WorldWideScience

Sample records for constructions energy efficiency

  1. Constructing regulation and regulating for energy efficient construction

    Energy Technology Data Exchange (ETDEWEB)

    Shove, Elizabeth [Lancaster University (United Kingdom). Centre for the Study of Environmental Change

    1998-07-01

    This project considers the process of formulating energy-related building regulation in the light of the revisions to Part L (Conservation of Fuel and Power) of the Building Regulations for England and Wales. Details are given of the main objectives of the research, namely, the examination of the roles of the UK government, local government and pressure groups in shaping energy efficiency standards, the impacts of environmental regulations, the limits of energy-related regulation, environmental regulation of the building sector, and the features of energy related building control. This control is compared with current practice in other European countries. The methodology of the project involving the review of governmental documents and interviews is described. (UK)

  2. Sheep Wool as a Construction Material for Energy Efficiency Improvement

    Directory of Open Access Journals (Sweden)

    Azra Korjenic

    2015-06-01

    Full Text Available The building sector is responsible for 40% of the current CO2 emissions as well as energy consumption. Sustainability and energy efficiency of buildings are currently being evaluated, not only based on thermal insulation qualities and energy demands, but also based on primary energy demand, CO2 reductions and the ecological properties of the materials used. Therefore, in order to make buildings as sustainable as possible, it is crucial to maximize the use of ecological materials. This study explores alternative usage of sheep wool as a construction material beyond its traditional application in the textile industry. Another goal of this research was to study the feasibility of replacement of commonly used thermal insulations with natural and renewable materials which have better environmental and primary energy values. Building physics, energy and environmental characteristics were evaluated and compared based on hygrothermal simulation and ecological balance methods. The observations demonstrate that sheep wool, compared with mineral wool and calcium silicate, provides comparable thermal insulation characteristics, and in some applications even reveals better performance.

  3. Constructive singularities and energy efficiency of St. Petersburg historic circuses

    Science.gov (United States)

    Sysoeva, Elena; Trushina, Ekaterina

    2017-10-01

    The article is devoted to the design and construction of St. Petersburg circuses during the period since 1822 till nowadays. The article presents the characteristics of all eight historic buildings of St. Petersburg and their structural and architectural features. The article raises some issues of energy-optimal shape of a building on the example of St. Petersburg modern circus building. There are several historical drawings and photographs of the circus buildings. The article includes overview of normative regulation of circus buildings in Russia since the middle of the twentieth century and prospects for the future.

  4. Technology Paths in Energy-Efficient and Sustainable Construction

    DEFF Research Database (Denmark)

    Holm, Jesper; Lund Sørensen, Runa Cecilie

    2015-01-01

    Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing......Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing...

  5. Whole Foods Market Improves Energy Efficiency in New Construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Whole Foods Market partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  6. Towards a sustainable aesthetics. Architects constructing energy efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ryghaug, Marianne

    2002-07-01

    This interdisciplinary study discusses challenges in energy economising in Norway as they involve the architect profession and their role in affecting the energy standard in buildings. The main research question is separated into two component research questions. The first is to analyse how the reality orientation of the architect profession is constituted and maintained, and how this in turn influences their values in connection to energy related decisions. How is the architects' professional role conception reflected in the educational system and architect journals, and how is it expressed among the 'green outsiders' of the profession? The second component research question is related to decision-making processes regarding design processes, particularly concerning energy in buildings and the role played by the architects in these processes as they interact with other actors and within institutional frames.

  7. Towards a sustainable aesthetics. Architects constructing energy efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ryghaug, Marianne

    2002-07-01

    This interdisciplinary study discusses challenges in energy economising in Norway as they involve the architect profession and their role in affecting the energy standard in buildings. The main research question is separated into two component research questions. The first is to analyse how the reality orientation of the architect profession is constituted and maintained, and how this in turn influences their values in connection to energy related decisions. How is the architects' professional role conception reflected in the educational system and architect journals, and how is it expressed among the 'green outsiders' of the profession? The second component research question is related to decision-making processes regarding design processes, particularly concerning energy in buildings and the role played by the architects in these processes as they interact with other actors and within institutional frames.

  8. Energy efficient and solar construction. Themes 2008; Energieeffizientes und solares Bauen. Themen 2008

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, Gerd (ed.)

    2009-04-15

    Within the annual meeting of the Renewable Energy Research Association (Berlin, Federal Republic of Germany) at 29th to 30th September, 2008, the lectures were held to the following themes: (a) Energy efficient and solar construction - a change of paradigm; (b) Revolution in construction technology; (c) Energetic sanitation of old buildings; (d) Innovative technologies of energy supply; (e) Integrated facility management; (f) Demonstration and practice of new technologies; (g) Market, politics, and sustainability.

  9. The Global Experience of Deployment of Energy-Efficient Technologies in High-Rise Construction

    Science.gov (United States)

    Potienko, Natalia D.; Kuznetsova, Anna A.; Solyakova, Darya N.; Klyueva, Yulia E.

    2018-03-01

    The objective of this research is to examine issues related to the increasing importance of energy-efficient technologies in high-rise construction. The aim of the paper is to investigate modern approaches to building design that involve implementation of various energy-saving technologies in diverse climates and at different structural levels, including the levels of urban development, functionality, planning, construction and engineering. The research methodology is based on the comprehensive analysis of the advanced global expertise in the design and construction of energy-efficient high-rise buildings, with the examination of their positive and negative features. The research also defines the basic principles of energy-efficient architecture. Besides, it draws parallels between the climate characteristics of countries that lead in the field of energy-efficient high-rise construction, on the one hand, and the climate in Russia, on the other, which makes it possible to use the vast experience of many countries, wholly or partially. The paper also gives an analytical review of the results arrived at by implementing energy efficiency principles into high-rise architecture. The study findings determine the impact of energy-efficient technologies on high-rise architecture and planning solutions. In conclusion, the research states that, apart from aesthetic and compositional interpretation of architectural forms, an architect nowadays has to address the task of finding a synthesis between technological and architectural solutions, which requires knowledge of advanced technologies. The study findings reveal that the implementation of modern energy-efficient technologies into high-rise construction is of immediate interest and is sure to bring long-term benefits.

  10. Engineering management technologies of increasing energy efficiency processes in the investment and construction projects

    Science.gov (United States)

    Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat

    2017-10-01

    The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.

  11. Energy Value Housing Award Guide: How to Build and Profit with Energy Efficiency in New Home Construction

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, J. L.

    2001-06-01

    As concern over the environment grows, builders have the potential to fulfill a market niche by building homes that use fewer resources and have lower environmental impact than conventional construction. Builders can increase their marketability and customer satisfaction and, at the same time, reduce the environmental impact of their homes. However, it takes dedication to build environmentally sound homes along with a solid marketing approach to ensure that customers recognize the added value of energy and resource efficiency. This guide is intended for builders seeking suggestions on how to improve energy and resource efficiency in their new homes. It is a compilation of ideas and concepts for designing, building, and marketing energy- and resource-efficient homes based on the experience of recipients of the national Energy Value Housing Award (EVHA).

  12. Formation of Conceptual Provisions for the Development of the Energy Efficient Housing Construction in Russia

    Science.gov (United States)

    Vasilyeva, Elena

    2017-10-01

    Current problems and the prospects of energy saving in Russia as well as the importance of creation of complete legislative and legal base and the mechanisms of economic incentives of energy saving is are considered in article. The analysis of the existing criteria of the energy efficiency of buildings is carried out. The introduction of so-called “road map” of the development of energy saving in housing-and-communal services is expedient. According to the author, that will allow to provide owners of buildings and the servicing companies with the information for acceptance of organizational and technical project, construction and operational decisions, reasonable decisions on maintenance, reconstruction or dismantling of the buildings, directed to lowering of energetic expenses and also to the proper organization of life cycle of buildings in general.

  13. District heating and energy efficiency in detached houses of differing size and construction

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Anna; Gustavsson, Leif [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2009-02-15

    House envelope measures and conversion of heating systems can reduce primary energy use and CO{sub 2} emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m{sup 2}. One of the houses was also analysed for three energy standards with differing heat loss rates. CO{sub 2} emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO{sub 2} emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures. (author)

  14. District heating and energy efficiency in detached houses of differing size and construction

    International Nuclear Information System (INIS)

    Joelsson, Anna; Gustavsson, Leif

    2009-01-01

    House envelope measures and conversion of heating systems can reduce primary energy use and CO 2 emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m 2 . One of the houses was also analysed for three energy standards with differing heat loss rates. CO 2 emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO 2 emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures

  15. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  16. A RISK BASED METHODOLOGY TO ASSESS THE ENERGY EFFICIENCY IMPROVEMENTS IN TRADITIONALLY CONSTRUCTED BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. Herrera

    2013-07-01

    Full Text Available In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010, and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  17. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  18. Construction components and energy efficiency in buildings; Componentes de construccion y eficiencia energetica en edificios

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, N.K.; Bhandari, M.S.; Kummar, P.S. [Centro para el Estudio de Energia, Instituto Hindu de Tecnologia, Hauz Khas, Nueva Delhi (Indonesia)

    2005-01-15

    An energy efficiency analysis to a set of buildings was made in India to quantify the effects of the individual design concepts with respect to the energy system in general. The saving potential of energy of different concepts as well as the orientation, windows, air cavities, insulation, etc. was quantified for the different climatic conditions that prevail in most of the Central India regions. It is demonstrated that the specific requirement of heat energy can be reduced to 300 kWh/m{sup 2} a (U{sub edifice} = 2.13 W/m{sup 2} K) for a building of normal construction up to 143 kWh/m{sup 2} a (U{sub edifice} = 0.95 W/m{sup 2} K) when using ceiling insulation and walls and by means of the use of double glass windows. [Spanish] Se realizo el analisis de eficiencia de energia a un conjunto de edificios en la India, para cuantificar los efectos de los conceptos individuales de diseno respecto al sistema de energia en general. El potencial de ahorro de energia de distintos conceptos, como la orientacion, ventanas, cavidades de aire, aislamiento, etc. fue cuantificado para las distintas condiciones climaticas que prevalecen en la mayoria de las regiones de India central. Se demuestra que el requerimiento especifico de energia calorifica puede ser reducida de 300 kWh/m{sup 2} a (U{sub edificio} = 2.13 W/m{sup 2} K) para un edificio de construccion normal hasta 143 kWh/m{sup 2} a (U{sub edificio} = 0.95 W/m{sup 2} K) al usar un aislante en el techo, paredes y mediante el empleo de ventanas de doble vidrio.

  19. Results of expert response when forming an exhaustive list of potential risks of constructions projects using energy efficient technologies

    Directory of Open Access Journals (Sweden)

    Ryzhkova Anastasiya Igorevna

    2016-10-01

    Full Text Available The author deals with the most widely used methods of risk events identification. The expert response method is most applicable for construction projects using energy efficient technologies. The article presents the results of an opinion poll of the professional expert community using expert response method, which is aimed to identify the most likely potential “pure” risk of construction projects with energy-efficient technologies in use. 74 experts representing different levels of the construction process were polled: customers and directors of construction companies, project managers, risk managers, advisors. The answers were collected during private talks and also using a special website Survey Monkey. Experts from different countries took part: Russia, Great Britain, Austria, Luxemburg, Switzerland and Norway. Also the article presents the expert evaluation of the “effect” of risk implementation on the cost of a project, implementation time, the product quality, the environment and safety on the construction site.

  20. Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management

    DEFF Research Database (Denmark)

    Wandahl, Søren; Ussing, Lene Faber

    2013-01-01

    Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other manufactu......Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other...... manufacturing industries. An important question, then, is how well these two highly relevant areas can go hand in hand. By means of comparing the main ideas and drivers behind sustainability and industrialization, respectively, common threads, possible synergies and evident barriers are put forward...... in this discussion paper. The main method is a review to track past merits in the two domains and to detect knowledge gaps that have research potential. A strategic research agenda focusing on energy-efficient construction management is outlined showing the need for future focus on combining industrialization...

  1. Fitting methods for constructing energy-dependent efficiency curves and their application to ionization chamber measurements

    International Nuclear Information System (INIS)

    Svec, A.; Schrader, H.

    2002-01-01

    An ionization chamber without and with an iron liner (absorber) was calibrated by a set of radionuclide activity standards of the Physikalisch-Technische Bundesanstalt (PTB). The ionization chamber is used as a secondary standard measuring system for activity at the Slovak Institute of Metrology (SMU). Energy-dependent photon-efficiency curves were established for the ionization chamber in defined measurement geometry without and with the liner, and radionuclide efficiencies were calculated. Programmed calculation with an analytical efficiency function and a nonlinear regression algorithm of Microsoft (MS) Excel for fitting was used. Efficiencies from bremsstrahlung of pure beta-particle emitters were calibrated achieving a 10% accuracy level. Such efficiency components are added to obtain the total radionuclide efficiency of photon emitters after beta decay. The method yields differences of experimental and calculated radionuclide efficiencies for most of the photon-emitting radionuclides in the order of a few percent

  2. Energy efficiency indicators for assessing construction systems storing renewable energy: Application to phase change material-bearing Façades

    OpenAIRE

    Tenorio Ríos, José Antonio; Sánchez-Ramos, José; Ruiz-Pardo, Álvaro; Álvarez, Servando; Cabeza, Luisa F.

    2015-01-01

    Assessing the performance or energy efficiency of a single construction element by itself is often a futile exercise. That is not the case, however, when an element is designed, among others, to improve building energy performance by harnessing renewable energy in a process that requires a source of external energy. Harnessing renewable energy is acquiring growing interest in Mediterranean climates as a strategy for reducing the energy consumed by buildings. When such reduction is oriented to...

  3. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  4. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Del Bianco, M. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2014-10-01

    This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy-efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4) and they plan to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed.

  5. Simulation Modeling of Intelligent Control Algorithms for Constructing Autonomous Power Supply Systems with Improved Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Gimazov Ruslan

    2018-01-01

    Full Text Available The paper considers the issue of supplying autonomous robots by solar batteries. Low efficiency of modern solar batteries is a critical issue for the whole industry of renewable energy. The urgency of solving the problem of improved energy efficiency of solar batteries for supplying the robotic system is linked with the task of maximizing autonomous operation time. Several methods to improve the energy efficiency of solar batteries exist. The use of MPPT charge controller is one these methods. MPPT technology allows increasing the power generated by the solar battery by 15 – 30%. The most common MPPT algorithm is the perturbation and observation algorithm. This algorithm has several disadvantages, such as power fluctuation and the fixed time of the maximum power point tracking. These problems can be solved by using a sufficiently accurate predictive and adaptive algorithm. In order to improve the efficiency of solar batteries, autonomous power supply system was developed, which included an intelligent MPPT charge controller with the fuzzy logic-based perturbation and observation algorithm. To study the implementation of the fuzzy logic apparatus in the MPPT algorithm, in Matlab/Simulink environment, we developed a simulation model of the system, including solar battery, MPPT controller, accumulator and load. Results of the simulation modeling established that the use of MPPT technology had increased energy production by 23%; introduction of the fuzzy logic algorithm to MPPT controller had greatly increased the speed of the maximum power point tracking and neutralized the voltage fluctuations, which in turn reduced the power underproduction by 2%.

  6. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.; Del Bianco, M.

    2014-10-01

    Selection and integration of high performance home features are two sides of the same coin in energy efficient sustainable construction. Many advanced technologies are available for selection, but it is in the integration of these technologies into an affordable set of features that can be used on a production basis by builders, that ensures whole-house performance meets expectations. This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4). The builder plans to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed. The information in this report can be used by builders and designers to evaluate options, and the integration of options, for increasing the efficiency of home designs in climate zone 4. The data also provide a point of reference for evaluating estimates of energy savings and costs for specific features.

  7. Efficient energy use and solar building construction; Rationelle Energieverwendung und Solares Bauen

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, H.P. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Wuerzburg (Germany)

    2007-06-15

    Houses for the 21st century must be optimised in terms of energy saving and, particularly in our latitudes, thermal insulation in the winter. These requirements can be met using innovative heat insulation systems and heat storage components. Recent developments for opaque insulation include super-insulating vacuum insulation panels, while for transparent applications there is ongoing development work on vacuum glazing. Ensuring a high solar input during the cold season and efficient protection against overheating in the warm season falls within the scope of architectural design. It can be facilitated by the use of building components made of micro or macro-integrated latent heat storage materials.

  8. Energy Efficiency Indicators for Assessing Construction Systems Storing Renewable Energy: Application to Phase Change Material-Bearing Façades

    Directory of Open Access Journals (Sweden)

    José A. Tenorio

    2015-08-01

    Full Text Available Assessing the performance or energy efficiency of a single construction element by itself is often a futile exercise. That is not the case, however, when an element is designed, among others, to improve building energy performance by harnessing renewable energy in a process that requires a source of external energy. Harnessing renewable energy is acquiring growing interest in Mediterranean climates as a strategy for reducing the energy consumed by buildings. When such reduction is oriented to lowering demand, the strategy consists in reducing the building’s energy needs with the use of construction elements able to passively absorb, dissipate, or accumulate energy. When reduction is pursued through M&E services, renewable energy enhances building performance. The efficiency of construction systems that use renewable energy but require a supplementary power supply to operate can be assessed by likening these systems to regenerative heat exchangers built into the building. The indicators needed for this purpose are particularly useful for designers, for they can be used to compare the efficiency or performance to deliver an optimal design for each building. This article proposes a series of indicators developed to that end and describes their application to façades bearing phase change materials (PCMs.

  9. Efficient Construction of Free Energy Profiles of Breathing Metal-Organic Frameworks Using Advanced Molecular Dynamics Simulations.

    Science.gov (United States)

    Demuynck, Ruben; Rogge, Sven M J; Vanduyfhuys, Louis; Wieme, Jelle; Waroquier, Michel; Van Speybroeck, Veronique

    2017-12-12

    In order to reliably predict and understand the breathing behavior of highly flexible metal-organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials.

  10. Efficient Construction of Free Energy Profiles of Breathing Metal–Organic Frameworks Using Advanced Molecular Dynamics Simulations

    Science.gov (United States)

    2017-01-01

    In order to reliably predict and understand the breathing behavior of highly flexible metal–organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials. PMID:29131647

  11. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    through a pilot demonstration energy audit project. External technical assistance from UNIDO is to provide expertise from energy efficiency programs undertaken in OECD country industries. The experience from textile industries shows that energy auditing can reduce specific energy consumption by about thirteen percent (13%) from entrepreneurial point of view, it is a profitable venture since its pay back is usually much shorter than anticipated (one year). From macro economical point of view, energy conservation reached through energy audits helps, inter alia, to postpone the necessity to construct new energy generating capacities which require extensive financial investments. Equally important benefit is the environmental protection. More efficient energy use means lower emissions of pollutants such as CO 2 , SO 2 , NO x and fly ash generated by fuel burning

  12. Planning and constructional instruments that support an energy-efficient supply of heat; Planungs- und Bauinstrumente zugunsten einer energieeffizienten Waermeversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, P.; Bonnet, C. [Planair SA, Bureau d' ingenieurs SIA, La Sagne (Switzerland); Hoesli, B.; Wuethrich, M. [Hesse und Schwarze und Partner, Buero fuer Raumplanung AG, Zuerich (Switzerland); Gerheuser, F. W. [Polis, Politikberatung und Sozialforschung, Brugg (Switzerland)

    2004-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) and the Cantons of Basel-Stadt, Berne, Geneva and Zurich presents the results of a study that examined how regulations in the planning and construction areas can be used to support the saving of energy, its efficient use and how the proportion of renewable sources of energy can be increased. Topics discussed include dense building, passive energy generation, obligatory refurbishing of existing building with high energy consumption, use of the 'Minergie' low energy-consumption standard for new and refurbished buildings, aid for energy refurbishment, co-ordination of the use of district heating, definition of intensive-farming areas, development of energy concepts with restrictions on energy consumption and carbon dioxide production as well as aids for negotiation and the development of target agreements. The report suggests an order of priority in which the measures should be considered and makes suggestions for action to be taken in various areas.

  13. Energy management at public-private partnerships. A reference model for energy efficient building construction projects; Energiemanagement bei Oeffentlich-Privaten Partnerschaften. Ein Referenzmodell fuer energieeffiziente Hochbauprojekte

    Energy Technology Data Exchange (ETDEWEB)

    Heidel, Robin

    2013-04-01

    The enhancement of the energy efficiency reduces the life cycle costs of real estates, and is an important component in achieving global climate goals. In the construction and operation of public building constructions, the state has to assume the function of a role model. Due to the budgetary position of the public authority continuously in deficit, the alternative form of procurement public-private partnerships will become increasingly important. The author of the contribution under consideration reports on the design of building construction projects of public-private partnerships in order to guarantee an energy efficient operation. A reference model with process descriptions for the single phases of the project is developed. The author describes the possible benefit of this model by means of an application example.

  14. Energy Efficiency

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government...

  15. Energy Efficiency

    OpenAIRE

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas; Tsakiris, Aristeidis

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government of South Africa, the Inter-American Development Bank (IDB), the United Nations Environment Programme (UNEP) and the World Bank Group. A large share of the research for this report was conducted on a v...

  16. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  17. Exploring the Importance of Employing Bio and Nano-Materials for Energy Efficient Buildings Construction

    Directory of Open Access Journals (Sweden)

    Mona Naguib

    2017-03-01

    Full Text Available The continued and increasing use of ordinary building materials to house the ever-growing world population ensures growing contributions of carbon (C to the active carbon cycle through carbon dioxide (C02 emissions from combustion and chemical reactions in the raw material to the atmosphere. To minimize this, materials should be conserved, reduce their unnecessary use, produce them more benignly and make them last longer, recycle and reuse materials. Thus, paper will focus on exploring alternative building materials and systems that can be developed in order to balance atmospheric carbon dioxide.  It also presents the Bio-inspired architecture approach that embraces the eco-friendly practices of using Biomaterials and Nano-materials for sustainable dwelling construction through a number of examples that shows how a building can be strongly related to its site.

  18. ICSC – Policy for energy saving and increase of efficiency in Russia in the spheres of construction, housing and community amenities

    Directory of Open Access Journals (Sweden)

    Boyarinov Andrey

    2016-01-01

    Full Text Available Russia’s GDP energy intensity today is approximately 2.5–3.5 times higher than that of economically developed countries. To increase its economic competitive ability, Russia needs to achieve energy efficiency in different spheres, including construction, housing and community amenities. Close examination of implemented management measures and world experience revealed that in order to achieve a further energy efficiency increase Russia needs to boost economic interest of the participants concerned and to form effective mechanisms of economic management, and this should be done along with improvement of administrative governance. The paper focuses on the barriers that hamper economic motivation and provides recommendations for energy efficiency increase. Even partial implementation of suggested measures, in our opinion, will increase energy efficiency in the spheres of construction and housing accommodation, which is illustrated through the example of a residential building located in Yekaterinburg (Russia, Middle Urals.

  19. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “NANOMET®” cores

    Directory of Open Access Journals (Sweden)

    N. Nishiyama

    2016-05-01

    Full Text Available Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys “NANOMET®” exhibit high saturation magnetic flux density (Bs > 1.8 T, low coercivity (Hc < 10 A/m and low core loss (W1.7/50 ∼ 0.4 W/kg even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

  20. A comparative study of the design and construction process of energy efficient buildings in Germany and Sweden

    International Nuclear Information System (INIS)

    Schade, Jutta; Wallström, Peter; Olofsson, Thomas; Lagerqvist, Ove

    2013-01-01

    Reducing the energy consumption of buildings is an important goal for the European Union. However, it is therefore of interest to investigate how different member states address these goals. Countries like Sweden and Germany have developed different strategies for energy conservation within the building sector. A longitudinal comparison between implemented energy conservation key policy instruments in Sweden and Germany and a survey regarding the management of energy requirements in the building process shows that: –No evidence is found that energy consumption is of great importance for producing competitive offers, either for Swedish or German clients. –The Swedish market-driven policy has not been as successful as the German regulation policy in decreasing the energy consumption of new buildings. –Building standards and regulations regarding energy performance affects how professionals are educated and the way energy requirements and demands are managed throughout the building process. In conclusion, the client's demand will govern the development of energy efficient buildings. Therefore, in order to use market-driven policies, the desired parameters must be of concern for the customer to influence the majority of building projects to be more energy efficient than is specified in national standards and regulations. - Highlights: ► Longitudinal comparison between implemented energy key policy instruments. ► A survey regarding the management of energy requirements in the building process. ► German energy regulation policy more successful as the Swedish marked orientation. ► The gap between technological possible and regulation need to be balanced

  1. Chapter 15: Commercial New Construction Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keates, Steven [ADM Associates, Inc., Atlanta, GA (United States)

    2017-10-09

    This protocol is intended to describe the recommended method when evaluating the whole-building performance of new construction projects in the commercial sector. The protocol focuses on energy conservation measures (ECMs) or packages of measures where evaluators can analyze impacts using building simulation. These ECMs typically require the use of calibrated building simulations under Option D of the International Performance Measurement and Verification Protocol (IPMVP).

  2. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  3. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  4. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  5. Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.

    1995-08-01

    Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of these programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.

  6. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  7. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  8. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  9. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  10. Design and Construction of a Test Bench to Characterize Efficiency and Reliability of High Voltage Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Blank, Tobias; Thomas, Stephan; Roggendorf, Christoph

    2010-01-01

    system efficiency. High voltage batteries may be advantageous for future medium voltage DC-grids as well. In all cases, high availability and reliability is indispensable. Investigations on the operating behavior of such systems are needed. For this purpose, a test bench for high voltage storage systems...... was built to analyze these processes for different battery technologies. A special safety infrastructure for the test bench was developed due to the high voltage and the storable energy of approximately 120 kWh. This paper presents the layout of the test bench for analyzing high voltage batteries with about...... 4,300 volts including all components, the safety requirements with the resultant safety circuit and the aim of the investigations to be performed with the test bench....

  11. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  12. Energy Efficient Hydraulic Hybrid Drives

    OpenAIRE

    Rydberg, Karl-Erik

    2009-01-01

    Energy efficiency of propulsion systems for cars, trucks and construction machineries has become one of the most important topics in today’s mobile system design, mainly because of increased fuel costs and new regulations about engine emissions, which is needed to save the environment. To meet the increased requirements on higher efficiency and better functionality, components and systems have been developed over the years. For the last ten years the development of hybrid systems can be divid...

  13. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  14. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  15. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  16. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  17. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  18. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  19. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  20. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  1. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  2. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  3. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  4. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  5. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...

  6. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  7. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  8. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  9. Energy efficiency labelling

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This research assesses the likely effects on UK consumers of the proposed EEC energy-efficiency labeling scheme. Unless (or until) an energy-labeling scheme is introduced, it is impossible to do more than postulate its likely effects on consumer behavior. This report shows that there are indeed significant differences in energy consumption between different brands and models of the same appliance of which consumers are unaware. Further, the report suggests that, if a readily intelligible energy-labeling scheme were introduced, it would provide useful information that consumers currently lack; and that, if this information were successfully presented, it would be used and could have substantial effects in reducing domestic fuel consumption. Therefore, it is recommended that an energy labeling scheme be introduced.

  10. Southern Energy Efficiency Center (SEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  11. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  12. Studies for the elaboration of standards of energy efficiency in constructions; Estudios para la elaboracion de normas de eficiencia energetica en edificaciones

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Niembro, Gaudencio; Heard, Christopher [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Hernandez Pensado, Fernando [Comision Nacional para el Ahorro de Energia (Mexico)

    1999-07-01

    The obtaining of the first drafts of standard of energy efficiency implicate diverse research work previous to its elaboration, which include the justification and the analysis of the reason of the variables to consider, the corresponding cost-benefit study that gives viability to the standard and a procedure of calculation for its fulfillment. The present paper relates the diverse aspects that were analyzed for the justification, the revision and the obtaining of the first drafts of the first standards of energy efficiency in nonresidential constructions that are hoped to be implemented in Mexico. [Spanish] La obtencion de los anteproyectos de norma de eficiencia energetica implica diversos trabajos de investigacion previos a su elaboracion, los cuales incluyen la justificacion y el analisis del porque de las variables a considerar, el estudio costo- beneficio correspondiente, que da viabilidad a la norma y un procedimiento de calculo para su cumplimiento. El presente trabajo relata los diversos aspectos que se analizaron para la justificacion, la revision y la obtencion de los anteproyectos de las primeras normas de eficiencia energetica en edificaciones no residenciales que se esperan implantar en Mexico.

  13. A study on electric bicycle energy efficiency

    Directory of Open Access Journals (Sweden)

    Ivan EVTIMOV

    2015-09-01

    Full Text Available The paper presents a construction of an experimental electric bicycle for evaluation of the energy efficiency. The bicycle is equipped with onboard computer which can store the information about motion and energy consumption. The result concerning power, energy consumption, recharging during brake process, etc. are given. Energy consumption for 3 typical city routes is studied.

  14. Using energy efficiently

    International Nuclear Information System (INIS)

    Nipkow, J.; Brunner, C. U.

    2005-01-01

    This comprehensive article discusses the perspectives for reducing electricity consumption in Switzerland. The increase in consumption is discussed that has occurred in spite of the efforts of the Swiss national energy programmes 'Energy 2000' and 'SwissEnergy'. The fact that energy consumption is still on the increase although efficient and economically-viable technology is available is commented on. The authors are of the opinion that the market alone cannot provide a complete solution and that national and international efforts are needed to remedy things. In particular, the external costs that are often not included when estimating costs are stressed. Several technical options available, such as the use of fluorescent lighting, LCD monitors and efficient electric motors, are looked at as are other technologies quoted as being a means of reducing power consumption. Ways of reducing stand-by losses and system optimisation are looked at as are various scenarios for further development and measures that can be implemented in order to reduce power consumption

  15. Energy efficiency fallacies revisited

    International Nuclear Information System (INIS)

    Brookes, Leonard

    2000-01-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  16. Effective Risk Management in Innovative Projects: A Case Study of the Construction of Energy-efficient, Sustainable Building of the Laboratory of Intelligent Building in Cracow

    Science.gov (United States)

    Krechowicz, Maria

    2017-10-01

    Many construction projects fail to meet deadlines or they exceed the assumed budget. This scenario is particularly common in the case of innovative projects, in which too late identification of a high risk of delays and exceeding the assumed costs makes a potentially profitable project untenable. A high risk level, far exceeding the level of risk in standard non-innovative projects, is a characteristic feature of the realization phase of innovative projects. This is associated not only with greater complexity of the design and construction phases, but also with the problems with application of new technologies and prototype solutions, lack of qualified personnel with suitable expertise in specialized areas, and with the ability to properly identify the gaps between available and required knowledge and skills. This paper discusses the process of effective risk management in innovative projects on the example of the realization phase of an innovative, energy-efficient and sustainable building of the Laboratory of Intelligent Building in Cracow - DLJM Lab, from the point of view of DORBUD S.A., its general contractor. In this paper, a new approach to risk management process for innovative construction projects is proposed. Risk management process was divided into five stages: gathering information, identification of the important unwanted events, first risk assessment, development and choice of risk reaction strategies, assessment of the residual risk after introducing risk reactions. 18 unwanted events in an innovative construction project were identified. The first risk assessment was carried out using two-parametric risk matrix, in which the probability of unwanted event occurrence and its consequences were analysed. Three levels of risks were defined: tolerable, controlled and uncontrolled. Risk reactions to each defined unwanted event were developed. The following risk reaction types were considered: risk retention, risk reduction, risk transfer and risk

  17. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  18. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  19. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  20. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.

    Science.gov (United States)

    Harris, Robert C; Deng, Nanjie; Levy, Ronald M; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2017-06-05

    Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of β-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  2. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species.

    Science.gov (United States)

    Barros, Vanessa; Frosi, Gabriella; Santos, Mariana; Ramos, Diego Gomes; Falcão, Hiram Marinho; Santos, Mauro Guida

    2018-06-01

    Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Energy efficient home in Lebanon

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the study is to present new methods or new products that could save money while improving the environment in Lebanon. Cost of energy is on the increase and is predicted to increase even more in the future. Environmental issues and awareness are gaining momentum in Lebanon. With electricity production directly linked to power plants that represent about 30% of the air pollution which is also linked to health related issues. There is an intermediate need to introduce more energy efficient products in the construction industry which require less energy to operate or could be linked indirectly to energy. In this context, cost-benefit analysis of heating, light, painting, energy consumption and energy lamp burning hours in addition to fuel burner, gas and electric heater in buildings are presented in tables. Finally, there is a lack of awareness on the positive impact on the environment reflected in the saving of natural resources, reducing pollution and creation of a better living environment

  4. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  5. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  6. Pump systems for the new Tivoli construction. Football mythos with energy efficient technology; Pumpensysteme fuer den Tivoli-Neubau. Fussball-Mythos mit energieeffizienter Technik

    Energy Technology Data Exchange (ETDEWEB)

    Krings, Jochen [Jochen Krings Professional Relations, PR-Agentur, Moenchengladbach (Germany)

    2011-07-01

    Professional football on a solid economic base barely is conceivable without the possibility of modern stadiums. An emotional live-atmosphere, modern comfort as well as a diverse business offer are in demand. Particularly successful is this compound in the new construction of the Tivoli at the Aachen Soers. A modern building technology with efficient pumping systems belong to the facilities of the stadium.

  7. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  8. Efficient automata constructions and approximate automata

    NARCIS (Netherlands)

    Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.

    2008-01-01

    In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern

  9. Efficient automata constructions and approximate automata

    NARCIS (Netherlands)

    Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.; Holub, J.; Zdárek, J.

    2006-01-01

    In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern

  10. Energy conservation, efficiency and energy audit

    International Nuclear Information System (INIS)

    Sharma, R.A.

    2006-01-01

    In this paper the author discusses the conservation, efficiency, audit, fundamentals, differences and methods, the objectives of energy conservation, definitions of energy audit, scope, short term, medium term and long term measures to be taken for conservation are discussed

  11. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  12. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  13. Energy efficient lighting

    International Nuclear Information System (INIS)

    Aslam, M.

    1992-01-01

    The main sources of Pakistan's energy supply are oil, natural gas, coal, hydro power, nuclear power and liquefied petroleum gas. At present 75 % of total energy delivered is met through oil and gas. The limited resources and financial constraints have proved to be stumbling block in the way of prosperity and economics stability. Lighting is a conspicuous consumer of energy and thus an easy prey for saving drives which is indeed a very promising target for energy saving. (A.B.)

  14. Energy Efficient Televisions

    DEFF Research Database (Denmark)

    Andersen, Rikke Dorothea; Remmen, Arne

    The EuP Directive sets the frame for implementing ecodesign requirements for energy-using and energy-related products. The aim of the Directive is to achieve a high level of protection for the environment by reducing the potential environmental impact of energy-related products. The focus...

  15. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  16. Research for energy efficiency; Forschung fuer Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The Federal Ministry of Economy enhanced its funding for research in the field of non-nuclear energy in the programme ''Forschung fuer Energieeffizienz'' (Research for Energy Efficiency). The programme focuses on established areas like modern power plant technologies (''Moderne Kraftwerkstechnologien''), fuel cells and hydrogen (''Brennstoffzelle, Wasserstoff''), and energy-optimized building construction (''Energieoptimiertes Bauen''). New subjects are energy-efficient towns and cities (''Energieeffiziente Stadt''), power grids for future power supply (''Netze fuer die Stromversorgung der Zukunft''), power storage (''Stromspeicher''), and electromobility (''Elektromobilitaet''). The brochure presents research and demonstration projects that illustrate the situation in 2010 when the programme was initiated. (orig.)

  17. Efficiency of innovative technology in construction industry

    Science.gov (United States)

    Stverkova, H.; Vaclavik, V.

    2017-10-01

    The need for sustainability increasingly influences the development of new technologies, business processes and working practices. Innovations are an important part of all business processes. The aim of innovation is, in particular, to reduce the burden on the environment. The current trend in the construction industry is diamond rope cutting. The aim of the paper is to evaluate the most advanced technology for cutting and removing concrete structures in terms of efficiency.

  18. Energy efficiency: utopia or reality?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In its 2006 allocution the world council on the energy WEC, analyzes the role of the energy efficiency in the energy life cycle. In spite of different objectives followed by the developing and developed countries, implement a world energy efficiency economy is a challenge possible by the cooperation.The WEC is an ideal forum for the information and experience exchange. (A.L.B.)

  19. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  20. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  1. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  2. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  3. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  4. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  5. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  6. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  7. Effective education for energy efficiency

    International Nuclear Information System (INIS)

    Zografakis, Nikolaos; Menegaki, Angeliki N.; Tsagarakis, Konstantinos P.

    2008-01-01

    A lot of today's world vices can be eliminated if certain targeted modules and adapted curricula are introduced in the schooling system. One of these vices is energy squandering with all its negative consequences for the planet (e.g. depletion of finite energy sources and the subsequent climate change). This paper describes the results of an energy-thrift information and education project taking place in different levels of education in Crete-Greece, which records 321 students' and their parents' routine energy-related behavior and proves that this behavior changes to a more energy efficient one, after the dissemination of relevant information and the participation into the energy education projects. Namely, response percentages indicating the energy-efficient behavior increased after project participation while the ones indicating an energy-squandering behavior decreased. The Wilcoxon signed rank test was statistically significant in all energy behavior questions related to students and to most questions related to parents

  8. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  9. Energy-saving measures in multi-storage housing construction

    Directory of Open Access Journals (Sweden)

    Мария Дмитриевна Коровина

    2017-05-01

    Full Text Available In this article the main directions of energy saving in multi-storey housing construction and methods for increasing energy efficiency are considered. The main problems of implementing energy-saving measures were touched; the need for their analysis during the development of each construction project with a view to choosing the most effective complex from the energy, economic, ecological and social points of view was justified. It is noted that such an approach can become an important factor of saving energy in the sphere of housing construction and reducing the energy intensity of the entire Russian economy.

  10. Handbook of energy use for building construction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  11. Handbook of energy use for building construction

    Science.gov (United States)

    Stein, R. G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, railroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. Emphasis is given to new building construction; however, some information for the other parts of the construction industry is also included. Building designers are provided with information to determine the energy required for buildings construction and to evaluate the energy required for alternative materials, assemblies, and methods. It is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  12. Energy consumption for different greenhouse constructions

    Energy Technology Data Exchange (ETDEWEB)

    Djevic, M.; Dimitrijevic, A. [Department for Agricultural Engineering, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade (RS)

    2009-09-15

    In this paper the influence of greenhouse construction on energy efficiency in winter lettuce production was estimated for four different double plastic covered greenhouses in Serbia region. Plastic coverings were introduced in this region as a mean of making the plant production more energy efficient. Additionally, as a means of lowering energy consumption, tunnel structures were proposed. In order to see whether the greenhouse structure influences energy consumption, four different double plastic covered greenhouses. Two tunnel types, 9 x 58 m and 8 x 25 m, one gutter-connected structure and multi-span plastic covered greenhouse. The gutter-connected structure was 2 x 7 m wide and 39 m long while the multi-span structure was 20 x 6.4 m wide and 42 m long. On the basis of lettuce production output and the energy input, specific energy input, energy output-input ratio and energy productivity were estimated. Results show that the lowest energy consumption was obtained for multi-span greenhouse, 9.76 MJ/m{sup 2}. The highest energy consumption was obtained in tunnel, 9 x 58 m, 13.93 MJ/m{sup 2}. The highest value for output-input ratio was calculated for multi-span greenhouse (0.29), followed by gutter-connected greenhouse (0.21), tunnel 9 x 58 m (0.17) and tunnel, 8 x 25 m (0.15). Results also show that energy productivity can be higher if multi-span greenhouse structures are used. (author)

  13. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  14. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  15. Guidebook for energy-saving construction. Hitten the point - neutral specialized information for more energy efficiency. 3. rev. and enl. ed.; Ratgeber energiesparendes Bauen. Auf den Punkt gebracht - Neutrale Fachinformationen fuer mehr Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Koenigstein, T.

    2007-07-01

    Energy conservation measures in the area of buildings can considerably contribute to the planned reduction of CO{sub 2} emissions particularly if they are not only carried out in the field of new buildings but also in existing buildings. In this booklet technical possibilities and bases of constructional thermal insulation in modern construction engineering are described in detail. In this connection the following subjects are gone into: Low-energy houses, bases of heat and humidity technology, correct heating and ventilating, thermal insulation of heating systems and water heaters, renewable energy sources, legal obligations like energy passport, support possibilities, energy diagnosis and counselling. (GL)

  16. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  17. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  18. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  19. Energy and Environment Guide to Action - Chapter 4.3: Building Codes for Energy Efficiency

    Science.gov (United States)

    Provides guidance and recommendations for establishing, implementing, and evaluating state building codes for energy efficiency, which improve energy efficiency in new construction and major renovations. State success stories are included for reference.

  20. Energy efficiency through design and sustainable construction of houses located in the Mexican Caribbean; Eficiencia Energetica a traves del diseno y construccion sostenible de viviendas ubicadas en el Caribe Mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Bojorquez, I. B.; Perez, M. S.; Aguilar, J. A.

    2008-07-01

    Public policies focused to the Environment conservation and, low power consumption construction systems, are some of the Housing Sustainable Construction bases in an urban setting. This work approach to the analysis of the correlation power efficiency-design in the social housing located in the tropical-humid climate characteristic of the Mexican Caribbean, like starting point to define the recommendations of a Sustainable construction in this sector. the legal aspects were considered on sustainable construction and some experiences of investigation in the subject were reviewed. Also an exercise for the calculation of thermal gain was made as it bases of this analysis. This exercise is part of the project in process, that will define the recommendations of design for energy saving in the social housing. (Author)

  1. Energy Efficiency Governance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The purpose of this report is to help EE practitioners, government officials and stakeholders to establish the most effective EE governance structures, given their specific country context. It also aims to provide readers with relevant and accessible information to support the development of comprehensive and effective governance mechanisms. The International Energy Agency (IEA) conducted a global review of many elements of EE governance,including legal frameworks, institutional frameworks, funding mechanisms, co-ordination mechanisms and accountability arrangements, such as evaluation and oversight. The research tools included a survey of over 500 EE experts in 110 countries, follow-up interviews of over 120 experts in 27 countries and extensive desk study and literature searches on good EE governance.

  2. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  3. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  4. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  5. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  6. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  7. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    Full Text Available Between 1995 and 2011, the population of Alberta increased by roughly 40 per cent, but energy use in the province grew much faster, with a 62 per cent increase over the same period. In the industrial sector, the province’s largest energy consumer, demands grew 110 per cent. In mining and oil-and-gas extraction specifically, energy use over that period soared, growing by 355 per cent. That remarkable growth in energy consumption creates a particular challenge for Alberta Premier Alison Redford, who in 2011 ordered her ministers to develop a plan that “would make Alberta the national leader in energy efficiency and sustainability.” The province is still waiting. The incentives to become more energy efficient are not particularly strong in Alberta. The province’s terrain and size favour larger and less-efficient vehicles. Energy in the province is abundant, so there is little cause for concern over energy security. And energy is relatively affordable, particularly for a population that is more affluent than the Canadian average. There is little pressure on Albertans to radically alter their energy consumption behaviour. Yet, improved energy efficiency could position businesses in Alberta to become even more globally competitive, in addition to leading to improved air quality and public health. And for a province racing to keep up with growing energy demand, effective measures that promote conservation will prove much cheaper than adding yet more expensive infrastructure to the energy network. Many other jurisdictions have already provided examples of methods Alberta could employ to effectively promote energy conservation. First, Alberta must set hard targets for its goals to save energy, and then monitor that progress through transparent accounting, measuring and reporting. The provincial government can also nurture a culture of energy conservation, by formally and publicly recognizing leadership in efficiency improvements in industry and

  8. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  9. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  10. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  11. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  12. Energy efficiency in the foreground

    International Nuclear Information System (INIS)

    Baettig, I.

    2006-01-01

    In this interview with Eberhard Jochem, professor at the Centre for Energy Policy and Economics at the Federal Institute of Science and Technology (ETH) in Zurich, Switzerland, several energy-relevant topics are discussed. These include high oil prices, possible power shortages and binding commitments in the climate-protection area. The question is asked, how, in consideration of such general conditions, energy use and energy supply should develop in Switzerland. Options for increasing efficiency or the tapping of new energy sources is discussed, as is Switzerland's increasing energy consumption. The '2000 Watt' concept being worked on at the ETH and the activities needed for its realisation are discussed. The effects of this concept on economical and business development are discussed. The potential of renewable forms of energy and the possibility of building combined gas and steam power stations are looked at. Ways of promoting renewable energy and questions concerning the extent of the state intervention in the energy business are considered

  13. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  14. Energy researchers - 1. Energy efficiency: Energy efficiency is driving innovation; No economic crisis for energy efficiency; How can we change our energy habits?

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisan, Francois; Salha, Bernard; Tardieu, Bernard; Ghidaglia, Jean-Michel; Viterbo, Jerome

    2011-01-01

    A first article comments how the race to achieve energy efficiency is driving the emergence of new technologies in transportation and construction (hybrid cars, phase change material, digital mock-ups, and so on). The example of the AGV is evoked, a new version of the TGV developed by Alstom which will run faster and consume less energy. A second article outlines that, due to the support from public authorities and to an increased awareness of energy costs and environmental challenges, the energy savings market is booming. Then, in an interview, a sociologist of the ADEME comments the difficulty of changing habits in terms of energy savings

  15. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  16. Efficiency of Compressed Air Energy Storage

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Brix, Wiebke

    2011-01-01

    The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines...... were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making the CAES process diabatic. The cooling involves exergy losses and thus lowers the efficiency...... of the storage significantly. The efficiency of CAES as an electricity storage may be defined in several ways, we discuss these and find that the exergetic efficiency of compression, storage and production together determine the efficiency of CAES. In the paper we find that the efficiency of the practical CAES...

  17. Energy Efficient Cooking - The EffiCooker

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Jørgen

    2011-01-01

    Substantial energy savings in moist heat cooking may be achieved by employing a pan with integrated electric heating element rather than an ordinary pan on a conventional electric range. The electric pan should be thermally insulated and equipped with an "intelligent" controller and timer....... A working prototype of a saucepan, dubbed the EffiCooker, has been constructed according to these guidelines. The EffiCooker has demonstrated energy savings in the range from 28% to 81% compared to conventional equipment when performing ordinary cooking tasks. The user need not be particularly aware...... of energy conservation to realize such savings; even those who are more concerned with their culinary achievements than with energy efficiency are likely to benefit. Besides being energy efficient the EffiCooker is user friendly. Many cooking tasks, once initiated, are performed automatically without any...

  18. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  19. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  20. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  1. CEE Energy Efficiency Report - Slovakia

    International Nuclear Information System (INIS)

    Hecl, V.

    2005-01-01

    A review of future trends of energy consumption shows that, in the absence of an active energy policy which promotes energy efficiency, energy consumption will increase as a whole by approximately 6.8% by 2012 continuing to raise after this period.. This result hides large differences between the different sources of energy (mainly heat, fuels and electricity) and between the different sectors - transport, industry, buildings etc. It is therefore clear that a strong energy policy is needed to counterbalance the expected increase in energy consumption in all sectors, with emphasis on measures in the building sector (both residential and tertiary) and in the transport sector. Furthermore improvements in the district heating sector are also essential to prevent further disconnection from district heating and a shift to other means of heating. A review of the main barriers to energy efficiency leads to the conclusion that while significant changes are needed in the regulatory framework, the lack of access to finance and the general lack of awareness about existing technologies and best practice represent the greatest barriers. In order to evaluate the success of energy. In a few studies available from past 2-3 years the calculation of low and high targets for energy policy was elaborated. The low targets would represent about 11% - 12% reduction in overall energy consumption. The high targets would represent a 13% - 15% reduction in overall energy consumption. Policy instruments have been identified which can turn energy efficiency into one of the driving forces of the overall economic and development strategy of the country. Some of these instruments deal with general issues such as general policy issues, regulatory and legal aspects, the institutional framework and fiscal, taxation and pricing policy. They are designed to improve the present conditions and would use only a limited part of the available public budget. The state budget dedicated to energy issues will

  2. Energy and Water Efficiency on Campus | NREL

    Science.gov (United States)

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  3. Energy Efficient Drivepower: An Overview.

    Energy Technology Data Exchange (ETDEWEB)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  4. The Challenge of Energy Efficiency

    International Nuclear Information System (INIS)

    Alonso Gonzalez, J. A.

    2009-01-01

    Recent Directive 2009/28/EC on the promotion of the use of renewable energies sets some binding targets for the contribution of renewable energies in 2020 to total consumption, setting the share at 20% of final energy demand, with a particularisation of 10% for the transport sector, and also a 20% reduction of greenhouse gases Together with these targets, it also sets another target relative to energy efficiency, aiming for a 20% improvement, under the terms set down by the Commission in its announcement dated 19 October 2006. This energy saving target is going to have a decisive influence on the achievement of the other two. In order to quantify the degree of difficulty of achieving the saving target and determine the policies and measures to be taken, we are going to analyze the evolution of energy efficiency (energy consumption energy units per unit of GDP - economic unit) in Spain from 1980 to date and the value of energy intensity that we should have in 2020 to achieve the targets. This will give us an idea of the magnitude of the challenge and, therefore, of the efforts we will have to make to achieve the target. (Author)

  5. Energy efficiency standards and innovation

    Science.gov (United States)

    Morrison, Geoff

    2015-01-01

    Van Buskirk et al (2014 Environ. Res. Lett. 9 114010) demonstrate that the purchase price, lifecycle cost and price of improving efficiency (i.e. the incremental price of efficiency gain) decline at an accelerated rate following the adoption of the first energy efficiency standards for five consumer products. The authors show these trends using an experience curve framework (i.e. price/cost versus cumulative production). While the paper does not draw a causal link between standards and declining prices, they provide suggestive evidence using markets in the US and Europe. Below, I discuss the potential implications of the work.

  6. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  7. Efficient Representation for Online Suffix Tree Construction

    DEFF Research Database (Denmark)

    Larsson, N. Jesper; Fuglsang, Kasper; Karlsson, Kenneth

    2014-01-01

    of branch lookup operations (known to be a bottleneck in construction time) with some additional techniques to reduce construction cost. We discuss various effects of our approach and compare it to previous techniques. An experimental evaluation shows that we are able to reduce construction time to around...

  8. EYES -- Energy Efficient Sensor Networks

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Etalle, Sandro; Karl, Holger; Petrioli, Chiara; Zorzi, Michele; Kip, Harry; Lentsch, Thomas; Conti, M.; Giordano, S.; Gregori, E.; Olariu, S.

    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to

  9. 77 FR 50489 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public... FURTHER INFORMATION CONTACT: Mr. Hoyt Battey, Office of Energy Efficiency and Renewable Energy, U.S...

  10. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Energy efficiency programs add to the costs incurred by electricity users in the short term and generate significant economic benefits in the medium and long term. Using the example of programs in development at Hydro-Quebec, it is shown that the net economic benefits surpass, in present value terms, the sums invested by the electric utility and the customer, corresponding to yields of over 100%. This benefit is the principal impact of energy conservation programs which also provide employment, for every dollar invested, of the same order as that provided by hydroelectric production (i.e. costs associated with construction of generating plants, transmission lines, and distribution facilities). This evaluation takes account of the structure of purchases of goods and services brought about by energy efficiency programs and their large import component. This result may be surprising since the hydroelectric industry is strongly integrated into the Quebec economy, but it is understandable when one takes into account the importance of distribution costs to small-scale users, which causes significant local activity even when imported products are involved, and the very intensive labor requirement for certain energy efficiency measures. In addition, the employment generated by energy efficiency investments is very diversified in terms of the range of skills used and its geographic dispersion. 2 figs., 4 tabs

  11. Fiscal 1997 research report. Basic research project on improving energy consumption efficiency in developing countries (Database construction); 1998 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo hokokusho. Database kochiku jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The New Energy and Industrial Technology Development Organization (NEDO) in fiscal 1993 started a database construction project, which involves energy conservation related primary information on the 11 countries concerned, for encouraging 11 Asian countries, namely, Japan, China, Indonesia, the Philippines, Thailand, Malaysia, Taiwan, Korea, Vietnam, Myanmar, and Pakistan, to promote their energy conservation endeavors. As part of the database construction effort under this research project, the so-far accomplished collection of and analysis into energy related information about the countries, surveys of the utilization and popularization of databases, and development of database systems are taken into consideration. On the basis of these efforts to improve on the database systems for enhanced operability, a program is formulated for database diffusion under which data are collected and updated for storage in databases. Also exerted under the program are endeavors to make use of the above-said database systems and to disseminate the constructed databases into the 11 countries for effective utilization. In the future, it is desired that the NEDO database will win popularity in the 11 countries and be utilized in their formulation of domestic energy conservation policies. (NEDO)

  12. Benchmarking the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William; Hui, Y.V.; Lam, Y. Miu

    2006-01-01

    Benchmarking energy-efficiency is an important tool to promote the efficient use of energy in commercial buildings. Benchmarking models are mostly constructed in a simple benchmark table (percentile table) of energy use, which is normalized with floor area and temperature. This paper describes a benchmarking process for energy efficiency by means of multiple regression analysis, where the relationship between energy-use intensities (EUIs) and the explanatory factors (e.g., operating hours) is developed. Using the resulting regression model, these EUIs are then normalized by removing the effect of deviance in the significant explanatory factors. The empirical cumulative distribution of the normalized EUI gives a benchmark table (or percentile table of EUI) for benchmarking an observed EUI. The advantage of this approach is that the benchmark table represents a normalized distribution of EUI, taking into account all the significant explanatory factors that affect energy consumption. An application to supermarkets is presented to illustrate the development and the use of the benchmarking method

  13. Energy-Efficient Neuromorphic Classifiers.

    Science.gov (United States)

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2016-10-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.

  14. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  15. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  16. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  17. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... submitted to the Renewable Energy and Energy Efficiency Advisory Committee, Office of Energy and...

  18. Frontiers in the economics of energy efficiency

    International Nuclear Information System (INIS)

    Miguel, Carlos de; Labandeira, Xavier; Löschel, Andreas

    2015-01-01

    Energy efficiency has become an essential instrument to obtain effective greenhouse gas mitigation and reduced energy dependence. This introductory article contextualizes the contributions of the supplemental issue by showing the new setting for energy efficiency economics and policy; discussing the role of price instruments to promote energy savings; presenting new approaches for energy efficiency policies; and placing energy efficiency within a wider energy and environmental framework.

  19. Energy-efficient neuromorphic classifiers

    OpenAIRE

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2015-01-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. Neuromorphic engineering promises extremely low energy consumptions, comparable to those of the nervous system. However, until now the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, rendering el...

  20. Energy efficiency information systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    It is well known that different cultures and countries are receptive in different ways to information transfer. Modern information technology, including computers, videos, and telecommunications, can provide a very useful tool for the dissemination of information. At the same time, however, the use of new media involves many new and varied challenges. It is important therefore that the new dissemination methods are developed and utilised in the most effective way depending on the subjects distinctive character, needs and traditions. This workshop was designed to gather experts from all the CADDET member countries, to share knowledge, experiences and ideas about the use of new methods of information exchange and training in the field of energy efficiency. The workshop was divided into four plenary sessions: dissemination of information on energy efficient technologies; training technologies and effective learning; computer-based training tools on energy efficiency; databases and network resources. Two discussion groups followed the plenary sessions, to concentrate on: different aspects of information exchange; and different aspects of state-of-the-art training tools. The workshop was attended by 44 participants from 17 countries, and included 14 speakers

  1. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  2. Windows for New Construction | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable [[Page 6784

  4. Energy efficiency public service advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amanda [Advertising Council, New York, NY (United States)

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  5. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  6. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  7. Energy-efficient cooking methods

    Energy Technology Data Exchange (ETDEWEB)

    De, Dilip K. [Department of Physics, University of Jos, P.M.B. 2084, Jos, Plateau State (Nigeria); Muwa Shawhatsu, N. [Department of Physics, Federal University of Technology, Yola, P.M.B. 2076, Yola, Adamawa State (Nigeria); De, N.N. [Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019 (United States); Ikechukwu Ajaeroh, M. [Department of Physics, University of Abuja, Abuja (Nigeria)

    2013-02-15

    Energy-efficient new cooking techniques have been developed in this research. Using a stove with 649{+-}20 W of power, the minimum heat, specific heat of transformation, and on-stove time required to completely cook 1 kg of dry beans (with water and other ingredients) and 1 kg of raw potato are found to be: 710 {+-}kJ, 613 {+-}kJ, and 1,144{+-}10 s, respectively, for beans and 287{+-}12 kJ, 200{+-}9 kJ, and 466{+-}10 s for Irish potato. Extensive researches show that these figures are, to date, the lowest amount of heat ever used to cook beans and potato and less than half the energy used in conventional cooking with a pressure cooker. The efficiency of the stove was estimated to be 52.5{+-}2 %. Discussion is made to further improve the efficiency in cooking with normal stove and solar cooker and to save food nutrients further. Our method of cooking when applied globally is expected to contribute to the clean development management (CDM) potential. The approximate values of the minimum and maximum CDM potentials are estimated to be 7.5 x 10{sup 11} and 2.2 x 10{sup 13} kg of carbon credit annually. The precise estimation CDM potential of our cooking method will be reported later.

  8. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and services, such as access...

  9. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... programs support the competitiveness of U.S. renewable energy and energy efficiency companies, to review...

  10. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  11. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable energy and energy efficiency exports. The meeting is open to the public and the...

  12. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  13. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... new capital for investment in the U.S. renewable energy and energy efficiency sectors, increasing the...

  14. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... affecting U.S. competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and...

  15. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-10-18

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable... Efficiency and Renewable Energy, U.S. Department of Energy. [FR Doc. 2012-25636 Filed 10-17-12; 8:45 am...

  16. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... renewable energy and energy efficiency industries. The RE&EEAC held its first meeting on December 7, 2010...

  17. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  18. Target Improves Efficiency in New Construction

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Target Corporation partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  19. Microbial battery for efficient energy recovery.

    Science.gov (United States)

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  20. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  1. Global status report on energy efficiency 2008

    NARCIS (Netherlands)

    Blok, K.; van Breevoort, P.; Roes, A.L.; Coenraads, R.; Müller, N.

    2008-01-01

    There is wide agreement that energy efficiency improvement is one of the key strategies to achieve greater sustainability of the energy system. In the past, the contribution of energy efficiency has already been considerable.Without the energy efficiency improvements achieved since the 1970s,

  2. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  3. Efficiency of using construction machines when strengthening foundation soils

    Science.gov (United States)

    Turchin, Vadim; Yudina, Ludmila; Ivanova, Tatyana; Zhilkina, Tatyana; Sychugove, Stanislav; Mackevicius, Rimantas; Danutė, Slizyte

    2017-10-01

    The article describes the efficiency of using construction machines when strengthening foundation base soils, as one of the ways to solve the problem of reducing and optimizing costs during construction. The analysis is presented in regard to inspection results of the soil bodies in the pile foundation base of “School of general education No. 5 in the town of Malgobek” of the republic of Ingushetia. Economical efficiency through reducing the duration of construction due to the automation of production is calculated.

  4. Standards to develop energy control and energy efficiency in Europe

    International Nuclear Information System (INIS)

    Plazy, J.L.; Moutet, C.

    2007-01-01

    Since the late nineties, an energy control standardisation steering body was set up at the AFNOR, prompted by the French administration and ADEME which is chairing it. That body, which became a forum in 2006 brings together stakeholders in various areas concerned by that issue (industries, construction, transport, environment, services,...) as well as the representatives of main companies, professional organisations and standardisation operators acting in the area / of energy in France. Its purpose is to help exchange information and express needs in terms of standardisation in the area of energy and energy efficiency. On its initiative, the European standardisation committees CEN and CENELEC set up in 2002 an equivalent body responsible for the strategic coordination of their energy management programmes and entrusted the steering to our country (ADEME chairing, AFNOR secretariat). In order to better serve the interests of its members, the French forum is now working towards the leadership, in partnership with China, of the strategic standardisation group being set up at the ISO (International Standardisation Organisation) on energy efficiency and renewable energy sources. (authors)

  5. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  6. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  7. FY 1997 basic survey project (database construction project) for enhancing energy consumption efficiency in developing countries; 1997 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo. Database kochiku jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    NEDO is promoting a database construction project to collect and supply various technical/systematical information on energy related data and energy effective utilization. In FY 1997, about the Philippines, Indonesia and China, the data collected in a year were renewed, and seminar/workshop were held as a part of the promotion activities. About Thailand, Malaysia, Korea, Taiwan and Japan, Japan has independently been collecting the data. Also in FY 1997, Japan arranged the existing data and arranged/collected the data. About Vietnam, India, Myanmer and Pakistan, which became the objects for the project newly in FY 1996, the state of data arrangement was confirmed and the data were collected. Moreover, functional improvement of the system was made so that each country can use the database more easily and maintain the data independently. (NEDO)

  8. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  9. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  10. Indoor radon problem in energy efficient multi-storey buildings.

    Science.gov (United States)

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Energy efficient elevators and escalators

    Energy Technology Data Exchange (ETDEWEB)

    Patrao, Carlos; Fong, Joao; Almeida, Anibal de (Dep. Electrical Engineering, Univ. of Coimbra, Coimbra (Portugal)); Rivet, Luc

    2009-07-01

    Elevators and escalators are the crucial element that makes it practical to live and work several floors above ground - more than 4,3 million units are installed in Europe. Due to ageing of the European population the installation of elevators in single family houses is experiencing a significant growth, as well as equipping existing buildings. Elevators use about 4% of the electricity in tertiary sector buildings. High untapped saving potentials exist with respect to energy-efficient technologies, investment decisions and behavioural approaches, in these sectors. This paper presents preliminary results from the IEE project E4, whose overall objective is the improvement of the energy performance of elevators and escalators, in tertiary sector buildings and in multi family residential buildings. The project is characterizing people conveyors electricity consumption in the tertiary sector and in residential buildings in the EU. The installed park is characterised by a survey among elevators national associations in each country. An assessment of the barriers has been made in the first phase of the project and will be presented. Monitoring campaigns in elevators and escalators are being conducted in each country according to a common developed methodology. More than fifty elevators and escalators will be audited. This will allow the collection of load curves (start up, travel up and down, travel full and empty), including the characterization of standby consumption. Standby consumption of an elevator can represent up to 80% of the total energy consumed per year, and can be drastically reduced. This paper presents the preliminary results of the first ten audits performed in Portugal by Isr-UC.

  12. Residual extrapolation operators for efficient wavefield construction

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-02-27

    Solving the wave equation using finite-difference approximations allows for fast extrapolation of the wavefield for modelling, imaging and inversion in complex media. It, however, suffers from dispersion and stability-related limitations that might hamper its efficient or proper application to high frequencies. Spectral-based time extrapolation methods tend to mitigate these problems, but at an additional cost to the extrapolation. I investigate the prospective of using a residual formulation of the spectral approach, along with utilizing Shanks transform-based expansions, that adheres to the residual requirements, to improve accuracy and reduce the cost. Utilizing the fact that spectral methods excel (time steps are allowed to be large) in homogeneous and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms required in every step of the spectral-based implementation. The approach here fixes that by improving the accuracy of each, potentially longer, time step.

  13. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  14. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  15. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    International Nuclear Information System (INIS)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-01-01

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards

  16. Energy Resources Consumption Minimization in Housing Construction

    Directory of Open Access Journals (Sweden)

    Balastov Alexey

    2017-01-01

    Full Text Available The article deals with the energy savings analysis during operation of buildings, provides the heat balance of residential premises, considers options for energy-efficient solutions for hot water supply systems in buildings. As technical facilities that allow the use of secondary heat sources and solar energy, there are also considered the systems with heat recovery of “gray” wastewater, heat pumps, solar collectors and photoelectric converters.

  17. Efficient Constructions for One-way Hash Chains

    National Research Council Canada - National Science Library

    Hu, Yih-Chun; Jakobsson, Markus; Perrig, Adrian

    2003-01-01

    .... Our first construction, the Sandwich-chain, provides a smaller bandwidth overhead for one-way chain values, and enables efficient verification of one-way chain values if the trusted one-way chain value is far away...

  18. Wood constructions. Energy eficient, sustainable, practically proven; Holzbau Konstruktionen. Energieeffizient, nachhaltig, praxisgerecht

    Energy Technology Data Exchange (ETDEWEB)

    Lueckmann, Rudolf

    2012-07-01

    The book 'Wood constructions' provides standardized and practically proven designs, all necessary information on building physics, fire protection and additional specialized knowledge for energy efficient renovations and construction details in wood construction. The main topics of this book are: Fundamentals, timber-frame structures, wood preservation, thermal insulation, sound insulation, fire protection, energy-efficient timber buildings, timber construction systems, rehabilitation of timber structures, relevant regulations and standards.

  19. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  20. Health, Energy Efficiency and Climate Change

    Science.gov (United States)

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  1. Construction legislation and energy efficiency. A discussion on the covered open spaces for ventilation adopted by the Rio de Janeiro city building code, Brazil; Legislacao edilicia e eficiencia energetica. Uma discussao sobre os vaos de ventilacao adotados pelo codigo de obras do Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Gustavo Carvalho; Barroso-Krause, Claudia [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Arquitetura e Urbanismo. Programa de Pos-graduacao em Arquitetura]. E-mails: gparj@terra.com.br; bkrause@ufrj.br

    2002-07-01

    This paper analyses, under the energetic efficiency viewpoint, the critical points of the Rio de Janeiro city construction legislation, by the time that decrees the directives for covered open spaces for ventilation in multi-familiar buildings. The paper also demonstrates where and how the building code influences the architectonic project to induce energy consumption not contributing for an efficient architecture.

  2. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  3. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  4. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  5. Energy independent optical potentials: construction and limitations

    International Nuclear Information System (INIS)

    Hussein, M.S.; Moniz, E.J.

    1983-11-01

    Properties of the energy-independent potential U sup(-) which is wave-function-equivalent to the usual optical potential U(E) are constructed and examined. A simple procedure is presented for constructing U sup(-) in the uniform medium, and physical examples are discussed. The general result for finite systems, a recursive expansion in powers of U(E), is used to investigate the multiple scattering expansion of U sup(-); the energy-independent potential is found to have serious short-comings for direct microscopic construction or phenomenological parametrization. The microscopic theory, as exemplified here by the multiple scattering approach, does not lead to a reliable approximation scheme. Phenomenological approaches to U sup(-) are unattractive because the physics does not guide the parametrization effectively: the structure of the nonlocality is not tied directly to the dynamics; Im U sup(-) changes sign; different elements of the physics, separate in U(E), are completely entangled in U sup(-). (Author) [pt

  6. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  7. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  8. Radon and energy efficient homes

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    Radon and its daughters in indoor air are presently responsible for dose equivalents of about 31 mSv/year (3 rem/year) to parts of the respiratory tract. Linear extrapolation from the dose response values of uranium miners heavily exposed to radon and its decay products would suggest that almost all lung cancers in the non-smoking population are caused by environmental 222 Rn. Using epidemiological data on the types of lung cancer found in non-smokers of the general public as compared to the miners, a smaller effect of low level radon exposure is assumed, which would result in a lung cancer mortality rate due to radon of about 10 deaths per year and million or 25% of the non-smoker rate. Higher indoor radon concentrations in energy efficient homes mostly caused by reduced air exchange rates will lead to a several fold increase of the lung cancer incidence from radon. Based on the above assumption, about 100 additional lung cancer deaths/year-million will result both from an increase in radionuclide concentrations in indoor air and a concomitant rise in effectiveness of radiation to cause cancer with higher exposure levels. Possibilities to reduce indoor radon levels in existing buildings and costs involved are discussed. (Auth.)

  9. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  10. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  11. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... Energy Efficiency and Renewable Energy Advisory [[Page 69656

  12. Efficient dynamic graph construction for inductive semi-supervised learning.

    Science.gov (United States)

    Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y

    2017-10-01

    Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  14. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  15. Development of Pathways to Achieve the SE4ALL Energy Efficiency Objective: Global and Regional Potential for Energy Efficiency Improvements

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Balyk, Olexandr; Pérez, Cristian Hernán Cabrera

    This study examines the three objectives of the UN Sustainable Energy for All (SE4ALL) initiative: 1. Ensure universal access to modern energy services by 2030. 2. Double the global rate of improvement in energy efficiency (from 1.3% to 2.6% annual reduction in energy intensity of GDP) by 2030. 3....... Double the share of renewable energy in global final energy from 18% to 36% by 2030. The integrated assessment model, ETSAP-TIAM, was used in this study to compare, from an economic optimization point of view, different scenarios for the development of the energy system between 2010 and 2030....... This analysis is conducted on a global and regional scale. The scenarios were constructed to analyze the effect of achieving the SE4ALL energy efficiency objective, the SE4ALL renewable energy objective, both together, and all three SE4ALL objectives. Synergies exist between renewable energy and energy...

  16. The analysis of energy-time sequences in the nuclear power plants construction

    International Nuclear Information System (INIS)

    Milivojevic, S.; Jovanovic, V.; Riznic, J.

    1983-01-01

    The current nuclear energy development pose many problems; one of them is nuclear power plant construction. They are evaluated energy and time features of the construction and their relative ratios by the analysis of available data. The results point at the reached efficiency of the construction and, in the same time, they are the basis for real estimation of energy-time sequences of the construction in the future. (author)

  17. Development of Energy Efficiency Indicators in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Russia is sometimes referred to as 'the Saudi Arabia of energy efficiency'; its vast potential to reduce energy consumption can be considered a significant 'energy reserve'. Russia, recognising the benefits of more efficient use of energy, is taking measures to exploit this potential. The president has set the goal to reduce energy intensity by 40% between 2007 and 2020. In the past few years, the IEA has worked closely with Russian authorities to support the development of energy efficiency indicators in Russia, critical to an effective implementation and monitoring of Russia's ambitious energy intensity and efficiency goals. The key findings of the IEA work with Russia on developing energy efficiency indicators form the core of this report.

  18. Benefits for whom? Energy efficiency within the efficient market

    International Nuclear Information System (INIS)

    Chello, Dario

    2015-01-01

    How should the lack of an efficient energy market affect the design of energy efficiency policies and their implementation? What the consequences of an inefficient energy market on end users’ behaviour? This article tries to give an answer to such questions, by considering the decision making of domestic users following a few fundamental concepts of behavioural economics. The mechanism of price formation in the market, with particular reference to the internal energy market in Europe, will be examined and we will show that price remains the inflexible attribute in making an energy choice. Then, some conclusions will be addressed to policy makers on how to overcome the barriers illustrated.

  19. Promotion of energy efficiency in enterprises

    International Nuclear Information System (INIS)

    Beltrani, G.; Schelske, O.; Peter, D.; Oettli, B.

    2003-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made within the framework of the research programme on energy-economics fundamentals on how the energy efficiency of enterprises can be improved. The report first examines the present state of affairs in Swiss enterprises and looks into the interaction of energy efficiency and environmental management systems. ISO 14001 certification is discussed and examples are given of the responses of various enterprises to a survey concerning the role of energy efficiency in environmental management. Both hindrances and success factors for the embedding of energy-efficiency measures in environmental management activities are discussed and examples are given. Instruments available in Switzerland and from abroad that can be used to promote energy efficiency in enterprises are discussed. Four particular instruments are presented; guidelines and computer-based tools that help in the making of energy-relevant investment decisions, incentives to take part in an energy-benchmark system for small and medium-sized enterprises (SME), low-interest loans for investments in energy-efficiency for SMEs and the closer definition of 'continuous improvement' of energy efficiency within the framework of ISO 14001. The results of a survey amongst those involved are discussed. The report is concluded with recommendations for the implementation of the guidelines and for improvements in the integration of energy efficiency in environmental management systems

  20. Energy efficiency practices among road freight hauliers

    International Nuclear Information System (INIS)

    Liimatainen, Heikki; Stenholm, Pekka; Tapio, Petri; McKinnon, Alan

    2012-01-01

    The reduction of greenhouse gases (GHG) is a highly prevalent public policy goal among European Union member countries. In the new White Paper on transport, the role of road freight transports in this is strongly emphasized. This far, however, the efficiency practices utilised in logistics firms are less studied. Drawing from policy goals and new survey data on 295 road transport firms our results show that hauliers are aware of the possible energy efficiency actions but lack the knowledge and resources to fully utilize them. Energy efficiency seems also to be unimportant for many shippers, so there are no incentives for hauliers to improve it. Examples from various countries show that clear energy efficiency improvements can be achieved with active cooperation between hauliers, shippers and policy makers. Such cooperation can be developed in Finland through the sectoral energy efficiency agreements. The novelty and the utility of these results allow scholars to answer important open questions in the national-level determinants of enhancing energy efficiency practices among road freight hauliers, and contribute to our understanding of how these can be fostered in public policies. - Highlights: ► Hauliers still monitor their fuel consumption with unsophisticated methods. ► Larger hauliers are more active in energy efficiency related issues than smaller ones. ► Hauliers are aware of energy efficiency actions, but lack knowledge of implementation. ► Finnish energy efficiency agreement provides a good framework for public policies. ► Companies that monitor and improve energy efficiency may gain competitive advantage.

  1. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  2. Speech for the defense of energy efficiency

    International Nuclear Information System (INIS)

    Escande, Ph.; Laforce, M.

    2006-01-01

    This article reprints an interview of C. Mandil, executive director of IEA who comments some of the recent energy policy events: the recent mergers between European energy companies and the competition on energy markets, the role and share of nuclear energy and renewable energies in the energy mix, the Russian gas affair and the energy efficiency in Russia, the oil prices and the Iranian threat of exports disruption, the peak oil and the decay of petroleum production, the energy efficiency in China, the global warming and the Kyoto protocol. (J.S.)

  3. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  4. Energy efficiency rating of districts, case Finland

    International Nuclear Information System (INIS)

    Hedman, Åsa; Sepponen, Mari; Virtanen, Mikko

    2014-01-01

    There is an increasing political pressure on the city planning to create more energy efficient city plans. Not only do the city plans have to enable and promote energy efficient solutions, but it also needs to be clearly assessed how energy efficient the plans are. City planners often have no or poor know how about energy efficiency and building technologies which makes it difficult for them to answer to this need without new guidelines and tools. An easy to use tool for the assessment of the energy efficiency of detailed city plans was developed. The aim of the tool is for city planners to easily be able to assess the energy efficiency of the proposed detailed city plan and to be able to compare the impacts of changes in the plan. The tool is designed to be used with no in-depth knowledge about energy or building technology. With a wide use of the tool many missed opportunities for improving energy efficiency can be avoided. It will provide better opportunities for sustainable solutions leading to less harmful environmental impact and reduced emissions. - Highlights: • We have created a tool for assessing energy efficiency of detailed city plans. • The energy source is the most important factor for efficiency of districts in Finland. • Five case districts in Finland were analyzed. • In this paper one residential district has in-depth sensitivity analyses done

  5. Transition Towards Energy Efficient Machine Tools

    CERN Document Server

    Zein, André

    2012-01-01

    Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The ...

  6. Promotion of Efficient Use of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  7. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  6. Southwest Energy Efficiency Project (SWEEP) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Howard [Southwest Energy Efficiency Project (SWEEP), Boulder, CO (United States); Meyers, Jim [Southwest Energy Efficiency Project (SWEEP), Boulder, CO (United States)

    2018-01-29

    SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.

  7. Energy efficiency, market failures, and government policy

    International Nuclear Information System (INIS)

    Levine, M.D.; Koomey, J.G.; McMahon, J.E.; Sanstad, A.H.; Hirst, E.

    1994-03-01

    This paper presents a framework for evaluating engineering-economic evidence on the diffusion of energy efficiency improvements. Four examples are evaluated within this framework. The analysis provides evidence of market failures related to energy efficiency. Specific market failures that may impede the adoption of cost-effective energy efficiency are discussed. Two programs that have had a major impact in overcoming these market failures, utility DSM programs and appliance standards, are described

  8. Energy Efficiency in Norway 1990-2000

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2003-06-01

    This is the national report for Norway in the EU/SAVE project ''Indicators for Energy Efficiency Monitoring and Target setting (ODYSSEE)''. The report deals with energy use and energy efficiency in Norway 1990-2000 (2001 for overall energy use). Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.9% pr year in the period 1990 to 2001. The energy efficiency improvement has been calculated to 0.6% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 11 TWh from 1990 to 2000. (author)

  9. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  10. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  11. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  12. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  13. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  14. National Action Plan for Energy Efficiency Report

    Energy Technology Data Exchange (ETDEWEB)

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  15. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  16. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  17. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) use these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor

  18. National energy efficiency study. The Czech Republic

    International Nuclear Information System (INIS)

    Maly, M.; Jakubes, J.; Spitz, J.; Van Wees, M.T.; Uyterlinde, M.A.; Martens, J.W.; Van Oostvoorn, F.; Henelova, V.; Vazac, V.; Zalesak, M.; Marousek, J.; Szomolanyiova, J.; Havlickova, M.; Zeman, J.; Ten Donkelaar, M.; Travnicek, S.; Stejskal, F.; Pribyl, E.; Blokker, L.; Bizek, V.; Velthuijsen, J.W.

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech Government aims to promote these two sustainable options. The National Energy Efficiency Study has developed specific policies for the promotion of end use energy efficiency and renewables. These are described in two Action Plans, and in this report which serves as a background document. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy, including a listing of actions for implementation. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is presented to support project identification. In addition, two separate Action Plans have been published: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (separate document, ECN-C-99-065); and (2) The Renewable Energy Action Plan (separate document, ECN-C-99-064) deals with policy on promotion of renewable energy production. These two policy documents should provide policy makers in the Czech Government with essential information on potentials, targets, the required budget, and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation

  19. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  20. Efficient Energy-Storage Concept

    Science.gov (United States)

    Brantley, L. W. J.; Rupp, C.

    1982-01-01

    Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.

  1. Constructional Efficiency in Al_Ahwaar Traditional Architecture

    Directory of Open Access Journals (Sweden)

    Usama Abdul-Mun'em Khuraibet

    2016-03-01

    Full Text Available Constructional Efficiency in architecture in general is one of the most important standard success for any structure and a measure of its continuity and relevance across time and space. Given the importance of Al-Ahwaar environment that owned the spatial, environmental, economic and social elements had a prominent impact in creation of architecture patterns form to create special architectural and structural environment, which had many qualities and ingredients that contributed to its continuity and existence over the years. From the premise that man and his environment is the main goal to any architectural style, Thus the research problem focusing on the lack of clarity of the previous literatures in its studies for the role of architectural styles in Al-Ahwaar in achieving constructional efficiency, despite the large number of studies on Al-Ahwaar architecture but it is mostly marked by non-clarity and lack in the constructional and technical aspects, Therefore, the research goal focusing on clarification of the impact of the techniques that used in formations Al_Ahwaar traditional architecture in order to reach to the constructional efficiency in various aspects such as technical, material, economical, and expressional. Assuming that achieving to the constructional efficiency at Al-Ahwaar traditional architecture depends on its characteristics and elements that contributed to the continuity of their patterns across time. The research depended on analytical method of a model of traditional architecture in Al-Ahwaar to reach those goals, as the study of these items aims to deepen the understanding of the designer to the requirements of each component in order to achieve integration together. These components must not conflict with each other, but it must be integrated during and after the design process until it comes out as a creative of architectural destination. al-ahwaar architecture, constructional efficiency, technical and material

  2. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  3. Energy efficiency buildings program, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  4. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    Science.gov (United States)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  5. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  6. Regional and global exergy and energy efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Kurz, R [International Inst. for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies (Ecuador) Project; Gilli, P V [Graz Univ. of Technology (Austria)

    1996-03-01

    We present estimates of global energy efficiency by applying second-law (exergy) analysis to regional and global energy balances. We use a uniform analysis of national and regional energy balances and aggregate these balances first for three main economic regions and subsequently into world totals. The procedure involves assessment of energy and exergy efficiencies at each step of energy conversion, from primary exergy to final and useful exergy. Ideally, the analysis should be extended to include actual delivered energy services; unfortunately, data are scarce and only rough estimates can be given for this last stage of energy conversion. The overall result is that the current global primary to useful exergy efficiency is about one-tenth of the theoretical maximum and the service efficiency is even lower. (Author)

  7. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  8. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  9. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  10. The benefits of energy efficiency - why wait?

    NARCIS (Netherlands)

    Blok, K.; Breevoort, P. van

    2012-01-01

    Improving energy efficiency globally leads to many benefits. First and foremost, improved energy efficiency of equipment, buildings, vehicles and industrial processes will lead to a reduction of the use of electricity, heat and fuels. This will save large amounts of money. Moreover,

  11. Priorities for energy efficiency measures in agriculture

    NARCIS (Netherlands)

    Visser, de C.L.M.

    2013-01-01

    This report provides research gaps and priorities for energy efficiency measures in agriculture across Europe, based on the analysis of the Coordination and Support Action AGREE (Agriculture & Energy Efficiency) funded by the 7th research framework of the EU (www.agree.aua.gr). The analysis from

  12. Energy efficient idler for belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, A.K.; Chattopadhyay, A. [Indian School of Mines Univ., Dhanbad (India). Dept. of Mechanical Engineering and Mining; Soni, R.; Bhattnagar, M.

    2009-07-01

    In today's economic and legal environment, energy efficiency has become more important than ever. This paper proposes a new design of idler rollers for belt conveyors that could help to them even more efficient by reducing their energy consumption and also their CO{sub 2} footprint. (orig.)

  13. Energy efficiency: From regional to global cooperation

    International Nuclear Information System (INIS)

    Brendow, K.

    1994-01-01

    In developing, reforming and emerging countries in particular, institutional hurdles have hindered the introduction of energy efficient technology. The author develops the theme from two U.N. projects: A new institutional accessibility to supra-regional cooperation could provide an important stimulus for future worldwide cooperation in the field of energy efficiency. (orig.) [de

  14. The energy efficiency of onboard hydrogen storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng; Bjerrum, Niels

    2010-01-01

    Global warming resulting from the use of fossil fuels is threatening the environment and energy efficiency is one of the most important ways to reduce this threat. Industry, transport and buildings are all high energy-using sectors in the world and even in the most technologically optimistic...... perspectives energy use is projected to increase in the next 50 years. How and when energy is used determines society's ability to create long-term sustainable energy systems. This is why this book, focusing on energy efficiency in these sectors and from different perspectives, is sharp and also important...

  15. Efficient Use of Energy: as a Life Style

    Directory of Open Access Journals (Sweden)

    Omneya Sabry

    2017-06-01

    Full Text Available Since the Early Eighties of the last Century, the Egyptian Government considered Energy Conservation as one of the main pillars of Energy Planning in Egypt, based on the fact that investing in Energy Efficiency is more cost effective than in constructing new Power Plants.Energy Efficiency (EE Programs financed by International Financing Institutions focused at that time, on Energy Audits in Industrial Buildings, Power Plants, Electricity Transmission and in some other Governmental Buildings. Recommendations for Efficient Use of Energy and reducing energy consumption at those entities were implemented by the Use of Efficient Lamps, Improving Power Factor, Waste Heat Recovery, Thermal Insulation, Efficient Firing in Boilers…. Consequently, High Quality Energy Efficient Products were competing in the market with others not having the same advantage.Although the above mentioned EE Programs included Awareness Campaigns for all sectors but the consumption in Residential Sector remained high and increased more and more ,exceeding even the consumption in Industrial Sector specially that the prices of electricity were highly subsidized.For that reason, more awareness campaigns (Lectures, Brochures, Audio and visual advertisement and more incentives were offered by Ministry of Electricity and Renewable Energy (MoERE to consumers in the Residential Sector. Meanwhile, a Program to reduce gradually subsidies on electricity prices started aiming to push consumers to follow energy efficiency instructions and buy efficient appliances especially while they were suffering from electricity cut for about two years.To prepare for Market Transformation to efficient appliances the Government, issued the Standard Specifications and Labeling for Energy Efficient Appliances (lamps, refrigerators, freezers, washing machines, air conditioners, dish washers and others. Meanwhile, these Standards are supported with Accredited Testing Labs in National Entities (NREA

  16. Towards energy efficient mobile communications

    CSIR Research Space (South Africa)

    Masonta, MT

    2010-10-01

    Full Text Available The rapid growth and development of wireless communication services and applications corresponds to an increase in associated energy consumption. For broadband wireless network deployment in rural areas affected by unreliability and unavailability...

  17. Jcpenney Buying into Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air- Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  18. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  19. Energy plus standard in buildings constructed by housing associations?

    International Nuclear Information System (INIS)

    Stutterecker, Werner; Blümel, Ernst

    2012-01-01

    In order to achieve national, European and international energy goals, energy efficiency strategies in the building sector have to be implemented. The passive house standard and low energy standards are already successfully established in single dwelling houses. These high performance standards are starting to penetrate into the sector of housing associations. A case study about an apartment building constructed by a housing association is presented here. It describes the monitoring concept and the results of the 1st year of monitoring. Depending on the definition of the zero energy building standard (extent of loads included in the balancing), the building could be classified as an energy plus building or as a building, which uses more energy, than is supplied by on-site generation. If the building's total energy use (including user specific loads) is defined as load, only 34.5% of these loads were provided by the net energy output of the PV system. If only the heating energy demand is defined as load, the PV system even yielded a surplus of 45.6% of the energy load. -- Highlights: ► Energy monitoring of an apartment building constructed by a housing association. ► Planned as a Passive House with a semi-central ventilation system with decentralized heat pump technology. ► Total end energy demand of the building was 43 kWh/(m² a). ► Total net energy generation by the PV system was 15 kWh/(m² a). ► Apartment no. 1: 52% of the energy demand were used for heating and ventilation.

  20. From energy efficiency towards resource efficiency within the Ecodesign Directive

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie; Mosgaard, Mette; Remmen, Arne

    2017-01-01

    on the most significant environmental impact has often resulted in a focus on energy efficiency in the use phase. Therefore, the Ecodesign Directive should continue to target resource efficiency aspects but also consider environ- mental aspects with a large improvement potential in addition to the most...... significant environmental impact. For the introduction of resource efficiency requirements into the Ecodesign Directive, these requirements have to be included in the preparatory study. It is therefore recommended to broaden the scope of the Methodology for the Ecodesign of Energy-related products and the Eco......The article examines the integration of resource efficiency into the European Ecodesign Directive. The purpose is to analyse the processes and stakeholder interactions, which formed the basis for integrating resource efficiency requirements into the implementing measure for vacuum cleaners...

  1. Energy efficiency: a recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Produced in cooperation with ADEME and Enerdata, this report presents and evaluates energy efficiency policies and trends in about 90 countries around the world. It reviews the impact of energy efficiency measures and highlights the trends and results of their implementation. Energy efficiency is ''a low hanging fruit'' on the ''energy tree'' which can help address a number of objectives at the same time and at a low or negative cost: security of supply, environmental impacts, competitiveness, balance of trade, investment requirements, social aspects and others. Despite its significant potential for energy savings, energy efficiency is still far from realising this potential. Why? There is no single answer to this question. A meaningful response requires major research and an analytical effort.

  2. Energy efficiency: a recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Produced in cooperation with ADEME and Enerdata, this report presents and evaluates energy efficiency policies and trends in about 90 countries around the world. It reviews the impact of energy efficiency measures and highlights the trends and results of their implementation. Energy efficiency is ''a low hanging fruit'' on the ''energy tree'' which can help address a number of objectives at the same time and at a low or negative cost: security of supply, environmental impacts, competitiveness, balance of trade, investment requirements, social aspects and others. Despite its significant potential for energy savings, energy efficiency is still far from realising this potential. Why? There is no single answer to this question. A meaningful response requires major research and an analytical effort.

  3. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    The efficiency of mitochondrial DNA markers in constructing genetic relationship among Oryx species. ... These data were used to provide the genetic kinship among different Oryx species. The complete cytochrome b gene ... Key words: Conservation, endangered species, Oryx, mitochondrial DNA (mtDNA) markers.

  4. I/O-Efficient Construction of Constrained Delaunay Triangulations

    DEFF Research Database (Denmark)

    Agarwal, Pankaj Kumar; Arge, Lars; Yi, Ke

    2005-01-01

    In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected O( N B logM/B NB ) I/Os for triangulating N points in the plane, where...

  5. Energy efficient hydrocyclones; Energieffektive hydrocykloner

    Energy Technology Data Exchange (ETDEWEB)

    Korsbaek, P.; Damgaard, L.; Nielsen, John Bo; Christensen, Kent; Overgaard, J.

    2009-05-15

    The project's primary purpose is to investigate the energy savings opportunities by using hydro cyclones for separation instead of more traditional separation technologies like rotary sieves and centrifuges. The hydro cyclone plant has been tested through two campaigns. In the 2007/2008 campaign the plant was tested at the Karup potato flour factory and here the cyclone plant achieved energy savings of approx. 32% compared to the current sieve plant. This result includes consumption for a macerator shredder, pre-filtering of the gratings and additional dewatering of the pulp. In the 2008/2009 campaign the plant was tested at the Brande potato flour factory, and here the plant achieved energy savings of 54% compared with the traditional sieve system. This result includes consumption for a shear pump for the homogenization of the gratings and additional consumption for dewatering of pulp. Pre-filtering of the gratings is not thought to be necessary. (ln)

  6. Toward an energy efficient community

    Science.gov (United States)

    Horn, M.

    1980-10-01

    The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.

  7. Energy efficiency and cleaner production

    International Nuclear Information System (INIS)

    Konstantinoff, M.; Grozeva, Iv.

    1999-01-01

    Energy is the fundamental driver of the economic growth in the todays society. It is an absolute prerequisite for the industrial development in the developed countries as well as for improving the quality of life and reducing the poverty in the developing world. It is expected that the energy demand in the developing countries will increase rapidly in the next decades, and will even exceed the level of consumption in the rich countries due to rising population and incomes. The burning of fossil fuel, however, inevitably leads to negative environmental impact, which no longer can be neglected

  8. International Congress on Energy Efficiency and Energy Related Materials

    CERN Document Server

    Bahsi, Zehra; Ozer, Mehmet; ENEFM2013

    2014-01-01

    The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings   Economical and Environmental Issues Environment Energy Requirements Economic Development   Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Supercon...

  9. ENERGY EFFICIENCY. TRENDS AND INFLUENCE FACTORS

    Directory of Open Access Journals (Sweden)

    Zizi GOSCHIN

    2006-12-01

    Full Text Available Energy efficiency is correlated with many factors of influence: Gross National Income per capita, energy imports (% of energy use, renewable combustible and waste (% of total, energy use per capita, services as % of GDP and others. In this paper we are testing a model of piecewise linear regression with breakpoint in order to measure the influence of these factors on the variation of GDP per unit of energy use in Europe in the year 2003.

  10. Encouraging energy efficiency: Policies and programs

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Successfully overcoming the barriers to higher energy efficiency requires development of policies designed for specific users and locations. Reform of energy pricing, which entails removing subsidies and beginning internalization of externalities, is critical to give technology producers and users proper signals for investment and management decisions. But while a rise in energy prices increases the amount of energy-efficiency improvement that is cost-effective, it does not remove other barriers that deter investment. Minimum efficiency standards or agreements can raise the market floor, and are important because they affect the entire market in the near-term. But they may not raise the celining very much, and do little to push the efficiency frontier. To accomplish these goals, incentives and other market-development strategies are needed. Utility programs in particular can play a key role in pushing energy efficiency beyond the level where users are likely to invest on their own. Policies, programs, and pricing should complement one another. Pricing reform alone will not overcome the many entrenched barriers to higher energy efficiency, but trying to accelerate energy efficiency improvement without addressing energy pricing problems will lead to limited success. Whether tagerting new equipment or management of existing systems, policies must reflect a thorough understanding of the particular system and an awareness of the motivations of the actors. 25 refs

  11. Governance and communication for energy efficiency

    International Nuclear Information System (INIS)

    Thomas, Stefan

    2015-01-01

    Energy efficiency has multiple benefits. It usually is a win-win option for all aspects of sustainability – environment, social objectives, and economy. We need to evaluate and communicate these multiple benefits – to citizens, companies, and policy-makers. Due to strong market barriers, effective governance and policy packages for energy efficiency are needed. Evaluation shows effective policy can achieve around 2% per year of additional energy savings.

  12. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency

  13. Energy Efficiency and Renewable Energy in SIPs and TIPs

    Science.gov (United States)

    Tools and guides to encourage state, tribal and local agencies to consider incorporating Energy Efficiency (EE) and Renewable Energy (RE) policies and programs in their State and Tribal Implementation Plans (SIPs/TIPs).

  14. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  15. LEAN and energy efficiency; Lean og energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    Jespersen, Per T; Vesterager Christensen, D; Andersen, Hans [Teknologisk Institut, Energi og Klima, Taastrup (Denmark); Dam Wied, M; Dam, M [NRGi Raadgivning, Aarhus (Denmark); Thorndahl, M [Horsens Kommune, Horsens (Denmark); Weldingh, P [Lokal Energi, Viby J. (Denmark); Maagoee, P; Kristensen, Kenneth T [Viegand og Maagoee, Copenhagen (Denmark); Kirketerp Friis, A [Novozymes, Bagsvaerd (Denmark)

    2010-03-15

    By means of theoretical reports and three specific cases, the project showed how Lean principles can improve energy consulting efficiency, thus making it easier for end-users and energy consultants to record and document energy savings achieved. The three cases documented various types of extra benefits of integrating energy efficiency improvement in Lean processes. As a result of process optimisation, one manufacturing company successfully reduced both staffing and energy consumption, thus making production in Denmark competitive with out-sourced production in Asia. (LN)

  16. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  17. The Next Frontier in Industiral Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2010-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  18. Energy efficiency indicators. Case study, Liguria

    International Nuclear Information System (INIS)

    Ciarallo, M. A.

    2001-01-01

    The report examines the trend in the Liguria Region's energy requirements over the period 1988-1996. The trend was analysed using the regional energy balances and energy efficiency indicators, both in aggregate form and on a single sector basis. The residential sector, in particular, was singled out for an in-depth analysis using publishing and processed data [it

  19. Sustaining with efficiency the renewable energy sources

    International Nuclear Information System (INIS)

    Bano, L.; Lorenzoni, A.

    2008-01-01

    European energy policy requires actions, in favour of a more widespread diffusion of renewable energy sources. Is essential to have an efficient financial support to reduce costs. Are presented an estimated of electric power from renewable energy sources and some criticism. Is proposed a modification of green certificates market based on bilateral tradable agreements [it

  20. Market in Germany. Renewable energy and energy conservation in the German construction industry

    International Nuclear Information System (INIS)

    2008-02-01

    This market survey for Germany is on the subject of renewable energy and energy efficient constructing and housing improvement. In order to meet sectoral or thematic information needs of Dutch exporting industries and investing companies, the EVD facilitates the realisation of up-to-date market surveys on promising markets in selected countries. The requested study is very relevant for the Dutch exporting industry, as the German building and construction market is of increasing importance to the Dutch building, installation and equipment building sector. Moreover the German market is a European innovator on renewable energy (RE) and energy efficient (EE) homes or even so-called 'passive' houses. The developments in the German market can guide the Dutch industry in the development of their export strategies. The main target groups for the market surveys are small- and medium-sized enterprises (SMEs) in the Netherlands. Interesting groups among these SMEs are those enterprises that start their business on a foreign market [nl

  1. Modeling international trends in energy efficiency

    International Nuclear Information System (INIS)

    Stern, David I.

    2012-01-01

    I use a stochastic production frontier to model energy efficiency trends in 85 countries over a 37-year period. Differences in energy efficiency across countries are modeled as a stochastic function of explanatory variables and I estimate the model using the cross-section of time-averaged data, so that no structure is imposed on technological change over time. Energy efficiency is measured using a new energy distance function approach. The country using the least energy per unit output, given its mix of outputs and inputs, defines the global production frontier. A country's relative energy efficiency is given by its distance from the frontier—the ratio of its actual energy use to the minimum required energy use, ceteris paribus. Energy efficiency is higher in countries with, inter alia, higher total factor productivity, undervalued currencies, and smaller fossil fuel reserves and it converges over time across countries. Globally, technological change was the most important factor counteracting the energy-use and carbon-emissions increasing effects of economic growth.

  2. Achieving Energy Savings in Municipal Construction in Long Beach, CA

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Kristen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-01

    Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.3 The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAE baseline by about 45%. The new 15,000-square foot (ft2) LBGO office building has two stories and houses private offices, open-plan cubicle offices, and a conference room and call center on the second floor. The building’s modular nature allowed LBGO to realize the cost benefits of fasttracked construction while saving substantial energy and reducing operational costs. The project was funded by the utility’s ratepayer revenue, which imposed a tight budget limit. The design process was a collaborative effort involving LBGO and its design-build team, Lawrence Berkeley National Laboratory (Berkeley Lab), and subcontractors Stantec (formerly Burt Hill) and LHB Inc. The team proposed efficiency measures based on computer modeling of the building in full compliance with ASHRAE 90.1-2007; in the modeled building, the lighting and cooling systems were the largest energy users, so increasing the efficiency of these systems was a top priority. Promising measures were modeled to estimate their energy performance, and each measure was evaluated for its feasibility within the budget.

  3. Design, construction and testing of a low-cost flat plate solar energy ...

    African Journals Online (AJOL)

    A low-cost flat plate solar energy collector has been designed and constructed with locally available materials such as mild steel and black paint of absorptance 0.94. On testing, an average daily efficiency of 55.6% was obtained. The methods are simple and illustrate the fact that construction of efficient collectors are ...

  4. Energy efficiency and renewables policies: Promoting efficiency or facilitating monopsony?

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2011-01-01

    The cliche in the electricity sector, the 'cheapest power plant is the one we don't build,' neglects the benefits of the energy that plant would generate. That economy-wide perspective need not apply in considering benefits to only consumers if not building that plant was the exercise of monopsony power. A regulator maximizing consumer welfare may need to avoid rationing demand at monopsony prices. Subsidizing energy efficiency to reduce electricity demand at the margin can solve that problem, if energy efficiency and electricity use are substitutes. Renewable energy subsidies, percentage use standards, or feed in tariffs may also serve monopsony as well with sufficient inelasticity in fossil fuel electricity supply. We may not observe these effects if the regulator can set price as well as quantity, lacks buyer-side market power, or is legally precluded from denying generators a reasonable return on capital. Nevertheless, the possibility of monopsony remains significant in light of the debate as to whether antitrust enforcement should maximize consumer welfare or total welfare. - Research Highlights: → Subsidizing energy efficiency can promote monopsony, if efficiency and use are substitutes. → Renewable energy subsidies, portfolio standards, or feed-in tariffs may also promote monopsony. → Effects require buyer-side market power and ability to deny generators a reasonable return. → Monopsony is significant in light of whether antitrust should maximize consumer or total welfare.

  5. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  6. Moving around efficiently: Energy and transportation

    Directory of Open Access Journals (Sweden)

    Hermans L. J. F.

    2013-06-01

    Full Text Available Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  7. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  8. Power shifts: the dynamics of energy efficiency

    International Nuclear Information System (INIS)

    Edenhofer, O.; Jaeger, C.C.

    1998-01-01

    Induced technical change is crucial for tackling the problem of timing in environmental policy. However, it is by no means obvious that the state has the ability to impose its will concerning technical change on the other relevant actors. Therefore, we conceptualize power in a non-linear model with social conflict and induced technical change. The model shows how economic growth, business cycles and innovation waves interact in the dynamics of energy efficiency. We assess three different ways of government control: energy taxes, energy and labor subsidies, and energy caps. Energy taxes help to select more energy efficient technologies. However, a successful selection of such technologies presupposes that they are available in the pool of technologies. As for energy subsidies, their existence helps to explain why in contemporary economies labor productivity grows faster than energy efficiency. With an energy cap, the social network of the relevant agents may be stabilized via social norms. It seems plausible that innovation waves comprise several business cycles and that such a wave is currently in the making. Proposals to postpone policies for improving energy efficiency increase the risk of energy inefficient lock-in effects. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Financial Crisis and Energy Efficiency. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    de T' Serclaes, Philippine; Gasc, Emilien; Saussay, Aurelien

    2009-10-15

    Governments have understood the importance of financing energy efficiency now. This realisation is exemplified through the central role occupied by energy efficiency in most stimulus packages. The purpose of this memo is to identify the impact of the financial and economic crisis on the evolution of public sector investments, energy efficiency policy development, and private sector investments. The paper will first identify trends which have emerged from the implementation of IEA government stimulus packages. Most relevant case studies are then provided along with lessons and challenges.

  10. Energy efficient lighting in the retail sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Good Practice Guide gives details on how energy efficient lighting can be incorporated in the brief for a lighting consultant or contractor. The advantages of energy efficiency are highlighted, and the lighting of retail stores, the introduction of energy efficiency measures, and the application of good practice are discussed. Case studies of W H Smith, Cambridge, Tesco Stores, Boots plc, the Harvey Centre, Harlow, and the National Westminster Bank plc are presented. A guide for senior executives and specialists in lighting design is also included. (UK)

  11. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  12. Achieving Energy Savings in Municipal Construction in Long Beach California

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program. The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAE baseline by about 45%.

  13. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  14. Energy Saving: Scaling Network Energy Efficiency Faster than Traffic Growth

    NARCIS (Netherlands)

    Chen, Y.; Blume, O.; Gati, A.; Capone, A.; Wu, C.-E.; Barth, U.; Marzetta, T.; Zhang, H.; Xu, S.

    2013-01-01

    As the mobile traffic is expected to continue its exponential growth in the near future, energy efficiency has gradually become a must criterion for wireless network design. Three fundamental questions need to be answered before the detailed design could be carried out, namely what energy efficiency

  15. Energy-efficient wireless mesh infrastructures

    OpenAIRE

    Al-Hazmi, Y.; de Meer, Hermann; Hummel, Karin Anna; Meyer, Harald; Meo, Michela; Remondo Bueno, David

    2011-01-01

    The Internet comprises access segments with wired and wireless technologies. In the future, we can expect wireless mesh infrastructures (WMIs) to proliferate in this context. Due to the relatively low energy efficiency of wireless transmission, as compared to wired transmission, energy consumption of WMIs can represent a significant part of the energy consumption of the Internet as a whole. We explore different approaches to reduce energy consumption in WMIs, taking into accoun...

  16. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  17. Managing carbon emissions in China through building energy efficiency.

    Science.gov (United States)

    Li, Jun; Colombier, Michel

    2009-06-01

    This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework.

  18. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  19. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  20. Energy efficiency in existing detached housing

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten; Christensen, Toke Haunstrup

    This memo is written as an input to the German project Enef-haus on energy- efficient restoration of single-family houses in Germany. The memo contains a summary of the Danish experiences divided into three main sections: first is a short historic overview of the Danish energy policy indicating...... when different relevant instruments have been introduced to increase the energy efficiency of privately owned single-family houses. Second is a short introduction to the Danish housing sector and its energy supplies. The third and main part of the report is an examination of the most recent...

  1. Tariff regulation with energy efficiency goals

    International Nuclear Information System (INIS)

    Abrardi, Laura; Cambini, Carlo

    2015-01-01

    We study the optimal tariff structure that could induce a regulated utility to promote energy efficiency by its customers given that it is privately informed about the effectiveness of its effort on demand reduction. The regulator should optimally offer a menu of incentive compatible two-part tariffs. If the firm's energy efficiency activities have a high impact on demand reduction, the consumer should pay a high fixed fee but a low per unit price, approximating the tariff structure to a decoupling policy, which strengthens the firm's incentives to pursue energy conservation. Instead, if the firm's effort to adopt energy efficiency actions is scarcely effective, the tariff is characterized by a low fixed fee but a high price per unit of energy consumed, thus shifting the incentives for energy conservation on consumers. The optimal tariff structure also depends on the cost of the consumer's effort (in case the consumer can also adopt energy efficiency measures) and on the degree of substitutability between the consumer's and the firm's efforts. - Highlights: • We study the optimal tariff structure that induces an utility to adopt energy efficiency activities. • The regulator optimally offer a menu of incentive compatible two-part tariffs. • If energy efficiency activities have a high effectiveness, decoupling emerges as a solution. • If the energy efficiency actions are less effective, the tariff has a higher per unit price and lower fixed fee. • The optimal tariff structure also depends on the degree of substitutability between the consumer's and the firm's efforts

  2. The promotion of energy efficiency in Italy

    International Nuclear Information System (INIS)

    De Paoli, L.; Bongiolatti, L.

    2006-01-01

    In 2004 Italy introduced an obligation for electricity and gas distribution companies to reach specific objectives regarding the improvement of energy efficiency in final energy consumption. The scope of the provision is to promote investments in energy efficiency in order to meet the greenhouse gases reduction target set by the Kyoto protocol. The adoption of binding targets of energy efficiency will also lead to the development of an energy services market, modifying the traditional relation between energy dealers and final consumers, thus leading to a more efficient use of the available resources. Similar mechanisms have already been applied in other European countries (as France and United Kingdom) and will be likely introduced in other countries with the implementation of European Directive on energy end-use efficiency and energy services. This paper describes and analyzes both the measures adopted in Italy and the results obtained after the first year of operation of the mechanism. The paper is divided in six different sections. In the first part we highlight the main problems related to the development of system based on tradable white certificates. In the second part we provide a brief description of the Italian regulatory context. In the third part there is an economic analysis of investments in energy efficiency. The fourth part considers the different options that distribution companies face in order to reach the energy efficiency targets. The fifth part shows the results obtained after the first year of operation of the mechanism. Finally, we propose some possible modifications to the scheme adopted in Italy considering the results obtained and the alternative solutions already applied in France and United Kingdom [it

  3. Fourth Annual Report on Energy Efficiency

    International Nuclear Information System (INIS)

    Di Franco, Nino; Bertini, Ilaria; Federici, Alessandro; Moneta Roberto

    2015-01-01

    Here we present the main elements of the annual report on energy efficiency 2015. The results indicate that, thanks to national policies for energy efficiency, Italy saved over 7.5 million tons of oil equivalent per year in the period 2005-2013. Compared to the National Plan for Energy Efficiency 2014, the report shows that the 2020 objectives have already been achieved for more than 20%, with residential (35.7% of the target) and industry (26.6%) among the sectors that contributed most to this result. Substantial savings could result from the agribusiness sector through the dissemination of efficient technologies in the logistics and large retail chains. A key role lies with the banks: 86% of banks has developed products dedicated to efficiency, necessitating guidelines for replicability of projects, and audit and rating to assess their quality [it

  4. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available greener economy and environment. In this research, we investigate the concept of green radio communications in wireless networks and discuss approaches for energy efficient solutions in wireless broadband network deployments. These solutions include...

  5. National Action Plan for Energy Efficiency

    Science.gov (United States)

    Provides resources for policy-makers, consumers, utilities, and others produced through NAPEE - a private-public initiative to create a sustainable, aggressive national commitment to energy efficiency through a collaborative effort of stakeholders.

  6. Building Energy Efficiency through Innovative Thermodevices (BEEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Y. Sungtaek [Univ. of California, Los Angeles, CA (United States); Dunn, Bruce [Univ. of California, Los Angeles, CA (United States); Pei, Qibing [Univ. of California, Los Angeles, CA (United States); Kim, C. -J. [Univ. of California, Los Angeles, CA (United States)

    2012-12-14

    This is the final scientific/technical report for the project "Compact MEMS Electrocaloric Cooling Module" sponsored by ARAPA-E as part of its Building Energy Efficiency through Innovative Thermodevices (BEEIT) program.

  7. Measure Guideline. Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, John [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR; Haglund, Kerry [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  8. Determinants of energy efficiency across countries

    Science.gov (United States)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  9. Optimising window parameters for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Boland, J. [South Australia Univ., Adelaide, SA (Australia); Luther, M. [Deakin Univ., Geelong, VIC (Australia)

    1996-12-31

    Large north facing windows act a solar collectors, with the heat being stored in the building mass and being released later in the day. This study examines one of the elements of this paradigm, that increasing the size of equatorially facing windows necessarily improves the energy efficiency of a dwelling. This question and that of whether there is a case for using double glazing in Australia were examined for a number of locations ranging from cool temperate to warm temperate and for several types of construction from lightweight to heavyweight. Simulations were performed using the modelling tool Cheetah. It was found that the optimal window size on equatorially facing walls was smaller than expected for singly glazed windows. Double glazing was found to be effective in most situations and increased the optimum size of the window substantially. Changing the operational pattern of the house (specifically when cooling equipment may be employed) considerably affects conclusions about single and double glazing. (author). 3 tabs., 3 figs., 13 refs.

  10. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  11. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  12. Energy Efficiency in Grocery Distribution in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Evaluation of the development of the energy efficiency of grocery distribution from 1960 to the present in Denmark, covering both the distribution to the shops and the shopping transport (distribution from shops to individual homes)......Evaluation of the development of the energy efficiency of grocery distribution from 1960 to the present in Denmark, covering both the distribution to the shops and the shopping transport (distribution from shops to individual homes)...

  13. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  14. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since the author......Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... with practitioners in the building sector at the local level. The aim of this report is to look into municipal efforts to promote energy efficient buildings to learn from their experiences: What types of challenges are municipalities facing, when attempting to disseminate energy efficient technologies in local...... building projects through municipal planning practices, and how do they cope with these challenges? The report is based on an in-depth study of proactive planning practices performed by municipal partners in the Class 1 project and a series of experiences, strategies and instru-ments are identified...

  15. Energy saving and energy efficiency concepts for policy making

    International Nuclear Information System (INIS)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies.

  16. Energy saving and energy efficiency concepts for policy making

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, V. [SOM, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Becchis, F. [POLIS Department, University of East Piedmont, via Duomo, 6-13100 Vercelli (Italy); Steg, L. [Faculty of Behavioural and Social Sciences, University of Groningen, P.O. Box 72 9700 AB (Netherlands); Russolillo, D. [Fondazione per l' Ambiente ' T. Fenoglio' , Via Gaudenzio Ferrari 1, I-10124 Torino (Italy)

    2009-11-15

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies. (author)

  17. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  18. Evaluating energy efficiency policies with energy-economy models

    NARCIS (Netherlands)

    Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.

    2010-01-01

    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically

  19. The energy efficiency of lead selfsputtering

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik

    1968-01-01

    The sputtering efficiency (i.e. ratio between sputtered energy and impinging ion energy) has been measured for 30–75‐keV lead ions impinging on polycrystalline lead. The results are in good agreement with recent theoretical estimates. © 1968 The American Institute of Physics...

  20. 25 energy efficiency policy recommendations. 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The IEA recommends that G8 leaders adopt and urgently implement this package of measures to significantly enhance energy efficiency. This package was developed under the Gleneagles G8 Plan of Action, which mandates the pursuit of a clean, clever and competitive energy future.

  1. Energy Efficient Routing in Nomadic Networks

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2007-01-01

    We present an evaluation of a novel energy-efficient routing protocol for mobile ad-hoc networks. We combine two techniques for optimizing energy levels with a well-known routing protocol. We examine the behavior of this combination in a nomadic network setting, where some nodes are stationary...

  2. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast......Efficient operation of energy systems with substantial amount of renewable energy production is becoming increasingly important. Renewables are dependent on the weather conditions and are therefore by nature volatile and uncontrollable, opposed to traditional energy production based on combustion....... The "smart grid" is a broad term for the technology for addressing the challenge of operating the grid with a large share of renewables. The "smart" part is formed by technologies, which models the properties of the systems and efficiently adapt the load to the volatile energy production, by using...

  3. Compatibility of the SE4ALL Energy Efficiency Objective with Renewable Energy, Energy Access, and Climate Mitigation Targets

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Balyk, Olexandr; Solér, Ola

    over pre-industrial times. To accomplish this, pathways are constructed for each objective, which then form the basis for a scenario analysis using the Energy Technology System Analysis Program TIMES Integrated Assessment Model (ETSAP-TIAM). We find that, in general, the energy efficiency objective...

  4. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  5. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  6. Energy efficiency: The Italian situation and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, Alessandro; Beccarello, Massimo; Gallanti, Massimo

    2010-09-15

    The paper reports the results of a study led by Confindustria (Italian Federation of Industrial Associations) on the Italian situation with respect to energy efficiency policies and their effective implementations. The study is being continuously updated with the contributions of ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) and ERSE (previously CESI Ricerca) and highlights the obtainable savings through efficient technologies now already available for applications in the final uses of energy for both the industrial, commercial and domestic sectors.

  7. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  8. How energy efficient is your car?

    Science.gov (United States)

    Roura, Pere; Oliu, Daniel

    2012-07-01

    A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.

  9. France's action plan for energy efficiency

    International Nuclear Information System (INIS)

    2011-01-01

    This report first presents the French strategy for energy efficiency which is notably based on several commitments and an energy conservation policy. The second part describes the various policies and measures which have been implemented in France for different sectors: energy demand, housing and office building, transports, industry, exemplary State and local communities, agriculture, wastes, public information and sensitization. Several large appendices complete this report. They address assessment methods, policies and measures, and a European directive

  10. Measure Guideline: Energy-Efficient Window Performance and Selection

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  11. Marketing energy-efficient solar houses: A method to locate and identify people who will buy energy-efficient solar houses, or related services

    International Nuclear Information System (INIS)

    D'Alessio, G.

    1999-01-01

    Houses built in New England within the last six years, equal to or exceeding energy-efficiency standards from Energy Crafted Homes (ECH) or from DOE's Energy Star Homes are termed energy-efficient for this study. An assumption is that people who purchase houses being newly constructed may request special features including more energy-efficient features. The average house being constructed today is not as energy-efficient as it could easily be; therefore, owners of recently constructed energy-efficient houses may be termed early-adopters of an innovation. It has been demonstrated that early adopters have different personal attitudes and perceptions of an innovation compared to later-adopters. Both types of adopters--owners of recently constructed energy-efficient or energy-inefficient houses, have been surveyed in New England to determine whether their differences are significant enough to be used in identifying future potential early-adopters. Solar houses also are usually energy-efficient, and should be termed an innovation

  12. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  13. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    Science.gov (United States)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  14. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  15. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  16. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  17. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  18. Superface energy of several construction materials

    Directory of Open Access Journals (Sweden)

    Otero, J. L.

    2006-09-01

    Full Text Available Inverse gas chromatography at infinite dilution was used to characterize the surface of different construction materials (marble, sandstone, granite and brick. Surface energy can be divided into two components: dispersive and polar or acid-base. The highest dispersive energy value was found for sandstone, while the values for the other three materials were all very similar. The lower dispersive energy variation exhibited by sandstone with temperature changes is an indication that substances interact equally well with its surface at any temperature. All the materials were found to be amphoteric, with both acid and alkaline components, although acidity was greater in granite and brick and sandstone and marble had higher alkalinity.En este trabajo se ha realizado la caracterización de la superficie de diferentes materiales de construcción (mármol,arenisca, granito y ladrillo mediante cromatografía inversa gas-sólido a dilución infinita. La energía superficial se puede dividir en dos componentes: dispersiva y ácido-base. Los valores obtenidos para la energía dispersiva son bastante parecidas para mármol, granito y ladrillo, mientras que el valor más alto corresponde a la arenisca. Además, este material presenta una menor variación de la energía dispersiva con la temperatura lo que indica que la interacción de cualquier sustancia con su superficie se dará a cualquier temperatura. Por lo que respecta a las componentes ácido-base, se ha observado que todos los materiales poseen ambas componentes lo que indica un carácter anfótero, sin embargo, la acidez es mayor en el granito y en el ladrillo, mientras que la basicidad es mayor en la arenisca y en el mármol.

  19. KEY ASPECTS OF ENSURING ENERGY EFFICIENCY OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    S.G. Abramyan

    2017-06-01

    Full Text Available The paper is based on the review of the foreign and national academic literature and intended to emphasize the issues of ensuring energy efficiency of buildings and structures applicable to all the countries as for reconstruction of existing buildings as for erection of new ones . The author highlights the key aspects of the provision of energy efficiency of buildings and structures in some foreign countries. The conclusion is made that the studies are mainly aimed at discovering new heat insulation materials, whereby polystyrene insulation is found to be the most widespread wall insulation material in a number of countries. At the same time, it is observed that the ongoing research is focused on solutions to optimize the structure of walling systems in terms of both insulant thickness and the number and sequence of insulation layers in the walling structure. A conclusion is made that hyper insulation of external walls leads to considerable expenses arising due to cooling during the summer season. The use of prefabricated vacuum panels as a heat insulation layer and off-the-shelf single-layer structures, subject to their heat insulation characteristics, appears a more constructive way to meet the energy efficiency requirements, as the arrangement of ideal air space in multilayered walls proves a significant challenge today. One of the most promising ways to ensure energy efficiency is the use of multifunctional polyvalent walls and provision of polyvalent heat supply from renewable energy sources. Since energy efficiency depends on the spatial arrangement of buildings, construction must ensure a minimum ratio of the area of enclosing structures to the overall building volume (by adding on new facilities in case of reconstruction. It is noted that a systemic approach to ensuring energy efficiency of buildings is impossible without proper regard to the environmental parameters of heat insulation materials.

  20. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  1. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  2. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Pudleiner, David; Jones, David; Khan, Aleisha

    2017-06-15

    Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated into energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives

  3. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  4. Energy efficiency in Norway (1997). Cross Country Comparison on Energy Efficiency Indicators - Phase 5

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    2000-02-01

    This is the national report for Norway in phase 5 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of maximum 7-8 TWH from 1990 to 1997. This corresponds to a saving of 0.5% per year. In the same period, final energy use per Gross Domestic Product (GDP) was reduced by approx 2.4% per year. Thereby most of the reduction in final energy intensity can not be attributed to increased energy efficiency. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  5. Energy efficient housing in South Africa. A Research Alliance, CSIR/SUPSI project proposal for energy efficient building (housing) in South Africa

    CSIR Research Space (South Africa)

    Kuchena, J

    2010-02-01

    Full Text Available This presentation proposes energy efficient housing in South Africa, and presents the economic, social and environmental sustainability challenges it brings. The CSIR's expertise in terms of design, construction methods, material selection, home...

  6. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  7. Energy efficiency in buildings, industry and transportation

    Science.gov (United States)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  8. Start It up: Flywheel Energy Storage Efficiency

    Science.gov (United States)

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  9. Energy Efficiency and Renewable Energy in Low-Income Communities

    Science.gov (United States)

    State and local governments can provide benefits to low-income communities by investing in energy efficiency. Use the Program Finder table to identify those programs that reach the sectors and audiences of interest in your organization.

  10. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  11. A framework to characterize energy efficiency measures

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; De Donatis, Alessio

    2014-01-01

    Highlights: • A novel framework to characterize energy efficiency measures is proposed. • It allows a greater knowledge sharing, facilitating the adoption of the best measures. • It supports policy-makers in developing drivers for industrial energy efficiency. - Abstract: The need to increase the diffusion of energy efficiency measures (EEMs) is of crucial importance to achieve a consistent reduction of energy consumption and green house gases (GHG) emissions. A clear comprehension of the characteristics of such EEMs could assist in gathering and capitalizing all the information needed by industrial firms in selecting and adopting technologies, as well as by policy-makers in designing appropriate policies for their diffusion. Therefore, in this study, starting from a literature review of the studies analyzing the attributes of EEMs, we aim at providing an innovative and comprehensive framework to characterize such measures, based on 17 attributes grouped according to six categories, such as: economic, energy, environmental, production-related, implementation-related and the possible interaction with other systems. We applied this scheme to an extensive range of EEMs in cross-cutting technologies, i.e. motors, compressed air, lighting and HVAC systems. The analysis provides a relevant contribution firstly to the structuring and the sharing of knowledge on EEMs and hence to the comprehension of the barriers currently hindering their adoption; secondly, it provides a structured basis for the analysis of the drivers that policy-makers should develop in order to promote industrial energy efficiency

  12. Energy Efficiency Perspectives of PMR Networks

    Directory of Open Access Journals (Sweden)

    Marco Dolfi

    2016-12-01

    Full Text Available Recently, the concern about energy efficiency in wireless communications has been growing rapidly. Manufacturers and researchers have developed innovative solutions, highlighting the benefits in reducing operational expenditures (OPEX and carbon footprint. Professional Mobile Radio (PMR systems, like Terrestrial Trunked Radio (TETRA, have been designed to provide voice and data services to professional users. The energy consumption is one of the critical aspects of PMR broadband solutions and a major constraint for PMR services. The future convergence of PMR to the LTE system introduces a new topic in the research discussion about the energy efficiency of wireless systems. This paper focuses on the feasibility of energy efficient solutions for current and potentially future PMR networks, by providing a mathematical formulation of power consumption in TETRA base stations and assessing possible business models and energy saving solutions for enhanced mission-critical operations. The energy efficiency evaluation has been performed by taking into account the traffic load of a deployed TETRA regional network: in the considered network scenario with 150 base stations, significant OPEX savings up to 70 thousand Euros per year of operation are achieved. Moreover, the proposed solutions allow for saving more than 1 ton of CO 2 per year.

  13. Hydro-Quebec and energy efficiency

    International Nuclear Information System (INIS)

    1990-01-01

    There is growing awareness that energy efficiency is both profitable and environmentally beneficial. In this year's Development Plan, Hydro-Quebec is proposing an Energy Efficiency Project made up of marketing programs designed for all markets throughout the final decade of the 20th century. This Project will have two aspects: energy efficiency and consumption management. Hydro-Quebec aims to reach an energy-efficiency level of 12.9 terawatt hours per year by 1999, fully 55% of its 23-terawatt hour potential. Over the next 10 years the utility intends to spend $1.8 billion for this purpose. Cumulative anticipated energy savings should be in the vicinity of 70 terawatt hours for the coming decade, and more than 130 terawatt hours for the first decade of the next century. Of the overall goal of 12.9 terawatt hours for Horizon 1999, energy savings of 9.0 terawatt hours should be the direct result of this year's proposed marketing programs, and will account for the bulk of anticipated investments. The remaining 3.9 terawatt hours will be gained as customers acquire better electrical appliance and accessory (household appliances, home insulation) buying habits

  14. Simulation of value stream mapping and discrete optimization of energy consumption in modular construction

    Science.gov (United States)

    Chowdhury, Md Mukul

    With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.

  15. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.

  16. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  17. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  18. Reliability and energy efficiency of zero energy homes (Conference Presentation)

    Science.gov (United States)

    Dhere, Neelkanth G.

    2016-09-01

    Photovoltaic (PV) modules and systems are being installed increasingly on residential homes to increase the proportion of renewable energy in the energy mix. The ultimate goal is to attain sustainability without subsidy. The prices of PV modules and systems have declined substantially during the recent years. They will be reduced further to reach grid parity. Additionally the total consumed energy must be reduced by making the homes more energy efficient. FSEC/UCF Researchers have carried out research on development of PV cells and systems and on reducing the energy consumption in homes and by small businesses. Additionally, they have provided guidance on PV module and system installation and to make the homes energy efficient. The produced energy is fed into the utility grid and the consumed energy is obtained from the utility grid, thus the grid is assisting in the storage. Currently the State of Florida permits net metering leading to equal charge for the produced and consumed electricity. This paper describes the installation of 5.29 KW crystalline silicon PV system on a south-facing tilt at approximately latitude tilt on a single-story, three-bedroom house. It also describes the computer program on Building Energy Efficiency and the processes that were employed for reducing the energy consumption of the house by improving the insulation, air circulation and windows, etc. Finally it describes actual consumption and production of electricity and the installation of additional crystalline silicon PV modules and balance of system to make it a zero energy home.

  19. Energy efficiency throughout the world. On the way to transition

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Laponche, Bernard; Blaustein, Edgar; Chappoz, Loic; Labrousse, Michel; Humberset, Suzanne; Peullemeulle, Justine; Magnin, Gerard; Lacassagne, Sylvie; Bertinat, Pablo; Soumaila, Ibrahim; Rialhe, Anne; Clain, Cristina; Poveda, Mentor; Scalambrini Coasta, Heitor; Diniz, Silvio; Osman, Nejib; Singh, Daljit; Sant, Girish; Kokino, Issairo; Methe Myrand, Lea; Raoust, Michel; Novel, Aymeric; Narain, Sunita; D'Monte, Darryl; Lopez, Jose; Mohanty, Brahmanand; Mezghani, Mohamed; Chamonin, Denis

    2012-10-01

    This document gathers several articles from different countries on different topics related to energy transition. The first part deals with the challenge of energy efficiency as a mean on the way to energy transition (in France, in Europe, in Latin America, in Asian developing countries). The second part illustrates through examples the importance of governance issues and political will (access to energy in West Africa, a network in Latin America and the Caribbean, use of LEDs for public lighting in Brazil, Tunisian policy, role of regulation authorities, situation in India). The third part proposes examples illustrating the importance of the local dimension in any policy aimed at energy efficiency (a project in Africa, public support in housing construction in Austin, the Swedish city of Vaxjo, the French city of Montdidier, the example of two quarters of Geneva using the lake water as cooling or heating source, the refrigerator fleet in a Palestinian village). The last part reports several experiments made in different sectors (building thermal rehabilitation in China, green buildings in India, the building sector in India, a new strategy in India for domestic and commercial electric equipment, stimulation of energy efficiency in the Japanese industry, public transport in sub-Saharan cities, energy efficiency in Indian agriculture)

  20. How to subsidize energy efficiency under duopoly efficiently?

    International Nuclear Information System (INIS)

    Nie, Pu-yan; Yang, Yong-cong; Chen, You-hua; Wang, Zhao-hui

    2016-01-01

    Highlights: • This article captures the effects of output subsidy. • Firms without subsidy are not willing to improve energy efficiency. • Subsidy stimulates the subsidized firms’ outputs and deters the others’ outputs. • The subsidy intensity depends on firms’ position. • Overdue subsidy cannot reach the environmental object. - Abstract: Establishing a game theory model, this paper captures the effects of output subsidy on energy efficiency under Cournot competition and Stackelberg competition. Three types of subsidies are considered in the model, namely without subsidy, unilateral subsidy and bilateral subsidy. The findings indicate that firms without subsidy are not willing to improve energy efficiency. Also, subsidy stimulates the subsidized firms’ outputs while deters the outputs of other firms. Meanwhile, the equilibrium subsidy intensity depends on firms’ position. Furthermore, the minimal subsidy budgets under different situations are presented. Especially, given the fixed subsidy budget, the output of the subsidized firm is the highest if this firm plays the leading position. In addition, certain subsidy can reduce the total emission, while overdue subsidy cannot reach the environmental object.

  1. 'Normal' markets, market imperfections and energy efficiency

    International Nuclear Information System (INIS)

    Sanstad, A.H.; Howarth, R.B.

    1994-01-01

    The conventional distinction between 'economic' and 'engineering' approaches to energy analysis obscures key methodological issues concerning the measurement of the costs and benefits of policies to promote the adoption of energy-efficient technologies. The engineering approach is in fact based upon firm economic foundations: the principle of lifecycle cost minimization that arises directly from the theory of rational investment. Thus, evidence that so-called 'market barriers' impede the adoption of cost-effective energy-efficient technologies implies the existence of market failures as defined in the context of microeconomic theory. A widely held view that the engineering view lacks economic justification, is based on the fallacy that markets are 'normally' efficient. (author)

  2. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Qing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  3. Statistically Efficient Construction of α-Risk-Minimizing Portfolio

    Directory of Open Access Journals (Sweden)

    Hiroyuki Taniai

    2012-01-01

    Full Text Available We propose a semiparametrically efficient estimator for α-risk-minimizing portfolio weights. Based on the work of Bassett et al. (2004, an α-risk-minimizing portfolio optimization is formulated as a linear quantile regression problem. The quantile regression method uses a pseudolikelihood based on an asymmetric Laplace reference density, and asymptotic properties such as consistency and asymptotic normality are obtained. We apply the results of Hallin et al. (2008 to the problem of constructing α-risk-minimizing portfolios using residual signs and ranks and a general reference density. Monte Carlo simulations assess the performance of the proposed method. Empirical applications are also investigated.

  4. Adopting Energy Efficiency in Connected Homes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Dane T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kemper, Emily [CLEAResult

    2017-10-02

    This presentation on connected homes was presented at the 11th Rocky Mountain Utility Efficiency Exchange on September 28, 2017. The discussion covered the integration of energy efficiency measures and practices with Internet of Things (IoT) awareness and adoption of smart technologies and services via WiFi/ Bluetooth enabled home and office equipment. The presentation also describes the benefits to the home and business and benefits/challenges for the utility/implementer.

  5. ENERGY EFFICIENT TRACKING SYSTEM USING WIRELESS SENSORS

    OpenAIRE

    Thankaselvi Kumaresan; Sheryl Mathias; Digja Khanvilkar; Prof. Smita Dange

    2014-01-01

    One of the most important applications of wireless sensor networks (WSNs) is surveillance system, which is used to track moving targets. WSN is composed of a large number of low cost sensors which operate on the power derived from batteries. Energy efficiency is an important issue in WSN, which determines the network lifetime. Due to the need for continuous monitoring with 100% efficiency, keeping all the sensor nodes active permanently leads to fast draining of batteries. Hen...

  6. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  7. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  8. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Hydro Quebec's energy efficiency initiatives are reviewed and the economic benefits it expects to garner from such programs are described. Energy efficiency programs affect the cost of supplying electricity, and rates usually rise during the early years and are subsequently offset by the benefits the program generates. Energy efficiency programs should allow Hydro Quebec to avoid $6 billion in expenditures for electricity supply, while entailing contributions of $1.4 billion for the efficiency measures. Evaluation of the potential for efficiency has allowed Hydro Quebec to set a target of 12.9 TWh/y in 1999 on a potential estimated at 18% of regular sales in Quebec in 1989, namely 23.3 TWh. Customers, who contribute $1.4 billion of their own funds to efficiency programs will realize savings of $3.2 billion. Hydro Quebec programs insist strongly on replacement of appliances and motors of all sorts, and in the residential sector, purchases of slightly less than $0.5 billion will consist of electric lamps (3%), water heaters (2.4%), insulation products (32%), hardware (2.5%), and various electric appliances (33%). In the commercial sector, expenditures will be higher, reaching ca $650 million. These are allocated to purchases of electric lamps (18%), heating equipment (12%), insulation products (24%), street lighting (4%), and various electric devices such as controls (39%). 2 figs., 4 tabs

  9. Downtown Detroit Energy Efficient Street Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, Malik [Detroit Economic Growth Corp, Detroit, MI (United States)

    2013-11-29

    Reliable public lighting remains a critically important and valuable public service in Detroit, Michigan. The Downtown Detroit Energy Efficiency Lighting Program (the, “Program”) was designed and implemented to bring the latest advancements in lighting technology, energy efficiency, public safety and reliability to Detroit’s Central Business District, and the Program accomplished those goals successfully. Downtown’s nighttime atmosphere has been upgraded as a result of the installation of over 1000 new LED roadway lighting fixtures that were installed as part of the Program. The reliability of the lighting system has also improved.

  10. Building an Efficient Model for Afterburn Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  11. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  12. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  13. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  14. Energy in buildings: Efficiency, renewables and storage

    Science.gov (United States)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  15. An Efficient Energy Regeneration System for Diesel Engines

    OpenAIRE

    HUANG, Ying; YANG, Fuyuan; OUYANG, Minggao; CHEN, Lin; GAO, Guojing; He, Yongsheng

    2010-01-01

    In order to further improve the fuel economy of vehicles, an efficient energy regeneration system for diesel engines is designed and constructed. An additional automatic clutch is added between the engine and the motor in a conventional ISG (Integrated Starter and Generator) system. During regenerative braking, the clutch can be disengaged and the engine braking is avoided. Control strategy is redesigned to determine the braking torque distribution and coordinate all the components. The gener...

  16. Energy efficiency and proliferation assessment factors

    International Nuclear Information System (INIS)

    1979-02-01

    The objective of INFCE is to evaluate the nuclear fuel cycles from the point of view of their ability to satisfy the worldwide nuclear energy needs, while minimizing the proliferation risks. Accordingly, the different working groups have to take into consideration as well the energy-efficiency and the proliferation-resistance of these nuclear fuel cycles. The present working paper is aimed at suggesting the main assessment factors which should be taken into consideration

  17. Holistic Approach to Data Center Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Steven W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-18

    This presentation discusses NREL's Energy System Integrations Facility and NREL's holistic design approach to sustainable data centers that led to the world's most energy-efficient data center. It describes Peregrine, a warm water liquid cooled supercomputer, waste heat reuse in the data center, demonstrated PUE and ERE, and lessons learned during four years of operation.

  18. Energy Efficient Evolution of Mobile Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben

    2011-01-01

    options for how to evolve their networks, allowing them to carry the expected increase in traffic. The best solution is generally selected based on two main criteria, performance and cost. However, pushed by a variety of environmental and energy challenges, MNOs are now also showing interest...... in understanding the impact that different options can have on the energy consumption of their networks. This paper investigates the possible energy gains of evolving a mobile network through a joint pico deployment and macro upgrade solution over a period of 8 years. Besides the network energy consumption, energy...... efficiency in Mbps/kWh is also analyzed. Furthermore, a cost analysis is carried out, to give a more complete picture of the different options being considered. Focusing on the last year of the evolution analysis, results show that deploying more pico sites reduces the energy consumption of the network...

  19. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  20. Utilities and energy efficiency Denmark report

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Lyck, N.C.

    1996-11-01

    The report is the Danish contribution to the project `Utilities and Energy Efficiency` produced for the European Commission by IET, Nikkel straat 15, 4823 AE Breda, The Netherlands. Information is given under the headings of existing situation and desired situation. Recommendations are also given under the headings of legislation concerning the objectives of the utilities, of government programs and targets, of organizational structure, required market dependence and internal objectives of the utilities, for regulation and standardization, and of tariff structure. Flow diagrams are presented for the Danish energy system 1990, 1993. The 1993 follow up of the energy plan `Energy 2000` points out that the goals set up at that time, first and foremost the 20% reduction in CO{sub 2} emissions in 2005 compared to the 1988 level, will not be reached without changes in policy, such as an increase in the use of renewable energy, more transparent and consistent tariff systems as a greater incentive for energy conservation, regulations on thermal insulation of houses, increase in public information activities,a new subsidy scheme to stimulate improvements of energy efficiency in buildings and regulations on energy supply to large buildings. (ARW) 55 refs.

  1. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); LoVullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  2. 10 CFR 435.4 - Energy efficiency performance standard.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  3. 10 CFR 433.4 - Energy efficiency performance standard.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle cost-effective...

  4. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  5. PROsab - energy efficient and comfort suitable sanitation of non-residential buildings constructed in the 50ties till 70ties.; PROsab - Energieeffiziente und komfortgerechte Sanierung von Nichtwohngebaeuden der 50er bis 70er Jahre

    Energy Technology Data Exchange (ETDEWEB)

    Beier, T. [IGS - Inst. fuer Gebaeude- und Solartechnik, Braunschweig (Germany)

    2008-07-01

    Most of the existing office- and administration buildings in Germany were built between 1950 and 1980. During those years numbers of construction activities highly increased. Many of those buildings today have reached the end of their useful life expectancy. Especially components such as cladding materials and building services are spent. In addition, requirements on fire protection, utilisation, construction physics, energy technologies and the construction have changed. New ideas on working environments, tendencies to prefer teamwork and new communication technologies need to be considered. Fundamental renovation and revitalisation allows for revaluation of old buildings up to the standard of a new building. This is an economic and non-polluting solution that spares our natural resources. Even though we have great knowledge on conservation of historic buildings hardly any concepts on renovation of old office buildings have been generally accepted due to lack of experience. PROsab is a scientific research project sponsored by the German Federal Environmental Foundation (DBU). 15 typical office buildings built between 1950 and 1980 are going to be analysed. A detailed building analysis shall help, to develop solutions as well as concepts for renovation. Guideline is a feasibility study as those concepts will be realised in a future project. Primary goal of the concept should be the revaluation of old buildings up to the standard of a new building under architectural, technical and economical aspects. Present structures shall be used in a sensible manner. - Revaluating the architectural appearance. - Increasing useful area and optimising the amount of space. - Improving indoor environment and increasing workplace quality. - Decreasing energy consumptions and lowering operating expenses. Final results of the project will be compiled in a detailed catalogue of renovation. In addition to consisting handbooks and directives it will recommend practical procedures and

  6. Energy efficiency program at the Welfare Ministry

    International Nuclear Information System (INIS)

    Castro, Marco Aurelio Lenzi; Ferreira Filho, Anesio de Leles; Monteiro, Fernando Figueiredo de

    2003-01-01

    his article presents the detailed study performed at the annexe building of the Welfare Ministry, viewing an implantation of a efficient and rational use of energy. The article also presents the results of installed load assesment and for correction of the power factor with capacitor bank

  7. Promoting Energy Efficiency Best Practices in Cities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This pilot project is the first attempt to address the lack of rigorous and transparent approach to defining best practice in city energy efficiency programmes. The project has provided interesting insights into a range of exciting projects being implemented in cities around the world. However, the potential exists for far greater benefit. The study has found that it is possible to collate the detailed information needed to identify best practice energy efficiency projects in cities. However, gathering the data is not easy. The data is often not recorded in an easily accessible format. Nor is it easy to get city officials to allocate time to the necessary data collation given the many other competing demands on their time. A key area that this project identifies as requiring urgent attention is the development of a common data management format for energy efficiency projects by Cas. Further work could also focus on refining the criteria used to define best practice, and broadening the scope of projects beyond energy efficiency.

  8. Energy Efficiency for the Nunamiut People

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Dan

    2014-04-09

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  9. Energy Efficiency in Self Organising Networks

    DEFF Research Database (Denmark)

    Kisielius, Edvinas; Popovska Avramova, Andrijana; Zakrzewska, Anna

    2013-01-01

    We evaluate the performance of an energy efficient algorithm that controls power emissions and the number of powered cell sites (eNBs) in overlaid Long Term Evolution (LTE) networks. Simulations are carried out in OPNET Modeler and we investigate cells cites designed to meet peak hours trac demand...

  10. Complex photonic structures for energy efficiency

    Directory of Open Access Journals (Sweden)

    Wiersma D. S.

    2013-06-01

    Full Text Available Photonic structures are playing an increasingly important role in energy efficiency. In particular, they can help to control the flow of light and improve the optical properties of photovoltaic solar cells. We will explain the physics of light transport in such structures with a special focus on disordered materials.

  11. Factors affecting commuter rail energy efficiency.

    Science.gov (United States)

    2016-02-17

    The objective of this study is to develop a planninglevel model of commuter rail energy efficiency. The : environmental benefits of commuter rail are often cited as one of the key benefits and motivators for its rapid development as a public trans...

  12. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  13. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... and the methods are evaluated with respect to energy efficiency....

  14. Energy efficiency evaluation of hospital building office

    Science.gov (United States)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  15. Energy efficiency evaluation of hospital building office

    International Nuclear Information System (INIS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S.A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings. (paper)

  16. Energy and bandwidth-efficient wireless transmission

    CERN Document Server

    Gao, Wei

    2017-01-01

    This book introduces key modulation and predistortion techniques for approaching energy and spectrum-efficient transmission for wireless communication systems. The book presents a combination of theoretical principles, practical implementations, and actual tests. It focuses on spectrum-efficient modulation and energy-efficient transmission techniques in the portable wireless communication systems, and introduces currently developed and designed RF transceivers in the latest wireless markets. Most materials, design examples, and design strategies used are based on the author’s two decades of work in the digital communication fields, especially in the areas of the digital modulations, demodulations, digital signal processing, and linearization of power amplifiers. The applications of these practical products and equipment cover the satellite communications on earth station systems, microwave communication systems, 2G GSM and 3G WCDMA mobile communication systems, and 802.11 WLAN systems.

  17. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... within the field of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public...

  18. Auditing energy use -a systematic approach for enhancing energy efficiency

    International Nuclear Information System (INIS)

    Ardhapnrkar, P.M.; Mahalle, A.M.

    2005-01-01

    Energy management is a critical activity in the developing as well as developed countries owing to constraints in the availability of primary energy resources and the increasing demand for energy from the industrial and non-industrial users. Energy consumption is a vital parameter that determines the economic growth of any country. An energy management system (EMS) can save money by allowing greater control over energy consuming equipment. The foundation for the energy program is the energy audit, which is the systematic study of factory or building to determine where and how well energy is being used. It is the nucleus of any successful energy saving program -it is tool, not a solution. Conventional energy conservation methods are mostly sporadic and lack a coordinated plan of action. Consequently only apparent systems are treated without the analysis of system interaction. Energy audit on the other hand, involves total system approach and aims at optimizing energy use efficiently for the entire plant. In the present paper a new approach to pursue energy conservation techniques is being discussed. The focus is mainly on the methodology of energy audit, energy use analysis, relating energy with the production, and reducing energy losses, etc. It is observe that with this systematic approach, if adopted, which consists of three essential segments namely capacity utilization fine-tuning of the equipment and technology up-gradation can result in phenomenal savings in the energy, building competitive edge for the industry. This approach along with commitment can provide the right impetus to reap the benefits of energy conservation on a sustained basis. (author)

  19. Contribution to the strategy of energy efficiency

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2003-01-01

    An explanation for the greenhouse effect, i.e.global warming and reasons which contribute to this effect. Greenhouse gasses (GHG) and GWP (Global Warming Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocol and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its resource, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Original)

  20. Building energy efficiency labeling programme in Singapore

    International Nuclear Information System (INIS)

    Lee, Siew Eang; Rajagopalan, Priyadarsini

    2008-01-01

    The use of electricity in buildings constitutes around 16% of Singapore's energy demand. In view of the fact that Singapore is an urban city with no rural base, which depends heavily on air-conditioning to cool its buildings all year round, the survival as a nation depends on its ability to excel economically. To incorporate energy efficiency measures is one of the key missions to ensure that the economy is sustainable. The recently launched building energy efficiency labelling programme is such an initiative. Buildings whose energy performance are among the nation's top 25% and maintain a healthy and productive indoor environment as well as uphold a minimum performance for different systems can qualify to attain the Energy Smart Office Label. Detailed methodologies of the labelling process as well as the performance standards are elaborated. The main strengths of this system namely a rigorous benchmarking database and an independent audit conducted by a private accredited Energy Service Company (ESCO) are highlighted. A few buildings were awarded the Energy Smart Office Label during the launching of the programme conducted in December 2005. The labeling of other types of buildings like hotels, schools, hospitals, etc. is ongoing

  1. Teaching the Fundamentals of Energy Efficiency

    Science.gov (United States)

    Meier, Alan

    2010-02-01

    A course on energy efficiency is a surprisingly valuable complement to a student's education in physics and many other disciplines. The Univ. of California, Davis, offers a 1-quarter course on ``understanding the other side of the meter.'' Lectures begin by giving students a demand-side perspective on how, where, and why energy is used. Students measure energy use of appliances in their homes and then report results. This gives students a practical sense of the difference between energy and power and learn how appliances transform energy into useful services. Lectures introduce the types of direct conservation measures--reducing demand, reducing fixed consumptions, and increasing efficiency. Practical examples draw upon simple concepts in heat transfer, thermodynamics, and mechanics. Graphical techniques, strengthened through problem sets, explain the interdependence of conservation measures. Lectures then examine indirect energy savings from measures and consider questions like ``where can one achieve the greatest fuel savings in a car by removing one gram of mass?'' Finally, students learn about conservation measures that circumvent physical limits by adopting new processes. By the end of the course, students have a gained a new perspective on energy consumption and the opportunities to reduce it. )

  2. 78 FR 27982 - U.S. Flag Compliance With MARPOL Annex VI International Energy Efficiency (IEE) Requirements

    Science.gov (United States)

    2013-05-13

    ... MARPOL Annex VI International Energy Efficiency (IEE) Requirements AGENCY: Coast Guard, DHS. ACTION... Efficiency Certificate and the preparation of a Ship Energy Efficiency Management Plan for both new and... extensive that it is regarded as a newly constructed ship, must first have an Attained Energy Efficiency...

  3. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  4. Oil pipeline energy consumption and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1981-01-01

    This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movements over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.

  5. Energy Efficient Payload Aggregation in WSNs

    Directory of Open Access Journals (Sweden)

    Ákos MILÁNKOVICH

    2015-06-01

    Full Text Available Creating wireless sensor networks requires a different approach than traditional communication networks because energy efficiency plays a key role in sensor networks, which consist of devices without external power. The amount of energy used determines the lifetime of these devices. In most cases data packets are less sensitive to delay, thus can be aggregated, making it possible to gather more useful information reducing the energy required to transmit information. This article discusses the energy efficiency of different Forward Error Correction algorithms and presents a method to calculate the optimal amount of aggregation of the data packets in terms of power consumption, while taking into account the Bit Error Rate characteristics of the wireless channel. The contribution of this paper is a general method to improve the energy efficiency of wireless sensor networks by using the optimal amount of aggregation in case of different Forward Error Correction codes and channel characteristics. The presented results can be applied to any packet-based wireless protocol.

  6. Worldwide trends in energy use and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Improvements in energy efficiency over the past three decades have played a key role in limiting global increases in energy use and CO{sub 2} emissions. For IEA countries, energy efficiency gains since 1990 have led to annual energy savings of more than 16 EJ in 2005 and 1.3 Gt of avoided CO{sub 2} emissions. However, the recent rate of efficiency improvement has been much lower than in the past. The good news is that a large potential remains for further energy and CO{sub 2} savings across all sectors. In industry alone, the application of proven technologies and best practices on a global scale could save between 1.9 Gt and 3.2 Gt of CO{sub 2} emissions per year. In public power generation, if all countries produced electricity at current best practice levels, CO{sub 2} savings would be between 1.8 Gt and 2.5 Gt. 40 figs., 5 tabs., 3 annexes.

  7. Who should administer energy-efficiency programs?

    International Nuclear Information System (INIS)

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2005-01-01

    The restructuring of the US electricity industry created a crisis for utility operated energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities--utilities, state agencies, and non-profit corporations--that might be administrators. Four criteria are developed for choosing among program administration options: compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition

  8. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  9. Structural breaks and energy efficiency in Fiji

    International Nuclear Information System (INIS)

    Bhaskara Rao, B.; Rao, Gyaneshwar

    2009-01-01

    This paper examines how energy-output ratios (EYRs) in Fiji have responded to the major energy crises and in particular if these ratios have declined after the energy shocks. The expectation is that energy efficiency should improve after an energy crisis. For this purpose we have used at first a few simpler procedures and then a recently developed more powerful tests for structural breaks by Bai and Perron [Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66, 47-78; Bai, J., Perron, P., 2003a. Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18, 1-22; Bai, J., Perron, P., 2003b. Critical values for multiple structural change tests. Econometrics Journal 6, 72-78]. Policy implications of our results are discussed.

  10. Progress towards energy efficient cities in Denmark

    DEFF Research Database (Denmark)

    Fertner, Christian

    and supporting local authorities in their actions. Still, a general benchmarking of states and efforts is still missing which could however increase the use of good practice and enforce discussions in lagging cities. Against this background, a model was developed in the ongoing EU-FP7 project PLEEC to measure......Energy is a key issue for sustainable urban development. Despite agendas set on national and international level, local authorities are the key actors in this transformation (Lewis et al. 2013). European initiatives as the Covenant of Mayors or Energy Cities are closely following this development...... the energy situation in cities, compiling 50 energy-related indicators. In this paper we discuss the progress towards more energy efficient cities in Denmark, by analysing selected key-indicators across all 98 municipalities and their development in the recent 10 years. This allows a unique perspective...

  11. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  12. Energy-efficient electric motors study

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  13. Affordable Energy-Efficient New Housing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subrato; Widder, Sarah H.; Bartlett, Rosemarie; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen; Abbott, , K.; Fonorow, Ken; Eklund, Ken; Lubliner, Michael; Salzberg, Emily; Peeks, B.; Hewes, T.; Kosar, D.

    2012-05-31

    Since 2010, the U.S. Department of Energy’s Building America has sponsored research at PNNL to investigate cost-effective, energy-saving home-building technologies and to demonstrate how high-performance homes can deliver lower utility bills, increased comfort, and improved indoor air quality, while maintaining accessibility for low-income homeowners. PNNL and its contractors have been investigating 1) cost-effective whole-house solutions for Habitat for Humanity International (HFHI) and specific HFH affiliates in hot-humid and marine climates; 2) cost-effective energy-efficiency improvements for heating, ventilation, and air-conditioning (HVAC) systems in new, stick-built and manufactured homes; and 3) energy-efficient domestic hot-water systems.

  14. Energy-Efficiency in Optical Networks

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia

    This thesis expands the state-of-the-art on the complex problem of implementing energy efficient optical networks. The main contribution of this Ph.D. thesis is providing a holistic approach in a multi-layered manner where different tools are used to tackle the urgent need of both estimating...... and optimizing power consumption in different network segments. An energy consumption analysis for a novel digital signal processing for signal slicing to reduce bandwidth requirements for passive optical networks is presented in this thesis. This scheme aims at re-using low bandwidth equipment to cope...... with parallel optics and WDM systems is reported. These results show the trade-off between increased capacity and both power consumption and system performance. In conclusion, an energy-efficient set of tools has been provided covering different aspects of the telecommunication network resulting in a cohesive...

  15. Gas and energy efficiency. The ''E'' factor

    International Nuclear Information System (INIS)

    McGregor, G.

    1992-06-01

    On 1 April 1992 a new gas tariff formula came into effect limiting the prices British Gas can charge to its 18 million -primarily domestic - tariff customers. A feature of the new formula is the ''E'' factor, designed to stimulate investment by British Gas in energy efficiency. This paper is intended to explain the thinking which lay behind the introduction of the ''E''factor, what statutory and other considerations need to be taken into account in considering ''E'' factor proposals and how the arrangements for the gas industry are likely to fit in with the creation of an Energy Savings Trust recently announced by the Government. In doing so, it is intended to give guidance to those who may have proposals for the more efficient use of energy and gas and wish to understand whether these could be eligible to be considered as ''E'' factor projects. (Author)

  16. The Danish agreements on energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    CO{sub 2}-taxes for industry were introduced in 1993. In 1996, the taxes were increased and an agreement system for energy-intensive companies was implemented. The main purpose of the agreement system has been to allow energy-intensive industry to pay a reduced tax rate, while at the same time improving energy efficiency. The evaluation of the energy tax system has shown that it has been possible to establish an energy tax that has led to a decrease in CO{sub 2}-emissions, without causing a decrease in the competitiveness of trade, industry and services. The agreement system has been a very important element in that it has improved energy efficiency in companies in which taxes would not have been a realistic instrument. In the case of companies with agreements, several studies suggest improvements of approximately 2.7% of the total energy use per agreement (three years). The three sources (concrete projects, special investigation and energy management) contribute approximately one third of this reduction each. The values for special investigation and energy management must be used with great care. It is also predicted that a continuation of the agreement system by 2005, relative to a situation without agreements, can lead to a decrease in CO{sub 2}-emissions corresponding to 6% of total emissions in industry and trade. Of this reduction, the highest amount is due to energy management. However, maintaining the positive effects of energy management systems will require that companies give higher priority to the managerial part of the system and not only focus on energy accounting. Some companies have argued that it is costly to carry out energy audits and to have to audits verified. Therefore, consideration should be given to possibilities for reducing the administrative costs of entering into an agreement, without this causing reduced efforts to save energy. A means of achieving these objectives could be to reduce the requirement for energy audits and verification

  17. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  18. Energy potential of the wind and possibility for construction of big energy systems

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    In this paper a brief theoretical survey is given on the wind as a clean and renewable energy source.The wind energy potential is analyzed as well as the power limits that could be obtained as a result of the wind kinetic energy.The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime, the efficiency and availability of the wind turbine. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives

  19. Building energy efficiency in different climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Tsang, C.L.; Yang Liu

    2008-01-01

    Energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter - in China using DOE-2.1E. The primary aim was to investigate the thermal and energy performance of office buildings with centralised heating, ventilation and air conditioning plants in the major climatic zones in China. The computed results were analysed in three aspects - heating load, cooling load and the corresponding building energy consumption. The building peak monthly heating load varied from 142 MW h (1033 MW h cooling) in Hong Kong to 447 MW h (832 MW h cooling) in Harbin. It was also found that passive solar designs could have large energy savings potential in the severe cold and cold climates. In Harbin, the window solar component helped lower the annual building heating load by 650 MW h. Internal loads (lighting and office equipment) and part load operations of fans and pumps also played a significant role in the overall building energy efficiency. This paper presents the work, its findings and energy efficiency implications

  20. Energy efficiency improvement and environment in China

    International Nuclear Information System (INIS)

    Rouhier, Stephane

    2010-01-01

    Massive reliance on polluting sources of energy (coal, traditional biomass and oil) has damaged the environment in China over years. Now, China is the world's first carbon dioxide emitter and air pollution represents between 2 and 7 percent of loss of Gross Domestic Product per year, depending on the studies chosen. In order to reduce the level of pollution, one can either enhance the technology in use or reduce the share of polluting fuels in the energy mix. Indeed, current Chinese technologies are far less efficient than those of developed countries and the energy mix is massively composed of polluting sources of energy. So, they both represent huge potential savings. This article enquires the link between diversification, efficiency in the power sector and the per capita emissions and shows that emissions are negatively correlated to a diversification of the energy mix as well as an improvement of power generating technologies. Hence, it justifies the diversification of the energy mix and technology improvement as viable strategies to tackle pollution

  1. Shifting attitudes towards energy efficiency in Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Stead, Dominic [Delft Univ. of Technology (Netherlands).OTB Research Inst. for Housing, Urban and Mobility Studies

    2005-07-01

    Special Eurobarometer surveys are carried out regularly in all European member states on behalf of the European Commission. These surveys concern a range of subjects (recent topics include the environment, health, biotechnology, discrimination, the Common Agricultural Policy and European integration). Each survey consists of approximately 1,000 face-to-face interviews per country, with the exception of Germany (2,000 interviews), Luxembourg (600 interviews) and the United Kingdom (1,300 interviews, including 300 in Northern Ireland). From time to time, the Special Eurobarometer surveys focus on energy related issues. This paper draws on three such Special Eurobarometer surveys from 1984, 1993 and 2002 in order to examine temporal trends in individual actions and intentions concerning energy efficiency across Europe. The main focus of the paper is on broad energy efficiency measures (such as home insulation, heating reduction, home-appliance use reduction and car use reduction) and the differences in stated actions and intentions over time and between countries. It examines whether actions and intentions differ according to age, gender and education, and whether these differences are stable over time (between 1984, 1993 and 2002). Data from the 2002 Eurobarometer survey are also used to explore the level of public support for different types of energy efficiency instruments such as taxes, regulations, information campaigns and financial incentives.

  2. Long term agreements energy efficiency. Progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Long Term Agreements (LTAs) on energy efficiency have been contracted with various business sectors since 1992, as part of energy conservation policy: industrial sectors, commercial services, agrarian sectors and non-profit services. LTAs are voluntary agreements between a specific sector and the Minister of Economic Affairs. In some cases, the Minister of Agriculture, Nature Management and Fisheries is also involved. The sector commits to an effort to improve energy efficiency by a particular percentage within an agreed period. As at 31 December 1999, a total of 29 LTAs had been contracted with industrial sectors and 14 with non-industrial ones. This report describes the progress of the LTAs in 1999. It reviews the energy efficiency improvements realised through the LTAs, both overall and in each individual sector. The aim is to make the efforts and results in the various sectors accessible to the general public. Appendix 1 describes the positioning of the LTA instrument. This Appendix provides and insight into the position of the LTAs within the overall set of policy instruments. It also covers the subsidy schemes and fiscal instruments that support the LTAs, the relationships between LTAs and environmental policy and new developments relating to the LTAs in the years ahead. Appendices 2 to 6 contain the reports on the LTAs and a list of abbreviations (Appendix 7)

  3. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  4. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  5. Energy Efficiency Adult Tracking Report - Final

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amy [Ad Council, NY (United States)

    2014-09-30

    Postwave tracking study for the Energy Efficiency Adult Campaign This study serves as measure of key metrics among the campaign’s target audience, homeowners age 25+. Key measures include: Awareness of messages relating to the broad issue; Recognition of the PSAs; Relevant attitudes, including interest, ease of taking energy efficient steps, and likelihood to act; Relevant knowledge, including knowledge of light bulb alternatives and energy efficient options; and Relevant behaviors, including specific energy-saving behaviors mentioned within the PSAs. Wave 1: May 27 – June 7, 2011 Wave 2: May 29 – June 8, 2012 Wave 3: May 29 – June 19, 2014 General market sample of adults 25+ who own their homes W1 sample: n = 704; W2: n=701; W3: n=806 Online Survey Panel Methodology Study was fielded by Lightspeed Research among their survey panel. Sample is US Census representative of US homeowners by race/ethnicity, income, age, region, and family status. At least 30% of respondents were required to have not updated major appliances in their home in the past 5 years (dishwasher, stove, refrigerator, washer, or dryer).

  6. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leow, Woei Ling [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Yan [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  7. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  8. Energy efficiency and load curve impacts

    International Nuclear Information System (INIS)

    Feilberg, Nicolai

    2002-01-01

    One of SINTEF Energy Research's European RTD projects is the two-year EFFLOCOM (Energy EFFiciency and LOad curve impacts of COMmercial development in competitive markets). This project will determine the end-user response of different market-related services offered in deregulated power markets. The project will investigate the possibility of influencing load curves by using different price signals and two-way communications via Internet. The partners are from Denmark. Finland, England, France and Norway. SINTEF Energy Research is in charge of the project management. During the project, the changes in load curves will he studied in the in the participating countries before and after deregulation. Specific issues are the use of ICT, time- and situation-dependent tariffs and smart-house technology. The project will consist of 5 work packages that will give recommendations about new methods, guidelines and tools to promote effective use of energy in the partner countries. The total budget is EUR 692 000. (author)

  9. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  10. Energy Efficiency in the Mediterranean Building Industry

    International Nuclear Information System (INIS)

    Thibault, H.L.; El Habib, El Andaloussi

    2011-01-01

    Despite the alerts that have been sounded since 1992, as international conferences aimed at curbing global warming have come and gone, and despite the plans for reducing the use of fossil fuel resources that call for the moderation of energy consumption, few actions or incentive measures (and even fewer directives) have actually been developed to act on the demand for energy. Yet, as Henri-Luc Thibault and El Habib El Andaloussi show here, some very concrete measures can have major effects in this area. This is the case with everything relating to the improvement of energy efficiency in building, where housing conditions, the housing stock and related energy consumption (heating, air-conditioning etc.) are concerned. Thibault and El Andaloussi show the potential impact of such measures in the Mediterranean region. Basing themselves on the work of the 'Plan Bleu' organization, which has worked out a revolutionary scenario for the energy field in the countries of the southern and eastern Mediterranean (to 2030), they begin by recalling the importance of buildings in regional energy consumption and the various levers that might be used to reduce that consumption (regulation, materials, efficiency of machinery etc.). In such a scenario, the potential for energy savings in this sector would seem considerable. Moreover, this would enable a substantial decrease in greenhouse gas emissions to be achieved, and would also have very positive effects in terms of job creation. In conclusion, the authors point out the need for investment over 20 years, depending on the particular country concerned, to put in place the five flagship measures of energy saving, which would be genuine investments for the future.. (authors)

  11. West Edmonton Mall : buying into energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, K. [West Edmonton Mall, AB (Canada)

    2003-11-01

    The West Edmonton Mall consists of 600 stores and services, as well as attractions including a marine life lagoon, a skating rink, the largest indoor wave pool in the world, and an amusement park. Lighting retrofits, power-factor correction equipment, and tenant energy-saving criteria all combine to make the West Edmonton Mall a model of energy efficiency. An energy consultant was hired in 2001 to develop an energy management plan in an attempt to find ways to save energy while providing a return on investment. Reduction in greenhouse gas emissions are a consequence of reduced energy consumption. Variable frequency drives (VFDs) were recently installed on heating ventilation and air conditioning (HVAC) fans, with assistance from the Energy Innovators Initiative (EII) of Natural Resources Canada. In addition, the West Edmonton Mall is now signed up with Canada's Climate Change Voluntary Challenge and Registry Inc. The retrofit involved the conversion of 42 constant speed, variable-pitch supply and return fans to a fixed pitch. The total cost of the retrofit was $970,000, and the energy savings are expected to reach $524,295 annually. A brief overview of energy savings measures implemented since 1985 was provided. Separate metering and billing for new tenants is a strategy to make sure that they are aware of their energy costs. This strategy makes them more active in reducing their energy consumption. An awareness and accountability system was put in place, and a variety of potential projects are being evaluated, such as a cogeneration system, updating fluid pumps, and adding new controls to hot water heaters. 1 tab.

  12. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  13. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  14. Energy-efficient electric motors study

    Science.gov (United States)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  15. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  16. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis

    International Nuclear Information System (INIS)

    Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q.

    2012-01-01

    Global awareness on energy security and climate change has created much interest in assessing economy-wide energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO 2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production framework of desirable and undesirable outputs, in this paper we construct both static and dynamic energy efficiency performance indexes for measuring industrial energy efficiency performance by using several environmental DEA models with CO 2 emissions. The dynamic energy efficiency performance indexes have further been decomposed into two contributing components. We finally apply the indexes proposed to assess the industrial energy efficiency performance of different provinces in China over time. Our empirical study shows that the energy efficiency improvement in China's industrial sector was mainly driven by technological improvement. - Highlights: ► China's industrial energy efficiency is evaluated by DEA models with CO 2 emissions. ► China's industrial energy efficiency improved by 5.6% annually since 1997. ► Industrial energy efficiency improvement in China was mainly driven by technological improvement.

  17. Deployment of commercial energy efficiency cooking

    International Nuclear Information System (INIS)

    1999-04-01

    This research concerned the promotion of energy-efficient wood stoves in commercial and institutional kitchens in Ethiopia, Kenya, Tanzania and Uganda through technology transfer and training of local commercial stove producers. The key objective of the project was to introduce proven designs of energy-efficient wood stoves to producers in the target countries and train them in the manufacture and marketing of these stoves. The improved designs save 50% of the fuel used by the traditional stoves - a major saving where 10-15% of the kitchen budget is spent on fuel. They also remove smoke more effectively, protect cooks from heat and burns, and are easier to keep clean. The project went well although results have varied from one country to the other. In conclusion, the technology transfer of commercial stove designs can take place between neighbouring countries by a process of training, study visits, prototype development, market surveys and producer support.(author)

  18. The R-134a energy efficiency problem

    International Nuclear Information System (INIS)

    Behrens, N.; Dekleva, T.W.; Hartley, J.G.; Murphy, F.T.; Powell, R.L.

    1990-01-01

    This paper examines the controversy over the relative energy efficiencies of R-134a and R-12, from a theoretical thermodynamic perspective. In this regard, the authors have used an in-house process flowsheeting program which allows to simulate the complete thermodynamic cycle, and investigate the effects of superheat and subcooling. Special attention is given to the suitable basis for comparing the energy efficiencies of different refrigerants calculated from thermodynamic data. Modelling experiments demonstrate the relative extent to which R-12 and R-134a respond differently to superheat and subcooling. With appropriate superheat and subcooling taken into consideration, such as applied in standard practice in the home appliance industry, R-134a can provide COP values essentially equivalent to that of R-12

  19. Barriers to electric energy efficiency in Ghana

    Science.gov (United States)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  20. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    Science.gov (United States)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  1. Computer Architecture for Energy Efficient SFQ

    Science.gov (United States)

    2014-08-27

    IBM Corporation (T.J. Watson Research Laboratory) 1101 Kitchawan Road Yorktown Heights, NY 10598 -0000 2 ABSTRACT Number of Papers published in peer...accomplished during this ARO-sponsored project at IBM Research to identify and model an energy efficient SFQ-based computer architecture. The... IBM Windsor Blue (WB), illustrated schematically in Figure 2. The basic building block of WB is a "tile" comprised of a 64-bit arithmetic logic unit

  2. Energy Efficiency of Tunnel Boring Machines.

    OpenAIRE

    Grishenko, Vitaly

    2014-01-01

    Herrenknecht AG is a German world-leading Tunnel Boring Machines manufacturer showing strong awareness and concern regarding environmental issues. The company supports research on the Energy Efficiency (EE) of their products, aimed at the development of intelligent design for a green Tunnel Boring Machine. The aim of this project is to produce a ’status quo’ report on EE of three types of Tunnel Boring Machines (Hardrock, EPB and Mixshield TBM). In the framework of this research 39 projects a...

  3. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  4. Achieving affordable housing through energy efficiency strategy

    International Nuclear Information System (INIS)

    Copiello, Sergio

    2015-01-01

    Cooperation between public and private sector has achieved a remarkable widespread, in the Italian context, over the last two decades. Nevertheless, the increasing difficulty in accessing the capital market and the rising cost of funding sources, both noticeable over the past few years, led to a slowdown of Public–Private Partnership (PPP) initiatives. Meanwhile, the community is expressing new needs to be satisfied, such as the conversion of brownfields, the recovery of housing stock dating back to former times, as well as the refurbishment of public offices or schools. Emerging priorities include the supply of affordable dwellings for low to medium income households. This essay aims to examine a case study in which PPP and buildings energy efficiency have been successfully combined, in order to jointly contribute to the achievement of a social housing settlement. Thanks to energy efficiency measures—concerning building envelope insulation, heating system and other installations—the agreed rent results far higher than social rent of protected tenancies, and furthermore above the range of fair rents characterising other regulated tenancies, but mildly lower than market rents. All this allows to achieve an equity yield rate satisfying from the perspective of a venture philanthropy investment. -- Highlights: •Provision of affordable dwellings is an emerging priority within Italian context. •Lack of public funds leads to promote Public–Private Partnership schemes. •Without public grants the adoption of a venture philanthropy approach is needed. •The examined case study allows to explain the role of buildings energy efficiency. •Buildings energy efficiency may boost feasibility of social housing transactions

  5. Grant credit lines for energy efficiency

    International Nuclear Information System (INIS)

    Gramatikov, P.; Iliev, I.

    2010-01-01

    The European Commission established a mechanism of credit lines to integrate more quickly the Bulgarian economy to the open international markets. Thereby it was enabled certain Bulgarian banks to provide grant loans to private companies in the industrial sector for projects of improvement of the energy efficiency of their production. The Bulgarian experience in using of two European credit lines and their role in the current economic crisis is presented in this paper. (authors)

  6. Energy efficiency through integrated environmental management.

    Science.gov (United States)

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  7. Importance of energy efficiency in Venezuela

    International Nuclear Information System (INIS)

    Corrie, R.

    1991-01-01

    Venezuela's economic development relies heavily on oil. The nation's energy production equals 3.5 million barrels of oil equivalent (boe) per day. Oil comprises 71% of the energy Venezuela produces, natural gas 20%, hydro 9% and coal 1%. Of the energy produced, Venezuela exports three quarters and consumes the remainder. Over 99% of Venezuela's energy exports are crude oil and oil products. Economic problems have constrained Venezuela's development in recent years. Saddled with an external debt of $US 32 billion, Venezuela will continue to encounter barriers for years to come. The nation is, however, in the process of restructuring its economy. As part of this process, the Venezuelan government has begun to integrate opportunities for improving the efficiency of its energy use. As a major oil producer and exporter, Venezuela is conscious of its responsibility to the international community to limit its emissions of energy-related CO 2 into the atmosphere. For this reason, the Venezuelan government is in the process of creating a program to conserve and ration the use of energy. This effort incorporates a number of measures including the substitution of natural gas for liquid fuels for all end uses (including transportation activities), the increased reliance on hydropower in the generation of electricity and the reduction of waste in the production of natural gas to 2% of the economically recollectable volume

  8. Sault Tribe Building Efficiency Energy Audits

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  9. Management of efficient use of energy and energy efficiency markets in Europe

    International Nuclear Information System (INIS)

    Lutz, Wolfang F.

    1999-01-01

    The present paper is based on the study S ystematization of European Legal, regulatory, and Institutional Frameworks for the Efficient Use of Energy , conducted in the framework of the project entitled Building up the Institutional and Regulatory Design to Consolidate Modernization of Energy Policies in the Countries of Latin America: Efficient Use of energy, implemented by the United Nations Economic Commission for Latin America and the Caribbean, in cooperation with the Synergy Programme of the European Commission of the Directorate General of Energy. (The author)

  10. 78 FR 37995 - Energy Efficiency Standards for Manufactured Housing

    Science.gov (United States)

    2013-06-25

    ... Efficiency Standards for Manufactured Housing AGENCY: Office of Energy Efficiency and Renewable Energy... in receiving information that relates to the relationship between energy efficiency and indoor air... higher energy efficiencies, and possible enforcement models for the DOE standards. This notice identifies...

  11. Department of Energy Construction Safety Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  12. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  13. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  14. Constructing organic D-A-π-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment.

    Science.gov (United States)

    Pei, Kai; Wu, Yongzhen; Wu, Wenjun; Zhang, Qiong; Chen, Baoqin; Tian, He; Zhu, Weihong

    2012-06-25

    Four organic D-A-π-A-featured sensitizers (TQ1, TQ2, IQ1, and IQ2) have been studied for high-efficiency dye-sensitized solar cells (DSSCs). We employed an indoline or a triphenylamine unit as the donor, cyanoacetic acid as the acceptor/anchor, and a thiophene moiety as the conjugation bridge. Additionally, an electron-withdrawing quinoxaline unit was incorporated between the donor and the π-conjugation unit. These sensitizers show an additional absorption band covering the broad visible range in solution. The contribution from the incorporated quinoxaline was investigated theoretically by using DFT and time-dependent DFT. The incorporated low-band-gap quinoxaline unit as an auxiliary acceptor has several merits, such as decreasing the band gap, optimizing the energy levels, and realizing a facile structural modification on several positions in the quinoxaline unit. As demonstrated, the observed additional absorption band is favorable to the photon-to-electron conversion because it corresponds to the efficient electron transitions to the LUMO orbital. Electrochemical impedance spectroscopy (EIS) Bode plots reveal that the replacement of a methoxy group with an octyloxy group can increase the injection electron lifetime by a factor of 2.4. IQ2 and TQ2 can perform well without any co-adsorbent, successfully suppress the charge recombination from TiO(2) conduction band to I(3)(-) in the electrolyte, and enhance the electron lifetime, resulting in a decreased dark current and enhanced open circuit voltage (V(oc)) values. By using a liquid electrolyte, DSSCs based on dye IQ2 exhibited a broad incident photon-to-current conversion efficiency (IPCE) action spectrum and high efficiency (η=8.50 %) with a short circuit current density (J(sc)) of 15.65 mA cm(-2), a V(oc) value of 776 mV, a fill factor (FF) of 0.70 under AM 1.5 illumination (100 mW cm(-2)). Moreover, the overall efficiency remained at 97% of the initial value after 1000 h of visible

  15. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  16. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks.

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-11-15

    An important criterion of wireless sensor network is the energy efficiency inspecified applications. In this wireless multimedia sensor network, the observations arederived from acoustic sensors. Focused on the energy problem of target tracking, this paperproposes a robust forecasting method to enhance the energy efficiency of wirelessmultimedia sensor networks. Target motion information is acquired by acoustic sensornodes while a distributed network with honeycomb configuration is constructed. Thereby,target localization is performed by multiple sensor nodes collaboratively through acousticsignal processing. A novel method, combining autoregressive moving average (ARMA)model and radial basis function networks (RBFNs), is exploited to perform robust targetposition forecasting during target tracking. Then sensor nodes around the target areawakened according to the forecasted target position. With committee decision of sensornodes, target localization is performed in a distributed manner and the uncertainty ofdetection is reduced. Moreover, a sensor-to-observer routing approach of the honeycombmesh network is investigated to solve the data reporting considering the residual energy ofsensor nodes. Target localization and forecasting are implemented in experiments.Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimentalresults verify that energy efficiency of wireless multimedia sensor network is enhanced bythe proposed target tracking method.

  17. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2008-01-01

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  18. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  19. Buildings energy efficiency in the Southeast

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    In June 1992, energy service providers from around the Southeastern United States gathered at the Shenandoah Environment and Education Center of Georgia Power Company, to discuss issues related to energy efficiency buildings in the region. The meeting was organized by an ad hoc planning committee under the auspices of the Atlanta Support Office of the DOE. The objectives of the Workshop were to provide a forum for regional energy service providers to discuss matters of mutual concern and to identify issues of particular relevance to the Southeast. What characterizes energy use in the Southeast Most lists would include rapid population growth, high temperatures and humidity, a large air conditioning load on utilities, a relatively clean environment, and regulatory processes that seek to keep energy prices low. There was less unanimity on what are the priority issues. No definitive list of priorities emerged from the workshop. Participants did identify several areas where work should be initiated: networking, training/certification/education, performance of technical measures, and studies of market forces/incentives/barriers. The most frequently mentioned context for these work areas was that of utility programs. Presentations given during the first morning provided attendees an overview of energy use in the region and of building energy conservation programs being implemented both by state agencies and by utilities. These were the base for breakout and plenary sessions in which attendees expressed their views on specific topics. The regional need mentioned most often at the workshop was for networking among energy service providers in the region. In this context, this report itself is a follow up action. Participants also requested a regional directory of energy program resources. DOE agreed to assemble a preliminary directory based upon input from workshop attendees. Because the response was quick and positive, a directory is part of this document.

  20. Energy efficiency in buildings. Yearbook 2016

    International Nuclear Information System (INIS)

    Poeschk, Juergen

    2016-01-01

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change. [de