) was 140 M U(VI) in PIPES buffered medium. This is 36 times lower than previously reported for D. desulfuricans. These results suggest that U(VI) toxicity and the detoxification mechanisms of G20 depend greatly on the

  10. Accident resistant transport container

    Science.gov (United States)

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  11. Fundamentals of Atmospheric Radiation

    Science.gov (United States)

    Bohren, Craig F.; Clothiaux, Eugene E.

    2006-02-01

    This textbook fills a gap in the literature for teaching material suitable for students of atmospheric science and courses on atmospheric radiation. It covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the book applies to planetary atmosphere. The authors are physicists and teach at the largest meteorology department of the US at Penn State. Craig T. Bohren has taught the atmospheric radiation course there for the past 20 years with no book. Eugene Clothiaux has taken over and added to the course notes. Problems given in the text come from students, colleagues, and correspondents. The design of the figures especially for this book is meant to ease comprehension. Discussions have a graded approach with a thorough treatment of subjects, such as single scattering by particles, at different levels of complexity. The discussion of the multiple scattering theory begins with piles of plates. This simple theory introduces concepts in more advanced theories, i.e. optical thickness, single-scattering albedo, asymmetry parameter. The more complicated theory, the two-stream theory, then takes the reader beyond the pile-of-plates theory. Ideal for advanced undergraduate and graduate students of atmospheric science.

  12. Generic Fortran Containers (GFC)

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The Fortran language does not provide a standard library that implements generic containers, like linked lists, trees, dictionaries, etc. The GFC software provides an implementation of generic Fortran containers natively written in Fortran 2003/2008 language. The following containers are either already implemented or planned: Stack (done), Linked list (done), Tree (done), Dictionary (done), Queue (planned), Priority queue (planned).

  13. Containers [Chapter 6

    Science.gov (United States)

    Tara Luna; Thomas D. Landis; R. Kasten Dumroese

    2009-01-01

    The choice of container is one of the most important considerations in developing a new nursery or growing a new species. Not only does the container control the amount of water and mineral nutrients that are available for plant growth, a container's type and dimensions also affect many operational aspects of the nursery such as bench size and type of filling and...

  14. Partiality and Container Monads

    DEFF Research Database (Denmark)

    Uustalu, Tarmo; Veltri, Niccolò

    2017-01-01

    the relationship between containers and lifting monads. We show that the lifting monads usually employed in type theory can be specified in terms of containers. Moreover, we give a precise characterization of containers whose interpretations carry a lifting monad structure. We show that these conditions...

  15. Pesticide loss to the atmosphere.

    Science.gov (United States)

    Plimmer, J R

    1990-01-01

    Pesticides may be transformed by chemical and biological processes or transported from the site of application by several processes including runoff, movement through the soil to ground water, volatilization, transport on soil particles, and wind erosion. Contamination of water by pesticide residues is a matter of concern as is contamination of the earth's atmosphere. The form in which a pesticide enters the air and the dimensions of pesticide-containing particulate matter affect movement and deposition. Local transport over distances of several miles may be responsible for adverse effects on nontarget species. Effects of long-range transport are more difficult to assess, but pesticides increase the burden of organic chemicals in the atmosphere. Field measurements of pesticide volatilization and deposition of residues in rainfall, particulate matter, fog, etc., provide information on the relative importance of these processes. Adequate information concerning chemical reactions of pesticides in air is lacking. Because it is desirable to minimize low-level human and environmental exposure resulting from airborne pesticide residues, potential for losses to the air should be taken into account in selecting pesticide formulations and application methods.

  16. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmcommunication, the results of both organic and inorganic analyses of aerosol samples from these two sites will be presented, compared and discussed. Results of this work are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC

  17. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  18. Intensifying the Atmospheric

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä

    2012-01-01

    The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its under...... sufficiently intense. All things considered, the paper should be read as a sociological contribution to theoretically reconstruct the concept of urban atmospheres in the light of spatial morphology.......The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its...

  19. Atmospheric pollution; Pollution atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lambrozo, J.; Guillossou, G. [EDF-Gas de France, Service des Etudes Medicales, 75 - Paris (France)

    2008-10-15

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  20. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  1. An introduction to atmospheric gravity waves

    CERN Document Server

    Nappo, Carmen J

    2012-01-01

    Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interac...

  2. Atmospheric Infrared Radiance Variability.

    Science.gov (United States)

    1981-05-27

    ATMOSPHERIC VARIABILITY ON INFRARED RADIANCE PREDICTIONS - T. C. Degges 53 5. ATMOSPHERIC STRUCTURE - C.H. HLmphrey, C.R. Philbrick, S.M. Silverman , T.F. Tuan...variations similar to those shown in Figure 2. In arctic and subarctic regions, sudden warmings and coolings of the winter stratosphere and mesosphere... Silverman \\Jr I",rre. (;.L~~sIalmratorN Hanscom Air Force Base, Manss. T.F. Tuan Universitv of Cincinnati Cincinnati, (tio M. Anapol S.S.G.. Inc. Waltham

  3. Atmosphere and Heritage

    DEFF Research Database (Denmark)

    Ventzel Riis, Nina

    2012-01-01

    -between of the materials. This is what we identify as atmosphere, an enveloping phenomenon that surrounds and affects our sensuous system and well-being when we approach, enter, stay or move in a building. When we leave the building again we carry this atmospheric multi-sensory experience with us without adequate methods...... to describe and document it. In this paper I will introduce both new and traditional approaches to document the architectural heritage with the final conclusion to describe both tangible and intangible values, it requires an objective and geometrical approach as well as a subjective and phenomenological...

  4. The reaction between iodine and silver under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Funke, F.; Greger, G.U.; Bleier, A.; Hellmann, S.; Morell, W. [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the kinetics in the reaction system I{sub 2}/Ag and I{sup -}/Ag in a laboratory-scale apparatus.Starting with I{sub 2} or I{sup -} solutions and silver powder suspensions, the decrease of soluted I{sub 2} or I{sup -}, respectively, due to fixation on the silver particles, was monitored as function of time using the radioactive tracer I-131. The measured data were analyzed using a model of first order kinetics with respect to the iodine concentration. However, the analysis using first order kinetics had to be performed separately in an early, fast reaction phase and in a late, slow reaction phase. The reason for this unexpected behaviour was not identified. Thus, rate constant, two for each test, were deduced from 14 I{sub 2}/Ag main tests and from 36 I{sup -}/Ag tests. No dependencies of the rate constants were found on the parameters temperature, initial iodine concentration, presence of boric acid, type of silver educt, and pretreatment of the silver educt prior to the tests. However, the stirring of the reaction solution generally enhanced the kinetics highlighting the importance of mass transfer. The I{sup -}/Ag reaction proceeded only if there was no inertization of the reaction solution by sparging with nitrogen. The temperature-independent rate constant for the early, fast I{sub 2}/Ag reaction phase is 2E-5 m/s. However, a smaller rate constant of 6E-6 m/s is recommended for use in source term calculations with IMPAIR, which already contains a first order model. Analogously, the temperature-independent I{sup -}/Ag reaction rate constant is 8E-6 m/s in an early, fast reaction phase. For use in source term calculations, a smaller rate constant of 2E-6 m/s is recommended. The lower bound of the I{sup -}/Ag rate constant was 3E-8 m/s which could be used in very conservative source term calculations. (author) 20 figs., 6 tabs., 15 refs.

  5. Evolution of fracture permeability of ultramafic rocks at hydrothermal conditions: An experimental study on serpentinization reactions

    Science.gov (United States)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2014-12-01

    Serpentinization of ultramafic rocks, during which olivine and pyroxene minerals are replaced by serpentine, magnetite, brucite and talc, is associated with hydrothermal activity at slow and ultraslow mid-ocean ridges. Serpentinization reactions affect hydrothermal fluid circulation by changing permeability of the oceanic crust. To advance our understanding of the evolution of permeability accompanying serpentinization reactions, we performed a series of flow-through experiments at a temperature of 260˚C, a confining pressure of 50 MPa, and a pore pressure of 20±2 MPa on cylindrical cores of ultramafic rocks (18 mm in diameter and 23 mm length) containing a single through-going tensile fracture. Pore fluid flow was in one direction and was collected routinely for chemical analysis. A 7.5 mm thick layer of the same rock, crushed and sieved (0.18-1.0 mm) was placed on the inlet end of the sample to produce a reactive heated reservoir for the pore fluid before entering the fracture. Multiple peridotite samples were tested, to investigate the effect of mineral assemblage on fluid-rock interaction and permeability. The initial effective permeability of the samples varied between 10-(15-18)m2, and it decreased by about 2 orders of magnitude in 7-10 days, showing that serpentinization reactions result in an initially rapid decrease in permeability. The best fit equation for the observed rate of change in permeability (k) is in the form of dk/dt=Ae-0.01t, where A is a constant and t is time. This result suggests that the rate of serpentine formation is largely controlled by the initial permeability rather than the properties of the reacting rock. Assuming flow between parallel plates, we find the effective crack width decreases by approximately 2 orders of magnitude during the experiments. The fluid chemistry and mineralogy data support the occurrence of serpentinization reactions. The early peak and monotonic decrease in the concentration of Mg, and Si in pore fluid

  6. [Opening medicine containers].

    Science.gov (United States)

    Glerup, E; Dengsø, H

    1990-07-09

    In connection with self-administration of medicine for patients with rheumatoid arthritis, patients with weak hands and elderly patients in general, the design of many medicine containers makes them awkward to handle for the patients. In this investigation 12 different medicine containers were tested. The 12 containers represent the antirheumatic medicine containers available on the market in Denmark in 1988. Sixty patients participated in the investigation. Thirty had rheumatoid arthritis and 30 had normal hand function. The age range was 40-85 years The patients had the choice between five possible answers concerning each container. In all patients, grip strength was measured. The patients with rheumatoid arthritis were classified in four functional classes, and pulpa-vola distance end thumb--5th MCP point distance were measured. The opening mechanisms of 29% of the antirheumatic medicine containers are unacceptable; these are plastic containers with a "push-off" top and suppository packs. 46%--(containers with screw cap or pressure dispensing) are considered acceptable. For 25% (tablet and capsule blister packs) the patients' estimate varied. It is important that medicine containers can be opened by the patients without difficulty, so that they do not present a hindrance to a correct intake of medicine or result in an unnecessary admission to hospital. The results of this investigation show that it is of continuous importance to encourage the production of medicine containers that comply with the requirements of the patients.

  7. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  8. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications ...

  9. Photochemical Formation of Sulfur-Containing Aerosols

    Science.gov (United States)

    Kroll, Jay A.; Vaida, Veronica

    2017-06-01

    In order to understand planetary climate systems, modeling the properties of atmospheric aerosols is vital. Aerosol formation plays an important role in planetary climates and is tied to feedback loops that can either warm or cool a planet. Sulfur compounds are known to play an important role in new particle aerosol formation and have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere; however, several discrepancies arise when comparing observations of the Venusian atmosphere with model predictions. This suggests that there are still problems in our fundamental understanding of sulfur chemistry. This is concerning given recent renewed interest in sulfate injections in the stratosphere for solar radiation management geo-engineering schemes. We investigate the role of sunlight as a potential driver of the formation of sulfur-containing aerosols. I will present recent work investigating the generation of large quantities of aerosol from the irradiation of mixtures of SO_2 with water and organic species, using a solar simulator that mimics the light that is available in the Earth's troposphere and the Venusian middle atmosphere. I will present on recent work done in our lab suggesting the formation of sulfurous acid, H_2SO_3, and describe experimental work that supports this proposed mechanism. Additionally I will present on new work showing the highly reactive nature of electronically excited SO_2 with saturated alkane species. The implications of this photochemically induced sulfur aerosol formation in the atmosphere of Earth and other planetary atmospheres will be discussed.

  10. ESA Atmospheric Toolbox

    Science.gov (United States)

    Niemeijer, Sander

    2017-04-01

    The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and

  11. Consumption of atmospheric methane by tundra soils

    OpenAIRE

    Whalen, SC; Reeburgh, WS

    1990-01-01

    EMISSION of methane from tundra soil contributes about 10% of the global atmospheric methane budget 1 . Moreover, tundra soils contain 15% of global soil carbon 2 , so the response of this large carbon reservoir to projected global warming 3,4 could be important. Coupled biological models 3-6 predict that a warmer climate will increase methane emission through increased rates of methanogenesis. Microbial oxidation of methane is, however, a possible control on emissions that has previously b...

  12. Pituitary tumors containing cholecystokinin

    DEFF Research Database (Denmark)

    Rehfeld, J F; Lindholm, J; Andersen, B N

    1987-01-01

    We found small amounts of cholecystokinin in the normal human adenohypophysis and therefore examined pituitary tumors from 87 patients with acromegaly, Cushing's disease, Nelson's syndrome, prolactinoma, or inactive pituitary adenomas. Five adenomas associated with Nelson's syndrome contained......'s disease and 7 acromegaly with adenomas containing ACTH. The cholecystokinin peptides from the tumors were smaller and less sulfated than cholecystokinin from normal pituitary glands. We conclude that ACTH-producing pituitary cells may also produce an altered form of cholecystokinin....

  13. CONTAIN independent peer review

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E. [Los Alamos National Lab., NM (United States); Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States). Nuclear Engineering Dept.; Denning, R.S. [Battelle Memorial Inst., Columbus, OH (United States); Khatib-Rahbar, M. [Energy Research Inc., Rockville, MD (United States); Loyalka, S.K. [Univ. of Missouri, Columbia, MO (United States); Smith, P.N. [AEA Technology, Dorchester (United Kingdom). Winfrith Technology Center

    1995-01-01

    The CONTAIN code was developed by Sandia National Laboratories under the sponsorship of the US Nuclear Regulatory Commission (NRC) to provide integrated analyses of containment phenomena. It is used to predict nuclear reactor containment loads, radiological source terms, and associated physical phenomena for a range of accident conditions encompassing both design-basis and severe accidents. The code`s targeted applications include support for containment-related experimental programs, light water and advanced light water reactor plant analysis, and analytical support for resolution of specific technical issues such as direct containment heating. The NRC decided that a broad technical review of the code should be performed by technical experts to determine its overall technical adequacy. For this purpose, a six-member CONTAIN Peer Review Committee was organized and a peer review as conducted. While the review was in progress, the NRC issued a draft ``Revised Severe Accident Code Strategy`` that incorporated revised design objectives and targeted applications for the CONTAIN code. The committee continued its effort to develop findings relative to the original NRC statement of design objectives and targeted applications. However, the revised CONTAIN design objectives and targeted applications. However, the revised CONTAIN design objectives and targeted applications were considered by the Committee in assigning priorities to the Committee`s recommendations. The Committee determined some improvements are warranted and provided recommendations in five code-related areas: (1) documentation, (2) user guidance, (3) modeling capability, (4) code assessment, and (5) technical assessment.

  14. CONTAINER TERMINALS IN EUROPE

    Directory of Open Access Journals (Sweden)

    Bart W. WIEGMANS

    2001-01-01

    Full Text Available This paper aims to address the linkage between logistics (in particular, the management of marketing channel flows and transport markets, while also the interaction between these two markets and intermodal container terminals is analysed. The marketing channel theory is used to describe all relevant actors and flows that run through marketing channels, starting with customer needs and ending with customer satisfaction. Porter's theory of competitive advantages is used to review competitive forces in both markets. Finally, a competitor analysis is performed for the logistics and transport market. These theories are applied so as to be able to determine the competitive position of intermodal container terminals with a view to the management of marketing channel flows and the physical transport of freight flows. Hence, the central question of this paper is: Which markets are served by intermodal container terminals and with whom are they competing? At present, neither the maritime container terminals nor the continental container terminals appear to have a significant influence in the logistics service market; they concentrate mainly on the physical movement of containers (transshipment. Furthermore, maritime container terminals and continental container terminals are not dominant players in the transport service market. Our conclusion is that continental terminals are predominantly competing with unimodal road transport, with neighbouring continental terminals and with barge transport companies.

  15. CONTAINER FOR USED TEXTILES

    CERN Document Server

    Relation with the Host States

    2001-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site. The Association has informed us that 3 306 kg of textiles were deposited in the container in 2000 and wishes to convey its warm gratitude to all donors.

  16. The Container Stowage Problem

    DEFF Research Database (Denmark)

    Janstrup, Kira; Rose, Trine Høyer; Andersen, Kent Høj

    The main purpose of this project is to use integer programming to create a model that minimizes the costs for container transportation by ship. To make the model as realistic as possible it will be based on information from a large shipping company about the vessel layout and container types. In ...

  17. Containers [Chapter 7

    Science.gov (United States)

    Thomas D. Landis; Tara Luna; R. Kasten Dumroese

    2014-01-01

    A nursery container could be anything that holds growing media, drains, allows for healthy root development, does not disintegrate before outplanting, and allows for an intact, healthy root system to be removed with a minimum of disturbance to the plant. Understanding how container properties affect plant health and growth, as well as nursery operations, will help...

  18. Applications of theoretical methods in atmospheric science

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Goodsite, Michael E.

    2008-01-01

    in addressing an issue of primary concern: understanding photochemical reaction rates at the various conditions found in the atmosphere. Atmospheric science includes both atmospheric chemistry and atmospheric physics, meteorology, climatology and the study of extraterrestrial atmospheres....

  19. Containment vessel drain system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  20. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  1. Habituating alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie

    This paper proposes embodied rhythmic sound habituation as a possible resource when designing contextualized technologies in critical atmospheres. The main contribution is collating the concept of rhythm as presented by Henri Lefebvre with the concept of sound habituation to help operationalize...... essential dynamic parameters when designing atmospheres. This research is based on the development of the novel research artefact Kidkit, designed for children, who are going to meet a hospitalized relative with fatal injuries in a Neuro–Intensive Care Unit. Sounds from hospital equipment have important...... functionality for the staff, but are stressful for visitors and patients, as they are designed to demand attention even though they have no direct functional meaning to them. By introducing sounds from the ward, integrated in the furniture as simple sound sample triggers, KidKit invites children to become...

  2. Atmosphere beyond Poetics

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    , the notion of atmosphere is presented as parallactic for designing experience in architectural fields, since it transgresses formal and material boundaries of bodies, opening a new gap that exposes the orthodox space-body-environment relationships to questions. It leads to the dissolution...... of the architectural ‘object’ and its fixity and offers a new understanding of context and space – approached as a field of dynamic relationships. It calls for a re-evaluation of perceptual experience, offering to architecture an expanded domain in which architecture manifests itself, including qualities – besides...... poetics and beauty – that architecture has long resisted. That is, it defines space as a contingent construction, performative and intensely affective. Accordingly, the intention is to critically analyse what the term atmosphere entails in architecture, and to expand its notion in terms of affective...

  3. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...... Protection Agency supported this work with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region and the work is part of the Danish contribution to Arctic Monitoring and Assessment Programme, AMAP......This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...

  4. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  5. Haze in Pluto's atmosphere

    Science.gov (United States)

    Cheng, A. F.; Summers, M. E.; Gladstone, G. R.; Strobel, D. F.; Young, L. A.; Lavvas, P.; Kammer, J. A.; Lisse, C. M.; Parker, A. H.; Young, E. F.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.

    2017-07-01

    Haze in Pluto's atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Pluto's surface at solar phase angles from ∼20° to ∼169°. The haze is structured with about ∼20 layers, and the extinction due to haze is greater in the northern hemisphere than at equatorial or southern latitudes. However, more haze layers are discerned at equatorial latitudes. A search for temporal variations found no evidence for motions of haze layers (temporal changes in layer altitudes) on time scales of 2 to 5 hours, but did find evidence of changes in haze scale height above 100 km altitude. An ultraviolet extinction attributable to the atmospheric haze was also detected by the ALICE ultraviolet spectrograph on New Horizons. The haze particles are strongly forward-scattering in the visible, and a microphysical model of haze is presented which reproduces the visible phase function just above the surface with 0.5 μm spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and account for UV extinction. A model of haze layer generation by orographic excitation of gravity waves is presented. This model accounts for the observed layer thickness and distribution with altitude. Haze particles settle out of the atmosphere and onto Pluto's surface, at a rate sufficient to alter surface optical properties on seasonal time scales. Pluto's regional scale albedo contrasts may be preserved in the face of the haze deposition by atmospheric collapse.

  6. DREAMING OF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom)

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  7. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  8. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  9. Evolution of the atmosphere.

    Science.gov (United States)

    Nunn, J F

    1998-01-01

    Planetary atmospheres depend fundamentally upon their geochemical inventory, temperature and the ability of their gravitational field to retain gases. In the case of Earth and other inner planets, early outgassing released mainly carbon dioxide and water vapour. The secondary veneer of comets and meteorites added further volatiles. Photodissociation caused secondary changes, including the production of traces of oxygen from water. Earth's gravity cannot retain light gases, including hydrogen. but retains oxygen. Water vapour generally does not pass the cold trap at the stratopause. In the archaean, early evolution of life, probably in hydrothermal vents, and the subsequent development of photosynthesis in surface waters, produced oxygen, at 3500 Ma or even earlier, becoming a significant component of the atmosphere from about 2000 Ma. Thereafter banded iron formations became rare, and iron was deposited in oxidized red beds. Atmospheric levels of carbon dioxide and oxygen have varied during the Phanerozoic: major changes may have caused extinctions. particularly the Permian/Triassic. The declining greenhouse effect due to the long-term decrease in carbon dioxide has largely offset increasing solar luminosity, and changes in carbon dioxide levels relate strongly to cycles of glaciation.

  10. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  11. Lanthanide-containing polyimides

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, Anne K.

    1987-01-01

    The preparation of a variety of lanthanide-containing polyimide films is described, and results of their characterization are presented. The properties investigated include the glass transition temperature, thermooxidative stability, magnetic susceptibility, and electrical conductivity of the polymer. Films containing lanthanide chlorides, fluorides, and sulfides are flexible, but those containing lanthanide nitrates are extremely brittle. The addition of lanthanide acetates and acetylacetonates caused immediate gelation of two of the synthesis-mixture ingredients. It was found that, in general, the addition of lanthanide to the polyimide increases the density and glass transition temperature of the polymer but slightly decreases the thermooxidative stability.

  12. The Container Stowage Problem

    DEFF Research Database (Denmark)

    Janstrup, Kira

    2010-01-01

    The main purpose of this project is to use integer programming to create a model that minimizes the costs for container transportation by ship. To make the model as realistic as possible it will be based on information from a large shipping company about the vessel layout and container types....... In addition to our project two other projects are made where an optimal solution to the container stowage problem also is tried to be found, but by using constraint programming and local search instead respectively. We will therefore in the end compare these three methods and the achieved results on fastness...

  13. Atmospheric Climate Experiment Plus

    Science.gov (United States)

    Lundahl, K.

    ACE+ is an atmospheric sounding mission using radio occultation techniques and is a combination of the two Earth Explorer missions ACE and WATS earlier proposed to ESA. ACE was highly rated by ESA in the Call for Earth Explorer Opportunity Missions in 1999 and was prioritised as number three and selected as a "hot-stand-by". A phase A study was carried out during 2000 and 2001. ACE will observe atmospheric parameters using radio occultations from an array of 6 micro-satellites which track the L- band signal of GPS satellites to map the detailed refractivity and thermal structure of the global atmosphere from surface to space. Water vapour and wind in Atmospheric Troposphere and Stratosphere WATS was the response to ESA's Call for Ideas for the next Earth Explorer Core Missions in 2001. WATS combines ACE GPS atmospheric occultations and LEO-LEO cross-link occultations. Cross-links strongly enhance the capability of measuring humidity relative to the ACE mission. The Earth Science Advisory Committée at ESA noted that the LEO-GNSS occultation technique is already well established through several missions in recent years and could not recommend WATS for a Phase A study as an Earth Explorer Core Mission. The ESAC was, however, deeply impressed by the LEO-LEO component of the WATS proposal and would regard it as regrettable if this science would be lost and encourages the ACE/WATS team to explore other means to achieve its scientific goal. ACE+ is therefore the response to ESA's 2nd Call for Earth Explorer Opportunity Missions in 2001 and will contribute in a significant manner to ESA's Living Planet Programme. ACE+ will considerably advance our knowledge about atmosphere physics and climate change processes. The mission will demonstrate a highly innovative approach using radio occultations for globally measuring profiles of humidity and temperature throughout the atmosphere and stratosphere. A constellation of 4 small satellites, tracking L-band GPS/GALILEO signals and

  14. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  15. NOAA's Tropical Atmosphere Ocean Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Realtime El Nino and La Nina data from the tropical Pacific Ocean is provided by the Tropical Atmosphere Ocean / Triangle Trans-Ocean buoy network (TAO/TRITON) of...

  16. FREIGHT CONTAINER LIFTING STANDARD

    Energy Technology Data Exchange (ETDEWEB)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  17. Lightweight flywheel containment

    Science.gov (United States)

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  18. ROQUEFORT: Containment data report

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, T.; Heinle, R.

    1994-12-01

    Information on the ROQUEFORT event at the Nevada Test Site is given. Emphasis is on emplacement conditions and stemming performance, especially pressures, radiation dose rates, and ground motion. The containment was considered successful.

  19. SECO containment data report

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, T.; Heinle, R.

    1997-06-01

    This containment data report for the SECO event provides a description of the event, including the site, emplacement, and instrumentation. Stemming performance is reported, including radiation, pressure, collapse phenomena, and motion. Surface array measurements are provided.

  20. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, M.; de la Fuente, D.; Díaz, I.; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morphology of steel c...

  1. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, Manuel; Fuente, Daniel de la; Díaz, Iván; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morpholog...

  2. CONTAINER FOR USED TEXTILES

    CERN Multimedia

    Relations avec les Pays hôtes

    2000-01-01

    We should like to remind you that a special container for textiles for the Association 'Réalise/Rapid Service' of Geneva is located in the car park outside the Meyrin site.The Association has informed us that 2 530 kg of textiles were deposited in the container in 1998 and wishes to convey its warm gratitude to all donors.Relations with the Host StatesTel. 75152

  3. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  4. Atmospheric Composition Instrumentation.

    Science.gov (United States)

    1977-12-26

    9fI urpAt .~~~ — 7. A THOR(a) 9. CON I RACT OR GRANT HUM BER(.) ! ~~~~~~~~ /otis 7 ~~ ~~F 1962~~~ 4~~~~~~ 1 H 9. FoRMING ORGANIZATION NAN NO...objective of the Upper Atmosphere Re- search Program is the acquisition of 1- nowledge of the ohysica] and chemica ) properties and phenomena of the vitally

  5. Atmospheric gas phase reactions

    Science.gov (United States)

    Platt, Ulrich

    This chapter introduces the underlying physicochemical principles and the relevance of atmospheric gas phase reactions. In particular, reaction orders, the concept of elementary reactions, definition of and factors determining reaction rates (kinetic theory of chemical reactions), and photochemical reactions are discussed. Sample applications of the pertinent reaction pathways in tropospheric chemistry are presented, particularly reactions involving free radicals (OH, NO3, halogen oxides) and their roles in the self-cleaning of the troposphere. The cycles of nitrogen and sulfur species as well as the principles of tropospheric ozone formation are introduced. Finally, the processes governing the stratospheric ozone layer (Chapman Cycle and extensions) are discussed.

  6. MOBILE ATMOSPHERIC SENSING

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-11-01

    Full Text Available Atmospheric quality dramatically deteriorates over the past decades around themetropolitan areas of China. Due to the coal combustion, industrial air pollution, vehicle waste emission, etc., the public health suffers from exposure to such air pollution as fine particles of particulates, sulfur and carbon dioxide, etc. Many meteorological stations have been built to monitor the condition of air quality over the city. However, they are installed at fixed sites and cover quite a small region. The monitoring results of these stations usually do NOT coincide with the public perception of the air quality. This paper is motivated to mimic the human breathing along the citys transportation network by the mobile sensing vehicle of atmospheric quality. To obtain the quantitative perception of air quality, the Environmental Monitoring Vehicle of Wuhan University (EMV-WHU has been developed to automatically collect the data of air pollutants. The EMV-WHU is equipped with GPS/IMU, sensors of PM2.5, carbon dioxide, anemometer, temperature, humidity, noise, and illumination, as well as the visual and infrared camera. All the devices and sensors are well collaborated with the customized synchronization mechanism. Each sort of atmospheric data is accompanied with the uniform spatial and temporal label of high precision. Different spatial and data-mining techniques, such as spatial correlation analysis, logistic regression, spatial clustering, are employed to provide the periodic report of the roadside air quality. With the EMV-WHU, constant collection of the atmospheric data along the Luoyu Road of Wuhan city has been conducted at the daily peak and non-peak time for half a year. Experimental results demonstrated that the EMV is very efficient and accurate for the perception of air quality. Comparative findings with the meteorological stations also show the intelligence of big data analysis and mining of all sorts of EMV measurement of air quality. It is

  7. Rectenna related atmospheric effects

    Science.gov (United States)

    Lee, J.

    1980-01-01

    Possible meteorological effects arising from the existence and operations of a solar power satellite (SPS) system rectenna are examined. Analysis and model simulations in some chosen site situations and meteorological conditions indicate that the meteorological effects of the construction and operation of a rectenna are small, particularly outside the boundary of the structure. From weather and climate points of view, installation of an SPS rectenna seems likely to have effects comparable with those due to other nonindustrial land use changes covering the same area. The absorption and scattering of microwave radiation in the troposphere would have negligible atmospheric effects.

  8. Atmospheric pseudohalogen chemistry

    OpenAIRE

    Lary, D. J.

    2004-01-01

    There are at least three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. The first is well known, HCN is a product and marker of biomass burning. However, if a detailed ion chemistry of lightning is considered then it is almost certain than in addition to lightning producing NOx, it also produces HOx and HCN. Unlike NOx and HOx, HCN is long-lived and could therefore ...

  9. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  10. Explosion containment device

    Science.gov (United States)

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  11. Atmospheric mercury—An overview

    Science.gov (United States)

    Schroeder, William H.; Munthe, John

    This paper presents a broad overview and synthesis of current knowledge and understanding pertaining to all major aspects of mercury in the atmosphere. The significant physical, chemical, and toxicological properties of this element and its environmentally relebant species encountered in the atmosphere are examined. Atmospheric pathways and processes considered herein include anthropogenic as well as natural sources of Hg emissions to the atmosphere, aerial transport and dispersion (including spatial and temporal variability), atmospheric transformations (both physical and chemical types), wet and dry removal/deposition processes to Earth's surface. In addition, inter-compartmental (air-water/soil/vegetation) transfer and biogeochemical cycling of mercury are considered and discussed. The section on numerical modelling deals with atmospheric transport models as well as process-oriented models. Important gaps in our current knowledge of mercury in the atmospheric environment are identified, and suggestions for future areas of research are offered.

  12. Silicone-containing composition

    Science.gov (United States)

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  13. Livet er en container

    DEFF Research Database (Denmark)

    Moestrup, Steffen Damkjær

    2008-01-01

    Med Container går Lukas Moodysson for alvor filmeksperimentets vej. Filmen har en række indholdsmæssige træk til fælles med Moodyssons tidligere værker, men den formmæssige tilgang skal især findes i den amerikanske avantgardefilm.......Med Container går Lukas Moodysson for alvor filmeksperimentets vej. Filmen har en række indholdsmæssige træk til fælles med Moodyssons tidligere værker, men den formmæssige tilgang skal især findes i den amerikanske avantgardefilm....

  14. Herbs Indoors. Container Gardening.

    Science.gov (United States)

    Hatch, Duane

    This package consists of two bilingual instructional booklets for use in helping Indochinese refugees learn basic gardening skills. Included in the package are Cambodian, Vietnamese, and English translations of instructions for raising herbs indoors and Cambodian and English translations of guidelines for container gardening. The herb booklet…

  15. Confinement contains condensates

    DEFF Research Database (Denmark)

    Brodsky, S. J.; Roberts, C. D.; Shrock, R.

    2012-01-01

    been viewed as constant empirical mass scales that fill all space-time, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical...

  16. Caustics of atmospheric waves

    Science.gov (United States)

    Godin, Oleg A.

    2015-04-01

    Much like light and sound, acoustic-gravity waves in inhomogeneous atmosphere often have a caustic or caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Increase of the wave magnitude in the vicinity of a caustic makes such vicinities of primary interest in a number of problems, where a signal needs to be separated from a background noise. The value of wave focusing near caustics should be carefully quantified in order to evaluate possible nonlinearities promoted by the focusing. Physical understanding of the wave field in the vicinity of a caustic is also important for understanding of the wave reflection from and transmission (tunneling) through the caustic. To our knowledge, in contrast to caustics of acoustic, electromagnetic, and seismic waves as well as gravity waves in incompressible fluids, asymptotics of acoustic-gravity waves in the vicinity of a caustic have never been studied systematically. In this paper, we fill this gap. Atmospheric waves are considered as linear acoustic-gravity waves in a neutral, horizontally stratified, moving ideal gas of variable composition. Air temperature and wind velocity are assumed to be gradually varying functions of height, and slowness of these variations determines the large parameter of the problem. The scale height of the atmosphere can be large or small compared to the vertical wavelength. It is found that the uniform asymptotics of the wave field in the presence of a simple caustic can be expressed in terms of the Airy function and its derivative. As for the acoustic waves, the argument of the Airy function is expressed in terms of the eikonal calculated in the ray, or WKB, approximation. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In the uniform asymptotics, the terms with the Airy function and its derivative are weighted by cosine

  17. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    is vital for the more compact type of slab detectors. As well, the MACRO experiment ... sisting of those events in which both vertex and track ends remain in the fiducial volume. There are also 'partially .... more or less than 1.3 GeV) for single track events identified as either electron-like or muon- like. The partially contained ...

  18. Future Atmospheric Neutrino Detectors

    CERN Document Server

    Geiser, A

    2000-01-01

    Future experiments focusing on atmospheric neutrino detection are reviewed. One of the main goals of these experiments is the detection of an unambiguous oscillation pattern (nu_mu reappearance) to prove the oscillation hypothesis. Further goals include the discrimination of nu_mu - nu_tau and nu_mu - nu_sterile oscillations, and the detection of a potential small nu_mu - nu_e contribution. The search for matter effects in three or more flavour oscillations can be used to constrain hybrid oscillation models and potentially measure the sign of delta m^2. The detectors and measurement techniques proposed to achieve these goals are described, and their physics reach is discussed.

  19. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    photosynthetically fixing it into their tissues.  To calculate the atmospheric conductance or mass transfer  coefficient in vegetated fields of  maize  we used...uptake through aerodynamic and leaf boundary layers and the stomata of  maize  at  field scale as determined by continuous stable isotope measurements... digestion  with specific homing endonucleases (Figure 4).  Completion of the triple vector construction of mmoX, Y and Z in E. coli was confirmed by PCR

  20. Atmospheric propagation of THz radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

    2005-11-01

    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  1. Laboratory for Atmospheres 2008 Technical Highlights

    Science.gov (United States)

    Cote, Charles E.

    2009-01-01

    out in collaboration with other laboratories and research groups within the Earth Sciences Division, across the Sciences and Exploration Directorate, and with partners in universities and other Government agencies. The Laboratory for Atmospheres is a vital participant in NASA s research agenda. Our Laboratory often has relatively large programs, sizable satellite missions, and observational campaigns that require the cooperative and collaborative efforts of many scientists. We ensure an appropriate balance between our scientists responsibility for these large collaborative projects and their need for an active individual research agenda. This balance allows members of the Laboratory to continuously improve their scientific credentials. Members of the Laboratory interact with the general public to support a wide range of interests in the atmospheric sciences. Among other activities, the Laboratory raises the public s awareness of atmospheric science by presenting public lectures and demonstrations, by making scientific data available to wide audiences, by teaching, and by mentoring students and teachers. The Laboratory makes substantial efforts to attract new scientists to the various areas of atmospheric research. We strongly encourage the establishment of partnerships with Federal and state agencies that have operational responsibilities to promote the societal application of our science products. This report describes our role in NASA s mission, gives a broad description of our research, and summarizes our scientists major accomplishments during calendar year 2008. The report also contains useful information on human resources, scientific interactions, and outreach activities.

  2. ESR of vitreous silica containing hydroxyl

    Energy Technology Data Exchange (ETDEWEB)

    Shendrik, A.V. (Latvijskij Gosudarstvennyj Univ., Riga (USSR))

    1981-09-16

    H(II) centers in vitreous silica containing Al or Ge were investigated by ESR measurements at 77 K. Vitreous silica samples were melted in an electric resistance furnace in hydrogen atmosphere or by SiCl/sub 4/ vapor oxidation in the flame of an oxyhydrogen burner and irradiated with /sup 60/Co-gamma doses of 5 x 10/sup 7/ rad at 300 K. It was found that hydrogen atoms are localized at the H(II) center near the non-bridging oxygen of the germanium-oxygen structural unit.

  3. Melt containment member

    Science.gov (United States)

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  4. Human gliomas contain morphine

    DEFF Research Database (Denmark)

    Olsen, Peter; Rasmussen, Mads; Zhu, Wei

    2005-01-01

    BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogeno...... of the solutions used in the study nor was it present as a residual material in blank HPLC runs. CONCLUSIONS: Morphine is present in human gliomas, suggesting that it may exert an action that effects tumour physiology/pathology.......BACKGROUND: Morphine has been found in cancer cell lines originating from human and animal cells. Thus, it became important to demonstrate whether or not actual tumours contain this opiate alkaloid. MATERIAL/METHODS: Human glioma tissues were biochemically treated to isolate and separate endogenous...

  5. Atmospheric Neutrino Results from Super-Kamiokande

    CERN Document Server

    Toshito, T

    2001-01-01

    We present atmospheric neutrino results from a 71 kiloton year (1140 days) exposure of the Super-Kamiokande detector. Our data are well explained by nu /sub mu / to nu /sub tau / 2-flavor oscillations. We update the 3 flavor analysis of contained events. Also we have been attempting to discriminate between the possible oscillating partners of the muon neutrino as being either the tau neutrino or the sterile neutrino. These tests use expected differences due to neutral currents and matter effects to discriminate the possibilities. We find no evidence favoring sterile neutrinos, and reject the hypothesis at 99% confidence level.

  6. Concrete containment aging study

    Energy Technology Data Exchange (ETDEWEB)

    Pachner, J. [International Atomic Energy Agency, Vienna (Austria); Tai, T.M. [Bechtel National, Inc., Oak Ridge, TN (United States); Naus, D. [Oak Ridge National Lab., TN (United States)

    1994-04-01

    In 1989, IAEA initiated a pilot study on the management of aging of nuclear power plant components. The Phase I and II studies of concrete containment are discussed. With the data base, plant owners will be able to review and enhance their existing programs. IAEA will analyze data provided by participating plants and the report is scheduled to be released by late 1994 (final report release mid-1995).

  7. Secondary Atmospheres on HD 219134 b and c

    Science.gov (United States)

    Dorn, Caroline; Heng, Kevin

    2018-01-01

    We analyze the interiors of HD 219134 b and c, which are among the coolest super-Earths detected thus far. Without using spectroscopic measurements, we aim at constraining if the possible atmospheres are hydrogen-rich or hydrogen-poor. In the first step, we employ a full probabilistic Bayesian inference analysis to rigorously quantify the degeneracy of interior parameters given the data of mass, radius, refractory element abundances, semimajor axes, and stellar irradiation. We obtain constraints on structure and composition for core, mantle, ice layer, and atmosphere. In the second step, we aim to draw conclusions on the nature of possible atmospheres by considering atmospheric escape. Specifically, we compare the actual possible atmospheres to a threshold thickness above which a primordial (H2-dominated) atmosphere can be retained against evaporation over the planet’s lifetime. The best-constrained parameters are the individual layer thicknesses. The maximum radius fraction of possible atmospheres are 0.18 and 0.13 R (radius), for planets b and c, respectively. These values are significantly smaller than the threshold thicknesses of primordial atmospheres: 0.28 and 0.19 R, respectively. Thus, the possible atmospheres of planets b and c are unlikely to be H2-dominated. However, whether possible volatile layers are made of gas or liquid/solid water cannot be uniquely determined. Our main conclusions are (1) the possible atmospheres for planets b and c are enriched and thus possibly secondary in nature, and (2) both planets may contain a gas layer, whereas the layer of HD 219134 b must be larger. HD 219134 c can be rocky.

  8. Pituitary tumors containing cholecystokinin

    DEFF Research Database (Denmark)

    Rehfeld, J F; Lindholm, J; Andersen, B N

    1987-01-01

    We found small amounts of cholecystokinin in the normal human adenohypophysis and therefore examined pituitary tumors from 87 patients with acromegaly, Cushing's disease, Nelson's syndrome, prolactinoma, or inactive pituitary adenomas. Five adenomas associated with Nelson's syndrome contained...... increased amounts of cholecystokinin, the concentrations being extremely high in two: 8281 and 13,453 pmol per gram as compared with less than 30 pmol per gram in normal pituitary glands. The cholecystokinin concentrations were moderately increased in adenomas from another 12 patients, of whom 5 had Cushing...

  9. Confinement Contains Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  10. Regular expression containment

    DEFF Research Database (Denmark)

    Henglein, Fritz; Nielsen, Lasse

    2011-01-01

    * for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry...... to be undecidable. We discuss application of regular expressions as types to bit coding of strings and hint at other applications to the wide-spread use of regular expressions for substring matching, where classical automata-theoretic techniques are a priori inapplicable. Neither regular expressions as types nor...

  11. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  12. Remote measurement of atmospheric pollutants

    Science.gov (United States)

    Allario, F.; Hoell, J.; Seals, R. K.

    1979-01-01

    The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.

  13. Atmospheres of hot alien Worlds

    NARCIS (Netherlands)

    Brogi, Matteo

    2014-01-01

    This thesis presents observations of exoplanets orbiting very close to their parent star, with a particular focus on a novel technique for characterizing their atmospheres. This is based on the use of high-resolution spectroscopy from the ground. The first detection of the atmosphere of a

  14. atmospheric transparency under harmattan conditions

    African Journals Online (AJOL)

    2006-05-20

    May 20, 2006 ... air, the transparency of the atmosphere is also strongly dependent on the elevation angle of the sun. Hence, to contrast the atmospheric transmission characteristics in the two harmattan conditions, measurements made at the same solar elevation (42. °) and optical air mass (m, = 1.5) have been used.

  15. Box models for the evolution of atmospheric oxygen: an update

    Science.gov (United States)

    Kasting, J. F.

    1991-01-01

    A simple 3-box model of the atmosphere/ocean system is used to describe the various stages in the evolution of atmospheric oxygen. In Stage I, which probably lasted until redbeds began to form about 2.0 Ga ago, the Earth's surface environment was generally devoid of free O2, except possibly in localized regions of high productivity in the surface ocean. In Stage II, which may have lasted for less than 150 Ma, the atmosphere and surface ocean were oxidizing, while the deep ocean remained anoxic. In Stage III, which commenced with the disappearance of banded iron formations around 1.85 Ga ago and has lasted until the present, all three surface reservoirs contained appreciable amounts of free O2. Recent and not-so-recent controversies regarding the abundance of oxygen in the Archean atmosphere are identified and discussed. The rate of O2 increase during the Middle and Late Proterozoic is identified as another outstanding question.

  16. Organometalic carbosilane polymers containing vanadium and their preparation

    Science.gov (United States)

    Yajima, S.; Okamura, K.; Shishido, T.; Fukuda, K.

    1983-01-01

    The present invention concerns a new organometallic polymer material containing in part a vanadium-siloxane linkage (V-0-Si), which has excellent resistance to heat and oxidation and a high residue ratio after high temperature treatment in a non-oxidizing atmosphere, for example, nitrogen, argon, helium, ammonia, or hydrogen.

  17. Atmosphere-Ocean-Crust Interactions in Earth's Early Life

    Directory of Open Access Journals (Sweden)

    Lin-gun Liu

    2013-01-01

    Full Text Available For as long as infalling planetesimals contained some hydrous and carbonate minerals, Earth¡¦s proto-atmosphere had to be formed during accretion and was composed primarily of CO2. H2O was released and incorporated into the proto-atmosphere to form H2O-CO2 supercritical fluid after accretion when the event of a giant Moon-forming impact took place. When Earth¡¦s surface cooled down to about 450 - 300¢XC, the indigenous ocean began to form and it was a hot ocean of either a dense supercritical H2O-CO2 mixture or a fluid H2O-CO2 mixture. The hot ocean interacted both on the surface with CO2-dominated proto-atmosphere and on the bottom with feldspars in the crust. The latter removed CO2 from the ocean to form carbonates and clay minerals on the crust. The interactions on the surface would quickly dissolve CO2 into the indigenous ocean from the atmosphere and would evaporate H2O into the atmosphere. This would effectively remove all CO2 in the proto-atmosphere via the ocean to the crust. The interactions among atmosphere, ocean and crust would exchange not only materials but heat between different bodies. This in turn might have helped Earth cool down more rapidly than its neighbor Venus.

  18. Meteorite constraints on Martian atmospheric loss and paleoclimate

    Science.gov (United States)

    Cassata, William S.

    2017-12-01

    The evolution of Mars' atmosphere to its currently thin state incapable of supporting liquid water remains poorly understood and has important implications for Martian climate history. Martian meteorites contain trapped atmospheric gases that can be used to constrain both the timing and effectiveness of atmospheric escape processes. In this paper, measurements of xenon isotopes in two ancient Martian meteorites, ALH 84001 and NWA 7034, are reported. The data indicate an early episode of atmospheric escape that mass fractionated xenon isotopes culminated within a few hundred million years of planetary formation, and little change to the atmospheric xenon isotopic composition has occurred since this time. In contrast, on Earth atmospheric xenon fractionation continued for at least two billion years (Pujol et al., 2011). Such differences in atmospheric Xe fractionation between the two planets suggest that climate conditions on Mars may have differed significantly from those on Archean Earth. For example, the hydrogen escape flux may not have exceeded the threshold required for xenon escape on Mars after 4.2-4.3 Ga, which indicates that Mars may have been significantly drier than Earth after this time.

  19. Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity.

    Science.gov (United States)

    Jochum, Tobias; Fastnacht, Agnes; Trumbore, Susan E; Popp, Jürgen; Frosch, Torsten

    2017-01-17

    Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.

  20. The determination of turbulent structures in the atmospheric surface layer

    NARCIS (Netherlands)

    Schols, J.L.J.

    1984-01-01

    The turbulent flow in the atmospheric surface layer (ASL) contains turbulent structures, which are defined as spatially coherent, organized flow motions. 'Organized' means that characteristic patterns, observed at a point in space, occur almost simultaneously in more than one turbulence signal and

  1. The role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Enghoff, Martin B.; Pedersen, J. O. P.; Bondo, T.

    2008-01-01

    Aerosol nucleation has been studied experimentally in purified, atmospheric air, containing trace amounts of water vapor, ozone, and sulfur dioxide. The results are compared with model calculations. It is found that an increase in ionization by a factor of 10 increases the production rate of stable...

  2. A Regulation for the Control of Atmospheric Pollution, Amended Version.

    Science.gov (United States)

    Puerto Rico Environmental Quality Board, San Juan.

    Nine articles, related to the preservation of the natural quality of the air, and to prevention, elimination and control of atmospheric pollution in the Commonwealth of Puerto Rico, are contained in this document. These articles were written and enacted by the Environmental Quality Board in accordance with Law No. 9, approved June 18, 1970 -…

  3. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    Science.gov (United States)

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  4. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  5. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from unknown platforms in the TOGA Area - Pacific from 1992-11-10 to 1993-02-20 (NODC Accession 9600030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains Ocean Station Chemistry data collected in TOGA Area - Pacific (30 N to 30 S) as part of Tropical Ocean Global Atmosphere (TOGA) and Coupled...

  6. LABAN containment data report

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, T.; Heinle, R.

    1995-05-01

    The LABAN event was detonated in hole U2ff of the Nevada Test Site. The device had a depth-of-burial of 326 m in the alluvium of Area 4, about 240 m above the standing water level (SWL). Stemming of the 2.44 m diameter emplacement hole followed the plan. A log of the stemming operations was maintained by Holmes and Narver. Detonation time was 06:33 PDT on August 3, 1983. About 75 minutes later the chimney began collapsing to the surface. A major collapse event occurred 5 minutes later with episodes continuing for the next 20 minutes. No radiation arrivals were detected in the emplacement hole at depths less than 106 m and the LABAN containment was considered successful.

  7. HAVARTI containment data report

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, T.; Heinle, R.

    1997-06-01

    The HAVARTI event was detonated in hole U10bg of the Nevada Test Site. The HAVARTI device had a depth-of-burial of 200 m in the Tunnel Bed tuffs of area 10, about 280 m above the Paleozoic formation and 330 m above the standing water level. Stemming of the 2.44 m diameter emplacement hole is described. A log of the stemming operations was maintained by Holmes & Narver). Detonation time was 06:41 PDT on August 5 1981. At a depth of 149 m there was an indication of subsurface collapse occurring 1780 s after detonation. No radiation arrivals were detected above ground and the HAVARTI containment was considered successful.

  8. Chasing Neoproterozoic Atmospheric Oxygen Ghosts

    Science.gov (United States)

    Bjerrum, C. J.; Canfield, D. E.; Dahl, T. W.

    2016-12-01

    Increasing atmospheric oxygen has been considered a necessary condition for the evolution of animal life for over half a century. While direct proxies for atmospheric oxygen are difficult to obtain, a number of indirect proxies have been giving us a ghost image of rising atmospheric oxygen at the close of the Precambrian. In this context, redox sensitive elements and isotopes represent the hallmark for a significant reduction in anoxic areas of the world ocean, implicating a significant rise of atmospheric oxygen during the Neoproterozoic. Here, we test to what degree redox sensitive elements in ancient marine sediments are proxies of atmospheric oxygen. We model the redox-chemical evolution of the shelf seas and ocean using a combination of 3D high resolution shelf sea models and a simpler global ocean biogeochemical model including climate weathering feedbacks, a free sea level and parameterized icecaps. We find that ecosystem evolution would have resulted in reorganization of the nutrient and redox balance of the shelf-ocean system causing a significant increase in oxygenated areas that permitted a boosting of trace metal concentrations in the remaining anoxic areas. While this reorganization takes place there is limited net change in the modelled atmospheric oxygen, warning us against interpreting changing trace metal concentrations and isotopes as reflecting a rise in atmospheric oxygen.

  9. Modelling of pollution dispersion in atmosphere; Modelowanie procesow propagacji skazen w atmosferze

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M.; Stankiewicz, R.

    1994-12-31

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs.

  10. Saturn: atmosphere, ionosphere, and magnetosphere.

    Science.gov (United States)

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?

  11. Scientific investigations of atmospheric processes

    Science.gov (United States)

    1994-01-01

    Research was performed in atmospheric, dynamical, and thermodynamical processes and in other disciplines necessary to accomplish the following tasks: develop procedures for combining generalized radiative transfer codes with dynamic atmospheric model codes; perform diagnostic analysis of atmospheric processes to gain a better understanding of the evolution and development of mesoscale circulation systems and their precipitation structures; and to develop algorithms and software necessary to graphically display diagnostic sets on the MSFC McIDAS and EADS to facilitate scientific study and sensor capability evaluation. Research activities during this reporting period are detailed.

  12. Hydrodynamics of oceans and atmospheres

    CERN Document Server

    Eckart, Carl

    1960-01-01

    Hydrodynamics of Oceans and Atmospheres is a systematic account of the hydrodynamics of oceans and atmospheres. Topics covered range from the thermodynamic functions of an ideal gas and the thermodynamic coefficients for water to steady motions, the isothermal atmosphere, the thermocline, and the thermosphere. Perturbation equations, field equations, residual equations, and a general theory of rays are also presented. This book is comprised of 17 chapters and begins with an introduction to the basic equations and their solutions, with the aim of illustrating the laws of dynamics. The nonlinear

  13. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  14. NASA Cold Land Processes Experiment (CLPX 2002/03): Atmospheric analyses datasets

    Science.gov (United States)

    Glen E. Liston; Daniel L. Birkenheuer; Christopher A. Hiemstra; Donald W. Cline; Kelly Elder

    2008-01-01

    This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over...

  15. Characterization of in vitro chlamydial cultures in low-oxygen atmospheres

    DEFF Research Database (Denmark)

    Juul, Nicolai Stefan; Jensen, Helene; Hvid, Malene

    2007-01-01

    To mimic in vivo conditions during chlamydial infections, Chlamydia trachomatis serovar D and Chlamydia pneumoniae CWL029 were cultured in low-oxygen atmospheres containing 4% O(2), with parallel controls cultured in atmospheric air. Both were enriched with 5% CO(2). The results showed a dramatic...

  16. Surface Composition of Mars: Results from a New Atmospheric Compensation Technique Applied to TES

    Science.gov (United States)

    Kirkland, L. E.; Herr, K. C.; Ward, J.; Keim, E. R.; Hackwell, J. H.; McAfee, J. M.

    2002-01-01

    Before TES (Thermal Emission Spectrometry) spectra can be used to model surface compositions, they must have a strong atmospheric compensation applied. We explore a very different atmospheric retrieval process, and compare results and implications for the derived surface composition. Additional information is contained in the original extended abstract.

  17. Comprehensive Ocean - Atmosphere Data Set (COADS) LMRF Arctic Subset, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Comprehensive Ocean - Atmosphere Data Set (COADS) Long Marine Reports Fixed-Length (LMRF) Arctic subset contains marine surface weather reports for regions north...

  18. LBA-ECO TG-06 Vertical Profiles of Atmospheric Trace Gases over the Amazon Basin

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains measurements of atmospheric carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), hydrogen (H2), nitrous oxide (N2O), and sulfur...

  19. Trace Atmospheric Gas Analyzer (TAGA) Dispersant Data for BP Spil/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  20. LBA-ECO TG-06 Vertical Profiles of Atmospheric Trace Gases over the Amazon Basin

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains measurements of atmospheric carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), hydrogen (H2), nitrous oxide (N2O), and...

  1. MGS RS: ATMOSPHERIC TEMPERATURE-PRESSURE PROFILES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains over 21000 temperature-pressure profiles (TPS files) of the neutral atmosphere derived from Mars Global Surveyor (MGS) radio occultation data....

  2. Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains atmospheric mixing ratios of hydrogen peroxide and methylhydroperoxide at 21 sites on the West Antarctic Ice Sheet (WAIS) were obtained from...

  3. International Comprehensive Ocean-Atmosphere Data Set (ICOADS) R3.0 netCDF version

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains observations of global ocean meteorological and oceanographic variables, such as sea surface and air temperatures, wind, pressure, humidity,...

  4. Venus: Jet-setting atmosphere

    Science.gov (United States)

    Hauchecorne, Alain

    2017-09-01

    A fast equatorial jet in the Venusian cloud layer has been revealed by the Akatsuki orbiter by tracking cloud movement in near-infrared images. The findings suggest that the Venusian atmosphere is more variable than previously thought.

  5. Atmospheric Research 2016 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2017-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  6. Fungistatic Effects of Controlled Atmospheres

    Science.gov (United States)

    Littlefield, Neil A.; Wankier, Bartley N.; Salunkhe, D. K.; Mcgill, J. N.

    1966-01-01

    The fungistatic effects of controlled atmospheres composed of increased CO2 and decreased O2 was studied in a manner such that the condition of stored fruit was not a factor in the growth of the fungi. Varying concentrations of O2 and CO2 were used. The fungi used were Botrytis alli, Rhizopus nigricans, and Penicillium expansum. The results showed that controlled atmospheres, within the limits of concentrations usable for fruit storage, are effective fungistatic agents. PMID:5951331

  7. Atmospheric science and power production

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, D. (ed.)

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  8. Gestodene-containing contraceptives.

    Science.gov (United States)

    Kuhl, H; Jung-Hoffmann, C; Wiegratz, I

    1995-12-01

    As GSD is the most potent progestogen used in oral contraceptives, the doses of GSD can be lower than those of other progestogen components. The monophasic (30 micrograms EE + 75 micrograms GSD) and the triphasic formulation (30 micrograms EE + 50 micrograms GSD/40 micrograms EE + 70 micrograms GSD/30 micrograms EE + 100 micrograms GSD) suppress gonadotropin release and ovarian function profoundly and inhibit ovulation reliably. The strong anti-estrogenic and progestogenic effectiveness of GSD is based on the high GSD serum concentrations achieved during daily intake. Because of the weak androgenic properties of GSD, both formulations can be characterized as estrogen-dominant with respect to their hepatic effects. Except for the first cycles, both formulations afford good cycle control, and the rate of side effects is similar to that with comparable low-dose oral contraceptives. The levels of total and free androgens and androgen precursors, as well as of peripheral androgen activity, are significantly reduced, resulting in a reduced incidence of acne. The concentrations of SHBG and other serum-binding globulins are elevated considerably, and thyroid function is almost unaffected. The estrogen-dominant effect on hepatic metabolism of both formulations also is reflected by a significant increase in the levels of triglycerides and VLDL, HDL, and some apolipoproteins, while LDL-CH and total CH remain unchanged. Similar to other low-dose oral contraceptives, the GSD-containing preparations cause a slight impairment of glucose tolerance that does not appear to be of clinical relevance. However, a significant increase exists in pro-coagulatory and fibrinolytic activity that leads to a considerable stimulation of fibrin turnover. In predisposed women, this may contribute to an elevated risk of venous and arterial thromboembolic diseases.

  9. Aspects of atmospheric turbulence related to scintillometry

    NARCIS (Netherlands)

    Braam, M.

    2014-01-01

    Aspects of atmospheric turbulence related to scintillometry Atmospheric turbulence is the main vertical transport mechanism in the atmospheric boundary layer. The surface fluxes related to this turbulent transport are the sensible (

  10. Explosion characteristics of flammable organic vapors in nitrous oxide atmosphere.

    Science.gov (United States)

    Koshiba, Yusuke; Takigawa, Tomihisa; Matsuoka, Yusaku; Ohtani, Hideo

    2010-11-15

    Despite unexpected explosion accidents caused by nitrous oxide have occurred, few systematic studies have been reported on explosion characteristics of flammable gases in nitrous oxide atmosphere compared to those in air or oxygen. The objective of this paper is to characterize explosion properties of mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with nitrous oxide and nitrogen using three parameters: explosion limit, peak explosion pressure, and time to the peak explosion pressure. Then, similar mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with oxygen and nitrogen were prepared to compare their explosion characteristics with the mixtures containing nitrous oxide. The explosion experiments were performed in a cylindrical vessel at atmospheric pressure and room temperature. The measurements showed that explosion ranges of the mixtures containing nitrous oxide were narrow compared to those of the mixtures containing oxygen. On the other hand, the maximum explosion pressures of the mixtures containing nitrous oxide were higher than those of the mixtures containing oxygen. Moreover, our experiments revealed that these mixtures differed in equivalence ratios at which the maximum explosion pressures were observed: the pressures of the mixtures containing nitrous oxide were observed at stoichiometry; in contrast, those of the mixtures containing oxygen were found at fuel-rich area. Chemical equilibrium calculations confirmed these behaviors. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Storage Space Allocation of Inbound Container in Railway Container Terminal

    OpenAIRE

    Li Wang; Xiaoning Zhu; Zhengyu Xie

    2014-01-01

    Efficient storage strategy of railway container terminals is important in balancing resource utilization, reducing waiting time, and improving handling efficiency. In this paper, we consider the formulation and solution algorithm for storage space allocation problem of inbound containers in railway container terminal. The problem is formulated as two-stage optimization models, whose objectives are balancing the workload of inbound containers and reducing the overlapping amounts. An algorithm ...

  12. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  13. Brown dwarf Atmosphere Monitoring (BAM): Characterizing the Coolest Atmosphere

    Science.gov (United States)

    Patience, Jennifer

    2014-10-01

    Using the G141 WFC3/IR grism, we propose a HST spectrophotometric monitoring study of the coolest variable brown dwarf (~650K) identified as part of our Brown dwarf Atmosphere Monitoring (BAM) program. The proposed observations will enable exploration of the dynamic atmospheric evolution of a benchmark T8.5 binary brown dwarf system, which we have discovered to exhibit the second-largest amplitude variation amongst all currently known brown dwarf variables. The close binarity of this system requires the exquisite stability of the HST point spread function to enable resolved monitoring of both components and to discriminate the source of the variability - the second component is a planetary mass object based on evolutionary models. This BAM follow-up study is designed to characterize both the longitudinal and vertical structure of the atmospheric properties of this system via multi-wavelength observations covering the entire spectral range of the WFC3/IR detector. Additionally, by monitoring the target over two separate epochs we will measure the evolution of atmospheric features giving rise to the flux variations. The proposed program will provide a comprehensive dataset serving as a benchmark comparison to directly imaged planets, intensely irradiated Hot Jupiters, and synthetic atmospheric models incorporating different physical processes.

  14. Wind Forces on Container Ships

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent

    2012-01-01

    An investigation of the wind forces acting on a 9,000+ TEU container ship has been carried out through a series of wind tunnel tests. It was investigated how the wind forces depend on the container configuration on the deck using a 1:450 scale model and a series of appropriate container...... are presented as nondimensional coefficients. It is concluded, that the measured forces and moment depend on the container configuration on deck, and the results may provide a general idea of how the magnitude of the wind forces is affected by a given container stacking configuration on a similar container ship....

  15. Fluidtight Seal for a Container

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Edward F.

    1999-03-31

    A fluidtight seal for a container is formed by abutting a metal ring with a step machined in a convexo-concave container closure device and inserting this assembly into an open end of the container. Under compressive force, the closure device deforms causing the metal ring to pivot about the step on the closure device and interact with symmetrically tapered inner walls of the container to form a fluidtight seal between the container and the closure device. The compressive force is then withdrawn without affecting the fluidtight characteristic of the seal. A destructive force against the container closure device is necessary to destroy the fluidtight seal.

  16. Atmospheric Research 2014 Technical Highlights

    Science.gov (United States)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  17. Catalytic pyrolysis of biomass in inert and steam atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ersan Putun; Funda Ates; Ayse Eren Putun [Anadolu University, Eskisehir (Turkey). Department of Materials Science and Engineering

    2008-05-15

    The objective of this study was to investigate thermal conversion of a perennial shrub, Euphorbia rigida biomass sample with catalyst in inert (N{sub 2}) and steam atmospheres. Experimental studies were conducted in a well swept fixed bed reactor with a heating rate of 7{sup o}C/min to a final pyrolysis temperature of 550{sup o}C and with a mean particle size of 0.55 mm in order to determine the effect of different atmospheres with various catalyst ratios on pyrolysis yields and characteristics. The catalyst ratios were 5%, 10% and 20% (w/w) under nitrogen atmosphere with flow rates of 50, 100, 200 and 400 cm{sup 3}/min and steam atmosphere with well-swept velocities of 12, 25 and 52 cm{sup 3}/min. The optimum oil yield was obtained as 32.1% at the nitrogen flow rate of 200 cm{sup 3}/min, while it was obtained as 38.6% at steam flow rate of 25 cm{sup 3}/min when a 10% catalyst by weight according to the biomass was used. Higher oil yields were observed when biomass sample was treated in steam atmosphere than in inert (N{sub 2}) atmosphere. The oil composition was then analysed by elemental analyses techniques such as IR and GC-MS. The oil products were also fractionated by column chromatography. The bio-oils obtained at both atmospheres contain mainly n-alkanes and alkenes, aromatic compounds; mainly benzene and derivatives and PAHs, nitrogenated compounds and ketones, carboxylic acids, aldehydes, phenols and triterpenoid compounds. More oxygenated compounds and less substituted alkanes and alkenes were obtained in catalytic pyrolysis of E. rigida in the steam atmosphere. The experimental and chemical characterisation results showed that the oil obtained from perennial shrub, E. rigida can be used as a potential source of renewable fuel and chemical feedstock. 39 refs., 12 figs., 4 tabs.

  18. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from CAPE HATTERAS from 1988-10-01 to 1991-09-30 (NODC Accession 9500082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bottle biochemistry data from 16 casts containing Depth/ Temperature/ Salinity/ Oxygen/ phosphate/ nitrate/ nitrite/ chlorophyll/ phaeophytin/ pressure/ bacteria...

  19. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  20. CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

    2009-11-10

    The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

  1. Storage Space Allocation of Inbound Container in Railway Container Terminal

    Directory of Open Access Journals (Sweden)

    Li Wang

    2014-01-01

    Full Text Available Efficient storage strategy of railway container terminals is important in balancing resource utilization, reducing waiting time, and improving handling efficiency. In this paper, we consider the formulation and solution algorithm for storage space allocation problem of inbound containers in railway container terminal. The problem is formulated as two-stage optimization models, whose objectives are balancing the workload of inbound containers and reducing the overlapping amounts. An algorithm implement process based on rolling horizon approach is designed to solve the proposed models. Computational experiments on an actual railway container terminal show that the proposed approach is effective to solve space allocation problem of inbound container and is significant for the operation and organization of railway container terminals.

  2. Global atmospheric chemistry - which air matters

    Science.gov (United States)

    Prather, Michael J.; Zhu, Xin; Flynn, Clare M.; Strode, Sarah A.; Rodriguez, Jose M.; Steenrod, Stephen D.; Liu, Junhua; Lamarque, Jean-Francois; Fiore, Arlene M.; Horowitz, Larry W.; Mao, Jingqiu; Murray, Lee T.; Shindell, Drew T.; Wofsy, Steven C.

    2017-07-01

    An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone) and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths of a km vertically. As a first step, six global models have prepared such climatologies sampled at the modeled resolution for August with emphasis on the vast central Pacific Ocean basin. Objectives of this paper are to identify and characterize differences in model-generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multidimensional probability densities of key species weighted by the mass of such parcels or frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case, and this method shows skill in differentiating among the models' chemistry. Testing 100 km scale models with 2 km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry-climate models to ingest an externally sourced climatology and then compute air parcel reactivity is demonstrated. Such an objective climatology containing these key species is anticipated from the NASA Atmospheric Tomography (ATom) aircraft mission (2015-2020), executing profiles over the Pacific and Atlantic Ocean basins. This modeling study addresses a core part of the design of ATom.

  3. Global atmospheric chemistry – which air matters

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2017-07-01

    Full Text Available An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths of a km vertically. As a first step, six global models have prepared such climatologies sampled at the modeled resolution for August with emphasis on the vast central Pacific Ocean basin. Objectives of this paper are to identify and characterize differences in model-generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multidimensional probability densities of key species weighted by the mass of such parcels or frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case, and this method shows skill in differentiating among the models' chemistry. Testing 100 km scale models with 2 km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry–climate models to ingest an externally sourced climatology and then compute air parcel reactivity is demonstrated. Such an objective climatology containing these key species is anticipated from the NASA Atmospheric Tomography (ATom aircraft mission (2015–2020, executing profiles over the Pacific and Atlantic Ocean basins. This modeling study addresses a core part of the design of ATom.

  4. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  5. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    Science.gov (United States)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  6. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  7. PASCAL - Planetary Atmospheres Spectral Catalog

    Science.gov (United States)

    Rothman, Laurence; Gordon, Iouli

    2010-05-01

    Spectroscopic observation of planetary atmospheres, stellar atmospheres, comets, and the interstellar medium is the most powerful tool for extracting detailed information concerning the properties of these objects. The HITRAN molecular spectroscopic database1 has traditionally served researchers involved with terrestrial atmospheric problems, such as remote-sensing of constituents in the atmosphere, pollution monitoring at the surface, identification of sources seen through the atmosphere, and numerous environmental issues. A new thrust of the HITRAN program is to extend this longstanding database to have capabilities for studying the above-mentioned planetary and astronomical systems. The new extension is called PASCAL (Planetary Atmospheres Spectral Catalog). The methodology and structure are basically identical to the construction of the HITRAN and HITEMP databases. We will acquire and assemble spectroscopic parameters for gases and spectral bands of molecules that are germane to the studies of planetary atmospheres. These parameters include the types of data that have already been considered for transmission and radiance algorithms, such as line position, intensity, broadening coefficients, lower-state energies, and temperature dependence values. Additional parameters beyond what is currently considered for the terrestrial atmosphere will be archived. Examples are collision-broadened halfwidths due to various foreign partners, collision-induced absorption, and temperature dependence factors. New molecules (and their isotopic variants), not currently included in the HITRAN database, will be incorporated. That includes hydrocarbons found on Titan but not archived in HITRAN (such as C3H4, C4H2, C3H8). Other examples include sulfur-bearing molecules such as SO and CS. A further consideration will be spectral bands that arise as opportunities to study exosolar planets. The task involves acquiring the best high-resolution data, both experimental and theoretical

  8. Atmosphere in a Test Tube

    Science.gov (United States)

    Claudi, R.; Pace, E.; Ciaravella, A.; Micela, G.; Piccioni, G.; Billi, D.; Cestelli Guidi, M.; Coccola, L.; Erculiani, M. S.; Fedel, M.; Galletta, G.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Schierano, D.; Stefani, S.

    The ancestor philosophers' dream of thousand of new world is finally realised: more than 1800 extrasolar planets have been discovered in the neighborhood of our Sun. Most of them are very different from those we used to know in our Solar System. Others orbit the Habitable Zone (HZ) of their parent stars. Space missions, as JWST and the very recently proposed ARIEL, or ground based instruments, like SPHERE@VLT, GPI@GEMINI and EPICS@ELT, have been proposed and built to measure the atmospheric transmission, reflection and emission spectra over a wide wavelength range of these new worlds. In order to interpret the spectra coming out by this new instrumentation, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how those characteristics could be affected by radiation driven photochemical and bio-chemical reaction. Insights in this direction can be achieved from laboratory studies of simulated planetary atmosphere of different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. ''Atmosphere in a Test Tube'' is a collaboration among several Italian astronomical, biological and engineering institutes in order to share their experiencece in performing laboratory experiments on several items concerning extrasolar planet atmospheres.

  9. A theory of atmospheric oxygen.

    Science.gov (United States)

    Laakso, T A; Schrag, D P

    2017-05-01

    Geological records of atmospheric oxygen suggest that pO 2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there are three stable states for atmospheric oxygen, roughly corresponding to levels observed in the geological record. These stable states arise from a series of specific positive and negative feedbacks, requiring a large geochemical perturbation to the redox state to transition from one to another. In particular, we show that a very low oxygen level in the Archean (i.e., 10 -7 PAL) is consistent with the presence of oxygenic photosynthesis and a robust organic carbon cycle. We show that the Snowball Earth glaciations, which immediately precede both transitions, provide an appropriate transient increase in atmospheric oxygen to drive the atmosphere either from its Archean state to its Proterozoic state, or from its Proterozoic state to its Phanerozoic state. This hypothesis provides a mechanistic explanation for the apparent synchronicity of the Proterozoic Snowball Earth events with both the Great Oxidation Event, and the Neoproterozoic oxidation. © 2017 John Wiley & Sons Ltd.

  10. Atmospheric chemistry over southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2012-03-01

    Changing Chemistry in a Changing Climate: Human and Natural Impacts Over Southern Africa (C4-SAR); Midrand, South Africa, 31 May to 3 June 2011 During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semipermanent atmospheric gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite- derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission on Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from Eskom, the South African power utility; and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa.

  11. Infrared Measurements of Atmospheric Constituents

    Science.gov (United States)

    Murcray, Frank J.

    1998-01-01

    This research program studies atmospheric trace gas concentrations and altitude distributions, particularly for those gases that are important in stratospheric chemistry and radiative balance. Measurements are made with infrared remote sensing instruments, either ground based or balloon-borne. Most of the ground based instruments are part of the Network for Detection of Stratospheric Change (NDSC), including a very high spectral resolution solar absorption spectrometer at Mauna Loa Observatory and similar system at McMurdo Station, Antarctica (operated in collaboration with the New Zealand NIWA). Additionally, we are deriving stratospheric constituent data from the spectra obtained at the DOE Atmospheric Radiation Measurements (ARM) program's site in north-central Oklahoma. We have an atmospheric emission spectrometer system at the South Pole (with additional support from NSF), and an identical NSF support instrument at Eureka, NWT, Canada. Our balloon-borne instruments include a very high resolution solar absorption spectrometer system, a smaller, slightly lower resolution solar spectrometer system, a high resolution atmospheric emission spectrometer, and several medium resolution emission spectrometers (CAESRs) that are usually flown piggyback. During the past year, we participated in the MANTRA balloon flight from Saskatoon, Saskatchewan, with the high resolution solar spectrometer system. Several of our instruments were extensively compared to (UARS) Upper Atmosphere Research Satellite observations, and so provide a data set with known connections to UARS. In the longer term, the data can be used to relate UARS data to (EOS) Earth Observing System and (ADEOS) Advanced Airborne Earth Observing System.

  12. Atmospheric corrosion of mild steel

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2011-10-01

    Full Text Available The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a the morphology of steel corrosion products and corrosion product layers; and b long-term atmospheric corrosion ( > 10 years.

    La corrosión atmosférica del acero suave es un tema de gran amplitud que ha sido tratado por muchos autores en numerosas regiones del mundo. Este artículo de compilación incorpora publicaciones relevantes sobre esta temática, en particular sobre la naturaleza de los productos de corrosión atmosférica, mecanismos y cinética de los procesos de corrosión atmosférica, prestando una atención especial a dos aspectos sobre los que la información publicada ha sido menos abundante: a morfología de los productos de corrosión del acero y capas de productos de corrosión, y b corrosión atmosférica a larga duración (> 10 años.

  13. Containment Relations in Anatomical Ontologies

    OpenAIRE

    Donnelly, Maureen

    2005-01-01

    In addition to parthood relations, containment relations are needed for describing the locations of anatomical individuals. My lungs are contained, but not part of, in my thoracic cavity. Urine is contained in, but not part of, the cavity of my urinary bladder.

  14. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields

    Science.gov (United States)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2016-01-01

    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  15. Tau appearance in atmospheric neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence J.; Murayama, Hitoshi

    1998-10-24

    If the correct interpretation of the Super-Kamiokande atmospheric neutrino data is {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation, the contained data sample should already have more than 10 {tau} appearance events. We study the challenging task of detecting the {tau}, focusing on the decay chain {tau}{sup {+-}} {yields} {rho}{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0} in events with quasi-elastic {tau} production. The background level, which is currently quite uncertain because of a lack of relevant neutral current data, can be measured by the near detector in the K2K experiment. Our estimates of the background suggest that it may be possible to detect {tau} appearance in Super-Kamiokande with 5-10 years of running.

  16. Lagrangian Modeling of the Atmosphere

    Science.gov (United States)

    Schultz, Colin

    2013-08-01

    Like watching a balloon borne by the breeze, a Lagrangian model tracks a parcel of air as it flows through the atmosphere. Whether running forward or backward in time, Lagrangian models offer a powerful tool for tracking and understanding the fates, or origins, of atmospheric flows. In the AGU monograph Lagrangian Modeling of the Atmosphere, editors John Lin, Dominik Brunner, Christoph Gerbig, Andreas Stohl, Ashok Luhar, and Peter Webley explore the nuances of the modeling technique. In this interview Eos talks to Lin about the growing importance of Lagrangian modeling as the world settles on climate change mitigation strategies, the societal value of operational modeling, and how recent advances are making it possible to run these complex calculations at home.

  17. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  18. Atmospheric radon: origin and transfer

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Pena, P.; Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mireles, F.; Davila, I.; Quirino, L. [Universidad Autonoma de Zacatecas (Mexico). Centro Regional de Estudios Nucleares

    1994-12-31

    Atmospheric indoor and outdoor radon surveys have been performed in several locations of Mexico. In order to estimate the radon transfer from different origins to the atmosphere, soil and ground water, together with the exhalation rate from bare and coated building materials have also been studied. The radon detection was performed with SSNTD, an automatic silicon-based radon monitor and the liquid scintillation technique. The results from several years of monitoring indicate that the atmospheric radon behaviour is different for the countryside as compared with more complex inhabited regions; transfer from soil being inhibited by the specific structures of the cities. The effect of wall coatings reduced from 50% to 90% the radon exhalation from bare building materials. A low radon content was observed in the ground water samples studied. (Author).

  19. Measurement of atmospheric vinyl chloride.

    Science.gov (United States)

    Lande, S S

    1979-02-01

    Methods for atmospheric vinyl chloride measurement have been reviewed. The lowest detection limits and most specific measurement are achieved by scrubbing atmospheric samples with activated charcoal, desorbing the vinyl chloride, and assaying it by gas chromatography (GC). NIOSH currently recommends collecting samples using tubes packed with 150 mg of coconut shell charcoal, desorbing with carbon disulfide, and analyzing by GC equipped with flame-ionization detection (FID); the method is capable of detecting less than 1 ppm vinyl chloride and has an apparent recovery of abo the ppb level with no loss of accuracy or precision. Some field methods, such as infrared analysis and conductivity measurement, are capable of detecting 1 ppm or lower but are subject to interferences by other contaminants; th-y could be useful for evaluating sources of vinyl chloride leaks and for continuous monitoring. Permeation tubes are superior to gravimetric or volumetric methods for generating atmospheres of known vinyl chloride concentration.

  20. Staling of wheat bread stored in modified atmosphere

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Hansen, A.

    2001-01-01

    Modified atmosphere packing (MAP) of bread is known to extend the microbial shelf-life. However, the effect of MAP on staling of bread is more questionable, and conflicting results are reported in the literature. To investigate the effect of BT AP, wheat bread was packed in modified atmosphere...... containing 100% CO2 and in a mixture gas of 50% CO2 and 50% N-2, respectively. The control bread was packed in atmospheric air. No significant effects of MAP were found during storage of bread for 7 days at 20 degreesC compared to control bread. when changes in bread firmness and starch retrogradation...... measured by differential scanning calorimetry (DSC) were used as parameters for the staling rates. Ira addition, no significant differences were obtained in firmness between bread stored in 100% CO,, and in the mixture gas of CO2 and N-2 after 7 and 14 days, respectively. The present study thus...

  1. Containers, mental space and psychodynamics.

    Science.gov (United States)

    Rosenbaum, B; Garfield, D

    1996-12-01

    The concept of the container has a place within cognitive science as well as within psychodynamic theories. Cognitive semantics has shown that many metaphors giving meaning to daily life-events use the container as a basic reference point. Psychoanalytic theory, most notably, Freud's psychosexual developmental model, illustrates how the container of the body results in meaning. Object relations theory in psychoanalysis has shown how patients with borderline personality disorder behave according to the dynamics of container and containment. Both the cognitive and the psychodynamic conceptions of containers are clinically relevant. The fundamental notion of the container leads to an exploration of 'container dynamics' both in cognitive semantics and in psychodynamic work. A model of the cusp may be of help in the description of the dynamics at the border of the container. Furthermore, the descriptions of the patient's communication of emotion and thoughts may involve three interacting dimensions: an effective-perceptual dimension, a phantasy dimension and a socio-interactive dimension. The interaction between these dimensions has implications for dealing with container dynamics and the process of containment.

  2. Implications of soil heterogeneity on growth performance of fast-growing trees under marginal site conditions - an ecophysiological perspective

    Science.gov (United States)

    Veste, Maik; Halke, Christian; Schmitt, Dieter; Mantovani, Dario; Zimmermann, Reiner; Küppers, Manfred; Freese, Dirk

    2017-04-01

    The integration of fast-growing trees and hedgerows has been proposed in order to improve the environmental performance of agricultural systems and to provide woody biomass for bioenergy. Due to the current increase of bioenergy, strong interests are emerging to use marginal lands for short-rotation forestry. Especially in Lower Lusatia (Brandenburg, Germany) large areas of reclaimed post-mining sites are available for the cultivation of short-rotation coppies and agroforesty systems. The dumped overburden material has little or no recent soil organic matter, low nutrient content and low water holding capacity. Our study aim was to evaluate the effects of small-scale spatial and temporal variations of edaphic conditions on plant water relations, photosynthesis and biomass production of black locust (Robinia pseudoacacia) and poplar (Populus spp.) on marginal lands. Particularly, on dumped soils in the post-mining area, due to the adverse edaphic conditions, the stem growth was drastically reduced during summer drought below the critical pre-dawn water potential value of -0.5 MPa. But also on agricultural fields soil depth and soil water availability are the key factors determining the biomass production of poplar and black locust. A reduction of soil N availability as a result of low soil nitrogen content or drought induce nodulation and biological nitrogen fixation (BNF) in Robinia in order to sustain the required nitrogen amounts for plant growth. In our experiment the nodule biomass increased in combination with a decrease of the δ15N values of the leaves under extreme drought stress. Under field conditions the percentage of nitrogen derived from the atmosphere in black locust varies 63% - 83% and emphasized the importance of nitrogen fixations for tree growth on marginal lands. Our investigation under different edaphic conditions and soil water availabilities showed clearly the ecophysiological and morphological plasticity of the investigated tree species and

  3. Studies of Tenuous Planetary Atmospheres

    Science.gov (United States)

    Combi, Michael R.

    1998-01-01

    The final report includes an overall project overview as well as scientific background summaries of dust and sodium in comets, and tenuous atmospheres of Jupiter's natural satellites. Progress and continuing work related to dust coma and tenuous atmospheric studies are presented. Also included are published articles written during the course of the report period. These are entitled: (1) On Europa's Magnetospheric Interaction: An MHD Simulation; (2) Dust-Gas Interrelations in Comets: Observations and Theory; and (3) Io's Plasma Environment During the Galileo Flyby: Global Three Dimensional MHD Modeling with Adaptive Mesh Refinement.

  4. Atmospheric-pressure plasma technology

    Science.gov (United States)

    Kogelschatz, U.

    2004-12-01

    Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona discharges used in electrostatic precipitators and in dielectric-barrier discharges used for generation of ozone, for pollution control and for surface treatment. More recent applications include UV excimer lamps, mercury-free fluorescent lamps and flat plasma displays.

  5. Plume spread and atmospheric stability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.

  6. Detection of Atmospheric Composition Based on Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinye; Tong Yala; Yang Xiaoling; Gong Jiaoli [School of science, Hubei University of Technology, Wuhan 430068 (China); Gong Wei, E-mail: yezi.zh@163.com [State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079 (China)

    2011-02-01

    A summary overview about the types of lidar and their own applications on atmosphere detection is presented. Measurement of atmospheric aerosols by Mie lidar and Raman lidar is focused. The vertical profiles of aerosols in the atmosphere are retrieved. And at the same time, through analyzing aerosol vertical content distribution, the atmosphere boundary layer and the cloud are also observed. All the results show that the lidar has good performance on detecting the atmospheric composition.

  7. Evaluated kinetic and photochemical data for atmospheric chemistry

    Science.gov (United States)

    Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T.

    1980-01-01

    This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude). Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species.

  8. TV series on atmospheric science

    Science.gov (United States)

    Cruise, Karla A.

    Acid rain, climate change, air pollution, and the possible inadvertent depletion of ozone in the upper atmosphere will be among the subjects covered in an eight-part television series that premiers April 3, 1986, on public television. Part of a 32-lecture program entitled “Earth Science for Teachers,” this series will feature new developments in the physics, chemistry, and dynamics of the atmosphere and will focus on the role of anthropogenic activities that affect atmospheric composition and climate.Public television station WHRO-TV in Norfolk, Va., in cooperation with Virginia's Department of Education in Richmond, produced the series, which involved guest lecturers from across the country. Joel S. Levine, senior research scientist in the Atmospheric Science Division at the Langley Research Center of the National Aeronautics and Space Administration (NASA) in Hampton, Va., served as the organizer and coordinator of the series. Joseph D. Exline, Associate Director for Science, Virginia Department of Education, assisted with the development and production of the series.

  9. Exploring the Atmosphere with Lidars

    Indian Academy of Sciences (India)

    2 by oxygen and water molecules at heightz, respectively and T(zo' z) is the transmission correction term (ratio of atmospheric transmissivity at oxygen Raman backscattering to that of water vapor Raman scattering from the !idar at height Zo to height z). Differential Absorption Lidar (DIAL). A DIAL system is similar to a LIDAR ...

  10. Would be the Atmosphere Chaotic?

    Directory of Open Access Journals (Sweden)

    Isimar de Azevedo Santos

    2013-07-01

    Full Text Available The atmosphere has often been considered “chaotic” when in fact the “chaos” is a manifestation of the models that simulate it, which do not include all the physical mechanisms that exist within it. A weather prediction cannot be perfectly verified after a few days of integration due to the inherent nonlinearity of the equations of the hydrodynamic models. The innovative ideas of Lorenz led to the use of the ensemble forecast, with clear improvements in the quality of the numerical weather prediction. The present study addresses the statement that “even with perfect models and perfect observations, the ‘chaotic’ nature of the atmosphere would impose a finite limit of about two weeks to the predictability of the weather” as the atmosphere is not necessarily “chaotic”, but the models used in the simulation of atmospheric processes are. We conclude, therefore, that potential exists for developments to increase the horizon of numerical weather prediction, starting with better models and observations.

  11. Entropic "sound" in the atmosphere

    OpenAIRE

    Apostol, B. -F.; Stefan, S.; Apostol, M.

    1996-01-01

    It is shown that small, local disturbances of entropy in the atmosphere may give rise to "sound" waves propagating with a velocity which depends on the amplitude ratio of the local relative variations of temperature and volume. This velocity is much smaller than the mean molecular velocity and the usual, adiabatic sound velocity.

  12. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  13. Temporal Variations in Jupiter's Atmosphere

    Science.gov (United States)

    Simon-Miller, Amy A.; Chanover, N. J.; Yanamandra-Fisher, P.; Hammel, H. B.; dePater, I.; Noll, K.; Wong, M.; Clarke, J.; Sanchez-Levega, A.; Orton, G. S.; hide

    2009-01-01

    In recent years, Jupiter has undergone many atmospheric changes from storms turning red to global. cloud upheavals, and most recently, a cornet or asteroid impact. Yet, on top of these seemingly random changes events there are also periodic phenomena, analogous to observed Earth and Saturn atmospheric oscillations. We will present 15 years of Hubble data, from 1994 to 2009, to show how the equatorial tropospheric cloud deck and winds have varied over that time, focusing on the F953N, F41 ON and F255W filters. These filters give leverage on wind speeds plus cloud opacity, cloud height and tropospheric haze thickness, and stratospheric haze, respectively. The wind data consistently show a periodic oscillation near 7-8 S latitude. We will discuss the potential for variations with longitude and cloud height, within the calibration limits of those filters. Finally, we will discuss the role that large atmospheric events, such as the impacts in 1994 and 2009, and the global upheaval of 2007, have on temporal studies, This work was supported by a grant from the NASA Planetary Atmospheres Program. HST observational support was provided by NASA through grants from Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract NAS5-26555.

  14. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  15. Atmospheric contamination during ultrasonic scaling

    NARCIS (Netherlands)

    Timmerman, MF; Menso, L; Steinfort, J; van Winkelhoff, AJ; van der Weijden, GA

    Objective: The aim of this study was to determine the microbial atmospheric contamination during initial periodontal treatment using a piezoelectric ultrasonic scaler in combination with either high-volume evacuation (HVE) or conventional dental suction (CDS). Methods: The study included 17

  16. C/O atmosphere measurements

    Science.gov (United States)

    Kopytova, Taisiya

    2017-06-01

    The atmospheric carbon-to-oxygen ratio is believed to be a key to formation scenario of exoplanets. Due to different condensation temperatures for water, carbon oxide, and carbon dioxide, their "icelines" are situated at different parts of the protoplanetary disk resulting in different C/O ratio values through the disk. Therefore, by measuring a C/O ratio in the atmosphere of a giant exoplanet, we should be able to understand the planet's formation.I will give a brief overview of recent theoretical studies that predict how various mechanisms during planet formation (e.g. migration, pebble drift) may affect the feasability of using a C/O ratio to understand formation of exoplanets.In the second part of my talk, I will discuss various methods of measuring abundances in atmospheres. I will also talk about how to take into account systematic effects in observations and atmospheric models and if there is a possibility to determine and apply "C/O ratio indices".

  17. Forecasting global atmospheric CO2

    Science.gov (United States)

    Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Ciais, P.; Deutscher, N. M.; Engelen, R.; Jones, L.; Kivi, R.; Paris, J.-D.; Peuch, V.-H.; Sherlock, V.; Vermeulen, A. T.; Wennberg, P. O.; Wunch, D.

    2014-11-01

    A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and

  18. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.

    Science.gov (United States)

    Glasius, Marianne; Goldstein, Allen H

    2016-03-15

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.

  19. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  20. Light changes the atmospheric reactivity of soot

    Science.gov (United States)

    D'Anna, Barbara; Monge, Maria-Eugenia; George, Christian; Ammann, Markus; Donaldson, D. Jamie

    2010-05-01

    conversion of NO2 to HONO leads to persistent reactivity over long times (7 hours). Uptake coefficients increased linearly with the irradiation intensity indicating that the number of reactive sites at the soot surface is proportional to the number of photoactivated species. We suggest that nitrogen-containing organic compounds are also produced on the soot surface as a consequence of the heterogeneous reaction with NO2 under irradiation. These compounds can then be photolyzed and release NO and HONO in a NOx-free atmosphere. An estimation of the HONO production rate indicates that heterogeneous soot photochemistry may contribute to the daytime HONO concentration (1). When soot particles are exposed to high concentrations of O3 under irradiation there is an increase in hydrophobicity as it was previously observed for organic surface films(2). (1)ME Monge, B D'Anna, L Mazri, A Giroir-Fendler, M Ammann, D. J. Donaldson, and C George. Light changes the atmospheric reactivity of soot. PNAS, 2010, doi:10.1073/ pnas.0908341107 In press (2)L Nieto-Gligorovski, S Net, S Gligorovski, C Zetzsch, A Jammoul, B D'Anna, C George. Interactions of ozone with organic surface films in the presence of simulated sunlight: impact on wettability of aerosols. Physical Chemistry Chemical Physics 10, 2008, 2964-2971.

  1. Fractionation and fragmentation of glass cosmic spherules during atmospheric entry

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Babu, E.V.S.S.K.; VijayaKumar, T.; Feng, W.; Plane, J.M.C.

    , cryptocrystalline, glass and Calcium Aluminium Titanium-rich (CAT) (Taylor et al., 2000; Genge et al., 2008). In this scheme, scoriaceous spherules have undergone partial melting, and CAT spherules, which contain high amounts of the refractory elements Ca, Al... of the recovered particulate extraterrestrial matter on earth, and are dust particles that have experienced close-to-maximum heating during atmospheric entry, next only to CAT spherules (Taylor et al., 2000). Our discussion of the glass spherules in the present...

  2. Finding Atmospheric Composition (AC) Metadata

    Science.gov (United States)

    Strub, Richard F..; Falke, Stefan; Fiakowski, Ed; Kempler, Steve; Lynnes, Chris; Goussev, Oleg

    2015-01-01

    The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all

  3. Prebiotic Synthesis from CO Atmospheres: Implications for the origins of life

    Science.gov (United States)

    Meyer, Michael (Technical Monitor); Miyakawa, Shin; Yamanashi, Hiroto; Kobayashi, Kensei; Cleaves, H. James; Miller, Stanley L.

    2002-01-01

    Most models of the primitive atmosphere around the time life originated suggest that the atmosphere was dominated by carbon dioxide, largely based on the notion that the atmosphere was derived via volcanic outgassing, and that those gases were similar to those found in modern volcanic effluent. These models tend to downplay the possibility of a strongly reducing atmosphere, which had been thought to be important for prebiotic synthesis and thus the origin of life. However, there is no definitive geologic evidence for the oxidation state of the early atmosphere and bioorganic compounds are not efficiently synthesized from CO2 atmospheres. In the present study, it was shown that a CO-CO2-N2-H2O atmosphere can give a variety of bioorganic compounds with yields comparable to those obtained from a strongly reducing atmosphere. Atmospheres containing carbon monoxide might therefore have been conducive to prebiotic synthesis and perhaps the origin of life. CO-dominant atmospheres could have existed if the production rate of CO from impacts of extraterrestrial materials were high or if the upper mantle had been more reduced than today.

  4. Scattering of coherent sound waves by atmospheric turbulence

    Science.gov (United States)

    Chow, P. L.; Liu, C. H.; Maestrello, L.

    1975-01-01

    An analytical study of the propagation of coherent sound waves through an atmosphere containing both mean and fluctuating flow variables is presented. The general flow problem is formulated as a time-dependent wave propagation in a half-space containing the turbulent medium. The coherent acoustic waves are analyzed by a smoothing technique, assuming that mean flow variables vary with the height only. The general equations for the coherent waves are derived, and then applied to two special cases, corresponding to uniform and shear mean flow, respectively. The results show that mean shear and turbulence introduce pronounced effects on the propagation of coherent acoustic disturbances.

  5. Storage of pork meat under modified atmospheres containing vapors from commercial alcoholic beverages.

    Science.gov (United States)

    Kapetanakou, A E; Agathaggelou, E I; Skandamis, P N

    2014-05-16

    The present study aimed to evaluate the effect of AB vapors on microbial, physicochemical, and sensory profile of pork meat stored in different MAP conditions. Pork pieces (10g) and cotton/cellulose absorbent cloths (2×2cm) were placed into compartmentalized Petri-dishes in two sections. Aliquots (1mL) of water (control), 30% v/v and 40% v/v ethanol, whisky, brandy, tsipouro, raki, and ouzo were added separately to the cotton/cellulose absorbent cloths. Each pork sample was placed in one compartment and cotton/cellulose absorbent cloths supplemented with different ABs were placed in a separate compartment of each Petri-dish. Samples were packaged in 40% CO2: 30% O2: 30% N2 and 80% O2: 20% CO2 and stored at 4 and 10°C. Total viable counts, Pseudomonas sp., Brochothrix thermosphacta, lactic acid bacteria, yeasts and molds, and Enterobacteriaceae, were enumerated during storage. Changes in pH, color (L*, a*, b*), odor, taste, and overall appearance of pork meat were also evaluated along with changes in organic acid levels via HPLC. At 4°C, lactic acid bacteria and B. thermosphacta were the dominant organisms under 40% CO2: 30% N2: 30% O2 and 80% O2: 20% CO2, respectively, while at 10°C, lactic acid bacteria dominated in both MAP conditions. All applied ABs were effective (palcoholic beverages (especially ouzo) under 80% O2: 20% CO2 resulted in better (p<0.05) sensory properties compared to the respective samples under 40% CO2: 30% O2: 30% N2. Overall, vapor action of ABs in combination with MAP may constitute a promising, antimicrobial packaging technology for extending the shelf-life of pork meat. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Costs to Ship Fresh Fruits and Vegetables from Defense Subsistence Office, Alameda via Controlled Atmosphere Containers

    Science.gov (United States)

    1994-03-01

    release; distribution is unlimited. Costs to Ship Fresh Frui t s and Vegetab l es From Defense Subsistence Office, Al ameda Via Controlled...SOIT.e lJreat.he out ethylF’ne gat;, wh ich it; a natura l ripe:1ing ho rmone. breathe I n ethylene gas. They also give off different gases

  7. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  8. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    Science.gov (United States)

    Harrison, R. Giles; Tammet, Hannes

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds (e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  9. Atmospheric evolution on inhabited and lifeless worlds

    CERN Document Server

    Catling, David C

    2017-01-01

    As the search for Earth-like exoplanets gathers pace, in order to understand them, we need comprehensive theories for how planetary atmospheres form and evolve. Written by two well-known planetary scientists, this text explains the physical and chemical principles of atmospheric evolution and planetary atmospheres, in the context of how atmospheric composition and climate determine a planet's habitability. The authors survey our current understanding of the atmospheric evolution and climate on Earth, on other rocky planets within our Solar System, and on planets far beyond. Incorporating a rigorous mathematical treatment, they cover the concepts and equations governing a range of topics, including atmospheric chemistry, thermodynamics, radiative transfer, and atmospheric dynamics, and provide an integrated view of planetary atmospheres and their evolution. This interdisciplinary text is an invaluable one-stop resource for graduate-level students and researchers working across the fields of atmospheric science...

  10. Commissioning of self-management support for people with long-term conditions: an exploration of commissioning aspirations and processes.

    Science.gov (United States)

    Reidy, Claire; Kennedy, Anne; Pope, Catherine; Ballinger, Claire; Vassilev, Ivo; Rogers, Anne

    2016-07-15

    To explore how self-management support (SMS) is considered and conceptualised by Clinical Commissioning Groups (CCGs) and whether this is reflected in strategic planning and commissioning. SMS is an essential element of long-term condition (LTC) management and CCGs are responsible for commissioning services that are coordinated, integrated and link into patient's everyday lives. This focus provides a good test and exemplar for how commissioners communicate with their local population to find out what they need. A multisite, quasi-ethnographic exploration of 9 CCGs. National Health Service (NHS) CCGs in southern England, representing varied socioeconomic status, practice sizes and rural and urban areas. Content analysis of CCG forward plans for mention of SMS. Semistructured interviews with commissioners (n=10) explored understanding of SMS and analysed thematically. The practice of commissioning explored through the observations of Service User Researchers (n=5) attending Governing Body meetings (n=10, 30 hours). Observations illuminate the relative absence of SMS and gateways to active engagement with patient and public voices. Content analysis of plans point to tensions between local aspirations and those identified by NHS England for empowering patients by enhancing SMS services ('person-centred', whole systems). Interview data highlight disparities in the process of translating the forward plans into practice. Commissioners reference SMS as a priority yet details of local initiatives are notably absent with austerity (cost-containment) and nationally measured biomedical outcomes taking precedence. Commissioners conceptualise locally sensitive SMS as a means to improve health and reduce service use, but structural and financial constraints result in prioritisation of nationally driven outcome measures and payments relating to biomedical targets. Ultimately, there is little evidence of local needs driving SMS in CCGs. CCGs need to focus more on early strategic

  11. Operations research supports container handling

    NARCIS (Netherlands)

    P.J.M. Meersmans; R. Dekker (Rommert)

    2001-01-01

    textabstractIn this paper we will give an overview of the use of operations research models and methods in the design and operation of container terminals. We will describe the activities that take place at a container terminal and give an overview of the relevant decision problems, both at

  12. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation

    Science.gov (United States)

    Travnikov, Oleg; Angot, Hélène; Artaxo, Paulo; Bencardino, Mariantonia; Bieser, Johannes; D'Amore, Francesco; Dastoor, Ashu; De Simone, Francesco; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Magand, Olivier; Martin, Lynwill; Matthias, Volker; Mashyanov, Nikolay; Pirrone, Nicola; Ramachandran, Ramesh; Read, Katie Alana; Ryjkov, Andrei; Selin, Noelle E.; Sena, Fabrizio; Song, Shaojie; Sprovieri, Francesca; Wip, Dennis; Wängberg, Ingvar; Yang, Xin

    2017-04-01

    Current understanding of mercury (Hg) behavior in the atmosphere contains significant gaps. Some key characteristics of Hg processes, including anthropogenic and geogenic emissions, atmospheric chemistry, and air-surface exchange, are still poorly known. This study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measured data from ground-based sites and simulation results from chemical transport models. A variety of long-term measurements of gaseous elemental Hg (GEM) and reactive Hg (RM) concentration as well as Hg wet deposition flux have been compiled from different global and regional monitoring networks. Four contemporary global-scale transport models for Hg were used, both in their state-of-the-art configurations and for a number of numerical experiments to evaluate particular processes. Results of the model simulations were evaluated against measurements. As follows from the analysis, the interhemispheric GEM gradient is largely formed by the prevailing spatial distribution of anthropogenic emissions in the Northern Hemisphere. The contributions of natural and secondary emissions enhance the south-to-north gradient, but their effect is less significant. Atmospheric chemistry has a limited effect on the spatial distribution and temporal variation of GEM concentration in surface air. In contrast, RM air concentration and wet deposition are largely defined by oxidation chemistry. The Br oxidation mechanism can reproduce successfully the observed seasonal variation of the RM / GEM ratio in the near-surface layer, but it predicts a wet deposition maximum in spring instead of in summer as observed at monitoring sites in North America and Europe. Model runs with OH chemistry correctly simulate both the periods of maximum and minimum values and the amplitude of observed seasonal variation but shift the maximum RM / GEM ratios from spring to summer. O3 chemistry does not predict significant seasonal variation of Hg

  13. NASA's atmospheric variability experiments /AVE/

    Science.gov (United States)

    Hill, K.; Turner, R. E.

    1977-01-01

    A series of seven mesoscale experiments were conducted under the NASA program, Atmospheric Variability Experiments (AVE). Rawinsonde, satellite, aircraft, and ground observations were recorded during specially selected meteorological periods lasting from 1 to 3 days. Details are presented for each AVE relative to observation times, experiment size and location, and significant weather. Some research results based on the use of these AVE data are referenced. These include contributions to regional numerical prediction; relations between wind shears, instability, and thunderstorm motion and development; relations between moisture and temperature and the probability of convection; retrieval of tropospheric temperature profiles from cloud-contaminated satellite data; variation of convection intensity as a result of atmospheric variability; and effects of cloud rotation on their trajectories.

  14. The atmospheric extinction of light

    CERN Document Server

    Hughes, Stephen W; Powell, Sean; Carroll, Joshua

    2015-01-01

    An experiment is described that enables students to understand the properties of atmospheric extinction due to Rayleigh scattering. The experiment requires the use of red, green and blue lasers attached to a travelling microscope or similar device. The laser beams are passed through an artificial atmosphere, made from milky water, at varying depths, before impinging on either a light meter or a photodiode integral to a Picotech Dr. DAQ ADC. A plot of measured spectral intensity verses depth reveals the contribution Rayleigh scattering has to the extinction coefficient. For the experiment with the light meter, the extinction coefficients for red, green and blue light in the milky sample of water were 0.27, 0.36 and 0.47 cm^-1 respectively and 0.032, 0.037 and 0.092 cm^-1 for the Picotech Dr. DAQ ADC.

  15. Lunam 2000 (Lunar Atmosphere Mission)

    Science.gov (United States)

    Barbieri, Cesare; Fornasier, Sonia; Lazzarin, Monica; Marchi, Simone; Rampazzi, Francesca; Verani, Stefano; Cremonese, Gabriele; Ragazzoni, Roberto; Dolci, Mauro; Benn, Chris R.; Mendillo, Michael; Baumgardner, Jeff; Chakrabarti, Supriya; Wilson, Jody

    LUNAM 2000 is a small mission dedicated to the coronagraphic imaging in the Na yellow doublet and to UV spectroscopy in the range 2800-3400 Å of the lunar atmosphere. These studies are possible only from Space. The scientific return of LUNAM 2000 has a wider appeal for the study of transient atmospheres of other celestial bodies, in particular of Mercury. The mission is in low Earth-orbit (about 350 km); a sun-synchronous or other orbits are under investigation. The payload has very small weight, dimensions and power requests, and is essentially made with off-the-shelf components. It can be built and launched in less than 3 years from the approval. This time frame nicely overlaps that of the European technological Mission SMART 1 and can greatly add to its scientific return. Furthermore, LUNAM 2000 can give very important information to define a mission to Mercury such as Bepi Colombo.

  16. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  17. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance......, a correct spectral shape, and non-Gaussian statistics, is selected in order to evaluate the model turbulence. An actual turbulence record is analyzed in detail providing both a standard for comparison and input statistics for the generalized spectral analysis, which in turn produces a set of orthonormal....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  18. Atmospheric neutrinos - present and future -

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, Univ. of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2005-12-15

    Atmospheric neutrinos have been playing a major role in studying neutrino oscillations. The present data are consistent with pure 2 flavor {nu}{sub {mu}}->{nu}{sub {tau}} oscillations. The allowed {nu}{sub {mu}}->{nu}{sub {tau}} oscillation parameter region is sin{sup 2}2{theta}{sub 23}>0.92 and 1.5<{delta}m{sub 23}{sup 2}<3.4x10{sup -3}eV{sup 2} at 90%C.L. Recent data from an L/E analysis showed that the {nu}{sub {mu}} disappearance probability obeys the sinusoidal function as predicted by neutrino oscillations. Future atmospheric neutrino experiments are also discussed emphasizing the measurement of {theta}{sub 13} and the sign of {delta}m{sub 23}{sup 2}.

  19. Lightning detection in planetary atmospheres

    Science.gov (United States)

    Aplin, Karen L.; Fischer, Georg

    2017-02-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  20. Lightning detection in planetary atmospheres

    OpenAIRE

    Aplin, Karen L; Fischer, Georg

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  1. Earth’s Earliest Atmospheres

    Science.gov (United States)

    Zahnle, Kevin; Schaefer, Laura; Fegley, Bruce

    2010-01-01

    Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth’s atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth’s subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases. PMID:20573713

  2. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  3. Atmospheric neutrinos in Soudan 2.

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M. C.; Soudan 2 Collaboration

    1999-03-30

    Soudan 2 has measured the atmospheric neutrino flavor ratio with 4.2 fiducial kiloton-years of exposure. It measures a flavor ratio of 0.66 {+-} 0.11(stat), inconsistent with the expected ratio but consistent with the hypothesis of neutrino oscillations and the Super-Kamiokande data. In a sample of events with good angular resolution, fits to the L/E distribution suggest that {Delta}m{sup 2} > 10{sup {minus}3} eV{sup 2}.

  4. Astrophysical neutrinos and atmospheric leptons

    Directory of Open Access Journals (Sweden)

    Gaisser T.K.

    2017-01-01

    Full Text Available IceCube measurements of the neutrino flux from TeV to PeV show the signal of astrophysical neutrinos standing out at high energy well above the steeply falling foreground of atmospheric neutrinos. The astrophysical signal appears both in measurements of neutrino-induced muons and in the starting event sample, which responds preferentially to electron and tau neutrinos, but which also includes muon neutrinos. Searches for point sources of astrophysical neutrinos have, however, not yet identified a single source or class of sources for the astrophysical component. Some constraints on astrophysical sources implied by the current observations will be described in this talk. Uncertainties in the fluxes of atmospheric leptons resulting from an incomplete knowledge of the primary cosmic-ray spectrum and from a limited understanding of meson production, including charm will also be reviewed. The ultimate goal is to improve the understanding of the astrophysical spectrum in the transition to lower energy where atmospheric neutrinos dominate. The main aspects of this presentation will be included in the author's Review Talk at the end of the Symposium.

  5. Atmospheric science and public policy

    Energy Technology Data Exchange (ETDEWEB)

    Zillman, J.W. [Australian Bureau of Meteorology, Melbourne (Australia)

    1997-05-16

    From local problems such as urban air pollution to the global threat of human-induced climate change, and from immediate and practical issues such as aviation safety and natural disaster mitigation to fundamental questions of strategy for survival of life on earth beyond the next century, the contribution of atmospheric science is central to many of the great public policy challenges of our time. Under its more traditional label of {open_quotes}meteorology{close_quotes} (which I equate to atmospheric monitoring, research, and services in their broadest sense and which includes climatology), atmospheric science is well positioned to contribute to the resolution of these issues both within the United Nations system through the activities of the World Meteorological Organization (WMO) and also at the national level through the operation of the National Meteorological Services of the 185 Member states and territories of the WMO. There is ample evidence from all parts of the world of the enormous social, economic, and environmental benefits from the effective application of meteorological science and services to human needs. 22 refs.

  6. Sound Propagation in the Atmosphere

    Science.gov (United States)

    Attenborough, Keith

    Propagation of sound close to the ground outdoors involves geometric spreading, air absorption, interaction with the ground, barriers, vegetation and refraction associated with wind and temperature gradients. After a brief survey of historical aspects of the study of outdoor sound and its applications, this chapter details the physical principles associated with various propagation effects, reviews data that demonstrate them and methods for predicting them. The discussion is concerned primarily with the relatively short ranges and spectra of interest when predicting and assessing community noise rather than the frequencies and long ranges of concern, for example, in infrasonic global monitoring or used for remote sensing of the atmosphere. Specific phenomena that are discussed include spreading losses, atmospheric absorption, diffraction by barriers and buildings, interaction of sound with the ground (ground waves, surface waves, ground impedance associated with porosity and roughness, and elasticity effects), propagation through crops, shrubs and trees, wind and temperature gradient effects, shadow zones and incoherence due to atmospheric turbulence. The chapter concludes by suggesting a few areas that require further research.

  7. How do atmospheric rivers form?

    Science.gov (United States)

    Dacre, Helen

    2015-04-01

    The term atmospheric river is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high impact flooding events. However, there remains some debate as to how these filaments form. In this study we analyse the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front which sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, and not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the centre of a cyclone (as suggested by the term atmospheric river), these filaments are, in-fact, the result of water vapor exported from the cyclone and thus they represent the footprints left behind as cyclones travel polewards from subtropics.

  8. Line Transport in Turbulent Atmospheres

    Science.gov (United States)

    Nikoghossian, A. G.

    2017-07-01

    The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  9. Titan Atmospheric Entry Radiative Heating

    Science.gov (United States)

    Brandis, Aaron; Cruden, Brett

    2017-01-01

    Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube for conditions relevant to Titan entry, varying atmospheric composition, free-stream density (equivalent to altitude) and shock velocity. Permutations in atmospheric composition include 1.1, 2, 5 and 8.6 CH4 by mole with a balance of N2 and 1.5 CH4 0.5 Ar 98 N2 by mole, which is consistent with the current understanding of Titan's atmosphere. The effect of gas impurities identified in previous shock tube studies were also examined by testing in pure N2 and deliberate addition of air to the CH4N2 mixtures. The test campaign measured radiation at velocities from 4.7 kms to 8 kms and free-stream pressures from 0.1 to 0.47 Torr. These conditions cover a range of potential trajectories for flight missions, including a direct ballistic trajectory, a fly by or an extremely high speed entry. Radiances measured in this work are substantially larger compared to that reported both in past EAST test campaigns and other shock tube facilities. Depending on the metric used for comparison, the discrepancy can be as high as an order of magnitude. Potential causes for the discrepancy, such as the effect of oxygen due to Air leakage, gas composition and purity are discussed. The present work provides a new benchmark set of data to replace those published in previous studies.

  10. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  11. Atmospheric chemistry of hydrofluorocarbons and hydrochlorofluorocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, J.

    1995-03-01

    Pulse radiolysis coupled with a time resolved UV absorption detection system and a FTIR spectrometer coupled to a 140 l reaction chamber was used to study the degradation of HCFCs and HFCs in the atmosphere. Reaction rates for a series of reactions of HFCs and HCFCs were investigated: F + RH, R + O{sub 2} + RO{sub 2} + NO, and RO{sub 2} + NO{sub 2} + M, together with UV absorption spectra of the halogenated alkyl (R) and halogenated alkyl peroxy radicals (RO{sub 2}). The products following the self reactions for RO{sub 2} radicals for RO{sub 2} = CF{sub 3}CF{sub 2}O{sub 2}, CF{sub 2}HCF{sub 2}O{sub 2}, CF{sub 3}CH{sub 2}O{sub 2}, CFH{sub 2}CFHO{sub 2}, CF{sub 3}O{sub 2}, and CF{sub 3}C(O)O{sub 2} were investigated by the FTIR setup. The results show that the self reaction of halogenated peroxy radicals give the alkoxy radical, RO, as product. The atmospheric fate of these radicals were C-C bond cleavage for CF{sub 3}CF{sub 2}O, CHF{sub 2}CF{sub 2}O, CFH{sub 2}CHFO, and CF{sub 3}C(O)O; while CF{sub 3}CH{sub 2}O radicals rect with O{sub 2} to give CF{sub 3}CHO and HO{sub 2}. the reaction between CFH{sub 2}O{sub 2} and HO{sub 2} was shown to give 29{+-}7 % CH{sub 2}FCOOH and 72{+-}11 % HCOF as the carbon containing products. (Abstract Truncated)

  12. Atmospheric environmental implications of propulsion systems

    Science.gov (United States)

    Mcdonald, Allan J.; Bennett, Robert R.

    1995-01-01

    Three independent studies have been conducted for assessing the impact of rocket launches on the earth's environment. These studies have addressed issues of acid rain in the troposphere, ozone depletion in the stratosphere, toxicity of chemical rocket exhaust products, and the potential impact on global warming from carbon dioxide emissions from rocket launches. Local, regional, and global impact assessments were examined and compared with both natural sources and anthropogenic sources of known atmospheric pollutants with the following conclusions: (1) Neither solid nor liquid rocket launches have a significant impact on the earth's global environment, and there is no real significant difference between the two. (2) Regional and local atmospheric impacts are more significant than global impacts, but quickly return to normal background conditions within a few hours after launch. And (3) vastly increased space launch activities equivalent to 50 U.S. Space Shuttles or 50 Russian Energia launches per year would not significantly impact these conclusions. However, these assessments, for the most part, are based upon homogeneous gas phase chemistry analysis; heterogeneous chemistry from exhaust particulates, such as aluminum oxide, ice contrails, soot, etc., and the influence of plume temperature and afterburning of fuel-rich exhaust products, need to be further addressed. It was the consensus of these studies that computer modeling of interactive plume chemistry with the atmosphere needs to be improved and computer models need to be verified with experimental data. Rocket exhaust plume chemistry can be modified with propellant reformulation and changes in operating conditions, but, based upon the current state of knowledge, it does not appear that significant environmental improvements from propellant formulation changes can be made or are warranted. Flight safety, reliability, and cost improvements are paramount for any new rocket system, and these important aspects

  13. Atmospheric Processing Module for Mars Propellant Production

    Science.gov (United States)

    Muscatello, A.; Devor, R.; Captain, J.

    2014-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx. 8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed.

  14. The Containment Performance Evaluation of the Sodium Fire Due to Leaks from DHRS in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jun; Ha, Kwi-Seok; Joo, Hyung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    It uses the sodium as a reactor coolant, which has the chemical characteristics to react with oxygen in the containment atmosphere. This interaction generates the sodium fire accompany by the various reaction products and high heat of reaction. It threaten the structural integrity of the containment building as a last radiological defense barrier interfacing with the outside atmosphere. The sodium of the decay heat removal system (DHRS) loop can be exposed to the oxygen in the containment atmosphere. Because the DHRS loop pipe from the reactor upper closure header goes through the outside containment. It is composed of the Passive Decay heat Removal Circuit (PDRC) and Active Decay heat Removal Circuit (ADRC). For the conservative evaluation of the event, the sodium within the PDRC loop is chosen by reason of the larger spilled sodium quantity. In this paper, the sodium fire event due to the DHRS loop pipe leaks is evaluated inside the containment boundary. The thermal hydraulic influences generated by the sodium fire are calculated by CONTAIN-LMR as a performance analysis code for the containment building in PGSFR. The performance evaluation of the sodium fire event due to DHRS loop pipe leaks is calculated by using the CONTAIN-LMR code. From the results, the case of the 1 containment represents the most conservative result to the thermal hydraulic viewpoint.

  15. Planetary science: Haze cools Pluto's atmosphere

    Science.gov (United States)

    West, Robert A.

    2017-11-01

    Modelling suggests that Pluto's atmospheric temperature is regulated by haze, unlike the other planetary bodies in the Solar System. The finding has implications for our understanding of exoplanetary atmospheres. See Letter p.352

  16. Observations and Modeling of Atmospheric Radiance Structure

    National Research Council Canada - National Science Library

    Wintersteiner, Peter

    2001-01-01

    The overall purpose of the work that we have undertaken is to provide new capabilities for observing and modeling structured radiance in the atmosphere, particularly the non-LTE regions of the atmosphere...

  17. Clean Air Slots Amid Atmospheric Pollution

    Science.gov (United States)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  18. Atmospheric Sondes and Method for Tracking

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A system for wind profiling comprises sondes for being borne through the atmosphere by balloons and transmitting signals enabling identifying the sondes, and...

  19. The development of a Martian atmospheric Sample collection canister

    Science.gov (United States)

    Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.

    The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.

  20. Trendanalyse schadelijke gassen in containers

    NARCIS (Netherlands)

    Groot GM de; IMD

    2007-01-01

    Geimporteerde zeecontainers die door de VROM-Inspectie worden gecontroleerd, bevatten steeds vaker gasvormige bestrijdingsmiddelen en hoge gehalten oplosmiddelen. Hoge gehalten bestrijdingsmiddelen en oplosmiddelen vormen een risico voor mensen (bijvoorbeeld tijdens het uitladen van containers)

  1. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  2. Composition and oxidation state of sulfur in atmospheric particulate matter

    Science.gov (United States)

    Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.

    2016-10-01

    The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  3. Radar range measurements in the atmosphere.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  4. Toward precision study of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, Univ. of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2006-09-15

    Atmospheric neutrinos have been playing a major role in studying neutrino oscillations. Because of the unique feature of atmospheric neutrinos, future atmospheric neutrino experiments are likely to contribute to precision studies of neutrino oscillations. Possible contribution of future atmospheric neutrino experiments to the neutrino oscillation physics are discussed, including the measurements of {theta}{sub 13}, the sign of {delta}m{sub 23}{sup 2}, the determination of octant of {theta}{sub 23} and possibly the CP phase.

  5. Electron Density Profile Data Contains Virtual Height/Frequency Pairs from a Profile or Profiles (Composite Months) of Ionograms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Electron Density Profile, N(h), data set contains both individual profiles and composite months. The data consist of virtual height/frequency pairs from a...

  6. Nimbus-6 High Resolution Infrared Radiometer (HIRS) Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-6 High Resolution Infrared Radiometer (HIRS) Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) data product contains daily...

  7. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - July 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  8. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - May 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  9. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - June 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  10. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  11. The Atmospheric Dynamics of Venus

    Science.gov (United States)

    Sánchez-Lavega, Agustín; Lebonnois, Sebastien; Imamura, Takeshi; Read, Peter; Luz, David

    2017-11-01

    We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of ˜ 100 m s^{-1} at the cloud tops (65-70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities ˜ 1-3 m s^{-1} in a layer of thickness ˜ 10 km close to the surface. Meridional motions with peak speeds of ˜ 15 m s^{-1} occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds ˜1-3 m s^{-1} occur in the statically unstable layer between altitudes of ˜ 50 - 55 km. All these motions are permanent with speed variations of the order of ˜10%. Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere

  12. The Atmospheric Dynamics of Venus

    Science.gov (United States)

    Sánchez-Lavega, Agustín; Lebonnois, Sebastien; Imamura, Takeshi; Read, Peter; Luz, David

    2017-08-01

    We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of ˜ 100 m s^{-1} at the cloud tops (65-70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities ˜ 1-3 m s^{-1} in a layer of thickness ˜ 10 km close to the surface. Meridional motions with peak speeds of ˜ 15 m s^{-1} occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds ˜1-3 m s^{-1} occur in the statically unstable layer between altitudes of ˜ 50 - 55 km. All these motions are permanent with speed variations of the order of ˜10%. Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere

  13. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  14. Ozone, Climate, and Global Atmospheric Change

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.

  15. Emerging pattern of global change in the upper atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2008-05-01

    Full Text Available In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

  16. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

    CERN Document Server

    Riccobono, Francesco; Baltensperger, Urs; Worsnop, Douglas R; Curtius, Joachim; Carslaw, Kenneth S; Wimmer, Daniela; Wex, Heike; Weingartner, Ernest; Wagner, Paul E; Vrtala, Aron; Viisanen, Yrjö; Vaattovaara, Petri; Tsagkogeorgas, Georgios; Tomé, Antonio; Stratmann, Frank; Stozhkov, Yuri; Spracklen, Dominick V; Sipilä, Mikko; Praplan, Arnaud P; Petäjä, Tuukka; Onnela, Antti; Nieminen, Tuomo; Mathot, Serge; Makhmutov, Vladimir; Lehtipalo, Katrianne; Laaksonen, Ari; Kvashin, Alexander N.; Kürten, Andreas; Kupc, Agnieszka; Keskinen, Helmi; Kajos, Maija; Junninen, Heikki; Hansel, Armin; Franchin, Alessandro; Flagan, Richard C; Ehrhart, Sebastian; Duplissy, Jonathan; Dunne, Eimear M; Downard, Andrew; David, André; Breitenlechner, Martin; Bianchi, Federico; Amorim, Antonio; Almeida, João; Rondo, Linda; Ortega, Ismael K; Dommen, Josef; Scott, Catherine E; Vrtala, Aron; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipila, Mikko; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku

    2014-01-01

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

  17. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    Science.gov (United States)

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NOx, trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  18. MAXINE A Spreadsheet for Estimating Dose from Chronic Atmospheric Radioactive Releases

    CERN Document Server

    Simpkins, A A

    2002-01-01

    MAXINE is an EXCEL(C) spreadsheet, which is used to estimate dose to individuals for routine atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user's manual have been included.

  19. Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bell, Evaleigh [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-24

    MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.

  20. Proceedings of impact of aircraft emissions upon the atmosphere. V. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The study of the effect of aircraft on atmosphere is a new challenge that the scientific community has to face. This conference`s topics are various aspects of this challenge. The poster sessions of Volume 2 accompanying sessions 1 through 7 contain various aspects of aerosols, contrails, instruments, measurements, modelling, climatic impacts, projects, transport, atmospheric chemistry etc. The 49 papers of Vol.2. were indexed and abstracted individually for the Energy Database. (R.P.)

  1. Scattering and Absorption by Nonspherical Particles in Planetary Atmospheres

    Science.gov (United States)

    West, Robert A.

    2005-01-01

    The atmospheres of Mars, the giant planets, and Titan all support populations of nonspherical particles. Analyses of observations of these atmospheres therefore rely on an understanding of the optical properties of nonspherical particles. We can glean information on particle size and composition from the wavelength dependence of the optical depth and from the shape of the forward peak of the scattering phase function. Additional information comes from polarization measurements which have been especially fruitful for Titan's haze. The Mars atmosphere contains mineral dust particles with effective radii near 1.6 micro meters, and water ice particles with radii between about 1 and 4 micro meters. The uppermost tropospheric hazes in Jupiter and Saturn are composed of ice crystals of ammonia, water and possibly traces of ammonium hydrosulfide, Methane ice and hydrogen sulfide ice are present in the atmospheres of Uranus and Neptune. Size estimation for these hazes in the giant planets is difficult, and even the expected spectral signatures are elusive, Titan's haze is both forward scattering and strongly polarized - a combination which points toward a fractal aggregate struc1.ure of 10 - 100 or more organic monomers whose radius is about 0.06 micro meters. Polar stratospheric hazes on Jupiter and Saturn also display this characteristic.

  2. Health effects of atmospheric particulates: a medical geology perspective.

    Science.gov (United States)

    Duzgoren-Aydin, Nurdan S

    2008-01-01

    In this review, atmospheric particulates as composite airborne earth materials often containing both natural and anthropogenic components were examined in the context of medical geology. Despite a vast number of both experimental and epidemiological studies confirming the direct and indirect links between atmospheric particulates and human health, the exact nature of mechanisms affecting the particulate-induced pathogenesis largely remains unexplored. Future in depth research on these areas would be most successful if potential mechanisms are examined with reference to the physical (e.g., size, shape and surface), chemical, mineralogical and source characteristics of particulate matters. The underlying goal of this review was to present the relevant terminology and processes proposed in the literature to explain the interfaces and interactions between atmospheric particles and human body within the framework of "atmospheric particle cycles." The complexities of the interactions were demonstrated through case studies focusing on particulate matter air pollution and malignant mesothelioma occurrences due to environmental exposure to erionite-a fibrous zeolite mineral. There is an urgent need for a standard protocol or speciation methods applicable to earth-materials to guide and streamline studies on etiology of mineral-induced diseases. This protocol or speciation methods should provide relevant procedures to determine the level and extent of physical, chemical and mineralogical heterogeneity of particulate matters as well as quantitative in-situ particulate characteristics.

  3. Electrochemical Studies of Atmospheric Corrosion.

    Science.gov (United States)

    1979-01-01

    1 A 0 A063 922 ROCKwELL INTERNATIONAL THOUSAND OAKS CALIF SCIENCE ——ETC F/S 11/6 ELECTROC HEMICAL STUDIES OF ATMOSPHERIC CORROSION. (U) JAN 19 F S...reduction increased linearly with inverse film thickness. Similar experiments in wh i ch corrosion kinetics were determined DO JAN ~~ 1473 EDITION OF I...the ACM and In the design for two- and three-electrode systems . The basic principle of the ACM was first discussed by Tomashov (S)1 and Kucera and

  4. Spacecraft entry into an atmosphere

    Science.gov (United States)

    Iaroshevskii, Vasilii A.

    Problems related to the safe entry of spacecraft into the earth or other planetary atmospheres are discussed in a general manner. Attention is given to restrictions imposed on dynamical and thermal overloads, and an analysis is made of the aerodynamic characteristics of space vehicles of different types. Analytical and semianalytical methods for calculating entry trajectories are compared, and the applicability regions of approximate solutions are determined. The discussion also covers reentry trajectory optimization problems and the principal types of perturbations and navigation and control techniques.

  5. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    related to inaccurate land surface modelling, e.g. enhanced warm bias in warm dry summer months. Coupling the regional climate model to a hydrological model shows the potential of improving the surface flux simulations in dry periods and the 2 m air temperature in general. In the dry periods......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  6. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  7. Possible atmospheric research with Aristoteles

    Science.gov (United States)

    Barlier, Francois

    1991-12-01

    Use of the Aristoteles mission in measuring atmospheric parameters is discussed. The total density of the thermosphere, the temperature of the stratosphere and the total electron count of the ionosphere are identified as three areas in which the Aristoteles mission could be of great use in carrying out research. Combining the accelerometer measurements yields the gravity tensor as well as the nongravitational acceleration acting upon the satellite. Ways in which the temperature of the stratosphere around the Earth, and the annual, seasonal and secular variations it goes through could be measured are discussed.

  8. Simulation of the influence of atmospheric conditions on low-cost optical free space link

    Science.gov (United States)

    Latal, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Skapa, Jan; Liner, Andrej; Papes, Martin; Vasinek, Vladimir

    2012-06-01

    The team of authors was concerned in the development and construction of low-cost free space optical link and simulations of the influence of atmospheric conditions on this link. The article contains description of electronic design and attention is also dedicated to simulations of atmospheric conditions. Gradually, the most frequently occurring atmospheric conditions and their impact on the available bit rates were tested. An integral part of the article is calculation of the energy balance of the whole link. At the end are shown images of the measured eye diagrams and samples of measured distribution of optical power using a digital camera and its processing in MATLAB.

  9. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Pedersen, Jens Olaf Pepke; Marsh, N.D.

    2007-01-01

    Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields...... nucleation rates of the order of 0.1 1 cm(-3) s(-1). This suggests that the ions are active in generating an atmospheric reservoir of small thermodynamically stable clusters, which are important for nucleation processes in the atmosphere and ultimately for cloud formation....

  10. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  11. The atmosphere- and hydrosphere-correlated signals in GPS observations

    Science.gov (United States)

    Bogusz, Janusz; Boy, Jean-Paul; Klos, Anna; Figurski, Mariusz

    2015-04-01

    analysis of satellite data was performed twofold: firstly, the time series from network solution (NS) processed in Bernese 5.0 software by the Military University of Technology EPN Local Analysis Centre, secondly, the ones from PPP (Precise Point Positioning) from JPL (Jet Propulsion Laboratory) processing in Gipsy-Oasis were analyzed. Both were modelled with wavelet decomposition with Meyer orthogonal mother wavelet. Here, nine levels of decomposition were applied and eighth detail of it was interpreted as changes close to one year. In this way, both NS and PPP time series where presented as curves with annual period with amplitudes and phases changeable in time. The same analysis was performed for atmospheric (ATM) and hydrospheric (HYDR) models. All annual curves (modelled from NS, PPP, ATM and HYDR) were then compared to each other to investigate whether GPS observations contain the atmosphere and hydrosphere correlated signals and in what way the amplitudes of them may disrupt the GPS time series.

  12. Atmospheric Dynamics of Irradiated Planets

    Science.gov (United States)

    Dobbs-Dixon, Ian

    2009-09-01

    Close-in gas giant planets are now familiar members of the growing family of extra-solar planets. Their short period orbits and proclivity for transiting has made them the target of numerous observational campaigns, and our knowledge of their structure and composition has increased dramatically over the past few years. However, despite their prevalence and important role in constraining a wide range of planetary models, fundamental questions about the dynamical behavior of their atmospheres remain, crucial for interpreting observations. I will discuss three-dimensional radiative hydrodynamical simulations of atmospheric flows on a wide variety of such objects, ranging from the well-known HD209458b to the more exotic rapidly rotating or highly eccentric objects. Such objects exhibit a range of unusual behavior including supersonic winds, shocks and instabilities, and time dependent behavior. I will review the results from models we have developed to study these processes with the goal of both explaining individual objects and the observed diversity among this class of planets.

  13. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  14. Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma

    Science.gov (United States)

    Yeung, Laurence Y.

    2017-12-01

    The evolution of Earth's atmosphere on >106-yr timescales is tied to that of the deep Earth. Volcanic degassing, weathering, and burial of volatile elements regulates their abundance at the surface, setting a boundary condition for the biogeochemical cycles that modulate Earth's atmosphere and climate. The atmosphere expresses this interaction through its composition; however, direct measurements of the ancient atmosphere's composition more than a million years ago are notoriously difficult to obtain. Gases trapped in ancient minerals represent a potential archive of the ancient atmosphere, but their fidelity has not been thoroughly evaluated. Both trapping and preservation artifacts may be relevant. Here, I use a multi-element approach to reanalyze recently collected fluid-inclusion data from halites purportedly containing snapshots of the ancient atmosphere as old as 815 Ma. I argue that those samples were affected by the concomitant trapping of air dissolved in brines and contaminations associated with modern air. These artifacts lead to an apparent excess in O2 and Ar. The samples may also contain signals of mass-dependent fractionation and biogeochemical cycling within the fluid inclusions. After consideration of these artifacts, this new analysis suggests that the Tonian atmosphere was likely low in O2, containing ≤10% present atmospheric levels (PAL), not ∼50% PAL as the data would suggest at face value. Low concentrations of O2 are consistent with other geochemical constraints for this time period and further imply that the majority of Neoproterozoic atmospheric oxygenation occurred after 815 Ma. In addition, the analysis reveals a surprisingly low Tonian Ar inventory-≤60% PAL-which, if accurate, challenges our understanding of the solid Earth's degassing history. When placed in context with other empirical estimates of paleo-atmospheric Ar, the data imply a period of relatively slow atmospheric Ar accumulation in the Paleo- and Meso

  15. Building a secondary containment system

    Energy Technology Data Exchange (ETDEWEB)

    Broder, M.F.

    1994-10-01

    Retail fertilizer and pesticide dealers across the United States are installing secondary containment at their facilities or are seriously considering it. Much of this work is in response to new state regulations; however, many dealers not facing new regulations are upgrading their facilities to reduce their liability, lower their insurance costs, or comply with anticipated regulations. The Tennessee Valley Authority`s (TVA) National Fertilizer and Environmental Research Center (NFERC) has assisted dealers in 22 states in retrofitting containment to their facilities. Simultaneous improvements in the operational efficiency of the facilities have been achieved at many of the sites. This paper is based on experience gained in that work and details the rationale used in planning secondary containment and facility modifications.

  16. Upper Atmospheric Particulate Monitoring and Sample Return

    Science.gov (United States)

    Liddell, Alan; Sohl, John E.

    2010-10-01

    H.A.R.B.O.R. (High Altitude Reconnaissance Balloon for Outreach and Research) is a student-run program in which high-altitude balloon systems are designed, constructed, and flown by students conducting individual or group research projects. One area of interest is in the sampling of particles in the upper atmosphere. Collecting airborne particulates and studying them under an SEM can answer questions on the origins of airborne particulate matter. We could find explanations for climate change or directly measure pollution caused by smokestacks. The SEM has the capacity to capture images of particulates and determine their composition. I am building a system capable of sampling air up to 30km (100,000 ft). The system will contain a servo-controlled filter system for sampling air captured by the ascent of the balloon. Currently, filter types are being evaluated for capture rate and air flow resistance. A circuit has been built to test the mass throughput of the airflow as the balloon travels its course. A vacuum chamber is being built to simulate the nearspace environment. Testing and simulation should be complete in time to fly a finalized sample return mission in spring 2011.

  17. Preface "Nonlinear processes in oceanic and atmospheric flows"

    CERN Document Server

    Mancho, A M; Turiel, A; Hernandez-Garcia, E; Lopez, C; Garcia-Ladona, E; 10.5194/npg-17-283-2010

    2010-01-01

    Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on ``Nonlinear Processes in Oceanic and Atmospheric Flows'' contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Ni\\~no Southern Oscillation.

  18. The Solar Spectrum: An Atmospheric Remote Sensing Perspective

    Science.gov (United States)

    Toon, Geoff

    2013-01-01

    The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.

  19. Preface "Nonlinear processes in oceanic and atmospheric flows"

    Science.gov (United States)

    Mancho, A. M.; Wiggins, S.; Turiel, A.; Hernández-García, E.; López, C.; García-Ladona, E.

    2010-05-01

    Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.

  20. Preface "Nonlinear processes in oceanic and atmospheric flows"

    Directory of Open Access Journals (Sweden)

    E. García-Ladona

    2010-05-01

    Full Text Available Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.

  1. Atmospheric Neutrino Predictions and the Influence of Hadron Production

    CERN Document Server

    Robbins, S

    2004-01-01

    The observation of neutrino flavour transformations of atmospheric neutrinos measured in Super-Kamiokande demands a theoretical explanation. The favoured candidate -- neutrino oscillations -- makes detailed predictions for the energy and path length dependence of the flavour transformations. For this reason, neutrino oscillations is a testable theory, which so far is in excellent agreement with the observations. The detailed comparison between the measured neutrino fluxes at Super-Kamiokande and the expected neutrino flux demands accurate predictions. Such predictions are performed with Monte-Carlo based simulations; the simulation of the Bartol group is used for the analyses in this thesis. Most recently the development of fully three-dimensional (3D) atmospheric neutrino calculations has been a significant theoretical improvement to the predicted neutrino fluxes. Older calculations employed the one-dimensional (1D) approximation; a comparison of these techniques is contained herewith. It is shown that above...

  2. Molecular beam simulation of planetary atmospheric entry - Some recent results.

    Science.gov (United States)

    French, J. B.; Reid, N. M.; Nier, A. O.; Hayden, J. L.

    1972-01-01

    Progress is reported in the development of molecular beam techniques to simulate entry into planetary atmospheres. Molecular beam sources for producing fast beams containing CO2 and atomic oxygen are discussed. Results pertinent to the design and calibration of a mass spectrometer ion source for measurement of the Martian atmosphere during the free molecule portion of the entry trajectory are also presented. The shortcomings and advantages of this simulation technique are discussed, and it is demonstrated that even with certain inadequacies much information useful to the ion source design was obtained. Particularly, it is shown that an open-cavity configuration retains sensitivity to atomic oxygen, provides reasonable signal enhancement from the stagnation effect, is not highly sensitive to pitch and yaw effects, and presents no unforeseen problems in measuring CO2 or atomic oxygen.

  3. Atmospheric Science Program. Summaries of research in FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  4. State of art in matter of inventory of emissions in atmosphere; Etat de l`art en matiere d`inventaire d`emissions dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P.

    1996-09-01

    This paper displayed at the meeting organized by EFE (3-4 july 1996) on the theme: `Combustion and Environment` presents an overview on the emission inventory subject: methodology, evaluation availability according to concerned pollutants, various source contribution. It contains numerous figures giving the evolution of pollutant emissions into the atmosphere in France and in Europe. (author)

  5. Gillnet and trammel net ban and buyback in St. Croix, USVI: This dataset contains data fishermen and other stakeholders views about the performance of the gillnet and trammel net buyback and ban in St. Croix, USVI (CRCP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data contains information on demographics and fishermens perceptions about the efficacy of St. Croix gillnet ban and buyback

  6. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  7. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  8. Intermediate ions in the atmosphere

    Science.gov (United States)

    Tammet, Hannes; Komsaare, Kaupo; Hõrrak, Urmas

    2014-01-01

    Intermediate air ions are charged nanometer-sized aerosol particles with an electric mobility of about 0.03-0.5 cm2 V- 1 s- 1 and a diameter of about 1.5-7.5 nm. Intensive studies of new particle formation provided good knowledge about intermediate ions during burst events of atmospheric aerosol nucleation. Information about intermediate ions during quiet periods between the bursts remained poor. The new mobility analyzer SIGMA can detect air ions at concentrations of mobility fractions of about 1 cm- 3 and enables studying intermediate ions during quiet periods. It became evident that intermediate ions always exist in atmospheric air and should be considered an indicator and a mediator of aerosol nucleation. The annual average concentration of intermediate ions of one polarity in Tartu, Estonia, was about 40 cm- 3 while 5% of the measurements showed a concentration of less than 10 cm- 3. The fraction concentrations in logarithmic 1/8-decade mobility bins between 0.1 and 0.4 cm2 V- 1 s- 1 often dropped below 1 cm- 3. The bursts of intermediate ions at stations separated by around 100 km appeared to be correlated. The lifespan of intermediate ions in the atmosphere is a few minutes, and they cannot be carried by wind over long distances. Thus the observed long-range correlation of intermediate ions is explained by simultaneous changes in air composition in widely spaced stations. A certain amount of intermediate ion bursts, predominantly of negative polarity, are produced by the balloelectric effect at the splashing of water drops during rain. These bursts are usually excluded when speaking about new particle formation because the balloelectric particles are assumed not to grow to the size of the Aitken mode. The mobility distribution of balloelectric ions is uniform in shape in all measurements. The maximum is located at a mobility of about 0.2 cm2 V- 1 s- 1, which corresponds to the diameter of particles of about 2.5 nm.

  9. 27 CFR 30.44 - Weighing containers.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Weighing containers. 30.44... Weighing containers. (a) Weighing containers of more than 10 wine gallons. The weight of containers having.... (b) Weighing containers of 10 wine gallons or less. The weight for containers of a capacity of 10...

  10. Demonstration of an Emergency Containment System. [Tritium containment

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, T.M.; Rogers, M.L.; Wilkes, W.R.

    1978-01-01

    A system called an Emergency Containment System (ECS) to be used for tertiary containment of tritium was reported at the 13th Air Cleaning Conference. This system was part of the Tritium Effluent Control Laboratory then under construction at Mound Facility. A series of experiments has recently been conducted to evaluate the performance of an ECS in capturing tritium accidentally released into an operating laboratory. The ECS is an automatically actuated laboratory air detritiation system utilizing a catalytic oxidation reactor and presaturated oxide adsorption/exchange columns. In the event of an accidental release of tritium into the laboratory, the ECS is automatically activated, and quick-acting pneumatic dampers divert the laboratory air supply and exhaust through the ECS until room concentrations are returned to safe operating levels. The results of the experiments have shown that a tertiary containment of tritium is feasible. In the event of a catastrophic accident, the ECS is capable of preventing the release of a large quantity of tritium to the environment.

  11. The black hole quantum atmosphere

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  12. CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION

    Directory of Open Access Journals (Sweden)

    Franica Trojanović

    1989-12-01

    Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.

  13. Helicity in dynamic atmospheric processes

    Science.gov (United States)

    Kurgansky, M. V.

    2017-03-01

    An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.

  14. Glaciers-Ocean-Atmosphere Interactions

    Science.gov (United States)

    V. M. Kotlyakov, A. Ushakov, and A. Glazovsky (Eds.), International Association of Hydrological Sciences Publication 208, Great Yarmouth, Great Britain, 1991.This volume consists of fifty-five papers presented at an international symposium held in St. Petersburg, Russia, in September 1990. The papers are divided into nine subsections covering ice cores, sea ice, modeling of ice sheets, glaciation and sea-level variation, mass and heat balances, paleoclimatic studies, and glacier-atmospheric interactions. The majority of authors are Russian, although Estonian, German, French, Chinese, American, English, Dutch, Polish, Norwegian, Uzbekian, and Japanese authors are represented. As stated in the preface, this symposium was convened by the International Commission on Snow and Ice “to consider fundamental questions of the interactions which are of great importance to global change processes.”

  15. The black hole quantum atmosphere

    Directory of Open Access Journals (Sweden)

    Ramit Dey

    2017-11-01

    Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  16. Stellar atmospheres behind transiting exoplanets

    Science.gov (United States)

    Dravins, D.; Ludwig, H.-G.; Dahlén, E.; Gustavsson, M.; Pazira, H.

    2017-09-01

    Stellar surfaces are covered with brighter and darker structures, just like on the Sun. While solar surface details can be easily studied with telescopes, stellar surfaces cannot thus be resolved. However, one can use planets that happen to pass in front of distant stars as "shades" that successively block out small portions of the stellar surface behind. By measuring how the light from the star changes during such a transit, one can deduce stellar surface properties. Knowing those is required not only to study the star as such, but also to deduce the chemical composition of the planet that is passing in front of it, where some of the detected starlight has been filtered through the planet's atmosphere.

  17. Frontiers in Atmospheric Chemistry Modelling

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  18. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  19. Recovering of images degraded by atmosphere

    Science.gov (United States)

    Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2017-08-01

    Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.

  20. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Cavalli, F.

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  1. Time dependences of atmospheric Carbon dioxide fluxes

    CERN Document Server

    DeSalvo, Riccardo

    2014-01-01

    Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

  2. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Marsh, N.D.; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    Experimental studies of ultra-fine aerosol nucleation in clean atmospheric air, containing trace amounts of ozone, sulphur dioxide, and water vapour suggest that the production rate of critical clusters is sensitive to ionisation. To assess this sensitivity numerical simulations of the initial...... of critical clusters generating this distribution is a function of the number of ions present. This provides a set of boundary conditions, which constrain the properties of a possible microphysical mechanism. The role of ions in the nucleation process of critical clusters provides a source for new aerosol...

  3. Port Security: Container Cargo Control

    Directory of Open Access Journals (Sweden)

    Vladivoj Vlaković

    2006-05-01

    Full Text Available illicittrafficking of threat materials, especially explosives, chemicalsubstances and radioactive or nuclear material. The transportof the threat materials by using sea routes is an advantageto te"orists especially because of the possible use of ship containers.The container is the basis of world trade. It is assumed thatthe world total movement in containers is about 200 millionTEUs ("20-foot equivalent units" per year. The list of materialstransported by containers which should be subject to inspectionwith the aim of reducing the acts of te"orism includes explosives,narcotics, chemical weapons, hazardous chemicalsand radioactive materials.Of special interest is nuclear te"orism. The risk of nuclearte"orism carried out by sub-national groups should be considerednot only in the construction and/or use of nuclear device,but also in possible radioactive contamination of large urbanareas.The system of ship containers control is an essential componentof «smart border» concept. Modem personnel, parcel,vehicle and cargo inspection systems are non-invasive imagingtechniques based on the use of nuclear analytical techniques.The inspection systems use penetrating radiations: hard x-rays(300 keV or more or gamma-rays from radioactive sources(137Cs and 60Co with energies from 600 to 1300 keV that producea high resolution radiograph of the load. Unfortunately,this information is "non-specific" in that it gives no informationon the nature of objects that do not match_ the travel documentsand are not recognized by a visual analysis of the radiographicpicture. Moreover, there are regions of the containerwherex and gamma-ray systems are "blind" due to the high averageatomic number of the objects i"adiated that appear asblack spots in the radiographic image.The systems being developed are based on the use of fast, 14Me V, neutrons with detection of associated a-particle from nuclearreactionbywhichneutrons are produced (d+t>a+n.Jnsuch a way the possibility to

  4. Container Traffic In European Ports

    Directory of Open Access Journals (Sweden)

    Elen Twrdy

    2004-03-01

    Full Text Available Over the last fifteen years the European transport markethas witnessed a growth of container traffic which today reachesapproximately 50 million TEU per year. From 1997 to 2002,container traffic in the northern European ports increased from14 to 20.6 million TEU per year, in the ports of the westernMedite"anean from 6 to 10 million TEU per year, and in thenorthern Adriatic ports from 0. 69 to 0. 74 million TEU per year.The ports of the northern Adriatic are located in three states(Slovenia, Croatia and Italy with different statuses in relationto the common European market. In addition, different developmentlevels of these states are reflected in different levels ofinternational commercial exchange, the development of the existinginfrastructure and plans for the construction of new infrastructures.However, all three countries share a common goaltoincrease their competitiveness in comparison with the westemEuropean ports.

  5. The sulfur cycle in the marine atmosphere

    Science.gov (United States)

    Toon, Owen B.; Kasting, James F.; Turco, Richard P.; Liu, May S.

    1987-01-01

    The simulation of the sulfur cycle in the marine atmosphere using a one-dimensional photochemical model is described and evaluated. Theoretical uncertainties concerning the operation of the marine sulfur cycle are examined, and measurements of sulfur gases in the marine atmosphere necessary for developing the model are derived. Previous modeling studies are reviewed, and the data from these studies are compared to the model simulations. Recommendations for improving the simulation of the sulfur cycle in the marine atmosphere are discussed.

  6. Atmospheric and ocean sensing with GNSS

    Science.gov (United States)

    Yunck, Thomas P.; Hajj, George A.

    2003-01-01

    The 1980s and 1990s saw the Global Positioning System (GPS) transform space geodesy from an elite national enterprise to one open to the individual researcher. By adapting the tools from that endeavor we are learning to probe the atmosphere and the ocean surface in novel ways, including ground-based sensing of atmospheric moisture; space-based profiling of atmospheric refractivity by active limb sounding; and global ocean altimetry with reflected signals.

  7. Mean Atmospheric Conditions - Australian Tropical Operating Conditions.

    Science.gov (United States)

    1981-10-01

    analysis method used to define the current ARDU mean ,opi:al atmosphere; b. liaise with appropriate agencies ’eg DRCS, Bureau of Meteorology to assess...encountered in the Austr-alian region . .3 Current Australian _’,teorological Data. 23.1 The Bureau of Meteorology is the prime Australian agen-j -on:e...tropical atmosphere has not been determined, the atmosphere is consistent with current Bureau of Meteorology records which form the basis of Reference E

  8. Improvements in Aerosol Retrieval for Atmospheric Correction

    Science.gov (United States)

    2008-07-01

    spherical albedo of the atmosphere from the ground, L*a is the radiance backscattered by the atmosphere, and a and b are coefficients that solely...extinction, the scattering albedo for each scattering event and the value of the scattering phase function. For a stratified atmosphere, the phase function...The MODIS 2.1-μm Channel-Correlation with Visible Reflectance for Use in Remote Sensing of Aerosol,” IEEE Trans. Geosci. Remote Sens., 35, 1286

  9. Copper-containing zeolite catalysts

    Science.gov (United States)

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  10. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  11. Atmospheric neutrinos and the implications to cosmic ray interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research center for Cosmic Neutrinos, Institute for Cosmic Ray Research, Univ. of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2008-01-15

    Atmospheric neutrinos have been used to study neutrino oscillations. Neutrino oscillation analyses with atmospheric neutrinos are discussed. With the increased statistics of the atmospheric neutrino data, it is more important to understand the atmospheric neutrino flux more accurately. Detailed calculations of the atmospheric neutrino fluxes calibrated by the atmospheric muon data show suggestions to the interaction of cosmic rays.

  12. Characterization of Aerosols Containing Microcystin

    Directory of Open Access Journals (Sweden)

    Lorraine C. Backer

    2007-10-01

    Full Text Available Toxic blooms of cyanobacteria are ubiquitous in both freshwater and brackishwater sources throughout the world. One class of cyanobacterial toxins, calledmicrocystins, is cyclic peptides. In addition to ingestion and dermal, inhalation is a likelyroute of human exposure. A significant increase in reporting of minor symptoms,particularly respiratory symptoms was associated with exposure to higher levels ofcyanobacteria during recreational activities. Algae cells, bacteria, and waterborne toxinscan be aerosolized by a bubble-bursting process with a wind-driven white-capped wavemechanism. The purposes of this study were to: evaluate sampling and analysis techniquesfor microcystin aerosol, produce aerosol droplets containing microcystin in the laboratory,and deploy the sampling instruments in field studies. A high-volume impactor and an IOMfilter sampler were tried first in the laboratory to collect droplets containing microcystins.Samples were extracted and analyzed for microcystin using an ELISA method. Thelaboratory study showed that cyanotoxins in water could be transferred to air via a bubble-bursting process. The droplets containing microcystins showed a bimodal size distributionwith the mass median aerodynamic diameter (MMAD of 1.4 and 27.8 μm. The samplingand analysis methods were successfully used in a pilot field study to measure microcystinaerosol in situ.

  13. Microwave diagnostics of atmospheric plasmas

    Science.gov (United States)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  14. A stable snow-atmosphere coupled mode

    Science.gov (United States)

    Zhao, Liang; Zhu, Yuxiang; Liu, Haiwen; Liu, Zhongfang; Liu, Yanju; Li, Xiuping; Chen, Zhou

    2016-10-01

    Snow is both an important lower boundary forcing of the atmosphere and a response to atmospheric forcing in the extratropics. It is still unclear whether a stable snow-atmosphere coupled mode exists in the extratropics, like the ENSO in the tropics. Using Sliding Correlation analysis over Any Window, the present study quantitatively evaluates the stability of coupling relationships between the major modes of winter snow over the Northern Hemisphere and the winter atmospheric Arctic Oscillation (AO), the Antarctic Oscillation (AAO) and the Siberian High over the period 1872-2010, and discusses their possible relationships for different seasons. Results show that the first mode of the winter snow cover fraction and the winter AO together constitute a stable snow-atmosphere coupled mode, the SNAO. The coupled mode is stronger during recent decades than before. The snow anomaly over Europe is one key factor of the SNAO mode due to the high stability there, and the polar vortex anomaly in the atmosphere is its other key factor. The continuity of signals in the SNAO between autumn and winter is weaker than that between winter and spring. The second winter snow mode is generally stably correlated with the winter AAO and was more stable before the 1970s. The AAO signal with boreal snow has a strong continuity in seasonal transition. Generally, through these coupled modes, snow and atmosphere can interact in the same season or between different seasons: autumn snow can influence the winter atmosphere; the winter atmosphere can influence spring snow.

  15. MHD thermal instabilities in cool inhomogeneous atmospheres

    Science.gov (United States)

    Bodo, G.; Ferrari, A.; Massaglia, S.; Rosner, R.

    1983-01-01

    The formation of a coronal state in a stellar atmosphere is investigated. A numerical code is used to study the effects of atmospheric gradients and finite loop dimension on the scale of unstable perturbations, solving for oscillatory perturbations as eigenfunctions of a boundary value problem. The atmosphere is considered as initially isothermal, with density and pressure having scale heights fixed by the hydrostatic equations. Joule mode instability is found to be an efficient mechanism for current filamentation and subsequent heating in initially cool atmospheres. This instability is mainly effective at the top of magnetic loops and is not suppressed by thermal conduction.

  16. Photochemistry in Outer Solar System Atmospheres

    Science.gov (United States)

    Strobel, Darrell F.

    2005-01-01

    The photochemistries of the H2-He atmospheres of the gas giants Jupiter, Saturn and ice giants Uranus and Neptune and Titan’s mildly reducing N2 atmosphere are reviewed in terms of general chemical and physical principles. The thermochemical furnace regions in the deep atmospheres and the photochemical regions of the giant planets are coupled by vertical mixing to ensure efficient recyling of photochemical products. On Titan,mass loss of hydrogen ensures photochemical evolution of methane into less saturated hydrocarbons. A summary discussion of major dissociation paths and essential chemical reactions is given. The chapter ends with a overview of vertical transport processes in planetary atmospheres.

  17. The atmospheres of Uranus and Neptune

    Science.gov (United States)

    Lunine, Jonathan I.

    1993-01-01

    The atmospheres of Uranus and Neptune are discussed in the light of the Voyager 2 flybys of these planets. A basic overview of their atmospheres is presented, with emphasis on thermal structure, composition, energy and opacity sources, cloud structure, and the horizontal structure of the atmospheres. The nature and implications of the different internal heat flows on the two planets, and the implications of the deuterium and helium abundances for the origin and evolution of these ice giants, as distinct from Jupiter and Saturn, are discussed. Selected chemical and physical processes in the atmospheres of Uranus and Neptune are illustrated.

  18. The atmospheres of Uranus and Neptune

    Science.gov (United States)

    Lunine, Jonathan I.

    The atmospheres of Uranus and Neptune are discussed in the light of the Voyager 2 flybys of these planets. A basic overview of their atmospheres is presented, with emphasis on thermal structure, composition, energy and opacity sources, cloud structure, and the horizontal structure of the atmospheres. The nature and implications of the different internal heat flows on the two planets, and the implications of the deuterium and helium abundances for the origin and evolution of these ice giants, as distinct from Jupiter and Saturn, are discussed. Selected chemical and physical processes in the atmospheres of Uranus and Neptune are illustrated.

  19. SMEX02 Atmospheric Aerosol Optical Properties Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  20. Rugged Optical Atmospheric Humidity Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace species measurement on unmanned atmospheric research craft suitable for interplanetary travel is a demanding application for optical sensing techniques. Yet...

  1. Designing an Exploration Atmosphere Prebreathe Protocol

    Science.gov (United States)

    Conkin, Johnny; Feiveson, A. H.; Gernhardt, M. L.; Norcross, J. R.; Wessel, J. H., III

    2015-01-01

    Extravehicular activities (EVAs) at remote locations must maximize limited resources such as oxygen (O2) and also minimize the risk of decompression sickness (DCS). A proposed remote denitrogenation (prebreathe) protocol requires astronauts to live in a mildly hypoxic atmosphere at 8.2 psia while periodically performing EVAs at 4.3 psia. Empirical data are required to confirm that the protocol meets the current accept requirements: less than or equal to 15% incidence of Type I DCS, less than or equal to 20% incidence of Grade IV venous gas emboli (VGE), both at 95% statistical confidence, with no Type II DCS symptom during the validation trial. METHODS: A repeated measures statistical design is proposed in which groups of 6 subjects with physical characteristics similar to active-duty astronauts would first become equilibrated to an 8.2 psia atmosphere in a hypobaric chamber containing 34% O2 and 66% N2, over 48 h, and then perform 4 simulated EVAs at 4.3 psia over the next 9 days. In the equilibration phase, subjects undergo a 3-h 100% O2 mask prebreathe prior to and during a 5-min ascent to 8.2 psia to prevent significant tissue N2 supersaturation on reaching 8.2 psia. Masks would be removed once 34% O2 is established at 8.2 psia, and subjects would then equilibrate to this atmosphere for 48 h. The hypoxia is equivalent to breathing air at 1,220 meters (4,000 ft) altitude, just as was experienced in the shuttle 10.2 psia - 26.5% O2 staged denitrogenation protocol and the current ISS campout denitrogenation protocol. For simulated EVAs, each subject dons a mask and breathes 85% O2 and 15% N2 during a 3-min depressurization to 6.0 psia, holds for 15 min, and then completes a 3-min depressurization to 4.3 psia. The simulated EVA period starts when 6.0 psia is reached and continues for a total of 240 min (222 min at 4.3 psia). During this time, subjects will follow a prescribed repetitive activity against loads in the upper and lower body with mean metabolic rate

  2. Atmospheric behavior of the Chelyabinsk impactor

    Science.gov (United States)

    Borovička, J.; Spurný, P.; Brown, P.; Kalenda, P.; Shrbený, L.

    2014-07-01

    containing thermal hot spots, which retained their forward momentum and continued the flight in the original asteroid direction after formation. The usual assumption that the positions of dust concentrations are identical with the fragmentation points proved invalid in the case of Chelyabinsk. The nature of the hot spots will be discussed. The fragmentation analysis confirms that the Chelyabinsk asteroid was not a rubble pile, which would be expected to disintegrate under the atmospheric ram pressures experienced in the beginning of entry. On the other hand, Chelyabinsk was not a particularly strong body. About 95 % of mass was lost at heights above 30 km under the action of dynamic pressure less than 5 MPa. In many respects, the Chelyabinsk fragmentation resembles the fragmentation behavior exhibited by the Košice meteoroid (H5 chondrite, 1 meter size) [5]. Both events were characterized by catastrophic disruption above the height of 30 km and the survival of only a few large pieces in addition to numerous small meteorites. Since the bulk strength and fragmentation behavior of meter-sized objects varies from case to case [6], we do not expect that all Chelyabinsk-sized impactors will behave similarly.

  3. Process-based modeling of coupled energy and water cycle under dry tropical conditions: an experiment at local scale in the cultivated Sahel (South-West Niger)

    Science.gov (United States)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Boulain, N.; Charvet, G.; Chazarin, J.-P.; Mainassara, I.; Boucher, M.; Issoufou, H. B.-A.; Ibrahim, M.; Oi, M.; Ramier, D.; Benarrosh, N.; Yahou, H.

    2012-04-01

    In the dry tropics in general and, particularly in the African Sahel, agro-ecosystems and hydrosystems are very sensitive to climate variability and land management. In turn, it has been shown that soil moisture, vegetation and surface fluxes produce substantial feedback effects on rainfall-producing atmospheric convection. Therefore, it is of prime importance to understand and to model the dynamics of the soil-plant-atmosphere continuum in response to contrasted meteorological and terrestrial conditions for this area. The objective of this study is to produce a process-based model of water and energy transfers in the soil and land-atmosphere interface over an entire 5-year period, at local scale, for the two main land cover types of South-West Niger: millet-crop and fallow savannah. A comprehensive dataset is available over that whole period in two such fields of the Wankama catchment, making it a rather unique asset for West Africa. This area is typical of the central Sahel conditions, with ~400-600 mm annual rainfall concentrated in the 4-5 months wet season, followed by the 7-8 months dry season. Soils are essentially sandy and prone to surface crusting, which induces a strong vertical contrast in hydrodynamic properties. The dataset used here includes 5 years of atmospheric forcing (rainfall, wind speed, sun and atmosphere radiation, air temperature and moisture) and validation variables (net radiation, turbulent fluxes and soil temperature and moisture profiles), recorded every 30 min. The seasonal course of vegetation phenology (LAI, height, biomass) and soil characteristics (particle size and density profiles) are also available. The SiSPAT (Simple Soil-Plant-Atmosphere Transfer, Braud et al., 1995) physically-based model is used for this study. It solves the mass and heat transfer system of equations in the soil, with vapour phase, coupled with a two-component (bare soil and one vegetation layer) water and energy budget at the surface-atmosphere interface

  4. Atmospheric Vortices near Guadalupe Island

    Science.gov (United States)

    2000-01-01

    These MISR images from June 11, 2000 (Terra orbit 2569) demonstrate a turbulent atmospheric flow pattern known as the von Karman vortex street. This phenomenon is named after aerodynamicist Theodore von Karman, who theoretically derived the conditions under which it occurs. The alternating double row of vortices can form in the wake of an obstacle, in this instance the eastern Pacific island of Guadalupe. The rugged terrain of this volcanic Mexican island reaches a maximum elevation of 1.3 kilometers. The island is about 35 kilometers long and is located 260 kilometers west of Baja California.The vortex pattern is made visible by the marine stratocumulus clouds around Guadalupe Island. The upper image is a color view obtained by MISR's vertical-viewing (nadir) camera. North is toward the left. The orientation of the vortex street indicates that the wind direction is from lower left to upper right (northwest to southeast). The areas within the vortex centers tend to be clear because the rotating motions induce a vertical wind component that can break up the cloud deck.The lower view is a stereo picture generated from data acquired by MISR's fore- and aft-viewing 70-degree cameras. A 3-D effect is obtained by viewing the image with red/blue glasses and placing the red filter over your left eye. Note how the downwelling atmospheric motion (change in elevation from high to low) is accompanied by a clearing in the center of the first vortex. As the vortices propagate downstream, their rotational velocities weaken. As a consequence, the induced vertical motion and cloud-clearing effect weakens as well.Theodore von Karman was a Professor of Aeronautics at Caltech and Director of Caltech's Guggenheim Aeronautical Laboratory from 1930-1949. He was one of the principal founders of the Jet Propulsion Laboratory.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by

  5. 75 FR 33744 - Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Proposed...

    Science.gov (United States)

    2010-06-15

    ... Containers and Containment; Proposed Change to Labeling Compliance Date AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to amend the pesticide container and... ``Pesticide Management and Disposal; Standards for Pesticide Containers and Containment'' (71 FR 47330...

  6. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from GEORGENE and SITKA SPRUCE in the NW Pacific from 1982-07-14 to 1983-09-16 (NCEI Accession 8400020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The entry contains data collected from R/V SITKA SPRUCE and other platforms from NW Pacific (limit-180) from July 14, 1982 to August 16, 1983. Log sheets containing...

  7. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources.

    Science.gov (United States)

    Domagalski, Joseph; Majewski, Michael S; Alpers, Charles N; Eckley, Chris S; Eagles-Smith, Collin A; Schenk, Liam; Wherry, Susan

    2016-10-15

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg. Published by Elsevier B.V.

  8. Excess Molar Volume of Binary Systems Containing Mesitylene

    Directory of Open Access Journals (Sweden)

    Morávková, L.

    2013-05-01

    Full Text Available This paper presents a review of density measurements for binary systems containing 1,3,5-trimethylbenzene (mesitylene with a variety of organic compounds at atmospheric pressure. Literature data of the binary systems were divided into nine basic groups by the type of contained organic compound with mesitylene. The excess molar volumes calculated from the experimental density values have been compared with literature data. Densities were measured by a few experimental methods, namely using a pycnometer, a dilatometer or a commercial apparatus. The overview of the experimental data and shape of the excess molar volume curve versus mole fraction is presented in this paper. The excess molar volumes were correlated by Redlich–Kister equation. The standard deviations for fitting of excess molar volume versus mole fraction are compared. Found literature data cover a huge temperature range from (288.15 to 343.15 K.

  9. Atmospheric effects on active illumination

    Science.gov (United States)

    Shaw, Scot E. J.; Kansky, Jan E.

    2005-08-01

    For some beam-control applications, we can rely on the cooperation of the target when gathering information about the target location and the state of the atmosphere between the target and the beam-control system. The typical example is a cooperative point-source beacon on the target. Light from such a beacon allows the beam-control system to track the target accurately, and, if higher-order adaptive optics is to be employed, to make wave-front measurements and apply appropriate corrections with a deformable mirror. In many applications, including directed-energy weapons, the target is not cooperative. In the absence of a cooperative beacon, we must find other ways to collect the relevant information. This can be accomplished with an active-illumination system. Typically, this means shining one or more lasers at the target and observing the reflected light. In this paper, we qualitatively explore a number of difficulties inherent to active illumination, and suggest some possible mitigation techniques.

  10. Morphology of atmospheric transparent inhomogeneities

    Science.gov (United States)

    Eaton, Frank D.; Peterson, William A.; Hines, John R.; Drexler, James J.; Soules, David B.; Waldie, Arthur H.; Qualtrough, John A.

    1990-09-01

    Observations are presented displaying the evolution of transparent inhomogeneities in the natural atmosphere. All results are for horizontal paths in the first few meters above ground level. Measurements were taken using both a schlieren optical system capable of sensing fine scale gradients of refractive index and an optical system sensing the fine structure of intensity scintillation over various path lengths. Laser sources were utilized for both systems, and a full description of the two optical systems is included. The schlieren system employs two high quality 10-in-diameter mirrors to produce the illuminated working section. Trade-offs between this and other schlieren optical system configurations are discussed. The intensity scintillation measurements were taken with a collimated laser beam projected on a target board. System characteristics including the CCD camera, sampled frame rates, exposure times, and data processing are discussed. The central problem addressed in this study is to identify the conditions when G. Taylor's "frozen turbulence" hypothesis is justified. The optically derived results are compared to results from previous studies using tower, aircraft, and tethered balloon measurements. Analyses presented include histograms, three-dimensional displays, contour maps of features, and frame subtraction schemes. Simultaneous measurements of integrated path and point measurements of the refractive index structure parameter (Cn2), and wind , are included in the results.

  11. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  12. 27 CFR 19.581 - Authorized containers.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Authorized containers. 19..., DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Containers and Marks Containers § 19.581 Authorized containers. (a) General. Proprietors shall use for any purpose of containing, storing...

  13. 10 CFR 20.1904 - Labeling containers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Labeling containers. 20.1904 Section 20.1904 Energy....1904 Labeling containers. (a) The licensee shall ensure that each container of licensed material bears... handling or using the containers, or working in the vicinity of the containers, to take precautions to...

  14. Study of Stellar Clusters Containing Massive Stars

    Science.gov (United States)

    Costado, Teresa; Alfaro, E. J.; Delgado, A. J.; Djupvik, A. A.; Maíz Apellániz, J.

    2013-06-01

    Most stars form in clusters, but the percentage of stars born in dense stellar systems is currently matter of controversy and depends very much on the own definition of cluster. The cluster definition and hence the morphologies of individual clusters appear to vary significantly from region to region, as well as with age, which suggests that either, star formation in clusters is not universal and may depend on the local environment, or that all clusters form with the same morphology but early dynamical evolution quickly modifies the structure of the phase space distribution. In addition, young populated clusters containing massive stars are excellent labs for the study of the formation of the massive stellar component of the Galactic disk. Three main scenarios have been proposed for the formation of high-mass stars (M > 7-8 M_{⊙}): a) monolithic collapse of proto-stellar nuclei; b) competitive accretion inside the proto-cluster molecular cloud; and c) coalescence of proto-stellar nuclei and low-mass stars in very dense atmospheres. Both scientific questions: a) cluster formation and b) formation of high mass stars in clusters are intimately connected via the structural description of the phase space distribution of cluster stars and their Mass Function (MF). Models of static clusters with different initial spatial and kinematic distributions show how the spatial distribution dynamically evolves with time, allowing a characterization of their dynamical state from snapshots of their spatial distribution. Four are the main variables (and their distribution with mass and position) needed for a reliable characterization of the cluster dynamical state: a) Mass segregation parameter; b) Mapping of surface density for different ranges of masses; c) Q morphological parameter based on the minimum spanning tree graph and its variation with mass and cluster age, and d) MF of the cluster members. Two years ago, the Stellar System Group of IAA has begun an observational

  15. Bilateral inguinal hernias containing ovaries.

    Science.gov (United States)

    Basrur, Gurudutt Bhaskar

    2015-01-28

    Inguinal hernias are rare in females. The authors report a case of bilateral inguinal hernias in a 10-year-old female. On exploration, the patient was found to be having a sliding hernia containing incarcerated ovary as contents on both sides. Peroperatively the contents were reduced, the sac was transfixed at its base and the redundant sac was excised. The repair of this form of hernias is more difficult because of adhesions between the contents and the wall of the sac and risk of damage during dissection. A description of this clinical presentation in the pre operative assessment and operative management are discussed in this report.

  16. Bilateral inguinal hernias containing ovaries

    Directory of Open Access Journals (Sweden)

    Gurudutt Bhaskar Basrur

    2015-03-01

    Full Text Available Inguinal hernias are rare in females. The authors report a case of bilateral inguinal hernias in a 10-year-old female. On exploration, the patient was found to be having a sliding hernia containing incarcerated ovary as contents on both sides. Peroperatively the contents were reduced, the sac was transfixed at its base and the redundant sac was excised. The repair of this form of hernias is more difficult because of adhesions between the contents and the wall of the sac and risk of damage during dissection. A description of this clinical presentation in the pre operative assessment and operative management are discussed in this report.

  17. Late paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia.

    Science.gov (United States)

    Payne, Jonathan L; Groves, John R; Jost, Adam B; Nguyen, Thienan; Moffitt, Sarah E; Hill, Tessa M; Skotheim, Jan M

    2012-09-01

    Atmospheric hyperoxia, with pO(2) in excess of 30%, has long been hypothesized to account for late Paleozoic (360-250 million years ago) gigantism in numerous higher taxa. However, this hypothesis has not been evaluated statistically because comprehensive size data have not been compiled previously at sufficient temporal resolution to permit quantitative analysis. In this study, we test the hyperoxia-gigantism hypothesis by examining the fossil record of fusulinoidean foraminifers, a dramatic example of protistan gigantism with some individuals exceeding 10 cm in length and exceeding their relatives by six orders of magnitude in biovolume. We assembled and examined comprehensive regional and global, species-level datasets containing 270 and 1823 species, respectively. A statistical model of size evolution forced by atmospheric pO(2) is conclusively favored over alternative models based on random walks or a constant tendency toward size increase. Moreover, the ratios of volume to surface area in the largest fusulinoideans are consistent in magnitude and trend with a mathematical model based on oxygen transport limitation. We further validate the hyperoxia-gigantism model through an examination of modern foraminiferal species living along a measured gradient in oxygen concentration. These findings provide the first quantitative confirmation of a direct connection between Paleozoic gigantism and atmospheric hyperoxia. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  18. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Science.gov (United States)

    Rutjes, Casper; Sarria, David; Broberg Skeltved, Alexander; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-11-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  19. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Directory of Open Access Journals (Sweden)

    C. Rutjes

    2016-11-01

    Full Text Available The emerging field of high energy atmospheric physics (HEAP includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  20. Bacterial communities of fresh goat meat packaged in modified atmosphere.

    Science.gov (United States)

    Carrizosa, Elia; Benito, María José; Ruiz-Moyano, Santiago; Hernández, Alejandro; Villalobos, Maria Del Carmen; Martín, Alberto; Córdoba, María de Guía

    2017-08-01

    The objective of this work was to study the growth and development of fortuitous flora and food pathogens in fresh goat meat packaged under modified atmospheres containing two different concentrations of CO2. Meat samples were stored at 10 °C under two different modified-atmosphere packing (MAP) conditions: treatment A had 45% CO2 + 20% O2 + 35% N2 and treatment B had 20% CO2 + 55% O2 + 25% N2. During 14 days of storage, counts of each bacterial group and dominant species identification by 16S rRNA gene sequencing were performed to determine the microbial diversity present. The MAP condition used for treatment A was a more effective gas mixture for increasing the shelf life of fresh goat meat, significantly reducing the total number of viable bacteria and enterobacteria counts. Members of the Enterobacteriaceae family were the most common contaminants, although Hafnia alvei was dominant in treatment A and Serratia proteamaculans in treatment B. Identification studies at the species level showed that different microorganisms develop under different storage conditions, reflecting the importance of gas composition in the modified atmosphere on the bacterial community. This work provides new insights into the microbial changes of goat meat storage under different MAP conditions, which will be beneficial for the meat industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    OpenAIRE

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  2. Space Science in Action: Earth's Atmosphere [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the layers of the atmosphere and why each is important to the survival of life on the planet. Students discover why the atmosphere is responsible for weather and see how special aircraft actually fly into hurricanes. Students build their own working barometer in a hands-on activity. Contents…

  3. Atmospheric Science: It's More than Meteorology.

    Science.gov (United States)

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  4. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    TEMPERATURE FLUCTUATION INSIDE INERT ATMOSPHERE SILOS. E. S. Ajayi, et al. Nigerian Journal of Technology. Vol. 35, No. 3, July 2016. 643 also resist heat flow from solar radiation from outside. This is usually achieved by painting the silo wall with white paint. Some of the advantages of inert atmosphere storage ...

  5. A 3D model of Pluto's atmosphere

    Science.gov (United States)

    Vangvichith, M.; Forget, F.; Wordsworth, R.

    2011-10-01

    For the first time, we have built a GCM of Pluto's atmosphere, adapted from the model of Triton's, recently developed[9] . In fact, Pluto and Triton have a lot of similarities (atmospheric, orbital). This GCM will allow to better understand the complex mechanism of the planet and to study the variation of the thermal profile during time.

  6. The Corrosivity of the Mauritian Atmosphere

    African Journals Online (AJOL)

    Nafiisah

    technology. Atmospheric corrosion is the major contributor to this cost (Natesan et.al, 2005). To prevent such losses in Mauritius, it has become important to classify the corrosivity of the Mauritian atmosphere in order to facilitate the task of selecting materials, protection systems, maintenance intervals, e.t.c. Therefore,.

  7. Peranan Store Atmosphere Dalam Meningkatkan Keputusan Pembelian

    Directory of Open Access Journals (Sweden)

    Rennyta Yusiana

    2017-04-01

    ABSTRACT Bandung is a destination for domestic and foreign tourists with culinary goals. There are many restaurants and cafes offering a variety of culinary tastes, ranging from culinary archipelago to abroad. Nowadays consumers are attracted to the restaurant and cafe with a different atmosphere. One of them is the Hummingbird Eatery which implementing store homey atmosphere, with the cozy interior and dominated by furniture made of wood. Atmosphere is an important factor for consumers in choosing where to dine and relax. Cozy atmosphere with unique decor and creative appeal to a restaurant that makes consumers visit. This study aims to determine consumer response regarding the role of Store Atmosphere in increasing consumer purchasing decisions. This type of research is descriptive and quantitative, using 100 samples. Data collection techniques used were questionnaires, observations, interviews, and literature studies. This study uses SPSS V.22 and simple linear regression. The results of this study indicate that the general interior becomes a major consideration as a benefit for consumers in making purchasing decisions apart from other sub variables store atmosphere. Managers can prioritize managing general interior more effectively, because consumers prefer it in the store atmosphere. Keywords: Store Atmosphere, Purchase Decision

  8. Direct multiangle solution for poorly stratified atmospheres

    Science.gov (United States)

    Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao

    2012-01-01

    The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used...

  9. Park power deficit due to atmospheric stability

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca; Ott, Søren

    The purpose of this paper is to present a power deficit analysis based on offshore wind farm measurements with respect to the atmospheric stability classification. The result is used to validate wind farm prediction models under different inflow and atmospheric stability conditions...

  10. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-09-01

    Full Text Available This article, the fifth in the ACP journal series, presents data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the heterogeneous processes on surfaces of solid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website in 2010. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. Four substantial appendices contain detailed data sheets for each process considered for ice, mineral dust, sulfuric acid hydrate and nitric acid hydrate surfaces, which provide information upon which the recommendations are made.

  11. Images reveal that atmospheric particles can undergo liquid-liquid phase separations

    Energy Technology Data Exchange (ETDEWEB)

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-07-30

    A large fraction of submicron atmospheric particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles will be affected, with important implications for climate predictions. The actual occurrence of these types of phase transitions within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we observe the coexistence of two non-crystalline phases in particles generated from real-world samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. Using a box model, we show that liquid-liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 in the Atlanta region, due to decreased particle uptake of N2O5.

  12. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    Science.gov (United States)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  13. Thermal Behaviour of Some Azo Dyes Containing Sterically Hindered and Water-Soluble Groups

    OpenAIRE

    KOCAOKUTGEN, Hasan; HEREN, Zerrin

    1998-01-01

    Thermal behaviour of six azo dyes containing steric hindered groups such as tert-butyl, sec-butyl and isopropyl, were investigated by means of thermogravimetry (TG), differential thermal analysis (DTA) and differential thermogravimetry (DTG). The thermal decomposition points and amount of volatile pyrolysis products, were determined in nitrogen atmosphere using TG, DTA and DTG curves.

  14. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  15. The origin and evolution of atmospheric oxygen

    Science.gov (United States)

    Levine, Joel S.

    1988-01-01

    This paper discusses the chemical processes involved in the evolution of the earth's atmospheric oxygen and ozone, as well as the sources, sinks, and transfer rates of oxygen in the present atmosphere. Special attention is given the evolution of atmospheric O3 as a function of the buildup of O2, with the results of calculations presented as the vertical profiles of O3, in terms of the present atmospheric level (PAL) oxygen values. Calculations show that the total O3 column density that is approximately half of the present level was reached when atmospheric oxygen level reached 0.1 PAL. At this level of ozone, the biological shielding of the earth's surface from the UV radiation is believed to have been achieved.

  16. Deviations from LTE in a stellar atmosphere

    Science.gov (United States)

    Kalkofen, W.; Klein, R. I.; Stein, R. F.

    1979-01-01

    Deviations for LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient is smaller than unity when the radiative cross section grows with frequency faster than with the square of frequency; it exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of the radiative cross section. Overpopulation always implies that the kinetic temperature in the statistical-equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.

  17. Atmospheric Infrasound during a Large Wildfire

    Science.gov (United States)

    Vance, Alexis; Elbing, Brian

    2017-11-01

    Numerous natural and manmade sources generate infrasound, including tornado producing storms, human heart, hurricanes, and volcanoes. Infrasound is currently being studied as part of Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP), which is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. To support this effort a fixed infrasonic microphone located in Stillwater, Oklahoma has been monitoring atmospheric emissions since September of 2016. While severe storm systems is the primary focus of this work, the system also captures a wide range of infrasonic sources from distances in excess of 300 miles due to an acoustic ceiling and weak atmospheric absorption. The current presentation will focus on atmospheric infrasound observations during a large wildfire on the Kansas-Oklahoma border that occurred between March 6-22, 2017. This work was supported by NSF Grant 1539070.

  18. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  19. Control of Atmospheric Emissions in the Wood Pulping Industry, Volume 3.

    Science.gov (United States)

    Hendrickson, E. R.; And Others

    Volume 3 contains chapters 9 through 13 of the final report on the control of atmospheric emissions in the wood pulping industry. These chapters deal with the following topics: sampling and analytical techniques; on-going research related to reduction of emissions; research and development recommendations; current industry investment and operating…

  20. Mutagenicity in Salmonella of a Simulated Urban-Smog Atmosphere Generated Using a Mobile Reaction Chamber

    Science.gov (United States)

    The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...

  1. GPS radio occultation technique for measurement of the atmosphere above tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    2009-01-01

    /lower stratosphere (UT/LS). The result is positive, suggesting that the bending angle of a GPS signal contains interesting information on the atmosphere around the tropopause. The presentation is focused on one particular Tropical Cyclone (TC), the hurricane Bertha, which formed in the Atlantic Basin during July...

  2. Turbulence closure model "constants" and the problems of "inactive" atmospheric turbulence

    NARCIS (Netherlands)

    Bottema, M

    1997-01-01

    Inactive turbulence is associated with waves and large eddies that are relatively ineffective in mixing. Many numerical models evaluate turbulent mixing using turbulent kinetic energy k, which may contain significant amounts of inactive turbulence (e.g., in real or simulated atmospheric boundary

  3. Sterilization of packed matter by means of low temperature atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank

    2010-01-01

    Summary form only given. The decontamination of material in closed containers by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua, is ...

  4. Lomonosov's Discovery of Venus Atmosphere in 1761: English Translation of Original Publication with Commentaries

    CERN Document Server

    Shiltsev, Vladimir

    2012-01-01

    Key figure of Russian Enlightenment, polymath Mikhail Vasilievich Lomonosov (1711-1765) had discovered atmosphere of Venus during its transit over the Sun's disc in 1761. This paper contains the first full English translation of his report (originally published in Russian in July of 1761 and in German in August of the same year), commentaries and extensive bibliography.

  5. The STARTWAVE atmospheric water database

    Directory of Open Access Journals (Sweden)

    J. Morland

    2006-01-01

    Full Text Available The STARTWAVE (STudies in Atmospheric Radiative Transfer and Water Vapour Effects project aims to investigate the role which water vapour plays in the climate system, and in particular its interaction with radiation. Within this framework, an ongoing water vapour database project was set up which comprises integrated water vapour (IWV measurements made over the last ten years by ground-based microwave radiometers, Global Positioning System (GPS receivers and sun photometers located throughout Switzerland at altitudes between 330 and 3584 m. At Bern (46.95° N, 7.44° E tropospheric and stratospheric water vapour profiles are obtained on a regular basis and integrated liquid water, which is important for cloud characterisation, is also measured. Additional stratospheric water vapour profiles are obtained by an airborne microwave radiometer which observes large parts of the northern hemisphere during yearly flight campaigns. The database allows us to validate the various water vapour measurement techniques. Comparisons between IWV measured by the Payerne radiosonde with that measured at Bern by two microwave radiometers, GPS and sun photometer showed instrument biases within ±0.5 mm. The bias in GPS relative to sun photometer over the 2001 to 2004 period was –0.8 mm at Payerne (46.81° N, 6.94° E, 490 m, which lies in the Swiss plains north of the Alps, and +0.6 mm at Davos (46.81° N, 9.84° E, 1598 m, which is located within the Alps in the eastern part of Switzerland. At Locarno (46.18° N, 8.78° E, 366 m, which is located on the south side of the Alps, the bias is +1.9 mm. The sun photometer at Locarno was found to have a bias of –2.2 mm (13% of the mean annual IWV relative to the data from the closest radiosonde station at Milano. This result led to a yearly rotation of the sun photometer instruments between low and high altitude stations to improve the calibrations. In order to demonstrate the capabilites of the database for studying

  6. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  7. Task E container corrosion studies: Annual report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B. [Pacific Northwest Lab., Richland, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is {approx} 500 days. Third, an atmospheric corrosion test of low-carbon steel was initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status.

  8. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  9. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  10. The Radiometer Atmospheric Cubesat Experiment

    Science.gov (United States)

    Lim, B.; Bryk, M.; Clark, J.; Donahue, K.; Ellyin, R.; Misra, S.; Romero-Wolf, A.; Statham, S.; Steinkraus, J.; Lightsey, E. G.; Fear, A.; Francis, P.; Kjellberg, H.; McDonald, K.

    2014-12-01

    The Jet Propulsion Laboratory (JPL) has been developing the Radiometer Atmospheric CubeSat Experiment (RACE) since 2012, which consists of a water vapor radiometer integrated on a 3U CubeSat platform. RACE will measure 2 channels of the 183 GHz water vapor line, and will be used to validate new low noise amplifier (LNA) technology and a novel amplifier based internal calibration subsystem. The 3U spacecraft is provided by the University of Texas at Austin's Satellite Design Laboratory. RACE will advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and a CubeSat 183 GHz radiometer system from TRL 4 to TRL 7. Measurements at 183 GHz are used to retrieve integrated products and vertical profiles of water vapor. Current full scale satellite missions that can utilize the technology include AMSU, ATMS, SSMIS and Megha-Tropiques. The LNAs are designed at JPL, based on a 35 nm indium phosphide (InP) high-electron-mobility transistors (HEMT) technology developed by Northrop Grumman. The resulting single chip LNAs require only 25 mW of power. Current pre-launch instrument performance specifications include an RF gain of over 30 dB and a room noise figure of noise figure is dominated by the insertion loss of the Dicke switch which at these frequencies are > 5dB. If a coupler based calibration system is shown to be sufficient, future receiver systems will have noise figures noise figure variation over temperature is approximately 0.55 dB/K. The NEDT of the system is power consumption by eliminating the need for a local oscillator. A 2012 NASA CubeSat Launch Initiative (CSLI) selection, RACE is manifested for launch on the Orbital 3 (Orb-3) mission scheduled for October 2014. RACE will be deployed from the International Space Station (ISS) by NanoRacks.

  11. 75 FR 62323 - Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to...

    Science.gov (United States)

    2010-10-08

    ...-0327; FRL-8848-8] RIN 2070-AJ74 Pesticide Management and Disposal; Standards for Pesticide Containers...). ACTION: Final rule. SUMMARY: EPA is amending the pesticide container and containment regulations to... Disposal; Standards for Pesticide Containers and Containment'' (71 FR 47330) (container and containment...

  12. Radiation doses from Hanford site releases to the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Farris, W.T.; Napier, B.A.; Ikenberry, T.A.

    1994-06-01

    Radiation doses to individuals were estimated for the years 1944-1992. The dose estimates were based on the radioactive-releases from the Hanford Site in south central Washington. Conceptual models and computer codes were used to reconstruct doses through the early 1970s. The published Hanford Site annual environmental data were used to complete the does history through 1992. The most significant exposure pathway was found to be the consumption of cow`s milk containing iodine-131. For the atmospheric pathway, median cumulative dose estimates to the thyroid of children ranged from < 0.1 to 235 rad throughout the area studied. The geographic distribution of the dose levels was directly related to the pattern of iodine-131 deposition and was affected by the distribution of commercial milk and leafy vegetables. For the atmospheric pathway, the-highest estimated cumulative-effective-dose-equivalent (EDE) to an adult was estimated to be 1 rem at Ringold, Washington for the period 1944-1992. For the Columbia River pathway, cumulative EDE estimates ranged from <0.5 to l.5 rem cumulative dose to maximally exposed adults downriver from the Hanford Site for the years 1944-1992. The most significant river exposure pathway was consumption of resident fish containing phosphorus-32 and zinc-65.

  13. Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms

    Science.gov (United States)

    Sellegri, K.; Pey, J.; Rose, C.; Culot, A.; DeWitt, H. L.; Mas, S.; Schwier, A. N.; Temime-Roussel, B.; Charriere, B.; Saiz-Lopez, A.; Mahajan, A. S.; Parin, D.; Kukui, A.; Sempere, R.; D'Anna, B.; Marchand, N.

    2016-06-01

    Earth, as a whole, can be considered as a living organism emitting gases and particles into its atmosphere, in order to regulate its own temperature. In particular, oceans may respond to climate change by emitting particles that ultimately will influence cloud coverage. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of gas-phase species, but this process has never been directly observed above oceans. Here we present, using semicontrolled seawater-air enclosures, evidence that nucleation may occur from marine biological emissions in the atmosphere of the open ocean. We identify iodine-containing species as major precursors for new particle clusters' formation, while questioning the role of the commonly accepted dimethyl sulfide oxidation products, in forming new particle clusters in the region investigated and within a time scale on the order of an hour. We further show that amines would sustain the new particle formation process by growing the new clusters to larger sizes. Our results suggest that iodine-containing species and amines are correlated to different biological tracers. These observations, if generalized, would call for a substantial change of modeling approaches of the sea-to-air interactions.

  14. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  15. Plugs for containing faecal incontinence.

    Science.gov (United States)

    Deutekom, Marije; Dobben, Annette C

    2015-07-20

    Faecal incontinence is a distressing disorder with high social stigma. Not all people with faecal incontinence can be cured with conservative or surgical treatment and they may need to rely on containment products, such as anal plugs. To assess the performance of different types of anal plugs for containment of faecal incontinence. We searched the Cochrane Incontinence Group Specialised Register, which contains trials identified from the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE In-Process, ClinicalTrials.gov, World Health Organization (WHO) ICTRP and handsearching of journals and conference proceedings (searched 26 May 2015). Reference lists of identified trials were searched and plug manufacturers were contacted for trials. No language or other limitations were imposed. Types of studies: this review was limited to randomised and quasi-randomised controlled trials (including crossovers) of anal plug use for the management of faecal incontinence. children and adults with faecal incontinence.Types of interventions: any type of anal plug. Comparison interventions might include no treatment, conservative (physical) treatments, nutritional interventions, surgery, pads and other types or sizes of plugs. Two reviewers independently assessed methodological quality and extracted data from the included trials. Authors of all included trials were contacted for clarification concerning methodological issues. Four studies with a total of 136 participants were included. Two studies compared the use of plugs versus no plugs, one study compared two sizes of the same brand of plug, and one study compared two brands of plugs. In all included studies there was considerable dropout (in total 48 (35%) dropped out before the end of the study) for varying reasons. Data presented are thus subject to potential bias. 'Pseudo-continence' was, however, achieved by some of those who continued to use plugs, at least in the short-term. In a comparison of two

  16. Microbial release of sulphur ions from atmospheric pollution deposits

    Energy Technology Data Exchange (ETDEWEB)

    Killhan, K.; Wainwright, M.

    1981-12-01

    The surfaces of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electron microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for the in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sup 2 -//sub 3/; S/sub 4/O/sup 2 -//sub 6/ and SO/sup 2 -//sub 4/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred in fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We concluded that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  17. Microbial release of sulphur ions from atmospheric pollution deposits

    Energy Technology Data Exchange (ETDEWEB)

    Killham, K.; Wainwright, M.

    1981-12-01

    The surface of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electric microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sub 3//sup 2/ btw/sup -/ and; S/sub 4/O/sub 6//sup 2 -/ and SO/sub 4//sup 2 -/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred is fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We conclude that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  18. Dynamics of Atmospheric Waves In a Hazy Atmosphere: Implications for Titan and Pluto

    Science.gov (United States)

    Matcheva, Katia

    2017-10-01

    We present a dynamical model of atmospheric gravity waves propagating in a stable atmosphere in the presence of small-size particulates. We consider a two-way interaction: (i) the effect of atmospheric mass-loading on the propagation of the waves and (ii) the dynamical forcing of the haze particle motion in the presence of variable atmospheric winds. The model illustrates the effect on the vertical distribution of haze particles due to wave-induces vertical winds and wind gradients. The results are presented in the context of Titan’s atmosphere and Cassini observations.

  19. Atmospheric attenuation relative to earth-viewing orbital sensors. [atmospheric moisture effects on microwaves

    Science.gov (United States)

    Brown, S. C.; Jayroe, R. R., Jr.

    1973-01-01

    Earth viewing space missions offer exciting new possibilities in several earth resources disciplines - geography, hydrology, agriculture, geology, and oceanography, to name a few. A most useful tool in planning experiments and applying space technology to earth observation is a statistical description of atmospheric parameters. Four dimensional atmospheric models and a world wide cloud model are used to produce atmospheric attenuation models to predict degradation effects for all classes of sensors for application to earth sensing experiments from spaceborne platforms. To insure maximum utility and application of these products, the development of an interaction model of microwave energy and atmospheric variables provides a complete description of the effects of atmospheric moisture upon microwaves.

  20. Important characteristics of warning displays on alcohol containers.

    Science.gov (United States)

    Malouff, J; Schutte, N; Wiener, K; Brancazio, C; Fish, D

    1993-07-01

    Four studies examined the federally mandated warning on alcohol containers, which is required by law to be "located in a conspicuous and prominent place." In all four studies few of the drinkers could recall the main parts of the warnings, even though the warning had been required on all alcohol containers for over two years. In Study 1, 44 adults looked at the warning on various beer containers and 77% thought that the warning was not conspicuous but could be made conspicuous through various changes, such as by printing the warning horizontally (parallel to the brand name) rather than vertically. In Study 2, 50 adults looked at the warning placed horizontally on one beer can and vertically on a similar can and rated the horizontal warning significantly more conspicuous. In Study 3, 44 adults spent several minutes in a simulated drinking atmosphere. Half the subjects had beer cans with a horizontal warning and half had a vertical warning. The subjects with the horizontal warning later showed significantly better awareness/recall of the warning. In Study 4, with 75 adult subjects in a bar, the half of the subjects prompted to notice the alcohol warning drank less thereafter in the bar than the other subjects. The findings of the series of studies suggest that the conspicuousness of health warnings on alcohol containers tends to influence their possible effectiveness.

  1. Chemical mechanisms of atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Angeletti, G. [eds.] [University of Wuppertal, Wuppertal (Germany). Physical Chemistry

    1999-07-01

    The book contains extended abstracts presented at the meeting. The EC/DGXII cluster 4 'Chemical processes and mechanisms' formed the core of the meeting. The cluster 4 coordinators gave progress reports for all the projects, AEROBIC, AFCAR, BIOVOC, DIFUSO, DOMAC, EUROSOLV, EUROVOC, HALOBUD, INFORMATEX, RADICAL, RINOXA 2 and URANO. In addition, reports on 2 projects from other clusters but with strong links to cluster 4, NUCVOC and SAMPLER, were given by their coordinators. A special report was presented on the work implemented using the Photoreactor EUPHORE in Valencia. Half a day was devoted to stratospheric laboratory research, for which progress reports on the projects CHEMICON, COBRA, LAMOCS and LEXIS are presented. Two poster contributions on stratospheric laboratory research are also given.

  2. Large panel design for containment air baffle

    Science.gov (United States)

    Orr, R.S.

    1992-12-08

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.

  3. MELCOR/CONTAIN LMR Implementation Report - FY16 Progress.

    Energy Technology Data Exchange (ETDEWEB)

    Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the progress of the CONTAIN - LMR sodium physics and chemistry models to be implemented in MELCOR 2.1. In the past three years , the implementation included the addition of sodium equations of state and sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laboratory by modifying MELCOR to include liquid lithium equation of state as a working fluid to model the nuclear fusion safety research. The second source uses properties generated for the SIMMER code. The implemented modeling has been tested and results are reported in this document. In addition, the CONTAIN - LMR code was derived from an early version of the CONTAIN code, and many physical models that were developed since this early version of CONTAIN are not available in this early code version. Therefore, CONTAIN 2 has been updated with the sodium models in CONTAIN - LMR as CONTAIN2 - LMR, which may be used to provide code-to-code comparison with CONTAIN - LMR and MELCOR when the sodium chemistry models from CONTAIN - LMR have been completed. Both the spray fire and pool fire chemistry routines from CONTAIN - LMR have been integrated into MELCOR 2.1, and debugging and testing are in progress. Because MELCOR only models the equation of state for liquid and gas phases of the coolant, a modeling gap still exists when dealing with experiments or accident conditions that take place when the ambient temperature is below the freezing point of sodium. An alternative method is under investigation to overcome this gap . We are no longer working on the separate branch from the main branch of MELCOR 2.1 since the major modeling of MELCOR 2.1 has been completed. At the current stage, the newly implemented sodium chemistry models will be a part of the main MELCOR release version (MELCOR 2.2). This report will discuss the accomplishments and issues relating to the implementation. Also, we will report on the planned completion of all

  4. Results from the DCH-1 (Direct Containment Heating) experiment. [Pressurized melt ejection and direct containment heating

    Energy Technology Data Exchange (ETDEWEB)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.; Ross, J.E.; Oliver, M.S.; Lucero, D.A.; Kerley, T.E.; Arellano, F.E.; Gomez, R.D.

    1987-05-01

    The DCH-1 (Direct Containment Heating) test was the first experiment performed in the Surtsey Direct Heating Test Facility. The test involved 20 kg of molten core debris simulant ejected into a 1:10 scale model of the Zion reactor cavity. The melt was produced by a metallothermic reaction of iron oxide and aluminum powders to yield molten iron and alumina. The cavity model was placed so that the emerging debris propagated directly upwards along the vertical centerline of the chamber. Results from the experiment showed that the molten material was ejected from the caviity as a cloud of particles and aerosol. The dispersed debris caused a rapid pressurization of the 103-m/sup 3/ chamber atmosphere. Peak pressure from the six transducers ranged from 0.09 to 0.13 MPa (13.4 to 19.4 psig) above the initial value in the chamber. Posttest debris collection yielded 11.6 kg of material outside the cavity, of which approximately 1.6 kg was attributed to the uptake of oxygen by the iron particles. Mechanical sieving of the recovered debris showed a lognormal size distribution with a mass mean size of 0.55 mm. Aerosol measurements indicated a subsantial portion (2 to 16%) of the ejected mass was in the size range less than 10 m aerodynamic equivalent diameter.

  5. Infrasound data inversion for atmospheric sounding

    Science.gov (United States)

    Lalande, J.-M.; Sèbe, O.; Landès, M.; Blanc-Benon, Ph.; Matoza, R. S.; Le Pichon, A.; Blanc, E.

    2012-07-01

    The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) continuously records acoustic waves in the 0.01-10 Hz frequency band, known as infrasound. These waves propagate through the layered structure of the atmosphere. Coherent infrasonic waves are produced by a variety of anthropogenic and natural sources and their propagation is controlled by spatiotemporal variations of temperature and wind velocity. Natural stratification of atmospheric properties (e.g. temperature, density and winds) forms waveguides, allowing long-range propagation of infrasound waves. However, atmospheric specifications used in infrasound propagation modelling suffer from lack and sparsity of available data above an altitude of 50 km. As infrasound can propagate in the upper atmosphere up to 120 km, we assume that infrasonic data could be used for sounding the atmosphere, analogous to the use of seismic data to infer solid Earth structure and the use of hydroacoustic data to infer oceanic structure. We therefore develop an inversion scheme for vertical atmospheric wind profiles in the framework of an iterative linear inversion. The forward problem is treated in the high-frequency approximation using a Hamiltonian formulation and complete first-order ray perturbation theory is developed to construct the Fréchet derivatives matrix. We introduce a specific parametrization for the unknown model parameters based on Principal Component Analysis. Finally, our algorithm is tested on synthetic data cases spanning different seasonal periods and network configurations. The results show that our approach is suitable for infrasound atmospheric sounding on a regional scale.

  6. [Current data on atmospheric pollutions].

    Science.gov (United States)

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants

  7. CMOS sensors for atmospheric imaging

    Science.gov (United States)

    Pratlong, Jérôme; Burt, David; Jerram, Paul; Mayer, Frédéric; Walker, Andrew; Simpson, Robert; Johnson, Steven; Hubbard, Wendy

    2017-09-01

    Recent European atmospheric imaging missions have seen a move towards the use of CMOS sensors for the visible and NIR parts of the spectrum. These applications have particular challenges that are completely different to those that have driven the development of commercial sensors for applications such as cell-phone or SLR cameras. This paper will cover the design and performance of general-purpose image sensors that are to be used in the MTG (Meteosat Third Generation) and MetImage satellites and the technology challenges that they have presented. We will discuss how CMOS imagers have been designed with 4T pixel sizes of up to 250 μm square achieving good charge transfer efficiency, or low lag, with signal levels up to 2M electrons and with high line rates. In both devices a low noise analogue read-out chain is used with correlated double sampling to suppress the readout noise and give a maximum dynamic range that is significantly larger than in standard commercial devices. Radiation hardness is a particular challenge for CMOS detectors and both of these sensors have been designed to be fully radiation hard with high latch-up and single-event-upset tolerances, which is now silicon proven on MTG. We will also cover the impact of ionising radiation on these devices. Because with such large pixels the photodiodes have a large open area, front illumination technology is sufficient to meet the detection efficiency requirements but with thicker than standard epitaxial silicon to give improved IR response (note that this makes latch up protection even more important). However with narrow band illumination reflections from the front and back of the dielectric stack on the top of the sensor produce Fabry-Perot étalon effects, which have been minimised with process modifications. We will also cover the addition of precision narrow band filters inside the MTG package to provide a complete imaging subsystem. Control of reflected light is also critical in obtaining the

  8. A population study of hot Jupiter atmospheres

    Science.gov (United States)

    Tsiaras, Angelos; Waldmann, Ingo; Zingales, Tiziano; Rocchetto, Marco; Morello, Giuseppe; Damiano, Mario; Karpouzas, Konstantinos; Tinetti, Giovanna; McKemmish, Laura; Tennyson, Jonathan; Yurchenko, Sergey

    2017-10-01

    In the past two decades, we have learnt that every star hosts more than one planet. While the hunt for new exoplanets is on-going, the current sample of more than 3500 confirmed planets reveals a wide spectrum of planetary characteristics. While small planets appear to be the most common, the big and gaseous planets play a key role in the process of planetary formation. We present here the analysis of 30 gaseous extra-solar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 Jupiter radii. These planets were spectroscopically observed with the Wide Field Camera 3 on-board the Hubble Space Telescope, which is currently one of the most successful instruments for observing exoplanetary atmospheres. The quality of the HST/WFC3 spatially-scanned data combined with our specialised analysis tools, allows us to create the largest and most self-consistent sample of exoplanetary transmission spectra to date and study the collective behaviour of warm and hot gaseous planets rather than isolated case-studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres around 16 planets. For most of the Jupiters in our sample we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity is a secondary factor in the evolution of planetary atmospheres. We detect the presence of water vapour in all the statistically detectable atmospheres and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present on WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  9. Results from atmospheric and solar neutrinos experiments

    CERN Document Server

    Kearns, E T

    2001-01-01

    This paper is a summary of non-accelerator neutrino physics, concentrating on the latest experimental results using atmospheric and solar neutrinos to study neutrino oscillation. Neutrino oscillation is well-established in atmospheric neutrinos and current efforts aim to better measure and understand the phenomenon. Solar neutrinos continue to present an unsolved puzzle, with the latest data from Super-Kamiokande exhibiting a large flux deficit, but no significant day-night flux difference or spectral distortion. For both atmospheric and solar neutrinos, the data prefers oscillation between active flavors ( nu /sub e/ nu /sub mu / nu /sub tau /) and disfavors a 2-flavor oscillation to nu -sterile as the primary effect.

  10. Aircraft wake vortices in the atmosphere

    Science.gov (United States)

    Gerz, Thomas; Holzäpfel, Frank; Hofbauer, Thomas; Dörnbrack, Andreas; Frech, Michael

    The studies summarized here were motivated by the need to gain information (i) about the impact of aircraft emissions upon the atmosphere and the climate and (ii) about optimized separation distances between aircraft landing at an airport for possibly increasing its capacity. To this end, large-eddy simulations have been performed to learn about the behaviour of vortex wakes shed by cruising aircraft in the free atmosphere and in the atmospheric boundary layer close to the ground. Some results are best illustrated in animated form and may be found under http://www.pa.op.dlr.de/wirbelschleppe/WakeVortex.html.

  11. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  12. Optimizing yard operations in port container terminals

    DEFF Research Database (Denmark)

    Kallehauge, Louise Sibbesen

    2005-01-01

    This paper deals with the problem of positioning containers in a yard block of a port container terminal. The objective of the container positioning problem (CPP) is to minimise the total handling time in the block, i.e. the time required for storage and reshuffling of containers. One...

  13. 21 CFR 1230.47 - Rejected containers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rejected containers. 1230.47 Section 1230.47 Food... FEDERAL CAUSTIC POISON ACT Imports § 1230.47 Rejected containers. (a) In all cases where the containers... notification to the importer that the containers must be exported under customs supervision within 3 months...

  14. 7 CFR 201.42 - Small containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Small containers. 201.42 Section 201.42 Agriculture... REGULATIONS Sampling in the Administration of the Act § 201.42 Small containers. In sampling seed in small containers that it is not practical to sample as required in § 201.41, a portion of one unopened container or...

  15. 21 CFR 113.60 - Containers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Containers. 113.60 Section 113.60 Food and Drugs... CONSUMPTION THERMALLY PROCESSED LOW-ACID FOODS PACKAGED IN HERMETICALLY SEALED CONTAINERS Control of Components, Food Product Containers, Closures, and In-Process Materials § 113.60 Containers. (a) Closures...

  16. 21 CFR 100.100 - Misleading containers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Misleading containers. 100.100 Section 100.100... containers. In accordance with section 403(d) of the act, a food shall be deemed to be misbranded if its container is so made, formed, or filled as to be misleading. (a) A container that does not allow the...

  17. 27 CFR 44.187 - Shipping containers.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Shipping containers. 44... Shipping containers. Each shipping case, crate, or other container in which tobacco products, or cigarette... same containers in which they were received from the factory. (72 Stat. 1418, as amended; 26 U.S.C...

  18. Interpretation of Titan's atmospheric composition measured by Cassini-Huygens

    Science.gov (United States)

    Tobie, G.; Gautier, D.; Hersant, F.; Lunine, J. I.

    2008-09-01

    ABSTRACT The GCMS instrument aboard the Huygens probe has measured the composition of Titan's atmosphere [1] and detected for the first time 36Ar and 40Ar, but no Xe and Kr. Assuming that planetesimals which formed the satellite originated from the cold solar nebula around 10 AU, we predict, on the basis of our interpretation of the CNS enrichments in Saturn [2], that they must have contained silicates, H2O ice, CO2, CH4, H2S, NH3 and some amount of noble gases. Using the evolution model of Tobie et al. [3], we have determined the fate of the different volatile species present in Titan's interior and in the atmosphere from the accretion to present time. At the end of accretion, most of the region outward of this proto-corewas warmliquid water (T > 300K), in which gas compound has very low solubility, and so potentially very large amounts of volatiles, notably methane, ended up in the primitive atmosphere and on the surface. During that early epoch, the composition of the hot-proto atmosphere should have reflected the composition of the planetesimals. The atmosphere at that time was probablymainly composed of H2O, NH3, CO2, CH4, H2S, which strongly contrasts with the nitrogen dominating atmosphere we have on Titan today. Early escape, photolysis, impact-driven chemistry and progressive condensation to the surface of the different species initially present in the primitive atmosphere gradually change the composition of the atmosphere, so that most of the primordial gas compound disappeared fromthe atmosphere. After that catastrophic early epoch, only the inner undifferentiated portion of Titans interior was able to hold primordial volatiles. These volatile species were released fromthe deep interior when internal differentiation occured, roughly 0.5 Gyr after accretion. Depending on their ability to interact with water molecules, each species follow a different evolutionnary pathway. For pressure conditions occurringwithin Titan, we show thatmost of the volatile

  19. Heteroatom-Containing Porphyrin Analogues.

    Science.gov (United States)

    Chatterjee, Tamal; Shetti, Vijayendra S; Sharma, Ritambhara; Ravikanth, Mangalampalli

    2017-02-22

    The heteroatom-containing porphyrin analogues or core-modified porphyrins that resulted from the replacement of one or two pyrrole rings with other five-membered heterocycles such as furan, thiophene, selenophene, tellurophene, indene, phosphole, and silole are highly promising macrocycles and exhibit quite different physicochemical properties compared to regular azaporphyrins. The properties of heteroporphyrins depend on the nature and number of different heterocycle(s) present in place of pyrrole ring(s). The heteroporphyrins provide unique and unprecedented coordination environments for metals. Unlike regular porphyrins, the monoheteroporphyrins are known to stabilize metals in unusual oxidation states such as Cu and Ni in +1 oxidation states. The diheteroporphyrins, which are neutral macrocycles without ionizable protons, also showed interesting coordination chemistry. Thus, significant progress has been made in last few decades on core-modified porphyrins in terms of their synthesis, their use in building multiporphyrin arrays for light-harvesting applications, their use as ligands to form interesting metal complexes, and also their use for several other studies. The synthetic methods available in the literature allow one to prepare mono- and diheteroporphyrins and their functionalized derivatives, which were used extensively to prepare several covalent and noncovalent heteroporphyrin-based multiporphyrin arrays. The methods are also developed to synthesize different hetero analogues of porphyrin derivatives such as heterocorroles, heterochlorins, heterocarbaporphyrinoids, heteroatom-substituted confused porphyrins, and so on. This Review summarizes the key developments that have occurred in heteroporphyrin chemistry over the last four decades.

  20. Economic alternatives for containment barriers

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J. [Geo-Con, Inc., Monroeville, PA (United States)

    1997-12-31

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control.

  1. Contained radiological analytical chemistry module

    Science.gov (United States)

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  2. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from ISLAS ORCADAS in the North Atlantic Ocean from 1978-04-07 to 1978-05-21 (NCEI Accession 8100428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This record contains bottle cast data, collected by ISLAS ORCADAS ship (cruise 16) in the North Atlantic Ocean. This data is in CTD-78 format (binary) and included...

  3. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from ISLAS ORCADAS in the North Atlantic Ocean from 1976-11-03 to 1976-12-18 (NCEI Accession 8100429)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This entry contains bottle cast data, collected by ISLAS ORCADAS SHIP (cruise 11) between November 3, 1976 to December 18, 1976, in the North Atlantic Ocean. This...

  4. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from GYRE in the North Atlantic Ocean from 1977-05-05 to 1977-05-25 (NCEI Accession 7800460)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This entry contains the results from the Outer Continental Shelf study (OCS) benchmark study in the North Atlantic which ran during the month of May 77 from the R/V...

  5. HIRS/Nimbus-6 Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) V001 (HIRSN6L1GARP) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-6 High Resolution Infrared Radiometer (HIRS) Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) data product contains daily...

  6. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from GYRE from 1987-04-02 to 1995-08-30 (NODC Accession 9500157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains archive of Texas A XBT; and distribution and abundance of cetaceans (whales and dolphins) data collected along the continental slope in the...

  7. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from ALMIRANTE SALDANHA from 1977-03-23 to 1977-12-18 (NCEI Accession 7800424)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains Station data submitted by the Directoria de Hidrografia e Navagacao (DHN) from Brazil. The data were collected March-December 1977 from the...

  8. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from FIXED PLATFORM from 1975-09-08 to 1982-07-28 (NODC Accession 8500024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series moored buoy data collected in the Bering Sea by Pacific Marine Environmental Laboratory (PMEL) during the period of September 8,...

  9. EPA Contribution to Manuscript "Evaluation and Error Apportionment of an Ensemble of Atmospheric Chemistry Transport Modelling Systems: Multi-variable Temporal and Spatial Breakdown"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data contributed by EPA/ORD/NERL/CED researchers to the manuscript "Evaluation and Error Apportionment of an Ensemble of Atmospheric...

  10. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from GILLISS in the North Atlantic Ocean from 1977-05-05 to 1977-09-02 (NODC Accession 7800461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This entry contains the results from the Outer Continental Shelf Study (OCS) benchmark study in the North Atlantic which ran May 5 to September 2, 1977 from the R/V...

  11. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from GYRE in the North Atlantic Ocean from 1977-02-10 to 1977-03-07 (NODC Accession 7800459)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This entry contains the results from the Outer Continental Shelf Study (OCS) Benchmark Study in the North Atlantic which ran from February 10 to March 7, 1977 from...

  12. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from KNORR in the North Atlantic Ocean from 1977-11-22 to 1977-12-04 (NODC Accession 7800462)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This entry contains the results from the Outer Continental Shelf Study (OCS) benchmark study in the North Atlantic which ran November to December 1977 from the R/V...

  13. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  14. Hierarchical Model of Container Ports Throughput

    Directory of Open Access Journals (Sweden)

    Monika Rozmarynowska

    2015-12-01

    Full Text Available In this article the attempt has been made to construct hierarchical model of container ports throughput development. The presented hierarchical approach uses the relationships of development of global economy and container flows at different geographical levels: global (container throughput in all seaport on the world, regional (container throughput in the Baltic seaports and national (container throughput in Polish seaports. Model have been evaluated for their fit and usefulness for predictive purposes.

  15. 75 FR 26268 - Agency Information Collection Activities: Permit To Transfer Containers to a Container Station

    Science.gov (United States)

    2010-05-11

    ... Containers to a Container Station AGENCY: U.S. Customs and Border Protection, Department of Homeland Security... concerning the: Permit to Transfer Containers to a Container Station. This request for comment is being made... Containers to a Container Station. OMB Number: 1651-0049. Form Number: None. Abstract: This information...

  16. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    This research was conducted to study temperature fluctuation inside the inert atmosphere silos loaded with wheat, compare ... gases most especially carbondioxide (CO2) is due to safety of ... even to agriculture and resistance of pests to some.

  17. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  18. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  19. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  20. Affective Atmospheres in the House of Usher

    DEFF Research Database (Denmark)

    Brink, Dennis Meyhoff

    2016-01-01

    Emotional intensities do not only pertain to the ‘inner life’ of individuals; they are also to be found, as the saying goes, ‘in the air,’ i.e. as shared atmospheres that envelope and affect us. Such affective atmospheres are omnipresent in Edgar Allan Poe’s short story “The Fall of the House...... of Usher” (1839). The house in the story is not only enshrouded in an atmosphere of its own; the entire plot is focused on the ways in which this atmosphere affects the characters. Informed by these recent theories on affect, the essay analyzes Poe’s short story and proposes a number of new concepts...... for affect theory....